
Doctoral Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

OnGIS: Ontology-Based Geospatial Data
Integration and Retrieval

Marek Šmíd

Supervisor: Doc. Ing. Zdeněk Kouba, CSc.
Supervisor–study guarantor: Ing. Petr Křemen, Ph.D.
Field of study: Electrical Engineering and Information Technology
Subfield: Artificial Intelligence and Biocybernetics
August 2016

ii

Acknowledgements
My thanks go to both my supservisor Doc.
Ing. Zdeněk Kouba, CSc. and study guar-
antor Ing. Petr Křemen, Ph.D., for their
patience and willingness to help. My grati-
tude also belongs to my wife Eliška, whose
endurance and support helped me during
almost all of my long doctoral studies.
Last, but not least, my thanks go to all
colleagues and staff of our Department of
Cybernetics, who made it a pleasant place
to work at during the time of a transition.

My research has been partially sup-
ported by the Grant Agency of the Czech
Technical University in Prague, the grant
no. SGS10/276/OHK3/3T/13 and the
grant no. SGS13/204/OHK3/3T/13.

Declaration
I declare that my doctoral thesis was pre-
pared personally and bibliography used
was duly cited. This thesis and the re-
sults presented were created without any
violation of copyright of third parties.

iii

Abstract
Querying geospatial data from multiple
heterogeneous sources backed by different
management technologies poses an inter-
esting problem in the data integration
and the subsequent result interpretation.
I propose two ways of entering complex
spatial queries in a user-friendly way and
broker techniques for answering a query
by finding relevant data sources (from a
catalogue) capable of answering the query,
eventually splitting the query and finding
relevant data sources for the query parts,
when no single source suffices.

For expressing data source capabilities,
I describe each source with a set of proto-
typical queries that are algorithmically ar-
ranged into a lattice, which makes search-
ing efficient. The proposed algorithms
leverage GeoSPARQL query containment
enhanced with OWL 2 QL semantics. Us-
ing GeoSPARQL as both the querying
language and the language for expressing
capabilities gives the flexibility to incorpo-
rate many heterogeneous geospatial data
sources, no matter what storage, data
model, or terminology they use.

All parts of the design are presented in
a prototype called OnGIS, which imple-
ments the proposed methods of entering
a user query, searching for the relevant
data sources, and translating the query
to requests the underlying data source
technologies understand.

Keywords: geospatial semantics,
OWL 2 QL, data integration, query
containment, query broker,
heterogeneous data, lattice, OnGIS

Supervisor: Doc. Ing. Zdeněk Kouba,
CSc.
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo náměstí 13
121 35 Prague 2
Czech Republic

Abstrakt
Dotazování geografických dat z mnoha he-
terogenních zdrojů založených na různých
technických platformách představuje zají-
mavý problém jak pro integraci dat, tak
pro jejich následující interpretaci. V této
práci navrhuji dva způsoby přívětivého za-
dávání složitých prostorových dotazů a vy-
hledávacího zprostředkovatele pro zodpo-
vídání těchto dotazů hledáním vhodných
zdrojů z katalogu, které by tyto dotazy
zodpověděly. V případě, že nějaký dotaz
nelze zodpovědět jedním zdrojem, je do-
taz rozdělen a hledají se zdroje vhodné
pro jednotlivé části dotazu.

Pro vyjádření, jaké dotazy je zdroj
schopen zodpovědět, charakterizuji každý
zdroj sadou prototypových dotazů, které
jsou uspořádány do svazu, což usnadňuje
vyhledávání. Navržené algoritmy použí-
vají porovnávání dotazů vyjádřených v ja-
zyce GeoSPARQL s využitím OWL 2 QL
sémantiky. Použití GeoSPARQL pro vyjá-
dření jak uživatelského dotazu, tak zodpo-
vídacích schopností zdrojů dává možnost
zapojit mnoho rozličných geografických
datových zdrojů, bez ohledu na techniku
jejich úložiště, jejich datový model či ter-
minologii.

Všechny části návrhu jsou ukázány na
prototypu nazvaném OnGIS, který imple-
mentuje navržené metody uživatelského
zadávání dotazů, hledání relevantních da-
tových zdrojů a překlad dotazů do po-
žadavků, kterým příslušné datové zdroje
rozumí.

Klíčová slova: sémantika geografických
dat, OWL 2 QL, integrace dat,
porovonávání dotazů, zprostředkovatel
dotazů, různorodá data, svaz, OnGIS

Překlad názvu: OnGIS: Propojování a
zpřístupňování geografických dat pomocí
ontologií

iv

Contents
1 Introduction 1
1.1 Thesis Contributions 2
1.2 Thesis Outline 3
2 GIS and Geospatial Integration 5
2.1 GIS Basics . 5
2.2 Spatial Relations and Operations 6
2.3 Spatial Data Representation 7
2.4 GIS Services 8
2.4.1 OGC Standards for Services . . 8
2.4.2 PostgreSQL, PostGIS 9
2.4.3 Commercial Systems 10

2.5 Interesting Data Sources 11
2.5.1 OpenStreetMap 11
2.5.2 Official National Data Sources 12

2.6 Existing GIS Integration 13
3 Semantic Web 15
3.1 Linked Data 16
3.2 Interesting Spatial Data Sources 19
3.2.1 LinkedGeoData 19
3.2.2 GeoNames 20
3.2.3 DBpedia 21

3.3 Web Ontology Languages 22
3.3.1 Description Logics 22
3.3.2 OWL . 24
3.3.3 DL−Lite 25
3.3.4 OWL 2 QL 29

3.4 Querying Languages 30
3.4.1 SPARQL 31
3.4.2 GeoSPARQL 32

3.5 Existing Search Systems 36
4 Geospatial Integration and
Retrieval Proposal 43
4.1 Overall Architecture 44
4.2 Geospatial Semantic Retrieval . . 45
4.3 Query Input Design 47
4.3.1 List Query Design 47
4.3.2 Structured Query Design 49

4.4 Representing Geospatial Sources 50
4.4.1 Expanding GeoSPARQL
ontology . 51

4.4.2 Query Containment Basics . . 51
4.4.3 Query Containment with
GeoSPARQL 55

4.4.4 Resolving Variable Mapping . 57

4.5 Using Lattice for Searching
Relevant Sources 60
4.5.1 Building Lattice 60
4.5.2 Searching Lattice 62

5 Implemented Prototypes 67
5.1 Query Input and Data Retrieval 67
5.1.1 OwlgresMM 69
5.1.2 Importing Spatial Data 71

5.2 Lattice Construction and
Searching . 75

5.3 Other Tools 75
6 Experiments 77
6.1 Query Input 77
6.1.1 Query Input as List with
Relations . 77

6.1.2 Query Input as Structured
Expression . 81

6.2 Searching Sources for a Query . . 83
6.2.1 The First Example 83
6.2.2 The Second Example 86
6.2.3 The Third Example 87
6.2.4 Comparison with Other
Systems . 89

7 Conclusion 91
Bibliography 93
Abbreviations 103
Publications of the Author Relevant
to the Thesis 105
Journal Publications 105
Publications in Conference
Proceedings 105

Other Publications 106
Remaining Publications of the
Author 107

v

Figures
2.1 Two geometries with DE-9IM
relation 1020F1102. 6

2.2 RCC8 relations examples using
simple geometries, from [1]. 7

2.3 OpenStreetMap raster map detail 11

3.1 LOD cloud – datasets published in
Linked Data format, updated on
2014-08-30. 17

3.2 Language inclusions in the
extended DL−Lite family, from [2]. 28

3.3 Landscape of data complexity of
DL−Lite-related logics, from [2]. . 29

3.4 Complexity of basic DL−Lite
logics, from [2]. 30

3.5 GeoSPARQL basic classes and
properties. 32

4.1 Overall architecture. 44
4.2 Extending GeoSPARQL 52
4.3 Example of a circle in a query. . . 57
4.4 Splitting a query into subqueries. 64

5.1 Architecture of OpenStreetMap
import. 72

6.1 The list query with a few items. 78
6.2 The resulting map of the query
example. 81

6.3 An example of restaurant classes
autocomplete in a structured query. 82

6.4 An example of a data properties
autocomplete in a structured query. 82

6.5 An example structured query input
field. 83

6.6 The tree of an example structured
query. 83

6.7 The lattice of the sources in the
first example. 85

Tables
3.1 Constructs used in DL−Lite and
their semantics. 27

3.2 The response to the example
SPARQL query. 32

3.3 Topological relations with their
meanings, divided into families. . . . 34

3.4 Topological relations with their
DE-9IM definitions. 35

3.5 Various GeoSPARQL functions for
comparing and manipulating
geometries. 35

4.1 Values of restrictions TR(OP) of
topological relations. 55

4.2 Meanings of TR(OP) values. . . . 55

6.1 The first example statistics. 86
6.2 The second example statistics. . . 87
6.3 The third example statistics. . . . 89
6.4 Response time statistics with my
and Pellet query containment. 90

vi

Chapter 1
Introduction

This thesis focuses on searching geospatial data, which have some specifics
compared to general data on the Internet. General search engines, when
dealing with large amounts of mostly unstructured data, usually written in
natural languages, have to cope with impreciseness. Such search engines
usually use statistics to find relevant sources, word similarities, etc.

But in the GIS (geographical information systems) world, it is a little
different. Publishing geospatial data requires more technical effort, which
usually also calls for describing what the data are about (such description is
often called metadata). There is also a long tradition of GIS systems with
rigid data models, frequently tightly coupled with relational databases.

As GIS data are important for many aspects of human living, also gov-
ernments spend a lot of money to build high-quality geospatial sources for
the country needs – cadastral maps, city and postal maps, maps analyzing
various aspects of nature and meteorology, and many more. Governments not
only initiate creating and publishing such sources but also dictate how public
data should be published – they give technical requirements and provide
a guide how the data should be annotated by metadata. This is a case of
INSPIRE [3] (see Section 2.5.2), an initiative of European Commission to
standardize public data among European Union countries. There are also
open initiatives of international map projects, for example OpenStreetMap
(see Section 2.5.1), which gained very high quantity and good quality of data.

The structured character of GIS data makes it feasible to describe them
with semantic techniques, e.g. all spatial objects of a map layer can become
instances of a class, an attribute of objects in a layer can become a data prop-
erty (for the explanation of the semantic terms, see Chapter 3). An example
can be OpenStreetMap, which is semantically described by LinkedGeoData
initiative (see Section 3.2.1).

The semantic layer over GIS systems brings the advantage of adding domain
knowledge over the structure of the data (e.g. hierarchies over feature classes,
with an example of Pizzeria being a subclass of Alimentation) and of linking
the GIS systems together (e.g. that a feature class in one GIS is equal to or
a subclass of a feature class in another GIS, with an example of Forest in one
GIS being a subclass of NatureLandscape in another).

This thesis focuses on using GIS data sources described by semantic tech-

1

1. Introduction
niques for a user-friendly searching, being agnostic to the underlying tech-
nologies of the sources. It consists of three main parts:. A proposal of two user-friendly ways of entering a complex spatial query

based on semantic entities (for explanation see Chapter 3), so the query
has a precise meaning,. translation of the semantic queries to requests for different sources
providing geospatial data, e.g. the support for relational databases,
SPARQL endpoints (see Section 3.4.1), and WMS and ArcGIS services
(see Section 2.4), and. describing source capabilities (both in terms of data it has and operations
it provides) by semantic techniques, which allows searching for relevant
sources for a user’s query. The proposed algorithms support the case
when no single source can answer the query, i.e. when the query has to
be split into parts, and for each part, a relevant source has to be found.

A potential application of the proposed system is in the area of urban
design, as city planning is a complex task, requiring the use of various map
data, potentially from various sources. This is reflected in my experiments,
where one of the data sources is the geoportal of IPR Praha (see Section 2.5.2),
offering many interesting map layers.

One of the characteristics of the proposed system is that it uses one of the
ontology languages (OWL 2 QL, see Section 3.3.4), which has lower expressive
power compared to some other widely used languages, but is tractable (i.e.
it is of polynomial time complexity), which makes it possible to translate
queries with OWL 2 QL semantics to SQL queries. This makes it possible to
connect the proposed system to many existing GIS data sources, as many use
relational databases. For representing queries, a recent standard GeoSPARQL
is used (see Section 3.4.2).

1.1 Thesis Contributions

The contribution of this thesis is proposing a complete system for intuitive
query answering in the field of geospatial data. As the underlying technologies,
the GeoSPARQL query language with OWL 2 QL semantics (see Chapter 3)
is used. Specifically, the novel contributions are:. Designing two user-friendly ways of entering a geospatial query,. proposing annotations for mapping domain ontologies to several GIS

service technologies, which are tailored for spatial requests,. designing a method of geospatial query containment, i.e. adapting the
techniques proposed in [4] and [5] to OWL 2 QL language and extending
it by geospatial reasoning, and

2

.................................... 1.2. Thesis Outline

. designing the algorithms for arranging a set of geospatial queries to a
lattice using the query containment and for searching the lattice. The
searching algorithm supports the case a query is not found in the lattice
and has to be split into parts. The algorithms are useful for searching a
source, eventually sources, capable of answering a given user’s query.

These contributions are presented in two articles in conference proceedings
and a reviewed journal paper (and one more in the review process) listed in
the Publications of the Author Relevant to the Thesis section at the end of
this thesis.

1.2 Thesis Outline

The thesis is structured as follows: Chapter 2 gives an introduction to
the GIS domain, and a comparison to other GIS integration techniques in
Section 2.6. Chapter 3 presents the ideas and techniques of semantic web
relevant to the purpose of this thesis, with Section 3.5 giving an overview
of similar work based on semantic techniques. The design of the proposed
system, including two methods of user-friendly query input, spatial query
containment design, and data source searching algorithms, is presented in
Chapter 4. The implementation aspects of the OnGIS prototypes are briefly
described in Chapter 5. Chapter 6 presents a list of successful examples of
testing the implementation, proving the proposed design is feasible. Finally,
Chapter 7 gives a conclusion.

3

4

Chapter 2
GIS and Geospatial Integration

GIS (Geographic information system) is a broad term referring to a wide
family of standards, technologies, and software tools to store, edit, analyze,
display, and integrate spatial data. In this thesis, I focus on the search and
integration aspects.

This chapter presents some basic concepts in Section 2.1, common GIS
operations in Section 2.2, ways how to express spatial data in Section 2.3,
standards and software tools for providing services in Section 2.4, some
relevant data sources in Section 2.5, and finally the existing work related to
this thesis is presented in Section 2.6.

2.1 GIS Basics

The basic division of GIS data is a geometry of an object and attributes of
an object. A geometry of a spatial object can be a point, a line, a polygon
(optionally with holes), or a collection of any of the aforementioned. Attributes
of an object are non-spatial data values, e.g. a name, opening hours (in the
case of a shop), road number, population, etc.

Traditionally, the main output of GIS systems is a map. A map can contain
a legend (explaining what all the used symbols mean), a compass rose (to show
the orientation), a map scale (to show the scale of the map), and when the
map is interactive (e.g. a map on a website, a computer application displaying
a map), the tools to operate the map (tools for zooming, panning, selecting
layers, searching, highlighting objects, etc.). The map can be presented in
a vector, or more often in a raster format. A map can consist of multiple
layers, which are rendered in a given order, one on top of another. The first
layer (rendered first) is usually called a base layer, the rest overlay layers.
Layers can be raster images (e.g. satellite imagery, aerial photography), vector
objects (e.g. roads, land parcels, house outlines), and texts (e.g. city names,
street names, house numbers, statistic values).

Other types of GIS outputs can be vector geometries, which can be used
for further processing, and data tables containing some statistics computed
from the GIS data (e.g. country names with the areas they cover and the
lengths of their borders, or average precipitations of continents).

5

2. GIS and Geospatial Integration
2.2 Spatial Relations and Operations

Relations of two geometries can be simplified to topological relations, which
neglect the exact geometry coordinates, mutual orientation, or distance. They
just reflect the mutual relationship of how their interiors and boundaries
overlap. The topological relation of two geometries can be described by DE-
9IM (dimensionally extended nine-intersection model) [6], which is represented
by a 3× 3 matrix:

DE-9IM(a, b) =

dim(I(a) ∩ I(b)) dim(I(a) ∩B(b)) dim(I(a) ∩ E(b))
dim(B(a) ∩ I(b)) dim(B(a) ∩B(b)) dim(B(a) ∩ E(b))
dim(E(a) ∩ I(b)) dim(E(a) ∩B(b)) dim(E(a) ∩ E(b))

 ,
(2.1)

where dim is a dimension of an intersection, and I, B, and E are interior,
boundary, and exterior, respectively, of a geometry. The dimension can
be −1 (often denoted as “F”) when there is the empty intersection, 0 (the
intersection is a point), 1 (a line), and 2 (an area).

Then a DE-9IM relation can be represented as a string consisting of
nine characters (read from the matrix by lines from the top-left corner). An
example in Fig. 2.1 has the DE-9IM string “1020F1102”. To allow representing
groups of DE-9IM relations, the dimension “T” represents any nonempty
intersection (i.e. dim = 0, 1, or 2), and the dimension “*” stands for any
dimension.

a b

Figure 2.1: Two geometries with DE-9IM relation 1020F1102.

To simplify it (reduce the complexity of expressing a relation), there are
three sets (families) of named topological relations, each containing eight
easily understandable relations. The three families are a simple feature family,
Egenhofer family, and RCC8 (Region Connection Calculus) [1] family. They
all are used in GeoSPARQL described in Section 3.4.2, where also definitions
and brief descriptions of the relations are given. See simple examples of RCC8
relations in Fig. 2.2. For more details, see Section 3.4.2.

Spatial operations can be used to create new geometries out of existing,
for various analytical tasks, and for many other purposes. For example, the
complete list of the spatial functions of PostGIS (presented in Section 2.4.2)
is in [7].

Some typical operations for modifying geometries are:. buffer, which returns a geometry covering all points within a given
distance from all points of an input geometry,

6

.............................. 2.3. Spatial Data Representation

Figure 2.2: RCC8 relations examples using simple geometries, from [1].

. convex and concave hull,. difference, intesection, and union.

Some examples of most common analytical functions for measuring geome-
tries and checking their relation are:. area, for calculating the area of the surface of a polygon,. distance, for obtaining the minimum distance between two geometries,. length, for getting the length of a line,. a set of boolean functions based on topological relations, returning true

when two geometries are related the given way (e.g. contains, covers,
crosses, intersects, overlaps), and. relate function, which checks or obtains the topological relation of two
geometries in the DE-9IM format.

2.3 Spatial Data Representation

There are some standardized and commonly used formats and serializations
for spatial data:.WKT, WKB – Well Known Text, Well Known Binary are clas-

sical textual and binary geometry representation. Some examples of
WKT are POINT(0 0), LINESTRING(0 0,1 1,1 2), POLYGON((0 0,4
0,4 4,0 4,0 0), (1 1, 2 1, 2 2, 1 2,1 1))..GeoJSON [8] is JSON encoding geometric information including addi-
tional attributes, e.g.
{ "type": "Feature",
"geometry": {

"type": "Polygon",
"coordinates": [
[[100.0, 0.0], [101.0, 0.0], [101.0, 1.0],

[100.0, 1.0], [100.0, 0.0]]

7

2. GIS and Geospatial Integration
]

},
"properties": {
"prop0": "value0"

}
}

.GML – Geography Markup Language [9] is an XML encoded ge-
ometry format. It is richer than the previous formats, as it supports
more features, e.g. expressing used coordinate reference systems, units
of measure, time, and more geometry types. A simple example1 is

<Feature fid="142" featureType="school" >
<Description>Balmoral Middle School</Description>>
<Property Name="NumFloors" type="Integer" value="3"/>
<Property Name="NumStudents" type="Integer" value="987"/>
<Polygon name="extent" srsName="epsg:27354">

<LineString name="extent" srsName="epsg:27354">
<CData>

491889,5458046 491905,5458045
491909,5458065 491925,5458065
491926,5458080 491978,5458121
491954,5458018

</CData>
</LineString>

</Polygon>
</Feature>

2.4 GIS Services

This section gives some often used standards and systems for GIS servers and
services.

2.4.1 OGC Standards for GIS Services

OGC2 (Open Geospatial Consortium, an international organization for making
open geospatial standards) defines several standards of GIS services for
different purposes:.WMS (Web Map Service) – a protocol for serving raster maps. A

service provides a map image given the requested resolution, CRS, layer,
and the bounding box.

1From https://www.w3.org/Mobile/posdep/GMLIntroduction.html, cit. 2016-06-19.
2http://www.opengeospatial.org/, cit. 2016-08-28.

8

https://www.w3.org/Mobile/posdep/GMLIntroduction.html
http://www.opengeospatial.org/

..................................... 2.4. GIS Services

.WCS (Web Coverage Service) [10] – a protocol for providing cover-
age data, that can be used either for rendering or for further processing.
As opposed to WMS, it provides data with given semantics and scale. It
can serve e.g. GML, GeoTIFF..WFS (Web Feature Service) [11] – a protocol for providing source
feature vector data, also allowing data manipulation. It has some query-
ing capabilities..WPS (Web Processing Service) – a protocol for providing geospatial
processing services.

These standards are widely accepted, as most GIS server technologies
support them (e.g. ArcGIS, GeoMedia – see Section 2.4.3, and many open
source platforms), as well as many client libraries can use them (e.g. Javascript
web map viewers, desktop applications, and software libraries).

2.4.2 PostgreSQL, PostGIS

PostgreSQL [12] is an open source DBMS (database management system),
originally developed at the University of California at Berkeley. It offers
features like foreign keys, triggers, views, transactional integrity, and multi
version concurrency control. It is a well-established DBMS. It is used as a
classical relational database conforming to SQL.

PostGIS [7] adds support for spatial data to PostgreSQL. It allows efficient
storage and retrieval of geographical data in database tables. It provides a
binary column type suitable for storing geographical coordinates and many
functions to manipulate them. Such geographical columns can be indexed,
thus providing fast access to the data while performing a complex search.

PostGIS offers two modes when handling geographical data:.Geometrical – operates on a plane with Cartesian coordinates. The
shortest join of two points is a straight line. It makes calculations a lot
easier, e.g. calculations of distances, areas, and intersections..Geographical – uses spherical coordinates for points (in angular units)
– latitude and longitude, and operates on a sphere or spheroid. The
shortest join of two points is an arc. It makes calculations more complex.
For calculations being more exact (as the Earth is not a sphere), a
spheroid has to be taken into account, which makes the calculations even
more complicated.

In most cases, as well in my prototype described in Chapter 5, PostGIS is
used in the geometrical mode, since the calculations are faster in this mode
(and the accuracy after projection is sufficient for the needs of most cases),
and more functions are available in geometrical mode.

Basic spatial objects supported by PostGIS are points, line strings, and
polygons, which can be represented in WKB (well-known binary), WKT
(well-known text) and other formats (see Section 2.3).

There is a wide variety of functions to manipulate and process spatial data:

9

2. GIS and Geospatial Integration
. input/output functions – for converting WKT, WKB, GML, KML and

other formats to and from internal spatial objects,. conversion functions – for joining points into a line, constructing a
polygon from its borders, etc.,. accessor functions – for retrieving properties of spatial objects,. editor functions – for modifying spatial objects (scaling, rotating, trans-
forming, . . .),.measurement functions – for calculating various facts about spatial
objects (distance between two objects, whether one object lies within a
given radius of another, whether two objects overlap, etc.),. and others.

For details and complete reference of all functions and properties of PostGIS,
see [7].

2.4.3 Commercial Systems

GeoMedia3 is a set of commercial GIS tools developed by Intergraph, now
Hexagon Geospatial. In the Czech Republic, their systems are used e.g. by
State Administration of Land Surveying, South Moravian Region Offices, and
Woods of the Czech Republic (Lesy ČR) [13].

ArcGIS4 developed by Esri is a commercial wide-spread GIS platform used
e.g. by IPR Praha (see Section 2.5.2), which publishes its data using this
platform via various services [14]. ArcGIS servers can publish its data and
services by many interfaces5, e.g. WMS, WCS, WFS, and WPS services (see
Section 2.4.1), a geocoding service (an address locator), mobile device map
extracts, raster and mosaic datasets, and web services using REST and SOAP
APIs. My prototype presented in Section 5.1 uses the ArcGIS server of IPR
Praha.

3Available at http://www.hexagongeospatial.com/products/producer-suite/
geomedia, cit. 2016-07-07.

4Available at http://www.esri.com/software/arcgis, cit. 2016-07-07.
5From http://server.arcgis.com/en/server/latest/publish-services/linux/

what-types-of-services-can-you-publish.htm, cit. 2016-08-28.

10

http://www.hexagongeospatial.com/products/producer-suite/geomedia
http://www.hexagongeospatial.com/products/producer-suite/geomedia
http://www.esri.com/software/arcgis
http://server.arcgis.com/en/server/latest/publish-services/linux/what-types-of-services-can-you-publish.htm
http://server.arcgis.com/en/server/latest/publish-services/linux/what-types-of-services-can-you-publish.htm

............................... 2.5. Interesting Data Sources

2.5 Interesting Data Sources

Here are some interesting publicly accessible GIS data sources, some of which
are used for the prototype testing in Chapter 6.

2.5.1 OpenStreetMap

OpenStreetMap, available at http://www.openstreetmap.org/, is a pub-
licly available, extensible, and editable geographical data of the World with
complete software infrastructure for rendering raster maps. Everybody can
contribute to the data, but the main sources are accessible data from various
organizations (governmental, etc.), which conform to the OpenStreetMap
license. For details, see [15]. For an idea of the data coverage, see generated
raster maps in Fig. 2.3, obtained from the OpenStreetMap website.

The OpenStreetMap data are available in two formats: a custom binary
(PBF), and an XML file. The basic OpenStreetMap objects are nodes
(spatially represented by a point), ways (ordered lists of points connected
by lines), and relations (consisting e.g. of a set of ways, forming a polygon).
Every object can be labeled with tags, which are “key=value” pairs. A tag
can define the type of an object (e.g. a restaurant, a semaphore, a water
surface), or give it an attribute (e.g. a name, an author).

Figure 2.3: OpenStreetMap raster map detail of Karlovo náměstí, Prague, the
Czech Republic, where a part of CTU, FEE resides.

Thanks to OpenStreetMap being open, anybody can download source
vector data of the map, which most of other publicly available maps (e.g.
Google Maps, Mapy.cz) do not offer. There is a utility osm2pgsql, which
performs the import of OpenStreetMap data into PostGIS database. The

11

http://www.openstreetmap.org/

2. GIS and Geospatial Integration
data are available e.g. at http://planet.openstreetmap.org/, the full
planet in XML format compressed in BZIP2 has approximately 50 GB. As of
2016-06-26, the number of the elements of OpenStreetMap is approximately
3.4 billion nodes and 350 million ways.

2.5.2 Official National Data Sources

Official geographical data sources supported by local governments are becom-
ing more and more freely available, though it has not always been the case.
In the United States of America, it has been a tradition to provide all data
collected by official agencies for public use [16, 17].

In the European Union, the INSPIRE [3] directive (Infrastructure for Spatial
Information in the European Community) started in 2007 is important, as it
regulates the EU countries, specifying how and which spatial data should be
provided to public. It deals mostly with environmental data – agriculture,
geology, atmosphere, land use, etc.

In the Czech Republic, Czech Environmental Information Agency (CENIA)
is responsible for compliance with INSPIRE. It runs a geoportal with all
the required data available at https://geoportal.gov.cz/. It provides
INSPIRE compliant metadata of the data available, and the data itself, both
as an interactive web-based map and as a WMS service (see Section 2.4.1).
However, vector data are not freely publicly available, they can be purchased.

There is also ČÚZK, State Administration of Land Surveying and Cadas-
tre, which provides cadastral maps of the Czech Republic as a web-based
interactive map, a WMS service, and also as a WFS service providing vector
data, most of them for free [18].

On the other hand, Czech Hydrometeorological Institute offers its historical
data about the weather for sale only.

In this thesis, I focused on another data source – Prague Institute of
Planning and Development (“Institut plánování a rozvoje hlavního města
Prahy” in Czech, IPR Praha; formerly known as Útvar rozvoje hlavního
města Prahy, ÚRM). The institute runs the Prague geoportal available
at http://www.geoportalpraha.cz/, providing a lot of interesting data,
available both as rasters via a WMS service, and in the vector form via an
ArcGIS service, as it runs on an ArcGIS server (see Section 2.4.3).

12

http://planet.openstreetmap.org/
https://geoportal.gov.cz/
http://www.geoportalpraha.cz/

................................2.6. Existing GIS Integration

2.6 Existing GIS Integration Techniques

There are some techniques for defining and searching GIS catalogues. For
example, the Catalogue Service (CSW) [19], a standard by OGC, is an
interface to discover, browse, and query metadata about GIS data and
services. It uses Dublin Core6 vocabulary to describe web resources. It can
be searched by metadata – keywords, author, date, etc. However, it does
not allow for more complex queries or semantic search. For spatial querying,
only bounding box is supported, and the language for describing the source
capabilities is very limited.

A traditional GIS method of using multiple sources is the manual connection
to the required GIS services from a desktop PC application, e.g. ArcGIS for
Desktop7, loading the relevant layers from the sources, and performing the
integration and interpretation of the results by hand.

For integrating relational databases, database federation techniques [20]
are known for a long time. However, they are not suitable for GIS data
integration because a GIS integration requires special functions for spatially
constraining the data (e.g. by distance to a set of objects, by falling into a
specified rectangle, or by other spatial properties), which are not standardized
yet in the world of relation databases, and are specific to the used GIS storage
implementation, therefore cannot be supported by general data integration
tools.

The author of [21] gives a theoretical background for data integration. The
paper explains and compares two integration approaches: global as view
and local as view. The paper operates with a set of local source schemas,
and a global schema (which is used for user queries). In the global as view
approach, mappings of elements from the global schema to the source schemas
are provided. In the case of the local as view approach, it is the opposite.

In [22], the authors summarize the past in data integration and see the
future in the semantic integration.

For existing semantic integration techniques, focusing on geospatial inte-
gration, see Section 3.5.

6http://dublincore.org/, cit. 2014-05-22.
7http://www.esri.com/software/arcgis/arcgis-for-desktop, cit. 2016-08-28.

13

http://dublincore.org/
http://www.esri.com/software/arcgis/arcgis-for-desktop

14

Chapter 3
Semantic Web

The idea of the semantic web is motivated by the desire to explore the web
more automatically and to obtain more focused results.

The classical approach of searching the web is based on general text and
word similarities and synonyms, and using statistics. It is difficult to narrow
down the results a user wants, to express the meaning of what is expected.
This way, a user usually needs to follow an iterative process of finding the
proper set of search keywords to obtain relevant results, which still may
contain a lot of irrelevant results, which need to be filtered out manually.

In the case of the semantic web, all provided information is not in the form
of a natural human language, but in the form of axioms, which have strictly
defined semantics so computers can understand them. The basic form of an
axiom is a triple “subject, predicate, object”, where each member can be a
reference to a symbol (usually represented by a URI), having a well-defined
meaning; an object can also be some data value.

Some example pieces of information can be represented by following triples:. ex:people/Joe dbp:ontology/residence dbp:resource/Prague.. dbp:resource/Prague dbp:ontology/populationTotal “1259079”.. dbp:resource/Prague dbp:ontology/country dbp:resource/Czech_
Republic.

The prefix ex: stands for http://example.org/, and dbp: stands for http:
//dbpedia.org/ (see Section 3.2.3 for details of this data source). Intuitively,
they represent the facts that a person having the URI http://example.org/
people/Joe has the residence in Prague, and that Prague has the total
population of 1259079, and it is in the Czech Republic.

The triples form a large graph, where subjects and objects are the nodes,
and predicates are the edges. Therefore, when data are represented by such
triples, they are usually searched by a graph pattern (see Section 3.4.1).

15

ex:people/Joe
dbp:ontology/residence
dbp:resource/Prague
dbp:resource/Prague
dbp:ontology/populationTotal
dbp:resource/Prague
dbp:ontology/country
dbp:resource/Czech_Republic
dbp:resource/Czech_Republic
ex:
http://example.org/
dbp:
http://dbpedia.org/
http://dbpedia.org/
http://example.org/people/Joe
http://example.org/people/Joe

3. Semantic Web
3.1 Linked Data

Linked Data [23] is a method how technically publish data, along with the
principles of the semantic web. There are four basic principles stated in [24]:..1. Use URIs as names for things...2. Use HTTP URIs so that people can look up those names...3. When someone looks up a URI, provide useful information, using the

standards (RDF, SPARQL)...4. Include links to other URIs so that they can discover more things.

Item 2 is often called “dereferencing.” This could be done according to
[25]: the URI itself should identify real-world objects, which should not be
confused with the documents that describe them. Therefore HTTP content
negotiation can be used, with two strategies to follow: either using HTTP
response 303 to redirect or using hash URIs.

To give an example of the former strategy, HTTP 303 redirecting, let us
get some information about URI http://example.org/people/Joe. First,
perform an HTTP GET request to exactly that URL, with the appropriate re-
quested content type in the HTTP Accept: header, e.g. application/rdf+xml
or text/html. The server responds with the HTTP response code 303 “See
Other” with a redirect according to the requested content type, e.g. to
http://example.org/people/Joe.rdf, respectively http://example.org/
people/Joe.html, where another GET request would retrieve the description
of Joe in the requested format (RDF/XML, see below in this chapter, or
HTML).

Note that URI stands for Uniform Resource Identifier, and it is a superset
of. URL (Uniform Resource Locator), the widely used web addresses, e.g.

https://en.wikipedia.org/, and. URN (Uniform Resource Name), names of web resources, not very widely
used these days, e.g. urn:isbn:0-521-78176-0.

In the Czech Republic, for example, is publishing open data, including pub-
lishing in linked data form, supported by the action plan for open government
[26] from 2014. Open data are also supported e.g. by Fond Otakara Motejla,
which produced a guide about open data publishing in [27].

The key feature of Linked Data is that an author of one data set can link
its objects to objects in another data set. In my example, the data publisher,
who is using the domain example.org, who describes Joe, used for stating
his birthplace an object of another data publisher, the city Prague published
on domain dbpedia.org by DBpedia (which produces its data by extracting
Wikipedia).

16

http://example.org/people/Joe
http://example.org/people/Joe.rdf
http://example.org/people/Joe.html
http://example.org/people/Joe.html
https://en.wikipedia.org/
example.org
dbpedia.org

..................................... 3.1. Linked Data

Many interesting data sets in many areas are already publicly available;
it is always a good idea to link a new data set to the relevant ones. The
LOD cloud1 (Linking Open Data cloud diagram) in Fig. 3.1 depicts, what
well-known datasets are published as Linked Data and which way are they
linked.

Figure 3.1: LOD cloud – datasets published in Linked Data format, updated on
2014-08-30.

RDF [28] (Resource Description Framework) is a model for data interchange
suitable for the semantic web. It is the primary semantic language for Linked
Data. Along with RDFS [29] (RDF Schema), it allows basic deduction via
reasoning inference. RDF and RDFS define concepts “resource”, “class”,
“property”, and “literal”. A resource is anything represented by a URI. The
class of all resources is denoted rdfs:Resource. Similarly, the class of all
literal values (strings, integers, . . .) is rdfs:Literal. A class is a group of
resources. The class of all classes is rdfs:Class. A property is a binary
relation between resources and another resources or literals. The class of all
properties is rdf:Property. The property rdf:type states that a resource
is an instance of a class. See Listing 3.1 for examples, how these concepts
can be used.

Note that lines 1 and 2 are redundant: 1 can be inferred from 3 (domain
of rdf:type is rdfs:Resource), and also 2 can be inferred from 3 (range of
rdf:type is rdfs:Class).

1Attribution: Linking Open Data cloud diagram 2014, by Max Schmachtenberg, Christian
Bizer, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

17

http://lod-cloud.net/

3. Semantic Web
Listing 3.1: An example of RDF triples.

1 ex:people/Joe rdf:type rdfs:Resource.
2 dbp:ontology/Engineer rdf:type rdfs:Class.
3 ex:people/Joe rdf:type dbp:ontology/Engineer.
4 dbp:ontology/residence rdf:type rdf:Property.
5 ex:people/Joe dbp:ontology/residence dbp:resource/Prague.

Now comes the fun part – the RDFS properties, that allow inferring new
interesting facts:. rdfs:subClassOf states that all instances of one class are automatically

instances of another class,. rdfs:subPropertyOf states that all pairs of resources related by one
property are automatically related by another property,. rdfs:domain states that all subjects of a property are automatically
instances of a class, and. rdfs:range states that all objects of a property are automatically in-
stance of a class.

Thus, I can add the triples in Listing 3.2 to those in Listing 3.1.

Listing 3.2: Another example of more RDFS triples.

1 dbp:ontology/Engineer rdfs:subClassOf dbp:ontology/Person.
2 dbp:ontology/residence rdfs:subPropertyOf dul:hasLocation.
3 dbp:ontology/residence rdfs:range dbp:ontology/Place.

They state that (1) all engineers are persons, (2) when something has a
residence somewhere, it is located there (a property defined in another data
source), and (3) when something is a residence of somebody, it is a place. So
thanks to the triples in Listing 3.2, it can be inferred from Listing 3.1 that:
Joe is a person, Joe is located in Prague, and Prague is a place.

Another widely used RDFS property is rdfs:label, giving a human-
readable label to a resource.

Data in RDF can be serialized in a few formats:. N-Triples [30], a simple triple-per-line format, suitable for large data files
for parallel processing,. Turtle [31], a superset of N-Triples, which is more compact, and more
human readable,. Notation3 (N3) [32], a superset of Turtle, going even beyond RDF model,. JSON-LD [33], a JSON-based format for Linked Data, capable of serial-
izing any RDF graph, and

18

............................ 3.2. Interesting Spatial Data Sources

. RDF/XML [34], a widely used XML syntax; see Listing 3.3 for an
example.

Listing 3.3: An RDF/XML example.

1 <rdf:RDF xmlns="http://example.org/"
2 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4 xmlns:dbo="http://dbpedia.org/ontology/">
5 <rdf:Description rdf:about="http://example.org/people/Joe">
6 <rdf:type rdf:resource="http://dbpedia.org/ontology/Engineer"/>
7 <dbo:residence rdf:resource="http://dbpedia.org/resource/Prague"/>
8 </rdf:Description>
9 <rdf:Description rdf:about="http://dbpedia.org/ontology/Engineer">
10 <rdfs:subClassOf rdf:resource="http://dbpedia.org/ontology/Person"/>
11 </rdf:Description>
12 <rdf:Description rdf:about="http://dbpedia.org/ontology/residence">
13 <rdfs:subPropertyOf rdf:resource=
14 "http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#hasLocation"/>
15 <rdfs:range rdf:resource="http://dbpedia.org/ontology/Place"/>
16 </rdf:Description>
17 </rdf:RDF>

3.2 Interesting Semantic Spatial Data Sources

There are many data sources conforming to Linked Data, see Fig. 3.1. I will
pick and describe a few of them, which are relevant to this thesis – the ones
containing some sort of spatial information. They are used for my prototype
in Chapter 5.

3.2.1 LinkedGeoData

LinkedGeoData [35], available at http://linkedgeodata.org/, are the data
of OpenStreetMap (see Section 2.5.1) presented as Linked Data. The original
data are for example in XML format, tagged with a defined set of labels,
categorizing each element into a type. LinkedGeoData effort uses the tags to
produce RDF classes and properties to describe the data and also links the
classes and properties to other knowledge bases in the Linking Open Data
initiative.

LinkedGeoData contains many classes in good hierarchical organization,
with some erroneous entries, a small amount of object properties (not in
any hierarchy), and quite many data properties, which contain some errors
as well (it is because of the nature how OpenStreetMap works, and that
LinkedGeoData is an automated extract of what OpenStreetMap contains;
users of OpenStreetMap upload nodes and ways and label them with tags of
their will; they are only advised to use the predefined set), and not in any
hierarchy, too. Unluckily it does not contain many label annotations (just a
few in a few languages).

19

http://linkedgeodata.org/

3. Semantic Web
The LinkedGeoData ontology (the hierarchy of its classes and properties)

is unfortunately not updated recently (also [36] is not accessible recently).
The last version available2 is from 2014-09-09. Besides class and property
definitions, it contains some of large volumes of actual OpenStreetMap data
with its geometries in RDF in N-Triples format (see Section 3.1). The
geometries are encoded in WKT literals (Section 2.3) referenced to by a
GeoSPARQL property (Section 3.4.2).

It has a small amount of links to DBpedia (see Section 3.2.3), but it is
quite a popular destination of links from other Linked Data sources. I will
refer to entities from the LinkedGeoData ontology by the prefix lgd:.

3.2.2 GeoNames

GeoNames [37], available at http://www.geonames.org/ is another source
published as Linked Data. It is a geographical database of points, having
about 9 million features. These features are categorized into nine classes and
marked with one of 645 feature codes. Besides downloading complete data in
tab-separated text file, they can be accessed using restful web services and
viewed and edited on a web page with Google Maps.

One of the key advantages of GeoNames is it has names of the features
typically in many languages. Its sources of data are mostly already existing
data from various governments:. National Geospatial-Intelligence Agency’s (NGA), U.S. Geological Survey

Geographic Names Information System, www.geobase.ca, gtopo30, In the Czech Republic: FreeGeodataCZ – project based on GRASS GIS
at Czech Technical University, Faculty of Civil Engineering.

However, any user can add features using the GeoNames web page.
A part of GeoNames is its ontology3, containing all classes and feature

codes, which are very well defined and labeled in a few languages. There
are also the links from the classes and feature codes to other data sources,
e.g. to DBpedia and LinkedGeoData. It is also a popular target to link
to. Besides the definition of feature classes and codes, the ontology contains
several properties organized in simple but useful hierarchies, e.g. neighbours,
nearby, name, postalCode, and population.

GeoNames use FOAF4 and SKOS5 vocabularies. For stating a point
coordinates, it uses the W3C Basic Geo Vocabulary [38], a simple vocabulary
for expressing WGS 84 coordinates (latitude and longitude; widely used
by GPS) of points only. It consists of classes SpatialThing, Point, and
data properties lat, long, alt, location, lat_long. For an example of

2Available at http://downloads.linkedgeodata.org/releases/2014-09-09/
2014-09-09-ontology.sorted.nt.bz2, accessed on 2016-07-04

3Available at http://www.geonames.org/ontology/documentation.html, accessed on
2016-07-04.

4http://www.foaf-project.org/, accessed on 2016-07-04.
5http://www.w3.org/2004/02/skos/, accessed on 2016-07-04.

20

http://www.geonames.org/
http://downloads.linkedgeodata.org/releases/2014-09-09/2014-09-09-ontology.sorted.nt.bz2
http://downloads.linkedgeodata.org/releases/2014-09-09/2014-09-09-ontology.sorted.nt.bz2
http://www.geonames.org/ontology/documentation.html
http://www.foaf-project.org/
http://www.w3.org/2004/02/skos/

............................ 3.2. Interesting Spatial Data Sources

description of Prague see Listing 3.4, where many alternate names in different
languages and XML namespaces are skipped for compactness. In the rest of
thesis, the gn: prefix will refer to the GeoNames ontology entities.

Listing 3.4: A snippet of GeoNames description of Prague RDF/XML.

1 <rdf:RDF>
2 <gn:Feature rdf:about="http://sws.geonames.org/3067696/">
3 <rdfs:isDefinedBy
4 rdf:resource="http://sws.geonames.org/3067696/about.rdf"/>
5 <gn:name>Prague</gn:name>
6 <gn:officialName>Praha</gn:officialName>
7 <gn:officialName xml:lang="de">Prag</gn:officialName>
8 <gn:officialName xml:lang="en">Prague</gn:officialName>
9 <gn:officialName xml:lang="fr">Prague</gn:officialName>
10 <gn:officialName xml:lang="cs">Praha</gn:officialName>
11 <gn:alternateName xml:lang="hu">Prga</gn:alternateName>
12 <gn:alternateName xml:lang="eo">Prago</gn:alternateName>
13 <gn:featureClass rdf:resource="http://www.geonames.org/ontology#P"/>
14 <gn:featureCode rdf:resource="http://www.geonames.org/ontology#P.PPLC"/>
15 <gn:countryCode>CZ</gn:countryCode>
16 <gn:population>1165581</gn:population>
17 <wgs84_pos:lat>50.08804</wgs84_pos:lat>
18 <wgs84_pos:long>14.42076</wgs84_pos:long>
19 <gn:parentFeature rdf:resource="http://sws.geonames.org/3067695/"/>
20 <gn:parentCountry rdf:resource="http://sws.geonames.org/3077311/"/>
21 <gn:parentADM1 rdf:resource="http://sws.geonames.org/3067695/"/>
22 <gn:nearbyFeatures
23 rdf:resource="http://sws.geonames.org/3067696/nearby.rdf"/>
24 <gn:locationMap
25 rdf:resource="http://www.geonames.org/3067696/prague.html"/>
26 <gn:wikipediaArticle
27 rdf:resource="http://en.wikipedia.org/wiki/Prague"/>
28 <rdfs:seeAlso rdf:resource="http://dbpedia.org/resource/Prague"/>
29 </gn:Feature>
30 <foaf:Document rdf:about="http://sws.geonames.org/3067696/about.rdf">
31 <foaf:primaryTopic rdf:resource="http://sws.geonames.org/3067696/"/>
32 <cc:license rdf:resource="http://creativecommons.org/licenses/by/3.0/"/>
33 <cc:attributionURL rdf:resource="http://sws.geonames.org/3067696/"/>
34 <cc:attributionName>GeoNames</cc:attributionName>
35 <dcterms:created>2006-01-15</dcterms:created>
36 <dcterms:modified>2013-11-25</dcterms:modified>
37 </foaf:Document>
38 </rdf:RDF>

3.2.3 DBpedia

DBpedia [39], available at http://wiki.dbpedia.org/, is the center point
of LOD Cloud in Fig. 3.1, as it is a large data source on a very wide range of
topics since it is an extract of Wikipedia. The English version of it currently
describes cca. 4.5 million things, including cca. 1.4 million persons and 730
thousand places. There are also versions in different languages, mutually
interlinked. It is linked to other Linked Data sources via approx. 50 million
links. In 2014, it contained around 3 billion triples in total.

21

http://wiki.dbpedia.org/

3. Semantic Web
The examples in Chapter 3 and Section 3.1 use some of the DBpedia

properties. It is a good idea to link new data sources to DBpedia classes,
properties, and resources, as also many other sources do so, thus providing
linkage to many sources with minimal effort.

It contains simple geospatial data about places – points expressed in W3C
Basic Geo Vocabulary [38].

3.3 Web Ontology Languages

When describing more complex knowledge than simply stating there exist
some objects, somehow related, RDF and RDFS presented in Section 3.1
might not be enough. Imagine you want to state that when someone has a
residence somewhere, the place is related to the person also via “has citizen”
relation (the inverse relation). So if some data source contains the fact that
Joe has residence in Prague, when someone asks it “Who are the citizens of
Prague?”, the source would correctly respond with Joe, even though this fact
is not explicitly stated. Moreover, many more queries, more complex than
this one, can be useful.

Allowing to state more complex pieces of knowledge and allowing to perform
more complex searches has given the motivation to develop a new family of
languages: Web Ontology Languages abbreviated as OWL. They take some
techniques from RDF and RDS, but they have richer semantics, having the
background in description logics, which are presented in Section 3.3.1. The
set of W3C standards forming OWL is presented in Section 3.3.2.

As this thesis focuses on a profile of OWL, OWL 2 QL, I will also present
the description logic DL−Lite in Section 3.3.3, as this one gives semantic
background to OWL 2 QL. Finally, OWL 2 QL is presented in Section 3.3.4.

3.3.1 Description Logics

Description logics is a family of languages based on formal logics used for
knowledge representation. Most of them are subsets of first-order predicate
logic. The key feature for their usability is the balance between expressive
power and decidability together with lower computational complexity.

A good initial resource about description logics is [40].
There are some n−ary logics (using predicates of arbitrary arity), but the

most widely used description logics are restricted to binary predicates. No
functions are allowed, except constants (zero-arity functions).

The basic description logic terminology is:. concept – a unary predicate (a class in RDF),. role – a binary predicate (a property in RDF),. individual – a constant.

A specific description logic can be characterized by the operators allowed,
which affects both its expressive power and the computational complexity.

22

............................... 3.3. Web Ontology Languages

There are letter symbols to denote allowed operators. First, there are three
base logics, on top of which one can build more complex logics:.AL – attributive language, allowing atomic concept negation, concept

intersection, universal value restriction, and limited existential quantifi-
cation,. FL – frame-based language, allowing concept intersection, universal
value restriction, limited existential quantification, and role restriction,. EL – allowing concept intersection, and full existential quantification.

These logics can be enriched by the following features:. F – functional properties,. U – union of concepts,. E – full existential quantification,. C – full concept negation,.N – unqualified number restrictions,.Q – qualified number restrictions,.O – nominals,. I – role inverse,.H – role hierarchy,.R – complex role inclusion, and others.

Then there is the alias S for ALC with transitive roles. A very nice
summary of the computational complexity of selected description logics is in
[41]. The description of the semantics of all the mentioned constructs is out
of the scope of this thesis; for more see [40].

A single fact in description logics is called an axiom. Axioms can be divided
into two groups:.TBox (terminological axioms) – relationships and restrictions on con-

cepts and roles; the axioms can use available operators..ABox (assertional axioms) – concept assertions (an individual is a
member of a concept) and role assertions (two individuals are related by
a role).

A TBox and an ABox together are denoted as a knowledge base.

23

3. Semantic Web
3.3.2 OWL – Web Ontology Language

Web Ontology Language (OWL), currently in version OWL 2 [42], is a group
of ontology languages for the Semantic Web having the semantic background
in description logics (see Section 3.3.1).

It uses different basic vocabulary than description logics (DL), being closer
to the one used in RDF:. classes for DL concepts,. properties for DL roles,. individuals, and. data values for RDF literals.

Instead of URIs used in RDF, OWL uses IRIs – Internationalized Resource
Identifiers, which allow international characters from Universal Character Set.
OWL has several standard serializations:.RDF/XML – OWL can be serialized as RDF/XML, this format is

often used for interchange,.OWL/XML – there is also a tailored XML format specifically for OWL,.Turtle – also Turtle can be used for serializing OWL,.Manchester syntax – more human-readable, compact form of OWL
serialization,. Functional syntax – a syntax more following the structure of ontologies.

There are two alternative ways how to assign meaning to OWL 2 ontologies:.The Direct Semantics assigns meaning directly to axioms. It is
compatible with the model theoretic semantics of the SROIQ description
logic. Some restrictions must be applied to the syntax to fit the SROIQ
DL, in which case it is called an OWL 2 DL ontology..RDF-Based Semantics assigns meaning to an RDF graph produced
by an OWL 2 ontology via a mapping. This semantics is fully compatible
with the RDF semantics. No restrictions on the ontology are necessary.

The computational complexity of OWL 2 is rather high6:.RDF-Based Semantics is undecidable in all aspects,. consistency checks and instance checking using the Direct Semantics
is N2ExpTime-complete (nondeterministic, double exponential time com-
plexity) in taxonomic complexity (complexity measured with respect to
the size of a TBox), and decidable, but complexity unknown (known to
be at least NP-hard), in data complexity (complexity measured with
respect to the size of an ABox), and

6https://www.w3.org/TR/owl2-profiles/#Computational_Properties, accessed on
2016-07-05

24

https://www.w3.org/TR/owl2-profiles/#Computational_Properties

............................... 3.3. Web Ontology Languages

. complexity of conjunctive query answering using the Direct Semantics
is an open problem (even decidability is not known).

Therefore ontologies using the full expressive power of OWL 2 cannot be
too large, to allow reasonable query response times. It is useful in case of
highly specialized, compact, and complex knowledge; particularly it found
usage in the medical domain. Using it for large data, like Linked Data and
geographical sources is practically impossible. Partially because the complex
reasoning algorithms for OWL query answering usually require having the
ontology stored in computer memory, which might not be possible.

OWL properties are split into two groups: object properties and data
properties. An object property links an individual to another individual, a
data property gives an individual a data value. A property name cannot be
used for both an object property assertion and a data property assertion, as
it would complicate reasoning. However, using the same name (IRI) for two
different types of entities, called punning, is allowed in OWL in some cases.

There are also annotation properties, which can be used much more freely.
They can be used for annotating classes, properties, individuals, and even
axioms. The difference of annotation properties from standard properties is
that a simpler reasoning is performed over them, i.e. only the sub-property,
domain, and range axioms are supported for annotation properties. For
details, see [42].

3.3.3 DL−Lite

DL−Lite is a member of description logics family, being one of the least
expressive ones. This brings the advantage of that it can be stored in an
RDBMS (relational database management system), where also queries can
be evaluated using standard SQL language. This is a very modern approach,
because most of the other languages, though providing higher expressive
power, are hardly usable for large datasets. This is a typical case on the
Internet, where an ontology is about to store vast amounts of facts.
DL−Lite family was originally defined in [43, 44, 45], then extended in

[2]. DL−Lite is a family of a few variants, one of which – DL−LiteHcore –
is standardized by W3C as OWL 2 QL [46] (see Section 3.3.4), the widely
accepted tractable profile of OWL 2.

Because of the application for the Internet, I need feasible worst-case
complexities. In order to have an efficient reasoning, the time complexity of
queries with respect to ABox should be as efficient as possible, preferably
polynomial in time (polytime), because the sizes of ABoxes are usually very big
on the Internet. Also, the space complexity should be logarithmic (logspace).
Note that for these complexity classes the following is valid: logspace ⊆
polytime. These restrictions make it possible to reformulate a query into the
SQL language. Other languages that have higher query answering complexity
are practically unusable for domains with many instances the Internet offers.

Another advantage of this approach becomes obvious when I compare
memory management during query answering. DL−Lite reformulates a

25

3. Semantic Web
query from e.g. SPARQL (see Section 3.4.1) into an SQL query, which is
evaluated by an underlying RDBMS, keeping the ABox in a persistent storage
(e.g. a hard drive), only operating on indices of database tables (typically
B-trees); just the individuals featuring in the final answer need to be read from
the DB. Another key advantage is that SQL query answering is a well-settled
problem, with many optimizations implemented in most modern DBMS’s,
making it very robust and efficient. Whereas most of the reasoners for OWL
load the whole ABox into memory, where they perform the whole reasoning
process. The efficiency of the process is very dependent on the optimizations
the reasoner’s authors used, and hence it may take some time for the reasoner
to “evolve” into a state suitable for practical applications. A bigger issue of
this approach is the memory requirements since it is usually very demanding
to store complete ABox of possibly many gigabytes into a computer RAM
memory.

The query to SQL translation in query answering problem is possible by
query reformulation described in [43]: a query can be translated using a TBox
to an ABox-only query of polynomial complexity (therefore e.g. an SQL
query).

To summarize, if we succeed to fit an ontology into a DBMS where it
could also be queried, we gain a few advantages. The system would efficiently
permanently store large ABoxes in a DB, which is a well-established way of
storing strictly organized data. Query answering keeps an ABox in the DB –
no need to transfer it into the memory, which would be infeasible because
of the memory size restriction anyway. Query answering is inherently of
polytime complexity, which is another “must” for large datasets. Let us see,
what the languages DL−Lite satisfying all these conditions can express, as
presented in [45, 44, 43].

The basic version of DL−Lite is DL−Litecore, which satisfies all the
aforementioned requirements, is already more expressive than RDF and
RDFS, but still can be expanded, while preserving tractability. DL−Litecore
constructs for defining concepts and roles are:. B ::= A|∃R. C ::= B|¬B. R ::= P |P−

where A denotes a concept name, B a basic concept, and C a general concept.
Symbol P denotes a role name and R a complex role.

The semantics is defined by an interpretation I:

I = (∆I , ·I), (3.1)

where ∆I is a nonempty interpretation domain and ·I is an interpretation
function, that assigns each individual to an element of ∆I , each named
concept to a subset of ∆I , and each named role to a binary relation over ∆I .

The semantics of the used constructs are defined in Table 3.1.

26

............................... 3.3. Web Ontology Languages

Table 3.1: Constructs used in DL−Lite and their semantics.

Syntax Semantics Comment
A AI ⊆ ∆I concept name
P P I ⊆ ∆I ×∆I role name
P− (P−)I = {(b, a)|(a, b) ∈ P I} inverse of a role
∃R (∃R)I = {a ∈ ∆I |∃b : (a, b) ∈ RI} existential quantification
¬B (¬B)I = ∆I \BI negation of a basic concept
¬R (¬R)I = ∆I ×∆I \RI negation of a basic role

Then a TBox can be defined by inclusion axioms of the form:. B v C, interpreted by I as BI ⊆ CI .

An ABox consists of the following assertion axioms:. concept assertion A(a), interpreted by I as aI ∈ AI , and. property assertion P (a, b), interpreted by I as
(
aI , bI

)
∈ P I ,

where a, b are individuals interpreted by I as aI , bI ∈ ∆I .
In the following text, the abbreviation UNA stands for Unique Name

Assumption, which is the following condition:

aI 6= bI for all a 6= b, (3.2)

where a, b are object names.
The DL−Litecore can be extended in three different directions. One of

them is allowing more complex axioms of TBox. The extension of TBox
axioms denoted as Krom allows for negation to be on the left-hand side of an
inclusion axiom, thus in addition to DL−Litecore axioms there can be:

C v B. (3.3)

Another extension of TBox axioms is denoted as Horn, which allows conjunc-
tion of basic concepts to appear on the left-hand side of an inclusion axiom,
which is: l

k

Bk v B. (3.4)

Finally the most expressive extension in this direction is denoted as bool,
which allows for inclusion axioms with general concepts on both sides:

C1 v C2, (3.5)

where general concepts C1, C2 can be constructed quite generally – in addition
to DL−Litecore, also as a negation of another general concept, or conjunction
of two general concepts. For details, see [2].

Another direction of extensions is allowing role hierarchies. This is denoted
as letter H, i.e. DL−LiteHα , where α ∈ {core, krom,horn, bool}. Thus the
TBox axioms can be extended with

R1 v R2. (3.6)

27

3. Semantic Web
The third direction of extensions concerns number restrictions. One option

is the functional restriction denoted as DL−LiteFα , which allows a basic
concept to be defined as the cardinality restriction ≥ qR, but where either
q = 1, or for q = 2 the cardinality restriction must be of the form ≥ 2R v ⊥;
no other versions are possible. The most expressive version in this direction
is allowing all cardinality restriction, denoted as DL−LiteNα .

A simple combination of cardinality restrictions and role hierarchies,
DL−LiteHFα or DL−LiteHNα , even for α = core, increases complexity. How-
ever, the combination can be restricted, which gives the versionDL−Lite(HN)

α ,
which along with the restrictions adds some new features (e.g. role disjointness,
(a)symmetry and (ir)reflexivity constraints), without affecting complexity.
Another extension is DL−Lite(HN)+

α , which adds transitivity constraint. For
details see [2].

Here are some examples, of what DL−Litecore can express:. is-a relationship: concept A1 is subsumed by concept A2, using A1 v A2,. disjoint concepts: A1 v ¬A2,. typed roles: ∃P v A1, ∃P− v A2,.mandatory participation in a role (all instances of a concept participates
in a role): A v ∃P , A v ∃P−,. prohibited participation in a role: A v ¬∃P , A v ∃P−,. functional restriction of roles: (≥ 2R v ⊥), (≥ 2R− v ⊥) (only in
DL−LiteFα and DL−LiteNα).

Fig. 3.2 [2] depicts relations between various versions ofDL−Lite languages,
with the arrows meaning “is extended by”.

Figure 3.2: Language inclusions in the extended DL−Lite family, from [2].

In Fig. 3.3 [2], data complexities of query answering under the UNA of
different versions of DL−Lite languages are displayed. Note that AC0 is
a complexity class defined by digital circuits, consisting of all families of
circuits of depth O(1) and polynomial size, with unlimited-fanin (number of

28

............................... 3.3. Web Ontology Languages

Figure 3.3: Landscape of data complexity of DL−Lite-related logics, from [2].

inputs) AND gates and OR gates, allowing NOT gates only at the inputs.
The hierarchy of some used complexity classes is as follows:

AC0 (LogSpace ⊆ NLogSpace ⊆ P ⊆ NP ⊆ ExpTime. (3.7)

The versions corresponding to the original DL−Lite family, as defined in
[43, 44, 45], are concentrated below the dashed line.

Fig. 3.4 [2] summarizes complexities for all versions of extended DL−Lite
family, both for combined complexity of satisfiability and data complexity of
instance checking.

3.3.4 OWL 2 QL

OWL 2 QL [46] is a profile of the Web Ontology Language (OWL). The
key feature is its tractability (along with other OWL 2 profiles) traded
for expressiveness, which is lower compared e.g. to OWL 2 DL with the
Direct Semantics. The tractability brings the advantage that queries can be
reformulated into SQL and thus RDBMSs can be used as OWL 2 QL storage.

There are other OWL 2 profiles, which are polynomial for ABox – OWL 2
RL and OWL 2 EL. OWL 2 RL is based on rule-based reasoning, which
requires many syntactic restrictions to be sound and complete. However,
the semantics is not the same as for OWL. The restrictions are designed for
example to avoid the need to infer the existence of individuals not explicitly
stated. OWL 2 EL data complexity class is higher than the complexity AC0

of OWL 2 QL, and it does not support e.g. concept negation (which is, in
limited form, supported by OWL 2 QL). As my design and prototype need

29

3. Semantic Web

Figure 3.4: Complexity of basic DL−Lite logics, from [2].

logical negation, both OWL 2 EL and OWL 2 RL were not used (rule-based
inference does not allow logical negation, only negation-on-failure).

Consistently with OWL, OWL 2 QL uses the terms “class” for DL concept,
and “property” for DL role. I will use the OWL terminology in the rest of
this thesis.

OWL 2 QL is based on DL−LiteHcore. Therefore the supported axioms are:

B v C , R1 v R2 , A(a) , P (a, b)

subject to

B ::= A | ∃R , C ::= B | ¬B , R ::= P |P− ,

where A denotes a class name, B a basic class, and C a general class.
Symbol P denotes a named property, and R (optionally subscripted) a
complex property. Symbols a and b represent individuals. For the semantics
of the axioms, see Section 3.3.3.

OWL 2 QL extends DL−Lite with various features not affecting its
tractability, e.g. data properties and annotations.

3.4 Querying Languages

This section introduces two semantic query languages: SPARQL is a widely
used standard for querying RDF data, while GeoSPARQL is an extension of
SPARQL supporting geospatial operations.

30

................................. 3.4. Querying Languages

3.4.1 SPARQL

SPARQL, currently in version 1.1 [47], superseding SPARQL 1.0 [48], is a
query language for RDF, capable of querying required and optional graph
patterns along with their conjunctions and disjunctions.

The structure of the language resembles SQL. The basic query commands
are:. SELECT: returns all possible bindings of a set of variables,. CONSTRUCT: returns a single RDF graph specified by a graph template,. ASK: answers, whether or not a query pattern has a solution,.DESCRIBE: returns a single result RDF graph containing RDF data

about resources.

The results of a query are constrained by a WHERE section, which provides
the basic graph pattern to match against the data graph. The graph pattern
consists of a set of triples, which form a graph, where an element of a triple
can be either a resource URI, a data value (in the case of the triple object),
or a variable. A variable is prefixed with the question mark, and can appear
in the SELECT section (the output variable). The WHERE section can also
contain FILTER clauses, which filter e.g. string and numeric values using
various functions (predicates).

SPARQL 1.1 also supports optional parts of query graph with the OP-
TIONAL keyword; they may be or may be not satisfied, and therefore the
variables contained in them may be bound or not. It also supports the
GROUP BY and HAVING keyword, which aggregates and filters groups of
results, similarly to SQL.

A simple example of a SELECT query is in Listing 3.5, with the corre-
sponding response in Table 3.2, using the example data presented earlier
in this chapter. Notice that the “a” in line 5 in Listing 3.5 is an alias for
rdf:type. A response to a SPARQL query can be formatted in XML, JSON,
CSV, and TSV.

Listing 3.5: An example of SAPRQL query.

1 PREFIX dbo: <http://dbpedia.org/ontology/>
2 SELECT ?eng ?bigcity
3 WHERE {
4 ?eng dbo:residence ?bigcity.
5 ?eng a dbo:Engineer.
6 ?bigcity dbo:populationTotal ?population.
7 FILTER (?population > 1000000).
8 }

It supports federated queries by explicitly delegating a certain subquery to
a different SPARQL endpoint via the SERVICE keyword. Similarly to SQL,
SPARQL 1.1 also supports updating data in a data source by the INSERT

31

3. Semantic Web
Table 3.2: The response to the example SPARQL query.

eng bigcity
<http://example.org/people/Joe> <http://dbpedia.org/resource/Prague>

Figure 3.5: GeoSPARQL basic classes and properties.

DATA, DELETE DATA, LOAD, CLEAR, etc. keywords. It also supports
different entailment regimes. For more details, see [47].

SPARQL is well settled and widely used language for querying RDF on-
tologies, but it lacks necessary constructs for querying spatial data. Luckily,
during the work on this thesis, a new standard gradually emerged: Geo-
SPARQL.

3.4.2 GeoSPARQL

GeoSPARQL is an initiative of OGC, which released the GeoSPARQL stan-
dard in [49], to define spatial extensions to the W3C’s SPARQL protocol and
RDF query language. At the beginning of the work on this thesis, only little
information was available; the major sources were the presentation [50] and a
demo available at http://www.geosparql.org/.

Basic GeoSPARQL concepts are in Fig. 3.5: three basic classes:
SpatialObject, which has two disjoint sub-classes Feature and Geometry.
The object property hasDefaultGeometry is a sub-property of hasGeometry,
which links the two sub-classes.

GeoSPARQL’s vocabulary and definitions are contained in an ontology pro-
vided by OGC7. In the rest of this thesis, I will refer to the main GeoSPARQL
namespace8 with the prefix geo:.
Geometry instances can have various data properties. The most important

one is for the data themselves, given in a form of serialization. All serialization
data properties are sub-properties of hasSerialization, and the predefined
ones are

7Available at http://schemas.opengis.net/geosparql/, cit. 2014-04-16, along with
the imported ontologies for Simple Feature and GML geometries.

8http://www.opengis.net/ont/geosparql#

32

http://www.geosparql.org/
http://schemas.opengis.net/geosparql/
http://www.opengis.net/ont/geosparql#

................................. 3.4. Querying Languages

. asWKT for WKT strings, having the range of custom datatype wktLiteral,
and. asGML for GML data, having the range of custom datatype gmlLiteral.

Other datatype properties are. dimension (topological dimension),. coordinateDimension (dimension of direct positions),. spatialDimension (dimension of the spatial portion of the direct posi-
tions),. isEmpty (has no points), and. isSimple (contains no self-intersections except its boundary).

Then it defines object properties for topological relations, there are three
definition families of the relations, each containing eight relations. For their
list and brief explanations, see Table 3.3. Every such object property has its
domain and range equal to SpatialObject.

All the three families divide all possible spatial relations between two
objects into eight basic topological relations, but not exactly the same way.
The precise meaning of each topological relation can be described by the
DE-9IM model, which uses 3 × 3 matrices. Table 3.4 gives the DE-9IM
definitions serialized in 9-character strings, where the notation X/Y restricts
usage of a relation of two geometries X and Y to certain types only. The X
and Y can be “P” (points), “L” (lines), and “A” (polygons). For the details
of the DE-9IM model see Section 2.2.

There are also some functions for comparing and manipulating geometries,
which can be used in the FILTER section, see Table 3.5. These functions
include alternates of all topological relation properties, to be applied as
functions on geometry literals. GeoSPARQL also contains some RIF (Rule
Interchange Format [51]) rules.

33

3. Semantic Web

Table 3.3: Topological relations with their meanings, divided into families.

object property meaning
Simple Feature family

sfEquals spatially equal
sfDisjoint disjoint (cannot touch)
sfIntersects share at least a point
sfTouches externally touch
sfWithin inside (can touch boundary)
sfContains the inverse of sfWithin
sfOverlaps some points common, same dimension
sfCrosses e.g. line crosses area

Egenhofer family
ehEquals spatially equal
ehDisjoint disjoint (cannot touch)
ehMeet externally touch
ehOverlap overlap
ehCovers the inverse of ehCoveredBy
ehCoveredBy inside (can touch boundary)
ehInside inside (cannot touch boundary)
ehContains the inverse of ehInside

RCC8 – Region Connection Calculus family
rcc8eq spatially equal
rcc8dc disconnected
rcc8ec externally connected
rcc8po partially overlapping
rcc8tppi tangential proper part inverse
rcc8tpp tangential proper part
rcc8ntpp non-tangential proper part
rcc8ntppi non-tangential proper part inverse

34

................................. 3.4. Querying Languages

Table 3.4: Topological relations with their DE-9IM definitions.

object property DE-9IM definition
Simple Feature family

sfEquals TFFFTFFFT
sfDisjoint FF*FF****
sfIntersects T********, *T*******, ***T*****, ****T****
sfTouches FT*******, F**T*****, F***T**** (all not P/P)
sfWithin T*F**F***
sfContains T*****FF*
sfOverlaps T*T***T** (only A/A, P/P), 1*T***T** (only L/L)
sfCrosses T*T***T** (only P/L, P/A, L/A), 0******** (only L/L)

Egenhofer family
ehEquals TFFFTFFFT
ehDisjoint FF*FF****
ehMeet FT*******, F**T*****, F***T**** (all not P/P)
ehOverlap T*T***T**
ehCovers T*TFT*FF* (only A/A, A/L, L/L)
ehCoveredBy TFF*TFT** (only A/A, L/A, L/L)
ehInside TFF*FFT**
ehContains T*TFF*FF*

RCC8 – Region Connection Calculus family (all only A/A)
rcc8eq TFFFTFFFT
rcc8dc FFTFFTTTT
rcc8ec FFTFTTTTT
rcc8po TTTTTTTTT
rcc8tppi TTTFTTFFT
rcc8tpp TFFTTFTTT
rcc8ntpp TFFTFFTTT
rcc8ntppi TTTFFTFFT

Table 3.5: Various GeoSPARQL functions for comparing and manipulating
geometries.

Function Description of what the function returns
distance the distance of two geometry literals measured in given units
buffer geometry literal as an input literal with a buffer added,

given the radius and units of the buffer
convexHull the convex hull of a geometry literal
intersection the intersection of two geometry literals
union union of two geometry literals
difference the difference of two geometry literals
symDifference set symmetric difference of two geometry literals
envelope the bounding box of a geometry literal
boundary the boundary of a geometry literal
getsrid spatial reference system URI of a geometry literal

35

3. Semantic Web
3.5 Existing Semantic Geospatial Search Systems

Let us have a look at some another system with a competing language behind
it first. There have been many works on semantic integration ([52] gives an
overview). An example is CARIN [53]. The CARIN family of languages,
which is more general than AL-Log language [54], combines Horn rules and
description logics. It deals with designing a sound and complete inference
procedure for answering queries, which cannot be obtained by combining
standard Horn rule inference procedures with intermediate terminological
reasoning steps. It shows that when it takes description logic ALCNR and
combines it with Horn rules, the non-recursive version is decidable, and the
sound and complete algorithm for reasoning is presented; for the recursive
version, it shows the sources of undecidability and the ways how to restrict it
to make it obtain sound and complete reasoning.

An application of CARIN, Information Manifold, as presented in [55],
serves a similar purpose as OnGIS – information gathering system providing
uniform access to multiple structured information sources. It uses materialized
database views that guarantee accessing only relevant sources. However,
Information Manifold does not deal with spatial data sources. C-OWL [56]
is an interesting approach for linking semantic data using contextualized
ontologies based on OWL.

Owlgres [57], a system that one of the prototypes built as part of this thesis
bases upon, is one of the DL−Lite implementations, which connects to a
database. The limitations of its original version compared to my prototype
are that it cannot use multiple databases, and a user cannot provide a custom
mapping of an ontology to the database.

Authors of the description logic family DL−Lite (as stated in the articles
[43, 44, 45] at Sapienza, a university in Rome) developed their own system.
First, they developed the DL−Lite reasoner QuOnto [58], which is based
on DL−LiteFcore. It is a Java implementation, but not open-source. The
reasoner uses H29 as a DBMS, which is a simple Java SQL database, in the
embedded mode, using memory storage only. This system is of no use for my
purposes at all, since the data input is in functional-style syntax [59] using
its GUI only.

The authors also released ROWLKit [60] – another, slightly different
implementation of DL−Lite reasoner, based on QuOnto. The main difference
is that ROWLKit uses OWL API for parsing its input and it extends the
embedded QuOnto reasoner to meet OWL 2 QL (DL−LiteHcore). Still, it is
not an open-source and uses H2 database. Hence it cannot be connected to
an external database, nor a custom database mapping can be provided.

The last activity of the authors is the system Mastro, first introduced
in [61], and later expanded in [62]. It is again based on QuOnto reasoner.
However, this time, Mastro can connect to external databases (via JDBC),
or can be coupled with a relational data federation tool. It also provides
a way of defining ontology-to-database mapping – by typing the mapping

9http://www.h2database.com/html/main.html, cit. 2016-07-07.

36

http://www.h2database.com/html/main.html

................................3.5. Existing Search Systems

assertions and data-to-ontology mapping assertions. These mappings are
defined as views into the database, assigning instances to concepts and
properties. Mastro is also available as a Protégé plugin. It is written in Java,
but again it is not open-source.

Mastro aims for similar goals as this proposal. It uses a DL−Lite ontology
as the domain description, it connects to an external database, and it can be
provided with a complex mapping of the ontology to the database. It can even
use multiple data sources with the help of a data federation tool. However, it
is not tailored for spatial data, and the use of a general data federation tool
prevents implementing own optimizations on querying multiple data sources
using an ontology.

Clark & Parsia, now Complexia Inc., a well-settled company in the field of
Semantic Web, the developer (though originally created at the University of
Maryland) of widely used OWL reasoner Pellet, developed Stardog10. Stardog
is a commercial RDF database with OWL reasoning support (it supports
RDFS, OWL 2 QL, RL, EL, and DL reasoning and SWRL rules). As its data
are indexed, it supports full-text searching. Stardog database can contain a
virtual graph, which is mapped to a relational database by R2RML. It sup-
ports querying via SPARQL and a proprietary protocol SNARL. It supports
spatial data, GeoSPARQL query answering, and geospatial indexes. It would
be interesting to use Stardog as an OnGIS data source with GeoSPARQL
capabilities.

OWLDB [63] is a storage system for OWL language. As opposed to
triple stores for RDF(S), which are not optimal for OWL, even though they
can be used for its storage, OWLDB stores natively OWL constructs as
objects (inspired by OWL API) by object-relational mapping into a relational
database. Though it provides effective OWL storage, suitable for OWL
axioms retrieval and editing, it is not optimized for in-database reasoning.
This makes it not very usable for query answering over large data sources.

Another system using DL−Lite is OWLIM11 (OWLIM-SE has spatial
support according to [64], but very limited).

For mapping ontology entities to a database, I have chosen a set of my
own simple OWL annotations. It was difficult to reuse existing mapping
approaches, e.g. the D2RQ mapping language [65, 66], R2RML [67], or its
non-relational extension xR2RML [68], because they are not tailored for
retrieving also spatial data. Another practical reason is that at the time the
OnGIS mapping was being designed, D2RQ missed some properties to easily
allow some necessary optimization techniques (e.g. query containment), and
R2RML and xR2RML were not yet published.

In [69], an ontology-based information system is implemented, focusing
on ontology-based spatio-thematic query answering for city maps. It bases
on description logics reasoner RacerPro [70], implementing more expressive
logic (compared to what I use) ALCQHIR+(D−). The system implements
its own custom storage, which directly includes the inference algorithms and

10http://stardog.com/, cit. 2016-07-06.
11http://www.ontotext.com/owlim, cit. 2012-07-24

37

http://stardog.com/
http://www.ontotext.com/owlim

3. Semantic Web
the query evaluation engine. A custom query language, SuQL (the substrate
query language, also in [69]), is used. Spatial data in an ABox are represented
e.g. as RCC relations only, or by using a special spatial ABox. However, it
does not solve the problem of integrating multiple data sources.

The authors in [64] use Parliament triple store, supporting geospatial
indexes, for storing spatial data and for making complex spatial queries via
GeoSPARQL over them. However, they use a precomputed data set and do
not directly support data integration.

The system in [71] links an RDF ontology to databases and WFS [11]. It
uses custom rules and algorithms for query rewriting, but it does not provide
the standard OWL semantics. However, it supports query answering from
multiple data sources, specifically WFS servers for spatial data and databases
(via the D2R interface) for attributes.

The spatial decision support system in [72] integrates various data sources
(OGC standards WMS, WFS, WCS, WPS) and links them with ontologies. It
also uses catalogue services via ontologies and automatic web service discovery.
However, it focuses more on geospatial analysis and ontology alignment than
spatial search.

Similar goal as OnGIS have the authors of [73], where they propose an
interesting system also based on semantic technologies. But instead of open-
world OWL semantics, they use rules (specifically SWRL rules), both for
integrating sources and for answering queries. Also, the whole problem of
data integration is summarized there. The authors state that for a spatial
data infrastructure (SDI) to be easily accessible and useful, three problems
have to be solved: (a) discovery – currently, SDIs usually support only
simple string-based queries on metadata, (b) interpreting schemas – without
semantic description, a source schema needs to be manually examined, to see,
whether the source provides relevant information, and (c) search strategies
and inferences – how to relate pieces of information from different sources,
when there is no single one to satisfy a query entirely. The authors also
define a data integration system as a uniform interface to a multitude of data
sources, using a global schema (i.e. a shared domain vocabulary), where two
approaches are available: global as view, and local as view.

Buster [74, 75] is a complex system dealing with terminological, spatial, and
temporal query answering. It provides a common interface to heterogeneous
information sources in terms of an intelligent information broker. It represents
its terminology using the language OIL [76] and the description logic SHIQ
(it is utilizing the FaCT reasoner), and uses Dublin Core as the vocabulary
for modeling metadata. It solves some of OnGIS goals in a similar fashion,
but it does not support complex queries in terms of e.g. spatial joins, and it
does not support participating multiple sources on one user’s query.

The system Karma presented in [77] uses its own base linking ontology for
integrating spatial data sources. The linking ontology seems rather limited,
as opposed to standard Simple Feature and GML ontologies accompanying
GeoSPARQL. It also performs linking of features in two data sources by their
spatial similarity. However, it uses only limited RDF expressive power and

38

................................3.5. Existing Search Systems

does not support complex spatial queries.
Methods for geospatial data source discovery in [78] use ontologies for

integrating heterogeneous and distributed geospatial data sources, but its
searching capabilities are based on semantic similarity measures and unsuper-
vised word sense disambiguation of natural-language user query and stored
metadata of respective sources, as opposed to strict semantic relations used
for searching in the OnGIS system.

There are efforts to implement spatial relations to OWL reasoners, see
[79]. They model spatial relations based on Region Connection Calculus
(specifically RCC-8) by OWL reasoning. Unfortunately, it does not fit OnGIS,
since it does not use real spatial geometries, but the spatial relations between
objects have to be stated explicitly. This is impossible on large data sets
(because the binary Cartesian product of features may become unmanageable),
and it does not support filtering based on a distance between features. The
idea in this article is implemented in PelletSpatial12, a Pellet extension.

The authors of [80] propose a system for mapping ontology axioms to
SQL queries on a database with the focus on geospatial data. Though using
ontologies, it does not rely on OWL or any other reasoning. Also, it does not
focus on multiple data sources.

The system DO-ROAM [81] is quite similar to my OnGIS. It is a web
service that focuses on finding places according to activities that a person
could perform there. It uses its own OBDA system, which maps ontology
concepts and properties to database queries in quite a simple way. The
implemented OBDA system is probably not a general OWL reasoner. Again,
it does not support multiple data sources and is not general enough to support
reasoning over different domains.

There are other systems similar to OnGIS developed. For example, an
ontology-driven geographical information system is developed in [82]. It uses
a simple logic not based on OWL, but it is designed to use multiple spatial
data sources. [83] proposes another ontology-integrated GIS, dealing with the
issue of Semantic interoperability, and the usage of multiple data sources. For
the GIS part, it uses ArcGIS13. It proposes usage of ontologies and a reasoner,
but it does not state of which ontology language, nor what kind of reasoner
would be used. [84] presents another framework for interoperability of GIS
applications. It supports multiple data sources again, and it is based on
custom logic for matching with custom semantics. It is based on ORHIDEA
project [85], providing integration of information using mediation technology
suitable for spatial data in databases.

A comprehensive overview of related work in the area of ontology-driven
GIS integration is in [86].

As query containment is an important part of our query-brokering solution
(see Section 4.4), query containment capabilities of several systems have been
examined. FaCT [87] and its successor FaCT++ [88] are reasoners supposed

12http://clarkparsia.com/pellet/spatial/, cit. 2011-09-15, currently unavailable,
and the project was not found elsewhere.

13http://www.esri.com/software/arcgis/index.html

39

http://clarkparsia.com/pellet/spatial/
http://www.esri.com/software/arcgis/index.html

3. Semantic Web
to support query containment, but they do not support custom datatypes
(which are used in GeoSPARQL). Unfortunately, description of how the query
containment works could not be found, even digging in their LISP, respectively
C++ source codes did not help.

Pellet14 is another reasoner with query containment support. However, it
has a problem with data properties since all variables in its query containment
module are modeled as individuals: when there is a data property with a
variable, there is a problem with illegal punning in OWL. Pellet also supports
the query language SPARQL-DL [89], a SPARQL subset with OWL-based
semantics.

The -ontop- system15, specifically its SPARQL query engine Quest, has
some support for query containment. However, it seems it is used only for
removing redundant queries during query rewriting, not for searching [90, 91].

SPIN16, which stands for SPARQL Inferencing Notation, is a SPARQL-
based rule and constraint language able to represent arbitrary SPARQL query
in RDF. However, the SPIN RDF representation of a query is not suitable for
OWL query answering. Therefore it is difficult to use it for deciding query
containment. For example, there is a problem with an OWL-illegal punning:
SPIN uses the same property17 for linking both to a resource (IRI), and a
literal, which means the property would be both data property and object
property, which is illegal in OWL.

In [92], the author shows a method to decide query containment on SPARQL
with OWL 2 EL [93] ontologies using the translation to µ-calculus [94]. OWL 2
EL is of polynomial data complexity, which is higher than AC0 complexity
of OWL 2 QL (which allows data query answering be performed directly
by relational databases). The method used is complex enough to support
property paths and optional graph patterns, and to cover other OWL 2
profiles as well, e.g. the author states that it can be used for OWL 2 QL
without inverse roles.

In [95], the authors deeply analyze the complexity of query containment
over “well-designed” SPARQL queries supporting optional graph patterns
and unions, without RDFS or any other entailment regimes. The results are
however not reusable for my case, as I leverage an entailment regime – the
OWL 2 QL reasoning.

In [96], there is an evaluation of three SPARQL query containment solvers,
two supporting RDFS, one not. Two of them are actually µ-calculus contain-
ment solvers and need some translation.

In [97] and [98], the authors propose methods for SPARQL query contain-
ment in SHI description logics, respectively under RDFS entailment regime.
Both methods use a translation into µ-calculus.

The query containment decision methods based on µ-calculus presented
in [92, 97, 98] should be possible to extend for OWL 2 QL semantics, and

14https://github.com/Complexible/pellet, cit. 2016-07-07.
15http://ontop.inf.unibz.it/, cit. 2014-06-04.
16http://spinrdf.org/, cit. 2014-05-10.
17http://spinrdf.org/sp#object

40

https://github.com/Complexible/pellet
http://ontop.inf.unibz.it/
http://spinrdf.org/
http://spinrdf.org/sp#object

................................3.5. Existing Search Systems

probably could also be extended with geospatial reasoning. It would be
interesting to see the result and compare its performance to my method for
deciding query containment.

Good ways how to optimize querying multiple sources are in [99], where
its authors nicely summarize existing and present new ways how to perform
efficient SPARQL query federation. The techniques presented there could be
used to optimize OnGIS in the future.

An alternative to GeoSPARQL is stSPARQL [100], another query lan-
guage based on SPARQL, with spatial and temporal extension functions.
Most features of the two query languages are similar, with some differences:
GeoSPARQL has three families of topological relations modeled both as
properties and functions (see Section 3.4.2), while stSPARQL has one family
of topological relations as functions only. On the other hand, stSPARQL has
temporal functions, geospatial aggregate functions, and functions for mini-
mum bounding boxes (none of these are necessary for the current version of
OnGIS). stSPARQL has been developed as part of Strabon [101], a semantic
spatiotemporal RDF store. The main reason GeoSPARQL has been selected
for representing semantic geospatial queries is its chance to become widely
used, as it is defined by the well-known OGC.

41

42

Chapter 4
Geospatial Integration and Retrieval
Proposal

The goals of OnGIS are two: to allow a user to enter a semantic geospatial
query in a user-friendly way, and to answer the query by combining results
from multiple independent sources in an efficient way.

To allow the two parts be independent, a common spatial query language
had to be selected. Choosing GeoSPARQL for the purpose is a logical choice,
as it is the most detailed and up-to-date standard for describing spatial
queries over semantic data, for details see Section 3.4.2.

The two parts are implemented as separate prototypes presented in Chap-
ter 5. These could be used as a base for a complete platform for answering
complex geospatial queries: a query input web interface, a query analysis
and distribution engine, a backend retrieving the actual data from many het-
erogeneous geospatial sources, a geoprocessing unit combining the retrieved
results together, and a web map presenting the results. The complete picture
is given in Section 4.1.

GeoSPARQL is based on RDFS reasoning. However, for deciding query con-
tainment of GeoSPARQL queries (used later in this chapter), I use technique
requiring logical negation, which is not contained in RDFS. Therefore, I ex-
tended GeoSPARQL with the semantics of OWL 2 QL (see Section 3.3.4), an
ontology language having the logical negation (a limited version, but sufficient
for my purposes), and also suitable for its trade-off between expressive power,
and computational properties (it is tractable, i.e. evaluable using a relational
database). OWL 2 QL is, therefore, suitable also as the language for querying
data from the respective sources, which support it. One such geospatial data
source has been developed as a prototype in OnGIS in Section 5.1.1.

Using GeoSPARQL, an accepted standard, as the internal format also has
the advantage that separate parts of OnGIS can be used individually, in
connection with other systems using the standard.

Section 4.2 presents a proposal how to answer semantic queries from
external non-semantic GIS sources. Section 4.3 gives an idea of two ways
how to intuitively enter a complex spatial query. And finally Section 4.4 and
Section 4.5 present how to represent what different sources contain and their
querying capabilities, and how to query the representation in order to find
the relevant sources to a query.

43

4. Geospatial Integration and Retrieval Proposal.......................
4.1 Overall Architecture

The overall architecture of the proposed system is in Fig. 4.1 with its main
part in the grayish rectangle. The blue rectangles represent the designed
modules, which are also implemented as separate prototypes. The gray
rectangle (a geoprocessor) is a module, which has not been implemented,
but is necessary to complete the system. The orange cylinders are external
services, running existing, well-known technologies, serving geospatial data.
The orange ovals are local data, loaded into OnGIS:. A set of background ontologies, consisting of various domain and

linking ontologies (e.g. DBpedia, LinkedGeoData), and OnGIS annota-
tions, all loaded into memory. It is treated as one big ontology used for
all reasoning in the system.. Service capabilities, represented as prototypical queries, demonstrat-
ing, what data can each of the connected services provide (see Sec-
tion 4.4).

On the input, there is a subsystem for entering a query presented in
Section 4.3. Using the background ontology, it helps a user to compile a
semantic query, which is formulated as GeoSPARQL on the module output.

The GeoSPARQL query is first processed in a query distribution module
presented in Section 4.4 and Section 4.5. It decides which services are
necessary to answer the query – in case no single source can answer it entirely,
the query is split into parts already answerable be different services.

The set of split queries (again in GeoSPARQL form) continues to the
backend module, presented in Section 4.2, which is able to transform each
query part to an appropriate service request to the corresponding service,
and to extract the response.

query input G
e
o
S

PA
R

Q
L

query translation
to specific service

&
response retrieval

S
PA

R
Q

L
e
n
d
p
o
in

t
sp

a
ti

a
l

D
B

M
S

A
rc

G
IS

se
rv

e
r

G
e
o
S
PA

R
Q

L
e
n
d
p
o
in

t

OnGIS

map presentation
of results

external clients

results

GeoSPARQL

W
FS

se
rv

ic
e

results per service

domain
ontologies

query
distribution

background ontology

linking
ontologies

OnGIS
annotations

geoprocessor
combining results

re
su

lt
s

G
e
o
S

PA
R

Q
L

p
e
r

se
rv

ic
e

service capabalities

service 1
capabalities

expressed by prototypical queries

service n
capabalities...

Figure 4.1: Overall architecture.

44

............................. 4.2. Geospatial Semantic Retrieval

Finally the answers from all used services would be combined together (a
part not yet implemented), and presented to the user on a map.

4.2 Geospatial Semantic Retrieval

The idea of OnGIS geospatial data retrieval is based on the fact, that there
are many independent GIS services in the World, having different data, using
different technologies, and having different capabilities of presenting and
processing its data. It cannot be expected that every GIS service will publish
its data as Linked Data, but still, we want to use them.

Therefore OnGIS is designed the way it can translate a semantic query
in GeoSPARQL to a request suitable for the specific service technology and
retrieve the results. To allow this, OnGIS has to be loaded with a background
ontology, which has the role of a TBox used for OWL 2 QL reasoning. A
GeoSPARQL query is reformulated using the TBox to an ABox-only query,
which can be evaluated against the external services by the aforementioned
translation. This way OnGIS treats all external services as ABox storages
only, assuming all TBoxes are loaded into OnGIS background ontology in
memory (they can be continuously updated from external sources), allowing
reasoning to be always readily available (both for constructing a user’s
query and for translating the query to service requests). The assumption of
having all TBoxes locally, and keeping the ABoxes (the data) at the original
services seems to be practical, as the TBoxes are usually not that large (e.g.
LinkedGeoData ontology has about 24 thousand triples, most of it labels),
while GIS data are usually very large (e.g. OpenStreetMap has cca. 3.5
billion nodes).

To let the query translation module know, how to translate a query to a
specific service request, each service domain ontology has to be annotated
with information about that particular mapping. For that purpose, a set of
custom OnGIS annotation has been developed, because existing approaches
were not suitable or available (see Section 3.5).

The annotations annotate each class and property having its instances
in the service with the means, how the instances can be retrieved from the
service.

One of the transformations is to the SQL language for relational databases.
It has been used for some GIS data converted to PostgreSQL with PostGIS
extension, see Section 5.1.1. The annotations are:. anno:DBDatabase – the annotation property used to annotate the service

domain ontology itself, stating the connection details to the database
(server location, username, etc.).. anno:DBClassTable – the annotation property used to annotate a class,
specifying in which table the instances are located, along with the names
of columns containing the instance details. The value of the annotation
is the table name, with attributes in round brackets after the table

45

4. Geospatial Integration and Retrieval Proposal.......................
name. The attributes are a comma separated list of equal-sign-separated
key/value pairs, with the key having a meaning defined in the following
sub-list:. id – the name of a column for numerical identification of instances,. geom – the name of a column for storing spatial data (e.g. PostGIS

geometry column), in case the class represents a geometry; otherwise
it may be missing, along with the two following fields,. geomSRID – the identification of spatial reference system used
for spatial data (EPSG code), and. geomType – the WKT type of the spatial data (POINT,
LINESTRING, POLYGON, or GEOMETRY for arbitrary).

The annotation can contain more key/value pairs, which serve as filters,
where the key is a column name, and the value is a value the instance
has to have in the column in order to be considered an instance of the
class.. anno:DBObjectPropertyTable – the annotation property used to anno-
tate an object property, defining in which table the pairs of instances
are stored; the format is similar to the previous annotation, with the
following meaning of attributes:. id – the name of a column for identification of subject instance,. obj – the name of a column for identification of object instance,. and some other auxiliary switches.. anno:DBDataPropertyTable – the annotation property used to annotate
a data property, defining in which table instances with their data values
are stored; the format is similar to the two previous annotations, with
the following meaning of attributes:. id – the name of a column for identification of subject instance,. val – the name of a column for the data value (always represented

in character data type),. lang – the name of a column for storing the language of the data
value (if it is a string),. length – the length of the character value column,. and some other auxiliary switches.. anno:DBAnnotationToLiteralTable, anno:DBAnnotationToResource-

Table – annotation properties similar to anno:DBDataPropertyTable,
respectively anno:DBObjectPropertyTable, but containing annotation
assertions instead of property assertions.

46

..................................4.3. Query Input Design

. anno:DBGeometryTable – the annotation property optionally annotating
the service domain ontology itself, with the structure of attributes the
same as of the DBClassTable; the purpose of this annotation is to mark
a table in the data source as being a general storage of spatial data. This
table is used when a geometry individual is searched without specifying
which class is it an instance of, giving only e.g. spatial or property
restrictions.

There are also two annotations for ArcGIS services – one for its Web-
Service interface (anno:ArcgisWebservice), the other for its REST API
(anno:ArcgisRest). They annotate a spatial class with the information
about the corresponding endpoint and the layer identification.

Another annotation is designated for SPARQL endpoints with no special
geospatial support – anno:SparqlEndpoint. The transformation simplifies
the GeoSPARQL query using the W3C Basic Geo Vocabulary (see Sec-
tion 3.2.2) to a simple SPARQL query.

An example of an annotation used on the IPR Praha domain is that
the class of footpaths, being a subclass of ipr:Layer (which is a subclass of
geo:Feature), is annotated with the ArcGIS REST API mapping annotation,
defining how to retrieve the data from the footpaths layer at IPR Praha
ArcGIS server.

Future work would be replacing the database mapping annotations with a
current standard, e.g. R2RML, and also designing mappings for WFS and
other GIS service interfaces.

4.3 Query Input Design

OnGIS tries to follow typical web search scenarios. A general user is not used
to give a search engine a structured query, e.g. a SPARQL or GeoSPARQL,
but enters a few keywords, and examines the results the query engine gives
back instead. A common scenario, when a user does not exactly know how to
describe what he/she is looking for, is iteratively refining entered keywords
based on what the search engine returned in the previous search.

Therefore I tried to follow this process in two ways of entering a query;
both share the basic principle, that a query is constructed gradually, with
intermediate results visible on a map immediately.

4.3.1 List Query Design

The list mode of entering a query is based on a graphical list of boxes,
representing entities (i.e. classes, individuals, data and object properties),
which a user added.

The user fills the list one by one both by searching the background ontology
using the labels, descriptions, definitions, etc. contained in the background
ontology, and by searching the data sources themselves. Each time a new
spatial class or individual is added, it is displayed on a map. When the user

47

4. Geospatial Integration and Retrieval Proposal.......................
decides it is not one of the necessary query inputs, it can be removed from
the list.

Once the user is satisfied with the components of the query, he/she can
impose restrictions on them. For example individuals of one class in the query
has to be spatially contained within individuals of another class in the query,
or individuals of one class in the query must be within a certain distance to
a specifically listed individual in the query. There can be object and value
restrictions, too, e.g. individuals of a class in the query must satisfy some
filter on a data property restricting them.

A prototype, how such query can look like, is in Section 6.1.1.
There are some auxiliary annotations that can help make the user experience

better:. Searchable specifies a data property, which should be searched by the
connected services when a user enters a query. The background ontology
is always searched, but data properties with this annotation are also
searched in the connected services via the translation module, with the
returned results presented to the user. This way, a user can search for a
specific spatial individual in the services (e.g. a specific city in DBpedia),
and restrict other results by the distance to it..PartOf specifies a relation between entities by an object property,
defining the part-of relation – it is useful for linking an object to its
integral components (these are quickly accessible in the user interface)..Priority specifies a numeric priority of entities, which affects the order
in which the entities should appear in the search result list.

An example of the annotations used on the IPR Praha domain is that the
PartOf annotation relates ipr:Layer and ipr:Service by the ipr:isLayer-
OfService object property, ipr:Attribute and ipr:Layer by the ipr:is-
AttributeOfLayer object property, and ipr:Legend and ipr:Layer by the
ipr:isLegendOfLayer object property. The searchable annotation marks
the IPR Praha domain data properties ipr:hasKeywords, ipr:hasDefini-
tion, ipr:hasDescription, etc.

The relations between objects can be entered in two ways:

simple The simple way is to add a spatial or data property restriction to a
search result just by itself. Currently, only two spatial restrictions are
possible: inside restriction and distance restriction. The inside restriction
filters all other search results, so that they have to be contained inside
the search result defining the restriction. The distance restriction is
similar – all other search results have to be within the specified distance.
Similarly, a data property restriction affects all other items. Apparently,
this way is not very flexible and is useful only for simple searches with a
few items.

by links Another way of specifying relations is by defining links. A link can
be established between two items in the list, which filters one item by

48

..................................4.3. Query Input Design

the other (in case the target is a spatial entity, it restricts by inside or
distance; in case of a data property, it restricts by a data value; in case
of an object property, it restricts by a relation to another item which is
the target linked to).

The basic conjunction is the or. All spatial entities simply put to the list
are displayed on the map by issuing one query for each list entity. When an
unlinked restriction appears (spatial, a property), it restricts all other items.
When linked, it restricts only the item it is linked to. Therefore the graph of
a query can be represented by a forest (no cycles are possible), where there
is the disjunction between the trees in the forest. As there is no disjunction
(class union) in OWL 2 QL, the query forest has to be answered a tree at a
time, and all the results displayed on a map at once (thus performing the
disjunction).

4.3.2 Structured Query Design

The structured query mode enables an advanced user to enter a query via a
mathematical-expression-like statement structured with parentheses. Simi-
larly to the previous mode, a user cannot enter random strings, but with the
aid of autocompletion mechanism, he/she can only pick the known terms of
background ontology. However, the input expression displays the term in a
human readable form (e.g. the rdfs:label), even though the query engine
internally remembers the IRI.

It uses a single text input field with autocomplete. The field displays human
readable string consisting of object labels, parenthesis, and spatial restriction
keywords, but the engine holds its structured model in the background. When
a user starts typing, autocomplete list suggests the user entities from the
background ontology, from which he/she has to pick. If the user were to
enter a free text, and the query engine would try to understand the text, it
could happen that it could not assign semantic entities to the entered items
uniquely, causing inexactnesses or errors.

The spatial restriction keywords can be (in the first version of our structured
language) “WITHIN” and “NEAR”. The query can be structured using spaces,
parentheses, and commas. Also, data value filters can be entered. The query
resembles a mathematical expression, more specifically an expression in
predicate logic, where the logical and (∧) is expressed by a space, and logical
or (∨) by a comma. As the used query language, conjunctive queries in
OWL 2 QL serialized as GeoSPARQL, does not support disjunction, the
comma is allowed on the first level of the query structure. If the comma is
used, multiple GeoSPARQL queries are generated, one for each disjunct (an
operand of the disjunction).

Let us define the syntax formally. A query is an expression E, which is
defined as a list of conjunction clauses C, which are separated by commas.
Clauses are lists of restrictions separated by spaces. A restriction can be one
of:

49

4. Geospatial Integration and Retrieval Proposal.......................
. class restriction (RC): represents restricting the results to a spatial

class,. near restriction (RN): restricts the results by given maximum distance
to spatial objects defined by another expression,.within restriction (RW): restricts the results to be spatially contained
within spatial objects defined by another expression, and. value restriction (RV): represents a data property restriction, with a
double-quoted value attached.

The rules how to define a structured query can be expressed as:

E ::= C1, C2, C3, . . . (4.1)

C ::= R1␣R2␣R3␣ . . . (4.2)

where R can be one of:. RC ::= c, where c is a spatial class or individual,. RN ::= NEAR␣(C)␣x, where x is a distance value,. RW ::= WITHIN␣(C),. RV ::= d␣”x”, where d is a data property, and x is a literal.

The parentheses surrounding C in RN and RW can be left out, when it is
a single RC , i.e. C = RC . Therefore RN and RW can look like NEAR␣RC␣x,
respectively WITHIN␣RC .

An example prototype of structured query input form is in Section 6.1.2.

4.4 Representing Geospatial Source Contents and
Capabilities

When performing complex queries, requiring integration of results from
multiple sources, it is necessary to know, what each of the sources can offer.
In the GIS domain, it is also good to know what geospatial operations a service
can perform, as spatial transformations can be computationally intensive,
especially when dealing with large data.

And why to design a new language for that purpose? The most general
approach for describing querying capabilities has been chosen, to describe it
with a set of queries the source can answer, in my case in the GeoSPARQL
language. I call the capability representative queries the prototypical queries.

When a user enters a query, OnGIS has to compare it to the prototypical
queries of sources, to find the most suitable one(s). The essential part
of matching a query against a set of queries is the problem called query
containment, which decides subsumption relation of two queries. One query

50

............................ 4.4. Representing Geospatial Sources

is subsumed by another, q1 v q2, whenever each result set of q1 for data D is
a subset of the result set of q2 for the same data D.

I formulate the queries in a subset of SPARQL language, with the extension
of some of the GeoSPARQL vocabulary and its semantics, and the OWL 2 QL
semantics. From the SPARQL language, only SELECT queries are supported,
with graph patterns and filters. Optional patterns, ordering, grouping, offsets,
and limits are currently not supported.

From the GeoSPARQL query language, besides basic classes, properties,
and serializations, topological relations, and some functions are supported.
Specifically, the supported features are:. classes SpatialObject, Feature and Geometry,. object properties hasGeometry and hasDefaultGeometry,. data properties hasSerialization, asWKT, and asGML (and parsing its

literals in WKT and GML),. all the three topological relation families (Simple Feature, Egenhofer,
and RCC8),. and the distance function (for details of all the above, see Section 3.4.2).

In Section 4.4.1, hierarchy on topological relations is defined, then Sec-
tion 4.4.2 defines general query containment algorithm for OWL 2 QL,
Section 4.4.3 gives reasoning extension for GeoSPARQL, and Section 4.4.4
presents a simple algorithm for matching variable queries.

4.4.1 Expanding GeoSPARQL ontology

One part of supporting the semantics of GeoSPARQL is to understand the re-
lations between the topological relations. The GeoSPARQL ontology contains
only a list of all the topological relations, without any hierarchy. Therefore, I
added a hierarchy comparing topological relations between different relation
families, in order to support deciding query containment of queries using them.
For example, both rcc8tpp and rcc8ntpp (tangential and non-tangential
proper part from the RCC8 family) are sub-properties of sfWithin.

The complete hierarchy of relations was determined by their DE-9IM
definitions, and its visualization in Protégé is in Fig. 4.2.

4.4.2 Query Containment Basics

First, let me define a query as a tuple of output variables, class restrictions,
object and data property restrictions, and filters, formally

q = (Vo, Rc, Rop, Rdp, Rf), (4.3)

51

4. Geospatial Integration and Retrieval Proposal.......................

Figure 4.2: Extending GeoSPARQL with the hierarchy of topology object
relations.

where. Vo is a set of output variables of the query; a variable is in the rest of
the text prefixed with the question mark,. Rc is a set of class restriction on variables, C(?x), where C is a class
name,. Rop is a set of object property restrictions in the form of either OP (?x, ?y),
OP (?x, i), or OP (i, ?y), where OP is an object property name, and i is
an individual,. Rdp is a set of data property restrictions in the form of either DP (?x, ?y),
DP (?x, d), or DP (i, ?y) where DP is a data property name, and d is a
literal,. Rf is a set of filters, restricting the result by functions. A filter is a
predicate (a function returning a boolean value), which must be satisfied
for the returned results. It has the form of f(x), where f is a boolean
function, and x is a tuple having the same arity as f and the proper
types. Elements of x can be variables, individuals, literals, and other
function calls.

The elements of Rc, Rop and Rdp are also called triples of the query q.
The main idea, how to decide query containment, is based on [4] and [5]:

take the two compared queries, q1 and q2, and a background ontology O
(TBox and ABox of valid axioms, on which background the query containment

52

............................ 4.4. Representing Geospatial Sources

is to be decided) and transform the queries into two ABoxes, which, using
a series of satisfiability checks, lead to deciding whether O |= q1 v q2. My
modifications of the already proposed methods include adapting it for the
OWL 2 QL logics (originally they support DLR logic, having relations of
any arity, by a translation into satisfiability in SHIQ description logics),
and adding support for spatial reasoning by extending completed ABox in
Section 4.4.3.

First, I define a canonical ABox of a query (it is basically just substituting
variables with individuals, one individual per variable):

Can(q) = Can(Rc) ∪ Can(Rop) ∪ Can(Rdp)
Can(Rc) = {C(ix) : C(?x) ∈ Rc}
Can(Rop) = {OP (ix, b) : OP (?x, b) ∈ Rop}

∪ {OP (a, iy) : OP (a, ?y) ∈ Rop}
∪ {OP (ix, iy) : OP (?x, ?y) ∈ Rop}

Can(Rdp) = {DP (ix, d) : DP (?x, d) ∈ Rdp}
∪ {DP (a, dy) : DP (a, ?y) ∈ Rdp}
∪ {DP (ix, dy) : DP (?x, ?y) ∈ Rdp}

(4.4)

where a subscripted i is a fresh individual, C is a class, OP is an object
property, DP is a data property, a subscripted d is a fresh (artificial) literal,
and a letter prefixed with the question mark is a query variable.

Let me denote A1 = Can(q1), A2 = Can(q2), I1 all individuals in A1, IV 1
all individuals representing variables in A1, D1 all literals in A1, DV 1 all
literals representing variables in A1, similarly I2, IV 2, D2, and DV 2 for A2,
and O a background ontology.

A completed ABox of a property is an extended ABox built on top of
canonical ABoxes:

Com(OP (ix, iy), q1, q2) = α(ix, iy, q1, q2) ∪ β(ix, iy, q1, q2)

α(ix, iy, q1, q2) =
{
{(i′x, iy) : i′x ∈ I1 \ IV 1} if ix ∈ IV 2

∅ otherwise

β(ix, iy, q1, q2) =
{
{(ix, i′y) : i′y ∈ I1 \ IV 1} if iy ∈ IV 2

∅ otherwise
Com(DP (ix, dy), q1, q2) = γ(ix, dy, q1, q2) ∪ δ(ix, dy, q1, q2)

γ(ix, dy, q1, q2) =
{
{(i′x, dy) : i′x ∈ I1 \ IV 1} if ix ∈ IV 2

∅ otherwise

δ(ix, dy, q1, q2) =
{
{(ix, d′y) : d′y ∈ D1 \DV 1} if dy ∈ DV 2

∅ otherwise

(4.5)

Using those, I can define a testing ontology Ō(a) as a function of axioms

53

4. Geospatial Integration and Retrieval Proposal.......................
from A2:

Ō(C(ix)) = (O ∪A2) \ {C(ix)} ∪A1 ∪ {NC(ix)}
Ō(OP (ix, iy)) = (O ∪A2) \ {OP (ix, iy)} ∪A1

∪ {NOP (ix, iy)}
∪ {NOP (i′x, i′y) : (i′x, i′y) ∈ Com(OP (ix, iy))}

Ō(DP (ix, dy)) = (O ∪A2) \ {DP (ix, dy)} ∪A1

∪ {NDP (ix, dy)}
∪ {NDP (i′x, d′y) : (i′x, d′y) ∈ Com(DP (ix, dy))},

(4.6)

where NC is a fresh class for each C with the restriction NC v ¬C added to
Ō(a), and similarly for NOP for each OP and NDP for each DP .

Then if there exists an assertion a ∈ A2 such that Ō(a) is consistent, or
filters are not contained (see below), then q1 6v q2, otherwise q1 v q2.

The proof of the correctness can be based on proofs in [4] and [5], as my
steps are based on those articles with suitable modifications and simplifications
for OWL 2 QL semantics.

Intuitive proof: in order to q1 v q2 be valid, q1 has to restrict results more
than q2. This is tested by taking one restriction in q2 (as an axiom in A2) at
a time, negating it, and putting it together with the background ontology,
A1, and the rest of A2; and in the case of a property, also some additional
axioms. This altogether is tested for consistency; if it is consistent, it means
that results are less restricted by q1 than by q2 (q1 still has some results, even
if it is restricted with the negation of a q2 restriction, meaning skipping at
least the results originally given by q2), and therefore q1 6v q2. The additional
axioms mentioned above are given by Com(OP) and Com(DP); they are
necessary because a variable, in A2 represented by an individual/literal,
can be substituted by any non-variable individual/literal. For consistency
checks in the query containment decisions, it is necessary to substitute only
non-variable individuals/literals in A1.

To analyze complexity of the decision, we follow complexity of the steps: the
size of Can(q) is linear to the size of q, the size of Com(an assertion axiom, q1,
q2) is also linear to the size of q1, and the size of Ō(a) is linear to the size
of O, q1, and q2 combined. Therefore, query containment decision requires
approx. |q2| × (|O| + |q1| + |q2|) consistency checks in OWL 2 QL, i.e. a
polynomial number in the query sizes and the background ontology size. And
since consistency checks in OWL 2 QL are of NLogSpace-complete complexity
[46], the overall complexity of the query containment is PolyTime. Note that
this complexity is lower than the complexity ExpTime in [5], thanks to lower
expressive power of OWL 2 QL.

To deal with filters, a different approach has to be used. They have multiple
arity and they have different semantics (they do not have the open world
assumption), thus using their reification, negation, and consistency checks do
not solve their containment.

A simple scheme is used for deciding query containment with filters:

54

............................ 4.4. Representing Geospatial Sources

(∃f2 ∈ Rf2 : @f1 ∈ Rf1 : f1 v f2)⇒ q1 6v q2. (4.7)

Intuitively the filter containment relation v expresses whether one filter is
more restrictive than the other. It has to be defined according to the specific
filter function definition.

4.4.3 Query Containment with GeoSPARQL

When deciding query containment with queries only on the symbolic level
with individuals, topological relations are covered by extending them with a
hierarchy, as in Section 4.4.1. But when there are geospatial literals involved,
it gets more complicated.

First, I define the set of all topological relation restrictions of a geometry
individual as

Rel(i, q2) = {−TR(OP) : OP (ix, iy) ∈ Rop2 ∧ (hG(ix, i) ∨ ix = i)}
∪{TR(OP) : OP (ix, iy) ∈ Rop2 ∧ (hG(iy, i) ∨ iy = i)},

(4.8)

where hG v geo:hasGeometry, Rop2 is Rop in q2, and TR(OP) (topological
relation restriction values for all topological relations) is defined in Table 4.1.
Note that in a topological relation both a geometry individual and a feature
individual can play roles (thus the logical or in the definition).

Table 4.1: Values of restrictions TR(OP) of topological relations.

Egenhofer OP s TR(OP) Simple Feature OP s TR(OP) RCC8 OP s TR(OP)
geo:ehEquals 0 geo:sfEquals 0 geo:rcc8eq 0
geo:ehOverlap 0 geo:sfIntersects 0 geo:rcc8po 0
geo:ehDisjoint -1 geo:sfDisjoint -1 geo:rcc8dc -1
geo:ehContains -1 geo:sfContains -1 geo:rcc8ec 0
geo:ehCoveredBy 0 geo:sfCrosses 0 geo:rcc8ntpp 1
geo:ehCovers 0 geo:sfTouches 0 geo:rcc8ntppi -1
geo:ehInside 1 geo:sfWithin 1 geo:rcc8tpp 0
geo:ehMeet 0 geo:sfOverlaps 0 geo:rcc8tppi 0

The numerical values of TR(OP) in Table 4.1 represent necessary conditions
on the topological relation between two geometries in order to answer an
OP containment. In order to OP (x, a) v OP (x, b), the relation between the
features/geometries a and b has to be according to Table 4.2.

Table 4.2: Meanings of TR(OP) values.

TR(OP) condition
0 a ≡ b
1 a ⊆ b
-1 b ⊆ a

Then I can define an effective topological relation restriction of a geometry

55

4. Geospatial Integration and Retrieval Proposal.......................
individual:

re(i, q2) =
{

0 if |Rel(i, q2)| > 1,
the only element in Rel(i, q2) otherwise.

(4.9)
Using the topological relation restriction, I can define geometry containment

relation:

x ∼r y =


x ≡ y if r = 0,
x ⊆ y if r < 0,
y ⊆ x if r > 0,

(4.10)

where the relation ⊆ between two geometries represents that one geometry
is a subset (is within) another geometry and the relation ≡ represents that
the two geometries are the same.

Then I can extend completed ABox of a data property as:

Com2(hS(ix, dy)) = Com(hS(ix, dy))∪
∪ {(ix, g) : g ∈ D1 \DV 1 ∧ (dy ∼re(ix,q2) g)}

(4.11)

where hS v geo:hasSerialization, and the rest of the symbols is de-
fined in Section 4.4.2. When Com2(DP) is used for obtaining Ō(a) instead
of Com(DP), the query containment decision procedure is extended with
GeoSPARQL topological relations reasoning.

This way, containment on even complex query patterns is answered correctly.
To give an intuitive proof, I will continue the intuitive proof at the end of
Section 4.4.2. Here the Com(DP), containing possible substitutions for
variables, needs to be extended with substitutions also for geometry literals.
But how to select, which geometry literals to substitute? It depends on
how the geometry restricts the rest of the query, e.g. when an object has
to be within a geometry, the geometry can be substituted with a geometry
covering it. The impact spatial restrictions have on geometry substitutions
is given by TR(OP); for a specific object it is computed by Rel(i, q2), and
the effect the spatial restrictions have on the substitution is given by re(i, q2).
Then, by comparing geometries based on re(i, q2), it can be correctly decided
which geometries to substitute for a geometry in a query to decide query
containment with spatial semantics.

Note that since all steps to obtain Com2 do not exceed PolyTime complexity,
using this spatial extension does not affect the overall complexity of query
containment.

Imagine the two queries in Listing 4.1, structure of which is displayed in
Fig. 4.3. Note that the two polygons there are for example the areas of the
Czech Republic (CZ, in both queries) and Slovakia (SK, in q2 only); the two
countries are neighbors.

56

............................ 4.4. Representing Geospatial Sources

lgd:Restaurant ex:hasFoodOriginIn lgd:Country

geo:sfTouchesgeo:sfWithin

geo:asWKT
geo:Geometry a polygon

Figure 4.3: Example of a circle in a query.

Listing 4.1: q1 and q2 in circular spatial restriction example.
1 SELECT ?x WHERE {
2 ?x a lgd:Restaurant.
3 ?x geo:sfWithin ?g.
4 ?x ex:hasFoodOriginIn ?c.
5 ?c a lgd:Country.
6 ?c geo:sfTouches ?g.
7 q1: ?g geo:asWKT "POLYGON((<CZ>))"^^geo:wktLiteral.
8 q2: ?g geo:asWKT "POLYGON((<CZ+SK>))"^^geo:wktLiteral.
9 }

Obviously, q1 v q2 cannot be true, since the q1 results contain restaurants
in the Czech Republic with their food origin in Slovakia, while the results
of q2 do not. The containment would be true, if there would be only the
geo:sfWithin spatial restriction.

To show how the proposed reasoning would reach the correct decision, let
me show the steps:

Rel(ig, q2) = {TR(geo:sfTouches), TR(geo:sfWithin)} = {0, 1} (4.12)

re(ig, q2) = 0 (4.13)

Therefore, the completed ABox for geo:asWKT (<CZ+SK> in q2) will not
be extended with <CZ> from q1, thus testing consistency on Ō of this data
property will give consistent, meaning that q1 6v q2.

4.4.4 Resolving Variable Mapping

One problem in query containment is variable mapping. Using the simplest
attitude, variables are converted to individuals and literals, as in Section 4.4.2,
assuming they are uniquely identified by their names, and the query contain-
ment algorithm decides the query subsumption. It works if the variables are
named consistently between the compared queries. However, this might not
be the case in the real world – different systems may generate the template
queries describing its source’s capabilities, and they may name the variables
differently.

I make only one assumption: the output variables are the same. This is a
realistic assumption, since GIS systems, in simple cases, generate e.g. objects’

57

4. Geospatial Integration and Retrieval Proposal.......................
geometries and labels, therefore the implemented semantic GIS system may
fix constant output variable names and types.

Consider the following simple example of the two queries, written in
GeoSPARQL syntax in Listing 4.2 and Listing 4.3.

Listing 4.2: q1 in variable mapping example.
1 SELECT ?x ?wkt WHERE {
2 ?x a lgd:Restaurant.
3 ?x geo:hasGeometry ?g.
4 ?g geo:asWKT ?wkt.
5 ?x geo:sfTouches ?r.
6 ?r a lgd:PrimaryRoad.
7 }

Listing 4.3: q2 in variable mapping example.
1 SELECT ?x ?wkt WHERE {
2 ?x a lgd:Amenity.
3 ?x geo:hasGeometry ?g.
4 ?g geo:asWKT ?wkt.
5 ?x geo:sfTouches ?y.
6 ?y a lgd:PrimaryRoad.
7 }

Intuitively, q1 v q2, and q2 6v q1, no matter what is the name of the “hidden”
variable. To solve this problem, a simple algorithm was designed. Its input
are two queries, q1 and q2, with the assumption that the output variables are
exactly the same. Then it tries to find a mapping of variables from q2 to q1
(super-query to sub-query) preserving the result of q1 v q2.

The proposed algorithm depicted in Algorithm 1 and Algorithm 2 generates
two sets (one for each query), each containing variable sets, as they are related
together in a query (a set of two variables occurring on both sides of an
object or data property assertion pattern, or a set of arbitrary amount of
variables occurring in a filter). I denote the two sets as R1 for q1, and R2 for
q2. Singleton sets in R1 and R2 are discarded. In the example in Listing 4.2
and Listing 4.3, they would be:

R1 = {{x, g}, {g, wkt}, {x, r}} , R2 = {{x, g}, {g, wkt}, {x, y}} . (4.14)

Given R1, R2 andM , the algorithm recursively searches all possible variable
mappings from q2 to q1. Initially, M is the identity of the query output
variables (as stated before, the output variables must be the same). To
continue the example, initially,

M = {(x, x), (wkt, wkt)}. (4.15)

The output of the algorithm is a set of all possible variable mappings, that
preserve relations between variables. The algorithm assumes there are no
property chains, which is true in OWL 2 QL.

58

............................ 4.4. Representing Geospatial Sources

The result of the algorithm for the example above would be

O = {{(x, x), (wkt, wkt), (g, g), (y, r)}} . (4.16)

With all the possible variable mappings, they all have to be used to decide
query containment; if for any mapping M ∈ O, applied to q2, it is true that
q1 v q2,M , the answer is q1 v q2, otherwise q1 6v q2.

Algorithm 1 Variable mapping algorithm.
1: function VarMap(M,R1, R2)
2: if size(M) = count(variables in q2) then
3: return {M}
4: end if
5: O ← ∅
6: VM ← ∅
7: for all (v2, v1) ∈M do
8: W2 ← ∅
9: W1 ← ∅

10: for all R ∈ R2 do
11: if v2 ∈ R then
12: W2 ←W2 ∪ (R \ {v2} \ {x : (x, y) ∈M})
13: end if
14: end for
15: for all R ∈ R1 do
16: if v1 ∈ R then
17: W1 ←W1 ∪ (R \ {v1} \ {y : (x, y) ∈M})
18: end if
19: end for
20: VM ← VM ∪ {(W2,W1)}
21: end for
22: Sort VM from the lowest max size of the two sets in each element
23: A← FindCandidates(VM , ∅, ∅, ∅)
24: for all a ∈ A do
25: O ← O∪ VarMap(M ∪ {a}, R1, R2)
26: end for
27: return O
28: end function

The direction of mapping from q2 to q1 is chosen because for q1 v q2 to be
true, q1 has to be always more (or the same) restrictive than q2. It means
all variables in q2 has to be restricted in q1 the same way as in q2, or more;
therefore no variable in q2 can be left unmapped to q1. The opposite is not
true, some variables in q1 need not to be mapped to q2; they just can make
q1 more restrictive.

The algorithm always finds the mapping M , for which q1 v q2,M , when
q1 v q2. It is a way how to reduce the number of checking query containments.
Testing query containment for all mappings of inner variables would take long
since the number of mappings is exponential w.r.t. the number of variables.

59

4. Geospatial Integration and Retrieval Proposal.......................
Algorithm 2 Variable mapping algorithm, finding candidates.
1: function FindCandidates(VM ,M,U1, U2)
2: if VM = ∅ then
3: return {M}
4: end if
5: O ← ∅
6: (W2,W1)← first element of VM
7: for all (w2, w1) ∈ (W2 \ U2)× (W1 \ U1) do
8: O ← O∪ FindCandidates(VM \{(W2,W1)},M∪{(w2, w1)}, U1∪
{w1}, U2 ∪ {w2})

9: end for
10: return O
11: end function

4.5 Using Lattice for Searching Relevant Sources

A lattice is a natural structure for representing a set of queries ordered by
their containment, as the set is a partially ordered set: Every two queries
are related in exactly one of three ways: q1 v q2, q2 v q1, or q1 and q2 are
incomparable. Section 4.5.1 describes how to generate a lattice from a set of
queries, Section 4.5.2 gives details on how to search one.

It takes some effort to build a lattice, but it is a structure suitable for
efficient searching. It usually takes less query containment decisions for
searching a relevant source when using a lattice, compared to the number of
query containment decisions of a user’s query against all available prototypical
queries. This is confirmed by the experiments in Section 6.2.

A lattice is an algebraic structure, which has the least element and the
greatest element (for details, see [102]). In the case of queries, the least
element is the abstract query giving no results (called the bottom) and the
greatest element is the abstract query giving all results (called the top).

4.5.1 Building Lattice

Algorithm 3 with the support functions in Algorithm 4 iteratively builds a
lattice, where nodes represent sets of semantically equivalent queries. Each
node has a set of data sources capable of answering the node’s queries
associated with it.

It starts with the lattice being only the root node, representing the query
with the empty answer (as the top node of the lattice). It adds queries one
by one, placing it into appropriate position of the lattice: if the added query
contains a query (it is lower), but none of its children, add it as a child, as in
Algorithm 3, line 28; if it is semantically equivalent to a query, unify it, as in
Algorithm 3, line 10; otherwise work recursively, as in Algorithm 3, line 18.
The function call initially starts with the inserted query and the root (the
no-answer query) as arguments.

60

.......................4.5. Using Lattice for Searching Relevant Sources

In the worst case, adding a query to the lattice requires the amount of query
containment decisions equal to twice the size of the lattice (when caching of
query containment results is in place, as the algorithm may encounter the
same query pair multiple times), i.e. to build a lattice out of n prototypical
queries requires the maximum of n(n− 1) query containment decisions. But
in practical situations, it is usually less, see Section 6.2.

Algorithm 3 Lattice construction algorithm.
Require: r v q
1: function InsertIntoLattice(q, r)
2: if q ∈ children(r) then
3: return
4: end if
5: doAdd ← true
6: inserted ← false
7: for all c ∈ children(r) do
8: if q v c then . r v q v c
9: if c v q then . r v q ≡ c

10: unify(c, q)
11: return
12: end if
13: children(r)← children(r) \ {c}
14: children(q)← children(q) ∪ {c}
15: inserted ← true
16: break
17: else if c v q then . r v c v q
18: InsertIntoLattice(q, c)
19: doAdd ← false
20: end if
21: end for
22: if doAdd then
23: if not inserted then
24: for all c ∈ children(r) do
25: ConnectToChildren(q, c)
26: end for
27: end if
28: children(r)← children(r) ∪ {q}
29: end if
30: end function

61

4. Geospatial Integration and Retrieval Proposal.......................
Algorithm 4 Support functions for lattice construction algorithm.
Require: q not comparable to r
1: function ConnectToChildren(q, r)
2: for all c ∈ children(r) do
3: if q v c then . q v c
4: if not ChildrenContain(q, c) then
5: for all x ∈ children(q) do
6: if ChildrenContain(c, x) then
7: children(q)← children(q) \ {x}
8: end if
9: end for
10: children(q)← children(q) ∪ {c}
11: end if
12: else
13: ConnectToChildren(q, c) . q not comparable to c
14: end if
15: end for
16: end function
17: function ChildrenContain(r, x)
18: return

∨
c∈children(r) ((x = c) ∨ChildrenContain(c, x))

19: end function

4.5.2 Searching Lattice

Algorithm 5 contains the algorithm for searching a user’s query in the lattice
constructed in Section 4.5. The function is called with the query searched
for and the root of the lattice (the no-answer query) as the arguments, then
it recursively searches the lattice. It returns all query nodes, which are
equivalent to the user’s query, or are the “directly” contained ones (which
are contained in the user’s query, but no other contained in the user’s query
contains them). In case the algorithm cannot recursively continue at the root
level, which means that the user’s query does not contain any of the children
of root (and hence it would not contain any query in the lattice), it switches
to the “splitting” mode (it continues with the Algorithm 6).

When in “splitting” mode, the user’s query is split to subqueries, which
are individually searched in the lattice.

Searching a lattice of n nodes should take, in the worst case, n query
containment decisions in case the splitting is not used, and n + n|q| query
containment decisions when the splitting is used (where |q| is the number
of triples in q). This should happen only when the lattice is of a deformed
shape (e.g. all nodes are children of the root, or it is a chain), in practical
situations, it is less, see Section 6.2.

There exist many strategies how to split a query to subqueries in order
to find sources capable of answering them. It is a compromise between how
many sources must be involved in answering the user’s query (which includes

62

.......................4.5. Using Lattice for Searching Relevant Sources

Algorithm 5 Lattice searching algorithm.
Require: r v q
1: function SearchLattice(q, r)
2: S ← {c ∈ children(r) : c v q} . r v c v q
3: if S = ∅ then
4: if r = root of the lattice then
5: return UseSplitting(q, r)
6: else
7: return {(q, r)}
8: end if
9: else

10: return {SearchLattice(q, c) : c ∈ S}
11: end if
12: end function

how much data must be transferred from the sources to the broker and how
much processing the broker has to do to combine them) and the extensiveness
of the answer (the found query is always contained in the user’s query, but
the query formed by combining queries from multiple sources may give more
results to the user’s query than a single query from an individual source).

One decision is when to do the splitting of the user’s query, another one is
when to try to join the subqueries back when some of them can be answered
by a single source. The decision may be complex with different optimizations,
and it is part of my future work.

Currently, I propose a simple approach to split the user’s query at the first
level (the children of the lattice root) and then join those split subqueries
which contain the same child of the root, see Algorithm 6. This reduces
both the number of query containment decisions and the number of produced
subqueries (i.e. sources necessary to use for the complete answer).

Note that the auxiliary function “join” of a set of subqueries simply returns
a new query built from all the subqueries joined (the union of their triples)
with the output variables being the union of the queries’ output variables.
The function “vars” returns a set of all variables appearing in a query or a
triple. The symbol q1 ⊆ q2 represents the syntactic containment, i.e. whether
the triples of q1 are a subset of the triples of q2 and similarly for their output
variables.

Algorithm 6 Trying to split in lattice searching.
Require: r v q
1: function UseSplitting(q, r)
2: X ← {(c, sj) : c ∈ children(r) ∧ sj = join({s ∈ Split(q) : c v s})} .
r v c v s

3: return {SearchLattice(sj , c) : (c, sj) ∈ X ∧ sj /∈ Prune({sj :
(c, sj) ∈ X})}

4: end function

63

4. Geospatial Integration and Retrieval Proposal.......................
The algorithm for the splitting of a query in Algorithm 7 splits the query

into a set of subqueries, each subquery formed by a disjoint subset of triples
of the original query. Every such triple subset is selected to be of minimal
size, but keeping the condition that for every triple t in the subset, all triples
sharing a non-output variable with t are in the same subset (a non-output
variable is a variable not appearing in the original query SELECT statement).

This is illustrated in Fig. 4.4, where the query formed by all triples in the
figure is the algorithm input, and the three subqueries represented by the
triples in the encircled regions A, B, and C are the algorithm output.

In theory, a query could be split into single triples, and the broker could let
those triples be answered individually by different sources; then the broker
would have to do the conjunction itself, requiring that the individuals across
different sources match – even the ones representing the user query’s non-
output variables. As I consider posing less requirements about the alignment
between individuals in different sources as good practice, I proposed an
algorithm to keep the originally inner variables not exposed by the split
subqueries, just to require alignments on the output variables. It is also one
way how to limit the number of queries to ask and to reduce the computational
demands on the broker. But it is a matter of design choice.

output variables

A

B

C

Figure 4.4: Splitting a query into subqueries. The dots represent distinct
variables, the arrows represent predicates.

Algorithm 8 is another example of heuristics how to reduce the number of
queries necessary to be answered by the sources. Note that by the symbol |q|
I denote the number of triples in a query q. First, it finds all query subsets
which are redundant (note that P denotes a power set). Next, comes the
heuristics. From these redundant subsets, I pick only the ones with the
maximum number of elements (line 3), from these I pick only the ones with
the minimum total number of triples with the intent of pruning the least
restrictive queries (line 4). When there is more than one such subset available,
I pick randomly.

64

.......................4.5. Using Lattice for Searching Relevant Sources

Algorithm 7 Query splitting.
1: function Split(q)
2: T ← all triples of q
3: vo ← output variables of q
4: O ← ∅
5: while T 6= ∅ do
6: t← one of {t ∈ T : vars(t) ∩ vo 6= ∅}
7: S ← Spread(t, T \ {t}, vo)
8: T ← T \ S
9: O ← O∪{a query with triples S and output variables vars(S)∩vo}

10: end while
11: return O
12: end function
13: function Spread(t, T, vo)
14: X ← {x ∈ T : vars(t) \ vo ∩ vars(x) 6= ∅}
15: return {t} ∪

⋃
x∈X Spread(x, T \X, vo)

16: end function

Algorithm 8 Prunning queries.
1: function Prune(Q)
2: P ← {p ∈ P(Q) : join(p) ⊆ join(Q \ p)}
3: P1 ← {p ∈ P : |p| = max({|p| : p ∈ P})
4: P2 ← {p ∈ P1 :

∑
q∈p |q| = min({

∑
q∈p |q| : p ∈ P1})

5: return random element of P2
6: end function

65

66

Chapter 5
Implemented Prototypes

Currently, OnGIS is implemented in two independent prototypes. The first,
presented in Section 5.1, consists of a web user interface, allowing the two
query input methods described in Section 4.3, and a backend translating
queries to various GIS services presented in Section 4.2.

The main language used is Oracle Java 71. The prototype in Section 4.3 is
designed as a Java EE 62 server application, being run on an Oracle GlassFish
33 server. It uses many external libraries. Some parts of the frontend are
developed using Javascript.

The second prototype in Section 5.2 demonstrates representing a set of
geospatial services with prototypical queries and the algorithms for searching
them according to a user’s query.

5.1 Query Input and Data Retrieval

The OnGIS frontend consists of web pages for the two presented modes
of entering a query. It is developed using the JavaServer Faces (JSF) 24

technology, with some code in Javascript, to enhance its interactivity. The
web pages present the results of a query in the form of an interactive map.
The map is based on the OpenLayers5 library, which is a Javascript-based
interactive map library supported in modern browsers, using both raster
and vector graphics. It supports multiple map layers, which can be read
from many raster and vector formats. When augmented with the Proj4js6

Javascript coordinate transformations library, it can overlay vector data layers
in different spatial reference systems.

The data retrieval backend has a modular design, there is a plugin for
each supported GIS service technology. There is the OnGIS plugin API,
containing methods for searching entities by a string, and for evaluating a

1https://docs.oracle.com/javase/7/docs/, cit. 2016-07-11.
2http://docs.oracle.com/javaee/6/index.html, cit. 2016-07-11.
3https://glassfish.java.net/download-archive.html, cit. 2016-07-11.
4http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.

html, cit. 2016-07-11.
5http://openlayers.org/, cit. 2016-07-10.
6http://proj4js.org/, cit. 2016-07-10.

67

https://docs.oracle.com/javase/7/docs/
http://docs.oracle.com/javaee/6/index.html
https://glassfish.java.net/download-archive.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://openlayers.org/
http://proj4js.org/

5. Implemented Prototypes................................
GeoSPARQL query. The backend loads a background ontology into memory,
to be available for query translations and for mapping to respective sources
by the plugins (using the OnGIS annotations). For the background ontol-
ogy manipulation, the OWL API7 (version 3.4.9), a Java library for OWL
ontologies manipulation, is used.

Currently, there are three basic plugins implemented and used:.OwlgresMM plugin uses OwlgresMM, see Section 5.1.1. It translates
GeoSPARQL queries to SQL queries for appropriate databases. It uses
the annotations anno:DBDatabase and others (see Section 4.2)..ArcGIS plugin is used for retrieving spatial data from ArcGIS servers.
It is driven by the anno:ArcgisWebservice and anno:ArcgisRest an-
notations.. SPARQL plugin does a simple GeoSPARQL to SPARQL rewriting. It
is enabled by the anno:SparqlEndpoint annotation.

Currently, the data retrieval backend has a simple algorithm for splitting
a query to parts based on the provided OnGIS annotations. When entities
in a part of a query are annotated by a plugin annotations, that part of
the query is presented to the plugin, translated, and answered by a source.
This may produce unnecessary queries to data sources (e.g. when a data
source would answer the query entirely, another one is asked as well, just
because it is connected by the OnGIS annotations, too). This can be solved
by incorporating the prototype presented in Section 5.2. Joining the two
prototypes remains as a future work.

The ArcGIS plugin must greatly simplify the query, as ArcGIS server
querying is rather limited (at least of the one available for testing, the
geoportal of IPR Praha). It supports attribute filters, a result bounding
box, and a spatial restriction: one of intersects, envelope intersects, index
intersects, touches, overlaps, crosses, within, and contains8 with a given
geometry. Therefore some parts of a GeoSPARQL query can be translated:
simple data property restrictions (using equality), and some spatial relations
compatible with the mentioned supported ones. Note that some other practical
restrictions can be translated to the supported ones, e.g. “within a distance
d to a point p” can be translated by making a circle with the radius d and
the center p, which can be used for the intersection relation.

The translation into SPARQL is even more simplifying, as basic geospatial
support in RDF and SPARQL is for W3C Basic Geo Vocabulary only, having
two floating point numbers of latitude and longitude in WGS 84 reference
system only, with only the number comparison operations (≤, ≥, . . .) avail-
able. Therefore, only the bounding box restriction can be made this way,

7http://owlapi.sourceforge.net/, cit. 2016-07-10.
8Their definitions is given in the ArcGIS guide at http://resources.arcgis.com/en/

help/arcobjects-net/componenthelp/index.html#//002500000086000000, cit. 2016-07-
11.

68

http://owlapi.sourceforge.net/
http://resources.arcgis.com/en/help/arcobjects-net/componenthelp/index.html#//002500000086000000
http://resources.arcgis.com/en/help/arcobjects-net/componenthelp/index.html#//002500000086000000

............................ 5.1. Query Input and Data Retrieval

which can be used as a prefilter for some simple queries, with proper filtering
done as a local step in OnGIS after receiving the prefiltered data.

I will present the details of OwlgresMM plugin in the next section.

5.1.1 OwlgresMM

The OwlgresMM plugin uses OwlgresMM, an OWL 2 QL reasoner based
on Owlgres. Owlgres9 [57] is an open source Java implementation of a
DL−LiteHcore reasoner developed by Clark & Parsia10, backed by a DBMS for
persisting data, particularly it is tailored to work with PostgreSQL databases.

The original database schema used in Owlgres has two sets of database
tables, one for TBox, with one table listing all classes, one for all object
properties, etc., and one set for ABox. This original schema for ABox stores
all class assertions in one table, all object property assertions in another table,
and similarly for data properties and annotations.

Owlgres was first extended in [103] (my master thesis), where two other
database schemas were designed, implemented and compared to the original
one in Owlgres. The result of the master thesis is that for most cases, storing
class assertions (respectively object and data property assertions) in separate
tables per named class (respectively named object and data property), which
is one of the new schemas, is the most efficient option.

OnGIS uses OwlgresMM (MM stands for multiple tables scheme, with
custom mappings), developed as part of this thesis. It is my extension of
Owglres based on the most efficient schema according to the master thesis,
with three important new features added. The first is that it supports custom
mappings between OWL entities and database tables. These mappings are
currently defined by the OnGIS annotations anno:DBClassTable and others,
as described in Section 4.2. This is useful especially when we want to connect
OnGIS to an existing database with an already defined schema. Another
change is that a TBox is not stored in a database at all (as was the case
of original Owlgres), but it is loaded from an ontology document (e.g. an
RDF/XML) into memory by OWL API instead, as it is typically feasible
to fit it into memory, where it is handy both for query translation and for
looking up OnGIS mapping annotations.

The final extension is the support of spatial queries. OwlgresMM supports
some of GeoSPARQL vocabulary, e.g. spatial relations, distance filter, and
bounding box (see Section 3.4.2). Currently, it supports only PostgreSQL
with the PostGIS extension – the GeoSPARQL operations are translated to
the PostGIS functions.

Listing 5.1 and Listing 5.2 show some excerpts of OpenStreetMap and
GeoNames TBoxes in RDF/XML format with the database mapping annota-
tions.

9http://pellet.owldl.com/owlgres, cit. 2011-10-07, currently unavailable, and unfor-
tunately no other official distribution of the source codes and binaries was found.

10http://clarkparsia.com/, cit. 2011-10-07, rebranded as Complexible Inc. in 2015,
http://complexible.com/, cit. 2016-07-06.

69

http://pellet.owldl.com/owlgres
http://clarkparsia.com/
http://complexible.com/

5. Implemented Prototypes................................
Listing 5.1: An excerpt of OpenStreetMap mapping ontology.

1 <rdf:Description
2 rdf:about="http://linkedgeodata.org/ontology/HighwayResidential">
3 <anno:DBClassTable>
4 highw_residential(id=id,geom=way,geomSRID=4326,geomType=LINESTRING)
5 </anno:DBClassTable>
6 </rdf:Description>
7 <rdf:Description rdf:about="http://linkedgeodata.org/ontology/NaturalWater">
8 <anno:DBClassTable>
9 nat_water(id=id,geom=way,geomSRID=4326,geomType=GEOMETRY)

10 </anno:DBClassTable>
11 </rdf:Description>
12 <rdf:Description
13 rdf:about="http://linkedgeodata.org/ontology/official_name">
14 <anno:DBDataPropertyTable>
15 off_names(id=id,val=val,lang=,length=255,nullable=false,indexed=true,
16 multiple=true)
17 </anno:DBDataPropertyTable>
18 </rdf:Description>
19 <rdf:Description rdf:about="http://linkedgeodata.org/ontology/Bus">
20 <anno:DBClassTable>
21 route_bus(id=id,geom=way,geomSRID=4326,geomType=GEOMETRY)
22 </anno:DBClassTable>
23 </rdf:Description>
24 <rdf:Description rdf:about="http://linkedgeodata.org/ontology/subarea">
25 <anno:DBObjectPropertyTable>
26 subareas(id=id,obj=obj,nullable=false,indexed=true,multiple=true)
27 </anno:DBObjectPropertyTable>
28 </rdf:Description>

Listing 5.2: An excerpt of GeoNames mapping ontology.

1 <rdf:Description rdf:about="http://www.geonames.org/ontology#Feature">
2 <anno:DBClassTable>
3 features(id=id,geom=pt,geomSRID=4326,geomType=POINT)
4 </anno:DBClassTable>
5 </rdf:Description>
6 <rdf:Description rdf:about="http://www.geonames.org/ontology#name">
7 <anno:DBDataPropertyTable>
8 features(id=id,val=name,lang=,length=200,nullable=false,indexed=true,
9 multiple=false)

10 </anno:DBDataPropertyTable>
11 </rdf:Description>
12 <rdf:Description rdf:about="http://www.geonames.org/ontology#population">
13 <anno:DBDataPropertyTable>
14 features(id=id,val=population,lang=,length=12,nullable=true,
15 indexed=true,multiple=false)
16 </anno:DBDataPropertyTable>
17 </rdf:Description>
18 <rdf:Description rdf:about="http://www.geonames.org/ontology#shortName">
19 <anno:DBDataPropertyTable>
20 shortnames(id=id,val=val,lang=lang,length=200,nullable=false,
21 indexed=true,multiple=true)
22 </anno:DBDataPropertyTable>
23 </rdf:Description>

70

............................ 5.1. Query Input and Data Retrieval

5.1.2 Importing Spatial Data to Relational Databases

For testing the OnGIS prototype, two databases have been set up and mapped:
one with OpenStreetMap data, mapped to LinkgedGeoData TBox, and
another one with GeoNames data, mapped to its TBox. The OpenStreetMap
data are also available in RDF format for download from LinkedGeoData
website11, however they are released approximately once a year, so using the
original OpenStreetMap source has the benefit of having up-to-date data.
There are also alternative OpenStreetMap data download servers, which have
the data split into continents and countries, so it is easy to obtain only the
part of the World relevant to whatever use case.

To import the data, special tools had to be developed to read the respective
data source formats and load it to spatially-enabled databases.

In case of the OpenStreetMap data, the basic idea is that all instances of
each concept should be in a separate table (corresponding to the concept),
and similarly for object and data properties (all pairs of objects of an object
property in a single table, respectively all objects with their values of a data
property in a single table). The reason for this decision is that there are
many instances in relatively few classes and properties. This way a database
schema was designed.

Because of the structure of OpenStreetMap data (nodes, ways and relations,
labeled with tags; for details see [15]), a custom set of annotation properties
for annotating LinkedGeoData ontology was developed. The annotations
include:.OSMNode – the annotation property indicating that the database table

of this concept should be filled in with nodes satisfying constraints in
the annotation,.OSMWay – similar annotation property for ways,.OSMRelation – similar annotation property for relations, and.OSMTag – the annotation property indicating that the database table
of this data property should be filled in with values of the specified tags.

These annotations are used only for import of OpenStreetMap data, not for
querying. For querying, only the generic OnGIS annotations are used. These
OpenStreetMap specific annotations are defined only because OpenStreetMap
data cannot be directly accessed by SQL on a public server, therefore my
own database has to be used with a custom import of the data.

To have an idea of what an OpenStreetMap XML data file looks like,
Listing 5.3 shows a few simplified examples.

11http://downloads.linkedgeodata.org/releases/, cit. 2016-08-18.

71

http://downloads.linkedgeodata.org/releases/

5. Implemented Prototypes................................
Listing 5.3: OpenStreetMap data example.

1 <node id="172516" lat="50.0811476" lon="14.4045315"
2 timestamp="2008-09-08T21:31:02Z">
3 <tag k="highway" v="traffic_signals" />
4 </node>
5 <node id="248541" lat="50.0988063" lon="14.5984071"
6 timestamp="2011-02-19T19:15:09Z">
7 <tag k="highway" v="motorway_junction" />
8 <tag k="name" v="Praha-Horni␣Pocernice" />
9 </node>

10 <way id="1614262" timestamp="2008-11-19T20:59:19Z">
11 <nd ref="6926352"/>
12 <nd ref="32606754"/>
13 <nd ref="6926427"/>
14 <nd ref="6926428"/>
15 <nd ref="313218916"/>
16 <nd ref="313218885"/>
17 <nd ref="6926434"/>
18 <tag k="highway" v="residential" />
19 <tag k="name" v="Bakurinova" />
20 </way>
21 <relation id="1622387" timestamp="2011-06-13T00:31:24Z">
22 <member type="way" ref="116788173" role="outer"/>
23 <member type="way" ref="116788175" role="inner"/>
24 <tag k="type" v="multipolygon" />
25 </relation>

These import annotation properties are used to perform a mapping between
LinkedGeoData and OpenStreetMap XML data file, see Fig. 5.1. The devel-
oped utility reads the input XML file according to the import annotations,
and stores the data into a relational database, as defined by the OnGIS
annotations.

OwlgresMM

. . .

OSM
DB

LinkedGeoData
(OSM TBox)

OSM
annos.

. . .

OSM
import
annos.

OSM
XML
data

OSM import
utility

Figure 5.1: Architecture of OpenStreetMap import.

Listing 5.4 shows a few examples of OpenStreetMap import annotations

72

............................ 5.1. Query Input and Data Retrieval

in RDF/XML format. Lines 1–4 specify that the table corresponding to
lgd:HighwayResidential class (which is specified in the LinkedGeoData
ontology) should be filled in with OpenStreetMap ways. The contents of
the annotation restrict, which ways should by imported using the tags (it is
similar for the other objects – all nodes, ways and relations can be all labeled
with tags in OpenStreetMap). It is a comma separated list of “key=value”
pairs. In this case, the ways have to have a highway tag with the value
residential.

Lines 5–9 do the same thing for class lgd:NaturalWater, only this time
it can be both nodes and ways. Lines 10–13 annotate that the table for
data property lgd:official_name should be filled in with all values of the
tags with the key official_name (wherever they appear). And finally the
lines 14–19 fill in the table of class lgd:Bus with specific ways and relations
(importing relations is a little more complicated – there are different types of
relations, and each type requires different handling; for details see [15] and
the prototype implementation.

Listing 5.4: Example of OpenStreetMap import annotations.

1 <rdf:Description
2 rdf:about="http://linkedgeodata.org/ontology/HighwayResidential">
3 <OSMWay>highway=residential</OSMWay>
4 </rdf:Description>
5 <rdf:Description
6 rdf:about="http://linkedgeodata.org/ontology/NaturalWater">
7 <OSMWay>natural=water</OSMWay>
8 <OSMNode>natural=water</OSMNode>
9 </rdf:Description>

10 <rdf:Description
11 rdf:about="http://linkedgeodata.org/ontology/official_name">
12 <OSMTag>official_name</OSMTag>
13 </rdf:Description>
14 <rdf:Description
15 rdf:about="http://linkedgeodata.org/ontology/Bus">
16 <OSMWay>route=bus</OSMWay>
17 <OSMRelation>
18 rel_type=route,type=route,route=bus
19 </OSMRelation>
20 </rdf:Description>

The main part of GeoNames data is available in two tab-separated text
files, the main file with point data and other attributes, and another one
with alternate names. A special utility was developed to import the data into
a database and to generate the mapping. GeoNames ontology expressivity
is (in the notation of description logics) ALEHOIN (D), which is beyond
the expressivity of OWL 2 QL, but it can be simplified by dropping a few
axioms (minimum cardinality restrictions ≥ 1 can be replaced with existential
quantifications, maximum cardinality restrictions have to be dropped – this,
however, does not affect typical OnGIS queries).

The main modification of GeoNames ontology, that had to be made, was

73

5. Implemented Prototypes................................
regarding the feature classes and codes. In the original ontology, they are
modeled as individuals, which is impractical for querying in OnGIS and for
linking with other ontologies. Therefore the classes and codes were translated
from individuals into classes (with the addition of correct hierarchies – that
for each class, its corresponding codes are the subclasses).

As the GeoNames data are of a tabular form (the two files represent two
tables), the most natural way to store them in a database is using two
relational tables. This means that all spatial features (points in this case) are
in the same table, regardless of the class. The class is specified by column
values, which are indexed (to speed up the class instance retrieval).

The importing architecture is very similar to the one used in case of
OpenStreetMap. The GeoNames ontology is annotated with three specific
annotation properties for GeoNames:.GNFeature – the annotation property of a concept indicating, where

to store features from the main file (to a table corresponding to the
concept),.GNFeatureDataColumn – the annotation property of a data property
specifying, where to store data values from a specific column of the main
feature file; the value of this annotation is the index of the selected
column (in my case, the target data property aims to the same table as
where the features are stored, just another table column), and.GNAltName – the annotation property of a data property defining,
where alternate names from the second file should be stored, optionally
with a filter in the annotation value (alternate names file column index,
equal sign, and a value the imported row’s column has to satisfy).

An excerpt of GeoNames import annotations is in Listing 5.5.

Listing 5.5: GeoNames import annotations.

1 <rdf:Description
2 rdf:about="http://www.geonames.org/ontology#Feature">
3 <GNFeature></GNFeature>
4 </rdf:Description>
5 <rdf:Description
6 rdf:about="http://www.geonames.org/ontology#name">
7 <GNFeatureDataColumn>1</GNFeatureDataColumn>
8 </rdf:Description>
9 <rdf:Description
10 rdf:about="http://www.geonames.org/ontology#population">
11 <GNFeatureDataColumn>14</GNFeatureDataColumn>
12 </rdf:Description>
13 <rdf:Description
14 rdf:about="http://www.geonames.org/ontology#shortName">
15 <GNAltName>5=1</GNAltName>
16 </rdf:Description>

74

........................... 5.2. Lattice Construction and Searching

5.2 Lattice Construction and Searching Using
Query Containment

The second prototype built to test OnGIS design in Section 4.4 and Section 4.5
is a standalone Java application. It loads the background ontology into
memory using OWL API, then it can be fed with the prototypical queries,
from which an in-memory lattice is constructed. The prototypical queries are
read one by one and are iteratively inserted into the lattice.

The background ontology format is anything OWL API can parse, e.g.
RDF/XML documents. The prototypical queries are expected to be stored
in a file per data source, each file containing a set of prefixes first, then the
queries in the GeoSPARQL format, each GeoSPARQL query on a single line.

When the prototype has all prototypical queries and a background ontology
loaded, it can be used using a simple API method for searching. The method
is given a user’s query and returns a map of queries to the sources that can
answer the queries. In case the splitting was not used, the map contains only
the original user’s query. When the splitting was used, the map contains the
split sub-queries.

The algorithms for deciding query containment presented in Section 4.4
and Section 4.5 require consistency checks in OWL 2 QL, For that purpose,
the Pellet reasoner version 2.3.1 is used. Pellet supports OWL-DL, which has
higher expressive power than OWL 2 QL, so developing an optimized OWL 2
QL reasoner might make OnGIS faster.

For deciding geometry relations to support spatial reasoning, GeoTools12

(version 14.0) together with JTS Topology Suite13 (version 1.13) are used.
For parsing and manipulating GeoSPARQL queries, Jena ARQ14 (version
2.10.0) is used.

I tried to redesign all the algorithms for lattice construction and searching
also for the opposite direction, where the root in the algorithms is the lattice
top (the all-answer query). But especially the searching algorithms are more
complicated. This is confirmed by my tests when in most cases the algorithms
using the lattice top as the root are slower. The worst difference is for the
test in Section 6.2.1, where splitting is used: the search time is more than
ten times longer when using the lattice top as the root.

5.3 Other Tools

A tool important for working with ArcGIS servers, which is the case of IPR
Praha geoportal, is ArcExplorer. It has been designed along the other OnGIS
prototypes to construct an ontology of an ArcGIS server.

Given an ArcGIS server URL, ArcExplorer reads the server metadata
using the ArcGIS web service client and produces an ontology describing the

12http://www.geotools.org/, cit. 2016-08-20.
13http://tsusiatsoftware.net/jts/main.html, cit. 2016-08-20.
14https://jena.apache.org/documentation/query/, cit. 2016-08-20.

75

http://www.geotools.org/
http://tsusiatsoftware.net/jts/main.html
https://jena.apache.org/documentation/query/

5. Implemented Prototypes................................
server. It transforms the available map servers and their layers, attributes,
and map legends into classes and properties. It labels them with the obtained
metadata. The OnGIS annotations are used as a vocabulary for the available
ArcGIS web services, ArcGIS REST services and WMS services (not all types
of services need to be available for every ArcGIS map server).

Another tool is for obtaining relations between topological relation prop-
erties, which are presented in Fig. 4.2 in Section 4.4.1. Its input is a set
of topological relations with their DE-9IM definitions, and the output is a
directed graph in DOT format [104]. In OnGIS, it is used for the GeoSPARQL
topological relations listed in Table 3.3 in Section 3.4.2. The tool compares
two DE-9IM definitions character by character and decides, whether one
relation is less or equally general than the other. This is true, when all their
corresponding character pairs satisfy the same condition: a DE-9IM character
r1 is less or equally general than a DE-9IM character r2 if and only if the
following is satisfied:

(r1 = r2) ∨ (r2 = ’ ∗ ’) ∨ ((r2 = ’T’) ∧ isDigit(r1)) . (5.1)

The DE-9IM characters can have values 0, 1, 2, T, F, and ∗. For their
description, see Section 2.2.

76

Chapter 6
Experiments

This chapter shows how the prototypes described in Chapter 5 perform on a
few examples.

6.1 Query Input

As an example showing, how the query input works in the prototype, I chose
a simple user’s query: “Find me all restaurants in Prague 2 near to a park”,
where Prague 2 is a city district. I will use this example both in Section 6.1.1
and Section 6.1.2. Let us say that “near” means within 150 meters to us.

The data sources connected to the OnGIS prototype for the examples are:. IPR Praha ontology (generated by ArcExplorer, see Section 5.3) linked
to IPR Praha ArcGIS geoportal,.GeoNames ontology mapped to local PostgreSQL database with GeoN-
ames data,. LinkedGeoData ontology mapped to local PostgreSQL database contain-
ing OpenStreetMap data for the Czech Republic, and. DBpedia ontology linked (by the anno:SparqlEndpoint annotation) to
the DBpedia SPARQL endpoint.

6.1.1 Query Input as List with Relations

To construct such query in the list form, a user must enter each part of
the query individually into a text field and search for relevant terms from
the loaded background ontologies. For example, the user enters the term
restaurant, and OnGIS presents him with a list of results containing the term.
One of the results is the Restaurant class from the LinkedGeoData ontology.
The user can select it and add it to the query list, as in Fig. 6.1. Similarly,
the user can deal with parks.

To restrict the results to the city district Prague 2, the user can try searching
for city districts. In our case, we have also an ontology describing IPR Praha
geoportal loaded into the background ontology, which contains a city districts

77

6. Experiments

Figure 6.1: The list query with a few items.

layer (“městské části” in Czech). To create the IPR Praha geoportal ontology,
the OnGIS tool ArcExplorer has been used; for details see Section 5.3. Since
only Prague 2 is queried, the user has to restrict the city districts somehow.
An easy way to do this is to get all properties of the districts class by clicking
the properties link, which shows a popup with all properties having the class
as the domain. Among others, there is also the name property (“název” in
Czech). It can be added to the query list, where it can be assigned a filtering
value (“Praha 2”, meaning Prague 2).

As we have all items of our query in the list, we can add the spatial
restrictions. The user can simply set the distance restriction of 150 meters to
the parks class, which restricts all other search results to be within 150 m to
a park. The Prague 2 restriction simply requires setting the inside restriction
to the city districts class.

This list query produces GeoSPARQL queries in Listing 6.1 and Listing 6.2
posed to OwlgresMM for retrieving restaurants (the first one) and parks (the
second one). The prototype also generated GeoSPARQL queries for obtaining
the city districts, but since these cannot be answered from connected relational
databases, OwlgresMM has discarded them.

The prefixes in the listings have been omitted for brevity. There is the
standard GeoSPARQL geo: prefix used, along with geof: for GeoSPARQL
functions. The prefix geox: is my simple extension of GeoSPARQL with the
bounding box restriction function (geox:bbox).

Note that the truncated WKT polygon geometry literal with ellipsis is a
geometry representing the city district Prague 2, which is obtained from the
IPR Praha ArcGIS geoportal using an ArcGIS web service. The bounding
box is used to restrict the results only to the currently visible map extent; the
coordinates for the restriction are obtained from the current zoom and pan
of the map viewing component in the user’s browser. This helps to restrict
the amount of data needed to query and transfer from the database to the
front end.

78

..................................... 6.1. Query Input

To allow displaying also a label next to a geometry in the user’s map,
a simple method is used in the prototype. There is the ongis:name data
property, which can be linked to domain specific data properties for various
types of names by sub-property axioms. For example, lgd:official_name,
lgd:short_name, and lgd:historic_name are sub-properties of ongis:name.
Therefore, OwlgresMM plugin adds this data property to the optional part
of every GeoSPARQL query, to obtain also some textual information to be
displayed on the map.

Listing 6.1: Generated GeoSPARQL searching for restaurants.

1 SELECT DISTINCT ?x ?g ?l WHERE {
2 ?x a <http://linkedgeodata.org/ontology/Restaurant>.
3 ?x geo:asWKT ?g.
4 ?fdo2 a <http://linkedgeodata.org/ontology/Park>.
5 FILTER (geof:sfWithin(?x,
6 "POLYGON((14.437196␣50.086591,␣14.437122␣50.086504,␣...))")).
7 FILTER (geof:sfWithin(?fdo2,
8 "POLYGON((14.437196␣50.086591,␣14.437122␣50.086504,␣...))")).
9 FILTER (geof:distance(?x, ?fdo2, 150.0)).

10 FILTER (geox:bbox(?x,
11 "14.251363,50.032442,14.615151,50.133983")).
12 FILTER (geox:bbox(?fdo2,
13 "14.251363,50.032442,14.615151,50.133983")).
14 OPTIONAL {
15 ?x ongis:name ?l.
16 }
17 }

Listing 6.2: Generated GeoSPARQL searching for parks.

1 SELECT DISTINCT ?x ?g ?l WHERE {
2 ?x a <http://linkedgeodata.org/ontology/Park>.
3 ?x geo:asWKT ?g.
4 FILTER (geof:sfWithin(?x,
5 "POLYGON((14.437196␣50.086591,␣14.437122␣50.086504,␣...))")).
6 FILTER (geox:bbox(?x,
7 "14.251363,50.032442,14.615151,50.133983")).
8 OPTIONAL {
9 ?x ongis:name ?l.

10 }
11 }

OwlgresMM takes these two GeoSPARQL queries and translates them
using the mapping annotations to SQL queries in Listing 6.3 and Listing 6.4,
which are executed on the OpenStreetMap database.

As the LinkedGeoData class for restaurants, which is used in the query, is
linked also to a restaurant class in the GeoNames ontology, querying only for
restaurants would yield SQL queries both for OpenStreetMap and GeoNames
data. But since the entered query is more complex, requiring the spatial
restriction by parks, the simple rewriting mechanism in OwlgresMM used

79

6. Experiments
only the OpenStreetMap database, as it contains parks as well. GeoNames
also contain a class for parks (gn:L.PRK), but it is not linked to lgd:Park
for some reason.

The two SQL queries are truncated in the listings, the full versions are
series of unions, where only the name data property table name differs –
d_official_name on line 20 in Listing 6.3 and line 12 in Listing 6.4 is
substituted with d_short_name, etc.

Listing 6.3: OwlgresMM generated SQL (truncated) for OpenStreetMap
database for obtaining restaurants.

1 SELECT DISTINCT subinner.x1 AS x1, subinner.x2 AS x2, dra_3.val AS x3 FROM (
2 SELECT DISTINCT ST_AsText(ST_Transform(ca_1.way, 4326)) AS x1,
3 ca_1.id AS x2
4 FROM restaurant ca_1, park ca_2
5 WHERE ST_Within(ST_Transform(ca_1.way, 4326),
6 ST_SetSRID(ST_GeomFromText(’POLYGON␣((14.437196␣50.086591,␣...))’),
7 4326))
8 AND ST_Within(ST_Transform(ca_2.way, 4326),
9 ST_SetSRID(ST_GeomFromText(’POLYGON␣((14.437196␣50.086591,␣...))’),

10 4326))
11 AND ST_DWithin(ST_Transform(ca_1.way, 102067),
12 ST_Transform(ca_2.way, 102067), 150.0)
13 AND ST_Transform(ca_1.way, 4326) &&
14 ST_SetSRID(ST_MakeBox2D(ST_Point(14.251363, 50.032442),
15 ST_Point(14.615151, 50.133983)),4326)
16 AND ST_Transform(ca_2.way, 4326) &&
17 ST_SetSRID(ST_MakeBox2D(ST_Point(14.251363, 50.032442),
18 ST_Point(14.615151, 50.133983)),4326)
19) subinner
20 LEFT JOIN d_official_name dra_3 ON subinner.x2=dra_3.id
21 UNION
22 ...

Listing 6.4: OwlgresMM generated SQL (truncated) for OpenStreetMap
database for obtaining parks.

1 SELECT DISTINCT subinner.x1 AS x1, subinner.x2 AS x2, dra_2.val AS x3 FROM (
2 SELECT DISTINCT ST_AsText(ST_Transform(ca_1.way, 4326)) AS x1,
3 ca_1.id AS x2
4 FROM park ca_1
5 WHERE ST_Transform(ca_1.way, 4326) &&
6 ST_SetSRID(ST_MakeBox2D(ST_Point(14.251363, 50.032442),
7 ST_Point(14.615151, 50.133983)),4326)
8 AND ST_Within(ST_Transform(ca_1.way, 4326),
9 ST_SetSRID(ST_GeomFromText(’POLYGON␣((14.437196␣50.086591,␣...))’),

10 4326))
11) subinner
12 LEFT JOIN d_official_name dra_2 ON subinner.x2=dra_2.id
13 UNION
14 ...

Because the LinkedGeoData restaurants class is also linked to the class of
restaurants in DBpedia ontology, the OnGIS prototype issues a request to
DBpedia SPARQL endpoint, see Listing 6.5. Note that the query is rather

80

..................................... 6.1. Query Input

Figure 6.2: The resulting map of the query example.

simple, not performing the necessary spatial restrictions, because SPARQL
itself is rather limited regarding spatial features. Therefore the necessary
restrictions have to be applied after receiving the data, but this is currently
not supported by the current OnGIS prototypes.

Note that the SPARQL query uses W3C Basic Geo Vocabulary for querying
longitude and latitude of points and that the longitude and latitude are filtered
to the bounding box of the map view extent, similarly to the GeoSPARQL
queries earlier.

Listing 6.5: Generated SPARQL for DBpedia SPARQL endpoint querying for
restaurants.

1 SELECT DISTINCT ?x ?lat ?lon ?l WHERE {
2 ?x a <http://dbpedia.org/ontology/Restaurant>.
3 ?x <http://www.w3.org/2003/01/geo/wgs84_pos#lat> ?lat.
4 ?x <http://www.w3.org/2003/01/geo/wgs84_pos#long> ?lon.
5 FILTER (?lon >= 14.277582). FILTER (?lon <= 14.458047).
6 FILTER (?lat >= 50.060109). FILTER (?lat <= 50.110843).
7 OPTIONAL {
8 ?x rdfs:label ?l.
9 FILTER (LANG(?l)="en").

10 }
11 }

Fig. 6.2 shows a map with the query results. It has been cut to make its
labels legible. The red line is the Prague 2 boundary, the red areas are parks,
and the blue points are restaurants. The two bigger parks on the left form
Charles Square (Karlovo náměstí), while the park on the right is on Peace
Square (náměstí Míru).

6.1.2 Query Input as Structured Expression

The structured way of entering a query uses one input text field, which does
not allow submitting free text, but checks the input using autocomplete.

81

6. Experiments

Figure 6.3: An example of restaurant classes autocomplete in a structured query.

Figure 6.4: An example of a data properties autocomplete in a structured query.

When at least three characters are entered, an autocomplete list box starts
suggesting entities from the background ontology and items found in the
connected sources. Let me show this using a similar user’s query like in the
previous section.

First, the user types restaurant and picks the LinkedGeoData class from
the autocomplete, as in Fig. 6.3. Then the user wants to enter the city district
restriction – the restaurants need to be in Prague 2. For spatial restrictions,
the input currently accepts two keywords, similarly to the list query in the
previous section: WITHIN and NEAR. So the user enters WITHIN (with
the aid of the autocomplete). As the city districts class has to be restricted
to Prague 2, the expression is more complex, requiring parentheses. After
an opening parenthesis and selecting city districts (“městské části”) using
the autocomplete, the autocomplete suggests data properties with the city
districts domain right away (without typing anything), so it is easy to restrict
it to the city district Prague 2 (“Praha 2”), as in Fig. 6.4. The data property
value is double-quoted.

Similarly, the user enters the distance to parks restriction using the NEAR
keyword. This keyword has a second parameter, the distance in meters
(150 in our case). Entering “NEAR Park 150” would, therefore, restrict the
restaurants to by within 150 meters from any park. But to be consistent

82

............................. 6.2. Searching Sources for a Query

Figure 6.5: An example structured query input field with a complete query, where
relevant parts have colored background corresponding to the map symbols.

query

WITHIN

Městské části NAZEV "Praha 2" WITHIN

NEAR 150

NAZEV "Praha 2"Městské části

Park

Restaurant

Figure 6.6: The tree of an example structured query.

with the previous example with the list query, let the user specify that the
restaurants have to be within 150 meters from parks in Prague 2. The resulting
complete structured query is in Fig. 6.5. The colored parts correspond to the
colors in the map.

To understand the structure of the query, the tree representation of the
query is in Fig. 6.6. A map of the results of this query looks the same as of
the query in Section 6.1.1, see Fig. 6.2. Also, the generated GeoSPARQL
queries for OwlgresMM are the same as in Listing 6.1 and Listing 6.2.

6.2 Searching Sources for a Query

This section gives three successfully tested examples using the prototype
described in Section 5.2 and a comparison to another system. The first
example does not feature any spatial restriction and uses splitting, the second
example has no spatial restriction and does not use splitting, and the third
example has spatial restrictions and does not use splitting. The size of the
examples increases in the order they are listed.

Besides the listed examples, the prototype has been unit-tested by a set of
small artificial test cases, each checking for a different aspect of the algorithms:
if the splitting is used in the right situations, whether the topological relations
reasoning works correctly, if the variable mapping works, whether the filter
containment is decided correctly (currently only distance is supported), etc.

The background ontology of all examples in this section includes the
GeoSPARQL ontology, including my extension presented in Section 4.4.1.

6.2.1 The First Example: Restaurants in Historical Buildings

Here is the first example, how the lattice construction and searching works.
Consider the following background ontology O consisting of:

83

6. Experiments
. LinkedGeoData ontology (prefix lgd:), which describes OpenStreetMap

data. Among many others, it contains classes lgd:Restaurant, lgd:Gym,
and lgd:HistoricBuilding, which are relevant to this example. It also
contains the axiom lgd:HistoricBuilding v lgd:Historic.. GeoNames ontology (prefix gn:), describing its own well-classified database
of points. It is linked to LinkedGeoData. The following classes are rel-
evant: gn:S.REST (restaurants) and gn:S.HSTS (historical sites). Also
the following axioms are included: lgd:Restaurant ≡ gn:S.REST and
lgd:Historic ≡ gn:S.HSTS.My example ontology for gourmets (prefix ex:). It only contains one
object property, ex:hasFoodOrigin.

Note that for classes C and D, C ≡ D is only syntactic sugar for C v D
and D v C.

I will consider the following geospatial sources (services providing geospatial
data, e.g. WFS servers, (Geo)SPARQL endpoints, etc.) for this example:. slgd, having OpenStreetMap data, capable of answering queries with the

following restrictions:. lgd:Restaurant(?x). lgd:Gym(?x). lgd:Gym(?x), lgd:HistoricBuilding(?x). lgd:HistoricBuilding(?x). sgn, having GeoNames data, capable of answering queries with the
following restrictions:. gn:S.REST(?x). gn:S.REST(?x), gn:S.HSTS(?x). gn:S.HSTS(?x). sex, having example gourmet data, capable of answering queries with
the following restrictions:. ex:hasFoodOrigin(?x, ?c). ex:hasFoodOrigin(?x, ?c), lgd:Restaurant(?x)

When OnGIS is loaded with the background ontology O and the sources
slgd, sgn, sex, the prototype creates the lattice in Fig. 6.7. Note that the root
node bottom represents the no-answer query and all the prefixes are omitted
for compactness. The abbreviation R stands for Restaurant, G for Gym, HB
for HistoricBuilding, and FO for hasFoodOrigin. As it is a lattice, all
nodes with no children depicted should be connected to the top node at the
bottom, representing the all-answer query. But it has been skipped to make
the figure simpler, and neither the OnGIS algorithms operates with the top
node.

84

............................. 6.2. Searching Sources for a Query

bottom

G+HB [s1] R+FO [s3] S.REST+S.HSTS [s2]

G [s1] HB [s1]

S.HSTS [s2]

R=S.REST [s1,s2]FO [s3]

Figure 6.7: The lattice of the sources in the first example.

Now when a user asks the query in Listing 6.6, the prototype searches
the lattice. Its algorithm cannot find a single source to answer the complete
query, hence it splits the query, and comes up with two partial queries – one
for slgd in Listing 6.7 and one for sex in Listing 6.8. The lattice nodes used
for deciding which sources to use are darker in Fig. 6.7.

Listing 6.6: A user’s query for the first example.
1 SELECT ?x ?c ?g WHERE {
2 ?x a lgd:Restaurant.
3 ?x a lgd:HistoricBuilding.
4 ?x ex:hasFoodOrigin ?c.
5 ?x geo:hasGeometry
6 [geo:hasSerialization ?g].
7 }

Listing 6.7: First example result query for slgd.
1 SELECT ?x ?g WHERE {
2 ?x a lgd:HistoricBuilding.
3 ?x geo:hasGeometry
4 [geo:hasSerialization ?g].
5 }

Listing 6.8: First example result query for sex.
1 SELECT ?x ?c ?g WHERE {
2 ?x a lgd:Restaurant.
3 ?x ex:hasFoodOrigin ?c.
4 ?x geo:hasGeometry
5 [geo:hasSerialization ?g].
6 }

85

6. Experiments
Some statistics of the example using the OnGIS prototype are given in

Table 6.1. The response times are computed from 20 lattice constructions
and 200 lattice searches on a Linux laptop with Intel Core i7 @ 2.4 GHz with
Oracle Java 8 (1.8.0_101) without any parallelization. As the reasoner used
for deciding consistency is Pellet, which is designed for more expressive logic
than OWL 2 QL, there is a space for optimization by developing a reasoner
tailored for OWL 2 QL consistency checks.

Table 6.1: The first example statistics.

Value/Average Std. dev.
Background ontology 16,251 axioms
Prototypical queries 9
Lattice size 8

Lattice construction
Containment decisions 50
Time 5.01 s 0.62 s

Lattice search
Containment decisions 20
Time 214 ms 30 ms

Notice that both numbers of containment decisions are lower than the
theoretical maximums, 9(9−1) = 72 for lattice construction, and 8+8 ·5 = 48
for lattice searching (the splitting has been used).

6.2.2 The Second Example: Colleges in Passive Houses

In the second example, the background ontology consists of:. LinkedGeoData ontology,.GeoNames ontology,. A simple example ontology, defining the class ex:PassiveHouse, being
a subclass of building classes in both GeoNames and LinkedGeoData
ontologies, and the class ex:EngineeringCollege, being a subclass of
college classes in both GeoNames and LinkedGeoData ontologies.

There are three sets of prototypical queries, representing three sources,
having 68 queries in total focusing mainly on amenities:. slgd, a source capable of queries using LinkedGeoData vocabulary,. sgn, a source capable of queries using GeoNames vocabulary, and. sex, a source having a single prototypical query consisting of

ex:PassiveHouse(?x), ex:EngineeringCollege(?x).

The constructed lattice contains 61 nodes. Notice this is less than 68
input queries, since GeoNames ontology, which is linked to LinkedGeoData, is

86

............................. 6.2. Searching Sources for a Query

defining some of its classes equivalent to the LinkedGeoData ones. Therefore,
OnGIS unifies the queries using those classes; some other classes have subclass
relationship, so the lattice is non-trivial.

The testing user query in Listing 6.9 is asking for both a lgd:College
and a ex:PassiveHouse. OnGIS correctly responds with the source sex,
as ex:PassiveHouse(?x), ex:EngineeringCollege(?x) is the most general
query contained within the user query.

Listing 6.9: User’s query for the second example.
1 SELECT ?x ?g WHERE {
2 ?x a lgd:College.
3 ?x a ex:PassiveHouse.
4 ?x geo:hasGeometry
5 [geo:hasSerialization ?g].
6 }

The statistics of the second example are given in Table 6.2.

Table 6.2: The second example statistics.

Value/Average Std. dev.
Background ontology 16,288 axioms
Prototypical queries 68
Lattice size 61

Lattice construction
Containment decisions 3,753
Time 36.7 s 2.4 s

Lattice search
Containment decisions 57
Time 746 ms 87 ms

Both numbers of containment decisions are lower than the theoretical
maximums, 68(68 − 1) = 4, 556 for lattice construction, and 61 for lattice
searching (the splitting has not been used).

6.2.3 The Third Example: Restaurants in the Czech
Republic

The third example, also successfully tested in OnGIS, uses LinkedGeoData,
GeoNames, and DBpedia ontologies as the background ontology. It has three
sources, each one using one of the three ontologies, altogether containing more
prototypical queries than in the previous example. Moreover, the prototypical
queries contain spatial restrictions, representing that the sources contain
data only in specified areas. For that purpose, the geo:ehInside topological
relation is used, together with a polygon serialized by a WKT string. Thus,
a prototypical query can look like the one in Listing 6.10.

87

6. Experiments
Listing 6.10: Example of prototypical query in the third example.

1 SELECT ?x ?g WHERE {
2 ?x a dbp:Restaurant.
3 ?x geo:hasGeometry
4 [geo:hasSerialization ?g].
5 ?x geo:ehInside
6 [a sf:Polygon; geo:asWKT
7 "POLYGON((-31.3␣81,39.9␣81...))"
8 ^^geo:wktLiteral].
9 }

The three sources are:. slgd, having data described by LinkedGeoData. The source contains 43
prototypical queries, which are all spatially restricted by a rectangle
bounding the area of Prague (the capital of the Czech Republic),. sgn, having data described by GeoNames ontology. The source contains
34 prototypical queries, which are all spatially restricted by a rectangle
bounding the area of the Czech Republic,. sdbp, having data described by DBpedia ontology. The source contains
3 prototypical queries, which are all spatially restricted by a rectangle
bounding the area of Europe.

Each of these sources contains a class for restaurants, and these classes are
linked together as being equal. So when a user asks the query in Listing 6.11
(restaurants and their geometries within a rectangular area slightly larger
than the Czech Republic), OnGIS correctly answers with the source sgn,
which is the most fitting one. Even though the other two sources contain
equal classes for restaurants, the corresponding prototypical query in slgd is
narrower (is strictly contained within) than the selected prototypical query in
sgn, and the corresponding prototypical query in sdbp is wider than the user’s
query (does not satisfy to be contained within the user’s query).

Also note that the example user’s query uses the topological relation
geo:sfWithin, while the sources for spatially restricting their data use
geo:ehInside. Since geo:ehInside is a sub-property of geo:sfWithin
(see Fig. 4.2), the spatial restriction given by the user is weaker than the
spatial restrictions given by the sources, therefore the query can be answered
by sgn. When the user’s query would use a stricter spatial restriction, e.g.
geo:rcc8ntpp, none of the sources could satisfy the query.

The resulting statistics of the third example are in Table 6.3. Again, both
numbers of containment decisions are lower than the theoretical maximums,
80(80− 1) = 6, 320 for lattice construction, and 80 for lattice searching (the
splitting has not been used).

88

............................. 6.2. Searching Sources for a Query

Listing 6.11: User’s query for the third example.
1 SELECT ?x ?g WHERE {
2 ?x a lgd:Restaurant.
3 ?x geo:hasGeometry
4 [geo:hasSerialization ?g].
5 ?x geo:sfWithin
6 [a sf:Polygon; geo:asWKT
7 "POLYGON((11␣52,20␣52,20...))"
8 ^^geo:wktLiteral].
9 }

Table 6.3: The third example statistics.

Value/Average Std. dev.
Background ontology 31,331 axioms
Prototypical queries 80
Lattice size 80

Lattice construction
Containment decisions 5,568
Time 239.9 s 10.2 s

Lattice search
Containment decisions 69
Time 3.66 s 0.23 s

6.2.4 Comparison with Other Systems

I tried to compare my proposed method of query containment with other
implementations found available. As stated in Section 3.5, using the reasoners
FaCT and FaCT++ [88, 87] was not technically possible.

I succeeded using the query containment method used in Pellet (Pellet is
also used as the reasoner for consistency checks in my prototype), however
with some limitations. A look into the Java class responsible for query
containment in Pellet, QuerySubsumption1, reveals it is partially similar to a
part of the solution presented in Section 4.4.2, based on [4, 5]. For deciding,
whether O |= q1 v q2, it computes T = Can(q1) ∪ O, and tries to answer
q2 over T . Then q1 v q2 iff the result is not empty. The translation seems
simpler compared to my approach, but it is not clear how easy it would be
to extend it with spatial reasoning, and it uses conjunctive query answering
(which is NP-complete in the case of OWL 2 QL), instead of consistency
checks (NLogSpace-complete in OWL 2 QL). As conjunctive query answering
has higher complexity, it is expected that the query containment based on
Pellet would be slower even without spatial reasoning. And the time results
in Table 6.4 confirm that.

1Available at https://github.com/Complexible/pellet/blob/master/query/
src/main/java/com/clarkparsia/pellet/sparqldl/engine/QuerySubsumption.java,
cit. 2016-08-07.

89

https://github.com/Complexible/pellet/blob/master/query/src/main/java/com/clarkparsia/pellet/sparqldl/engine/QuerySubsumption.java
https://github.com/Complexible/pellet/blob/master/query/src/main/java/com/clarkparsia/pellet/sparqldl/engine/QuerySubsumption.java

6. Experiments
As it does not support data properties, I tested it only with a simplified

version of my first example, where I skipped the geo:hasGeometry part for
retrieving geometries both in prototypical queries and in the user’s query
(which would be needed for an actual source querying, but it may be skipped
in the example).

I replaced my query containment algorithm with the one Pellet provides
and kept the rest of the OnGIS prototype the same (lattice construction and
searching). Then the first example gave the same results; also the lattice has
not changed. The result times comparing the simplified first example using
my versus Pellet query containment are in Table 6.4.

Table 6.4: The simplified first example response time statistics with my and
Pellet query containment.

Average Std. dev.
Lattice construction

My query containment 713 ms 442 ms
Pellet query containment 1017 ms 659 ms

Lattice search
My query containment 136 ms 23 ms
Pellet query containment 146 ms 24 ms

Unfortunately, other query containment decision systems mentioned in
Section 3.5 have not been found or have not been accessible.

90

Chapter 7
Conclusion

This thesis proposes OnGIS, a system for easy access to integrated GIS data
from different heterogeneous sources, that even a non-expert user (without any
GIS or domain specific knowledge) can use. A prototypical implementation
has been presented, and the whole concept was proved feasible on a few test
cases.

The proposed design consists of several parts:. Two methods of user-friendly query inputs are presented in Section 4.3:. a list-based method, where query parts, represented as boxes, are
iteratively added to a list, where can be linked together or spatially
restricted, and. a structured expression, resembling mathematical expression, which
forms a query tree by using parentheses..Mapping annotations, which annotate entities of a domain ontology

with the means where and how to obtain the data (i.e. instances and
literals), are described in Section 4.2. Mapping annotations to relational
databases, SPARQL endpoints, and ArcGIS web services and REST
services are presented.. A method for finding relevant sources for a user’s query is described in
Section 4.4 and Section 4.5. Its first step is to describe each data source
with a set of prototypical queries. Then a lattice can be constructed out
of the prototypical queries using the proposed method of geospatial query
containment. When a user asks a query, the lattice is searched using
the query containment method, and the source capable of answering the
query is returned. When no such source is found, the user’s query is
split into pieces, and the sources for the pieces are given.

All the designed components are implemented and successfully tested in
Chapter 6. Also, a comparison to an existing query containment method using
a simplified test case (as the compared system does not support everything
needed to support spatial queries) is there, suggesting my solution is faster,
besides being easily extensible for the geospatial purposes.

The query containment method uses queries expressed in GeoSPARQL
language with OWL 2 QL semantics. It is based on [4] and [5], where my

91

7. Conclusion......................................
contribution is adapting the authors’ methods to OWL 2 QL and extending
it with geospatial reasoning.

My another contribution is extending an existing DL−Lite reasoner, Owl-
gres [57], with completely new functions: support for having TBox in memory,
while translating ABox queries into SQL (originally, all axioms were in a
database), support for spatial GeoSPARQL queries, translated into PostGIS
functions, and support for custom mappings from classes and relations to
database table (based on one of database schemas presented in [103]).

The plans for the future are completing the prototypes to a production-
ready application, adding the geospatial processing for completing an answer
when results from multiple sources are obtained for a split query, and finding
more interesting open sources and connecting them to OnGIS. Also, the
implementation of the lattice construction and searching algorithms can be
optimized, e.g. by parallelization.

92

Bibliography

[1] Wikipedia. Region connection calculus. 2016, accessed on 2016-
08-24. Available from: http://en.wikipedia.org/wiki/Region_
connection_calculus

[2] Artale, A.; Calvanese, D.; Kontchakov, R.; et al. The DL-Lite Family
and Relations. J. of Artificial Intelligence Research, volume 36, 2009:
pp. 1–69.

[3] European Commission. INSPIRE, Infrastructure for Spatial Information
in the European Community. 2016, accessed on 2016-08-26. Available
from: http://inspire.ec.europa.eu/

[4] Horrocks, I.; Tessaris, S.; Sattler, U.; et al. Query containment using a
DLR ABox. In Ltcs-report LTCS-99-15, LuFG Theoretical Computer
Science, RWTH, 1999.

[5] Horrocks, I.; Sattler, U.; Tessaris, S.; et al. How to Decide Query
Containment under Constraints Using a Description Logic. In Logic
for Programming and Automated Reasoning, Lecture Notes in Artificial
Intelligence, volume 1955, edited by M. Parigot; A. Voronkov, Springer
Berlin Heidelberg, 2000, ISBN 978-3-540-41285-4, pp. 326–343, doi:
10.1007/3-540-44404-1_21. Available from: http://dx.doi.org/10.
1007/3-540-44404-1_21

[6] Clementini, E.; Felice, P.; Oosterom, P. A small set of formal topological
relationships suitable for end-user interaction. In Advances in Spatial
Databases, Lecture Notes in Computer Science, volume 692, edited by
D. Abel; B. Chin Ooi, Springer Berlin Heidelberg, 1993, ISBN 978-
3-540-56869-8, pp. 277–295, doi:10.1007/3-540-56869-7_16. Available
from: http://dx.doi.org/10.1007/3-540-56869-7_16

[7] The PostGIS Development Group. PostGIS 2.2.1dev Manual. 2016,
accessed on 2016-06-26. Available from: http://postgis.net/
documentation/

[8] Butler, H.; Daly, M.; Doyle, A.; et al. The GeoJSON Format Specifica-
tion. 2008, accessed on 2016-06-19. Available from: http://geojson.
org/geojson-spec.html

93

http://en.wikipedia.org/wiki/Region_connection_calculus
http://en.wikipedia.org/wiki/Region_connection_calculus
http://inspire.ec.europa.eu/
http://dx.doi.org/10.1007/3-540-44404-1_21
http://dx.doi.org/10.1007/3-540-44404-1_21
http://dx.doi.org/10.1007/3-540-56869-7_16
http://postgis.net/documentation/
http://postgis.net/documentation/
http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html

Bibliography
[9] Open Geospatial Consortium. OpenGIS Geography Markup Lan-

guage (GML) Encoding Standard. 2007. Available from: http://www.
opengeospatial.org/standards/gml

[10] Open Geospatial Consortium. OGC WCS 2.0 Interface Standard –
Core. 2012, accessed on 2016-06-21. Available from: http://www.
opengeospatial.org/standards/wcs

[11] Open Geospatial Consortium. OpenGIS Web Feature Service 2.0 In-
terface Standard. 2010, accessed on 2016-06-21. Available from: http:
//www.opengeospatial.org/standards/wfs

[12] The PostgreSQL Global Development Group. PostgreSQL 9.5.2 Doc-
umentation. 2016, accessed on 2016-06-26. Available from: https:
//www.postgresql.org/docs/manuals/

[13] Kubíček, P. GIS ve veřejné správě II. Institute of Geography, Masaryk
University, Czech Republic, 2013, accessed on 2016-06-28. Avail-
able from: https://is.muni.cz/el/1431/podzim2013/Z7262/um/
GIS_VS_02_FIN.pdf [in Czech]

[14] Esri. ArcGIS for Server – Publish Services. 2016, accessed on 2016-
08-04. Available from: http://server.arcgis.com/en/server/10.4/
publish-services/windows/

[15] OpenStreetMap Foundation. OpenStreetMap Wiki. 2011, accessed on
2011-08-09. Available from: http://wiki.openstreetmap.org/wiki/
Main_Page

[16] Wikipedia. Freedom of Information Act (United States) — Wikipedia,
The Free Encyclopedia. 2016, [Online; accessed 2016-06-26]. Available
from: https://en.wikipedia.org/w/index.php?title=Freedom_
of_Information_Act_(United_States)&oldid=724597042

[17] Tauberer, J. Open Government Data: The Book. Second edition, 2014.
Available from: https://opengovdata.io/

[18] Poláček, J. Otevřená data a služby v resortu ČÚZK. Český úřad
zeměměřický a katastrální, 2014, accessed on 2016-06-26. Available
from: http://www.apkg.upol.cz/wp-content/uploads/2014/09/6_
SemPra_B2.pdf [in Czech]

[19] Open Geospatial Consortium. OGC Catalogue Services 3.0 – General
Model. 2016, accessed on 2016-08-04. Available from: http://www.
opengeospatial.org/standards/cat

[20] McLeod, D.; Heimbigner, D. A Federated Architecture for Database
Systems. In Proceedings of the May 19-22, 1980, National Computer
Conference, AFIPS ’80, New York, NY, USA: ACM, 1980, pp. 283–289,
doi:10.1145/1500518.1500561. Available from: http://doi.acm.org/
10.1145/1500518.1500561

94

http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://is.muni.cz/el/1431/podzim2013/Z7262/um/GIS_VS_02_FIN.pdf
https://is.muni.cz/el/1431/podzim2013/Z7262/um/GIS_VS_02_FIN.pdf
http://server.arcgis.com/en/server/10.4/publish-services/windows/
http://server.arcgis.com/en/server/10.4/publish-services/windows/
http://wiki.openstreetmap.org/wiki/Main_Page
http://wiki.openstreetmap.org/wiki/Main_Page
https://en.wikipedia.org/w/index.php?title=Freedom_of_Information_Act_(United_States)&oldid=724597042
https://en.wikipedia.org/w/index.php?title=Freedom_of_Information_Act_(United_States)&oldid=724597042
https://opengovdata.io/
http://www.apkg.upol.cz/wp-content/uploads/2014/09/6_SemPra_B2.pdf
http://www.apkg.upol.cz/wp-content/uploads/2014/09/6_SemPra_B2.pdf
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat
http://doi.acm.org/10.1145/1500518.1500561
http://doi.acm.org/10.1145/1500518.1500561

.......................................Bibliography

[21] Lenzerini, M. Data Integration: A Theoretical Perspective. In Pro-
ceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS ’02, New York,
NY, USA: ACM, 2002, ISBN 1-58113-507-6, pp. 233–246, doi:10.
1145/543613.543644. Available from: http://doi.acm.org/10.1145/
543613.543644

[22] Ziegler, P.; Dittrich, K. R. Three Decades of Data Integration - All
Problems Solved? In In 18th IFIP World Computer Congress (WCC
2004), Volume 12, Building the Information Society, 2004, pp. 3–12.

[23] W3C. Linked Data. 2015, accessed on 2016-08-04. Available from: https:
//www.w3.org/standards/semanticweb/data

[24] Berners-Lee, T. Linked Data. 2006, accessed on 2016-07-02. Available
from: https://www.w3.org/DesignIssues/LinkedData.html

[25] Heath, T.; Bizer, C. Linked Data: Evolving the Web into a Global
Data Space. Synthesis Lectures on the Semantic Web: Theory and
Technology, Morgan & Claypool, first edition, 2011, accessed on 2016-
07-02. Available from: http://linkeddatabook.com/

[26] Vláda České republiky. Akční plán České republiky Partnerství pro
otevřené vládnutí na období let 2014 až 2016. 2014, accessed on 2016-
07-02. Available from: https://apps.odok.cz/attachment/-/down/
VPRA9R9BDNJD [in Czech]

[27] Mráček, J.; et al. Jak otevírat data? Fond Otakara Motejla, 2014,
accessed on 2016-07-02. Available from: http://www.otevrenadata.
cz/res/data/001/003498.pdf [in Czech]

[28] W3C. Resource Description Framework (RDF). 2014, accessed on 2016-
06-21. Available from: http://www.w3.org/RDF/

[29] W3C. RDF Schema 1.1. 2014, accessed on 2016-06-23. Available from:
http://www.w3.org/TR/rdf-schema/

[30] Beckett, D. RDF 1.1 N-Triples. 2014, accessed on 2016-07-04. Available
from: https://www.w3.org/TR/n-triples/

[31] Beckett, D.; Berners-Lee, T.; Prud’hommeaux, E.; et al. RDF 1.1
Turtle. 2014, accessed on 2016-07-04. Available from: https://www.w3.
org/TR/turtle/

[32] Berners-Lee, T.; Connolly, D. Notation3 (N3): A readable RDF syntax.
2011, accessed on 2016-07-04. Available from: https://www.w3.org/
TeamSubmission/n3/

[33] Sporny, M.; Longley, D.; Kellogg, G.; et al. JSON-LD 1.0. 2014, accessed
on 2016-07-04. Available from: https://www.w3.org/TR/json-ld/

95

http://doi.acm.org/10.1145/543613.543644
http://doi.acm.org/10.1145/543613.543644
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/DesignIssues/LinkedData.html
http://linkeddatabook.com/
https://apps.odok.cz/attachment/-/down/VPRA9R9BDNJD
https://apps.odok.cz/attachment/-/down/VPRA9R9BDNJD
http://www.otevrenadata.cz/res/data/001/003498.pdf
http://www.otevrenadata.cz/res/data/001/003498.pdf
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TR/json-ld/

Bibliography
[34] W3C. RDF 1.1 XML Syntax. 2014, accessed on 2016-07-04. Available

from: https://www.w3.org/TR/rdf-syntax-grammar/

[35] Stadler, C.; Lehmann, J.; Höffner, K.; et al. LinkedGeoData: A Core
for a Web of Spatial Open Data. Semantic Web Journal, volume 3,
no. 4, 2012: pp. 333–354. Available from: http://jens-lehmann.org/
files/2012/linkedgeodata2.pdf

[36] Stadler, C.; Lehmann, J.; Auer, S. LinkedGeoData Ontology. Uni-
versity of Leipzig, accessed on 2011-04-06. Available from: http:
//linkedgeodata.org/ontology/

[37] Vatant, B. The GeoNames Ontology. GeoNames, 2012, accessed on
2016-02-27. Available from: http://www.geonames.org/ontology/
documentation.html

[38] W3C Semantic Web Interest Group; Brickley, D. Basic Geo (WGS84
lat/long) Vocabulary. 2004, accessed on 2016-07-04. Available from:
https://www.w3.org/2003/01/geo/

[39] Auer, S.; Bizer, C.; Kobilarov, G.; et al. DBpedia: A Nucleus for a Web
of Open Data. In Proceedings of the 6th International The Semantic
Web and 2nd Asian Conference on Asian Semantic Web Conference,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, ISBN 978-3-540-
76298-0, pp. 722–735, doi:10.1007/978-3-540-76298-0_52. Available
from: http://dx.doi.org/10.1007/978-3-540-76298-0_52

[40] Baader, F.; Calvanese, D.; McGuinness, D. L.; et al. The description
logic handbook: theory, implementation, and applications. Cambridge
University Press, 2003, ISBN 0-521-78176-0.

[41] Zolin, E. Complexity of reasoning in Description Logics. 2013, accessed
on 2016-07-04. Available from: http://www.cs.man.ac.uk/~ezolin/
dl/

[42] World Wide Web Consortium. OWL 2 Web Ontology Language, Doc-
ument Overview. Second edition, 2012. Available from: https://www.
w3.org/TR/owl2-overview/

[43] Calvanese, D.; De Giacomo, G.; Lembo, D.; et al. DL-Lite: Tractable
Description Logics for Ontologies. In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), 2005, pp. 602–607.

[44] Calvanese, D.; De Giacomo, G.; Lembo, D.; et al. Linking Data to
Ontologies: The Description Logic DL-LiteA. In Proc. of the 2nd Int.
Workshop on OWL: Experiences and Directions (OWLED 2006), CEUR
Electronic Workshop Proceedings, volume 216, 2006. Available from:
http://ceur-ws.org/

96

https://www.w3.org/TR/rdf-syntax-grammar/
http://jens-lehmann.org/files/2012/linkedgeodata2.pdf
http://jens-lehmann.org/files/2012/linkedgeodata2.pdf
http://linkedgeodata.org/ontology/
http://linkedgeodata.org/ontology/
http://www.geonames.org/ontology/documentation.html
http://www.geonames.org/ontology/documentation.html
https://www.w3.org/2003/01/geo/
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://www.cs.man.ac.uk/~ezolin/dl/
http://www.cs.man.ac.uk/~ezolin/dl/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
http://ceur-ws.org/

.......................................Bibliography

[45] Calvanese, D.; De Giacomo, G.; Lembo, D.; et al. Tractable Reasoning
and Efficient Query Answering in Description Logics: The DL-Lite
Family. J. of Automated Reasoning, volume 39, no. 3, 2007: pp. 385–429.

[46] World Wide Web Consortium. OWL 2 Web Ontology Language, Profiles,
OWL 2 QL. Second edition, 2012. Available from: http://www.w3.org/
TR/owl2-profiles/#OWL_2_QL

[47] W3C. SPARQL 1.1 Overview. 2013, accessed on 2016-07-06. Available
from: https://www.w3.org/TR/sparql11-overview/

[48] W3C. SPARQL Query Language for RDF. 2008, accessed on 2016-06-21.
Available from: https://www.w3.org/TR/rdf-sparql-query/

[49] Open Geospatial Consortium. OGC GeoSPARQL — A Geographic
Query Language for RDF Data. 2012. Available from: http://www.
opengeospatial.org/standards/geosparql

[50] Lopez, X. GeoSPARQL — A geographic query language for RDF
data, A proposal for an OGC Draft Candidate Standard. Oracle,
2010. Available from: http://www.ogcnetwork.net/system/files/
Spatial_SPARQL_Lopez.pdf

[51] W3C. RIF Overview (Second Edition). 2013, accessed on 2016-06-21.
Available from: http://www.w3.org/TR/rif-overview/

[52] Telang, A.; Chakravarthy, S.; Huang, Y. Information Integration Across
Heterogeneous Sources: Where Do We Stand and How to Proceed? In
COMAD, Computer Society of India / Allied Publishers, 2008, ISBN
978-81-8424-370-3, pp. 186–197.

[53] Levy, A. Y.; Rousset, M.-C. Combining Horn Rules and Description
Logics in CARIN. Artif. Intell., volume 104, no. 1-2, 1998: pp. 165–209.

[54] Donini, F. M.; Lenzerini, M.; Nardi, D.; et al. A Hybrid System with
Datalog and Concept Languages. In In Trends in AI, volume LNAI
549, Springer Verlag, 1991, pp. 88–97.

[55] Levy, A. Y.; Rajaraman, A.; Ordille, J. J. Query-Answering Algorithms
for Information Agents. In AAAI-96, 1996.

[56] Bouquet, P.; Giunchiglia, F.; van Harmelen, F.; et al. C-OWL: Con-
textualizing Ontologies. In ISWC, Lecture Notes in Computer Science,
Springer Verlag, October 2003, pp. 164–179.

[57] Stocker, M.; Smith, M. Owlgres: A Scalable OWL Reasoner. In
OWLED, CEUR Workshop Proceedings, volume 432, CEUR-WS.org,
2008.

[58] Acciarri, A.; Calvanese, D.; Giacomo, G. D.; et al. QuOnto: Querying
ontologies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI 2005), 2005.

97

http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/rdf-sparql-query/
http://www.opengeospatial.org/standards/geosparql
http://www.opengeospatial.org/standards/geosparql
http://www.ogcnetwork.net/system/files/Spatial_SPARQL_Lopez.pdf
http://www.ogcnetwork.net/system/files/Spatial_SPARQL_Lopez.pdf
http://www.w3.org/TR/rif-overview/

Bibliography
[59] Motik, B.; Patel-Schneider, P. F.; Horrocks, I. OWL 1.1

Web Ontology Language: Structural Specification and Functional-
Style Syntax. 2008. Available from: http://www.w3.org/TR/2008/
WD-owl11-syntax-20080108/

[60] Corona, C.; Ruzzi, M.; Savo, D. F. Filling the gap between OWL 2 QL
and QuOnto: ROWLKit. In Description Logics ’09, 2009.

[61] Calvanese, D.; Giacomo, G. D.; Lembo, D.; et al. Mastro-i: Efficient
Integration of Relational Data through DL Ontologies. In Proc. of
the 20th Int. Workshop on Description Logics (DL 2007), 2007, pp.
227–234.

[62] Calvanese, D.; Giacomo, G. D.; Lembo, D.; et al. The Mastro System
for Ontology-based Data Access. Semantic Web Journal, volume 2,
no. 1, 2011: pp. 43–53.

[63] Henss, J.; Kleb, J.; Grimm, S.; et al. A Database Backend for OWL. In
Proceedings of the 5th International Workshop on OWL: Experiences
and Directions (OWLED 2009), Chantilly, VA, United States, October
23-24, 2009, volume 529, edited by R. Hoeksta; P. F. Patel-Schneider,
2009.

[64] Battle, R.; Kolas, D. Enabling the geospatial Semantic Web with
Parliament and GeoSPARQL. Semantic Web Journal, volume 3, no. 4,
Oct. 2012: pp. 355–370, ISSN 1570-0844, doi:10.3233/SW-2012-0065.

[65] Bizer, C.; Seaborne, A. D2RQ - Treating Non-RDF Databases as
Virtual RDF Graphs. In ISWC2004 (posters), November 2004. Avail-
able from: http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/
Bizer-D2RQ-ISWC2004-Poster.pdf

[66] Cyganiak, R.; Bizer, C.; Garbers, J.; et al. The D2RQ Mapping Lan-
guage. 2012, accessed on 2016-07-09. Available from: http://d2rq.
org/d2rq-language

[67] W3C. R2RML: RDB to RDF Mapping Language. 2012, accessed on
2016-07-09. Available from: https://www.w3.org/TR/r2rml/

[68] Michel, F.; Djimenou, L.; Faron-Zucker, C.; et al. xR2RML: Relational
and Non-Relational Databases to RDF Mapping Language. Research
Report ISRN I3S/RR 2014-04-FR, CNRS, Jan. 2015. Available from:
https://hal.archives-ouvertes.fr/hal-01066663

[69] Wessel, M.; Möller, R. Flexible Software Architectures for Ontology-
Based Information Systems. Journal of Applied Logic – Special Issue
on Empirically Successful Computerized Reasoning, volume 7, no. 1,
2009: pp. 75 – 99, ISSN 1570-8683, doi:http://dx.doi.org/10.1016/
j.jal.2007.07.006. Available from: http://www.sciencedirect.com/
science/article/pii/S157086830700064X

98

http://www.w3.org/TR/2008/WD-owl11-syntax-20080108/
http://www.w3.org/TR/2008/WD-owl11-syntax-20080108/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/Bizer-D2RQ-ISWC2004-Poster.pdf
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/Bizer-D2RQ-ISWC2004-Poster.pdf
http://d2rq.org/d2rq-language
http://d2rq.org/d2rq-language
https://www.w3.org/TR/r2rml/
https://hal.archives-ouvertes.fr/hal-01066663
http://www.sciencedirect.com/science/article/pii/S157086830700064X
http://www.sciencedirect.com/science/article/pii/S157086830700064X

.......................................Bibliography

[70] Haarslev, V.; Moeller, R.; Wessel, M. Racer. 2016, accessed on 2016-06-
21. Available from: https://www.ifis.uni-luebeck.de/index.php?
id=385

[71] Zhao, T.; Zhang, C.; Wei, M.; et al. Ontology-Based Geospatial Data
Query and Integration. In GIScience, Lecture Notes in Computer Sci-
ence, volume 5266, Springer, 2008, ISBN 978-3-540-87472-0, pp. 370–
392.

[72] Zhang, C.; Zhao, T.; Li, W. The framework of a geospatial semantic
web-based spatial decision support system for Digital Earth. Int. J.
Digital Earth, volume 3, no. 2, 2010: pp. 111–134.

[73] Lutz, M.; Kolas, D. Rule-Based Discovery in Spatial Data Infrastructure.
Transactions in GIS, volume 11, no. 3, 2007: pp. 317–336, ISSN 1467-
9671, doi:10.1111/j.1467-9671.2007.01048.x. Available from: http://
dx.doi.org/10.1111/j.1467-9671.2007.01048.x

[74] Visser, U.; Stuckenschmidt, H.; Schlieder, C. Interoperability in GIS-
enabling technologies. In Proceedings of the 5th AGILE Conference on
Geographic Information Science, Citeseer, 2002, p. 291.

[75] Visser, U. Intelligent information integration for the Semantic Web,
volume 3159. Springer, 2005, ISBN 3540229930.

[76] Fensel, D.; van Harmelen, F.; Horrocks, I.; et al. OIL: an ontology infras-
tructure for the Semantic Web. IEEE Intelligent Systems, volume 16,
no. 2, Mar 2001: pp. 38–45, ISSN 1541-1672, doi:10.1109/5254.920598.

[77] Zhang, Y.; Chiang, Y.-Y.; Szekely, P.; et al. A semantic approach to
retrieving, linking, and integrating heterogeneous geospatial data. In
Joint Proceedings of the Workshop on AI Problems and Approaches
for Intelligent Environments and Workshop on Semantic Cities, ACM,
2013, pp. 31–37.

[78] Bogdanović, M.; Stanimirović, A.; Stoimenov, L. Methodology for
geospatial data source discovery in ontology-driven geo-information
integration architectures. Web Semantics: Science, Services and Agents
on the World Wide Web, volume 32, 2015: pp. 1–15.

[79] Katz, Y.; Grau, B. C. Representing Qualitative Spatial Information in
OWL-DL. In Proceedings of OWL: Experiences and Directions, 2005.

[80] Baglioni, M.; Masserotti, M. V.; Renso, C.; et al. Improving Geo-
database Semantic Querying Exploiting Ontologies. In GeoSpatial Se-
mantics, Springer, 2011.

[81] Codescu, M.; Horsinka, G.; Kutz, O.; et al. DO-ROAM: Activity-
Oriented Search and Navigation with OpenStreetMap. In GeoSpatial
Semantics, Springer, 2011.

99

https://www.ifis.uni-luebeck.de/index.php?id=385
https://www.ifis.uni-luebeck.de/index.php?id=385
http://dx.doi.org/10.1111/j.1467-9671.2007.01048.x
http://dx.doi.org/10.1111/j.1467-9671.2007.01048.x

Bibliography
[82] Fonseca, F. T.; Egenhofer, M. J.; Agouris, P.; et al. Using Ontologies

for Integrated Geographic Information Systems. Transactions in GIS,
volume 6, no. 3, 2002: pp. 231–257, ISSN 1467-9671, doi:10.1111/
1467-9671.00109.

[83] Heydari, N.; Mansourian, A.; Taleai, M.; et al. Ontology-based GIS web
service for increasing semantic interoperability among organizations
involving drilling in city of Tehran. In GSDI 11 World Conference,
2009.

[84] Stoimenov, L.; Stanimirovic, A.; Dordevic-Kajan, S. Semantic Inter-
operability Using Multiple Ontologies. In Proceedings of 8th AGILE
Conference on GIScience, 2005.

[85] Stoimenov, L.; Djordjevic-Kajan, S.; Stojanovic, D. Integration of GIS
data sources over the Internet using mediator and wrapper technology.
In Electrotechnical Conference, 2000. MELECON 2000. 10th Mediter-
ranean, volume 1, 2000, pp. 334 –336 vol.1, doi:10.1109/MELCON.2000.
880434.

[86] Buccella, A.; Cechich, A.; Fillottrani, P. Ontology-driven geographic
information integration: A survey of current approaches. Computers &
Geosciences, volume 35, no. 4, 2009: pp. 710 – 723, ISSN 0098-3004,
doi:http://dx.doi.org/10.1016/j.cageo.2008.02.033.

[87] Horrocks, I. The FaCT System. 2003, accessed on 2016-07-06. Available
from: http://www.cs.man.ac.uk/~horrocks/FaCT/

[88] Tsarkov, D.; Horrocks, I. FaCT++. 2007, accessed on 2016-06-21.
Available from: http://owl.man.ac.uk/factplusplus/

[89] Sirin, E.; Parsia, B. SPARQL-DL: SPARQL Query for OWL-DL. In
OWLED, CEUR Workshop Proceedings, volume 258, edited by C. Gol-
breich; A. Kalyanpur; B. Parsia, CEUR-WS.org, 2007.

[90] Rodrıguez-Muro, M.; Calvanese, D. Quest, a system for ontology based
data access. In OWL: Experiences and Directions Workshop (OWLED),
Heraklion, 2012.

[91] Rodríguez-Muro, M. Quest Performance for 1.7. 2012, accessed on
2016-05-15. Available from: http://ontop-obda.blogspot.cz/2012_
01_01_archive.html

[92] Chekol, M. W. On the Containment of SPARQL Queries under Entail-
ment Regimes. In Thirtieth AAAI Conference on Artificial Intelligence,
2016, pp. 936–942. Available from: http://www.aaai.org/ocs/index.
php/AAAI/AAAI16/paper/view/12027

[93] World Wide Web Consortium. OWL 2 Web Ontology Language, Profiles,
OWL 2 EL. Second edition, 2012. Available from: https://www.w3.
org/TR/owl2-profiles/#OWL_2_EL

100

http://www.cs.man.ac.uk/~horrocks/FaCT/
http://owl.man.ac.uk/factplusplus/
http://ontop-obda.blogspot.cz/2012_01_01_archive.html
http://ontop-obda.blogspot.cz/2012_01_01_archive.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12027
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12027
https://www.w3.org/TR/owl2-profiles/#OWL_2_EL
https://www.w3.org/TR/owl2-profiles/#OWL_2_EL

.......................................Bibliography

[94] Bradfield, J.; Stirling, C. Handbook of modal logic, volume 3, chapter
Modal Mu-Calculi. Elsevier, Nov 2006, ISBN 9780444516909, pp. 721–
756.

[95] Pichler, R.; Skritek, S. Containment and Equivalence of Well-designed
SPARQL. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’14, New York,
NY, USA: ACM, 2014, ISBN 978-1-4503-2375-8, pp. 39–50, doi:
10.1145/2594538.2594542. Available from: http://doi.acm.org/10.
1145/2594538.2594542

[96] Chekol, M. W.; Euzenat, J.; Genevès, P.; et al. Evaluating and
benchmarking SPARQL query containment solvers. In Proc. 12th
International semantic web conference (ISWC), volume 8219, Syd-
ney, Australia: Springer Verlag, Oct. 2013, pp. 408–423, doi:10.
1007/978-3-642-41338-4_26. Available from: https://hal.inria.
fr/hal-00917911

[97] Chekol, M. W.; Euzenat, J.; Genevès, P.; et al. SPARQL Query Con-
tainment Under SHI Axioms. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, AAAI’12, AAAI Press, 2012,
pp. 10–16. Available from: http://dl.acm.org/citation.cfm?id=
2900728.2900730

[98] Chekol, M. W.; Euzenat, J.; Genevès, P.; et al. SPARQL Query
Containment under RDFS Entailment Regime. In Proceedings of Au-
tomated Reasoning: 6th International Joint Conference, edited by
B. Gramlich; D. Miller; U. Sattler, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, ISBN 978-3-642-31365-3, pp. 134–148, doi:
10.1007/978-3-642-31365-3_13. Available from: http://dx.doi.org/
10.1007/978-3-642-31365-3_13

[99] Groppe, S.; Heinrich, D.; Werner, S. Distributed Join Approaches for
W3C-Conform SPARQL Endpoints. Open Journal of Semantic Web
(OJSW), volume 2, no. 1, 2015: pp. 30–52, ISSN 2199-336X. Available
from: http://www.ronpub.com/publications/OJSW_2015v2i1n04_
Groppe.pdf

[100] Koubarakis, M.; Kyzirakos, K.; Karpathiotakis, M.; et al. Introduction
in stRDF and stSPARQL. 2012, accessed on 2016-07-27. Available from:
http://www.strabon.di.uoa.gr/files/stSPARQL_tutorial.pdf

[101] Kyzirakos, K.; Karpathiotakis, M.; Koubarakis, M. Strabon: A Se-
mantic Geospatial DBMS. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2012, ISBN 978-3-642-35176-1, pp. 295–311, doi:10.1007/
978-3-642-35176-1_19. Available from: http://dx.doi.org/10.1007/
978-3-642-35176-1_19

[102] Wikipedia. Lattice (order). 2016, accessed on 2016-08-23. Available
from: https://en.wikipedia.org/wiki/Lattice_(order)

101

http://doi.acm.org/10.1145/2594538.2594542
http://doi.acm.org/10.1145/2594538.2594542
https://hal.inria.fr/hal-00917911
https://hal.inria.fr/hal-00917911
http://dl.acm.org/citation.cfm?id=2900728.2900730
http://dl.acm.org/citation.cfm?id=2900728.2900730
http://dx.doi.org/10.1007/978-3-642-31365-3_13
http://dx.doi.org/10.1007/978-3-642-31365-3_13
http://www.ronpub.com/publications/OJSW_2015v2i1n04_Groppe.pdf
http://www.ronpub.com/publications/OJSW_2015v2i1n04_Groppe.pdf
http://www.strabon.di.uoa.gr/files/stSPARQL_tutorial.pdf
http://dx.doi.org/10.1007/978-3-642-35176-1_19
http://dx.doi.org/10.1007/978-3-642-35176-1_19
https://en.wikipedia.org/wiki/Lattice_(order)

Bibliography
[103] Šmíd, M. Using Databases for Description Logics. Master’s thesis, Czech

Technical University in Prague, Faculty of Electrical Engineering, 2009.

[104] Graphviz – Graph Visualization Software. The DOT Language. 2016,
accessed on 2016-08-25. Available from: http://www.graphviz.org/
content/dot-language

102

http://www.graphviz.org/content/dot-language
http://www.graphviz.org/content/dot-language

Abbreviations

GIS

Symbol Meaning

CRS Coordinate reference system, defines a map projection –
how coordinates are mapped from one system to another.

DE-9IM Dimensionally Extended Nine-Intersection Model, a
topological model describing spatial relations by 3× 3
matrices.

GeoJSON JSON-based geometry serialization format.
GeoTIFF TIFF (a raster image format) extended with geographical

metadata, e.g. CRS, bounding box.
GIS Geographical Information System.
GML Geography Markup Language, an XML based serialization

format for vector geometries.
OGC Open Geospatial Consortium,

http://www.opengeospatial.org/, which sets many
GIS standards.

RCC8 Region Connection Calculus 8, a family of topological
relations.

WCS Web Coverage Service, an OGC protocol for providing
coverage data.

WFS Web Feature Service, an OGC protocol for providing and
manipulating source vector data of a feature.

WKT, WKB Well-Known Text, Well-Known Binary a text, respectively
binary serialization format for vector geometries.

WMS Web Map Service, an OGC protocol for serving raster
maps.

103

http://www.opengeospatial.org/

Abbreviations......................................
Semantic Web

Symbol Meaning

DL−Lite A tractable description logic.
GeoSPARQL A SPARQL extension with spatial support.
OWL Web Ontology Language, defined by W3C.
OWL 2 QL OWL profile based on DL−Lite.
RDF Resource Description Framework, a data model used for

Semantic Web.
SPARQL SPARQL Protocol and RDF Query Language, a query

language for RDF.
URI Uniform Resource Identifier, a superset of URL and URN.
W3C World Wide Web Consortium, http://www.w3.org/,

which sets many Internet standards.

Other

Symbol Meaning

IPR Praha Prague Institute of Planning and Development.
RDBMS Relation Database Management System.

104

http://www.w3.org/

Publications of the Author Relevant to the
Thesis

Journal Publications

[1] Šmíd, M. (90% contribution); Křemen, P. OnGIS: Semantic Query
Broker for Heterogeneous Geospatial Data Sources. Open Journal of
Semantic Web (OJSW), volume 3, no. 1, 2016. pp. 32–50. ISSN
2199-336X. Available from http://www.ronpub.com/publications/
OJSW_2016v3i1n03_Smid.pdf.

[2] In review: Šmíd, M. OnGIS: Geospatial Data Integration Using
Semantic Technologies and Query Containment. International Journal
on Semantic Web and Information Systems (IJSWIS). ISSN: 1552-6283.
In review process since April 2015. A revised version has been sent after
the first review cycle.

Publications in Conference Proceedings

[1] Šmíd, M. (90% contribution); Kouba, Z. OnGIS: Ontology Driven
Geospatial Search and Integration. In Terra Cognita Workshop on
Foundations, Technologies and Applications of the Geospatial Web,
CEUR Workshop Proceedings, Tilburg, 2012. pp. 27–38. ISSN 1613-
0073. Available from http://ceur-ws.org/Vol-901/paper3.pdf.

The paper has been cited in:. Boonprapasri, T.; Sriharee, G. An applied ontology: A semantic
query builder for health GIS system. In 2015 International Com-
puter Science and Engineering Conference (ICSEC), IEEE, 2015.
pp. 1–6.

[2] Šmíd, M. (90% contribution); Kouba, Z. OnGIS: Metody vyh-
ledávání v geografických datech řízené ontologiemi. In Digitální
technologie v geoinformatice, kartografii a dálkovém průzkumu Země,
ČVUT, Fakulta stavební, Katedra mapování a kartografie, Praha,

105

http://www.ronpub.com/publications/OJSW_2016v3i1n03_Smid.pdf
http://www.ronpub.com/publications/OJSW_2016v3i1n03_Smid.pdf
http://ceur-ws.org/Vol-901/paper3.pdf

Publications of the Author Relevant to the Thesis
2012. pp. 107–116. ISBN 978-80-01-05131-3. Available from http:
//gkinfo.fsv.cvut.cz/index.php/sbornik. [in Czech]

Other Publications

[1] Šmíd, M. Proposal of an Ontology-Based GIS. Ph.D. Thesis Proposal,
Faculty of Electrical Engineering, Czech Technical University in Prague,
Prague, Czech Republic, 2011.

106

http://gkinfo.fsv.cvut.cz/index.php/sbornik
http://gkinfo.fsv.cvut.cz/index.php/sbornik

Remaining Publications of the Author

[1] Šmíd, M. (50% contribution); Truman, S.; Mulholland, P.; Zdráhal,
Z.; Crouch, S. G-Learn: An Exploratory Learning Environment for
School Level Geography. In Znalosti 2009 - sborník příspěvků, Vydava-
tel’stvo STU, Bratislava, 2009. pp. 213–224. ISBN 978-80-227-3015-0.

[2] Bierhoff, I.; Goossen, B.; Wintjens, K.; Huijnen, C.; Křemen, P.;
Kouba, Z.; Válek, F.; Šmíd, M. (10% contribution); Blaško,
M.; Panis, P. Participatory Design of Netcarity Services Us-
ing Different Perspectives. In Proceedings of the first Interna-
tional AEGIS Conference, AEGIS project, Seville, 2010. pp.
202–209. Available from http://www.epr.eu/aegis/wp-content/
uploads/2011/02/Conference_Proceedings.pdf.

[3] Křemen, P.; Šmíd, M. (40% contribution); Kouba, Z. OWLD-
iff: A Practical Tool for Comparison and Merge of OWL Ontolo-
gies. In Twenty-Second International Workshop on Database and
Expert System Applications, IEEE Computer Society, Los Alami-
tos, 2011. pp. 229–233. ISBN 978-0-7695-4486-1. ISSN
1529-4188. Available from http://ieeexplore.ieee.org/search/
freesrchabstract.jsp?tp=&arnumber=6059822.

The paper has been cited in:

.Konev, B; Ludwig, M; Walther, D et al. The Logical Difference
for the Lightweight Description Logic EL. Journal of Artificial
Intelligence Research, volume 44, 2012. pp. 633–708. ISSN 1076-
9757.. Gonçalves, RS.; Parsia, B.; Sattler, U. Concept-based semantic dif-
ference in expressive description logics. In International Semantic
Web Conference, Springer, 2012. pp. 99–115..Dinh, D.; Dos Reis, JC.; Pruski, C.; Da Silveira, M.; Reynaud-
Delaître, C. Identifying change patterns of concept attributes
in ontology evolution. In European Semantic Web Conference,
Springer, 2014. pp. 768–783.

107

http://www.epr.eu/aegis/wp-content/uploads/2011/02/Conference_Proceedings.pdf
http://www.epr.eu/aegis/wp-content/uploads/2011/02/Conference_Proceedings.pdf
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=6059822
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=6059822

Remaining Publications of the Author
.Ochs, C.; Perl, Y.; Geller, J.; Haendel, M.; Brush, M.; Arabandi,

S.; Tu, S. Summarizing and visualizing structural changes during
the evolution of biomedical ontologies using a Diff Abstraction
Network. Journal of biomedical informatics, volume 56, Elsevier,
2015. pp. 127–144.. Erdur, RC.; Dikenelli, O.; Alatli, O.; Ekinci, EE.; Akar, Z. In-
tegrating linked data space with agents using the environment
abstraction. In Computer Software and Applications Conference
Workshops (COMPSACW), 2012 IEEE 36th Annual, IEEE, 2012.
pp. 625–630.. and others (Google Scholar reports 22 citations in total).

[4] Křemen, P.; Mička, P.; Blaško, M.; Šmíd, M. (25% contribution)
Ontology-Driven Mindmapping. In Proceedings of the 8th International
Conference on Semantic Systems, ACM, New York, 2012. pp. 125–
132. ISBN 978-1-4503-1112-0. Available from http://dl.acm.org/
citation.cfm?id=2362517.

[5] Křemen, P.; Blaško, M.; Šmíd, M. (15% contribution); Kouba, Z.;
Ledvinka, M.; Kostov, B. MONDIS: Using Ontologies for Monument
Damage Descriptions. In Znalosti 2014. VŠE, Praha, 2014. pp. 66–
69. ISBN 978-80-245-2054-4. Available from http://znalosti.eu/
images/znalosti2014_proceedings.pdf.

108

http://dl.acm.org/citation.cfm?id=2362517
http://dl.acm.org/citation.cfm?id=2362517
http://znalosti.eu/images/znalosti2014_proceedings.pdf
http://znalosti.eu/images/znalosti2014_proceedings.pdf

	Introduction
	Thesis Contributions
	Thesis Outline

	GIS and Geospatial Integration
	GIS Basics
	Spatial Relations and Operations
	Spatial Data Representation
	GIS Services
	OGC Standards for Services
	PostgreSQL, PostGIS
	Commercial Systems

	Interesting Data Sources
	OpenStreetMap
	Official National Data Sources

	Existing GIS Integration

	Semantic Web
	Linked Data
	Interesting Spatial Data Sources
	LinkedGeoData
	GeoNames
	DBpedia

	Web Ontology Languages
	Description Logics
	OWL
	
	OWL 2 QL

	Querying Languages
	SPARQL
	GeoSPARQL

	Existing Search Systems

	Geospatial Integration and Retrieval Proposal
	Overall Architecture
	Geospatial Semantic Retrieval
	Query Input Design
	List Query Design
	Structured Query Design

	Representing Geospatial Sources
	Expanding GeoSPARQL ontology
	Query Containment Basics
	Query Containment with GeoSPARQL
	Resolving Variable Mapping

	Using Lattice for Searching Relevant Sources
	Building Lattice
	Searching Lattice

	Implemented Prototypes
	Query Input and Data Retrieval
	OwlgresMM
	Importing Spatial Data

	Lattice Construction and Searching
	Other Tools

	Experiments
	Query Input
	Query Input as List with Relations
	Query Input as Structured Expression

	Searching Sources for a Query
	The First Example
	The Second Example
	The Third Example
	Comparison with Other Systems

	Conclusion
	Bibliography
	Abbreviations
	Publications of the Author Relevant to the Thesis
	Journal Publications
	Publications in Conference Proceedings
	Other Publications

	Remaining Publications of the Author

