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The research done behind this thesis has been supported by the Christian Doppler

Forschungsgesellschaft, the Federal Ministry of Economy, Family and Youth, and the Na-

tional Foundation for Research, Technology and Development – Austria; and by the Grant

Agency of the Czech Technical University in Prague, grant No. SGS12/188/OHK3/3T/13.

Petr Novák

Czech Technical University in Prague

Prague, 2016

i



Abstract

Industrial systems are becoming complex and large-scale. Optimization of their operation

and testing of their control systems are done on simulation models frequently, because

simulated experiments are faster, cheaper, and repeatable compared to experiments done

on real industrial plants. However, design and re-design of simulation models are difficult

and time-consuming tasks. In addition, integration of simulation models within industrial

automation systems is not satisfactory nowadays. This thesis is aimed at improving the

design and integration phases of the simulation model life-cycle.

In the area of the simulation model design, especially a component-based approach for

simulation model creation is investigated and improved in this thesis. It assumes that en-

gineering systems consist of atomic components that are connected into topologies of real

industrial plants. The proposed method supports assembling simulation models from simu-

lation components, which can be reused from previous simulation projects. Each real device

can be simulated by one of the available implementations of the component, representing

this device. The proposed solution is based on the utilization of the bond-graph theory

to guarantee the compatibility of the interfaces of the connected component implementa-

tions and to support their selection. In addition, the bond-graph theory is used to support

splitting a simulation model into a set of simulation modules and their integration into a

simulation workflow. For all of these types of tasks, the bond-graph theory was enhanced

with an explicit description of component interfaces and a new causality assignment al-

gorithm was designed. This algorithm can be used not only for generation of simulation

models, but also for verifications on a conceptual planning level, whether specific sets of

simulation component implementations are sufficient to model particular plants.

In the area of the simulation model integration, two research threads are followed. The

first one is related to formalizing, capturing, and integrating knowledge about the real indus-

trial plant, input and output tags, parameters of devices, and mappings of all these entities

to simulation model components, variables, and parameters. Such engineering knowledge

is used to support simulation model design and maintenance of existing simulation mod-

els when a real plant is changed. The second thread in the integration area is focused on

interoperability of simulation modules on the level of the supervisory control and data ac-

quisition of the automation pyramid. This task covers the access of simulations to runtime

data, improved parameter setting, and version-control of simulation modules.

This thesis contributes to the areas of the simulation modeling, knowledge representa-

tion, and distributed system integration. The most important results are (i) adaptation

of the bond graph theory for non-traditional applications including selection of explicitly

specified component implementations as well as a new causality assignment algorithm sup-

porting this approach, (ii) utilization of ontologies for supporting simulation model design

and integration, and (iii) improved simulation model integration.

ii



Anotace

Pr̊umyslové systémy se stávaj́ı komplexńımi a rozsáhlými. Optimalizace jejich provozu a

testováńı jejich ř́ıdićıch systémů jsou typicky podporovány simulačńımi modely, protože ex-

perimenty v simulovaném prostřed́ı jsou oproti experiment̊um na skutečných pr̊umyslových

systémech rychleǰśı, levněǰśı a opakovatelné. Avšak návrh a přebudováńı simulačńıch mo-

del̊u jsou obt́ıžnými a časově náročnými úlohami. Rovněž integrace simulačńıch model̊u v

rámci pr̊umyslových automatizačńıch systémů dnes neńı dostatečná. Tato disertačńı práce

se zaměřuje na zlepšeńı fáźı návrhu a integrace simulačńıch model̊u v rámci jejich životńıho

cyklu.

V oblasti návrhu simulačńıch model̊u je v této práci diskutován a zlepšen zejména př́ıstup

založený na komponentách. Předpokládá se, že technické systémy se skládaj́ı z atomických

komponent, které jsou navzájem propojeny do topologíı skutečných pr̊umyslových systémů.

Navržená metoda podporuje skládáńı simulačńıch model̊u ze simulačńıch komponent, které

mohou být znovu použity z předchoźıch simulačńıch projekt̊u. Každé skutečné zař́ızeńı

může být simulováno jednou z dostupných implementaćı komponenty, reprezentuj́ıćı toto

zař́ızeńı. Navržené řešeńı je založeno na použit́ı teorie vazebńıch výkonových graf̊u. Tento

typ graf̊u zajǐst’uje kompatibilitu rozhrańı spojených implementaćı komponent a usnadňuje

jejich výběr. Teorie vazebńıch výkonových graf̊u je rovněž použita pro podporu rozděleńı

simulačńıho modelu na množinu simulačńıch modul̊u a jejich integraci do simulačńıho celku.

Pro všechny tyto typy úloh byla teorie vazebńıch výkonových graf̊u rozš́ı̌rena o explicitńı

popis rozhrańı komponent a byl navržen nový algoritmus pro přǐrazeńı kauzalit. Tento al-

goritmus může být použit nejen pro generováńı simulačńıho modelu, ale také pro verifikaci

na úrovni konceptuálńıho plánovańı, zda je daná množina implementaćı simulačńıch kom-

ponent dostačuj́ıćı pro modelováńı konkrétńıho systému.

V oblasti integrace simulačńıch model̊u prob́ıhal výzkum dvěma směry. Prvńı z nich

souviśı s formalizaćı, uchováńım a integraćı znalost́ı o skutečném pr̊umyslovém systému,

vstupńıch a výstupńıch tagách, parametrech zař́ızeńı a mapovańı všech těchto entit na si-

mulačńı komponenty, proměnné a parametry. Takovéto inženýrské znalosti jsou použity

pro podporu návrhu simulačńıch model̊u a údržby existuj́ıćıch simulačńıch model̊u, když

je reálný systém změněn. Druhý směr v oblasti integrace je zaměřen na interoperabilitu

simulačńıch modul̊u na úrovni supervizorového ř́ızeńı a sběru dat v rámci automatizačńı

pyramidy. Tento úkol zahrnuje př́ıstup k provozńım dat̊um, vylepšené nastavováńı para-

metr̊u a verzovańı simulačńıch modul̊u.

Tato disertačńı práce přisṕıvá do oblast́ı simulačńıho modelováńı, reprezentace znalost́ı

a integrace distribuovaných systémů. Nejd̊uležitěǰśımi výsledky jsou (i) adaptace teorie va-

zebńıch výkonových graf̊u pro netradičńı použit́ı zahrnuj́ıćı výběr explicitně specifikovaných

implementaćı komponent, stejně jako nový algoritmus pro přǐrazeńı kauzalit umožňuj́ıćı

tento př́ıstup, (ii) použit́ı ontologíı pro podporu návrhu a integrace simulačńıch modul̊u a

(iii) vylepšená integrace simulačńıch model̊u.

iii



Contents

1 Introduction 1

1.1 Simulation Models for Industrial Processes . . . . . . . . . . . . . . . . . . . 2

1.2 Integration of Simulation Models within Industrial Automation Systems . . 3

1.3 Goals of this Thesis from the High-Level Perspective . . . . . . . . . . . . . 6

1.4 Research Issues Addressed in this Thesis . . . . . . . . . . . . . . . . . . . . 7

1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Current Status of Design and Integration of Simulation Models 9

2.1 Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Bond Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Signal Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Component Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Connection Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Creating Bond Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.5 Tool Support for Bond Graph Modeling . . . . . . . . . . . . . . . . 16

2.4 Functional Mockup Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Architectures of Industrial Automation Systems . . . . . . . . . . . . . . . . 20

2.6 Current Status Summary Motivating the Thesis . . . . . . . . . . . . . . . . 21

3 Related Work 23

3.1 Automated and Semantic Simulation Model Design . . . . . . . . . . . . . . 23

3.2 Bond Graphs for Simulation Model Design . . . . . . . . . . . . . . . . . . . 24

3.3 Integration of Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Integration of Industrial SCADA Systems . . . . . . . . . . . . . . . . . . . 26

3.5 Current Trends in System Integration . . . . . . . . . . . . . . . . . . . . . 27

3.6 Enterprise Service Bus for System Integration . . . . . . . . . . . . . . . . . 28

3.7 Semantic and Technical Levels of Integration . . . . . . . . . . . . . . . . . 30

3.8 Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9 Ontologies for Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9.1 Ontologies and Description Logics . . . . . . . . . . . . . . . . . . . 32

3.9.2 Ontology Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



3.9.3 Querying of Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9.4 Tool Support for Ontologies . . . . . . . . . . . . . . . . . . . . . . . 34

3.10 Existing Ontologies for Knowledge Representation . . . . . . . . . . . . . . 35

3.11 Process Data Representation and Big Data . . . . . . . . . . . . . . . . . . 36

3.12 Industrial Standards for Integration and Communication in Automation . . 36

3.13 Multi-Agent and Holonic Systems . . . . . . . . . . . . . . . . . . . . . . . . 38

3.14 Semantic Technologies in Building Automation . . . . . . . . . . . . . . . . 40

4 Knowledge Models for Improved Simulation Model Design and Integra-

tion 41

4.1 Engineering Disciplines and Engineering Plans . . . . . . . . . . . . . . . . 41

4.2 Design of the Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Requirements on the Ontology Model . . . . . . . . . . . . . . . . . . . . . 43

4.4 Automation Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Domains of the Automation Ontology . . . . . . . . . . . . . . . . . 44

4.4.2 Real Plant Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.3 Variable and Tag Domain . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.4 Parameter Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.5 Simulation Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.6 Bond Graph Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.7 Summary and Evaluation of the Automation Ontology . . . . . . . . 49

4.5 Software Prototype of the Ontology Tool . . . . . . . . . . . . . . . . . . . . 50

5 Extended Bond Graphs for Object-Oriented Simulation Model Design 51

5.1 Design of Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Simulation Design Scenario when a Simulation Library is not Available 52

5.1.2 Simulation Design Scenario Based on an Available Simulation Library

with Simulation Blocks . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Motivation for a New Method Supporting Multi-Level Object-Oriented Sim-

ulation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Motivation for a Simulation Block Selection . . . . . . . . . . . . . . . . . . 54

5.4 Simulation Block Selection for SISO Blocks and Serial Connections . . . . . 56

5.5 Motivation for the Use of the Bond-Graph Theory . . . . . . . . . . . . . . 57

5.6 Motivation for a New Causality Assignment Algorithm . . . . . . . . . . . . 58

5.7 Extended Bond Graphs Enhanced with Explicit Simulation Block Support . 59

5.7.1 Formal Specification of the Simulation Model Design Task . . . . . . 60

5.7.2 Extended Bond Graph Method . . . . . . . . . . . . . . . . . . . . . 60

5.7.3 Proposed Method in an Algorithmic Way . . . . . . . . . . . . . . . 62

5.7.4 Output of the Extended Bond Graph Method . . . . . . . . . . . . . 64

5.8 Electrical Circuit Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.9 Verification of the Generated Simulation Model for the Electrical Circuit . . 68

v



5.10 Evaluation of the Proposed Method: Benefits and Weak Points . . . . . . . 74

5.11 Semi-Automated Generation of Simulation Module Interfaces Using Extended

Bond Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.11.1 Prerequisites of the Simulation Splitting Support . . . . . . . . . . . 78

5.11.2 Cuts on the Junction Level . . . . . . . . . . . . . . . . . . . . . . . 78

5.11.3 Cuts on the Power Bond Level . . . . . . . . . . . . . . . . . . . . . 79

5.11.4 Example of Integrating Junctions and Evaluation . . . . . . . . . . . 80

5.12 Execution of Complex Coupled Simulations at Runtime . . . . . . . . . . . 81

5.13 Optimization of Complex Simulation Model Execution . . . . . . . . . . . . 83

5.14 Developed Tool Support for the Simulation Model Generation Based on Ex-

tended Bond Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Improved Integration of Simulation Models 91

6.1 Requirements and Challenges on Integrated Automation Systems . . . . . . 91

6.2 Proposed Architecture of the Integrated SCADA Level of Automation Systems 92

6.3 Engineering Tool Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1 Connector to Microsoft Visio . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 AutomationML Connector . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Simulation Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.1 MATLAB-Simulink Connector . . . . . . . . . . . . . . . . . . . . . 102

6.4.2 Other Simulation Tool Connectors . . . . . . . . . . . . . . . . . . . 104

6.5 SCADA System Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5.1 SCADA Systems – HMI Domain . . . . . . . . . . . . . . . . . . . . 104

6.5.2 ScadaBR Tool Connector . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5.3 Promotic Tool Connector . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5.4 SCADA Systems – Data Acquisition Domain . . . . . . . . . . . . . 106

6.5.5 SCADA Systems – Multi-Agent System Domain . . . . . . . . . . . 106

6.6 Processes for Simulation Design and Integration . . . . . . . . . . . . . . . . 107

6.7 Integration of Simulations and SCADA Systems from the Process Perspective 109

7 Use-Cases and Experiments 113

7.1 Passive House Simulation Use-Case . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.1 Motivation for the Passive House Simulation Use-Case . . . . . . . . 113

7.1.2 Passive House Standard . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1.3 Measuring and Control in Passive Houses . . . . . . . . . . . . . . . 114

7.1.4 Simulation Modeling of Houses . . . . . . . . . . . . . . . . . . . . . 114

7.1.5 Experimental Passive House . . . . . . . . . . . . . . . . . . . . . . . 117

7.1.6 Semi-Automated Design of Simulation Models for a Passive House . 120

7.1.7 Lessons Learned and Evaluation of the Passive House Use-Case . . . 121

7.2 Hydraulic Network Use-Case . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.1 Simulation Library for Hydraulic Systems . . . . . . . . . . . . . . . 123

vi



7.2.2 Simulation Models for the Tank Model . . . . . . . . . . . . . . . . . 125

7.2.3 Generation of the Lists of Simulation Parameters and Tags . . . . . 130

7.2.4 Simulation Model Testing and Comparison of Measured and Simu-

lated Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2.5 Lessons Learned and Evaluation of the Reached Results . . . . . . . 132

8 Conclusions and Future Work 135

8.1 Fulfillment of the Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2 Scientific Contributions Reached in the Thesis . . . . . . . . . . . . . . . . . 136

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Biblioghraphy 139

A Application Example of the Traditional Bond Graph Method for Simula-

tion Design I

B Simulation Blocks of the Mechatronic Library VII

C Screenshots of the Tool Support XXXV

D List of the Author’s Publications XXXIX

vii



Chapter 1

Introduction

Current industrial systems are becoming complex and large-scale. Design and testing of

industrial plants including their automation and control systems are thus getting difficult

and time-consuming tasks that can no longer rely on manual work only.

Computer simulation of the behavior of industrial plants is becoming an important part

of system engineering as simulations facilitate industrial plant testing and optimization.

This thesis contributes to improvements of the design phase of simulation models and their

better integration into industrial automation environments, which are weak points of current

simulations and their use.

In a broad context, “virtualization” is the term related to the upcoming Factories of the

Future [49] as well as the fourth industrial revolution changing current industrial facilities

to be more flexible and better integrated. This movement is referred as “Industry 4.0” or

“Industrie 4.0” in the original German transcription. In conjunction with process simula-

tions, the virtualization is frequently referred in terms of virtual commissioning of industrial

plants. It is based on the utilization of simulation models to inspect, to test and to opti-

mize the behavior of real industrial systems [44]. Since this thesis is focused on improving

simulation model design and integration, it contributes to the area of virtual commissioning

of industrial plants as well.

To reduce repeating manual work needed for engineering automation systems and simu-

lation models as well as for their integration, knowledge representation and data integration

are becoming important aspects related to modern industrial automation systems as well

as to engineering processes of industrial plants and simulation models for these plants.

Although the term integration is one of the key terms in software engineering for several

decades, sharing knowledge and data in automation systems engineering is still an emerging

topic that needs improvements.

The weak integration is most likely coming from the fact that current industrial plants

have a mechatronic nature frequently. Mechatronic systems are featured with engineering

based on collaborative work of several engineering disciplines [5, 51]. At the design phase of

the automation system life-cycle, engineers of various engineering disciplines utilize diverse

software tools. These tools are hereinafter called engineering tools. Their purpose is to sup-

port describing the real system from the perspective of the specific engineering discipline.

Nowadays, the engineering tools are not integrated properly. The design phase of mecha-

tronic systems can be thus expressively summarized as a kind of “Engineering Polynesia”

having islanded tools with interfaces that do not fit seamlessly and an “Engineering Baby-

1



lon”, where engineering artifacts are represented in various ways in engineering tools [34].

The engineering data sharing between engineering disciplines in mechatronic projects is

needed, but it has not been met satisfactorily. When cooperating between several engineer-

ing disciplines and sharing knowledge, important pieces of information get lost in current

industrial automation projects, which causes unwanted delays in automation systems engi-

neering projects [50].

The integration problems do not emerge in the design phase only (i.e., as it has been

introduced above), but the position of simulations is similar at automation system runtime

as well. Typically, simulation models are not integrated within the remainder of the au-

tomation system, which causes barriers for their efficient utilization, such as for training

process operators or supporting decision making at industrial plant runtime. At best, it is

possible to visualize simulated data in a standard human-machine interface (HMI) as a part

of a Supervisory Control and Data Acquisition (SCADA) system and to import runtime

samples into the simulation. However in current industrial systems, software architectures

enabling these tasks are either missing or they are neither satisfactory nor general enough.

The existing architectures for industrial simulation integration are difficult to maintain and

their scopes are only partial in terms of limited access to data sources, initial conditions

setting, and others. Since the simulation model structure adopts the structure of the real

plant or its sub-part, the design and integration of simulations are strongly coupled issues.

Hence, this thesis handles both parts as crucial issues of the complete simulation model

life-cycle.

1.1 Simulation Models for Industrial Processes

In the past, the behavior of real systems including their control systems was analyzed

mathematically. Unfortunately, analytical methods cannot be used for large-scale cyber-

physical systems efficiently because of the high number of heterogeneous components, tags,

and parameters. Due to security and cost reasons, experiments should not be done on real

systems directly. Moreover, experiments on real systems need not be repeatable (due to

changes of boundary and initial conditions), and they can be very time-consuming in many

cases. Therefore, simulation models are useful test-beds, simulating the real industrial

systems under typical, extreme, or other measured or artificial conditions.

Simulations are useful tools for key tasks in the manufacturing value chain [81]. They

can be used to improve the sustainable operation of real plants, to reduce waste, or to

save energy. However, current simulation approaches suffer from (i) a complicated design

phase and (ii) a problematic integration with other systems related to the design and tool

integration for industrial plants. Even though companies and researchers focused on in-

dustrial automation emphasize the need for increasing the integration and reuse of codes,

algorithms, and other engineering artifacts, such needs are not met in existing simulations.

The engineering process of simulation models should be improved in order to bring the

simulation benefits into daily industrial practice and into our daily lives.

The method proposed in this thesis should cover not only one specific simulation envi-

ronment, but it should support all types of process models including dynamic [13], event-

based [33], or rule-based [7] models and simulations. However, bridging all these types

of simulation environments implies several research challenges that could not be fully ad-

dressed in this single thesis. The majority of the presented considerations and experiments
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Figure 1.1: Conceptual high-level overview of the proposed improvement of the simulation model
design phase.

has been done in the area of signal-based simulations of dynamic industrial systems.

Current design of simulations is based on manual merging pieces of information from

various engineering plans, such as electrical plans, piping and instrumentation diagrams [92],

information from SCADA systems, etc. To improve the design of simulation models, it is

beneficial to integrate knowledge from various kinds of sources (e.g., plans or spreadsheets)

and engineering tools. The integrated knowledge from the industrial plant engineering can

be consequently reused for the specification of the simulation model structure as well as

for the implementation of the model itself. A simplified process of designing integrated

simulation models for industrial plants is depicted in Fig. 1.1. In this vision, the engineer

focuses on the decision making in the engineer’s area of interest and the repeating manual

work is eliminated. The integrated computer-aided design and integration contributes to

the avoidance of many kinds of errors and inconsistencies, which occur in current projects.

It is not efficient to develop monolithic simulation models for these systems any more.

A current trend or in many cases a need is the distribution of simulation models into a set

of inter-linked simulation modules. Input data as well as partial results have to be shared

among these modules at runtime. The graph expressing the modules and the data flows

between them is called a simulation workflow [127]. The executed simulation workflows

are called coupled simulations. The simulation workflow is the description of modules and

data exchange for coupled simulations. The modularization of simulations requires proper

integration of simulation models on the levels of simulation modules and automation system

data.

1.2 Integration of Simulation Models within Industrial Au-

tomation Systems

Simulation models can no longer be designed and operated in an islanded mode from the

perspective of entire industrial automation systems. They have to be integrated at run-

time, i.e., the connection of runtime data from other tools to simulation models have to

be established as well as other tools have to be supported to read simulation results. This
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integration cannot be done ad-hoc by pairing long lists of variable names1 manually. To be

efficient, the integration should be semi-automated and driven by knowledge about the real

system.

The very same simulation model should be used and reused for various runtime scenarios

required for safe and efficient operation of the real plant:

� Design and testing of automation systems

� Operation analysis and optimization

� Training of human operators

� Estimation of unmeasured variables

� Decision-making support

� Job planning

� Model-based control

� Model-based fault detection

The basic distinction between the aforementioned operation scenarios is related to the

way how simulations are integrated within industrial automation systems in terms of the

usage of data. In other words, the very same simulation model can be used for various tasks

in industrial automation. The introductory schematic requirement on simulation model

integration is depicted in Fig. 1.2. A simulation model (in the figure represented as a model

in MATLAB-Simulink2) should exchange tag values with the SCADA HMI and this data

should be version-controlled. The crucial issue is the problem of timing and synchronization

of this tag exchange. Since simulators are strongly influenced by the numerical stability of

the model itself as well as relative and absolute precisions, the simulation time flows in

different time steps. To improve the integration of simulations, it is needed to provide an

infrastructure supporting data exchange between simulations and automation systems that

automate the behavior and access to the industrial plants.

The operation of industrial plants is automated by automation systems. They have a

hierarchically layered architecture, which is frequently called an automation pyramid. Many

particular versions of the pyramid exist; one of its representations can be found in [60].

Although research effort as well as needs in industry tend to flatten the pyramid into a

flexible dynamically reconfigurable middle-ware as a part of the Industry 4.0 movement,

the solutions being used in industry nowadays still rely on the hierarchical structuring. Due

to this fact, the classical layered architecture of automation systems is assumed in this

thesis.

The automation pyramid depicted in Fig. 1.3 represents the view on the data architecture

in automation systems considered in this thesis, which is described in details in Sec. 2.5. The

figure includes the position of the contribution proposed by this thesis, which is depicted

by dash-dot lines. The proposed simulation model design and integration is related to the

third level of the pyramid, which represents a SCADA system [29]. A SCADA system is a

system that is intended to provide access to industrial plants, both for human operators and

for upper software systems. In this thesis, it is proposed to be extended with simulations.

1Variable names are called “tags” frequently in industrial automation.
2http://www.mathworks.com/products/simulink/
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plant is an educational hydraulic tank model at the Vienna University of Technology [101, 120].

Figure 1.3: Automation pyramid enhanced with the integrated process simulation as it is investi-
gated and proposed in this thesis.
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The manual approach for integration of software systems and automation system tools is

not sustainable for modern complex systems. Thus the proposed solution is based on the use

of a knowledge base facilitating management of engineering knowledge. The knowledge base

inter-relates facts about the structure of a real plant, a simulation model, as well as other

automation tools, and knowledge about their interfaces. The knowledge base has to provide

information in a computer-understandable form, i.e., the algorithms have to understand

the semantics of the captured data. The knowledge base is not intended to be accessed

by engineers directly, but it is encapsulated by an ontology tool, providing the access and

the functionalities in a user-friendly form. It utilizes domain-specific languages (DSLs), i.e.,

each domain expert uses a terminology which is normal in the expert’s discipline, and the

mapping between particular DSLs is captured in the ontology.

The presented work is inter-disciplinary and it adopts methods from cybernetics, system

theory, artificial intelligence, description logics, and simulation and control engineering.

The research presented in this thesis is not isolated, but it is expected to be utilized in the

“simulation integration framework” [127]. It is an emerging generic environment for seamless

integration of simulation models within industrial automation systems being developed by

industrial and research partners.

1.3 Goals of this Thesis from the High-Level Perspective

The overview of the proposed methodology from the knowledge and user points of view is

depicted in Fig. 1.4. The goal of engineers is a running and integrated automation sys-

tem including simulation models. The addressed process starts with capturing engineering

knowledge (i.e., plans, information from SCADA systems, parameter databases, etc.) into

a knowledge base. Consequently, required knowledge is retrieved in the appropriate form

and used for the support of simulation model design as well as for the configuration of the

technical level. The benefits of the proposed methodology are decreasing development and

deployment time and costs, improving safety of solutions and making re-design and reuse

of simulation models and other industrial tools or knowledge more flexible.

The research done within this thesis addresses the following high-level goals including

various research and development problems:

� G-1: Representation of engineering knowledge for simulation design and integration

Flexible design and integration of simulations requires proper classes, properties and
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individuals in the automation ontology dedicated to these tasks. The first goal is

related to the design, implementation and verification of the data model of the au-

tomation ontology, including considerations on a real project level.

� G-2: Object-oriented design of simulation models

Simulation models are designed ad-hoc and they are difficult to maintain, modify and

reuse nowadays. This goal targets proposing methodologies supporting simulation

model design, which will be applicable in real industrial cases. An algorithm creating

a simulation model based on available simulation libraries according to a real plant

structure should be designed and implemented. The selection should be based on the

compatibility of signals and the generalized physical behavior that is approximated

by the simulation blocks.

� G-3: Design of simulation workflows consisting of simulation modules

Simulation design process can be semi-automated and performed much faster than

nowadays. This goal is focused on reusing the available knowledge to support split-

ting simulations into a set of simulation modules and specification of signals to be

transferred between modules.

� G-4: Integration of simulations within SCADA systems

Simulations are required to be integrated with measured data and human operators’

environments frequently. This research goal covers integration with different sub-

systems of SCADA including HMIs, or data acquisition.

1.4 Research Issues Addressed in this Thesis

The goals of this thesis summarized in Sec. 1.3 include various implementation issues, con-

siderations on the current state-of-the-art level, as well as research issues. Such research

issues have to be investigated, addressed, and disseminated in relevant research communi-

ties. The following research issues have been identified and addressed in this thesis:

� RI-1: Development of a common model to capture knowledge in simulation projects

Simulation of mechatronic systems and its engineering are complicated issues utilizing

complex models and data models in current large-scale engineering projects. The

approach discussed in this thesis should not be limited to particular data models,

but it should provide foundations for supporting simulation/engineering projects in

general.

� RI-2: Extension of the bond-graph theory for supporting explicitly pre-defined sim-

ulation components and required simulation modules

The bond-graph theory is a paradigm for creating simulation models for mechatronic

systems manually. However, current computer-centric approaches incorporating vari-

ous engineering tools are not compliant with the bond-graph theory. Therefore, this

research issue is focused on adapting the well-proven bond-graph theory for the needs

of current engineering projects and tools.

7



� RI-3: Design of a model-based support for integration of simulations and SCADA

systems

The integration of simulation models within industrial SCADA systems is an impor-

tant enabler for utilizing simulations effectively and efficiently. This research issue is

focused on researching and developing model-based support for the configuration of

simulation and SCADA system integration, which has to be tool-independent.

1.5 Structure of the Thesis

To address the high-level goals stated in Sec. 1.3 as well as the specific research issues

formulated in Sec. 1.4, the remainder of this thesis has the following structure. Sec. 2

summarizes the current state-of-the-art in the areas of the simulation model design and

industrial automation system architectures that are utilized in the industrial practice. This

summary also practically motivates the challenges addressed in this thesis later.

Sec. 3 summarizes related work in various areas that are relevant for further descriptions

of the author’s contributions. Sec. 4 describes the author’s contribution into the area of data

modeling for mechatronic system engineering and simulation. It discusses the structure, use,

and limitations of the proposed automation ontology in details. This section thus provides

a solution for the research issue RI-1.

The most fundamental contributions of this thesis are included in the subsequent Sec. 5,

which proposes an innovative use of bond graphs. Bond graphs are extended in order to

support gray-box components, as well as to support separation of models into a set of sim-

ulation modules. The proposed methodology is a solution for the research issue RI-2. The

section also shows how the proposed method facilitates design of module interfaces and

their integration with glue modules for seamless integration modules into coupled simula-

tions described by simulation workflows.

Sec. 6 describes the integration of simulations, industrial SCADA systems, and engineer-

ing tools. It discusses the author’s contributions to the technical infrastructure utilizing the

Engineering Service Bus as a specific and enhanced implementation of the Enterprise Ser-

vice Bus concept. The section addresses the integration support both from the technical

infrastructure point of view as well as from the perspective of processes making the de-

sign and integration of simulations more effective and efficient. Hence Sec. 6 addresses the

research issue RI-3.

Later on, Sec. 7 illustrates the designed methodologies when using them for three prac-

tical use-cases covering design and integration of simulation models for various automation

problems. Finally, Sec. 8 evaluates the reached results and the efficiency of the proposed

methodologies, as well as it proposes promising topics for further work.
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Chapter 2

Current Status of Design and

Integration of Simulation Models

Contemporary design and integration of simulation models are inefficient tasks typically

based on mathematical-physical description of the system or on measured responses of the

real system. The integration of simulation models requires a manual configuration of signals

to be transferred between stakeholders. This chapter discusses the problem of contemporary

design and integration of simulation models in details as well as it provides foundations for

the further explanation of aspects addressed in this thesis.

2.1 Dynamic Systems

Industrial plants are typically dynamic systems, i.e., they “have a response to an input

that is not instantaneously proportional to the input or disturbance and that may continue

after the input is held constant” [173]. More formally, continuous-time finite-dimensional

dynamic systems are described by the following equations [8, 122]:

ẋi = fi(t, x1, ..., xn, u1, ..., um) i = 1, ..., n

yj = gj(t, x1, ..., xn, u1, ..., um) j = 1, ..., p
(2.1)

where uk, k = 1, ...,m, denote inputs or stimuli; yj , j = 1, ..., p, denote outputs or

responses; xi, i = 1, ..., n, denote state variables; t denotes time; ẋi denotes the time

derivative of xi; fi, i = 1, ..., n, are real-valued functions of 1 + n + m real variables; and

gj , j = 1, ..., p, are real-valued functions of 1 + n + m real variables [8, 122]. In the sense

of Fig. 2.1, the inputs are a set of uk, k = 1, ...,m. The outputs are a set of yj , j = 1, ..., p.

Hereinafter, we assume that the functions fi, i = 1, ..., n as well as gj , j = 1, ..., p, can

be parameterized with mathematical parameters that are real-valued constants. Such a

parametrization supports adaptation of created simulation models or their parts to a wider

class of problems without complicated re-design of the internal implementation of the model.

As each of the functions can have an arbitrary set of parameters, we get a set of constant

parameters cl, l = 1, ..., q, where q is a number of parameters. A complete description

of dynamic systems requires a set of initial conditions xi(t0) = xi0, i = 1, ..., n, where t0
denotes initial time [8, 122]. Initial conditions are considered as a special set of simulation

model parameters in this thesis.
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Figure 2.1: Simulation model interface: inputs, outputs, and parameters.

When the dynamic system is linear and time-invariant, it is frequently characterized by a

transfer function. The transfer function describes the relationship between input and output

signals of the system. The aforementioned state-space description can be transformed to

the transfer function of the complex variable s in terms of the Laplace transform according

to the equation:

G(s) = C(sI −A)−1B +D (2.2)

This expression will be used later as one of the ways, how a mathematical description

can be transformed to the signal-oriented simulation form.

The transformation of the aforementioned differential equations to difference equations

for the discrete-time finite-dimensional systems is straightforward. It can be found in [8],

thus it is not discussed in more details here. The proposed method is intended for both,

continuous-time and discrete-time finite-dimensional dynamical systems. The use-cases in

Sec. 7 are continuous-time.

2.2 Simulation Models

Simulation models for industrial plants are software representations of mathematical models

of the real plant behavior. “Mathematical models for dynamic systems are derived from the

conservation laws of physics and the engineering properties of each system component” [173].

Converting mathematical models to executable simulation models typically relies on manual

work of simulation experts. Such work can have diverse nature as various types of simula-

tions exist. Each simulation model is typically executed by a simulation solver, which is a

core part of a simulation engine implementing a specific numerical method. The simulation

solver performs the simulation models under a given simulation time and satisfying relative

and absolute precisions. The very same simulation model can be used for diverse tasks, the

difference is how inputs and outputs of the simulation model are used.

Simulation models have inputs and outputs, which are variables in the mathematical

sense, and parameters that are mathematical constants specifying model dynamics, see

Fig. 2.1. In compliance with [173], the inputs are “functions of the independent variable of

the differential equation, the excitation, or the forcing function to the system” [173]. The

outputs are “the dependent variables of the differential equation that represent the response

of the system” [173]. In practice, inputs and outputs are sampled, hence their values are

time-series with discrete time. If the system is affected by disturbances, we assume that

these variables are included as parts of inputs. According to a number of inputs and

outputs, simulation artifacts are frequently categorized as SISO (i.e., single-input single-

output) or MIMO (i.e., multiple-input multiple-output) simulation components, models, or
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modules. The parameters cover the three following sets: (i) constants of the differential

equations parameterizing the model dynamics, (ii) settings of the simulation solver, and

finally (iii) initial conditions of the simulation model. In the following text, these interfaces

of simulation models are described in details.

To calculate outputs of the aforementioned equations (i.e., the time series of variables

yj , j = 1, ..., p), a simulation environment utilizes an internal or external simulation solver.

The configuration of a simulation solver includes solver-dependent and solver-independent

parameters such as required relative and absolute precision, minimal and maximal time-step,

maximal number of zero-crossings, and others. We denote these parameters as simulation

solver parameters sz, z = 1, ..., r. In the sense of Fig. 2.1, parameters are a set of constants

involving (i) sets of mathematical parameters cl, l = 1, ..., q, (ii) simulation solver parameters

sz, z = 1, ..., r, and (iii) initial conditions xi0, i = 1, ..., n.

2.3 Bond Graphs

Bond graphs are aimed at a unified and systematic way for mathematical description and

modeling of physical systems. The bond graph theory is complex, quite easy to use, and

supports many physical phenomena. The theory is already well-proven; it origins from the

late 1950s, and it was being widely studied and published in 1960s, see for example [83].

Since physical systems are balancing distribution of energy inside by transferring power

and tending to reach the highest entropy of the energy distribution, the crucial variables

describing the behavior of systems are those physical variables that affect the energy dis-

tribution within the system. As the rate of energy transfer is power, it is the power that

has the fundamental role in modeling with bond graphs as well as in the method proposed

in this thesis.

Bond graphs are focused on describing power flows within systems. In a popular way,

“power is the universal currency of physical systems” [52]. Power is the rate of energy flow

and mathematically, energy is the time-integral of power. Power flows from sources, it can

be temporarily stored in specific components (such as capacitors or inductors in an electrical

circuit) and it is dissipated (such as in resistors, where electrical power is transformed into

heat) [24].

The bond-graph theory is based on the following three types of analogies, which are

subsequently described in more details: (i) signal analogies, (ii) component analogies, and

(iii) connection analogies.

2.3.1 Signal Analogies

In physical systems of various nature, equations describing the system behavior have very

similar forms. This phenomenon was observed by Lord Kelvin and James C. Maxwell in

19th century, but Henry M. Paynter described this systematically later in 1950s [52]. Signals

are in this context considered as any quantities having variations in time and conveying

information about systems. The high importance for simulation modeling have such signals

that are relevant for describing energy respectively power transport in the system as well as

signals that are used to control or to influence the status of the specific dynamic system. Due

to the correspondences between signals in systems of different engineering disciplines, the

bond-graph theory defines signals that are abstract in terms of system-type independence.
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In order to introduce a unified approach to describe diverse types of systems, the bond-

graph theory defines two generic variables:

� Effort e(t)

� Flow f(t)

These variables are called “power variables” as their product is power:

p(t) = e(t)f(t)

Furthermore, the bond-graph theory utilizes two integrated variables, which are useful

for component description:

� Integrated effort:

p(t) =

∫
e(τ)dτ = p0 +

t∫
t0

e(τ)dτ (2.3)

� Integrated flow:

q(t) =

∫
f(τ)dτ = q0 +

t∫
t0

f(τ)dτ (2.4)

Although mathematically it would be feasible to differentiate these equations and to

express flow (respectively effort) as a derivative of integrated flow (respectively integrated

effort), these equations would not be causal in dynamic systems. The derivative operator

needs to know future behavior, which is not possible. These issues are reflected in the

concept of “causality”, which is an important feature of bond graphs described later in

Sec. 2.3.4.

2.3.2 Component Analogies

The above stated definition of generic signals is useful not only for the expression of signal re-

lationships among systems of various physical nature, but also in order to define component

interfaces and basic generic components. Component analogies are the second cornerstone

of the bond-graph theory.

A pair of the effort and flow variables is called shortly “port” or more accurately “en-

ergy port” in the bond-graph theory. A real connection between devices is equivalent to a

connection of energy ports of the two components representing these devices. Each com-

ponent can have 1 to n ports, denoting the number of possible power connections of this

component.

More formally, the power port is defined as follows:

“The connection points of a bond graph node that enable the energy exchange with other

nodes across a power bond are called power ports” [28].

The physical interpretation of ports can be easily seen in case of electrical systems,

where each energy port corresponds to a pair of single-port connectors. For example, an

electrical resistor is the one-port component as it has one pair of single-ports. The selection

of the electrical domain as an example is not coincidental, but the names of the abstract

components defined by the bond-graph theory are inspired by the electrical domain.
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Table 2.1: Signal analogies expressing adequate signals for various types of systems and their
bond-graph representations.

Bond Graph Effort Flow Integrated effort Integrated flow

Electrical system Voltage Current Lines of flux Charge

Hydraulic system Pressure Flow Momentum per unit area Volume

Translation system Force Velocity Momentum Position

Rotation system Torque Angular velocity Angular momentum Angle

Thermal system Temperature Entropy flow – Entropy

Chemical system Concentration Molar flow – Molar mass

The bond-graph theory defines the following one-port components:

1. Source of effort (SE) is an ideal source of effort.

2. Source of flow (SF ) is an ideal source of flow.

3. Resistor (R) is a component, which relates effort and flow by a static function, which

can be non-linear in general.

4. Capacitor (C) is a component accumulating energy and having a static function be-

tween effort and integrated flow. This function can be non-linear in general.

5. Inductor (I) is a component accumulating energy and having a static function between

flow and integrated effort.

All these components are called one-port components, which means that each component

relates one pair of effort and flow signals. One of these variables is input and the second

one is output. Only in the case of sources, it is done by definition, which one is output; in

the other cases, it is determined by the bond graph. The bond-graph theory also supports

components having more than one ports.

Formally, the theory defines the term multiport as follows:

“A bond graph node is called a multiport if it has more than one port” [28].

Examples of basic electrical two-port (as a specific case of multiport) components are

a transformer (TF) or a gyrator (GY). Having two pairs of single-port connectors defining

two (internally coupled) power flows, they frequently transform or convert energy between

various engineering domains. The detailed description is not crucial for understanding of

this thesis; it can be found in numerous literature such as [28]. A typical example of n-port

components are junctions that connect n components.

2.3.3 Connection Analogies

Having the generic components, the simulation model schema should be created by inter-

connecting these components. The connections are called power bonds in the language of

bond graphs and they are pairs of power variables. The third analogy tackles the problem

of connecting devices in series or in parallel.

The typical approach used for electrical circuit analysis is based on Kirchhoff’s laws.

In systems consisting of a high number of components, it is difficult to determine how

to combine these laws in order to avoid underdetermined or overdetermined mathematical

13



models. To face this problem, the bond-graph theory introduces an abstraction of connection

types:

1. The 0-junction is a junction having the same value of effort on all connected power

bonds and the sum of the (oriented) flows is zero:

e1(t) = e2(t) = ... = en(t) (2.5)

f1(t) + f2(t) + ...+ fn(t) = 0 (2.6)

2. The 1-junction is a junction having the sum of effort equal to zero and having the

same flow for all connected power bonds:

e1(t) + e2(t) + ...+ en(t) = 0 (2.7)

f1(t) = f2(t) = ... = fn(t) (2.8)

The type of junction to use depends on the type of the physical system as follows.

� Non-mechanical systems: In non-mechanical systems, a 1-junction is a serial connec-

tion of components, whereas a 0-junction represents a parallel connection.

� Mechanical systems: In the case of mechanical systems, the assignment is vice-versa,

i.e., 1-junctions represent parallel connections, whereas 0-junctions represent serial

ones.

2.3.4 Creating Bond Graphs

A bond graph is a graph containing components, junctions, connections, directions of power

flows, and causality strokes. We have already discussed the fundamental issues related to

components, junctions and connections. In the further text, we will focus on the power

direction, causality and the entire method of creating bond graphs.

The power direction defines the positive direction of power through each bond. This

direction is not crucial in terms of the mathematical description, but it is an important

feature for understanding the sign convention, i.e., what a positive or a negative value

means for each bond. The theory recommends specific rules for assigning the direction

as follows. These rules for the power direction assignment are frequently summarized as

follows:

1. Positive direction of power is oriented out of sources SE and SF ;

2. Positive direction of power is oriented into 1-port components C, I, and R;

3. Power direction remains in the same direction through 2-port components TF , GY ;

4. Power is directed out in case of at least one power bond connected to 0− and 1−
junctions;

5. Power direction in cycles directly powered by a source is in the same direction;

6. Power direction of power bonds leaving out of cycles is arbitrary.
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An important aspect of bond graphs is the causality, declaring which of the variables

flow and effort are the dependent and independent variables for each power bond (i.e.,

which of the variables is considered as a given one and which one is calculated in each

connected component or junction). A source of effort has effort as a given output, whereas

the flow depends on the rest of the system. The second type of source, the source of flow,

has a causality vice-versa. As it has been already mentioned, one of the requirements

on simulation schemas is to calculate integrated variables by discrete summing and not

calculating the flow or effort as a derivative of the integrated flow, respectively the integrated

effort. Another requirement on the causality arises in the area of junctions. In the case of

0-junctions, the common effort is given by exactly one component, whereas in the case of

1-junctions, the common flow is given by exactly one component. The causality is denoted

by adding a short bar to the end of a bond [24], which is called a causality stroke. In case

of 0-junction, the causality mark should be located on exactly one bond near the specific

0-junction. In the case of 1-junction, the causality mark should be on all bonds except one.

For determining the causality, the bond-graph theory proposes the following recipe defin-

ing the assignment order:

1. Causality of sources and their directly affected nodes;

2. Integral causality of components C and I, if the integral causality is possible;

3. Causality for other remaining nodes in such a way that the definitions of the nodes

are satisfied. In the case of resistors, the causality is arbitrary;

4. In case of causality collisions, we either use a differential causality or solve this collision

according to causality-collision rules, which are proposed in this theory.

To create a bond graph, a reference junction has to be excluded from the graph. For

example, it is the ground voltage in case of electrical systems. The bond-graph theory

defines several types of bond graph reductions. As they do not affect the results of the

proposed method, they have not been implemented and will not be discussed in this thesis.

The next step of the simulation model design is going through the created bond graph

and writing down mathematical equations that model the behavior of the system. For this

task, the power direction plays the role in assigning signs to all signals distributing power

within the system. The assigned causality determines the causality relationship of signals

flow and effort for all components and junctions. The mathematical modeling of components

themselves is done by their physical behavior. Its mathematical expression is affected by

the causality assigned. This process step of simulation model design with the bond graph

theory is time-consuming and error-prone, especially in terms of confusing sign conventions

of specific variables within the system.

As the result of the previous step, we have a mathematical model of the system. This

mathematical model has to be transformed into a form that is appropriate for the simulator

to be used. In this thesis, we are working with signal-oriented simulations, the mathematical

model created based on the bond graph method thus has to be transformed into the signal-

oriented specification. This form is very close to block diagrams, which is widely known by

control engineers and cyberneticists.

Summarizing the workflow of the bond graph method, the theory proposes to perform

the following process steps to create the simulation model:
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1. Generation of nodes representing components and junctions;

2. Generation of arcs representing power bonds;

3. Assignment of the power direction;

4. Exclusion of a reference junction;

5. Reduction of the graph;

6. Assignment of the causality strokes;

7. Writing down mathematical equations manually.

8. Transformation of the mathematical model into an executable simulation model.

2.3.5 Tool Support for Bond Graph Modeling

System modeling based on bond graphs is supported by various software tools. In this sec-

tion, the major tools in this area are summarized and briefly introduced. This introductory

list organized in the alphabetical order was created based on literature reviews including

mainly [28] and the author’s experience with these tools.

� 20-SIM is the integrated modeling and simulation environment presented in [30]. It

was developed at the University of Twente as a successor of the tool TUTSIM from

the same university. It is an interactive tool for modeling and simulation of dynamic

behavior of engineering systems. It has modeling and simulation parts, it supports

data sharing with other simulation packages, and it covers a wide range of techniques.

Due to its abilities, it is one of the most widely used tools for bond-graph modeling.

� ARCHER was designed at Ecole Centrale de Lille, France. It supports creating

bond graphs graphically and exporting the resulting transfer functions and state-

space models into a symbolic form. Its benefit is the support for structural analysis,

including for example system states in terms of Eq. 2.1.

� BAPS is a bond graph preprocessor developed at the Vienna University of Technol-

ogy. It supports nonlinear constitutive equations and it is equipped with a graphical

user interface. The tool assigns the causality to the bond graph and the resulting

model can be exported into ACSL or several other supported formats.

� Bond Graph Add-On Block Library BG V.2.1 is a library for MATLAB-

Simulink, which was designed at TU Dresden. It includes nine basic simulation

blocks to model systems with the bond graph approach. The library can be used

via the standard Simulink GUI, which however causes that it can be utilized mainly

by skilled users or for educational purposes. It does not offer any sophisticated model

transformations or user-friendly interfaces.

� Bond Graph Toolbox is a tool for graphical working with bond graphs. It was

developed at the National University of Ireland in Galway. It provides outputs in

the form of equation-based system description for Mathematica or in the form of

Fortran routines performing the simulation directly. The output model equations are

non-causal.
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� BondLab is a bond graph toolbox supporting integration of bond graphs into MAT-

LAB and Simulink. It was designed at KU Leuven and it offers a graphical editor for

bond graphs from which the bond graphs can be exported in several suitable forms

to MATLAB and Simulink.

� CAMBAS is the abbreviation for “Computer Aided Model Building Automation

System”. It is a tool for transforming a model of a system to a bond graph and

consequently to its linear model. It was developed at the University of Michigan.

CAMBAS utilizes a two-level abstraction of simulation modeling. On the higher

abstraction level, components have assigned ports but no internal functionality. On

the lower level of modeling abstraction, implementations of components are added,

which is supported by component libraries. The tool supports to specify the simplest

simulation model that is proper for the simulated problem. The benefit is multi-

domain orientation from the engineering discipline perspective. On the other hand,

the tool is focused especially on linear models.

� CAMP-G is a graphical extension of the bond graphs preprocessor called CAMP.

It was designed at UC Davis. The graphical extension CAMP-G is user-friendly,

but still the users work directly with bond graphs and not with the domain-specific

representations of the engineering systems. It does not support hierarchical bond

graph models.

� ENPORT is one of the first bond-graph tools developed by R. C. Rosenberg. The

input for ENPORT is a non-causal description of the bond graph. The basic function-

ality of the tool is thus the assignment of causality to the given bond graph structure

and selecting input and output variables of the components. Due to this fact, such a

pioneering tool is intended rather for experts in the simulation domain who are able to

create noncausal bond graphs manually. It also supports numeric simulation of the fi-

nal bond graphs, however, only those models that are linear. The tool is implemented

in Fortran language.

� HybrSim (also referred as “HyBrSim”) is a modeling environment for hybrid bond

graphs. This kind of bond graphs extends the traditional theory to support combina-

tions of continuous and discrete systems. In Layman’s terms, the original theory is

enhanced with an ideal switching element implemented as a special kind of junction,

further details can be found for example in [111]. The tool HybrSim provides two

toolboxes for modeling and simulation of hybrid systems that are based on (i) bond

graphs and (ii) block diagrams. The limitation of this tool is that it supports ideal

bond graph elements only. From the mathematical point of view, the tool cannot

extract equations, because they are not generated explicitly.

� Java Applet for BGs is an educational online application1 developed at the Uni-

versity of Miskolc. It is applicable only for simple bond graphs with basic components

only. Since no inport/export capabilities are available, its usage is strongly university-

oriented.

� Mathematica Bond Graph Toolbox2 was designed by N. Venuti. It is a graphical

user interface for bond graph modeling in the symbolic environment Mathematica.

1http://www.uni-miskolc.hu/ iitbajzi/bond/index.html
2http://library.wolfram.com/infocenter/Conferences/4903/
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Although Mathematica provides many powerful features, its usage is out of scope of

this thesis.

� MS1 is a powerful integrated modeling and simulation environment developed in

France. It supports hierarchical models as well as diverse forms of system modeling

including not only bond graphs, but block diagrams or equation models, too. The

output of the MS1 environment can be executed in various commercial tools and

solvers including ACSL, Maple, Modelica, or MATLAB.

� MTT is a tool for transforming models between different model description forms.

This is symbolized by the tool name, which is the abbreviation for “Model Transfor-

mation Tools”. It was developed by Gawthrop at the University of Glasgow.

� PASION 32 is an object-oriented simulation tool supporting diverse modeling ap-

proaches, including bond graphs. It is based on Pascal programming language and

utilizes Pascal source codes during runtime as well. Users can enter bond graphs in

a simple graphical way. Causality can be assigned manually or decided by tool algo-

rithms. The final bond graph in a graphical form is consequently transformed into

textual representation in the form of a proprietary code.

� SYMBOLS Shakti/Sonata is an integrated modeling and simulation environment,

which was developed at the Indian Institute of Technology Kharagpur. The tool name

SYMBOLS is the abbreviation standing for “SYstem Modeling by BOnd-graph Lan-

guage and Simulation”. It has many common features with the tool suite 20-sim.

In addition, the SYMBOLS tool introduces the concept of “capsules”, which enable

hierarchical modeling with respect to an encapsulation of sub-models via explicitly de-

fined interfaces, called glue ports. “Algebraic loops and derivative causality at storage

ports are tolerated” [28]. Non-linearities can be modeled with non-constant parame-

ters, which are natively supported and can be related, for example, to latest values of

specific system states.

� TUTSIM is a tool developed at the University of Twente. It is a predecessor of

the famous aforementioned tool 20-sim, developed at the same university. Compared

to ENPORT that was being used in the coincident era, TUTSIM is slightly more

generic and it is better focused on block diagrams rather than on pure mathematical

descriptions of ENPORT. It also supports numerical simulation of the bond graphs

including nonlinear systems, however, it does not support stiff systems.

The bond graph method can be also used in tools that are not intended to bond graph

modeling originally. For this purpose, Modelica language plays a crucial role as it is an

equation-based modeling language. It implicitly means that Modelica models are acausal,

respectively dependencies between variables are solved by simulation solvers executing the

Modelica code. A typical example of simulation environments supporting Modelica language

is Dymola. Dymola can be used for bond graph modeling, too, as it is discussed for example

in [35]. In general, using Dymola for bond-graph-based modeling is not the desired way of

use of this tool originally, yet it is possible.
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2.4 Functional Mockup Interface

Since requirements on separation of simulation models into several relatively independent

units are emerging or increasing, this topic is addressed in this thesis as well. Functional

Mockup Interface3 (FMI) is a technical solution for the composition of simulation models

from simulation modules. Simulation modules in the sense of FMI are called Functional

Mockup Units (FMUs).

The basic idea of FMI is to facilitate co-simulation and model exchange. Simulation mod-

ules (i.e., functional mockup units) are compiled into an executable platform-independent

code. The benefits of FMI/FMU are that (i) it enables bridging diverse simulation lan-

guages and platforms, as well as (ii) it hinders revealing details how simulation modules

are implemented. The former aspect is important when integrating modules implemented

for example in MATLAB-Simulink and Modelica language. These platforms are of different

nature and each of them is beneficial for different kinds of simulations. The latter aspect

is important in simulation projects covering several stakeholders in industrial consortium,

where intellectual property protection plays a significant role. This situation is frequent

for example in an automotive industry, where subcontractors deliver products to various

competing car manufactures. Examples of the FMI applications in the automotive industry

are discussed for example in [154] or [89]. Technically, FMUs are zip files, see [46] for details.

Each zip file includes the simulation unit itself (i.e., the simulation module), which has an

interface in the C language representation. In addition, each FMU is accompanied with an

XML annotation describing the interface of the unit.

Evaluating the FMI approach, it is beneficial in terms of supporting for modular sim-

ulations consisting of a set of simulation modules. This technology is well tested, partly

adopted by industrial stakeholders, and considered as promising. The intellectual property

protection on the FMU level has been already mentioned, which is the next benefit of this

technology. On the other hand, the FMI does not provide means how to define the size of

units, into which a specific large-scale simulation should be split, or how to specify inter-

faces of these units. Such issues are in the scope of research, see for example [31] for further

details. When used in the co-simulation mode, the FMI requires a master unit, within

which the other FMUs are loaded [11]. This characteristic imposes limitations on flexibility

at simulation runtime as the master unit cannot be removed and affects the computational

stability of the entire federation of units. Last but not least, the FMI is not an open tech-

nology, neither on the source-code level, nor on the execution level. Hence if the simulation

federation does not work properly, it is difficult to debug. The limited insight of simulation

engineers into running simulations within the FMI can pose an important restriction for

improving the execution and identifying weak points in simulation models. However, this

issue corresponds to the black-box nature of FMUs, which can be seen as a benefit on the

other hand.

FMI is partly competing to the utilized simulation integration framework (SIF). Both

FMI and SIF are technical infrastructures for running simulation models consisting of a

set of simulation modules. FMI is more customer-oriented in terms of each FMU is an

encapsulated module which cannot be seen or edited internally from the level of the entire

simulation workflow. SIF is more simulation-expert-oriented as various modules can be

refined arbitrarily and they can be inspected during simulation. In addition, SIF supports

3https://www.fmi-standard.org
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Figure 2.2: Automation pyramid.

access to diverse data sources and arbitrary choice for simulation solvers in case of each

simulation module. On the other hand, FMU is a commercial off-the-shelf product, whereas

SIF is a framework for simulation developers/experts being under development.

2.5 Architectures of Industrial Automation Systems

The architecture of industrial automation systems has already been introduced briefly in

Sec. 1.2. In the following text, this architecture is described in more details in order to

provide foundations for the contributions of this thesis.

Fig. 2.2 depicts a schematic layered architecture of automation systems considered in

this thesis. On the lowest level of this automation pyramid, there are input and output pro-

cess data, which are physically handled by I/O modules and fieldbuses. On the second level,

there are control algorithms in programmable logic controllers (PLCs). PLCs are computers

intended for industrial control and execution of control programs at real-time. The third

level of the pyramid consists of a SCADA system [29], standing for “Supervisory Control

and Data Acquisition”. A SCADA system is a system that is intended to provide access

to industrial plants, both for human operators and the upper software systems. In a wider

sense, it can also include the hardware related to the supervisory control and data acquisi-

tion, but in this thesis, a SCADA is understood as a software system only. Therefore, it can

be considered as a borderline between the hardware and software part of the automation

system, because the aforementioned bottom levels of the automation pyramid are tightly

connected to the hardware, whereas the higher pyramid levels are hardware-independent.

SCADA includes human-machine interfaces (HMIs) [63] for interaction with human oper-

ators, historians for storing historical data, a subsystem for managing alarms and events

and many other subsystems. Industrial experiences emphasize the need for supporting in-

tegration of simulation models on the SCADA level, which is the issue addressed in this

thesis. The highest levels of the automation pyramid include the Manufacturing Execution

System [102] (MES), providing planning and scheduling of the manufacturing production,

and Enterprise Resource Planning (ERP), which is used for company management (e.g.,

SAP4).

The integration of simulations is required especially on the SCADA system level of the

automation system. The design of supervisory control and data acquisition (SCADA) sys-

tems and the integration of automation tools into one consistent system are challenges,

whose importance is growing fast. Current approaches to industrial integration and au-

tomation system design are based on repeating manual work. Even minor changes in a

4http://go.sap.com/index.html
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real plant or in an industrial system imply time-consuming work of experts and due to the

complexity, the results do not guarantee consistency and safety typically. The integration

of simulations is required especially on the SCADA (i.e., Supervisory Control and Data

Acquisition) system level of the automation system. These issues motivated the work in

this thesis that is aimed at automating the integration process in the industrial automation

area with a strong focus on process simulations.

Intelligent control techniques used on the SCADA level [80] can improve real sys-

tem operation. Benefits of advanced process control have been clearly shown in the last

decades [14], but its weak point is the necessity of simulation models, optimizers and other

specific tools. The models and the whole simulations cannot be developed and operated

without access to online and historical data to get appropriate results. SCADA systems,

simulation tools together with data sources should be thus seamlessly integrated into control

system architectures in order to create a powerful modern system.

2.6 Current Status Summary Motivating the Thesis

The shortcoming of the methods used in the industrial practice by now can be summarized

as follows. The design phase requires repeating manual work based on copying large pieces of

information. A lot of errors can occur during this process and it is not explicitly defined what

actions should be done if a specific event occurs. In addition, the design and integration

phases are rather independent, which causes problems with the consistency of interfaces

and the interpretation of signals. Therefore, this research investigates methods, which

capture relevant pieces of engineering knowledge in the knowledge base and utilize it for

the configuration of the runtime integration level. The ontology-based representation of

knowledge makes the representation flexible, and the steps in the simulation model design

and integration are clearly stated.

The major challenges for the automation system integration at runtime are expressed

in Fig. 2.3. It depicts the typical architecture used in the industrial practice now. The

numbered circles refer to the following issues:

1. Import of runtime data into simulations.
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2. Import of historical data into simulations.

3. Visualization of simulation data in standard HMIs and testing dispatchers’ commands

entered via HMI on simulation models.

4. Testing of SCADA advanced process control (APC) control actions on simulations.

5. Semi-automated design of simulation models.

6. Semi-automated configuration of OPC tags and other integration interfaces.
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Chapter 3

Related Work

The topic addressed in this thesis covers a large variety of sub-problems related to simulation

modeling, semantic and technical integration, and various issues dealing with mechatronic

systems. This section summarizes outstanding related work in all of these areas system-

atically. To simplify understanding, the research scope and related work is summarized in

Fig. 3.1. The works included in the figure are consequently discussed in the remainder of

this section.

The extraction and reuse of knowledge for supporting engineering of industrial plants

as well as their automation and control systems are crucial tasks in the area of knowledge-

based engineering (KBE) [143, 161]. One of the first approaches is addressed in [37] and one

of the data modeling approaches for supporting engineering plan reuse is discussed in [23].

3.1 Automated and Semantic Simulation Model Design

The process of simulation model design is frequently not formalized and the relevant pieces

of information usually cannot be processed semi-automatically. It causes problems with

maintenance and extensions of simulations as well as with their reuse. Although technical

integration is partially possible, the integration task is time-consuming, costly and error-

prone. These shortcomings lead to formalizing the simulation model structure in order to

simplify and to semi-automate simulation model design. Most of the solutions are based on

capturing knowledge in ontologies [55], which enable to represent knowledge flexibly and to

process it efficiently.

The Ontology Driven Simulation design tool suite is presented in [152]. The described

approach is based on two ontologies; the first one is called a domain ontology and it cat-

egorizes knowledge including a problem vocabulary in the domain scope. The second one

is called a modeling ontology and it is used for the simulation model description. Such ap-

proach guarantees a high degree of reconfigurability of the solution and a separation of the

whole problem knowledge into appertaining engineering scopes. The discrete event model

is assumed and it is represented by the DeMO (i.e., Discrete Event Modeling Ontology, for

further information see [151]). The presented approach is based on mapping concepts from

domain ontologies to a modeling ontology, translating ontology instances to an intermedi-

ate XML markup language and generating an executable simulation [152]. The approach

presented in this report is based on a similar idea, but it addresses other engineering tools

as well as it reflects features of large-scale industrial systems.
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The procedure to derive an ontology-based simulation interoperability from feasible

sources without machine-readable semantics is described in [16]. The process starts with

the extraction of relevant terms, followed by the tokenization of the source document, which

retrieves sentences and collocations of the terms. The example in the paper uses WordNet

ontology for retrieving further information. The paper also involves a description of ontology

mapping related to different simulators, which constitutes an important tool for ontology-

driven translation between independent vendor languages. Another approach to retrieve

system design knowledge from data sources that are not in machine-understandable forms

has been presented in [170].

The ontology-driven simulation model design is presented in the paper [45]. The paper

is focused on generating MATLAB-Simulink blocks and defining them via DAVE-ML ac-

cording to a domain ontology, which is the Trajectory Simulation Ontology in the presented

case. Connections of these blocks are done manually.

Ontologies for discrete-event system description already exist, for example PIMODES

or DeMO [153]. On the other hand, a small effort has been invested into continuous-time

system modeling supported by ontologies.

Ontology-based support for integration and interoperability in the context of complex

modeling and simulation environments is addressed in [162]. It formulates challenges in the

aforementioned area and provides foundations for solving the modeling and simulation tool

interoperability for cross-disciplinary systems by means of ontologies.

3.2 Bond Graphs for Simulation Model Design

A special type of simulation model design approaches is based on the bond-graph method.

It is a research area where a large variety of publications has been published.

An introduction and motivation into bond graphs can be found in [24]. The whole de-

scription of this design method is given in [52], including various examples, system analogies,

and practical issues. The author of this thesis learned about bond graphs from the text

book [64]. A very good monograph on bond graphs for mechatronic systems is [38]. Last
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but not least, a very complex monograph [28] was used to check bond graphs for hydraulic

systems and to check definitions and glossary related to bond graphs.

An approach combining bond graphs and object-oriented modeling to build simulation

models is discussed in [26]. The paper summarizes three model description languages:

MAST, VHDL-AMS, and SIDOPS. An application of VHDL-AMS is discussed in more

details for example in [138], where the chemical domain is considered as a use-case.

The main contribution of [26] is focused on the application of bond graphs for Modelica-

based models. Bond graph ports are realized by the “connector” class in Modelica language

to specify the interface, which can be consequently connected via the operator “connect”.

Compared to [26], this thesis is focused on signal-oriented simulators, whereas Modelica is

equation-oriented. Furthermore, [26] does not discuss the problem of multiple implemen-

tations of specific components. The same author presented in [27] the whole bond graph

method including specific steps to generate bond graphs for mechatronic systems, the se-

quential causality procedure introduced by Karnopp and Rosenberg, and finally several

use-cases.

The generation of simulation models based on bond graphs is discussed in [15]. The

outcome of this approach are generated simulation models in the Modelica language. The

real plant description as the main input utilizes the CAEX, which is a vendor-independent

format for process and instrumentation description. The use of Modelica implies that the

causality assignment need not be resolved by the generation algorithm. Compared to this

paper, the thesis is focused on signal-oriented simulators with explicit support for various

component implementations respectively simulation blocks.

3.3 Integration of Simulation Models

To use simulations efficiently, they should be integrated with other automation tools at

runtime and the structure and parameters of the simulation models have to be consistent

with a real industrial plant and existing automation system tools.

The problem of the simulation model integration is classified in [16] into two categories:

(i) A design-time interoperability refers to the simulation development when requirements

for interoperability are known from scratch and a structure of simulations adopts them,

whereas (ii) runtime interoperability is related to simulations and applications designed

independently.

The main limitations of simulation models created via popular software packages are

summarized in [152] as follows: (i) “There is no formal way of specifying an agreed upon

domain of discourse for the application domain of the process being modeled, (ii) “The

modeling domain suffers from a similar problem”, and (iii) “There is no commonly agreed

upon format for representing and storing models” [152]. Ontology-based integration of

simulation models is discussed in [151].

On the technical level of integration, approaches using general-purpose distribution tech-

niques can be found. They utilize technologies such as DCOM, CORBA, J233, etc. [66].

Several examples of frameworks including standard vocabularies such as DIS, SEDRIS, HLA

are given in [91]. Simulation integration control is introduced in [86].

On the technical integration level, especially the High-Level Architecture (HLA) [62] is

widely cited. The framework addresses the composition of simulations from sub-models,
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but it does not address how to get input simulation data and how to store the results. In

addition to such an absence of data source management, the shortcoming of this framework

is the absence of semantics. The extension of HLA with semantics is proposed in [66], but

any proposal for adding data source management into this framework is not known to the

thesis author.

Functional Mockup Interface (FMI) for composition of simulation models from modules

(i.e., functional mockup units – FMUs) has been already introduced in Sec. 2.4. It targets on

similar types of problems that was addressed with the older HLA standard. However, FMI

is more product-oriented in comparison to HLA. The usage of FMI is still in the pioneering

stage, in the further text, we will focus on rather proprietary approaches based on other

technologies.

System integration in electric power industry is discussed in [95]. The target systems for

interoperability are for example SCADA, EMS (i.e., Energy Management System), DMS

(Distribution Management System), AM (i.e., Automated Metering), MIS, GIS and others.

The presented approach is based on the Utility Management System1. The proposed system

is agent-based and the semantics of the APIs are described by Common Information Model

(CIM)2. Communication between the systems is realized based on the Information Exchange

Model (IEM), which is built on top of XML.

The use of generic frameworks for supporting integration of simulators and SCADA

systems is discussed in [77]. It addresses the following five frameworks: Rational Rose,

ObjecTime, SiMOO-RT, Elipse and Unisoft. The paper describes the architecture of the

environment focused on modeling, simulation, and supervision.

A power system communication layer is discussed in [47]. Two viewpoints onto commu-

nication are defined: I-view (information view) and T-view (transport view). Both views

are considered having three maturity levels - I-view levels differ in semantic capabilities and

T-view levels differ in concurrent capabilities.

3.4 Integration of Industrial SCADA Systems

The integration of electrical network systems is discussed in [155]. The addressed systems

are the SCADA system, Automated Mapping and Facilities Management (AM/FM) system

and Outage Management system. The important contribution of the paper is the description

of dataflows and their directions, classifying types of interchanged data, and evaluating bit

rates of the transfers.

Integration of systems in the Garland Power & Light (GaPL) distribution network is

discussed in [53]. The paper addresses data acquisition from the field devices into the

SCADA/EMS system. The presented research is divided into three phases relevant for the

GaPL enterprise: the first phase involves monitoring of analog and status points, the second

phase is suggested to purchase circuit monitors in several distribution points and the third

one addresses the application of the approach for some of the remaining substations of the

GaPL grid. A format of transferred data is not solved in this article.

The integration of electrical network subsystems, which are used by the company Elek-

trosrbija, is discussed in [41, 42]. The presented approach is based on two databases, whose

1http://www.omg.org/technology/documents/formal/UMS Data Access Facility.htm
2http://dmtf.org/standards/cim
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data schemes are involved in the articles. The approaches suppose concentrating all data

in a central database. The integration of a simulator is not addressed in the article.

A framework for integrated power system modeling, analysis and control called SIMIAN

is discussed in [139]. Although SCADA systems are not supported in the version presented

in the paper, the framework is expected to support integration of SCADA systems in the

future. The SIMIAN architecture (abbrev. SIMulation Image and ANimation) supports

the inter-object communication solved by sending messages by objects. The messages are

routed through the Event Handler application. Inter-process communication is solved using

CORBA.

The Henan Dispatcher Training Simulator of the local electrical network is discussed

in [67]. This system consists of the following subsystems: (i) Control center model, (ii)

Power system model, (iii) Instructor position. Off-line data are collected from the EMS

database, whereas real-time data are coming from the SCADA database. The integrated

system provides a unified HMI. It is realized on a database level by unifying two databases.

Distributed generation in electric networks, with the use of for example wind generators,

is addressed in [98]. In the main part of this article, a simulation model is described. The

model was implemented in MATLAB/Simulink environment and for the purpose of operator

training simulator usage, it was converted into C code. The data exchange between dynamic

models and SCADA systems is not specified in this article.

Contributions of the author of this thesis in the area of the integration of simulations

and SCADA systems are summarized in the previous author’s work in [127]. The article is

focused on the architecture of the simulation integration framework as well as it introduces

the usage of ontologies for simulation model design and integration, which are pioneering

approaches in these areas.

3.5 Current Trends in System Integration

A lot of research effort has been invested into a wider use of abilities of the current Internet

as well as its improvements for future use. Software as a service (SaaS) is an approach that

“focuses on separating the possession and ownership of software from its use” [157]. In other

words, SaaS assumes that the execution of software is provided by an external authority.

This approach could be beneficial for simulations, especially due to dedicated hardware-

intensive computations to an external provider. However, this option is not preferred by a

lot of industrial partners due to claims about the risk of security threats.

The promising approach applicable in this area is Internet of Things (IoT) [87]. The

IoT consists of “smart objects”. They are embedded systems having static IPv6 addresses,

which are accessible from any other node of the network, see [9] for further details. Such

smart devices can be easily integrated into interoperable systems, whose architecture can be

flexible due to uniformity of access interfaces from the technical point of view. Originally,

the IoT address does not incorporate RFID tags, however, there are methods to integrate

RFID technology within IoT seamlessly, see [87] for further details.

Advances in Semantic Web are summarized in [150]. Originally, the Semantic Web was

considered as “a Web of auctionable information–information derived from data through a

semantic theory for interpreting the symbols” [150]. The article shows the crucial role of

ontologies for bridging various representations of data and integrating knowledge.
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Another trend is the use of the service-oriented architecture (SOA) [48]. The governance

of SOA for enterprise application integration is discussed in [19]. “A major reason to have

an SOA is to create business and IT agility” [19]. “Business agility is the ability to change

or create a new business process in a readily adaptable manner” [19]. This book also

addresses so-called service-oriented enterprises, which is based not only on services, but

also on connecting business processes in a much more horizontal fashion.

Service-oriented computing is discussed in [135]. It is based on SOA, however, it extends

it with issues such as management, composition of services, service orchestration, and others,

see [135] for further details.

Design of applications satisfying service-oriented architecture (SOA) as an architectural

style that supports service orientation is summarized in [17]. Enterprise Service Bus is con-

sidered as a “pattern that allows for the integration of new and existing systems using JMS,

RMI, or of course, Web services, but also provides for heterogeneous integration with trans-

lation, mediation, and other capabilities that are required in complex environments” [17].

Due to the importance of the enterprise service bus in the context of this thesis, it is de-

scribed in more details in the following paragraph.

The use of Intelligent Services and an Intelligent Enterprise Service-based Bus is dis-

cussed in [96]. It discusses the problem of small-lot manufacturing, which was investigated

within the European project called ARUM3. Other papers disseminated in the frame of

the ARUM project that are related from the perspective of the scope of this thesis are for

example [164], [165], or [59].

3.6 Enterprise Service Bus for System Integration

The enterprise service bus (ESB) [36] is a software-engineering concept for integration of

heterogeneous tools and services. The ESB technology can be considered as a combination

of the “Service-Oriented Architecture (SOA), which is based on the request/response model

and the Event-Driven Architecture, which is based on the publish/subscribe model” [25].

The ESBs are frequently considered as abstract architectures, which offer developers a

wide space for design and development. From the methodological point of view, they are

general paradigms to be used for solving problems in various ways. The foundations of ESBs

are motivated by electrical communication buses, where all stakeholders are connected to

a shared medium. Although stakeholders can communicate peer-to-peer, the most frequent

case is to let each message to be routed by a workflow engine to final data and event

consumers.

The role of the workflow engine is very similar to the Directory Facilitator (DF) in

multi-agent systems (MASs) [73]. The DF aggregates registered abilities of agents. When

some request emerges, the DF is asked, which agent in the community can solve the request,

and this agent is afterwards contracted. The agent abilities can be implemented by services

in ESBs and they can thus address the very similar problems as well. However, MASs

are better optimized for adding and removing particular agents and their skills, which are

registered and unregistered on the DF. In case of ESBs, these operations are not expected

to occur frequently, and if solved, such approaches are rather proprietary. In this thesis, we

assume that tools can be added and removed arbitrarily, but the structure of tool domains

3http://arum-project.eu
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is fixed during the run of the EngSB instance, on the contrary to MASs.

Although the architecture and development of ESBs is an active topic in the software

engineering area, it is not necessary to have a detailed insight into the ESB architecture

when developing and implementing applications utilizing ESBs. The ESB can be treated

as a black-box [69], i.e., developers or users do not need an insight into the internal imple-

mentation of the service bus, but they can just use it.

The ESB utilized in this thesis is called the Engineering Service Bus (EngSB) [22].

The EngSB extends the concept of the ESB and of the SOA to offer a vendor-independent

solution for the integration of engineering tools with heterogeneous data models of an en-

gineering environment. It is thus not only a particular implementation of the ESB, but it

provides features that are specific for the industrial automation domain. As it is explained

in details in [68], the EngSB is an integration environment that combines the benefits of the

“best-of-breed” and “one-tool-for-all” philosophies, while mitigating disadvantages of these

approaches.

The EngSB is built on the top of the open-source project Open Engineering Service

Bus4 (OpenEngSB). As other ESBs, it provides an abstraction layer based on a specific

implementation of an enterprise messaging system. The EngSB utilizes Apache ServiceMix5

to solve messaging and communication issues, for more details see [127].

The EngSB-based infrastructure poses a solution mainly to the technical level of system

integration. Nevertheless, it has to be configured to work properly, especially in terms of

defining workflows. For this reason, ESBs have a workflow engine, which is responsible for

controlling message workflows among stakeholders connected to this infrastructure. In par-

ticular, the data exchange within the EngSB is driven by pre-defined engineering workflows

that are sets of configurable engineering process steps modeled in BPMN [3]. An essential

benefit of the EngSB is thus a technological independent description of engineering pro-

cesses and their automation [172]. The workflow represents the way of integration and it is

defined by project requirements.

The EngSB uses the Engineering Knowledge Base (EKB) described in [108] as an ap-

proach for a semantic integration in heterogeneous engineering environments with a focus

on providing links between data structures of engineering tools and systems to support the

exchange of information between these tools. The usage of the EKB for the semantic integra-

tion of heterogeneous engineering environments is presented in [109]. The article explains

that the EKB stores explicit engineering knowledge and it supports (i) data integration

based on mappings between local and domain-level engineering concepts, (ii) transforma-

tions between local engineering concepts, and (iii) advanced applications built on these

formalisms. The fundamental ideas of the EKB approach are adopted in this thesis.

On the top of the EngSB, the simulation integration framework has been developed [169].

It is planned as a generic environment for the seamless integration of simulation models

within industrial automation systems. This framework is thus based on the EngSB and

it supports integration of simulations and SCADA systems covering a simplified access to

simulations from human machine interfaces (HMIs), version-control of data and models, and

other issues typically required by industrial companies. The first version of the emerging

simulation integration framework was proposed in [168]. It is mainly a technical integration

framework, which is responsible for transferring runtime or batch data between stakeholders,

4http://openengsb.org/
5http://servicemix.apache.org/
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such as simulations, HMI, OPC UA/classic connecting real plant devices and others. The

outcomes of this thesis should be compatible with the simulation integration framework

and furthermore, some of the thesis results are expected to be used as a native part of the

simulation integration framework in the future.

The setting of the workflow engine of the EngSB in terms of the simulation integration

framework as well as the setting of the entire infrastructure and all connectors is done by a

set of XML files. The preparation of such configuration files can be solved either manually,

bringing shortcomings in repeating error-prone manual work, or semi-automatically. In

this thesis, the semi-automated approach is proposed, as it guarantees a consistent solution

being flexible and capable to adopt changes without high human effort.

3.7 Semantic and Technical Levels of Integration

Ordinary integration approaches deal especially with the technical integration level, i.e.,

they implement the data transport between stakeholders. The rules for data transport are

explicitly listed and the ability to transform data is limited only on hard-wired prescriptions.

On the technical integration level, the following important issues are not specified: how to

create routing-rule lists, whether interfaces are compatible, or whether the entire solution is

consistent. The semantic integration level is not a substitution for the technical level, but

it is an extension being on the top of the technical integration level. It is focused on the

description of interfaces and on mapping them. Typically, the semantic integration level

captures the representation of known entities, such as plant devices and their signals, and

maps the adequate ones, such as really measured and simulated variables. In the following

text, this distinction is compared more formally.

“Technical system integration is the task to combine networked systems that use het-

erogeneous technologies to appear as one big system” [110]. This definition implies that

technical integration is related to bridge technical barriers to enable unified access to the

whole system. This integration level is not in scope of this thesis, which assumes that the

technical integration is solved via the simulation integration framework [168].

Semantic integration is defined as “solving many semantic-heterogeneity problems, such

as matching ontologies or schemes, detecting duplicate tuples, reconciling inconsistent data

values, modeling complex relations between concepts in different sources, and reasoning with

semantic mappings.” [129]. In [128], three major dimensions of the semantic integration

are summarized: (i) mapping discovery (i.e., finding similarities between ontologies), (ii)

declarative formal representations of mappings (i.e., how to represent mappings between

ontologies), and (iii) reasoning with mappings (i.e., the utilization of the mappings for

reasoning). In case of this postgraduate research, the mapping is partially discovered by

designed algorithms and partially explicitly entered by humans. The mappings are rep-

resented via specific object ontology properties and knowledge is explored with SPARQL

queries.

3.8 Semantic Web

The concept of semantic integration is related to ideas behind the Semantic Web. The

Semantic Web has been considered as an envisioned successor of the contemporary World

30



Wide Web, whose growth in terms of the amount of data included and the complexity

causes difficulties in searching required information. Typical search engines are based on

occurrence of keywords in Web documents. They take into account the presence of keywords,

but not their semantic proximity (i.e., difference in their meaning). For example, the use-

case included later on in Sec. 7.2 deals with a “tank model”, which is a common term for

a hydraulic system in an educational scale. However, searching for a “tank model” in a

keyword-based search engine leads most likely to miniaturized models of tanks as armoured

battle vehicles rather than tanks as kinds of hydraulic vessels. Moreover, the keyword-based

search engines are not able to satisfactorily solve complicated queries such as “return pumps

having the output pressure higher than 10 MPa and weighting less than 3 kg”.

To tackle the searching within the growing text-natured World Wide Web, the idea of

the Semantic Web emerged. The solution is based on “augmenting Web information with

a formal (i.e., machine-processable) representation of its meaning” [146]. “The Semantic

Web is an extension of the current Web, in which information is given well-defined mean-

ing, better enabling computers and people to work in cooperation” [18]. Such a well-defined

meaning “is provided by semantic descriptions, often referred to as metadata (i.e., data

about data)” [146]. The metamodeling of information within Semantic Web is done with

ontologies. “An ontology is a technical artifact that acts as a centerpiece of any Semantic

Web based solution and allows the explicit and formal representation of the knowledge rel-

evant for the application or use case at hand” [146]. Due to the importance of ontologies

not only in terms of the Semantic Web, but also in terms of this thesis, they are introduced

in the following section in more details.

3.9 Ontologies for Knowledge Bases

Knowledge bases can be implemented in various ways, such as with databases, sets of xml

files, sets of UML models, sets of first-order logic statements, or fuzzy systems. The typical

way of implementing knowledge bases is the use of ontologies, which are core technologies

of the Semantic Web. The knowledge base is frequently considered as an ontology together

with a set of individual instances of classes.

The term “ontology” originates from philosophy, where it means a theory of exis-

tence [131]. In the area of the software and knowledge engineering, ontologies are considered

as a formalism to represent knowledge in a machine-understandable (also called machine-

interpretable) form. Many definitions of this term exist in the computer science area. One

of the most cited definition is by T. Gruber: “An ontology is an explicit specification of

a conceptualization.” [55]. Another definition comprises ontology fundamentals: “Ontol-

ogy is formal explicit description of concepts in a domain of discourse (classes (sometimes

called concepts)), properties of each concept describing various features and attributes of

the concept (slots (sometimes called roles or properties)), and restrictions on slots (facets

(sometimes called role restrictions)). An ontology together with a set of individual instances

of classes constitues a knowledge base. In reality, there is a fine line where the ontology

ends and the knowledge base begins.” [130]. Further definitions and details can be found in

numerous literature, such as in [131]. The design, populating the ontology with individuals,

and maintenance phases are referred as ontological engineering, see [54] for more details.

Ontologies are able to provide a suitable paradigm for knowledge modeling and repre-

sentation to improve simulation model design and integration. Nevertheless, working with
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ontologies and understanding captured knowledge is specific compared to traditional tech-

niques such as object models or relational databases. One of the main factors affecting their

use is the “open world assumption”. It means that the patterns captured in the ontology

need not to be complete. This assumption definitely makes sense in the Semantic Web

area as it can frequently happen that another ontology in this virtual space can change the

meaning of the set of the original one. On the contrary, engineering projects are typically

oriented on a closed-world manner, i.e., each engineering plan summarizes a specific snap-

shot of a system, yet it reflects only a particular engineering domain point of view or yet

the plant itself can be evolving along the project steps or plant operation and maintenance.

In addition to the open world assumption, the Semantic Web relies on the “nonunique

naming assumption”. It means that the same entity in the Semantic Web can be referred

with several different identifiers. This assumption causes that when we have two different

identifiers, we will not know, whether they represent the same thing or not.

The open world assumption together with the nonunique naming assumption led to

the formulation of an apposite statement called an “AAA slogan”: “Anyone is allowed to

say Anything about Any topic” [2]. As a corollary, a syntactical difference of two resource

identifiers does not mean that two different entities are referred.

Since ontologies are frequently used for data modeling of knowledge bases implemented

in object-oriented programming languages (such as Java, C#, or C++), ontology models

are frequently confused with object models. However they are not the same [141]. The main

difference is in the interpretation of attributes, i.e., object variables respectively ontology

properties. In object models, attributes are local on the level of each class, whereas in

ontology models, they are independent on classes. Ontology properties create separate

hierarchies and each property can be reused in various classes, united with other properties,

and reasoning can be performed across classes and instances. As subclasses of relations can

be created, this is a next aspect specific for the ontology model. Another difference between

the object model and the ontology model can be found on the level of classes. Classes are

specifications of instance behavior in object models, whereas in the ontology model, they

are specifications of the allocation of instances to classes. However, instances are assignable

to more classes in the same time, which corresponds to the aforementioned open world

assumption of ontologies. The next difference between object and ontology models on the

class level is that a relationship can be described between two classes only in the object level.

On the contrary, ontologies enable to describe relations between several different classes.

Design of ontologies (i.e., ontology engineering) is a complicated process that can be

iterative and that can tackle with evolving nature of domain of interest. A detailed analysis

of motivations and benefits of the use of ontologies is addressed in [130], which describes

the workflow how to design a new ontology in terms of the specific process steps.

3.9.1 Ontologies and Description Logics

Ontologies and especially the languages how to represent them are based on description log-

ics [12]. The description logics is a family of languages for formal knowledge representation.

The representation of knowledge in description logics is based on TBoxes and ABoxes that

can be used to characterize knowledge captured in ontologies and to support inferring new

pieces of knowledge that are not explicitly included in ontologies.

TBox refers to terminological knowledge. It corresponds to ontology concepts and prop-
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erties. It creates a model of the data and it is considered similarly as a database schema.

On the contrary, ABox refers assertional knowledge. It corresponds to instances of concepts

(i.e., individuals) defined in the TBox. In relational databases, ABox corresponds to the

data, which are stored in tables, themselves.

ABoxes in terms of description logics correspond to ontology individuals directly. How-

ever, there is a slight difference between TBoxes and ontology classes. Ontology classes can

be hierarchically structured and thus they create a glossary. Ontology properties can be

specified and assigned with domains, hence relevance of properties to classes can be formu-

lated. This is inline with TBoxes in the description logics, but the difference is that ontol-

ogy classes cannot be associated with any specific values of ontology properties. In other

words, one cannot explicitly distinguish different classes with property values (i.e., param-

eter values) on the ontology class level, whereas TBoxes enable to make such a distinction.

Considering a passive house use-case discussed in Sec. 7.1 as an example, a “bungalow” is

a specific type of house that has exactly one floor. However, one is not able to express this

terminological fact with ontology, where the number of floors is entered as a defined param-

eter. This issue significantly affects describing industrial systems that frequently consist of

devices being instances of device types.

In conjunction with the description logics, reasoning plays a crucial role. Reasoning

is considered as “deriving facts that are not expressed in ontology or in knowledge base

explicitly” [131]. A large variety of reasoners is available around the world. They can

be used to infer knowledge based on transitional properties, such as each individual is

the instance not only of its direct class, but also of all its upper classes. Beyond such a

transitivity of properties, reasoners can use relatively complex rules to infer new pieces of

knowledge, such as WSDL.

3.9.2 Ontology Languages

One of the most important ontology languages is the Resource Description Framework

(RDF), which was originally intended to describe resources in the Semantic Web. To do

this, RDF utilizes a concept of a Uniform Resource Identifier (URI), which is an identifier

for each resource utilized to define namespaces in the similar way as in XMLs. Knowledge

is represented in RDF in the form of triples subject – predicate – object. A set of such

triples in RDF is called an RDF graph. RDF graphs can be serialized into several formats,

including the Turtle family of RDF languages, JSON-LD, RDFa (i.e., Resource Description

Framework in attributes), and RDF/XML [146].

Another ontology language is an RDF Schema (RDFS). It is built on the top of RDF and

provides a basic vocabulary. The important property defined by RDF is rdfs:subClassOf,

which describes the subsumption of classes. This predicate defines the hierarchy and thus

it can be used for defining a glossary. In the original RDF, this issue was not possible in

a standard way. Another important keyword specified by RDFS is rdfs:class, which is

again related to the specification of a glossary.

A further ontology language is the Web Ontology Language (OWL). It is defined in

three profiles6: OWL Lite, OWL DL (standing for “description logics”), and OWL Full. In

principle, reasoning could be done in case of all of these profiles, but the most powerful yet

6http://www.w3.org/TR/owl-features/

33



efficient enough is in case of the OWL DL. Examples of frequent reasoners are Pellet7 or

RacerPro8. Hereinafter in this thesis, only the DL profile of OWL is considered.

The OWL is adding further expressive means on top of RDFS. Among others it better

tackles classes and defines which of them are disjoint, which is quite important due to

the open world assumption of the Semantic Web. The OWL also distinguishes between

object properties and datatype properties, which is very important for mechatronic system

modeling and supporting simulation model design and integration. The object properties

are predicates interrelating either two individuals or one individual and one class. The

datatype properties have literals as their values, i.e., they are suitable for parameterizing

entities. Similar explicit distinction is frequent in object-oriented programming languages,

thus it is easier to serialize and deserialize ontologies from/into such languages.

3.9.3 Querying of Ontologies

Knowledge can be easily retrieved from OWL ontologies with querying languages such as

SPARQL9 or SPARQL-DL10). The name “SPARQL” is a recursive acronym standing for

“SPARQL Protocol and RDF Query Language”. This query language enables to retrieve

and to manipulate data stored in the RDF language. It supports triple patterns, conjunc-

tions, disjunctions and other patterns. From the database point of view, the SPARQL

usage is similar to retrieving data from NoSQL databases based on a key-value principle

(i.e., values are assigned to identifiers called keys).

SPARQL supports four types of queries: SELECT, CONSTRUCT, ASK, and DE-

SCRIBE queries. The most frequent type is the SELECT query which returns a set of

n-tuples as its result. It is intended to retrieve knowledge from the ontology, which satisfies

the conditions specified in the query. A simpler way of query is the ASK query, which

returns whether the conditions specified in the query are satisfied within the ontology. The

answer is thus either of type “yes” or empty result meaning that the specified pattern is

not explicitly involved in the ontology. A more complicated is the CONSTRUCT query

which is intended to create new triples in the ontology. This kind of query consists of two

parts, the first one is equivalent to the SELECT query and the second one specifies how

the returned results coming from the selective query should be captured in the ontology.

Finally, the DESCRIBE queries are intended to get a graph as a result. It extracts from the

entire RDF graph those triples that are not breaking conditions stated in the condition-part

(i.e., WHERE section) of the query. This is useful for example for analyzing and debugging

of the query being just formulated.

3.9.4 Tool Support for Ontologies

Ontologies are widely supported by tools for users as well as by frameworks for developers.

As this thesis is focused on the use of OWL DL, we will focus only on this ontology language,

respectively this profile of the language. For editing OWL DL ontologies can be used tools

such as Protégé11, which is a widely accepted ontology editor. It enables to create a new

7http://clarkparsia.com/pellet/
8http://www.racer-systems.com/products/racerpro/
9http://www.w3.org/TR/rdf-sparql-query/

10http://www.w3.org/2001/sw/wiki/SPARQL-DL
11http://protege.stanford.edu/
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ontology in terms of classes, properties, and individuals, to check the consistency of the

ontology, to visualize it in various ways, etc.

A lot frameworks supporting OWL DL have been implemented and tested around the

world. In this thesis, Apache Jena12 is used. It enables to load and save an ontology, create

a new one, add or delete classes, properties, or individuals. It supports diverse storages

and representations of ontologies, which is important for using within large-scale projects.

Reasoners can be used easily, however, in this thesis, a reasoner is not used finally. A

very important feature of Apache Jena is a support for SPARQL, which is utilized in the

developed approach.

3.10 Existing Ontologies for Knowledge Representation

Ontologies are utilized in many areas of knowledge management and software engineering.

They are typically used for the semantic integration to represent the knowledge about data

models in a machine-understandable way as well as in many areas implementing a knowledge

base.

Some of the existing ontologies in engineering and process automation domains are

described in [104] and in [94]. Based on [104], existing ontologies in related domains can

be summarized as follows: OntoCAPE, EngMath, YMIR, PhysSys, MDF, Plant Ontology

and Functional Ontology, and ISO 15926.

The most relevant existing ontology is called OntoCAPE [105]. It is a set of ontologies

for supporting computer-aided process engineering (abbreviated as “CAPE”), which was

designed at the RWTH Aachen University. The OntoCAPE has a modular structure con-

sisting of 60+ OWL-DL files (including the meta-model 80+ files), whose overall file size

is 70+ MB. The lowest level is called the application-specific layer and it is intended to

connect particular tool knowledge. The next level is the application-oriented layer, which

describes the plant equipment and process control equipment. It also includes the view on

the particular technology from the process point of view. The third level is the conceptual

layer, which provides supporting concepts for modeling of processes, materials, and other

representations and characteristics needed for modeling of processes. The very top level is

called the upper layer and it provides expressive means for representing networks, coordi-

nate systems and others. Tightly connected to the OntoCAPE is the aforementioned meta

model, which is also denoted as meta layer of OntoCAPE. It is represented as a stand-alone

ontology, which provides foundations for meta-modeling structures and other fundamental

concepts.

A knowledge model for modular manufacturing systems is described in [4]. The basic

idea is to describe the machinery and operations semantically in order to facilitate flexibility

and agility of manufacturing. The entire ontology is not available online. The head part

discussed in [4] includes 29 concepts and 39 properties. The main idea reflected in the

ontology is separating and interrelating (i) required operations, (ii) physical machinery

performing the required operations, and (iii) control of the machinery.

One of the applications of ontologies is related to multi-agent systems. In [167], the trend

in multi-agent systems focused on incorporating semantics and sharing common knowledge

captured in the ontology is described. Ontologies can also improve industrial fault diagnos-

12https://jena.apache.org
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tics [101, 75] and defect detection (i.e., searching for inconsistencies) in process plant and

automation system design [88].

In [133], one particular way to ontology transformation is discussed. Ontology transla-

tion is a promising approach as an existing ontology could be automatically translated, for

example, for simulation design purposes, for multi-agent control system configuration, and

for other applications. The utilization of ontologies in the software engineering area as a

core of information systems is described in [90].

The shortcoming of the existing ontologies is that they frequently cope with one specific

domain, and that they do not cover the whole automation system and simulation. The

author of this thesis has not found any satisfactory existing ontology. The possibility of

combining domain ontologies and upper ontologies (such as SUMO [112]) was rejected as it

does not fit for industrial applications.

3.11 Process Data Representation and Big Data

Handling multi-dimensional data and storing its semantics is addressed in [74]. Two ex-

isting data formats are described: (i) COMTRADE is a protocol to store information in

binary or text format, and (ii) HDF5 is intended to store data in binary representation and

transmitting it to process. The main contribution of the paper is enhancing binary data

with semantic information. The purpose is to integrate data from distributed units on the

SCADA system level.

Industrial systems generate a large amount of data at runtime. In the last years, an

overlap between industrial companies and Web-related companies emerges and the big data

approach is coming into an important position.

Big Data are typically characterized by the following dimensions, which are frequently

called “three V s”: (i) the “volume” corresponding to the large amount of data such as ter-

abytes or larger, (ii) the “velocity” meaning that the data access is required under real-time

constrained manner, and (iii) the “variety” symbolizing that the data can be heterogeneous

and unstructured.

Processing of industrial data based on big data approaches is discussed in [132], which

was co-authored by the author of this thesis. The idea behind this part of the research is

the effort to create a data storage for simulated data and their integration with the real

plant data. The big data approach can provide parallelism and efficiency for comparing and

retrieving various simulated experiments.

3.12 Industrial Standards for Integration and Communica-

tion in Automation

Engineering data can originate from various sources, one of them can be an XML-based

representation such as AutomationML or SysML, described in the two following paragraphs.

AutomationML [10] is an XML-based data format for representing engineering knowl-

edge in the area of process automation and control. It is standardized as IEC 62714 [70]

and topical issues about this format can be found at the Web page of the AutomationML
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e.V.13. In the German language, detailed information about AutomationML can be found

in [43].

The AutomationML can be considered as integrating format for the following standard-

ized data representations: CAEX for plant topology information, COLLADA for geometry

and kinematic information and PLCopen XML for logic information. AutomationML is a

descriptive formalism, but it weakly copes with semantics and especially interdependencies

between evolving knowledge. Since AutomationML is becoming an important standard in

industrial plant description and automation in general, it is supported in this thesis. It

could be used as an interface between the artificial intelligence area dealing with ontologies

or reasoning, and the industrial practice.

In terms of the CAEX-part of AutomationML, the entire plant/system model is rep-

resented as an “instance hierarchy” in the AutomationML format. Devices of the plant

are represented as instances, which are called “internal elements” of the aforementioned

“instance hierarchy”. The type of each device is represented as “system unit class”, as each

internal element is in this case an instance of a system unit class. The interconnections

between devices are represented as “internal links”. To support expressing of the meaning

of captured information, AutomationML/CAEX defines “role class libraries”, which should

be shared among various projects. Interfaces of artifacts are modeled with “interface class

libraries”.

The view on the AutomationML data format from the perspective of data exchange

with tool chains in engineering projects is addressed in [148]. The paper also includes a

survey among experts on the preferred way of exchanging project data between tools. The

majority of preferences was a standardized data exchange format, which was followed by the

common project data base to integrate several tools. These preferences are in compliance

with the approach proposed in this thesis, as the standardized data exchange format that

is supported here is AutomationML and the common project data base is represented by

the EKB/automation ontology.

OMG SysML is “a general-purpose modeling language for systems engineering” [134].

SysML is based on UML 2 and the specification defines the syntax (notation) for the com-

plete language and specifies the extensions beyond UML 2. SysML is intended to the

interaction of machines and humans during system engineering by providing graphical no-

tions, but it is not focused on machine understandable processing of knowledge. SysML

could be used to populate the automation ontology with plant data in the future.

The process of integration in the industrial automation area is standardized in ISA-95.

In [159], the applications of the standard ISA-95 are described. ISA-95 is focused on vertical

(or hierarchical) integration of automation tools and it can be regarded as an integration

within the automation pyramid. ISA-95 does not provide a communication language or a

standard but rather a methodology to design the system interoperable and it systemizes

the integration approach. The standard is widely cited especially when integrating ERP

systems and MES systems.

At the borderline between technical and semantic integration, there is a complex stan-

dard ISO 15926 [71]. Although it has been originally intended to oil industry, its ideas and

approaches are general and usable also for industrial automation systems and integration in

general. The crucial part of the standard is the part 2, dealing with the description of ob-

13https://www.automationml.org
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jects and activities during various stages of the plant life-cycle. It includes diverse views on

the process plant depending on the involved engineering disciplines. In the original version

of the standard (parts 2–4), the EXPRESS language was used for data and process mod-

eling. Due to a limited tool support for the EXPRESS language, implementation methods

based on OWL were added as parts of the standard 7–10, see [84] for further details. The

representation of the original part 2 in OWL language is accessible online in frame of the

POSC Caesar Association14.

OPC Unified Architecture (UA) is an industrial standard especially for the integration of

field devices. It was developed on a basis of the OPC classic specification and it combines all

of the following OPC classic standards: OPC Data Access, OPC Historical Data Access, and

OPC Alarms and Events into one unifying specification [93]. The OPC classic is typically

used for technical integration of the field level and the SCADA level of the automation

pyramid. Instead of such a vertical integration, the OPC UA is able to integrate stakeholders

on the same level as it introduces a configurable data model. Unlike OPC classic, OPC UA

clients can request data from other clients, hence the UA clients can behave as OPC UA

servers as well. OPC UA supports function calls from OPC UA servers and clients. The

methodology for a reconstruction of a real plant structure in legacy automation systems

utilizing the OPC UA tag list that is compliant with the labeling system IEC 81346, is

presented in the co-authored paper [120]. The approach combining the service-oriented

architecture with OPC UA is discussed in [100].

3.13 Multi-Agent and Holonic Systems

Distributed nature of many industrial systems and advances in distributed control came up

with the concept of multi-agent and holonic systems. This area is addressed in this thesis

as well, especially in terms of a connector to multi-agent systems described in Sec. 6.5.5.

Multi-agent systems are systems consisting of autonomous units called agents. Many

different definitions of the term agent exist as this paradigm is used in various types of

systems of different nature. One of the most famous definitions is by M. J. Wooldridge and

N. R. Jennings: “An agent is a self-contained problem-solving system capable of autonomous,

reactive, proactive, and social behavior” [174]. A multi-agent system term was defined by

N. R. Jennings, K. Sycara, and M. Wooldridge as follows: “An agent-based system is an

environment where the agent abstraction is utilized” [73].

From the industrial perspective, an important term is a holonic system, which means

that a system is simultaneously a whole and a part of another system. Concepts for dis-

tributed control applications were investigated by Holonic Manufacturing Systems consor-

tium as a part of the Intelligent Manufacturing Systems program. Several holonic manufac-

turing methodologies aiming at formalization of holon types, their behaviors, and interaction

scenarios have been proposed. In addition, specific architectures of these types of systems

have been proposed, such as PROSA (i.e., Product, Resource, Order, Staff Architecture),

ADACOR (i.e., Adaptive Component Based Architecture), or HCBA (i.e., Holonic Compo-

nent Based Architecture) [163].

Industrial process control is typically based on PLCs. Therefore, holonic and multi-

agent systems have a layered architecture for control purposes, which consists of a low-level

14https://www.posccaesar.org/wiki/ISO15926inOWL
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Figure 3.2: Holonic architecture, adapted from [156].

control (LLC) module and a high-level control (HLC) module, see Fig. 3.2. The LLC module

is a control program running in a PLC in a classical scan-based manner, whereas the HLC

is implemented by software agents, which communicate with LLC via a control interface.

In parallel to the standardization of holonic systems, an intensive effort has been done

in the area of providing standards for the MAS domain as well. The Foundation for In-

telligent Physical Agents (FIPA) organization produced sets of standards covering agent

management, communication, and message transport. The FIPA standards introduce two

services in MASs: (i) the Directory Facilitator (DF) is a list of agent capabilities, thus it

is informally called yellow pages; and (ii) the agent management system (AMS) registers

all agents existing in the MAS. Agent communication utilizes frequently a Contract-Net

protocol (CNP), which is based on two stages for negotiation between agents [78]. Since

this protocol does not lock resources, more sophisticated protocols have been proposed,

such as Plan-Commit-Execute (PCE). Various agent platforms supporting running and de-

velopment of agents such as JADE, ACS, FIPA-OS, AGLOBE, MAdkit, JACK or Zeus are

available. Some of those platforms are evaluated in [58]. Design, analysis, and testing of

multi-agent systems in general is discussed in [158].

Various applications of multi-agents systems can be found in [99]. Industrial applications

of multi-agent technologies are summarized in the review [163]. Experiences with industrial

adoption of holonic and agent-based systems for process control are described in [56]. The

paper identifies four claiming areas: “(i) Lack of skill in distributed thinking, (ii) Deter-

mining emergent behavior, (iii) Cost of adoption and implementation, and (iv) Design and

maintainability of agent-based systems” [56].

Multi-agent systems are by their nature close to IEC 61499 standard, which defines

block-based PLC programming. It is considered as a promising successor of IEC 61131.

Benefits of IEC 61499 for reusability of DCS applications are explained in [61]. Since only

a few PLC vendors offer IEC 61499 controllers, the approach presented in [156] introducing

the Agent Development Environment (ADE) supports the IEC 61131-3 standard of PLC

programming languages for LLC implementation.
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3.14 Semantic Technologies in Building Automation

Building automation is an emerging area whose importance is growing significantly. A

use-case dealing with automation of passive houses is included in Sec. 7.1 to evaluate the

proposed method for a non-traditional type of systems. Hence this section briefly introduces

related work in the area of semantic technologies in building automation.

Four-layer system architecture bridging the gap between building devices (on the low

control level) and semantic service-oriented technologies (on the high control level) is pre-

sented in [6]. These four layers are (1) device layer, including various devices connected via

diverse buses, (2) connectivity layer, providing abstraction of the networking, (3) service

layer, including safety and control loops such as authentication or temperature control, and

(4) semantic agents facing high level goals.

The paper [142] deals with integration of heterogeneous building automation systems

(BAS). Four protocols (BACnet, KNX, LonWorks, and ZigBee) are supported. The knowl-

edge is captured in the BAS ontology in order to (1) configure the heterogeneous system

centrally, (2) thanks to the machine-interpretable data representation an access point for

other systems is realized, and finally (3) the ontology alleviates overhead that is encountered

when heterogeneous systems shall be integrated. The proposed BAS ontology is hierarchi-

cally based on “Function Block”, “Datapoint”, and “Address” concepts.

A flexible Service Oriented Architecture (SOA) platform for controlling and coordinating

devices is proposed in [140]. Each controllable device from a house environment is modeled

as a Web service, whereas functionalities such as pressing a button are modeled as Web

service invocations of particular operations. A more generic approach for the building

automation and control is presented in [39]. It proposes an efficient process for automating

the design of building automation systems based on OWL ontologies.

In the use-case presented in Sec. 7.1, the utilized simulation library is called the Build-

ing Simulation Library. It was designed and implemented by the author of the thesis in his

previous work [115], [117], and [125]. However, other simulation libraries for building simu-

lation exist as well, for example the International Building Physics Toolbox (IBPT) [79]. It

is an open-source library implemented in MATLAB-Simulink, which was originally devel-

oped for heat, air, and moisture system analysis. The toolbox defines a common modeling

platform including unique communication signals, a material database and a documentation

protocol.
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Chapter 4

Knowledge Models for Improved

Simulation Model Design and

Integration

This chapter is focused on representing engineering knowledge to support the design and in-

tegration of simulation models for industrial systems. It proposes the automation ontology

and its data model, which is the solution of the knowledge base. It is intended for capturing

engineering data relevant for efficient simulation model design and integration. The chapter

includes research contributions of the author into the area of engineering knowledge mod-

eling. In particular, the chapter provides a solution for the research issue RI-1 and fulfills

the goal of the thesis G-1. Last but not least, this chapter provides foundations for the two

subsequent chapters.

4.1 Engineering Disciplines and Engineering Plans

Engineers of each engineering discipline utilize a set of software tools and types of engi-

neering plans that can differ or overlap between various disciplines in mechatronic systems

engineering. In many cases, even engineers of the very same discipline use different software

tools because of the tool capabilities. It is necessary to bridge the gap between engineering

tools and engineering plans but also between terminology of engineers of different disciplines.

Since complex mechatronic systems are very complicated frequently, engineers utilize

domain-specific languages (DSLs) to describe relevant concepts and properties from partic-

ular discipline points of view. System modeling and designing simulation models is thus

a cooperative work relying on engineers of various engineering disciplines. This is in com-

pliance with the description in the monograph [8]: “To capture phenomena of interest

accurately and in tractable mathematical form is a demanding task, as can be imagined,

and requires a thorough understanding of the physical process involved. For this reason,

the mathematical description of complex electrical systems, such as power systems, is typ-

ically accomplished by electrical engineers, the equations of flight dynamics of an aircraft

are derived by aeronautical engineers, the equations of chemical processes are arrived at by

chemists and chemical engineers, and the equations that characterize the behavior of eco-

nomic systems are provided by economists. In most nontrivial cases, this type of modeling

process is close to an art form since a good mathematical description must be detailed enough
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to accurately describe the phenomena of interest and at the same time simple enough to be

amenable to analysis” [8].

Prior describing how to represent engineering data and in particular how to represent

them within the proposed data model of the automation ontology, the basic terminology

from the area of industrial automation systems is summarized in this paragraph. The term

real plant means a physical industrial system. An example of a real plant is a laboratory

tank model, which is later used as a use-case in Sec. 7.2. The real devices in hydraulic

systems are tanks (i.e., vessels), pipes, pumps, and valves. Examples of device parameters

are lengths of pipes, volumes of tanks, or maximal flows through pumps. Parameters are

properties of real devices and they are typically constants characterizing their size or shape.

All values measured in the system by sensors are typically available on a software level on

OPC1 servers. Each variable on the OPC server is called an OPC tag and it is a triple (name

of the variable, timestamp, and value). Values of tags are time-series. They are typically

control actions for a real plant (i.e., inputs into the real plant), and measured variables (i.e.,

outputs of real sensors). Tags are also inputs and outputs of simulation models in the very

same way as in the real plant case.

4.2 Design of the Knowledge Base

Knowledge about real systems involved in mechatronic system engineering has to be cap-

tured in the knowledge base. The data model of the knowledge base for simulation model

design and integration is the automation ontology, which was designed by the author of this

thesis (see for example [122] or [123]).

In this thesis, the concept of the engineering knowledge base is implemented by the au-

tomation ontology implemented in the OWL language and the ontology tool encapsulating

the ontology. According to [85], the utilization of OWL ontologies provides the following

benefits: reuse and interoperability, flexibility, consistency and quality checking, and reason-

ing. The application of ontologies in the semantic integration and design area is beneficial

as it is related to the creation and evolution of the data model, which is not known from

the beginning. That is the reason why relational database technologies do not frequently fit

for this task. Several approaches utilize knowledge representation in XML formats, such as

AutomationML or SysML. Their common shortcomings are difficult querying or inferring

new pieces of knowledge as well as particular files cannot be combined easily. Still emerging

direction trying to find a compromise between the high-performance relational databases

with pre-defined data models and between the light-weight approaches with evolving data

models (such as ontologies) are NoSQL databases. Basically, they are based on the key-value

principle, where for each unique key is assigned a specific value. The evaluation of such

technologies for automation system engineering projects is presented in [107]. The common

point of all the four technologies is that if users are not skilled in these technologies, it will

be difficult to work with them. Ontologies were selected as the most promising technology

for the implementation of the knowledge base. Since the target users of the proposed ap-

proach are control engineers or experts in a simulation domain, experiences with ontologies

are not expected. The solution thus proposes to encapsulate the automation ontology with

the ontology tool implemented in Java. Although several names for this tool have been

used, for simplicity reasons, it is called generally the “ontology tool” in this thesis.

1OPC stands for Object Linking and Embedding for Process Control
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Figure 4.1: The patterns that are frequent in simulation and automation system engineering and
that have to be supported by the automation ontology.

The common model has to combine information from various engineering domains creat-

ing a knowledge base that integrates information from available engineering sources such as

electrical schemas, mechanical plans, or P&IDs (i.e., piping and instrumentation diagrams

that are used for the technology description). The knowledge base supports efficient query-

ing of the captured knowledge and inferring new pieces of knowledge, thus the information

from the knowledge base can be easily used for supporting the design and integration of

simulations. In future, such knowledge could be also used to support PLC programming or

intelligent fault diagnostics.

4.3 Requirements on the Ontology Model

Based on the author’s experiences, talks to industrial partners, and literature review, the

required patterns to be supported by the designed ontology can be expressed by Fig. 4.1. It

depicts the following frequent patterns that should be supported by the designed ontology:

1. Part-whole relationship;

2. Hierarchical (i.e., layered) structure of the system, including interfaces on the hierar-

chy levels;

3. Connections between components including port numbers (i.e., it is not enough to

express two components are connected, but it is needed to express for example that

the first output port of C1 is connected with the first input port of C2);

4. Coupling of several signals within input and output component interfaces (i.e., dotted

lines in Fig. 4.1).

To represent mappings between simulation components and real devices needed for sim-

ulation model design, the proposed data model has to be able to represent the mapping

pattern as it is symbolically depicted in Fig. 4.2. The idea behind this pattern is that each

real device (in this case a resistor), can be modeled by one of n corresponding simulation

blocks. In this case, two simulation blocks for a resistor can be used in the topology of

the simulation model. This assumption is crucial for the proposed method for the simula-

tion model generation and thus this pattern has to be addressed by the data model of the

knowledge base.
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Figure 4.2: Example of mappings between real devices and simulation blocks in case of the electrical
resistor. This mapping means that each resistor in the real system topology can be modeled by one
of these two simulation blocks differing in input and output interfaces.
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Figure 4.3: A simplified overview of automation system domains relevant for structuring of the
proposed automation ontology.

4.4 Automation Ontology

The knowledge base formalizes relevant information for integrating and designing simulation

models for industrial plants that can have a mechatronic nature. This section discusses the

proposed data model of this knowledge base, which is suitable for the purposes of the

simulation model design and integration.

4.4.1 Domains of the Automation Ontology

To introduce the proposed data model of the knowledge base, Fig. 4.3 depicts the most

important domains represented in the designed automation ontology: real plant domain,

simulation domain, variable and tag domain, parameter domain, and bond graph domain.

The real plant domain represents the structure of a real system, i.e., it includes physical

devices and their connections. The simulation domain is focused on simulation models,

which approximate the behavior of the real plant. This is the reason why the simulation

domain and the real plant domain are connected with an arrow, expressing which parts of

the real plant are simulated by simulation modules. Both real plant and simulation do-

mains have variables/tags and parameters. Tags are variables with a unique name, which

are inputs and outputs of devices or simulation models. On the contrary, parameters are

properties of devices that characterize behavior and features of devices, models, etc. The

difference between tags and parameters is that tags are time-series (i.e., sets of samples),
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whereas parameters are constant values (i.e., single values). The variable and tag domain in

Fig. 4.3 represents variables and tags that formalizes their names and types and interrelates

diverse tag representations in different domains. The parameter domain formalizes parame-

ters in the system and interrelates diverse parameter representations in different disciplines

and domains. The bond graph domain represents elements of bond graphs including their

extended version proposed in this thesis. It captures components, junctions, and connec-

tions, as well as causalities and power directions. This domain is crucial for generating

simulation models in specific simulators as an intermediate simulation-independent step.

Following this brief introduction into relevant domains and required patterns, the further

text explains the proposed data model in more details.

4.4.2 Real Plant Domain

The sub-ontology for modeling real industrial plants is depicted with blue blocks on the left-

hand side of Fig. 4.4. A real system is denoted as an individual of the “real plant” concept.

Each plant is structured into one or more “locations”, which can typically correspond to

geographical positions or functional behavior of system parts. Such plant locations consist

of one or more “real devices” (such as pumps, pipes or tanks), which are key entities of

the real system description. Furthermore, it is not enough just to list real devices, but it

is very important to express how they are interconnected. The physical interconnections

are formalized based on the predicate “hasPowerBond”, whose meaning is adopted from

the bond-graph theory. The second kind of a connection “hasSignalBond” represents the

information flow between subsystems.

Each real device can have one or more “parameters” (such as diameter or length) and

it can have input and output “variables” (e.g., flow or pressure), whose unique names

are “tags” (e.g., “flow205” or “pressureTank101”). Parameters define conditions for the

operations, whereas variables or tags are inputs and outputs. Since it is needed to intermap

tags and parameters from various engineering disciplines and since such correspondences

are crucial for simulation integration purposes, the proposed formalization considers them

as stand-alone domains, which are described in the following subsections.

4.4.3 Variable and Tag Domain

Variables are time-series that are measured by sensors in the real plant, created by users, or

exported by a connector in the case of simulations and other software systems. At runtime,

values of each tag are represented as a set of triples (name, timestamp, value), which are

called in the presented formalization “samples”. In Fig. 4.4, variables are depicted in the

middle part of the figure with the yellow color.

A tag is a concept representing unique names for variables. Tags are distinguished by

a data source, for example, a “real tag” represents tags on the OPC server related to real

variables, and a “simulation tag” is related to inputs and outputs of simulation modules.

These tags must be inter-mapped in order to express that they have the same meaning, but

their values can be different due to the various sources. Within the technical infrastructure

presented later in Sec. 6.2, such tags must have unique names. The tag names are translated

on tool connectors between the global names (i.e., tags shared within the EngSB-based

infrastructure) and local names (defined by real, simulation and other types of tags).
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Figure 4.4: Simplified overview of the automation ontology showing the main classes and their
relationships.

46



For integration purposes, “TagMapping” instances have a crucial role. This type of

mapping specifies, between which stakeholders each specific tag values should be transferred,

including the direction of the transfer. Tags are stored in various data sources, which are

formalized by the concept “DataSource”.

4.4.4 Parameter Domain

Parameters are properties of devices representing their features, shapes, and sizes (e.g.,

diameter of a pipe or nominal voltage of a voltage source). Parameters are constants, i.e.,

values independent on time.

The knowledge base distinguishes several kinds of parameters as each domain (i.e., real

plant, simulation, or others) can be related to a dedicated set of parameters. From the

user point of view, the most important set of parameters are parameters of a real system

and its devices. These parameters are related to simulation modules and blocks. Control

experts are familiar with various approximations of device or system behavior, such as

transfer functions. For example, time constants and steady-state gains can be simulation

parameters related to simulated devices. In general, simulation parameters can be based

on real parameters, but due to simplifications of the simulation model or due to lack of

information, approximations of real parameters can be used instead. The second important

group of parameters is related to the run of the simulation model. They configure the

simulation solver, initial and final time of the simulation, etc.

A special set of parameters are “simulation run parameters”, which are related to one

particular run, i.e., execution of the simulation solver on the simulation model under exactly

defined conditions. For example, simulation run parameters can be the start time and the

stop time, a type of a solver, or minimal and maximal time steps. Last but not least,

simulation run parameters also cover initial conditions, which define the state of a system

at the beginning of a simulation. This information depends on a specific scenario. For

example, initial conditions are the liquid level or temperature in each tank at the simulation

time t = 0.

Further tools can have their local parameters as well, such as HMIs, data sources or

others. They can be based on real parameters, but can be also anyhow transformed. An

example of this set of parameters is the setting of the connections of HMIs and OPC servers,

refresh periods, etc.

4.4.5 Simulation Domain

Each simulation model can be composed of one or more “Simulation Modules”, which are

defined as abstractions for any executable simulation files. Examples of implementations

of simulation modules can be MATLAB M-file, MATLAB-Simulink model, or a file of a

fuzzy rule-based simulation. A simulation model of a real system can be decomposed to

more than one simulation modules for example according to the spatial location of devices,

functional behavior, etc. To execute the simulation, further modules can be needed, e.g., to

prepare input data or to process output data, calculate statistics, etc. These modules do not

implement the model of the real system itself. Simulation modules are executed in a specific

order, which is formalized in the knowledge base with a class “Simulation Workflow”. The

process of decomposition of simulation problems into simulation modules and specifying
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simulation workflows is strongly project-dependent. Experiences of simulation experts in

these tasks are not substituted, but just supported both in the design and integration phases.

On top of the simulation workflow, the class “Simulation Run” assigns a set of parameters

to be used.

Simulation modules consist of simulation blocks. Simulation blocks can be either user-

defined (used for specific and not repeating blocks) or included in a simulation library. The

knowledge base model includes a class “simulation library” that represents available libraries

and their simulation blocks. Typically, such blocks included in libraries have parameters

only declared but not defined (they are called generic blocks), whereas their instantiations in

simulation modules should be parameterized with specific values according to the required

behavior.

The simulation domain is mapped to the real plant domain via the property “simulates”

that expresses which real devices are simulated by specific simulation modules and blocks.

4.4.6 Bond Graph Domain

Bond graphs as well as their extended version require support in the automation ontology in

terms of being able to model all needed concepts properly and efficiently. This sub-ontology

is used to serialize the semi-automatically created bond graphs and thus it reflects the class

model of the developed tool support in Java.

The “Node” concept should not be instantiated as it represents an abstraction for com-

ponents/blocks and junctions for efficient implementation of the proposed method. In Java,

the corresponding object is defined as an abstract object, this hierarchy was adopted to the

automation ontology as well. Due to a low importance, it is not depicted in Fig. 4.4.

Instances of the class “Component” are components in the bond-graph sense, as it has

been presented in Sec. 2.3.2. The instances of this class have links to specific simulation

blocks, which are the appropriate approximations of these components. When the simu-

lation model is created properly, each component links exactly one simulation block as its

model. In addition, components have links to real devices, expressing which part of the

plant they model.

The “Junction” concept should not be instantiated as it represents an abstraction for

two types of junctions provided by the bond-graph theory, similarly as the Node concept

on the upper level of the taxonomy. Instantiable objects are classes “Junction0”, whose

instances represent 0-junctions of bond graphs in the sense presented in Sec. 2.3.3, and

“Junction1”, whose instances represent 1-junctions of bond graphs in the sense presented

in Sec. 2.3.3.

The class “Connection” and its instances represent signal connections in the sense of

signal-oriented simulators. They are a union of the set of all signal bonds and the set

of signal bonds created as decomposition of power bonds into signal bonds. As datatype

properties, connections have assigned causalities and power directions in terms of the bond-

graph theory. Moreover, they can capture information about port numbers of nodes on

both sides of the connection, which is desirable especially in the case of signal-oriented

simulations such as MATLAB-Simulink.
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thesis [122].

4.4.7 Summary and Evaluation of the Automation Ontology

The automation ontology is implemented in OWL-DL, which was selected as an optimal

compromise between expressive power and the possibilities to perform reasoning. Required

pieces of knowledge are retrieved from the automation ontology by SPARQL queries. For the

knowledge retrieval, the “SELECT” SPARQL queries are used, whereas for the knowledge

transformation (which is used for example when transforming data from AutomationML as

it is described later in Sec. 6.3.2), the “CONSTRUCT” SPARQL queries are used.

The main bottleneck, which was identified during analysis, testing, and profiling of the

implemented software prototypes, was identified as the access to ontologies. However, the

utilized Apache Jena framework reaches very good performance results, as it is demonstrated

in Fig. 4.5. Based on this evaluation, the ontology-based approach was found as feasible and

suitable for simulation model design purposes as well as for the configuration of a technical

infrastructure providing runtime integration, because these tasks are not time-critical issues.

The overhead of processing ontologies does not bring any significant limitations and thus it

is a good choice due to flexibility of the data model and its easy adaptability.

The completeness of the ontology model was tested on the level of various use-cases

dealing with systems of four engineering disciplines (i.e., hydraulic, electrical, chemical, and

thermal systems) and it was found out as appropriate and complete.

The performance and efficiency of the ontology together with the aforementioned soft-

ware prototype of the ontology tool was tested with various load tests. It was found out

that this approach is suitable for 1 million of ontology individuals, which corresponds to

engineering systems having approximately 30,000–50,000 real devices [122]. This is fully

compliant with the scope of this thesis. If industrial applications require systems having

higher scale, big data approaches based on map-reduce architectures pose a promising way.

The rate of improvement compared to the current status used in industrial practice is

very high as knowledge bases are not used in majority of simulation engineering projects.
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Figure 4.6: The overview of the ontology-based architecture in terms of its intended usage by
experts of various engineering disciplines.

Since target users are not expected to access or to work with the ontology directly

and it is encapsulated at least on three levels in the developed and tested cases, the user

friendliness need not be taken into account as it is mainly affected by the specific wrappers.

Overall, the proposed representation of engineering knowledge was found out to be useful

and efficient and it has significant potential to be applied in industrial practice satisfactorily.

4.5 Software Prototype of the Ontology Tool

The knowledge base should support domain engineers. For simulation or domain experts, it

is not efficient to learn ontologies and to experience how to use them. Hence the utilization

of ontologies should be transparent for final users. Therefore, they are encapsulated by the

ontology tool. It was developed on the software prototype level in order to verify correctness,

completeness, and efficiency of the proposed method and approaches.

The ontology tool utilizes Java ontology API called Apache Jena2, which includes a

SPARQL language support. Ontologies are stored as files on hard-drive and the performance

was sufficient for all test cases that were used. If the performance was insufficient for a target

user, the Jena framework supports the storage TDB, whose performance is significantly

higher and it seems to be fully compliant with the simulation engineering requirements.

After collecting all relevant pieces of information in the automation ontology, they are

processed and utilized for supporting the design of simulation models and the configuration

of the technical infrastructure for runtime processes. Such an integration approach is a

typical example of the model-driven system configuration [106].

The goal of the ontology tool is to provide interfaces (i) for populating the automation

ontology with individuals representing a real plant structure, (ii) for retrieving knowledge

out of the ontology and creating configuration files for the simulation integration frame-

work and finally (iii) for generating simulation models semi-automatically. The structure

of the ontology tool and its interfaces is depicted in Fig. 4.6. On the left-hand side, a sup-

port for engineering tools, which is oriented on populating the ontology with individuals,

is demonstrated. The output interface for the generation of simulation models has been

already implemented on a software prototype level. The output interface for the generation

of configuration files has been implemented on the proof-of-concept level.

2https://jena.apache.org/
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Chapter 5

Extended Bond Graphs for

Object-Oriented Simulation Model

Design

Design of simulation models is a complex task including various complicated process steps.

This chapter proposes the author’s method to improve this process by modifying it into

such a form that can be semi-automatically solved by a machine. The improved method

saves time and costs needed for the design and re-design of simulation models and mitigates

design-time errors. The proposed method has been implemented and verified on several

independent use-cases. This chapter addresses the research issue RI-2. It also provides

theoretic foundations for the goals of the thesis G-2 and G-3, which however rely on technical

issues discussed later on in Sec. 6.

5.1 Design of Simulation Models

Hereinafter, two basic scenarios for simulation model design are distinguished and improved:

1. Design and implementation of a simulation model without any prior artifacts (i.e.,

design from scratch)

2. Creating a simulation model with the use of simulation blocks from an existing simu-

lation library

The process steps of these two scenarios are compared in Fig. 5.1. In both cases, general

knowledge about the type of the real plant and its topology has to be captured in the au-

tomation ontology. For example, the general knowledge summarizes that water distribution

networks can contain devices such as pumps, pipes, tanks, water wells, consumers or dis-

turbances; pumps have variables flow and pressure as their inputs and flow and pressure as

their outputs, real parameters of these devices and of simulation components can be length,

diameter, or elevation. The general knowledge is a kind of knowledge skeleton, which can be

filled up with real values when describing a specific plant. If needed, the general knowledge

can be extended with other parameters which are device-specific. The process steps conse-

quent to the specification of the general knowledge differ in case of available and unavailable
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lizing the simulation library.

simulation libraries. Therefore, these workflows are described in the following subsections

separately.

5.1.1 Simulation Design Scenario when a Simulation Library is not Avail-

able

The first scenario assumes that a simulation model is created without proper simulation

artifacts (i.e., without simulation blocks or modules from previous projects). The method

handles the process of gathering the following sequence of knowledge: decomposition of the

real plant into simulation modules, selection of new simulation blocks on the device level and

specification of their interfaces, declaration of simulation parameters, entering values of the

parameters, and finally uploading the new simulation model into the simulation integration

framework environment and registering it as one of the available simulations.

In more details, the general knowledge is extended with a particular plant description

in a similar way, but afterwards, the simulation model structure cannot be obtained au-

tomatically. The considered simulation design process is depicted on the left-hand side of

Fig. 5.1 and it is followed in the further text. The process of gathering expert knowledge

starts up with specifying, which of the devices should be simulated. The step includes

grouping devices into complex subsystems (such as the whole plant can be decomposed to

several simulation modules or a group of devices can be modeled as one block) as well as a

specification of block interfaces (such as the utilization of just one of the variables “flow”

and “pressure” or both of them, an extension with further signals such as control values for

devices). Afterwards, for each simulation block, simulation parameters have to be declared.

For example, a pipe can have just one parameter R denoting the relationship between its

flow and pressure. Another pipe, being very long, can be modeled in a different way, having

two parameters τ and a denoting a time constant and a steady-state gain of the first-order

dynamic system. The subsequent step of the workflow can seem surprising at first, because
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the ontology tool can create the simulation library as a result of the knowledge capturing

process. Since simulation libraries comprise generic blocks having defined input and output

interfaces and simulation parameters, the tool can select the emerging simulation blocks,

which have the same interfaces and parameters, to group them, and to extract the sim-

ulation library automatically. This issue is easy to solve using the ontology, and it saves

development time and costs significantly compared to the manual expert work making the

same substitution. Finally, the parameter values must be entered and the simulation model

is ready to use.

5.1.2 Simulation Design Scenario Based on an Available Simulation Li-

brary with Simulation Blocks

If the simulation library is available (see the right-hand side of Fig. 5.1), the library blocks

are annotated in the automation ontology incorporating their inputs, outputs, simulation

parameters and initial conditions. Consequently, the plant description has to be formalized,

which means that a real plant topology and real parameters are stored in the ontology.

Technically, this step means populating the automation ontology with individuals denoting

real devices, their interconnections, tags, and others. Based on these pieces of knowledge,

the ontology tool is able to generate the simulation model structure automatically. Finally,

the simulation expert is required to insert simulation parameter values for simulation blocks,

such as diameters or lengths of pipes.

The components are considered as atomic objects, i.e., their internal representation is

not considered, but only input and output interfaces are important. These components are

hereinafter called atomic components. Although their internal representation is not taken

into account for simulation design purposes, it has to be developed when the component

is created or later until the component is simulated. The internal representation of these

atomic components is based on mathematical-physical description. To support this task,

a large variety of monographs can be used. Some of them are directly intended for the

simulation engineering discipline (e.g., [113]), or general monographs on physics can be

used, which are frequently structured according to system types (e.g., [57]). However, even

if the simulation expert has such a simulation library with simulation blocks, their manual

instantiation and inter-wiring are extremely time-consuming and error-prone. This issue was

raised as a motivation for semi-automating this task, which is addressed in the following

text.

5.2 Motivation for a New Method Supporting Multi-Level

Object-Oriented Simulation Modeling

Researchers and practitioners emphasize the need for facilitating the design phase of sim-

ulation models. For example, the German standard VDI 3633 [160] claims that the design

phase is the most time-consuming part of simulation modeling. Prior to explaining the

simulation design method proposed by the author of this thesis, this section summarizes

the requirements and challenges that should be satisfied by the proposed method and that

drove the main part of the research presented in this thesis:

1. Reuse of information from engineering plans to automate the simulation design
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The simulation model structure is based on the topology of the real industrial plant.

Currently, engineering plans are used by a human expert creating a simulation, but

the proposed method should reuse the original plan and eliminate repeating manual

work.

2. Support for a component-based approach

Simulation models of large-scale industrial systems typically consist of simulation

components representing sub-parts of the plant. The goal is to handle each component

as a whole and to work just with its interface, no matter how the block is internally

implemented.

3. Support for networks of components having an arbitrary topology

By definition, systems consist of networked components. Since the systems can have

very complicated topologies in industrial practice, the goal is to support an arbitrary

topology of the plant. For example, the method should support multiple parallel and

serial coupled connections of components, or there should not be any maximal number

of parallel branches for any junctions.

4. Selection of appropriate simulation blocks

Even simple devices can have several implementations of their mathematical-physical

description, which are called simulation blocks in the context of this thesis. Although

they can be equivalent from the mathematical point of view, a simulation expert or

a machine has to decide, which of those implementations to use for each instance of

a component in the system topology. For example, a pipe in a hydraulic system can

be modeled as (i) a transformer of the pressure loss to the liquid flow, or (ii) it can

calculate pressure loss based on a given flow through the pipe. The method should

address this problem and automatically select, which of the specific simulation blocks

to use.

5. Support for hierarchical topologies

A level of abstraction plays a crucial role in all engineering systems. The proposed

method should support the hierarchical principles to enable the use of hierarchical

structures of simulation models seamlessly.

6. Specification of interfaces for integration of simulations

Simulation models can consist of several simulation modules. The proposed method

should facilitate the specification of module interfaces as well as their inter-linking. In

addition, a crucial issue in the use of simulations is the access to online and historical

data. Therefore, the proposed method should also support specifying borderlines

between simulations and SCADA systems.

5.3 Motivation for a Simulation Block Selection

The fourth challenge defined in the previous section (i.e., the selection of appropriate simu-

lation blocks) played a crucial role in the investigation of a new simulation design method.

Due to the importance of this topic, it is described in more details in this section.
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Figure 5.2: Mappings between real devices and simulation blocks needed for the design of a
simulation model for the electrical circuit.

When the mapping between real devices and simulation blocks is 1 : 1, the situation is

quite simple. Such a case can be found in the passive house use-case discussed in Sec. 7.1.

Each room, for example, is modeled by one simulation block representing the room. The

algorithm selects the block according to the mapping between real device type and simula-

tion block. Such a mapping is expressed by the object ontology property “simulates” in the

automation ontology. But if the mapping is 1 : n, the selection is complicated. One real

device can be simulated by one of n simulation blocks. The task for the design method is

to decide for each device in the real plant topology, which of the simulation blocks should

be used.

Two implementations for each one-port component can exist in signal-oriented simula-

tions. The first simulation block has flow as input and effort as output, whereas the second

one has effort as input and flow as output. This is the basic distinction, which is focused

on input and output interfaces. In addition, the simulation blocks can differ in parameters

or additional signals as well.

An example of an one-port component is a resistor in electrical systems. In electrical

systems, the flow signal is electrical current i(t), whereas effort is electrical voltage u(t).

For simplicity reasons, we can assume that the value of the block parameter resistance R(t)

is time independent and we denote it R. The component “resistor” can be modeled by

implementing one of the equations:

u(t) = R · i(t) (5.1)

i(t) =
u(t)

R
(5.2)

Fig. 5.4 depicts the mapping between two realizations of simulation blocks for a resistor

implementing the aforementioned equations. Such an example can seem to be a simple
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX ontology: <http://cyber.felk.cvut.cz/simulation/automation_ontology#>

SELECT ?deviceIndividual ?deviceClass ?simulationClass
WHERE 
{

?realPlant ontology:hasRealDevices ?deviceIndividual.
?deviceIndividual rdf:type ?deviceClass.    
?simulationClass ontology:simulates ?deviceClass.
?deviceIndividual ontology:hasPowerBond ?previousDeviceIndividual.
?previousDeviceIndividual rdf:type ?previousDeviceClass.
?previousSimulationClass ontology:simulates ?previousDeviceClass.
OPTIONAL {
?simulationClass ontology:hasInputVariable ?inputVariable.
?previousSimulationClass ontology:hasOutputVariable ?outputVariable.    
FILTER (?inputVariable != ?outputVariable)

} FILTER (!bound(?inputVariable))
}

Figure 5.3: The SPARQL query to select appropriate generic simulation blocks from a simulation
library for the case of SISO simulation blocks and no parallel connections.

mathematical anagram at first. However, in the case of complex and non-linear systems,

the situation is much more difficult. In addition, such dualities do not exist in many cases

(e.g., due to non-linearities such as dead-zones or due to risk of division by zero leading

to unbounded results), or the mathematical description is as complex as it is not efficient

to work with it directly. Simulation experts are expected to use the whole simulation

components without knowing their specific implementation details in the proposed approach

(i.e., simulation models are considered as gray-boxes with known meaning of the input and

output variables). Since the resistor case can be considered as a very simple example, the

more complex case from hydraulics is discussed in Sec. 7.2.

5.4 Simulation Block Selection for SISO Blocks and Serial

Connections

The first version of the algorithm selecting an appropriate simulation block for each compo-

nent was proposed in [123]. The entries for the selection algorithm are the plant sub-ontology

of the automation ontology, which comprises the real plant structure, and the simulation

ontology, which stores interfaces of available simulation blocks. The required entry for the

selection algorithm is also the mapping between real devices and simulation components

respectively simulation blocks. The goal of the ontology tool is to find for each device (i.e.,

for individuals of the plant ontology) an approximating generic simulation block with re-

spect to compatibility of interfaces of blocks interconnected in series. The version discussed

in this section is limited for SISO systems.

The basic rule For each signal, an output interface of its producer must be equal to the

input interface of its consumer is satisfied by the SPARQL query depicted in Fig. 5.3. The

query is motivated by the following steps:

1. Finding all ontology individuals that represent real plant devices. These individuals

are recognized by the object ontology property “hasRealDevices”.
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2. For each real plant device, finding its simulation equivalents, i.e., generic simulation

blocks according to the object property “simulates”.

3. For each device, finding a device producing the signal being consumed by the particular

device.

4. For each simulation block, finding its input interface and an output interface of its

input signal producer.

5. Selecting such simulation blocks, for which the interfaces are equal.

The results obtained by the selection can be classified as follows:

1. For each plant device, exactly one simulation equivalent exists.

This solution is the most desirable; there exists exactly one simulation model of the

industrial plant that is feasible and can be generated automatically.

2. More than one solutions exist.

This class of solutions enables to create several different simulation models for the

particular industrial plant. Although all of them can be generated automatically, the

engineer has to decide which of them is the most suitable for the simulation.

3. A solution satisfying all conditions does not exist.

This result proves that the universal simulation library has to be modified.

This selection algorithm can be used for lines of serial connections of SISO components.

For other topologies of SISO components or for MIMO components, the algorithm had to

be generalized and improved. The need for supporting arbitrary topologies and MIMO

components required in Sec. 5.2 hence resulted in a more general solution discussed in the

further explanation.

5.5 Motivation for the Use of the Bond-Graph Theory

When we are trying to assemble a simulation model from simulation blocks approximating

plant components, the following obstacles complicate the design process:

1. The problem to select the appropriate simulation block for each component;

2. The problem of serial and parallel connections of components leading to two types of

junctions;

3. The problem of causalities and algebraic loops.

Since all of the three problems are addressed by the bond-graph theory, the solution

proposed in this thesis is based on bond graphs. However, the bond-graph theory is orig-

inally a human-based method intended to describe a physical system with mathematical

equations. The proposed approach bridges the gap between the well-proven bond-graph

theory and the contemporary computer-aided engineering. The proposed method combines
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an object-oriented approach (where simulation components are atomic objects with possi-

bly unknown inner implementation and behavior, but with semantically annotated input

and output interfaces, parameters, and initial conditions) with the mathematical-physical

foundations of the bond-graph theory.

The bond-graph theory is suitable for supporting the instantiation of components from

simulation libraries according to the structure of a real plant. The important benefit of

the bond-graph theory is that it is also suitable for machine-based processing. It offers

simple lists of recommended steps and rules, which are easy to implement. For assembling

simulation models from components, bond graphs were thus selected as a good starting

point. However, their use in a standard way comes up with a way of thinking that does not

push modularity and reuse satisfactorily. Hence bond graphs are extended in this thesis

and the motivation for doing this is discussed in the following section.

5.6 Motivation for a New Causality Assignment Algorithm

When bond graphs are used in a conventional way (i.e., as it has been discussed in Sec. 2.3),

the causality is assigned to the bond graph according to rules defined within the bond graph

theory. The causality assignment algorithm used frequently is called sequential causality

assignment procedure [144]. However, the standard sequential causality assignment proce-

dure (SCAP) cannot be used in conjunction with the proposed explicit representation of

simulation blocks (i.e., component implementations), because it does not support an exis-

tence of such explicitly specified available blocks. Other causality assignment procedures are

discussed in [97], however, none of them fits to the proposed extended bond graph theory

seamlessly.

As the standard SCAP algorithm cannot be used for the proposed method, a new

causality assignment algorithm had to be developed. The algorithm proposed later in

Sec. 5.7.3 is inherited from the depth-first search algorithm, which was selected as a well-

proven graph search algorithm. Since the whole graph has to be gone through, the choice

of the graph-search algorithm does not pose an important topic.

The depth-first search (DFS) algorithm is a well-known algorithm for searching within

tree or graph data structures, widely used in artificial intelligence applications for solving

problems by searching. It explores each branch of the graph as deeply as possible, after

reaching the last node in a branch, backtracking is applied. One of the most frequent

representations of the DFS algorithm is expressed in Alg. 1. Further information about the

DFS algorithm can be found in numerous literature, for example in [145].

A bond graph is a special type of a graph, hence, this algorithm is applicable but it has

to be extended in such a way that it reflects the bond graph specificities. The following

aspects have to be supported with a new causality assignment algorithm:

1. The “goal” state is not a specific node but a state of the bond graph when all power

bonds have assigned causality strokes.

2. Each exploration step has to be accompanied with the assignment of causality strokes

to all visited bonds.

3. Backtracking is applied not only in the case of reaching the end of the graph branch,

but also in the case when the causality cannot be assigned correctly. These two roots
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Algorithm 1 Depth-first search (DFS) algorithm

procedure depthFirstSearch(g, v)
Stack stack = new Stack();
stack.push(v);
while stack.nonEmpty() do

v = stack.pop();
if v.notDiscovered() then

v.setDiscovered();
for each edge v w in g.getAdjacentEdges(v) do

stack.push(edge v w.getW());
end for

end if
end while

end procedure

of backtracking have to be explicitly distinguished.

4. During backtracking caused by violation of causality assignment rules, already as-

signed causality strokes have to be removed in all bonds being backtracked. During

backtracking caused by reaching the end of the graph branch, already assigned causal-

ity strokes have to be kept as they are.

5. Entering a new component (i.e., node of the bond graph which is not a junction)

has to be accompanied with selecting an available simulation block (i.e., a component

implementation).

Analyzing this list of requirements for the causality assignment algorithm, a new causal-

ity assignment algorithm has been designed and implemented. In order to be contextualized

with the proposed extended bond graph method, it is discussed later in Sec. 5.7.3.

5.7 Extended Bond Graphs Enhanced with Explicit Simula-

tion Block Support

The proposed method assumes that systems consist of subsystems called “components” or

“real devices”. Each component (or real device) is modeled by a “simulation block”, which

was also called “simulation component implementation” in the previous author’s work. For

some components, the mapping between a component and a simulation block can be 1:1,

but it can be also 1:n in general. It means that a component can be modeled by one of the

n available simulation blocks. These simulation blocks can differ in (i) number of inputs

and outputs, (ii) input and output interfaces, and (iii) required parameters. A very basic

example of this situation has been depicted in Fig. 5.2. The component resistor can be

modeled with either a simulation block having voltage difference as input or as a block

having electrical current as input. The goal of the proposed method is thus not only to

instantiate components, but also to select the appropriate simulation block for each node

of the real system topology. In the terminology of bond graphs, the proposed approach

extends the concept “simulation component” with a set of one or more “simulation blocks”,

which differ from each other in their interfaces and parameters.
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5.7.1 Formal Specification of the Simulation Model Design Task

The proposed interpretation of the simulation model design task can be defined and formu-

lated as follows:

� Real plant, real devices, and their connections

The real plant S = (D,C) consists of the set of real devices D = {d1, ..., dm} and a

set of physical connections C = {c1, ..., cq}. The connections ci ∈ C are power bonds

in terms of the bond-graph theory and they define adjacency as well.

� Device types of real devices

Each real device di ∈ D is of a device type γi. All device types give a device type

set Γ = {γ1, ..., γr}. The set of device types is accompanied with a mapping between

devices and device types: MDΓ : D → Γ.

� Simulation blocks

Each device type γi ∈ Γ can be modeled by up to n simulation blocks βi,j ; i =

1, ...,m; j = 1, ..., n. The simulation blocks are aggregated in a simulation library

Λ = βi,j where i = 1, ...,m and j = 1, ..., n. The mapping between simulation blocks

and device types is defined as MΛΓ : Λ → Γ.

� Simulation model design task

The task of the simulation design for signal-oriented simulators is considered in this

thesis as (i) selecting appropriate set of simulation block instances I = {ι1, ..., ιm} that

model the system S. In addition, (ii) the set of physical connections C = {c1, ..., cq}
(i.e., power bonds) has to be transformed into a set of signal bonds Σ = {σ1, ..., σ2q}.

In the further text, we will explain how the standard bond graph theory can be extended

to support finding the aforementioned sets of simulation block instances I = {ι1, ..., ιm} and

signal bonds Σ = {σ1, ..., σ2q}.

5.7.2 Extended Bond Graph Method

To solve the simulation model design task as it was stated in the previous subsection, the

bond graph theory provides good foundations. Therefore, the standard bond-graph method

was extended by the author of this thesis with the two following aspects:

1. Explicit support for various simulation blocks for each component;

2. Improved causality assignment to support the previous point.

In more details, support for simulation blocks means that for each device in the real

plant topology, i.e., for D = {d1, ..., dm}, a list of available simulation blocks βi,j ; i =

1, ...,m; j = 1, ..., n is assigned. In the same way as it has been demonstrated in Fig. 5.2 for

two different implementations of the device type resistor, each simulation block is mapped

to its device type. If a simulation expert needs to avoid differential causality or problematic

numerical representations, he or she simply does not implement that acausal/problematic

implementation of the simulation component. For example, in case of electrical capacitors
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Figure 5.4: A simulation component and its interfaces. The interface annotation includes inputs
and outputs; and it maps inputs and outputs to generic signals flow and effort.

and inductors, only the causal versions (i.e., the versions having integrals and no derivatives)

are expected.

On the contrary to a top-down approach of a typical bond-graph theory, the idea behind

the proposed approach is to focus on the components themselves, and to build simulations

as a bottom-up approach with a complex behavior emerging from the components’ behav-

iors. If some components have more than one implementations, the selection of the right

implementation for each component is driven by the compatibility of interfaces. To recog-

nize the compatibility, the causality algorithm known from the bond-graph theory is used,

but it is extended for the support of various simulation blocks.

Simulation blocks and their interfaces have to be annotated in such a way that is

computer-understandable. Fig. 5.4 depicts the basic features of a block assumed in this

thesis. Each simulation component has input and output variables. These variables must

be inter-mapped with bond graph variables flow and effort. In other words, there must be

stated, which signals are related to the generalized bond graph variable flow and which ones

to the effort.

For practical use, it would be necessary that the simulation engineer would be able to

select the granularity of the simulation model, i.e., what will be atomic components. For

example, atomic components in hydraulic systems can be either devices, or the whole pump

stations. In case of electrical circuits, the situation is similar, but in order to avoid imple-

mentation details, the granularity level on the device level is assumed in further text. This

assumption implies that each device in the source engineering plan (in the exemplary case

of the electrical circuit) will be simulated by exactly one simulation block in the simulation

model.

The second extension of standard bond graphs to explicitly support various simulation

blocks for each component is an appropriate causality assignment enabling this task. When

the mapping between real devices and simulation blocks is 1 : 1, the situation is easy. Such

a situation exists in the passive house use-case in Sec. 7.1. The algorithm selects the block

according to the object ontology property “simulates”. But if the mapping is 1 : n (i.e.,

one real device can be simulated by more than one simulation blocks) as it was proposed in

the previous text, the selection of the appropriate simulation block is not trivial. This case
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is discussed in the water distribution network use-case in Sec. 7.2. The proposed solution

adopts the requirement on compatibility of the input and output signals of the neighbor

blocks in the simulation model topology.

5.7.3 Proposed Method in an Algorithmic Way

The proposed method can be summarized by the pseudo-code expressed in Alg. 2. First

of all, simulation components are generated into a new extended bond graph. This issue

is done in the same way as in the typical use of bond graphs. However, the explicitly

specified available simulation blocks are added in the consequent step, which is specific

for the extended bond graphs. In other words, each component is enhanced with 1 to

n simulation blocks, being specific implementations of this component. From this set of

blocks, the right one has to be selected for each individual component when creating the

simulation model.

In the next step, 1-junctions are generated. For doing this, it has to be decided whether

the system (or the relevant part of the mechatronic system) is mechanical or not, which is

important for considering parallel and serial connections. This issue affects generation of

0-junctions as well. Since the structure of bond graphs (including their extended version as

well) depends on a number of ports of the components respectively the blocks implementing

them, the number of 1-junctions has to be selected. Considering m as a number of device

connections, the component is regarded as an m-port if at least one simulation block im-

plementing this component is an m-port in the bond graph sense and 1-junctions are thus

generated m-times. Otherwise, the component is regarded as an 1-port component and thus

exactly one 1-junction is created, respectively if neither the m-port block nor 1-port block

is available, then the method is stopped with an error.

Consequently, power bonds are generated by adding edges into the graph representation.

This step is followed by rather a technical issue of setting counts of connections for all com-

ponents, 1-junctions, and 0-junctions, which is important for recognizing whether causality

rules are satisfied when the causality is being assigned to the entire graph. The step is

followed by the method denoted in Alg. 2 as filterNPortBlocks(), which goes through all

components and simulation blocks implementing these components and it filters those sim-

ulation blocks that have different number of ports than is the type of the m-port component

in the created bond graph. To simplify the searching through the graph, graph components

in terms of the graph theory are found with the method generateGraphComponents(), which

results into a set of entry elements to each graph components. Finally, the power direc-

tions are selected, a reference junction is excluded from the bond graph and the causality

is assigned to the entire graph.

Since the assignment of the causality is a complicated issue that is one of the important

contributions of this thesis, the proposed causality assignment algorithm is expressed sep-

arately as Alg. 3. The idea behind the proposed extended causality assignment algorithm

is that it selects the first implementation of each component and tries to assign causality

strokes to the power bonds. In case of junctions, it is necessary to iterate and to try several

possibilities in order to satisfy all causality requirements. When selecting an assignment,

each choice is pushed into an enhanced stack that is able to capture information about those

causality strokes that have been selected randomly and could be changed. The goal state

of the causality assignment is such an assignment ensuring that all causality requirements
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Algorithm 2 Generation of the extended bond graph supporting simulation blocks

procedure generateBondGraph
BondGraph bondGraph = new BondGraph();
List <Component> components = bondGraph.generateComponents();
bondGraph.addBlocks(components);
List<Junction1> junctions1 = bondGraph.generateJunctions1(components);
bondGraph.generateBonds(junctions1, components);
List<Connection> connections = bondGraph.queryConnections(components);
List<Junction0> junctions0 = bondGraph.generateJunctions0(connections);
bondGraph.generateBonds(junctions0, junctions1);
bondGraph.setConnectionCount(components, junctions1, junctions0);
bondGraph.filterNPortBlocks(components);
List<Node> graphComponents = bondGraph.generateGraphComponents();
bondGraph.assignPowerDirection(graphComponents);
bondGraph.excludeReferenceJunction(referenceJunction);
bondGraph.assignCausality(graphComponents);

end procedure

are satisfied for all components, junctions, and power bonds. When the goal is reached,

the situation is solved and it is found out that this particular set of simulation blocks im-

plements the given system. When causality requirements are not satisfied at a particular

power bond, backtracking is done. Exactly one simulation block is switched to the other

available implementation of this simulation component and the causality of the respective

power bond is switched. The process of causality assignment then continues. At the end,

the right combination of simulation blocks is found, if it exists. Otherwise it is proven that

the given plant topology cannot be modeled with the given set of simulation blocks and the

algorithm throws an error. As both causality assignment corrections and selection of the

appropriate simulation blocks are based on stacks and systematic graph search preferring

the depth branch, the proposed method can be considered as a two-level depth first search

algorithm.

One of the core methods of the proposed causality assignment algorithm (see Alg. 3)

is the method pushConnectionsToExplore(node node). This method corresponds to the

method push(vertice v) of the standard DFS algorithm with the difference that the pa-

rameter of the method is not a vertice, but a node of the bond graph (i.e., a compo-

nent, 0-junction, or 1-junction). Moreover, the stacked elements are not only the out-

coming power bonds of a specific node (i.e., vertices) but both nodes as well. All power

bonds added to the stack are marked as not visited. The dual method is the method

popConnectionsToExplore(). It corresponds to the pop() method in the standard DFS algo-

rithm. But a fundamental difference is that power bonds are not removed from the stack,

they are only marked as visited. Therefore the flag visited is manipulated by the aforemen-

tioned extended versions of the push and pop methods systematically. The removal from

the stack is done only when causality cannot be assigned and backtracking is performed.

During this action, all removed power bonds and nodes are reset to the default values that

mainly means that the position of the causality strokes is unset. This set of actions can

be performed during calling of the method popConnectionSubstituable(). This method

pops (and really removes) bond graph objects from the top of the stack until an object

with a flag isSubstituable is found. In this case it switches the causality (i.e., changes
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Algorithm 3 Causality assignment algorithm for extended bond graphs

procedure assignCausality(ListNode graphComponents)
for each graphComponent in graphComponents do

stack.push(graphComponent);
stack.pushConnectionsToExplore(graphComponent);
Connection connection = stack.popConnectionToExplore();
while connection != null do ◃ Causality step

int causality = 0;
while causality == 0 do

causality = resolveConnectionCausality(connection);
if causality == 0 then

connection = stack.popConnectionSubstituable();
end if

end while
end while
connection.setCausality(causality); ◃ Exploration step
stack.pushConnectionsToExplore(connection.getConnectionTo());
connection = stack.popConnectionToExplore();

end for
end procedure

the site of the causality stroke) and the exploration of the bond graph continues. The flag

isSubstituable is set during calling of the method resolveConnectionCausality() in those

cases the causality is assigned arbitrarily or when a next simulation block is available. Each

component has a list of simulation blocks that can model its behavior hence it is easy to

recognize whether a further simulation block is available. If a specific power bond leads to a

component that has not been explored yet (i.e., it is on top of the stack), the first simulation

block is selected first. The method tries to assign the causality to the current power bond.

If it is not possible, it cyclically tries to select a next simulation block if applicable. If the

causality cannot be assigned (because it violates causality assignment rules specified by the

bond graph theory), it returns the value “0”. If it can be assigned, the possible causality

stroke position is returned. If the position is arbitrary, one of the possibilities is selected

and the flag isSubstituable is set up, which means that this particular power bond is a

candidate to be switched during backtracking, that can occur later. Finally, the method

setCausality(int causality) simply assigns the causality stroke that was worked out by

the method resolveConnectionCausality().

5.7.4 Output of the Extended Bond Graph Method

The results of the proposed method can be classified as follows:

1. One or more simulation models exist.

This group of results means that either one simulation model approximates the given

system or more than one simulation models can model the given system. The cur-

rent implementation of the method returns one created simulation and it does not

automatically recognize whether more of them can be created.

2. A solution satisfying all conditions does not exist.
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Figure 5.5: Exemplary electrical circuit including a voltage source, resistors R1 and R2, and both
accumulators of energy – a capacitor C and an inductor I.

If a solution does not exist, the simulation library has to be enhanced with further

simulation blocks or the contemporary ones have to be modified in terms of block

interfaces to be able to model the specific industrial system/plant.

In an exemplary run that is discussed in the next section and that is depicted in Fig. 5.6,

the first case of this result classification was reached. With the given simulation library

blocks, exactly one simulation model can be created. Later on, it is shown how to generate

this simulation model in the signal-oriented simulator MATLAB-Simulink.

5.8 Electrical Circuit Example

To illustrate the work of the proposed causality assignment algorithm in practice, we selected

the exemplary electrical circuit that is depicted in Fig. 5.5. It is the same as the circuit

utilized for the demonstration of the standard bond graph usage presented in Fig. A.1,

where its simulation models are created manually. The aforementioned run of the proposed

causality assignment algorithm for the exemplary electrical circuit is depicted in Fig. 5.6,

where we can see how the proposed causality assignment algorithm explores the bond graph

and assigns the causality strokes. The impact of backtracking when the assignment under

construction is violating restrictions related to a junction can be also seen twice in this

figure.

In more details, the example in Fig. 5.6 shows several key points in the causality assign-

ment algorithm run. The causality assignment is applied to the plain bond graph depicted

under the gray numbered circle 1. The red numbered circles (i.e., bond graphs marked

as 7 and 17) mean the violation of causality assignment rules that cannot be solved by

switching a simulation block, because none other block is available. Backtracking is needed

as a continuation part of this step. The blue numbered circles (i.e., 8 and 18) correspond

to the state of the causality assignment algorithm when those bonds whose causality can

be switched are reached. Thus the backtracking is stopped in these blue points. The green

numbered circles (i.e., 9 and 19) are related to the already switched bonds, after whose the

exploration and causality assignment can continue. The purple numbered circle (i.e., 22)

denotes the final stage, when causality is assigned to all bonds and all simulation blocks are

selected. Based on this result, the simulation model can be generated.

Although this small-size system cannot prove the usefulness of the method for large-

scale systems from industrial perspective, it was selected due to the simplicity to follow the

process steps and the workflow of the proposed extended bond graph method in details. The

more complex example is discussed later in Sec. 7.2. The Alg. 2 is followed in the further

65



R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

R1

R2

I1

SE1

0

C11

1 0 1 0

1 1

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18 19 20

21 22

Figure 5.6: An example of the proposed causality assignment algorithm run in case of the exemplary
electrical circuit. The gray numbered circle denotes the initial bond graph without causality assigned.
Yellow circles symbolize normal steps, when causality is assigned to the next power bond properly.
Red circles mean that the causality assigned violates causality assignment rules and backtracking
has to be applied as a part of this step. Blue circles correspond to stopping of the backtracking at
those bonds, whose causality can be switched. Green circles are related to switched bonds, after
whose the exploration and causality assignment can continue. The purple circle denotes reaching
the goal, when causality is assigned to all bonds and all simulation blocks are properly selected.

66



Figure 5.7: Structure of the extended bond graph for the electrical circuit.
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Figure 5.8: Simulation library with electric simulation blocks implemented in MATLAB-Simulink.

text and the simulation model for the electrical system already introduced in Fig. 5.5 is

generated based on extended bond graphs.

The first step is the generation of components, 0-junctions, 1-junctions, and power

bonds. This issue is similar to the standard version of bond graphs. The generated graph

is depicted in Fig. 5.7 and it is graphically the same as in the manually created version

presented in Fig. A.3.

The next step differs methodologically, however, it leads to the same results as in the case

of the standard bond graph theory. Assigning causality strokes is not driven by causality

assignment rules, but by combining available simulation blocks, which are combined based

on the depth-first search. Therefore, it is necessary to load available implementations for

each component at first. In this step, just the annotations of interfaces (i.e., descriptions of

inputs and outputs) are required. The internal implementation of simulation block behavior

is necessary later for the simulation model execution.

The available simulation components respect the mapping presented in Fig. 5.2. These

simulation blocks are aggregated in the available simulation library in MATLAB-Simulink,

depicted in Fig. 5.8. This simulation library was included into the mechatronic library,

which is discussed in details in Appendix B. The following simulation blocks from the

electrical discipline are included in the library:

1. Resistor simRA = (Effortin; Flowout) having the detailed description in Fig. B.2;

2. Resistor simRB = (Flowin; Effortout) having the detailed description in Fig. B.3;

3. Capacitor simC = (Flowin; Effortout) having the detailed description in Fig. B.4;

4. Inductor simI = (Effortin; Flowout) having the detailed description in Fig. B.5;

5. Source of effort simSE = (Flowin; Effortout) having the description in Fig. B.6.
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Figure 5.9: Bond graph of the electrical circuit, including components, junctions, and direction of
power.

In addition to the above mentioned discipline-specific simulation blocks, the simulation

library has to be able to approximate the behavior of bond graph junctions of types 0 and

1. Therefore, the library was also equipped with cross-discipline junction implementations,

whose detailed descriptions are depicted in Fig. B.7 and B.8.

The assignment of causality strokes is based on the interface description of available

components in the presented method. The extended bond graph for the electrical system

is depicted in Fig. 5.9, which includes components, junctions, bonds, power directions, and

assigned causality strokes. Although each component has mapped simulation blocks behind

it, this issue is not reflected in the diagram graphically. In this case, both resistors R1 and

R2 map their possible implementations RA and RB. The result of the extended causality

assignment algorithm is depicted in Fig. 5.9. Since this assignment has been found, the

simulation model can be generated with the simulation blocks from the given library. The

resistor R1 is modeled with the simulation block simRB and the second resistor R2 is

modeled with the simulation block simRA.

The last step in the presented method is the generation of a simulation model for a signal-

oriented simulator. Since we have selected the appropriate simulation blocks in the previous

process steps, the main task is thus to instantiate all required simulation blocks, 0-junctions,

and 1-junctions. This issue can be done with the implemented MATLAB-Simulink connec-

tor, which is presented later in Sec. 6.4.1. The generated model in MATLAB-Simulink is

depicted in Fig. 5.10. It is a complete simulation schema, but to execute this schema, the

required parameters have to be defined prior the simulation is started in the simulation tool

suite.

5.9 Verification of the Generated Simulation Model for the

Electrical Circuit

To verify the correctness of the generated simulation model, its simulated results were

compared with outputs of circuit models from other simulation tools. Prior doing that,

specific values of simulation parameters had to be selected. The utilized parameter values

are summarized in Tab. 5.11. To distinguish between names of components and parameters,

the parameter naming notation respects the object-oriented nature of simulation blocks.

Using the bond graph depicted in Fig. 5.9, the structure of the simulation model for the

electrical circuit was generated in MATLAB-Simulink. After configuring simulation param-

eters with the values presented in Tab. 5.11, the simulation was started for the simulation

time 0.1 seconds. The obtained simulation results are visualized in Fig. 5.12. The figure

depicts the simulation results of the simulation model generated by the method proposed

in this thesis. We can see the transient response on non-zero initial conditions followed by
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Figure 5.10: Generated simulation model for the electrical circuit in MATLAB-Simulink. This
schema represents the structure of the model; for its execution a configuration of simulation param-
eter values is required.

Component Parameter name Parameter value

Resistor R1 Resistance R(R1) = 100 Ω

Resistor R2 Resistance R(R2) = 200 Ω

Capacitor C1
Capacitance C(C1) = 0.1 mF
Initial voltage v0(C1) = 10 V

Inductor I1
Inductance L(I1) = 0.5 H

Initial current i0(I1) = 0 A

Voltage Source SE1
Voltage magnitude V (SE1) = 10 V

Frequency f(SE1) = 50 Hz

Figure 5.11: Selected values of parameters for the exemplary electrical circuit.
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Figure 5.12: Simulated response of the electrical circuit obtained using the proposed method.

harmonic response on input excitation.

Two other tools working on different foundations and technologies were utilized for

verification of the correctness of simulation results. The first tool is called QUCS1 and

its name is the abbreviation standing for “Quite Universal Circuit Simulator”. The main

benefits of this tool are that it is a free software, it offers switching between time and

frequency analysis easily, and last but not least the overall software is user-friendly. On the

other hand, there is no warranty as the software is free. The electrical plan of the circuit in

QUCS is depicted in Fig. 5.13. This circuit was simulated in the time domain and the results

of the simulation are shown in Fig. 5.14. The simulation in the QUCS utilizes a different

simulation solver than MATLAB-Simulink and the used blocks are not implemented by the

author of this thesis, but the built-in components are used. Therefore, this simulation of

the same circuit is independent on the model generated by the proposed method and it thus

proves the correctness of the simulation model designed by the proposed approach.

Due to the free nature of the QUCS environment corresponding to no warranties, the

commercial tool National Instruments Multisim2 was used in the second step to verify the

simulated results. The version 14.0.1 of this tool was utilized in its Education Edition. The

electrical plan in this tool is depicted in Fig. 5.15, whereas the simulated results are shown

in Fig. 5.16. Since the output courses are the same as the results obtained by the method

proposed in this thesis as well as the results simulated by QUCS, the proposed method has

been verified with two independent software environments specialized for electrical circuit

simulation and the generated simulation model was found correct.

Last but not least, the simulation model generated with the proposed method was

1http://qucs.sourceforge.net
2http://www.ni.com/multisim/
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Figure 5.13: Electrical plan of the electrical circuit in the tool QUCS.

Figure 5.14: Simulated results of the electrical circuit in the tool QUCS.

C1

0.1mF
IC=10V

L1

0.5H
IC=0.0

R1

100 

R2

200 

V1

10Vpk 
50Hz 
0° 

XSC1

A B

Ext Trig
+

+

_

_ + _

Figure 5.15: Electrical plan of the electrical circuit in the tool NI Multisim 14.0 Education Edition.
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Figure 5.16: Simulated results of the electrical circuit in the tool NI Multisim 14.0 Education
Edition.

compared to the three simulation models created manually in Appendix A. For doing this,

the matrices A.11 were enumerated with the aforementioned values of parameters. The

state-space representation matrices for the selected parameter value set have the following

form:

A′ =

(
−50 10000

−2 −200

)
B′ =

(
0

2

)
C ′ =

(
1 0

)
D′ = 0 (5.3)

The computation of the transfer function based on these matrices of the state-space

representation is straightforward. We get the following expression of the transfer function:

G(s) = C ′(sI −A′)−1B′ +D′ =

=
20000

s2 + 250s+ 30000

(5.4)

Fig. 5.17 depicts the three time-series of simulated results obtained with the manually

created simulation models discussed in Appendix A. The simulation starts with non-zero

initial conditions, which disqualifies the solution utilizing the transfer function. The transfer

function cannot consider non-zero conditions and thus the simulation starting with zero

initial conditions reaches unsatisfactory results. The other two realizations of simulation

models according to Fig. A.7 and Fig. A.9 result into the same simulated response as in the

case of the simulation model created with the proposed method. These simulation results

also correspond to responses calculated by the tools QUCS and NI Multisim. Since various

parameter settings and simulation structures have been tested and reached the same results,

the proposed method had been validated.
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Figure 5.17: Simulated response of the electrical circuit obtained by the manually created simu-
lation model presented in Appendix A. The realization utilizing the transfer-function block is not
suitable as it does not support setting non-zero initial conditions.
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5.10 Evaluation of the Proposed Method: Benefits and Weak

Points

Although the proposed approach offers many benefits for designing both linear and non-

linear simulations for large-scale industrial systems, it has several disadvantages that should

be taken into account as well.

The first weak point of the proposed method is related to the fact that the simulation

design is frequently referred as a kind of “art”, relying on deep insight and experiences of

skilled simulation experts. Unfortunately, the proposed computer-centric method cannot

tackle minor improvements, which get better the simulation execution or precision in such

a way the simulation expert does. On the other hand, such modifications are not fully

compliant with the physical world frequently. For example, a stability of a hydraulic system

simulation can be improved by adding a tank with a very low area of the tank bottom, thus

it does not influence simulations results. Nevertheless, such an artificial element stabilizing

the simulation does not have any physical equivalent, which can cause troubles when the

overall simulation model is redesigned or reused.

In addition, the absence of mathematical equations in the design-time process makes

the design phase easier for engineers and technicians. On the other hand, such equations

cannot consequently be reused for inspecting features of the systems, such as controllability

or observability [8]. In the approach presented in Appendix A, these system features can

be inspected in the following way.

The linear time-independent system is controllable if and only if:

rank
(
B AB A2B . . . A(n−1)B

)
= n (5.5)

where the matrix
(
B AB A2B . . . A(n−1)B

)
is called controllability matrix and it

is typically denoted as C. In the case of the electrical circuit, the controllability matrix has

the following form for the selected set of parameter values:

C =

(
0 20000

2 −400

)
(5.6)

More generally, the controllability matrix for the exemplary electrical circuit has the

following form:

C =

(
0 1

C1L1
1
L1

−R1

L2
1

)
(5.7)

Based on these forms of the controllability matrix, we can see that the electrical circuit

is controllable for all possible settings of parameter values. It means that for all settings of

parameter values (i.e., resistances, capacitance, and inductance), any required value of the

output voltage can be reached by the appropriate input voltage.
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The linear time-independent system is observable if and only if:

rank


C

CA

CA2

...

CA(n−1)

 = n (5.8)

where the matrix


C

CA

CA2

...

CA(n−1)

 is called observability matrix and it is denoted O.

For the particular parameter value set, the observability matrix has the form:

O =

(
1 0

−50 10000

)
(5.9)

More generally, the observability matrix has the form:

O =

(
1 0

− 1
C1R2

1
C1

)
(5.10)

Based on these forms of the observability matrix, we can see that the electrical circuit

is observable for all possible settings of parameter values. It means that for all settings of

parameter values (i.e., resistances, capacitance, and inductance), one can estimate values

of system states, which are in this case voltage of the capacitor C1 and electrical current

through the inductor I1.

In addition, the state-space representation relying on matrices A,B,C, and D can be

used for supporting the design of a model-based predictive control3 (MPC).

Unfortunately, these system indices are analyzable in such an easy form only in case of

linear systems. When we need to work with non-linear system models, we loose this compact

apparatus to inspect important features of the system. For this reason, the absence of this

system analysis on the proposed methodology does not pose any significant restriction and

can be neglected.

On the other hand, we obtain many benefits when the proposed method is used. The

most important benefit is the suitability also for very complex and large-scale systems, when

the manual effort cannot be scaled-up enough. The next benefit is that even non-experts

can design (i.e., generate) a simulation model and work with it.

The whole design process is significantly accelerated, thus it is faster from the required

development time point of view and it mitigates design-time errors. These improvements can

be evaluated as the reduction up to 40% of time needed for the design phase of simulation

models, and the reduction up to 50% of design-time errors. This issue also improves the

overall safety and reliability.

3Frequently called shortly “model predictive control”
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Figure 5.18: Large-scale system and its separation into a set of simulation modules.

Last but not least, the proposed method leads to more effective and efficient engineering

workflows that enable re-design and reuse easily, which are important aspects of the emerg-

ing Industry 4.0 applications. These benefits are caused by the fact that either the entire

simulation model or its part can be re-generated easily based on a new real plant topology

or parameter setting. Moreover, the compatibility of simulation interfaces is improved and

its feasibility can be inspected automatically.

Evaluating the pros and cons of the proposed method, the two areas for further investi-

gation were identified: (i) providing methods for system analysis in the similar directions as

inspection of controllability and observability in case of linear systems, and (ii) to take into

account a possible presence of algebraic loops in the simulation model structure in terms

of building an algebraic-loop avoidance algorithm in the proposed method or in terms of

mitigating the impact of algebraic loops on generated simulations.

5.11 Semi-Automated Generation of Simulation Module In-

terfaces Using Extended Bond Graphs

The extended bond graphs can be used for supporting the division of a monolithic simulation

model into a set of independent simulation modules.

In order to increase the modularity, computational performance, and maintainability

of simulations, the simulation models are often required to be split into several simulation

modules. These modules are relatively independent, but can be dynamically coupled. To

illustrate this situation, an exemplary system of systems [72] is symbolically depicted in

Fig. 5.18. The figure shows the components and requirements on the decomposition of the

plant into four simulation modules (depicted by rectangles representing Modules A–D in

Fig. 5.18). The problems to be solved are the definition of interfaces of these modules and

the connection of these modules in order to get a simulation module topology.

Each power bond (i.e., a connection in a physical system) is represented by a pair

of signals flow and effort in signal-oriented simulators. Integration of simulation modules

means to transfer values of these two variables between the modules. Hence each power

bond corresponds to two signals to deliver flow and effort between these modules.
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Figure 5.19: A set of simulation modules interconnected with signals.
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Figure 5.20: P&ID for the selected two tank system.

The splitting of the system into required simulation modules defined in Fig. 5.18 is

depicted Fig. 5.19. The key elements are the junctions α and β. The figure depicts their

topological position, but it does not include the internal representation of the junctions, i.e.,

how input and output signals are interconnected and mathematically subtracted or added.

This is specified with the use of the extended bond graph theory as it discussed later.

The splitting simulations into several modules is driven by a human simulation expert,

while the proposed method supports the expert with structural and technical tasks. The

method supports two basic types of cuts of a plant or its parts into modules:

1. Cuts on the junction level

2. Cuts on the bond level

To illustrate the proposed method in practice, a hydraulic tank system depicted in

Fig. 5.20 is used. A practical example of these two kinds of simulation cuts into separated

modules is depicted in Fig. 5.21 for the case of the tank system bond graph. When doing

such cutting, the system has to be simulated with three simulation modules, which are

connected with two “glue” modules implementing junctions to connect these modules. The

junctions are thus considered as an integration glue between simulation modules. The

extended bond graph method facilitates the implementation of the internal structure of

these “glue modules” as well as it improves the definition of the interfaces of the simulation

modules.
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Figure 5.21: Bond graph for the two tank system.

Extended bond graphs can be utilized for designing glue modules as follows. The posi-

tions of given plant cuts are inserted into the bond graph as it is shown in Fig. 5.21 for the

case of the two cuts of the tank system. The splitting process significantly depends on the

type of each cut, i.e., whether it is a cut on the junction level, or whether it is a cut on the

bond level.

5.11.1 Prerequisites of the Simulation Splitting Support

The three predicates are defined and implemented:

� hasStrokeProximity(b,N)

� hasPowerIn(b,N)

� hasPowerOut(b,N)

The first variable b represents the power bond, to which this property is associated. The

second variable N represents one of the two bond graph nodes that are connected together

by this specific power bond b.

In case of the first predicate (i.e., hasStrokeProximity(b,N)), the well-constructed

bond graph implies that this predicate holds for exactly one power bond in case of N is a

0-junction or it holds for exactly n-1 power bonds in case of N is a 1-junction, where n is

number of power bonds bi, i = 1, ..., n connected to this specific node N .

In case of the predicates hasPowerIn(b,N) and hasPowerOut(b,N), no restrictions are

required. However, the bond-graph theory assumes that especially in case of 0-junctions at

least one is outgoing and in particular, it is the strong bond (i.e., for the 0-junctions the

strong bond is such a bond that has a causality stroke on the side nearby to the 0-junction).

When this rule is broken, the simulation model can diverge.

5.11.2 Cuts on the Junction Level

A more complex situation occurs in case of cuts on the junction level, where signals should

be added or subtracted. The final mathematical expression is obtained based on surround-

ing bonds and their causality assignments as well as the utilized power directions. The

mathematical description of the cut on junction level depends on the type of the junction.

We can start with 0-junctions. Considering that 0-junctions add inflows and set the same

effort to the connected power bonds according to Eq. 2.5 and Eq. 2.6, we get the following

equations characterizing the cut on the 0-junction level:
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The bond graph node N is the selected 0-junction. To this 0-junction, n power bonds

are connected; bj(n) is a j-th power bond connected to the 0-junction N . The integrating

junction on the module level can be characterized as follows:

∃!j(hasStrokeProximity(bj , N))

eo1
...

eoj−1

eoj+1

...

eon−1

foj


=



0 · · · 0 0 · · · 0 1
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · 0 1

0 · · · 0 0 · · · 0 1
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · 0 1

(−1)σ1 · · · (−1)σj−1 (−1)σj+1 · · · (−1)σn−1 0





fi1
...

fij−1

fij+1

...

fin−1

eij


where σk = hasPowerOut(bk, N), k = 1, ..., n− 1.

In case of 1-junctions as integrating junctions on the module level, the situation is dual.

Considering that 1-junctions add efforts and set the same flow to the connected power bonds

according to Eq. 2.7 and Eq. 2.8, we get the following equations characterizing the cut on

the 1-junction level:

The bond graph node N is the selected 1-junction. To this 1-junction, n power bonds

is connected; bj(n) is a j-th power bond connected to the 1-junction N . The integrating

junction on the module level can be characterized as follows:

∃!j(¬hasStrokeProximity(bj , N))

fo1
...

foj−1

foj+1
...

fon−1

eoj


=



0 · · · 0 0 · · · 0 1
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · 0 1

0 · · · 0 0 · · · 0 1
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · 0 1

(−1)σ1 · · · (−1)σj−1 (−1)σj+1 · · · (−1)σn−1 0





ei1
...

eij−1

eij+1
...

ein−1

fij


where σk = hasPowerOut(bk, N), k = 1, ..., n− 1.

5.11.3 Cuts on the Power Bond Level

For the cuts on the bond level, the effort/flow assignment depends on the relative position

of the causality stroke only. The direction of the power is not considered as it has been

already taken into account when constructing the entire bond graph and specifying sign

conventions of signals at junctions lying nearby the module cut.

Whereas in the case of cuts on the junction level the utilized predicates are useful or

even needed for implementation of the extended bond graph method, in case of cuts on the

bond level, two further predicates have to be added. The two predicates are defined for this

case:

� strokeModuleA(b)
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Figure 5.22: Junctions of the simulation model for the two tank system.

� strokeModuleB(b)

Each cut separates the simulation model into two modules, denoted here as modules A and

B. Since the position of the causality stroke is crucial for cuts on the power bond level,

these predicate express the position of such a stroke in the relationship to the designated

simulation modules for each power bond b. The former predicate strokeModuleA(b) holds

if and only if the stroke belongs to module A, whereas the predicate strokeModuleB(b)

holds for those bonds b that have causality stroke as a part of the second module. It is

straightforward that for the both predicates holds the following statement:

∀j
((

strokeModuleA(bj) ∧ ¬strokeModuleB(bj)
)
∨(

¬strokeModuleA(bj) ∧ strokeModuleB(bj)
))

To specify the interfaces of the integration modules, the positions of causality strokes is

aggregated into vectors according to the following equations:

α⃗ =
{
j : strokeModuleA(bj)

}
β⃗ =

{
j : strokeModuleB(bj)

}
The structure of the integration modules on the power bond level holds the following

equations, which could be also rewritten in a dual form with the parameter β:(
e⃗oα
f⃗oα

)
=

(
e⃗iα
f⃗ iα

)

Considering the example depicted in Fig. 5.20, we can see the case of the bond level as

the junction β. The power flows into the 0-junction via a bond from the left 1-junction.

Effort is an input of the 0-junction and the junction calculates output flows as the sum

of the two flows to the rest of the system on the right-hand side. We can see that the

inner implementation of the glue module depends on neighboring bonds only. However, it

is necessary to create the bond graph for the whole system in order to be able to assign

causality and power flows correctly.

5.11.4 Example of Integrating Junctions and Evaluation

For the two tank system, the internal representation of glue modules is depicted in Fig. 5.22.

The entire simulation workflow including these glue modules is then depicted in Fig. 5.23.

In both cut types, the glue modules are important for (i) timing aspects, where the module

can provide aggregation of data, re-sampling and synchronization. In addition, (ii) the glue

modules are useful for the performance analysis as a probe into the system.
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Figure 5.23: Modules of the simulation model for the two tank system.

Such a separation of complex simulations into a set of coupled simulation modules brings

the following benefits:

1. Parallelization of simulation execution

2. Easier maintenance and (re-)design of simulations

3. Significantly faster initialization of simulation environments

4. Simplified testing of simulation modules and their fine-tuning

The proposed method solves the simulation module integration problem from the struc-

tural point of view. Timing and synchronization issues are not in scope of this thesis. It

is assumed here that they are solved by simulation solvers or optimized by simulation ex-

perts. The following section describes how to execute such simulation workflows consisting

of several simulation modules.

5.12 Execution of Complex Coupled Simulations at Runtime

As each simulation model can consist of one or more simulation modules, which can be

designed for example according to the methodology proposed in the previous sub-section,

the overall methodology proposed in this thesis has to deal with the problem of integration of

simulation modules into complex workflows and their execution at runtime. Each simulation

module approximates a specific part of the real plant or provides data transformations

needed for simulation, such as pre-processing of initial conditions or calculation of boundary

conditions.

The main rule for the execution of the entire simulation workflow is the satisfaction of

the data-driven architecture, i.e., data are transferred within simulation modules or among

simulation modules and other tools such as HMIs when tag values are available or when a

batch task should start by a user command. The timing issues are in charge of simulation

engineers, and the proposed approach does not pose any additional constraints for this

task. In the basic case, the execution of simulations is stopped when waiting for required

data. The exchange of tag values between simulation modules and the rest of the integrated

environment is the task provided partly by the Java-implementation of the connector and

partly by data exchange blocks in the language of the simulation. To execute a complex

simulation composed of several simulation modules, the proposed infrastructure utilizes the

EngSB workflow engine, i.e., the rules for the execution of simulation modules being parts

of the complex simulation workflows have the same nature as the rules for the integration
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Figure 5.24: An exemplary use of three simulation modules within the EngSB environment.

of simulations with the rest of the automation system. Both sets of rules are based on the

engineering knowledge, from which they are automatically generated.

To illustrate the rules for execution of complex simulation workflows, we can use an ex-

emplary scenario depicted in Fig. 5.24. The solid arrows illustrate the transfer of tag values

between simulation module interfaces, whereas the dashed lines express that the simulation

modules are executed by a simulation solver. Simulation solvers are typically included in

simulation environments, such as MATLAB. Frequently, the simulation modules utilize the

same simulation solver, however, each module can use a different solver in general. The role

of the simulation solver can be compared to an interpreter of programming languages where

the code corresponds to the simulation module and the interpreter to the simulation solver

executing the simulation module. The core of the simulation solver is an implementation

of a numerical method that is able to solve equations defined by the simulation module di-

rectly (in case of equation-based simulations) or equations inferred from simulation models

by the simulation environment (in case of signal-oriented simulations). In compliance with

the mathematical description of dynamic systems introduced in Sec. 2.1, the main problem

to be supported by the numerical method is the calculation of time-series related to the dif-

ferential equations 2.1. In current solvers, widely used numerical methods are Runge-Kutta

methods. An overview of these numerical methods can be found in [32]. Since several sim-

ulation solvers are included in simulation environments (such as MATLAB), the simulation

or integration engineers do not need to have a detailed insight into the numerical method

or the entire solver.

From the simulation design and integration points of view, important aspects are con-

figurable parameters that simulation solvers require. The parameters are directly passed as

a configuration to the numerical method algorithm, such as absolute and relative precision

of the calculation, or start and end of the simulation time. Some of the parameters con-

figure a version of the numerical method to be used, for example the number of steps in

multi-step methods. The parameters, which are expected to change during the simulation

model engineering or execution, are captured in the automation ontology, whereas those
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Figure 5.25: The two-tank system – The case having the same elevation of tank bottoms.

that are fixed during the whole simulation model life-cycle can be directly stored in the

simulation modules. In case of batch processes, input data have to be available already at

the beginning of the execution of the simulation workflow. In case of synchronized tasks,

several stakeholders run in parallel and exchange data.

5.13 Optimization of Complex Simulation Model Execution

The performance of simulation model execution is of course significantly affected by compu-

tational resources. However, numerical stability of the simulation plays a crucial role as well,

in many cases even more crucial. To get better the performance of generated simulations,

one or both aforementioned factors have to be improved. Buying a new piece of hardware

is not feasible as outcome of this thesis, therefore, we will focus on the latter aspect.

The bottleneck of simulation model runtime, which occurs in industrial projects fre-

quently, is handling of physical constraints. The author of this thesis investigated various

options how to mitigate the impact of the constraints to the performance of the created sim-

ulations systematically. The proposed solution is based on the utilization of signal bonds of

bond graphs. Prior describing the author’s proposal, the problem of constraints is described

on the hydraulic system use-case.

Keeping the example as simple as possible, we can assume that we have a two-tank

system, where the two tanks are connected via two pipes with a valve. From the perspective

of water level time-courses, the positions of tank bottoms as well as connection points of

pipes have crucial impacts on the system behavior.

The simplest case is depicted in Fig. 5.25, where both tank bottoms have the same

elevations and the connection points of the pipes are at the levels of the tank bottoms. For

both hydrostatic pressures on the connection points holds:

pi = hiρg (5.11)

where pi is hydrostatic pressure at the i-th tank or pipe connector, hi is the height of the

liquid above the i-th tank or pipe connector, and g is gravitational acceleration.

The flow through the serial combination of two pipes and the valve is given by the

pressure difference:

Q ∝ h1ρg − h2ρg (5.12)

where the indices of heights correspond to numbers of tanks according to their names in

Fig. 5.25 and the positive direction of liquid flow corresponds to the arrow involved in the

figure above the valve.
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Figure 5.26: The two-tank system – The second version of the system having different elevations
of tank bottoms.

The liquid level in the tanks is given by the equation:

h =
1

S

∫ t

t0

Q(τ)dτ (5.13)

where the flow Q is considered not in the absolute value but with the sign convention

denoting the direction of the flow. For completeness, an initial condition (i.e., an initial

liquid level) has to be pre-set for each tank before starting the simulation. This value is

denoted as h0 for each tank.

If the physical positions and mountings are in the configuration depicted in Fig. 5.25,

liquid levels in tanks cannot reach negative values in any tank. Therefore, we are on the

safe side when designing a simulation model and physical constraints need not be taken

into account. When simulation accuracies are set roughly, negative peaks of liquid level can

emerge, but they can be neglected frequently.

On the other hand, if elevations of tanks bottoms are different or pipe connection points

are not at tank bottoms, the situation is becoming significantly more difficult. The different

elevations of tank bottoms are depicted in Fig. 5.26. In this case, h1 > h2. To make

the design of simulation models reasonably modular, the liquid level has to be treated in

comparison to a reference level:

pi = (hi + he,i)ρg (5.14)

where pi is hydrostatic pressure at the i-th tank or pipe connector related to a common

base elevation, he, i is the elevation of the tank bottom of the i-th tank or pipe connector.

The meaning of other symbols remains the same as in Eq. 5.11. Considering hydrostatic

pressures in absolute dimensions leads to another expression for the flow between the two

tanks:

Q ∝ (h1 + he,1 − h2 − he,2)ρg (5.15)

Considering the aforementioned equations, we can see that negative liquid levels can be

reached during the system simulation for the configuration depicted in Fig. 5.26.

To guarantee that the simulation model state values are within the feasible sub-space,

the original linear representation has to be changed to a non-linear model. In principle, two

ways of guaranteeing such limitations can be applied. The first one is based on changing

state values artificially, in this case changing output effort of the tank if it is reaching
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Figure 5.27: Visualization of fuzzy rules.

negative value of amount of liquid in the tank. The second possibility is not to change the

state variables, but to block energy transfer paths that lead to unfeasible states. In the

following text, these alternatives are discussed in more details and compared.

The modification of state variables to guarantee realistic states can be done in various

ways, one example are the following rules:

� IF ((hi − hx) < 0) ∧ (Q < 0) THEN multiplier IS 0

� IF ((hi − hx) < 0) ∧ (Q ≥ 0) THEN multiplier IS 1

� IF ((hi − hx) ≥ 0) ∧ (Q < 0) THEN multiplier IS 1

� IF ((hi − hx) ≥ 0) ∧ (Q ≥ 0) THEN multiplier IS 1

The variable hi means the height of the i-th pipe connector into the specific tank, hx
is the level of liquid in the tank, Q is the flow through the pipe connector where positive

values mean inflow whereas negative values mean outflow, and multiplier is a correction

factor that multiplies the calculated output effort of the tank. This version of constraint

support is hereinafter called a basic constraint handling method. The aforementioned rules

can be interpreted in a fuzzy way in order to make the switching between values smooth

and the simulation faster and more stable. The graphical interpretation of these IF-THEN

rules interpreted in the fuzzy sense is depicted in Fig. 5.27.

Important obstacles of this method based on changing state variables are (i) the prob-

lematic interpretation of state variables by humans and (ii) the numerical destabilization

of the simulation and destroying impacts on simulation precision. Last but not least, the

latter case has impact on the simulation performance, which can be significantly lower. In

large-scale industrial system practice, another method has to be used due to these reasons.

The second way how to realize the constraints is blocking flows between the state de-

vices/components. In this particular case it means “closing” the valve or “switching off”

pumps artificially. It is difficult to manage the searching and solving these issues manually
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hence it is beneficial to provide foundations for this issue that enable to automate or at

least semi-automate this process. The method proposed in the following explanation is

hereinafter called optimized constraint handling.

The state components, which are the tanks in this case, produce externally visible output

signals denoted “il”. The meaning of this abbreviation is inter-locking and it is inspired

by the process control approaches. Positive values of this signal indicate that a physical

constraint is reached, but it does not solve the inter-locking of flow paths itself:

� IF (hi − hx) < 0 THEN ili IS 1

� IF (hi − hx) ≥ 0 THEN ili IS 0

To handle the inter-locking mechanism itself, the simulation blocks responsible for flow

transfer should consider the desired direction of the flow and stop it when inter-locking is

required due to reaching the physical constraint. The needed functionality can be expressed

as follows:

� IF (Q ≥ 0) ∧ (ilf ≤ 0) THEN multiplier IS 1

� IF (Q ≥ 0) ∧ (ilf > 0) THEN multiplier IS 0

� IF (Q < 0) ∧ (ilb ≤ 0) THEN multiplier IS 1

� IF (Q < 0) ∧ (ilb > 0) THEN multiplier IS 0

The variable Q denotes directed flow and multiplier remains the correction factor that

is in this case applied to the calculated flow variable. The variables ilf and ilb are the pair

of il signals from the tanks, between which the simulation block implementing the inter-

locking lies. The positive direction of flow is denoted as forward direction (i.e., respective

inter-lock signal is coming from the source tank and it is expressed as ilf ), whereas the

negative flow is denoted as backward direction (i.e., respective inter-lock signal is coming

from the destination tank and it is expressed as ilb).

To automate the process of working with constraints and to improve the performance of

simulation models on the numerical stability level, it is needed to address them in compliance

with the bond-graph theory. In the first case, when the values of the state variables are

modified, no additional support is needed as the logic is solved within individual simulation

blocks.

In the case of the latter case introducing the inter-locks on the simulation level, the

propagation of inter-lock signal can be done with the support of signal bonds introduced by

the bond-graph theory. Reaching constraints of state elements is propagated by dedicated

signal bonds to all branches transferring energy until another state element is reached. The

example of this proposed approach is depicted in Fig. 5.28 for the case of the two-tank

system. Due to simplicity reasons, the pipes surrounding the valves are merged with this

valve to avoid algebraic loops in the model.

The final implementations do not utilize the aforementioned fuzzy rule bases, but the

logistic function is used:

f(x) =
L

1 + e−k(x−x0)
(5.16)

The parameter setting utilized in Sec. 7.2 is L = 1 and x0 = 0. For the state signals

(both their artificial change and calculation of the inter-lock signal), the constant k is set

k = 5 · 103 and for the flow variables, the constant k is set k = 5 · 105.
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Figure 5.28: Simulation model for the two-tank system with the optimized structure satisfying
physical constraints of feasible values of liquid levels.
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Figure 5.29: Simulated results of the two-tank system with the optimized structure satisfying
physical constraints of feasible values of liquid levels.
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An example of simulated results is depicted in Fig. 5.29, which depicts the positive

impact of this solution on the simulated results. No instabilities or unwanted resets of the

simulation solver are apparent in the figure. Although in the case of the two-tank system

any of the methods mentioned above can be used, the large-scaled simulations that are

targeted by this thesis need fast and computationally stable solution, which holds for the

proposed approach perfectly.

5.14 Developed Tool Support for the Simulation Model Gen-

eration Based on Extended Bond Graphs

Within this thesis, several software prototypes for the simulation model generation were

implemented. Their main purpose was to provide a proof-of-concept solution in order to

verify the feasibility, correctness, and efficiency of the proposed methods and algorithms.

The graphical user interface (GUI) of the main software prototype implemented in Java is

depicted in Fig. 5.30. It is intended to generate a simulation model in MATLAB-Simulink

based on a given AutomationML plant model and a simulation library. This prototype

enables to select the AutomationML file that includes the plant model, which is done by

a button on the right-hand side at the bottom. The file selected in Fig. 5.30 is called

“myElectricalCircuit.aml”. To generate a simulation model, a simulation library including

generic simulation blocks has to be selected. In Fig. 5.30, the selected simulation library is

called “MechatronicLibrary” and it was developed by the author of this thesis. It includes

basic simulation blocks for electric and hydraulic systems as well as necessary blocks such as

both types of junctions or a block for visualization of simulation results. The details about

this simulation library are discussed in Appendix B and its high-level layer is depicted

in Fig. B.1. To generate the simulation model, the software prototype is equipped with

the button “Generate Simulation Model”, which is depicted in the central part of Fig. 5.30.

This button starts the entire method described in this thesis, which results into a executable

simulation model generated in MATLAB-Simulink. To run the final simulation, the user

can change the simulation time and click the button “Simulate” in the MATLAB-Simulink

environment. The obtained simulation results are automatically depicted in a 2-D graph

when each simulation model run is finished.

A more vivid example of the operation of this software prototype can be seen in the

screencast that is available online4. The screencast includes two use-cases: (i) the electrical

circuit and (ii) the two-tank system discussed in Sec. 5.13.

To represent the extended bond graph approach in Java, the inheritance-based class

model was found to be effective and efficient. A simplified UML representation is depicted

in Fig. 5.31. The abstract classes are depicted in the gray color, whereas classes that can be

instantiated are depicted in the green color. Together with this architecture snippet, other

software parts discussed in this thesis are used. The access to AutomationML is later on

described in Sec. 6.3.2 and the control of MATLAB is explained in Sec. 6.4.1.

4Screencast is available online: https://youtu.be/vn890gGndeM
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Figure 5.30: Graphical user interface of the implemented software prototype for generating sim-
ulation models from simulation library blocks according to the system model represented in the
AutomationML format.
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Figure 5.31: The UML class diagram expressing the representation of bond graph structures in
the ontology tool in Java.
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Chapter 6

Improved Integration of Simulation

Models

While the previous section addressed the design of simulation models and their splitting

into a set of simulation modules, this section is focused on their integration. It describes

the integration both in the runtime phase, when tag values are transported between stake-

holders, and in the design-time phase, when engineering tools have to share knowledge and

this knowledge is captured in and retrieved from the knowledge base implemented by the

automation ontology.

This chapter addresses the research issue RI-3 and together with the technical back-

ground provided here, it also solves the goal of the thesis G-4. In addition, this chapter

provides a technical background for the goals of the thesis G-2 and G-3 presented in Sec. 5.

The problem of the integration of simulation models can be divided into two parts:

(i) a physical (i.e., technical) integration using service-oriented interfaces [135], and (ii) a con-

figuration of the technical level, which is frequently referred as the use of a semantic inte-

gration [128] on the tool level. The former part is related to finding a suitable technical

infrastructure to transfer data, whereas the latter part covers finding mappings between

adequate entities. For example, semantic mappings interrelate a really measured variable

and its simulated approximation, real devices and their equivalents in a simulation model

or local names of tags used in a particular tool with the global representation of the tag

name [127].

6.1 Requirements and Challenges on Integrated Automation

Systems

The basic challenges of simulation model design and integration for dynamic industrial

systems are depicted in Fig. 6.1. The numbered circles mean the following challenges that

are addressed later in details in this thesis:

1. The overall architecture of the integrated system that supports efficient simulation

model integration;

2. Bond graph modeling for the improved design of simulations;

3. Representation of engineering knowledge relevant for simulation design and integration
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Figure 6.1: Challenges in integration and design of simulation models.

and access to it;

4. Specification of simulation scenarios and their execution;

5. Integration of simulations with SCADA systems;

6. Support for knowledge originating in various engineering plans as a knowledge back-

ground for simulation integration;

7. Management and access to runtime data;

The architecture and processes satisfying the aforementioned challenges are strongly

affected by the process of industrial plant engineering and automation system engineer-

ing. That is the reason why the description in the following sections starts up with the

engineering plans as entry points to simulation model design and integration.

6.2 Proposed Architecture of the Integrated SCADA Level

of Automation Systems

After analyzing challenges in the simulation model design and integration that were for-

mulated in Sec. 6.1, requirements of industrial partners, and state-of-the-art presented in

Sec. 3, a new architecture for integrated industrial automation systems including process

simulations has been proposed.

The approach proposed and utilized in this thesis relies on the system architecture

depicted in Fig. 6.2. The central point of the infrastructure is the Engineering Service Bus

(EngSB), which is a middle-ware responsible for transferring data and their proper and safe

routing among stakeholders. All stakeholders (i.e., tools) are connected to the EngSB via

connectors. Each connector has a domain specific part and a tool specific part. The data

are transferred to the EngSB according to the pre-defined workflows that are executed by

the workflow engine. The development of the EngSB itself was not a part of this thesis, but
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the author’s contribution is the application of the EngSB for the simulation model design

and integration.

The main benefit of using an ESB is that they have proved to be a highly flexible,

comprehensible, and maintainable infrastructure for data and tool integration. Although

ESBs are de-facto standards for financial and business integration for several years as well as

for enterprise application integration in general, the utilization in the industrial automation

area is still rare and this approach is pioneering and promising [121]. The utilized platform

EngSB is not only a particular implementation of the ESB concept, but it provides features

specific for the industrial automation area. The key enhancements of the ESB concept,

which characterize the EngSB, can be summarized as follows:

1. Tool domains

The tool domain [21] is a tool independent interface and it may be interpreted as

a standardization of connectors and engineering tool types to facilitate the easy ex-

change of tools without affecting data exchange with other tools. In industrial au-

tomation, such domains are for example a simulation domain including several process

simulators, a tag domain providing data-exchange, and others.

2. Engineering objects

Engineering objects [172] are entities in the EngSB that represent common concepts,

i.e., the artifacts accessed from various tool domains. Examples of engineering objects

are tags (signals) whose names and values can differ in various domains such as in

simulations, OPC or OPC UA, or historians.

3. Engineering Knowledge Base (EKB)

The EKB [109] is an approach for a semantic integration in heterogeneous engineering

environments. It stores explicit engineering knowledge and supports data integration

based on mappings between local and domain-level engineering concepts, as well as

other more complex transformations. For the simulation model design and integration

purposes, it utilizes the proposed automation ontology as its data model.

From the workflow perspective, two basic types of processes are distinguished in this

thesis: (i) design-time processes, and (ii) runtime processes. This differentiation is con-

sidered from the operation of simulations point of view. Therefore, design-time processes

are related to concentrating engineering knowledge from engineering plans and tools in the

knowledge base and to engineering simulation models based on the aggregated knowledge.

The runtime processes are focused on the runtime operation of simulation models, which

means that simulation models are given with input data and parameters, simulations are

executed, and output data are delivered where required. Runtime processes do not cover

batch processes only, but also synchronized tasks where simulation inputs and outputs are

integrated simultaneously.

From the technical perspective, the configuration of the simulation integration frame-

work, which is facilitated by this thesis, is based on the following XML files: (i) global

tag list, (ii) tag translation tables, and (iii) tag routing tables. The global tag list file is

aimed at setting all existing tags in the EngSB environment and their properties (such as

type, minimal and maximal values or others, which are useful for a control system). The

tag translation tables are related to EngSB connectors, which translate tag names between
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Figure 6.2: Runtime integration based on the Engineering Service Bus (EngSB) from the technical
point of view.

local names (occurring in the particular tool data model scope) and global tag representa-

tions, being uniquely available in the EngSB. The tag routing tables define how tag values

should be distributed between the tools (such as simulation results must be transmitted to

HMI, simulation inputs have to be entered with an operator-training data-set). Note that

the global tag list and tag translation tables are project-specific, whereas routing tables are

scenario-specific. In other words, every project can have several scenarios, such as simula-

tion can be used as a soft-sensor to estimate unmeasured states, or as a test-bed to analyze

control system behavior and to train human operators.

The overall architecture is depicted in Fig. 6.2. The most important tool domains and

implemented tool connectors are addressed in more details in further sections. Moreover,

industrial projects can require further tools or domains such as various optimizers, or op-

eration planners. The EngSB does not restrict their inclusion among the tools or domains

discussed in the following text.

6.3 Engineering Tool Domain

The EngSB-based infrastructure involves the engineering tool support as its native part,

for which this infrastructure was intended to. In a general case, each engineering discipline

utilizes its own tool domain, such as there are a piping and instrumentation domain, elec-

trical domain, mechanical domain, etc. If the project enables, it is also possible to merge

these domain into one engineering domain. Although an EngSB-based support for a large

variety of tools has been already implemented by the EngSB community, in the further text,

just two connectors for the engineering domain are discussed, because these two have been

developed by the author of this thesis. First, the connector to Microsoft Visio is addressed.

Next, the connector to AutomationML data format is discussed and a transformation of

data from this format is explained.
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6.3.1 Connector to Microsoft Visio

At the beginning of the simulation and automation engineering processes, a description of

the entire real plant is needed. This description is captured in the automation ontology,

however, an important issue is how is this ontology populated. In this section, the developed

connector into Microsoft Visio is motivated and described.

Motivation for the MS Visio Plug-in Development

The basic motivation for this approach is summarized by the following requirements:

1. Reuse of engineering knowledge to support simulation model design and integration

The simulation model structure is based on the topology of the real industrial plant.

Tags of HMIs as well as simulation models reflect tags of the real plant, which are in-

cluded in the process description and plans, such as P&IDs. When original engineering

plans are not used automatically, traceability of changes and determining consistency

of a specific simulation model with the real plant realization are hard tasks. The goal

is to have a simple user interface that can be used for entering the real plant struc-

ture, tags and parameters in a visual way. The integration of existing engineering

tools (such as EPLAN) is very complicated and suffers from licensing limitations. For

that reason, a prototype of a plug-in into Microsoft Visio has been implemented.

2. Support of a component-based approach

Simulation models of industrial systems typically consist of simulation components

representing sub-parts of the plant. The goal is to handle each component as a whole

and to work just with its interface, no matter how the block is internally implemented.

3. Export simulation model interfaces for integration

A crucial issue of simulations is the access to on-line and historical data as well as the

integration with supervisory control and data acquisition (SCADA) systems. This

task is tightly coupled to expressing input and output tags and their mappings in

specific engineering tasks.

Microsoft Visio as a General-Purpose Design Tool

Microsoft (MS) Visio is a multi-domain general-purpose drawing tool. MS Visio is becoming

widely used for drawing graphical schemas and it can be considered as a simplified version

of industrial CAD/CAE tools. The drawing in MS Visio is created mainly with so-called

master shapes, which are located in a stencil toolbox in MS Visio. From the user perspective,

it has the same design and interfaces as Microsoft Office tools, but it is not a standard part

of MS Office. Similarly as MS Office tools, MS Visio supports macros implemented in

Microsoft Visual Basic for Applications (VBA) and diverse plug-ins implemented usually

as ActiveX components. Such a combination of MS VBA and ActiveX plug-ins makes an

opportunity for a simple access to drawing data.
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Figure 6.3: Screenshot of a drawing in Microsoft Visio including a button for the generation of
individuals in the automation ontology via ontology tool interfaces. This drawing is later on used
as an entry point for the hydraulic tank model use-case in Sec. 7.2.
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Figure 6.4: Bridging various programming languages to access the ontology tool in Java via Web
Services.

Implemented Microsoft Visio Connector

To test the feasibility and efficiency of the proposed approach, a connector to Microsoft

Visio was developed on the software prototype level. It provides the following features:

1. Utilization of domain-specific symbols for devices;

2. Expressing real plant structures;

3. Declaration and definition of parameters for each device;

4. Assignment of input and output tags to the devices;

Since the screenshots of the developed tool support pose rather technical issues that

are intended for evaluation of the proposed method, the figures with these screenshots are

included in Appendix C (i.e., Fig. C.1, Fig. C.2, and Fig. C.3). The basic macro, which

ensures the export to the ontology, is implemented as a method handling a button click

located in the upper-left-hand side of the MS Visio drawing, see Fig. 6.3. After clicking

their button, a dialog with several user settings is shown – including the path to the ontology,

the path to save the populated ontology, the logical name of the real system, and the logical

name of the plant location, see Fig. C.1. Consequently, the MS Visio drawing is processed

and ontology individuals and properties are instantiated via the real plant interface of the

ontology tool. The prerequisite of this process is a synchronized structure of the Visio

stencil and ontology model, in other words, each master shape (e.g., a pump) must have an

equivalent class in the ontology. The algorithm in the macro iteratively accesses each shape

in Visio and creates an ontology individual having the same name (i.e., a local URI) and

the type of the individual is a name of the master shape (i.e., a local URI of the ontology

class).

Since the ontology tool is implemented in Java, it is not possible to create an interface or

a whole assembly as an ActiveX component directly. Java is an interpreted language and it

runs via Java Runtime Edition tools. Therefore, it was necessary to bridge the programming

languages MS Visual Basic for Applications and Java. The final implementation utilizes

Web services, which are considered as the most promising solution for future maintenance,

see Fig. 6.4 for more details. The ontology tool interfaces are compiled as Web services

and performed on the Apache Tomcat container, therefore the tool methods can be invoked

remotely from any programming language supporting Web service access. The implementa-

tion of the connector in MS Visio utilizes a very simple DLL implemented in C# which has

the same methods as an interface of the ontology tool and which calls such methods via Web

services. Such a solution was selected because of its compatibility with diverse versions of

MS Visio. The technical limitation of the current approach is the maximum quota limit re-

lated to each Web service message, which must be properly set in all tools under integration.

Since in large-scale projects this limit can be reached, in future work, it would be beneficial
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to face the problem of large Web service message in a systematic way, such as defining and

implementing rules for splitting messages into several sub-messages, which are consequently

joined. Technically, the MS Visio plug-in calls methods of the “Plant Description Interface”

of the ontology tool, which is depicted in Fig. 4.6. The current implementation is stable

and the performance is satisfactory on performed test-cases.

6.3.2 AutomationML Connector

AutomationML is a neutral data format that is becoming an important and standardized

way for capturing various knowledge dealing with structuring of real plants and many other

issues related to automation systems. Although it has been intended for a point-to-point

integration first, it perfectly fits for data exchange within complex tool chains as well [20].

Nowadays, only a minority of engineering tools is already supporting the AutomationML

format, but a large variety of tools supporting AutomationML are expected in near future.

Therefore, the author of this thesis decided to design and to implement a connector to

AutomationML as well.

To justify the difference between the use of the AutomationML data format and the

automation ontology proposed in this thesis, this paragraph summarizes the similarities

and assumptions behind these approaches. In the AutomationML data format, the devices

should be expressed with the “System Unit Class” libraries containing expected system

units, from which the real plant should be composed. Moreover, AutomationML utilizes

“Role Class” libraries, where semantics of system units as well as of their instances should

be annotated. Both types of libraries should be specified prior to modeling system hierarchy

and topology, and they should be unchanged during the whole automation project if possible.

The attitude to the general knowledge in the automation ontology is very similar to the

approach used in AutomationML (especially the CAEX part of AutomationML), but the

main difference is that the automation ontology assumes that devices and other artifacts

are unambiguously specified in the ontology by means adequate to system unit classes in

the AutomationML data format on the project level. On the contrary, system unit classes

as well as instances can be enriched by mappings to roles in AutomationML, which should

specify the exact meaning of the utilized artifacts. Hence the concept of roles does not have

an equivalent formalism in the automation ontology. On the contrary, both the automation

ontology and AutomationML utilize formalisms for expressing interfaces and signals. In the

automation ontology, signals are represented by the variable and tag sub-ontology, whereas

in AutomationML, they are represented by “Interface Class” libraries.

The approach proposed in this thesis assumes to grab data about a real plant topology

only. This amount of data is captured in the CAEX-part of AutomationML, thus neither

PLCopen nor COLLADA have been supported by the implemented connector yet. The

supported elements from AutomationML are depicted in Fig. 6.5. This figure also illus-

trates the mapping between the AutomationML elements and the respective elements of

the automation ontology. Such a mapping was used to design a connector between the

AutomationML data format and the automation ontology. In other words, the connector to

AutomationML is basically a data transformer from AutomationML to automation ontology

triples. To work properly, the correspondences between system unit classes and simulation

components (respectively simulation blocks) have to be defined explicitly.

Since the implementation of the AutomationML support poses a complex technical task,
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Figure 6.5: Mapping between the AutomationML data format and the class model of the au-
tomation ontology, which is used for transforming plant models from the AutomationML to the
ontology-based representation.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX caex: <http://data.ifs.tuwien.ac.at/aml/ontology#>
PREFIX : <http://cyber.felk.cvut.cz/simulation/automation_ontology#>

CONSTRUCT {
?real_plant_n a :RealPlant .
?phy_device_n a ?device_type_n .
?real_plant_n :hasRealDevices ?phy_device_n .
?phy_device_n :hasPowerBond ?sideB_n .
?attrName_n a :Variable .
?attrValue_n a :Tag .
?phy_device_n :hasOutputVariable ?attrName_n .
?attrValue_n :isVariable ?attrName_n .
?attrName_n :hasLabel ?attrName .
?attrValue_n :hasName ?attrValue .

} WHERE {
?real_plant a caex:InstanceHierarchy .
?real_plant caex:internalElement ?phy_device .
?phy_device caex:refBaseSystemUnitPath ?systemUnit .
OPTIONAL {

?phy_device caex:internalLink ?iLink .
?iLink caex:refPartnerSideA ?sideA .
?iLink caex:refPartnerSideB ?sideB .
?sideB caex:name ?sideB_ln .
BIND (URI(concat("http://cyber.felk.cvut.cz/simulation/automation_ontology#", ?sideB_ln )) as ?sideB_n ) .

}
OPTIONAL {

?phy_device caex:attribute ?attr .
?attr caex:name ?attrName .
?attr caex:value ?attrValue .

}
?real_plant caex:name ?real_plant_ln .
BIND (URI(concat("http://cyber.felk.cvut.cz/simulation/automation_ontology#", ?real_plant_ln )) as ?real_plant_n ) .
?phy_device caex:name ?phy_device_ln .
BIND (URI(concat("http://cyber.felk.cvut.cz/simulation/automation_ontology#", ?phy_device_ln )) as ?phy_device_n ) .
?systemUnit caex:name ?device_type_ln .
BIND (URI(concat("http://cyber.felk.cvut.cz/simulation/automation_ontology#", ?device_type_ln )) as ?device_type_n ) .
BIND (URI(concat("http://cyber.felk.cvut.cz/simulation/automation_ontology#Variable", ?phy_device_ln , ?attrName)) as ?attrName_n ) .
BIND (URI(concat("http://cyber.felk.cvut.cz/simulation/automation_ontology#Tag", ?phy_device_ln , ?attrValue)) as ?attrValue_n ) .

}

Figure 6.6: The formulated SPARQL query to transform data from the AutomationML Analyzer
Prototype ontology to the automation ontology.
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Figure 6.7: The proposed workflow for the transformation process starting at the AutomationML
plant description and finishing at a generated simulation model in MATLAB-Simulink.

the existing AutomationML Analyzer1 [147] was used to parse AutomationML data and to

create their object model. This analyzer was developed by F. J. Ekaputra at the research

laboratory CDL-Flex2 at the Vienna University of Technology. The AutomationML file

is loaded by the AutomationML Analyzer, it is transformed into an ontology that adopts

the data model of the CAEX-part of the AutomationML. The AutomationML connector

is consequently querying the AutomationML Analyzer with a SPARQL query depicted in

Fig. 6.6. This CONSTRUCT SPARQL query transforms a set of triples from the Automa-

tionML Analyzer to the automation ontology, which is done according to the mappings

expressed in Fig. 6.5. Consequently, the knowledge from the automation ontology is used to

design the simulation model in the very same way as in case of the MS Visio connector. The

entire workflow is summarized in Fig. 6.7, which shows the process steps from the neutral

process structure to a generated simulation model in MATLAB-Simulink.

To illustrate the AutomationML integration in practice, the electrical circuit that has

been depicted in Fig. 5.5 is used. An AutomationML file for the electrical circuit was created

in the standard AutomationML Editor3. It includes the devices of the electrical circuit,

their types and interconnections. The entire electrical circuit is represented as an “instance

hierarchy” in the AutomationML format. The devices are represented as instances, which

are “internal elements” of the aforementioned “instance hierarchy”. The type of each device

is represented as “system unit class”, as each internal element is in this case an instance of a

system unit class. The interconnections between devices are represented as “internal links”.

The created AutomationML file is graphically expressed in the screenshot in Fig. 6.8, which

is more comprehensible than the representation of the source XML. The screenshot depicts

the internal elements of the instance hierarchy (i.e., the devices of the electrical circuit), and

types of internal elements (i.e., system unit classes). The internal elements are not visible

1http://data.ifs.tuwien.ac.at/aml/analyzer
2http://cdl.ifs.tuwien.ac.at
3https://www.automationml.org/o.red.c/dateien.html?cat=1
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Figure 6.8: Screenshot of the AutomationML Editor with the system unit classes representing basic
electrical system components and with the instance hierarchy describing the exemplary electrical
circuit. Both hierarchies were created by the author of this thesis.

in this screenshot, as they have to be listed separately.

The created AutomationML file was read and parsed by the AutomationML Analyzer,

whose screenshot is depicted in Fig. 6.9. We can see there the AutomationML file trans-

ferred into the ontology representation, which is visualized by the Pubby framework4. After

applying the aforementioned SPARQL query, the representation of the electrical circuit is

transformed to the automation ontology. The results are equivalent to the representation

obtained with the Microsoft Visio connector, which has been already presented in Sec. 6.3.1.

6.4 Simulation Domain

At runtime, the interaction of simulations with the rest of the integrated system is provided

by the engineering objects representing tags (i.e., samples assigned to tag names). Due to the

complicated engineering phase of simulation models, their design process includes engineer-

ing objects covering devices and their representation in the simulation model, parameters,

etc. In the knowledge base, the simulation domain includes annotations of simulation inter-

faces, structures of simulation models and annotations of parameters configuring simulation

solvers.

4http://wifo5-03.informatik.uni-mannheim.de/pubby/
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Figure 6.9: Screenshot of the AutomationML Analyzer, which was developed by Fajar J. Ekapu-
tra [147].

6.4.1 MATLAB-Simulink Connector

One of the widespread simulation tools is MATLAB-Simulink5. It is a graphical signal-

oriented simulation environment with various simulation solvers. It is popular due to a wide

range of functionalities, rapid prototyping, and extension possibilities. The integration of

MATLAB within the EngSB is basically based on the MATLAB C external API. This API

is a part of MATLAB and includes methods for opening and closing the MATLAB engine,

getting and setting variables and their values in MATLAB workspace and finally a method

for a remote execution of commands. The used integration methods include loading of a

simulation engine, loading of a simulation module, passing on all kinds of parameters and

settings of a simulation solver, loading input tags, or exporting output tags to the EngSB.

During the first experiments, the simulation model creation was based on the coupled

workflow of the ontology tool (as a neutral tool-independent platform) and a code in the

simulation software (as a tool-specific code), which is MATLAB in this case. The workflow

of the first implemented approach is depicted in Fig. 6.10. The MATLAB code queries

the ontology tool for blocks as well as interconnections and the MATLAB-Simulink file

is created via MATLAB API. Since the generator does not modify the source code of the

simulation model directly, the solution is immune to changes of MATLAB-Simulink versions.

However, the usage from the target user point of view is complicated and the code is difficult

to be debugged and configured. Therefore, the second approach was used in the presented

research as well.

5http://www.mathworks.com/products/simulink/
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Figure 6.10: The initial version of the generation of simulation models in MATLAB-Simulink via
MATLAB API.
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Figure 6.11: The latest version of the generation of simulation models in MATLAB-Simulink via
MATLAB API.
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In the second version of the MATLAB connector, the API called matlabcontrol6 was

used. It is user-friendly and efficient. The solution is depicted in Fig. 6.11 However, it is

still considered as a prototype by the author of this thesis, as it is not guaranteed that this

API will work in future versions of MATLAB. From this point of view, the use of APIs

included and supported by MATLAB7 is promising.

6.4.2 Other Simulation Tool Connectors

Another group of simulation tools is a set of equation-based simulators that are frequently

based on the language Modelica8. It is a language for describing problems, which can be

simulated by an external simulation solver, delivered typically in software packages such

as OpenModelica9 or Dymola10. The set of methods for integration of service-oriented

simulations is the same as for MATLAB-Simulink, therefore the tools can be in one tool

domain. This offers to switch between Modelica and MATLAB-Simulink models without

changing the rest of the integrated automation system at all. However, the connector itself

has not been implemented yet and it poses a future work topic.

6.5 SCADA System Domain

The SCADA systems are important parts of automation systems. They are not monolithic

systems, but consist of various sub-tools, which are frequently relatively independent. This

is the reason, why SCADA systems are abstracted with two tool domains in the proposed

approach. The HMI part and the data acquisition part of SCADA systems are tackled

separately in the proposed infrastructure and data models. In addition, a connection of

multi-agent systems on the SCADA level of the automation pyramid is included as a part

of this tool domain as well. The SCADA domain itself is considered as an abstract domain,

i.e., it cannot be instantiated directly.

6.5.1 SCADA Systems – HMI Domain

The most visible part of SCADA systems are human machine interfaces (HMIs). They

are intended to access runtime data by human operators, and to set actions and set-points

by them. They typically visualize trends, current values and their limits; they can violate

alarms when any value exceeds its required limits.

The core methods of the SCADA HMI tool domain are reading and writing data. By

data, tags with one sample or a series of samples including time and value are understood.

The accessed engineering objects for this tool domain are tags. The knowledge base is

required to annotate the interfaces of the HMI, i.e., measured tags in the real plant and

set-points to be configured from the HMI. As the internal structure of HMI screens can be

very complex, we do not capture these internal elements in the knowledge base. On the

contrary to the simulations, we do not expect to support their internal design. The specific

6https://code.google.com/p/matlabcontrol/
7http://www.mathworks.com/help/matlab/programming-interfaces-for-c-c-fortran-com.html
8https://www.modelica.org/
9https://www.openmodelica.org/

10http://www.3ds.com/products-services/catia/capabilities/systems-engineering/modelica-systems-
simulation/dymola
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SCADA HMIs, for which prototypal tool connectors were implemented in order to check

their feasibility and efficiency, are ScadaBR11 and Promotic12. The Promotic screenshot

has been used in Fig. 1.2 and both tool connectors are addressed in details later in Sec. 6.5.2

respectively in Sec. 6.5.3.

The basic ideas of the SCADA integration effort were to evaluate the designed and im-

plemented models and algorithms in terms of the relevant automation ontology concepts

as well as interfaces of the ontology tool relevant for the SCADA integration. For the run-

time integration of simulations and SCADA systems, an Apache-Tomcat-based light-weight

tag integrator was developed, which was used as a mockup for the envisioned simulation

integration framework.

6.5.2 ScadaBR Tool Connector

One of the main technical outcomes in this area is the connector for the ScadaBR envi-

ronment. ScadaBR is an open-source SCADA–HMI system originating from Brazil, which

inspired the acronym “BR”. In Layman’s terms, it is a graphical extension of the SCADA

engine called Mango. ScadaBR is written in Java and it runs on Apache Tomcat. The

HMI screens themselves are available via standard Web browsers. This SCADA system

has been selected due to the following reasons: (i) it is an open-source software, hence it

can be not only tested for free, but it can be also modified and integrated in desired ways,

(ii) as it runs on the same technology as the ontology tool, it simplifies deployment and

advertising (Apache Tomcat needs not be pre-installed, but the whole bundle of tools can

be just copied), and finally (iii) ScadaBR proved that it can be used in industrial practice

efficiently.

The ScadaBR connector is written in Java and it is prepared to be integrated within the

simulation integration framework, namely into the EngSB as a connector implementing the

SCADA-HMI domain connector for this particular tool. As ScadaBR offers a data exchange

based on HTTP send and HTTP request methods, this type of data exchange was used due

to its simplicity and transparency.

6.5.3 Promotic Tool Connector

The second outcome is a connector for Promotic system. Promotic is a SCADA HMI system

available also in a freeware profile. The exemplary screenshot of this tool has been already

depicted on the right-hand side of Fig. 1.2 in Sec. 1. Originally, Promotic is a commercial

tool, but when a limited set of tags as well as a restricted set of plug-ins are used, it can be

used for free. The vendor of this SCADA system, which is the Czech company Microsys,

cooperates with the PLC producer Teco. A PLC Tecomat Foxtrot by Teco was available for

the development and testing of the designed approaches and software for passive houses as

part of use-case presented in Sec. 7.1. Summarizing the decision for the Promotic SCADA

system, (i) it is a SCADA system enabling also a free use, which moreover belongs to the

family of standard desktop-application SCADA systems, (ii) it has native plug-ins to read

and write tag values from/to files, which can be used in the very same way as already

implemented file connectors for the EngSB, and finally (iii) it has a native support for

PLCs Tecomat, which is for free under specific conditions. Promotic is able to read and

11http://www.scadabr.com.br/
12www.promotic.eu/
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write tag values from/to local files. The EngSB is equipped with a native file connector,

which is suitable for this kind of integration.

6.5.4 SCADA Systems – Data Acquisition Domain

Data acquisition is the second part of the responsibility of a SCADA system. The goal of

data acquisition is to read and to write process data, make them available on a server or

to deliver them to HMIs. The runtime data are accessed via tags, which have a name, a

timestamp, and a value. Engineering objects for data acquisition are thus tags and their

values can differ according to tag sources. Tag values can be measured, simulated, or re-

trieved from a database in basic cases. The requirement on the knowledge base is to capture

a mapping of data sources in order to simplify switching between working with real data

and simulated data. The specific tools for data acquisition are especially implementations

of OPC and OPC UA.

OPC UA is a universal multi-platform SOA-based standardized platform for process data

sharing. Compared to the OPC classic, it does not require Microsoft Windows technologies

for its running and it provides a security model. The author of this thesis co-operated

on a prototypal implementation of an OPC UA connector, which is built on the top of the

“freeopcua” stack13. This open-source stack is implemented in C++ and Python. The C++

version was used hence a bridging of Java and C++ languages is a part of the solution.

Since OPC UA has not been widespread in industry yet, the classic OPC technology

has been considered as well. Its usage has been found out as feasible, but a connector for

the OPC classic has not been implemented by the author of this thesis yet.

6.5.5 SCADA Systems – Multi-Agent System Domain

A large variety of current systems consist of relatively autonomous units. Such kinds of sys-

tems are frequently called systems of systems [72]. The problem of integrating autonomous

units into one virtual system emerges in many areas such as smart grids, water distribution

networks, or logistics. An important formal approach how to tackle these types of systems

is a concept of multi-agent systems [171].

Although the multi-agent community has invested a lot of effort into a standardization

of various properties and methods regarding software aspects of distributed and multi-agent

systems, the multi-agent or holonic systems still have not been widely spread in industrial

applications. One of the open problems is the integration of multi-agent systems with really

used industrial automation systems. The goal of this section is to improve this situation and

to bridge the gap between multi-agent systems responsible for coordination of autonomous

system units and the SCADA level of automation systems especially in terms of simulations.

Due to the scope of this thesis, only the agents on the supervisory level of the indus-

trial automation system are addressed. Goals of this kind of multi-agent systems are for

example satisfying global requirements on the agent community including a maximization

of a production in the given time frame, minimization of production costs, or minimization

of waste or heat consumption. These goals should be reached under diverse constraints

such as environmental limits, maximal operation time without technological downtimes,

minimal/maximal number of entities running, maximal total power, etc. This topic was

13https://freeopcua.github.io
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Table 6.1: Evaluation of the agent deployment alternatives.

Agents running on a server Agents on industrial PCs Agents running on PLCs

Centralization Decentralization Decentralization

- High communication density + Hierarchical communication + Hierarchical communication

- Less safety + Safety + Safety

+ Vendor freedom + Vendor freedom - PLC vendor dependent

+ Minimal HW requirements - Required industrial PC on-site + No other HW

- Limited scalability + Good scalability + Good scalability

discussed in [119] and this section summarizes the achievements of this paper.

Software agents representing nodes of the distributed control systems of industrial plants

can be deployed in the following three basic ways:

1. Agents running on a central server

2. Agents running on industrial PCs on-site

3. Agents running on PLCs on-site

These three approaches for the physical deployment of agents for industrial process

control are compared and evaluated in Tab. 6.1. The term “communication density” denotes

the communication traffic between the server and the DCS nodes in the aforementioned

table. The term “safety” is related to the hierarchy of data exchange and threats within

public networks. The term “vendor freedom” means that the solution is not restricted to

specific hardware vendors. Finally, the “scalability” is considered from the number of DCS

nodes point of view, i.e., it expresses how many nodes can be added into the integrated

system. Summarizing the pros and cons of each architecture, the most promising way is the

alternative utilizing industrial PCs on the agent level, although an additional hardware is

required.

The entire proposed architecture is depicted in Fig. 6.12. The HMI can be accessed

via various protocols based on the secured HTTP protocol and Web services. The central

servers that are needed for connecting the multi-agent system with SCADA systems as

well as for running the directory facilitator (i.e., yellow pages) and agent management

system (i.e., white pages) are duplicated in order to support back-up. When the main

server is not available, the backup server overtakes all tasks, which increases safety and

mitigates risks of the single point of failure. The communication between the servers and

the distributed agents deployed on industrial PCs together with OPC servers is solved

by two independent protocols within the same communication channel. Either a classic

OPC or OPC UA are used for SCADA-relevant process data monitoring and reporting,

whereas agent communication is solved by means of remote method invocation provided

by an agent platform. Due to interoperability and cost reasons, various protocols for the

communication between PLCs and agents can be supported as it is depicted in the figure,

nevertheless, OPC DA or OPC UA are the preferred ways.

6.6 Processes for Simulation Design and Integration

Whereas the previous sections addressed the integration from the infrastructure perspective,

this section is focused on processes how to utilize and to operate this infrastructure to save
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Figure 6.13: Improved design of simulations based on integrated engineering knowledge.

time and human effort for simulation model design and integration.

From the simulation modeling point of view, the approach proposed in this thesis is

shown in Fig. 6.13. The figure depicts that industrial plant models represented either in the

Microsoft Visio tool or in the AutomationML data format are processed and transformed by

the methods proposed in this thesis and a simulation model in a signal-oriented simulator

is generated as the outcome of these methods. From the perspective of the processes within

the integration infrastructure, which implements the aforementioned design-phase vision

technically, the simulation model design is focused on aggregating tool domain knowledge

into the knowledge base. It means that these processes are based on instantiating ontology

classes in the knowledge base (respectively in the automation ontology that implements

the data model of the knowledge base) to capture available engineering knowledge. Such

design-time processes incorporated into the EngSB-based infrastructure are schematically

expressed in Fig. 6.14. The figure depicts that engineering data are aggregated in the

knowledge base and such data is consequently used to support the design of simulation

models as well as the configuration of the infrastructure built over the EngSB for operation

at simulations at runtime.

The simulation model should be consequently integrated with other software parts of the

automation system as it has been introduced in Fig. 1.2. On the contrary to the aforemen-

tioned design-time processes related to simulation models, the runtime processes are based

on transferring values of tags between stakeholders within the EngSB. The aforementioned

benefit of the EngSB is that both types of processes can utilize the same technical infras-

tructure seamlessly. While the design-time processes based on the extended bond graphs,

automation ontology, and AutomationML and Microsoft Visio connectors have been al-

ready addressed in the previous sections, the runtime integration processes are related to

the EngSB only and these processes are described in the following section in details.

6.7 Integration of Simulations and SCADA Systems from the

Process Perspective

The runtime integration covers two sets of tasks: (i) routing between stakeholders based on

simulation workflows and data source specifications, and (ii) translation between variable
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Figure 6.14: Design-time processes of the simulation model life-cycle. The dash-dot arrows mean
the data exchange between stakeholders.

names and tag names, which is done on the tool connector level. The core issue is the

knowledge support for the improved runtime integration that can be used for model-driven

configuration of the integration infrastructure.

The basic workflow for the runtime integration of simulation models is depicted in

Fig. 6.15. The integration approach adopts principles of distributed systems and distin-

guishes local tool data models and global data models. For the integration, relationships

between tags are crucial. The workflow assumes to define local tag names in each specific

tool or technology, such as in OPC UA or OPC classic, in a simulation model, in an HMI

screen or in other industrial automation tools. In the second step, there should be selected

a representation of each tag name that will be used in the EngSB environment and which is

considered as a global tag name representation. Such an attitude to tags enables to support

legacy artifacts as well. The process of mapping tags can be supported by algorithms pre-

ferring the real OPC UA or OPC classic tag names, simulation inputs/outputs, but a user

has to be allowed to modify the names manually. The annotation of the tag names is stored

in the automation ontology as well as the mappings between global tag names and local tag

names. In simple cases, when local tag names are derived from real tags by a pre-defined

prefix or suffix, a merging algorithm can be able to find mappings between local and global

tag representations automatically. In some cases, it can work semi-automatically and for

example to group the tags according to devices, locations or other pieces of information.

This can be done easily in cases when tag names satisfy a standardized naming convention

including these pieces of information, such as according to the IEC 81346 standard [120].

A particular example of the tag routing is depicted in Fig. 6.16. It schematically shows

how tag values are transferred between stakeholders within the EngSB-based infrastructure.

Runtime processes utilize a version-control system to improve traceability of experiments

in terms of utilized settings and data as it has been introduced in the case of the simulation

workflow depicted in Fig. 5.24.

The automation ontology formalizes the mappings between local and global tags as well

as between tags and variables. In the local context, a lot of variables frequently exist,
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but only a subset of these variables is labeled with local tag names. From the integration

perspective, local tags are externally visible variables. The translation between variables

and tags is realized on the connector level of the integrating infrastructure. To illustrate

this translation on a practical example, variables are stored in MATLAB workspace in case

of a single simulation module, whereas when such variables are either visualized in a plotted

graph or exported/imported to/from the EngSB, the name of the variable/tag is changed.

This approach guarantees a very high degree of the reuse even for legacy models, sets of

models, and tools, because local representations are overshadowed by common definitions

on the top of them. The tag routing is defined by simulation workflows, which are expressed

in the automation ontology as well. Although the name of the simulation workflow can be

confusing as it also covers routing for example among HMIs and OPC stacks, it was defined

during the cooperation with industrial partners consensually. The translation between

variables and tags is demonstrated in Fig. 6.17.

The aforementioned connector to Microsoft Visio supports not only capturing engineer-

ing data into the ontology, but also visualizing the data stored in the ontology in a form

of XML hierarchies intended for the configuration of the simulation integration framework.

Since the screenshots showing this are rather technical issues intended for evaluation of the

proposed method only, they are included in Appendix C (i.e., Fig C.2 and Fig. C.3).

An important issue is the problem of timing and synchronization of the tag exchange.

Since simulators are strongly influenced by numerical stability of the model itself as well

as required relative and absolute precision, the simulation time passes in different time

steps during continuous-time simulations frequently. The whole model is performed either

synchronously with the real time, faster, or exceptionally slower. Such timing issues are

strongly project-dependent, hence they are not addressed in this thesis.
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Chapter 7

Use-Cases and Experiments

This section summarizes two use-cases from different engineering disciplines to illustrate the

proposed approach in practice and to emphasize the mechatronic abilities of the proposed

methods. These use-cases are also utilized as basic test-beds to estimate the efficiency and

effectiveness of the proposed methodology.

7.1 Passive House Simulation Use-Case

Simulation models for passive houses are useful test-beds for testing and tuning building

automation and control systems. The goal of this use-case is to evaluate the proposed

simulation model design method in the case of creating a simulation model for a particular

passive house semi-automatically. In addition, the goal is to verify the simulation library

and created models with the use of measured data and to fine-tune model parameters. This

use-case also addresses the data acquisition in the real testing house built near Prague,

which is necessary for comparison of simulation results and measured courses of variables

form the real passive house.

7.1.1 Motivation for the Passive House Simulation Use-Case

The building sector offers the highest potential for energy savings in Europe, see for example

Directive 2010/31/EU [40] for more details. Although in the past, buildings have been in

scope of civil engineering only, the passive or especially zero-energy houses require proper

control of building systems and devices that belong to the control engineering discipline.

This kind of buildings is thus a good example of mechatronic systems. The design and

fine-tuning of building control systems is a complex task, which has to cover a large vari-

ety of heterogeneous hardware platforms and software tools. The optimization of control

algorithms requires series of experiments, hence the simulation model is a useful test-bed,

performing experiments much faster and guaranteeing initial conditions to be repeatable.

By now, passive house control has reflected inhabitants’ requirements only, but the

emerging area of smart grids [166], referred as electrical distribution network of the future,

brings further challenges. Houses will no longer be autonomous entities optimizing their

own goals only, but they will participate in achieving common goals of the grid as well. This

promising area requires simulation models, which would be capable to simulate the behavior

and to test the functionality of the whole smart grid as well as the particular houses.
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7.1.2 Passive House Standard

Although the proposed approach is general and can be used for any kind of a house, this use-

case is focused on passive houses. The reasons are (i) the author of the thesis implemented

in the previous work a simulation library suited for air-heated houses with a low energy

consumption, and (ii) having measured data from a real passive house.

Several civil-engineering standards for passive houses exist world-wide, however, their

common points are the following requirements [137]:

� Annual required energy for heating not exceeding 15 kWh·m−2

� Annual combined primary energy consumption not exceeding 120 kWh·m−2

� Building envelope air change rate under pressure difference 50 Pa (n50) not exceeding

0.6 h−1

To meet these requirements, there are many widely accepted rules, which are not explic-

itly involved in the definition of a passive house. Passive houses are continuously supplied

with fresh air via a ventilating system with high-efficient heat recovery. To minimize the

air change rate through the building envelope (i.e., air flows without heat recovery), it has

to be sealed well.

7.1.3 Measuring and Control in Passive Houses

To evaluate the presented approach and to estimate the scalability of investigated methods

for future use on real-world industrial problems, a use-case following results from former

projects was selected. This use-case, which was presented in [125], deals with measuring

physical behavior of passive houses and fine-tuning a dynamic simulation model approxi-

mating their operation. Thus the overall goal of this use-case is to improve simulation and

control of environmental parameters of passive houses by means of big data.

Operation of residential buildings is fundamentally characterized by indoor air quality

and energy consumption. Indoor air quality can be represented by environmental parame-

ters, which are in this case the following variables:

� Temperature;

� Carbon dioxide (CO2) concentration;

� Relative humidity (RH);

� Air pressure.

7.1.4 Simulation Modeling of Houses

Although many building simulation models have been designed over the world, they do not

support the usage of advanced control techniques (such as fuzzy control or model predictive

control) in the most cases. Compatibility and support for such modern control techniques

led to implementation of a simulation library in MATLAB-Simulink, which perfectly fits for

these and other kinds of techniques for control and data processing.
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Figure 7.1: Building Simulation Library (bldsimlib) for simulation modeling of passive houses,
which was designed by the author of this thesis.

The utilized simulation library has been designed and implemented by the author of the

thesis already in his previous work [114]. The early version of this “Building Simulation Li-

brary” (“bldsimlib”) was disseminated in [115], an improved version was presented in [117],

which includes considerations about HVAC (i.e., heating, ventilation, and air conditioning)

control based on fuzzy theory. The latest version of the library was presented in [125].

The library simulates all of the four physical quantities called environmental parameters

stated in Sec. 7.1.3. The model is continuous-time and dynamic. The simulation time can

be arbitrary, nevertheless, most of the experiments simulate a one-year-period. Since the

library is intended to support testing and fine-tuning of control systems, it adopts a so-called

multi-zone model, i.e., a building consisting of multiple zones and each zone represents a

real room. This assumption implies that the model uses only one representing value of the

environmental parameters for each room.

The two types of interfaces of simulation blocks are used in this simulation library. In

compliance with the (extended) bond graph theory, both types of signals representing (i)

a flow of the environmental variables and (ii) a state of environmental parameters. In the

former case, the signal type corresponds to the flow in terms of bond graphs and this flow

is a vector having elements: heat flow and molar flows of air, CO2, and H2O. In the latter

case, the signal type corresponds to to the effort and to the integrated flow in terms of

bond graphs and this state is a vector of temperature, amounts of substance of air, CO2,

and H2O, and air pressure. The simulation library involves five types of simulation blocks:

so-called “room element” blocks, “room-type” blocks, “interaction-type” blocks, “special”

blocks, and supporting “additional” blocks, as it is depicted in Fig. 7.1. These sets of blocks

differ not only in the functionality, but especially in input and output interfaces.

The room-type blocks are the simulation blocks representing a room, an exterior, and

a ground. They have thermal flow and molar flows as inputs; and room temperature,

CO2 and H2O amounts of substance, and air pressure as outputs. These input and output

signal vectors are implemented as multiplexed signals, hence they seem just as one signal
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in Fig. 7.1. In addition, the library blocks include also variables in human-comprehensible

units and scales as outputs, such as temperature scaled in [oC], RH scaled in [%], or air

pressure scaled in [kPa]. The exterior and ground blocks have the similar interfaces as room

blocks, but they specify boundary conditions of the simulation.

Fundamental physical laws describing room-type blocks can be summarized as follows:

T =
1

Ct

∫ t

t0

Qt(τ) dτ (7.1)

n =

∫ t

t0

Qn(τ) dτ (7.2)

where T denotes the temperature, Ct denotes the thermal capacity, Q t is the heat flow,

n is the amount of substance, Qn denotes molar flows, and τ represents time. The output

vector of the room block also includes air pressure p. The reason is that the volumetric

flows between the rooms are given by their pressure difference, hence the pressure output is

crucial for defining the direction of the flow and its value. The pressure is calculated with

the ideal gas equation, where R denotes the gas constant and V is the volume of the room:

p =
nairRT

V
(7.3)

The interaction-type blocks basically connect two rooms. Since ventilation ducts are con-

sidered as a special kind of rooms having a very low volume, the interaction-type blocks con-

nect air ducts and a room as well. The simulation library includes the following interaction-

type blocks: window, door, wall, leakage, ventilator, damper, and exhaust fan. They have

states of the two connected rooms as inputs; and flows into the two rooms as outputs. Some

of the blocks also include input signal ranged between 0 and 1 representing openness. The

majority of the interaction-type blocks is based on the pressure difference between zones:

QV = q0S(∆p)0.67 (7.4)

where QV is the volumetric flow, q0 is the specific flow constant, S is the area of air

permeability, and ∆p is the pressure difference. The volumetric flow given by Eq. 7.4 is

re-calculated to the molar flow Qn with the use of Eq. 7.3:

Qn =
pQV

RT
(7.5)

The heat flow Qt between the rooms is given by the following equation:

Qt = Qncm∆T (7.6)

where cm is a molar thermal capacity of transferred air. Conductive transfer of heat, which

occurs, e.g., in the case of closed windows is defined by Eq. 7.7, where U is thermal

transmittance, S is area, and ∆T is a difference of temperatures:

Qt = US∆T (7.7)

Finally, the simulation library includes room elements affecting one room only (including

the human, heat source, universal source, gas cooker, plant and bath/shower) and special
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Figure 7.2: Illustrative views on the experimental passive house.
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HMI

House Viewer on DataLab PC

Measuring system

ZigBee sensors

Figure 7.3: Deployment of the real hardware for measuring, control, and data logging in the
experimental passive house.

blocks that are the HVAC unit, approximates a heat exchanger including ventilators, and a

blower door tester. Additional blocks pose rather a technical issue only.

7.1.5 Experimental Passive House

To acquire real data and experiences as well as to verify a simulation model and advanced

process control algorithms, an experimental passive house was built near Prague, in Úvaly–

Host́ın. The exterior of this two-floor wooden passive family house is depicted in Fig. 7.2

on the left-hand side.

The author’s work did not cover modeling and simulation tasks only, but also deploy-

ment of the measurement and control equipment to the house as well as technical and

development issues, such as hardware configuration or programming of the installed PLC

according to IEC 61131 standard, programming of the industrial PC in C# to visualize and

to save runtime data of the building, deployment, maintenance, and repairing of sensors, or

supervision of the instrumentation and wiring of the electrical cabinet. The final solution

of the electrical cabinet of the house is depicted in the middle part of Fig. 7.2.

The architecture of the used physical deployment is depicted in Fig. 7.3. The house was

controlled by the PLC Tecomat Foxtrot CP-10041, whose data were read via an ethernet

cable by an industrial PC with a touch screen. The industrial PC hosted the software called

House Viewer, which was used as the SCADA HMI for this house. The communication

between the PLC and the industrial PC was based on the protocol EPSNET2. The author

1http://www.tecomat.com/kategorie-308-tecomat-foxtrot.html
2http://www.tecomat.com/wpimages/other/DOCS/eng/TXV00403 02 Comm Serial32 en.pdf
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Figure 7.4: Simulation model for the second floor of the experimental passive house to illustrate
the complexity of the simulation model.

of this thesis implemented a communication module into the House Viewer software, which

realizes the data synchronization. The same industrial PC was also used to download and

to save interior data, which were measured by a set of wireless sensors. As an example,

several sensors of this equipment are depicted on the right-hand side of Fig. 7.2. These

sensors communicated according to the ZigBee standard with the central element of the

measurement equipment, which was connected to the industrial PC via a standard USB

connection.

The simulation model for the experimental passive house was developed by the author of

this thesis mainly in his prior work [116]. It is a multi-layer simulation model in MATLAB-

Simulink. To illustrate its complexity in terms of number of elements and signal connections,

the model of the first floor is shown in Fig. 7.4. It depicts simulation blocks representing

rooms, walls, windows, as well as their signal-oriented interconnections. This simulation

model was tested and verified in the real passive house and its results were found out as

satisfactory for intended purposes of supporting the development and testing of building

automation and control systems for passive houses.

A long-term measurement of the environmental parameters as well as the total and

heating electricity consumptions and boundary conditions of the passive house was done

by the author in the frame of this thesis. Measuring of environmental parameters and

energy consumption on real buildings is a long-term process as time-constants of residential

buildings are very long and experiments are not repeatable due to changing weather as

well as initial state conditions. The experimental passive house was equipped with a lot of

sensors in all rooms (excluding a toilet and an entry foyer), the HVAC unit was equipped

with power meters and there were installed outdoor wind velocity and direction, sunlight

intensity, and temperature sensors. In total, the experimental passive house was equipped

with 36 sensors of the following types:

1. Room temperature and relative humidity – coupled sensor (13 sensors)
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Figure 7.5: A simplified floor-plan of the experimental passive house depicts the positions of the
interior sensors and their types.

2. Room carbon dioxide concentration (16 sensors)

3. Room pressure (12 sensors)

4. Heating energy (1 sensor)

5. Ventilation energy (1 sensor)

6. Outdoor temperature, relative humidity and air pressure – coupled sensor (1 sensor)

7. Sunlight intensity (1 sensor)

8. Wind speed and direction (1 sensor)

The final positions of the installed interior sensors are depicted in Fig. 7.5, where the

ground floor is located on the left-hand side of the figure, whereas the upper floor is on

the right-hand side. The sensor positioning was selected after testing diverse arrangements

of sensors and finding appropriate settings. Sensors for carbon dioxide concentration are

located in all rooms with expected long-term presence of humans, such as a living room

103, a kitchen 102, and bed rooms 202, 203, and 204. Coupled temperature and relative

humidity sensors are located in all rooms excepting a toilet 105 and an entry foyer, where

it was not technically possible. Air pressure sensors are in most of the rooms. They were

intended to monitor air pressure, which corresponds to air flows between rooms, however,

due to the limited resolution of the detector, this task was satisfied only partially. In the

further text, we will focus on courses of temperature and carbon dioxide concentration,

which are the most important variables for data analysis.

An example of real measured time-series and their comparison with dynamically simu-

lated courses is depicted in Fig. 7.6, showing the experiment of ventilating polluted indoor

air. It shows the impact of machinery ventilation on the indoor temperature and air quality,

which is indicated by the CO2 concentration. Fig. 7.6 depicts a situation in a bed room

204, having one window, sunblind up, and ventilation on. The room has been just left by a

group of people.

Analysis of sensor time-series needed pre-processing and filtering of outliers mainly in

case of carbon dioxide concentration. The results of the preliminary data processing were
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Figure 7.6: Comparison of measured and simulated temperature and carbon dioxide concentration
time-series.

discussed in [76]. Among others, it proved that the simulation model of the ventilation

system having an impact on the CO2 concentration is in compliance with the measured

data from the experimental passive house.

7.1.6 Semi-Automated Design of Simulation Models for a Passive House

Lessons learned from practice showed that it is very time-consuming and error-prone to

create the whole simulation model manually. When a house is being built, there exist a lot

of CAD drawings, depicting the floor plans, views, etc. By now, it has been necessary to

take these plans and to copy simulation blocks from the library to the simulation model file

and to interconnect the simulation blocks according to specified rules manually. It is very

beneficial to automate this repeating work and to create the simulation model structure

semi-automatically.

This use-case poses the simulation model design scenario when the simulation library

is available. To create a simulation model automatically based on the available simulation

library blocks and existing engineering plans (e.g., AutoCAD, MS Visio, or other electronic

drawing), the design workflow is depicted in Fig. 7.7 and it was disseminated in [125] after

initial considerations presented in [124]. Both papers described that assembling a simulation

model structure can be done automatically. However, values of simulation parameters have

to be entered manually by a user thus the entire simulation generation process is referred as

semi-automatical. In future work, parameter values could be extracted from a widely used

tool PHPP [136] and from material databases.

Following the workflow depicted in Fig. 7.7 in details, the simulation generation method

starts with the output file of the House Builder software [65]. The House Builder tool

was originally intended to prepare the configuration for the HMI tool House Viewer in a

user-friendly way. Both House Builder and House Viewer software were implemented at

Dept. of Cybernetics, FEE, CTU in Prague. The XML file being the output of House

Builder software is interpreted as a kind of a CAD drawing. The parser, which was im-

plemented in Java, populates the ontology with individuals representing real rooms, walls,

and the exterior. As the automation ontology involves annotations of the simulation library

and relationships of the real devices and simulation blocks defined by the object property
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Figure 7.7: The scenario of the semi-automated design of the simulation model for a particular
passive house.

“simulates”, the ontology tool creates the simulation structure.

The results of this approach are demonstrated in Fig. 7.8. The left-hand side depicts

the floor plan of a simplified passive house created in the House Builder tool. On the

right-hand side, the generated simulation model for this house is shown. The layout of

the signal-wire routing was changed manually in order to make all signals visible. The

extension of the algorithm to improve the layout is a future work topic, as well as merging

the blocks simulating the same thing (such as walls between rooms and the exterior, which

are now implemented as three independent blocks, but which could be merged into just one

simulation block).

When the floor plan is changed (i.e., it is re-drawn in the House Builder software), the

simulation model can be easily re-generated. Hence users can create several versions of the

house in the project phase easily and to compare their behaviors in the simulated world. An

important aspect of this result is that dynamic simulation models can be created by users

that are not skilled in dynamic simulation engineering, such as architects or civil engineers

designing residential buildings. In the implementation done within this thesis, the tool

support includes House Builder only, but for example Microsoft Visio could be added with

the developed connector easily.

7.1.7 Lessons Learned and Evaluation of the Passive House Use-Case

The passive house use-case was the author’s first complex use-case he worked on. The

use-case proves that simulation models can be designed even by non-experts in process

simulation as well. Although the passive house use-case has brought a lot of pieces of

inspiration and ideas, its complexity from the modeling and simulation perspectives is rather

simple. The first reason is that passive houses include a relatively small number of elements
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Figure 7.8: An exemplary two-room passive house floor plan in the House Builder tool on the
bottom-left side and the automatically generated simulation model structure in MATLAB-Simulink
on the right-hand side.

compared to large-scale systems from industrial practice. The second reason is that the

structuring of the system is significantly simplified by the fact that there is no inductance

in thermal models used in building modeling and simulation, see Tab. 2.1.

The lack of inductance is the root for much easier structuring of the simulation model

than is typical in other engineering disciplines in case of models for systems of similar sizes

(in terms of the number of devices, interconnections, etc.). Junctions can be represented in

other ways as they need not be modeled explicitly, which leads to an easier interpretation of

the simulation model structure by humans. On the other hand, parallel connections realized

on the room block level required a more complicated representation of power bonds in the

automation ontology than in the case of explicit representations of all junctions.

Although the scenario proposed in Fig. 7.7 reached good results and proved the effec-

tiveness and efficiency of the proposed simulation model generation method, the lack of

inductance elements was found as an important factor that affects the complexity of the

simulation model engineering. In other words, the passive house use-case belongs to the

family of simulation models whose semi-automated generation is not as difficult as in gen-

eral. In addition, the mapping between physical objects and simulation blocks is 1:1, which

poses the simple case. Therefore, the hydraulic use-case was added and addressed as well

in order to verify and to evaluate the proposed method on a system type including both

types of energy accumulators and various mappings between devices and simulation blocks.

Nevertheless, the passive house use-case shows that the proposed methods can be used on

various types of mechatronic systems, including not only the industrial ones.
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7.2 Hydraulic Network Use-Case

The main goal of this use-case is to demonstrate the improved simulation model design

on a more complex system than are the passive houses. In this use-case, the mapping

between real devices and adequate simulation blocks is 1 : n, hence it shows how to select

the appropriate blocks for each component. Moreover, the nature of hydraulic systems does

not enable to merge junctions with other artifacts, hence the explicitly modeled junctions

are shown in this use-case as well.

Hydraulic systems are widespread in many types of industrial systems. They are used as

parts of water supply, power plants, chemical and petroleum industries, liquefied gas service,

and other areas of applications [82]. In this section, an educational hydraulic model, which is

located in the Odo Struger Laboratory at the Automation and Control Institute3 (ACIN) of

the Vienna University of Technology4, is addressed. The laboratory tank model is depicted

in Fig. 7.9, showing the piping and instrumentation diagram (P&ID) of the most important

subsystem of this laboratory test bench. This use-case can be considered as a laboratory-

scaled educational example of water supply systems. Mathematical-physical description of

hydraulic systems is introduced and summarized in numerous literature, for example in [1]

or [103]. Due to low pressures and flows in the system, the flows can be considered as

laminar for simplicity reasons. The proposed method addresses the following challenges

related to the simulation model design and integration tasks:

1. Design of a simulation model with extended bond graphs

The support for the simulation model engineering is the crucial issue for virtual com-

missioning of the real plant, its control systems, and for operator training. The use

of the proposed extended bond-graph theory is shown in this use-case. The simplicity

and fastness of the usage proves the efficiency of the proposed method.

2. List of simulation parameters

To configure the behavior of simulation blocks, their parameters have to be set up.

The implemented connectors for MS Visio and AutomationML are used to grab the

parameter values and to capture them in the automation ontology. The parameter

values are consequently queried from the ontology and used as a main part of the

simulation model configuration.

3. List of OPC tags

The OPC server is an application acquiring data from plant devices and sending

control actions to the devices. The configuration of this basic interface between the

plant and the supervisory automation layers is one of the key issues for semi-automated

SCADA system integration.

7.2.1 Simulation Library for Hydraulic Systems

In this use-case, a simulation library was first designed by the author of this thesis and

afterwards it was considered as an available simulation library. Later on, it was included

into the mechatronic library, which is discussed in details in Appendix B.

3http://www.acin.tuwien.ac.at
4http://www.tuwien.ac.at
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The top layer of the simulation library (i.e., of the hydraulic system part of the mecha-

tronic library) is depicted in Fig. 7.10 in MATLAB-Simulink. It shows that the library

includes simulation blocks for approximating pipes, valves, pumps, and hydraulic tanks.

This section describes the ideas behind the structure of the simulation library, whereas

the details about internal structure, interfaces, and block parameters are addressed in Ap-

pendix B.

In case of the simulation blocks approximating pipes and pumps, the simulation library

includes versions of the blocks having effort as input and flow as output, as well as blocks

having interfaces vice-versa. In the case of pumps, the library includes two pairs of pumps.

The first one assumes the basic constraint handling, whereas the second one supports the

optimized constraint handling as it was proposed in Sec. 5.13.

The simulation library includes three types of valves, in particular the two valves differing

in how openness is input into the simulation block (i.e., whether it is a block parameter or

whether it is a block input) and one valve supporting the optimized constrained handling

and having the openness signal as an input.

Tanks have the same interfaces in terms of positions of effort and flow, but they differ in

number of power ports. When constructing a simulation model, the number of connection

points has to be taken into account to select the appropriate simulation block. Similarly to

the case of pumps, the versions implementing the basic constraint handling are included in

the simulation library, as well as the blocks implementing the optimized constraint handling.

Since even the basic versions of the simulation blocks implement switching off the output

pressure when the height of the liquid in the tank is in the unfeasible region in relationship to

the specific connection point of the tank, the basic versions are useful as well and applicable

for paths between tanks without pressure or flow sources (i.e., pumps in the current version

of the simulation library).

To create simulation models for hydraulic systems, simulation blocks realizing 0-junctions

and 1-junctions in the sense of the bond-graph theory are needed, too. Since their design

and implementation are straightforward, they are not discussed here and they can be seen

in Appendix B.

7.2.2 Simulation Models for the Tank Model

When the structure of the laboratory tank model is captured in the automation ontology

and when the simulation library blocks are annotated in the ontology as well, the simula-

tion model for this plant can be generated utilizing the extended bond-graph theory. The

structure of the plant was captured in the automation ontology with the Microsoft Visio

connector presented in Sec. 6.3.1 (for further details see Fig. 6.3 and Fig. C.1) and the

mechatronic simulation library was annotated manually in the automation ontology.

The first process step of the proposed simulation model design is the creation of the

acausal extended bond graph. This issue is similar to the standard bond-graph theory case

with the difference of considering available simulation blocks from the mechatronic library.

The resulting bond graph is depicted in Fig. 7.11, which characterizes how components are

interconnected and what are the junctions in the simulation model that is being designed.

In the next process step, the causality is assigned and thus specific simulation blocks

are selected. After the causality assignment algorithm (i.e., Alg. 3) is performed, the causal

bond graph is obtained. The outcome of this process step is depicted in Fig. 7.12. The
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Figure 7.11: Structure of the bond graph for the laboratory tank model. In this process step,
neither the causality nor selection of simulation blocks is not known.

Figure 7.12: The bond graph for the laboratory tank model having assigned the causality. Specific
simulation blocks and realization of junctions have been solved.

generated bond graph is serialized in the automation ontology within the bond graph domain

in such a form that is convenient for generation of simulation models.

Based on the causal bond graph, the signal-oriented simulation model can be generated

in a specific simulation environment. The generation of simulations in MATLAB-Simulink

has been discussed in Sec. 6.4.1. Since the two versions of constraint handling were discussed

in Sec. 5.13, the following two different versions of the simulation model are shown for the

entire system. The first one is depicted in Fig. 7.13 and it includes the basic constraint

handling, which means that output efforts of tanks are artificially lowered to the reference

level when a constraint is reached. The second version is depicted in Fig. 7.14, which

shows the optimized version of constraint handling that switches off such flows that lead to

violating defined constraints.

The necessary condition for the generation of simulation models is that the library

includes simulation blocks with such interfaces that are compatible each other to create

the model, as it was described in details in Sec. 5. Nevertheless, this condition is not

the only one to obtain usable and useful simulation models. The second obstacle in the

simulation design is the need for the lowest possible number of algebraic loops. This is

the reason, why simulation model structures are optimized frequently and why some of the

components/blocks are merged with other ones. In this use-case, algebraic loops are caused

by pipes. To increase the stability and performance of the simulation, the pipes can be

merged with valves. This refinement of the simulation model structure has been done as

well and it is discussed in the following explanation.
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Simulation model:

  + Plant: Laboratory tank model

+ Location: Odo Struger Laboratory
at ACIN, TU Wien

 + Simulator: Matlab-Simulink
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Figure 7.13: The simulation model for the entire version of the laboratory tank model utilizing
the basic constraint handling.

Simulation model:

  + Plant: Laboratory tank model

+ Location: Odo Struger Laboratory
at ACIN, TU Wien

 + Simulator: Matlab-Simulink

 + Optimized constraint handling
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Figure 7.14: A simulation model for the entire version of the laboratory tank model utilizing the
optimized constraint handling.
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Figure 7.15: Structure of the bond graph for the refined version of the laboratory tank model
with merged pipes and valves. In this process step, neither the causality nor selection of simulation
blocks is not known.

Figure 7.16: The bond graph for the refined version of the laboratory tank model having assigned
the causality. Specific simulation blocks and realization of junctions have been solved.

The original system and its extended bond graph were simplified by merging the pipes

and valves where possible. The extended bond graph of the simplified system is depicted

in Fig. 7.15. Compared to the previous version, there are no explicit pipes in the graph.

Similarly as in the previous version of the simulation model, the causality has to be

solved and specific simulation blocks selected with the use of the proposed causality assign-

ment algorithm. The resulting extended bond graph is depicted in Fig. 7.16. For the refined

system, where both two pipes surrounding each valve are merged with this valve, the two

versions of simulation model were created based on this extended bond graph. The version

implementing the basic constraint handling is depicted in Fig. 7.17, and the version imple-

menting the optimized constraint handling is depicted in Fig. 7.18. The set of parameters is

slightly changed for the refined versions of simulation model. Since the diameters of pipes

and valves are the same, the value of diameter remained unchanged, but their length is the

sum of lengths of the original valve and pipes.

In overall the four instances of simulation models were thus created for this use-case.

They compare the models for the entire system and for the refined system, as well as

for the basic and optimized constraint handling. The simulated experiments showed that

the existence of algebraic loops does not pose a significant problem for the simulation of

this scale5. The significant difference was found out in constraint handling, as the basic

version based on signal pairs effort and flow signals need not work satisfactorily, which

happens especially in the case of pumping the liquid to the upper tank. The optimized

5The simulation solver “ode23tb (stiff/TR-BDF2)” was used for the experiments in this use-case.
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Simulation model:

  + Plant: Laboratory tank model

+ Location: Odo Struger Laboratory
at ACIN, TU Wien
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Figure 7.17: The simulation model for the refined version of the laboratory tank model utilizing
the basic constraint handling.

Simulation model:

  + Plant: Laboratory tank model

+ Location: Odo Struger Laboratory
at ACIN, TU Wien

 + Simulator: Matlab-Simulink

 + Optimized constraint handling
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Figure 7.18: A simulation model for the refined version of the laboratory tank model utilizing the
optimized constraint handling.
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version of constraint handling simulates correctly all considered situations dealing with

constraints on the level of this use-case. On the other hand, the optimized constraint

handling approach requires to use additional signal bonds between components, thus the

structure of the simulation model is not as straightforward as in the basic case. Nevertheless,

the alternative having the refined system structure with eliminated algebraic loops and

implementing the optimized constraint handling proved that the simulation expert is on

the safe side and the simulation model works effectively and efficiently.

7.2.3 Generation of the Lists of Simulation Parameters and Tags

Prior executing a simulation model, simulation parameter values have to be set up. Fur-

thermore, input tags have to be configured to define boundary conditions of the simulation

model. If simulation experiments are used in a batch mode, time-series of values of input

tags have to be available in advance. On the contrary in a synchronized mode of simulation

execution, input tag samples have to be available at runtime and delivered in time by the

integrating infrastructure. To visualize simulation results or to capture them in a database

for runtime data, output tags have to be configured and integrated. In the following text,

parameters and tags are discussed for the case of the hydraulic tank system.

Simulation parameters configure the behavior of simulation blocks for each particular

position in the system topology. They are captured in the automation ontology and they

are supported by the MS Visio connector. For the laboratory tank model, the simulation

parameters queried from the ontology are summarized in Tab. 7.1.

To connect the simulation model of the laboratory tank model to the OPC server, the

simulation model has 5 tags. These tags are summarized in Tab. 7.2 including whether

each tag is an input or output tag. This configuration of tags is expected to be read by the

simulation integration framework as part of the simulation model integration configuration.

7.2.4 Simulation Model Testing and Comparison of Measured and Sim-

ulated Experiments

The created simulation model for the hydraulic tank model was internally verified as the

first step of the simulation model testing. The internal verification is focused on checking

whether the created computer simulation is compliant with the mathematical-physical be-

havior of the system. Since the mathematical behavior of the modeled system is distributed

into specific simulation blocks, the entire model behavior had to be checked in terms of

convergence, behavior under limit circumstances and pressure–flow analysis in the three

basic hydraulic paths.

As the second step of the simulation model testing was done the calibration of simulation

model parameters. Especially the output pressure of the pump was set up based on measured

characteristics as well as internal diameters of valves were fine-tuned based on measured

data because several roots of pressure loss are neglected. The results of the simulation

model fine-tuning are depicted in Fig. 7.19. It shows the comparison of the measured and

simulated responses of the hydraulic tank model system and both simulation models for

this system. A fundamental part of this testing phase is thus an external validation of

the simulation model, which is focused on comparing the simulation results of the created

simulation model with really measured responses under the intended operation scenarios.
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Table 7.1: List of simulation parameters and their values for the laboratory tank model.

Simulation parameter Parameter value Parameter scale

T101.a 0.0324 m
T101.h0 0.1000 m
T101.h1 0.1600 m
T101.h2 0.3300 m
T101.h3 0.0000 m
T101.hi {0.1860; 0.0070} m

T102.a 0.0324 m
T102.h0 0.5900 m
T102.h1 0.0550 m
T102.h2 0.0080 m
T102.hi {0.0070; 0.1860} m

valve1.l 0.0500 m
pipe11.l 0.0500 m
pipe12.l 0.0500 m
valve1.d 0.0050 m
pipe11.d 0.0050 m
pipe12.d 0.0050 m

valve2.l 0.0500 m
pipe21.l 0.3700 m
pipe22.l 0.3000 m
valve2.d 0.0050 m
pipe21.d 0.0050 m
pipe22.d 0.0050 m

valve3.l 0.0500 m
pipe31.l 0.3000 m
pipe32.l 0.3800 m

valve3.d 0.0050 m
pipe31.d 0.0050 m
pipe32.d 0.0050 m

pump1.emax 2 · 104 Pa

Table 7.2: List of the tags for the laboratory tank model.

Tag type Tag name Tag scale

Input1 V1Position 0–1
Input2 V2Position 0–1
Input3 V3Position 0–1

Output1 T1Level m
Output2 T2Level m
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Figure 7.19: A simulation model for the laboratory tank model.

As the last step of the simulation model testing, a set of experiments on artificial input

data in terms of pre-defined time-courses of the openness of the three valves and of the

power of the pump has been done. The obtained responses of all simulation models for

one of the experiments are compared in Fig. 7.20. We can see that all models tackle

physical constraints for the case of valves connecting tanks with different water and bottom

levels, however, the simulation model responses differ in facing constraints related to the

pump. In this figure, we can see that the optimized constraint handling leads to realistic

simulation results, whereas the basic constraint limit handling reaches its limits and cannot

be satisfactorily used in this abnormal region.

Normal and abnormal operation conditions of the simulation model for the hydraulic

tank model are testable mainly when the system is connected to a control system or algo-

rithm, otherwise the simulation model can get into the operation region, where its behavior

is not tested enough and the model can reach high error. In principle, any simulation model

cannot get results under arbitrary mode of operation especially in terms of combination of

high frequency inputs.

7.2.5 Lessons Learned and Evaluation of the Reached Results

Summarizing the entire hydraulic use-case, it was shown how to design the simulation model

for the laboratory tank model with the extended bond graph method, and how to configure

the integration of the model within the integrated simulation environment. These tasks are

required by industrial practitioners frequently and the proposed method contributes to the

significant reduction of manual effort, resulting into mitigation of human errors and saving

time and costs for the development and testing of simulation models.

Compared to the previous passive house use-case, the hydraulic tank model system poses
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Figure 7.20: A simulation model for the laboratory tank model.
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a more complicated case in terms of the needed selection of simulation blocks, which had

to take into account (i) the number of inputs and outputs, as well as (ii) the assignment of

the effort–flow signals to the power bonds. Since this laboratory system can be scaled-up

easily, it also proved that the proposed method is suitable for simulation design problems

in the industrial scale. In compliance with the results mentioned in Sec. 7.2.4, this use-case

stressed the importance of constraint handling that plays a crucial role for testing control

systems especially under abnormal conditions.

Within this use-case, the performed refinement of the simulation model structure to

avoid algebraic loops (i.e., merging pipes with valves) had positive impact on simulation

stability and performance. However, it required human effort as neither the detection nor

solving of algebraic loops has been supported by the proposed semi-automated method.

It also proved that the simulation model is applicable without this refinement (i.e., in the

version corresponding to the entire plant model), which is a good news for the automated

simulation model design.
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Chapter 8

Conclusions and Future Work

This thesis is aimed at improving the design and integration of simulation models for indus-

trial systems. The presented research is focused on simulations on the supervisory level of

automation systems. The main goals of this thesis were to design and to implement meth-

ods to support the creation of simulation models for large-scale systems and to integrate

simulation models within the remainder of the automation system. The proposed approach

is based on the reuse of engineering knowledge and it has been developed in such a way

that is flexible and applicable in industrial practice easily.

In more details, the research presented in this thesis addresses the research issue RI-1,

which is presented in Sec. 4. It is focused on the formalization of engineering knowledge in

the automation ontology. From the scientific perspective, this issue is considered rather as a

prerequisite for further two research issues. Such a prerequisite is needed for solving the RI-

2, which poses a core research contribution of this thesis presented in Sec. 5. The traditional

and well-proven bond graph approach for simulation model engineering was extended and

adapted for the needs of the current computer-centric simulation design way of thinking.

Therefore, simulations for signal-based simulators can be designed from existing simulation

blocks with the proposed method easily and seamlessly. The main criterion for the selection

of appropriate simulation blocks is the need for compatibility of input and output interfaces

of simulation blocks in simulation model topologies. Decomposition of complex simulation

models into a set of simulation modules has been investigated as a part of this research issue

as well. Since simulation models should be integrated within industrial automation systems

and within data of the automation system runtime, these problems were addressed in the

frame of RI-3 in Sec. 6, dealing with the integration of simulations on the SCADA level

of industrial automation systems. To illustrate the proposed methods in practice, the two

use-cases are presented in Sec. 7. The examples from the passive house area and hydraulic

system engineering prove the efficiency of the proposed approach and its applicability even

for non-experts in simulation modeling.

8.1 Fulfillment of the Thesis Goals

Following the thesis goals presented in Sec. 1.3, this section summarizes the research results

of this thesis from the high-level perspective.

� G-1: Representation of engineering knowledge for simulation design and integration

135



The automation ontology for representing engineering knowledge needed for simula-

tion model design and integration has been designed and disseminated for example

in [122] or in [124]. Since a lot of ontologies have been designed all over the world, the

author of this thesis considered the applicability in practice as a very important fea-

ture. Therefore, the knowledge transfers from plant models represented in Microsoft

Visio as well as AutomationML data format have been addressed in this thesis.

� G-2: Object-oriented design of simulation modules

Simulation models are considered as one of the corner-stones for the Industry 4.0 move-

ment and for virtual commissioning in the frame of factories of the future. In this

thesis, a component-based method for simulation model design was motivated [123],

formulated, and supported by the proposed extended bond graph method, dissem-

inated in [126]. It is accompanied by the proposal of a new causality assignment

algorithm supporting the enhanced aspects of extended bond graphs. The software

prototype implementing the extended bond graph theory has been developed and pre-

sented at the flag-ship industrial tools fair SPS IPC Drives 2015 in Nuremberg, where

it was positively rated by visitors from industrial practice. The implementation on the

software prototype level has proved that time and effort for simulation model design

can be significantly saved and design-time errors can be eliminated.

� G-3: Design of simulation workflows consisting of simulation modules

The proposed extended bond graphs can be also used for facilitating the design of

complex simulation workflows utilizing a set of interlinked simulation modules. This

approach can be used for example in the case of large-scale simulation projects, whose

solving takes more than one or two years. With this method, one can design interfaces

of simulation modules easily. The proposed paradigm distinguishes cuts of large-

scale simulation models on a junction level and on a bond level. The simulation

modules themselves can be designed manually or automatically, depending on the

decision of the simulation project lead. The benefit of the proposed method is that

interfaces of simulation modules and their inter-connections can be set first, thus

misunderstandings of independent teams or engineers on the interface level during

simulation projects are mitigated. This goal was disseminated for example in [127]

or [118]. The motivation was discussed in the co-authored paper [168].

� G-4: Integration of simulations within SCADA systems

Access of simulations to process data and their versioning pose important issues. The

thesis provides foundations for addressing these issues by supporting the architecture

of the overall system and prototypal implementation of HMI connectors and partially

also the data acquisition approach based on OPC UA. The results related to this goal

were disseminated for example in [127] or in [121].

8.2 Scientific Contributions Reached in the Thesis

The research presented in this thesis resulted into the following scientific contributions:

1. Utilization of ontologies for supporting simulation model design and integration as

well as the design and implementation of the structure of the automation ontology.
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2. Adaptation of the bond graph theory for non-traditional applications and identifica-

tion of bond graph benefits in modern computer-based simulation design.

3. Abstracting and separating specifications of interfaces and internal representations of

simulation components to support explicit specification of simulation blocks.

4. Selection of alternative simulation blocks for each component and design of a new

causality assignment algorithm supporting this.

5. Design of junctions for integrating simulation modules within complex simulation

workflows based on the bond-graph theory.

6. Improved engineering process for simulation model design in the area of component-

based and module-based dynamic simulations for industrial systems.

7. Improved tool support for capturing engineering knowledge and integration of simu-

lations within industrial SCADA systems.

Combining the aforementioned points, the outcomes of this thesis lead to significant

improvements of the design and integration of simulation models for industrial systems,

which are important enablers for the emerging Industry 4.0 applications. The overall con-

tribution of this thesis is thus improving the simulation model life-cycle to make it more

flexible and compliant within the engineering and runtime tools utilized for automation sys-

tem engineering and operation. Since generated simulation models can be used for finding

bottlenecks of automation and control systems efficiently, the thesis results can be utilized

for analyzing and improving safety and security of critical infrastructures.

8.3 Future Work

Although the proposed approach has been designed as generally as possible in terms of the

time frame of the doctoral studies, a tool connector for an equation-based simulator (such as

Dymola utilizing the Modelica language) has not been implemented yet. The development

and evaluation of the utilization of the proposed approach for this type of simulations is a

promising topic, which can be beneficial from the commercial point of view. In addition,

future work could be focused on wider tool support and engineering tool integration in

conjunction with the presented methods and approaches.

Bond graphs as well as their proposed extended version address structural aspects of

simulation model composition, but do not face timing and synchronization issues. The

future work can be focused on the investigation of numerical methods to verify and to

assure the synchronization of simulation modules in complex simulation workflows.
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[5] Amadori, K., Tarkian, M., Ölvander, J., and Krus, P. Flexible and robust CADmodels

for design automation. Advanced Engineering Informatics 26, 2 (2012), 180–195. Special

Section on Knowledge based engineering to support complex product design.

[6] Andrushevich, A., Staub, M., Kistler, R., and Klapproth, A. Towards semantic

buildings: Goal-driven approach for building automation service allocation and control. In

IEEE Conference on Emerging Technologies and Factory Automation (ETFA 2010) (Sept.

2010), pp. 1–6.

[7] Anglani, A., Grieco, A., Pacella, M., and Tolio, T. Object-oriented modeling and

simulation of flexible manufacturing systems: a rule-based procedure. Simulation Modelling

Practice and Theory 10, 3-4 (2002), 209–234.

[8] Antsaklis, P. J., and Michel, A. N. Linear Systems, 2nd ed. Birkhäuser, Boston, 2006.
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design and integration via agent development environment. Engineering Applications of Arti-

ficial Intelligence 25, 4 (2012), 846 – 852. Special Section: Dependable System Modelling and

Analysis.

[157] Turner, M., Budgen, D., and Brereton, P. Turning software into a service. Computer

36, 10 (Oct. 2003), 38–44.

[158] Uhrmacher, A. M., and Weyns, D., Eds. Multi-Agent Systems: Simulation and Applica-

tions. Computational Analysis, Synthesis, and Design of Dynamic Models Series. CRC Press,

Taylor and Francis Group, 2009.

[159] Unver, H. O. An isa-95-based manufacturing intelligence system in support of lean initiatives.

The International Journal of Advanced Manufacturing Technology (2012), 1–14.

[160] VDI 3633: Simulation von logistik-, materialfluss- und produktionssystemen. verein deutscher

147



ingenieure. Available online: https://www.vdi.de/3633.

[161] Verhagen, W. J. C., Bermell-Garcia, P., van Dijk, R. E. C., and Curran, R.

A critical review of knowledge-based engineering: An identification of research challenges.

Advanced Engineering Informatics 26, 1 (2012), 5–15. Network and Supply Chain System

Integration for Mass Customization and Sustainable Behavior.

[162] Villberg, A. Design challenges of an ontology-based modelling and simulation environment.

Master’s thesis, Helsinki University of Technology, 2007.

[163] Vrba, P. Review of industrial applications of multi-agent technologies. In Service Orienta-

tion in Holonic and Multi Agent Manufacturing and Robotics, T. Borangiu, A. Thomas, and

D. Trentesaux, Eds., vol. 472 of Studies in Computational Intelligence. Springer-Verlag Berlin

Heidelberg, 2013, pp. 327–338.
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[169] Šindelář, R., and Novák, P. Simulation integration framework. In 10th IEEE International

Conference on Industrial Informatics (INDIN 2012) (2012), pp. 80–85.

[170] Wang, H., Johnson, A. L., and Bracewell, R. H. The retrieval of structured design

rationale for the re-use of design knowledge with an integrated representation. Advanced

Engineering Informatics 26, 2 (2012), 251–266. Special issue on Knowledge based engineering

to support complex product design.

[171] Weiss, G., Ed. Multiagent Systems, 2nd ed. Massachusetts Institute of Technology, 2013.

[172] Winkler, D., Moser, T., Mordinyi, R., Sunindyo, W. D., and Biffl, S. Engineering

object change management process observation in distributed automation systems projects.

In Proceedings of 18th European System & Software Process Improvement and Innovation

(EuroSPI 2011) (2011), pp. 1–12.

[173] Woods, R. L., and Lawrence, K. L. Modeling and Simulation of Dynamic Systems.

Prentice-Hall, New Jersey, 1997.

[174] Wooldridge, M., and Jennings, N. Software engineering with agents: pitfalls and prat-

falls. IEEE Internet Computing 3, 3 (May 1999), 20–27.

148



Appendix A

Application Example of the

Traditional Bond Graph Method

for Simulation Design

This section illustrates a design of a bond graph for a very simple electrical system step-

by-step as well as its manual transformation to a simulation model in MATLAB-Simulink.

The main purpose of this detailed workflow is to simplify the understanding of the extended

bond graph method, which is described in Sec. 5.

The exemplary electrical circuit is depicted in Fig. A.1. This electrical schema shows

that the circuit consists of a serial connection of a voltage source, a resistor, and an inductor,

which are connected to a parallel combination of a capacitor and the second resistor. The

example in such a form was selected due to the combination of both types of energy stores

(i.e., inductance and capacitance), energy dissipation (i.e., two resistors), and an energy

source (i.e., the voltage source).

The first and second steps of creating a simulation model with bond graphs (see the

list of process steps presented in Sec. 2.3.4) represent the creation of the structure of the

bond graph. This issue is based on the generation of components adequate to sub-systems

or devices. According to the system type, 0-junctions and 1-junctions have to be created

to model parallel and serial connections, as it has been already discussed in Sec. 2.3.3. The

created structure of the bond graph for the exemplary electrical circuit from Fig. A.1 is

depicted in Fig. A.2. Since it is an electrical circuit, parallel connections are modeled by

0-junctions, whereas serial connections are modeled by 1-junctions.

Figure A.1: Exemplary electrical circuit including a voltage source, resistors R1 and R2, and both
accumulators of energy – a capacitor C and an inductor I.
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Figure A.2: Structure of the bond graph for the electrical circuit.

Figure A.3: Structure of the bond graph for the electrical circuit with the assigned power direction.

The third step is the assignment of the positive power direction. Applying the rules

summarized in Sec. 2.3.4, the result of this step is depicted in Fig. A.3. The causality

assignment is crucial for the interpretation of simulation results by humans, because it

defines the sign convention of the final simulation model of this electrical circuit.

The fourth step is the exclusion of the reference junction. In case of electrical systems,

the reference junction is frequently the ground voltage. Therefore, the ground was selected

and excluded from the bond graph. The obtained bond graph is depicted in Fig. A.4.

This graph could be used as a basis for engineering simulation models for Modelica or

other equation-based languages. However, a signal-oriented simulation model in MATLAB-

Simulink is required and thus causality has to be assigned to the bond graph in order to be

able to recognize input and output signals for all component blocks used for simulation.

The fifth step deals with the reduction of the bond graph in order to make the transfor-

mation from the representation by means of bond graphs to the mathematical description

easier. Applying the rules for reduction of the graph that are defined by the bond-graph

theory, we obtain the bond graph depicted in Fig. A.5, where we can see the significantly

reduced number of junctions and power bonds. However, this reduction does not influence

computational complexity significantly, hence it is not considered as mandatory.

The sixth step is focused on the assignment of causality. Using the rules from Sec. 2.3.4,

causality was assigned to the source of effort (i.e., to the voltage source) first. Subsequently,

integral causalities were assigned to the capacitor C1 and inductor I1. Then the causality

Figure A.4: Structure of the bond graph for the electrical circuit with excluded reference junction.
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Figure A.5: The simplified bond graph for the electrical circuit prepared for assigning of the
causality.

Figure A.6: The complete bond graph for the electrical circuit with the assigned causality.

was assigned to the power bond connecting the 1-junction and the 0-junction. Finally,

resistors R1 and R2 were assigned with the remaining causality possibilities. The outcome

of this causality assignment step is depicted in Fig. A.6.

Based on the completed bond graph depicted in Fig. A.6, the mathematical description

of the system can be obtained as the seventh step of the simulation model design process.

We start at the accumulators of the energy, which are in this particular case the capacitor

and the inductor. For each of them, we can express the equation representing the adding

and subtracting signals according to the assigned causality and power direction.

uC1(t) =
1

C1

∫ t

0
iI1(τ)− iR2(τ)dτ (A.1)

iI1(t) =
1

L1

∫ t

0
uSE1(τ)− uR1(τ)− uC1(τ)dτ (A.2)

Considering voltage on the resistor R1 and electrical current through the resistor R2, we

can get the integral description of this electrical circuit:

uR1(t) = R1 · iI1(t) (A.3)

iR2(t) =
uC1(t)

R2
(A.4)

The integral description of the electrical circuit can be summarized as follows:

uC1(t) =
1

C1

∫ t

0
iL1(τ)−

uC1(τ)

R2
dτ (A.5)

iI1(t) =
1

L1

∫ t

0
uSE1(τ)−R1 · iI1(τ)− uC1(τ)dτ (A.6)

To get the state-space representation but also to get the simulation model in the equation-

oriented simulator, it is beneficial to transform these equations to the differential form. The
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whole circuit behavior can be expressed by the following equations:

u̇C1(t) =
1

C1
(iL1(t)−

uC1(t)

R2
) (A.7)

i̇I1(t) =
1

L1
(uSE1(t)−R1 · iI1(t)− uC1(t)) (A.8)

This description can be expressed in the matrix form, respecting the state-space system

model according to Eq. 2.1:(
u̇C1(t)

i̇I1(t)

)
= A

(
uC1(t)

iI1(t)

)
+B · uSE1(t)

=

(
− 1

C1R2

1
C1

− 1
L1

−R1
L1

)(
uC1(t)

iI1(t)

)
+

(
0
1
L1

)
uSE1(t)

(A.9)

y(t) = C

(
uC1(t)

iL1(t)

)
+D · uSE1(t)

=
(
1 0

)(uC1(t)

iI1(t)

)
+ 0 · uSE1(t)

(A.10)

The matrices A,B,C, and D have the following form, which will be later parameterized

with specific values for comparing responses of the obtaining mathematical model manually

and automatically with the proposed method:

A =

(
− 1

C1R2

1
C1

− 1
L1

−R1
L1

)
B =

(
0
1
L1

)
C =

(
1 0

)
D = 0 (A.11)

Since this specific circuit is a continuous time-invariant linear system, its state-space de-

scription can be transformed to the equivalent description by the transfer function according

to Eq. 2.2.

G(s) = C(sI −A)−1B +D

=
(
1 0

)(
s

(
1 0

0 1

)
−

(
− 1

C(C1)R(R2)
1

C(C1)

− 1
L1

−R(R1)
L(I1)

))−1(
0
1

L(I1)

)
+ 0

=
R2

s2 + R1R2C1+L1
R2L1C1

s+ R1+R2
R2L1C1

(A.12)

When a signal-oriented simulator is used, the mathematical equations should be trans-

formed into such a form that is compliant for the simulator as the eighth process step. Since

this particular electrical circuit is linear and time-invariant, we can use simulation blocks in

the standard Simulink library implementing the state-space model or the transfer-function.

Both implementations of simulation models are depicted in Fig. A.7 and A.8. The strong

point of such an implementation is its simplicity, because mathematical description of the

physical system is directly passed to the simulation without any complicated or manual

transformations. However, the weak point is the restriction on linear time-invariant (LTI)
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x' = Ax+Bu
 y = Cx+Du

State-Space
Model

Output
Input

Figure A.7: Simulation model for the electrical circuit created in MATLAB-Simulink manually.
The model behavior is implemented as a state-space model relying on matrices A.11.

num(s)

denom(s)

Transfer Fcn

Output
Input

Figure A.8: Simulation model for the electrical circuit created in MATLAB-Simulink manually.
The model behavior is implemented as a transfer function relying on the expression A.12. Non-zero
initial conditions cannot be set in the transfer function block.

systems. However, large-scale industrial systems in practice are not LTI systems. Therefore,

another approach has to be used. In addition, this representation is hard to be modified

(e.g., when a new device is added, the entire system description has to be redefined) as well

as split and re-connected into co-simulation or hardware-in-the-loop schemas. An impor-

tant disadvantage of the representation utilizing transfer functions is that simulation blocks

implementing the transfer functions do not support setting of non-zero initial conditions

frequently.

A more complicated realization of the simulation model is depicted in Fig. A.9. This

simulation schema poses a typical approach, how mathematical equations are represented in

signal-oriented simulators. Its benefit is a visible routing of signals leading to solve the set of

differential equations. Furthermore, this simulation schema can be used for co-simulation

consisting of several simulation modules as well as for a hardware-in-the-loop operation

modus. On the contrary to the schema based on the transfer function (see Fig. A.8), non-

zero initial conditions can be set easily. However, it is very complicated to create such

a schema, to test it and to debug it. It would be beneficial to have a tool support for

generating such a schema, in order to reduce human effort. Moreover, it is difficult to re-

design or reuse patterns from this simulation schema, for example when a specific part of

the real system is changed. Therefore, the aforementioned tool support should face these

aspects, too.

The further section is focused on the tool support for bond-graph modeling, which is a

good candidate for addressing the aforementioned problems and needs. However, we will

see that this tool support is not satisfactory enough to tackle the above stated requirements

dealing with the simulation artifacts reuse and re-design support.
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Figure A.9: Simulation model for the electrical circuit created in Matlab-Simulink manually. The
model behavior is wired in a fully signal-oriented form, which is typical for Matlab-Simulink.
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Appendix B

Simulation Blocks of the

Mechatronic Library

The entire simulation library implemented in MATLAB-Simulink is depicted in Fig. B.1. It

includes simulation blocks for modeling 0-junctions and 1-junctions as well as for plotting

simulation results (see the common blocks on the upper-right part of Fig. B.1). The library

also includes two sets of simulation blocks of the electrical system engineering discipline

and the hydraulic system engineering discipline. The simulation blocks included in the

mechatronic library are discussed in details in the following sections.

Resistors Energy Accumulators

MECHATRONIC SIMULATION LIBRARY ("MechatronicLibrary")

Energy Sources

COMMON SIMULATION BLOCKS:

Pipes Valves TanksPumps

ELECTRICAL SYSTEMS BLOCKS:

HYDRAULIC SYSTEMS BLOCKS:
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Figure B.1: Library with mechatronic components for the simulation model generation in
MATLAB-Simulink.
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Simulation Block “simRA” Approximating a Resistor

Resistors realize resistance in electrical systems. The interface of this simulation block is

summarized in Tab. B.1, the parameters of this simulation block are explained in Tab. B.2,

and the internal representation of the simulation block is depicted in Fig. B.2.

Table B.1: Simulation block interface

Interface Signal

Input Effort

Output Flow

Table B.2: Simulation parameters of the block

Parameter name Parameter meaning

R Resistance (Ω)

Simulation block approximating a resistor.
The input effort is transformed to the output flow.

1

f

Divide

-C-

ConstantR

1

e

Figure B.2: Internal representation of the simulation component Resistor “simRA”.
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Simulation Block “simRB” Approximating a Resistor

The simulation block “simRB” is the second block expressing the resistance in electrical

systems. The interface of this simulation block is summarized in Tab. B.3, the parameters

of this simulation block are explained in Tab. B.4, and the internal representation of the

simulation block is depicted in Fig. B.3.

Table B.3: Simulation block interface

Interface Signal

Input Flow

Output Effort

Table B.4: Simulation parameters of the block

Parameter name Parameter meaning

R Resistance (Ω)

Simulation block approximating a resistor.
The input flow is transformed to the output effort.

1

e

Multiple

-C-

ConstantR

1

f

Figure B.3: Internal representation of the simulation component Resistor “simRB”.
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Simulation Block “simC” Approximating a Capacitor

The simulation block “simC” models capacitance in electrical systems. The interface of this

simulation block is summarized in Tab. B.5, the parameters of this simulation block are

explained in Tab. B.6, and the internal representation of the simulation block is depicted

in Fig. B.4.

Table B.5: Simulation block interface

Interface Signal

Input Flow

Output Effort

Table B.6: Simulation parameters of the block

Parameter name Parameter meaning

C Capacitance (F)

Simulation block approximating a capacitor.
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Figure B.4: Internal representation of the simulation component Capacitor “simC”.
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Simulation Block “simI” Approximating an Inductor

The simulation block “simI” models inductance in electrical systems. The interface of this

simulation block is summarized in Tab. B.7, the parameters of this simulation block are

explained in Tab. B.8, and the internal representation of the simulation block is depicted

in Fig. B.5.

Table B.7: Simulation block interface

Interface Signal

Input Effort

Output Flow

Table B.8: Simulation parameters of the block

Parameter name Parameter meaning

I Inductance (H)

Simulation block approximating an inductor
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e

Figure B.5: Internal representation of the simulation component Inductor “simI”.
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Simulation Block “simSE” Approximating a Voltage Source

The simulation block “simSE” models a source of alternating voltage in electrical systems.

The interface of this simulation block is summarized in Tab. B.9, the parameters of this

simulation block are explained in Tab. B.10, and the internal representation of the simulation

block is depicted in Fig. B.6.

Table B.9: Simulation block interface

Interface Signal

Input Flow

Output Effort

Table B.10: Simulation parameters of the block

Parameter name Parameter meaning

V Voltage magnitude (V )
f Frequency (Hz)

Simulation block approximating an ideal voltage source.
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Figure B.6: Internal representation of the simulation component source of effort “simSE”.
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Simulation Block “simJ0” Approximating a 0-Junction

The simulation block “simJ0” models a 0-junction. The interface of this simulation block

is summarized in Tab. B.11 and the parameters of this simulation block are explained in

Tab. B.12. The sign corrections being parameters of this block are constants having one

of the values {−1;+1} to implement sign convention for the connected power bonds. The

internal representation of the simulation block is depicted in Fig. B.7.

Table B.11: Simulation block interface

Interface Signal

Input1 Flow
Input2 Flow
Input3 Flow
Input4 Flow
Input5 Flow
Input6 Effort

Output1 Effort
Output2 Effort
Output3 Effort
Output4 Effort
Output5 Effort
Output6 Flow

Table B.12: Simulation parameters of the block

Parameter name Parameter meaning

s1 Sign correction (−)
s2 Sign correction (−)
s3 Sign correction (−)
s4 Sign correction (−)
s5 Sign correction (−)
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Simulation block approximating a 0-junction
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Figure B.7: Internal representation of the simulation component 0-junction “simJ0”.
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Simulation Block “simJ1” Approximating an 1-Junction

The simulation block “simJ1” models an 1-junction. The interface of this simulation block

is summarized in Tab. B.13 and the parameters of this simulation block are explained in

Tab. B.14. The sign corrections being parameters of this block are constants having one

of the values {−1;+1} to implement sign convention for the connected power bonds. The

internal representation of the simulation block is depicted in Fig. B.8.

Table B.13: Simulation block interface

Interface Signal

Input1 Effort
Input2 Effort
Input3 Effort
Input4 Effort
Input5 Effort
Input6 Flow

Output1 Flow
Output2 Flow
Output3 Flow
Output4 Flow
Output5 Flow
Output6 Effort

Table B.14: Simulation parameters of the block

Parameter name Parameter meaning

s1 Sign correction (−)
s2 Sign correction (−)
s3 Sign correction (−)
s4 Sign correction (−)
s5 Sign correction (−)
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Simulation block approximating a 1-junction
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Figure B.8: Internal representation of the simulation component 1-junction “simJ1”.
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Simulation Block “simPipeA” Approximating a Real Pipe

Pipes realize resistance in hydraulic systems. In the addressed use-case, the inductance of

the pipe is neglected. In case of very long pipes with significant value of liquid flow, this

feature should be considered, however, it leads to a 2-port component. The interface of this

simulation block is summarized in Tab. B.15, the parameters of this simulation block are

explained in Tab. B.16, and the internal representation of the simulation block is depicted

in Fig. B.9.

Table B.15: Simulation block interface

Interface Signal

Input Effort

Output Flow

Table B.16: Simulation parameters of the block

Parameter name Parameter meaning

L Length of the pipe (m)
D Diameter of the pipe (m)

Simulation block approximating a pipe.
The input effort is transformed to the output flow.
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Figure B.9: A simulation block modeling a pipe in hydraulic systems.
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Simulation Block “simPipeB” Approximating a Real Pipe

Whereas the simulation block “simPipeA” block transforms effort to flow (i.e., the pressure

difference to the volumetric flow), the simulation block “simPipeB” functions vice-versa.

The interface of this simulation block is summarized in Tab. B.17, the parameters of this

simulation block are explained in Tab. B.18, and the internal representation of the simulation

block is depicted in Fig. B.10.

Table B.17: Simulation block interface

Interface Signal

Input Flow

Output Effort

Table B.18: Simulation parameters of the block

Parameter name Parameter meaning

L Length of the pipe (m)
D Diameter of the pipe (m)

Simulation block approximating a pipe.
The input flow is transformed to the output effort.
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Figure B.10: A simulation block modeling a pipe in hydraulic systems.
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Simulation Block “simValve” Approximating a Real Valve

The simulation block “simValveA” is one of the simulation blocks modeling a valve, in

particular the easiest one. The interface of this simulation block is summarized in Tab. B.19.

The dual representation would not be applicable for the entirely closed position of the

valve, thus other valves in the library do not differ in assignment of signal ports to the

hydraulic power port, but they differ in ways of the openness setting. The parameters of

this simulation block are explained in Tab. B.20, where we can see that the openness ratio

is given as a parameter and thus it is constant along the entire duration of the simulation.

The internal representation of the simulation block is depicted in Fig. B.11.

Table B.19: Simulation block interface

Interface Signal

Input1 Effort

Output1 Flow

Table B.20: Simulation parameters of the block

Parameter name Parameter meaning

L Length of the valve (m)
D Diameter of the valve (m)
oc Openness of the valve (-)

Simulation block approximating a valve.
The input effort is transformed to the output flow,

depending on the position of this valve.
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Figure B.11: A simulation block modeling a valve in hydraulic systems.
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Simulation Block “simValveOC” Approximating a Real Valve

The simulation block “simValveOC” is a simulation block modeling a valve. It is featured

with an input signal representing the openness of the valve, which has to lie in the interval

between 0 (i.e., the valve is closed) and 1 (i.e., the valve is open). The interface of this

simulation block is summarized in Tab. B.21. The parameters of this simulation block are

explained in Tab. B.22, and the internal representation of the simulation block is depicted

in Fig. B.12.

Table B.21: Simulation block interface

Interface Signal

Input1 Effort
Input2 Open signal (0–1)

Output1 Flow

Table B.22: Simulation parameters of the block

Parameter name Parameter meaning

L Length of the valve (m)
D Diameter of the valve (m)

Simulation block approximating a valve.
The input effort is transformed to the output flow,

depending on the position of this valve.
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Figure B.12: A simulation block modeling a valve in hydraulic systems.
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Simulation Block “simValveOCOptimized” Approximating a Real Valve

The simulation block “simValveOCOptimized” is a simulation block modeling a valve, which

has openness as an input signal and which is optimized in terms of the optimized constraint

handling as it was discussed in Sec. 5.13. The interface of this simulation block is summa-

rized in Tab. B.23. The parameters of this simulation block are explained in Tab. B.24, and

the internal representation of the simulation block is depicted in Fig. B.13.

Table B.23: Simulation block interface

Interface Signal

Input1 Effort
Input2 Open signal (0–1)
Input3 Inter-locking for the forward flow
Input4 Inter-locking for the backward flow

Output1 Flow

Table B.24: Simulation parameters of the block

Parameter name Parameter meaning

L Length of the valve (m)
D Diameter of the valve (m)

Simulation block approximating a valve.
The input effort is transformed to the output flow,

depending on the position of this valve.
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Figure B.13: A simulation block modeling a valve in hydraulic systems.
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Simulation Block “simPumpA” Approximating a Real Pump

The simulation block “simPumpA” models a pump as an ideal source of effort. The interface

of this simulation block is summarized in Tab. B.25. Parameters of this simulation block

are explained in Tab. B.26. The internal representation of the simulation block is depicted

in Fig. B.14.

Table B.25: Simulation block interface

Interface Signal

Input1 Flow (in the role of a formal input)
Input2 Power signal (0–1)

Output1 Effort

Table B.26: Simulation parameters of the block

Parameter name Parameter meaning

Emax Maximal effort (Pa)

Simulation block approximating an ideal pump.
The output pressure is generated ideally by the required pump power.
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Figure B.14: A simulation block modeling a pump in hydraulic systems.
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Simulation Block “simPumpB” Approximating a Real Pump

The simulation block “simPumpB” models a pump as an ideal source of flow. The interface

of this simulation block is summarized in Tab. B.27. Parameters of this simulation block

are explained in Tab. B.28. The internal representation of the simulation block is depicted

in Fig. B.15.

Table B.27: Simulation block interface

Interface Signal

Input1 Effort (in the role of a formal input)
Input2 Power signal (0–1)

Output1 Flow

Table B.28: Simulation parameters of the block

Parameter name Parameter meaning

Fmax Maximal flow (m3 · s−1)

Simulation block approximating an ideal pump.
The output flow is generated ideally by the required pump power.
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Figure B.15: A simulation block modeling a pump in hydraulic systems.
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Simulation Block “simPumpOptimizedA” Approximating a Real Pump

This simulation block models a pump as an ideal source of effort. The block implements

the optimized constraint handling according to Sec. 5.13. The interface of this simulation

block is summarized in Tab. B.29. Parameters of this simulation block are explained in

Tab. B.30. The internal representation of the simulation block is depicted in Fig. B.16.

Table B.29: Simulation block interface

Interface Signal

Input1 Flow (in the role of a formal input)
Input2 Power signal (0–1)
Input3 Inter-locking for the forward effort
Input4 Inter-locking for the backward effort

Output1 Effort

Table B.30: Simulation parameters of the block

Parameter name Parameter meaning

Emax Maximal effort (Pa)

Simulation block approximating an ideal pump.
The output pressure is generated ideally by the required pump power.
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Figure B.16: A simulation block modeling a pump in hydraulic systems.

XXIV



Simulation Block “simPumpOptimizedB” Approximating a Real Pump

This simulation block models a pump as an ideal source of flow. The block implements the

optimized constraint handling according to Sec. 5.13. The interface of this simulation block

is summarized in Tab. B.31. Parameters of this simulation block are explained in Tab. B.32.

The internal representation of the simulation block is depicted in Fig. B.17.

Table B.31: Simulation block interface

Interface Signal

Input1 Effort (in the role of a formal input)
Input2 Power signal (0–1)
Input3 Inter-locking for the forward flow
Input4 Inter-locking for the backward flow

Output1 Flow

Table B.32: Simulation parameters of the block

Parameter name Parameter meaning

Fmax Maximal flow (m3 · s−1)

Simulation block approximating an ideal pump.
The output flow is generated ideally by the required pump power.
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Figure B.17: A simulation block modeling a pump in hydraulic systems.
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Simulation Block “simTankA” Approximating a Real Tank

The simulation block “simTankA” approximates a real tank that has one connection point.

The interface of this simulation block is summarized in Tab. B.33, the parameters of this

simulation block are explained in Tab. B.34, and the internal representation of the sim-

ulation block is depicted in Fig. B.18. The simulation block utilizes the basic constraint

handling according to Sec. 5.13. The internal realization of the saturation block is depicted

in Fig. B.19.

Table B.33: Simulation block interface

Interface Signal

Input1 Flow1

Output1 Effort1
Output2 Liquid level

Table B.34: Simulation parameters of the block

Parameter name Parameter meaning

A Area of the tank base (m2)
h0 Height of the tank base related to the reference level (m)
h1 Height of the first connection point related to the tank base (m)

Simulation block approximating a vessel with one connection point.
The input flow is transformed to the output effort.
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Figure B.18: A simulation block modeling a tank in hydraulic systems.
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Figure B.19: The internal realization of the saturation block.
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Simulation Block “simTankB” Approximating a Real Tank

The simulation block “simTankB” approximates a real tank having two connection points.

The interface of this simulation block is summarized in Tab. B.35, the parameters of this

simulation block are explained in Tab. B.36, and the internal representation of the simulation

block is depicted in Fig. B.20. The simulation block utilizes the basic constraint handling

according to Sec. 5.13.

Table B.35: Simulation block interface

Interface Signal

Input1 Flow1

Input2 Flow2

Output1 Effort1
Output2 Effort2
Output3 Liquid level

Table B.36: Simulation parameters of the block

Parameter name Parameter meaning

A Area of the tank base (m2)
h0 Height of the tank base related to the reference level (m)
h1 Height of the first connection point related to the tank base (m)
h2 Height of the second connection point related to the tank base (m)

Simulation block approximating a vessel with two connection points.
The input flows are transformed to the output efforts.

3

h

2

e2

1

e1

h

h0

hi

f

hy

Saturation2

h

h0

hi

f

hy

Saturation1

1
s

Integrator

1e4

Gain2

1e4

Gain1
Divide

-C-

ConstantH2

-C-

ConstantH1

-C-

ConstantH0

-C-

ConstantA

2

f2

1

f1

Figure B.20: A simulation block modeling a tank in hydraulic systems.
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Simulation Block “simTankC” Approximating a Real Tank

The simulation block “simTankC” approximates a real tank having three connection points.

The interface of this simulation block is summarized in Tab. B.37, the parameters are

explained in Tab. B.38, and the internal representation is depicted in Fig. B.21. The

simulation block utilizes the basic constraint handling according to Sec. 5.13.

Table B.37: Simulation block interface

Interface Signal

Input1 Flow1

Input2 Flow2

Input3 Flow3

Output1 Effort1
Output2 Effort2
Output3 Effort3
Output4 Liquid level

Table B.38: Simulation parameters of the block

Parameter name Parameter meaning

A Area of the tank base (m2)
h0 Height of the tank base related to the reference level (m)
h1 Height of the first connection point related to the tank base (m)
h2 Height of the second connection point related to the tank base (m)
h3 Height of the third connection point related to the tank base (m)

Simulation block approximating a vessel with three connection points.
The input flows are transformed to the output efforts.
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Figure B.21: A simulation block modeling a tank in hydraulic systems.
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Simulation Block “simTankOptimizedA” Approximating a Real Tank

The simulation block “simTankOptimizedA” approximates a real tank that has one connec-

tion point. The interface of this simulation block is summarized in Tab. B.39, the parameters

of this simulation block are explained in Tab. B.40, and the internal representation of the

simulation block is depicted in Fig. B.22. The simulation block utilizes the optimized con-

straint handling according to Sec. 5.13. The internal realization of saturation blocks for the

optimized tank blocks are depicted in Fig. B.23.

Table B.39: Simulation block interface

Interface Signal

Input1 Flow1

Output1 Effort1
Output2 Liquid level
Output3 Inter-locking for Input1/Output1

Table B.40: Simulation parameters of the block

Parameter name Parameter meaning

A Area of the tank base (m2)
h0 Height of the tank base related to the reference level (m)
h1 Height of the first connection point related to the tank base (m)

Simulation block approximating a vessel with one connection point.
The input flows are transformed to the output efforts.
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Figure B.22: A simulation block modeling a tank in hydraulic systems.

XXX



2

il

1

hy

up

u

lo

y

Saturation
Dynamic

f(u)

LogisticFcn

realmax

Constant

Add

3

hi

2

h0

1

h

Figure B.23: The internal realization of the saturation block in case of saturation blocks.
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Simulation Block “simTankOptimizedB” Approximating a Real Tank

The simulation block “simTankOptimizedB” approximates a real tank having two connec-

tion points. The interface of this simulation block is summarized in Tab. B.41, the param-

eters of this simulation block are explained in Tab. B.42, and the internal representation of

the simulation block is depicted in Fig. B.24. The simulation block utilizes the optimized

constraint handling according to Sec. 5.13.

Table B.41: Simulation block interface

Interface Signal

Input1 Flow1

Input2 Flow2

Output1 Effort1
Output2 Effort2
Output3 Liquid level
Output4 Inter-locking for Input1/Output1
Output5 Inter-locking for Input2/Output2

Table B.42: Simulation parameters of the block

Parameter name Parameter meaning

A Area of the tank base (m2)
h0 Height of the tank base related to the reference level (m)
h1 Height of the first connection point related to the tank base (m)
h2 Height of the second connection point related to the tank base (m)

Simulation block approximating a vessel with two connection points.
The input flows are transformed to the output efforts.
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Figure B.24: A simulation block modeling a tank in hydraulic systems.
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Simulation Block “simTankOptimizedC” Approximating a Real Tank

The simulation block “simTankOptimizedC” approximates a real tank having three con-

nection points. The interface of this simulation block is summarized in Tab. B.43, the

parameters of this simulation block are explained in Tab. B.44, and the internal represen-

tation of the simulation block is depicted in Fig. B.25. The simulation block utilizes the

optimized constraint handling according to Sec. 5.13.

Table B.43: Simulation block interface

Interface Signal

Input1 Flow1

Input2 Flow2

Input3 Flow3

Output1 Effort1
Output2 Effort2
Output3 Effort3
Output4 Liquid level
Output5 Inter-locking for Input1/Output1
Output6 Inter-locking for Input2/Output2
Output7 Inter-locking for Input3/Output3

Table B.44: Simulation parameters of the block

Parameter name Parameter meaning

A Area of the tank base (m2)
h0 Height of the tank base related to the reference level (m)
h1 Height of the first connection point related to the tank base (m)
h2 Height of the second connection point related to the tank base (m)
h3 Height of the third connection point related to the tank base (m)
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Simulation block approximating a vessel with three connection points.
The input flows are transformed to the output efforts.
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Figure B.25: A simulation block modeling a tank in hydraulic systems.
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Appendix C

Screenshots of the Tool Support

This section illustrates the developed tool connector for Microsoft Visio. Fig. C.1 depicts the

main page of the exporter that serializes information from the drawing into the automation

ontology. A generated global tag list XML file for the configuration of the simulation

integration framework for the case of the hydraulic tank model addressed in Sec. 7.2 is

depicted in Fig. C.2. The second configuration XML file is the set of parameters and their

values, which is depicted in Fig. C.3.

Figure C.1: Screenshot of the export dialog as part of the Microsoft Visio connector for exporting
information from engineering plans into the automation ontology.
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Figure C.2: Screenshot of the Microsoft Visio connector showing the XML representation of the
global tag list.
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Figure C.3: Screenshot of the Microsoft Visio connector showing the XML representation of the
list of parameters and their values.
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� Jirkovský, V., Obitko, M.: Semantic Heterogeneity Reduction for Big Data in In-

dustrial Automation. In Proc. of the 14th Conference on Information Technologies Ap-

plications and Theory (ITAT 2014) with selected papers from Znalosti 2014. 10 Pages,

ISSN 1613-0073.
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