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Abstract
This thesis deals with the image processing of so called crowded fields. These objects (such as Globu-

lar or Open stellar clusters) in astronomical images represent extremely dense and concentrated stellar

fields and they are extremely difficult to analyse. This thesis brings detail analysis of this phenomena

together with the description of the problem and suggestion of several new approaches and algorithms.

The presented WHIDE algorithm (Weighed and Histogram Thresholded Deconvolution) deals with

crowded fields by using both known (mathematical deconvolution, aperture and profile photometry,

Nelder-Mead optimization, ...) and new approaches. The research about the application of standard

image processing methods in astronomy and other fields is presented together with simulations and

the analysis which helps in designation of the new algorithms. For these simulations new simulator

of astronomical images (including instrumental errors and defects) with crowded fields called Glen-

coeSim is used. The suggested WHIDE algorithm uses as well two new approaches in data reduction -

”Flux Histogram Noise Thresholding” and Statistical weighing of deconvolution results. These meth-

ods allow the deconvolution process to be automatic and reliable and deal with both the noise and the

deconvolution artefacts.
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Abstrakt (CZE)
Tato dizertace se zabývá zpracovánı́m obrazu zahuštěných hvězdných polı́. Tyto objekty (jako jsou

kulové či otevřené hvězdokupy) v astronomických datech reprezentujı́ velmi koncentrované objekty,

které je extrémně obtı́žné analyzovat a vědecky zpracovat. Tato dizertace obsahuje detailnı́ analýzu

tohoto problému spolu s jeho popisem a předevšı́m s návrhem několika nových přı́stupů a algoritmů.

Jádrem je navržený algoritmus WHIDE (Weighed and Histogram Thresholded Deconvolution), který

zpracovává zahušťěná hvězdná pole jak pomocı́ známých psotředků (matematická dekonvoluce, aper-

turnı́ a profilová fotometrie, Nelder-Mead optimalizace, ...), tak pomocı́ nových navržených postupů a

myšlenek. Pro potřeby simulacı́ je zde také navržen nový simulátor GlencoeSim pro vytvářenı́ sofistiko-

vaných dat s komplikovanými hvězdnými poli (včetně šumových a přı́strojových defektů). V práci je

přednesena rešerše standardnı́ch metod pro zpracovánı́ obrazu v astronomii spolu s jejich analýzou

a simulacemi, které v závěru pomohly k návrhu nového algoritmu WHIDE. Součástı́ tohoto algoritmu

jsou také dva nové postupy - metoda nazvaná ”Flux Histogram Noise Thresholding” a tzv. myšlenka

statistického váhovánı́ výsledků dekonvoluce, která obracı́ zavedené pořadı́ kroků u standardnı́ho zpra-

covánı́ astronomických dat pro potlačenı́ šumu a dekonvolučnı́ch artefaktů.
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Used symbols and abbreviations

ADU Analog-Digital unit

CCD Charged-Coupled Device
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USED SYMBOLS AND ABBREVIATIONS

f̂ Fourier transform of a function f
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|x| absolute value metrics
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INTRODUCTION

1 Introduction

Billions and billions of stars shine around us even though we can’t see most of them. The human eye can

distinguish ca. 6000 stars in the sky [52], yet these billions are hidden somewhere above us. Grounded

telescopes or space satellites in all possible wavelengths from radio to γ-rays observe the Universe and

give us the data in the form of images, spectra or just single measurements. In these images though

the billions and billions of stars often blend together and produce complex source of information about

the Universe up there. Thesis topic is focused on the case of the astronomical images where the stars

cannot be easily distinguished from each other. The field of study then overlaps with the area of image

processing in informatics combined with experimental astronomy. Better image processing solutions

for very complex data and at the end the algorithm for automatic deconvolution of crowded fields in

astronomy is presented here.

The motivation for this work is based on the experiences of our team in Czech Technical University

in Prague with developing and supporting of imaging systems MAIA [67], WILLIAM [29] or BOOTES

[16]. Automatic data reduction of complicated stellar fields practically does not exist and one of the

team tasks is to develop complex set of tools for the analysis of these complicated fields.

Thesis is divided in following order.

Chapter 2 explains the term crowded field in astronomy and the necessity for a new approach of

the image processing algorithm. It shows the difficulties and the common situation in the scientific

analysis.

Chapter 3 describes the brief state-of-the-art of the astronomical image processing related to our

main thesis topic. It touches on the issues with the noise and Point Spread Function (PSF).

Chapter 4 offers the detailed ”Astronomical data reduction” summary - the standard methods, their

mathematical background, commonly used software, definition of the astrometry and the photometry

terms and detailed description of the aperture and profile photometry methods. Sections 4.5.3 and 4.5.4

offer procedure outlines with several illustrations of the issues received in practice.

Chapter 5 describes the mathematical background for the image deconvolution and several practical

methods used in the common image processing. Sections 5.1 - 5.2 offer detailed explanation of these

deconvolution techniques given by the literature while section 5.3 shows the basic analysis of these

techniques for their use in astronomy and their comparison.

Chapter 6 shows the brief selection of practical experiments where the newly designed algorithm

would be useful and desired.

From chapter 7 up to chapter 14 author’s simulations, analysis and new algorithms can be found.

Chapter 7 describes the published simulator of the astronomical images of crowded field called
GlencoeSim. Such a simulator is necessary to test the algorithms and the deconvolution as there is

6



INTRODUCTION

naturally no realistic data where the initial conditions would be perfectly known due to the presence of

noise, which is omnipotent in the astronomical data reduction.

Chapter 8 uses the simulator GlencoeSim to produce dozens of Gigabytes of simulations under

many various conditions and with different parameters. Sections 8.2 deals with how to efficiently anal-

yse (the metrics) these huge amounts of simulated data in view of getting as much relevant information

as possible. Section 8.4 explains how the Richardson-Lucy deconvolution [54, 57] was applied and

the section 8.5 uses the Principal Component Analysis [44] to check whether the used parameters and

metrics are suitable for the description of the simulations.

Chapter 9 then displays chosen results from the simulations made in the previous chapter 8. In

the graphical figures the analysis tries to get the information about how the deconvolution behaves and

which parameters influence the results and how much. These hints are important later when designing

the new algorithm.

Chapter 10 tries to apply the optimization technique called Nelder-Mead [36] to find out if it is

suitable for the case of getting the new designed algorithms as automatic as possible without the human

intervention.

Chapter 11 just summarizes all the information we got from the chapters 7-10. They are immedi-

ately used in the following chapters concerning the newly designed algorithms themselves.

The new idea of the automatic thresholding is suggested in chapter 12. Such an idea is based

on the knowledge of the objects in the astronomical images and namely the behaviour of the noise.

Proposed name ”Flux histogram noise thresholding algorithm” is connected with the inner principal

of noise and stellar histogram operations to get the criteria, which would allow the following image

processing automatic.

The core of the thesis is then when all the previous information is collected together to design the

combination of steps which would allow the automatic and reliable deconvolution of the crowded fields

based on the statistical approach. The whole proposed algorithm is called WHIDE - Weighed and
HIstogram thresholded DEconvolution and its detailed description can be found in chapter 13. It is

based on the combination of the methods and techniques (such as commonly known Richardson-Lucy

deconvolution, profile photometry PSF acquisition,...) and two newly designed approaches. The first

one is the ”Flux histogram noise thresholding” from the chapter 12 (dealing with the automation and

with the noise in deconvolution process) and the second one suggests new ”heretic” statistical ap-
proach based in weighing of the deconvolution results before combining the astronomical images.

The explanation and the motivation for this weighing step can be found in the section 13.1. Section

13.2 then describes the complete algorithm of WHIDE step by step.

The practical tests of the WHIDE algorithm can be found in chapter 14 where it is applied to the

real semi-crowded field image together with standard astronomical image processing method (aperture

7
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photometry).

The contribution of this thesis can be regarded namely in four related objectives :

1. the GlencoeSim simulator,

2. Flux Histogram Noise Thresholding method (which is used as a step in the designed WHIDE

algorithm),

3. the idea of statistically weighing of the deconvolution results before/without denoising image

operations

4. and the whole WHIDE algorithm itself.
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DEFINITION OF THE CROWDED FIELD

Figure 1: Globular Cluster M15 in Pegasus constellation - typical representative of crowded field in

astronomical image processing.

2 Definition of the crowded field

In the near IR and optical part of spectrum digital linear sensors are widely used nowadays to obtain

the signal from distant astronomical objects like stars, galaxies, nebulas, molecular clouds etc. Since

the introduction of the digital sensors and fast computation capabilities the algorithms of the effective,

robust or just fast flux and spectral measurements were presented to the scientific astronomical com-

munity. The problem is mostly separated to the astrometry, solving the positional questions and objects

determination, and photometry, counting the fluxes of the astronomical objects [57]. CCD (Charged-

Coupled Device) are commonly used nowadays for the astronomical observations in near IR or optical

spectrum, in which most of the baryonic matter (e.g. stars) with its own source of energy shines [34].

The stars in the space tend to be gravitationally attracted to the larger systems. Most of them exists

in the form of double (triple, quadruple, ...) stars consisting of the members orbiting around each other.

Larger stellar systems are commonly called clusters, while two different groups can be defined [34] as :

• Open stellar (galactic) Clusters - those systems are mostly young (order of 106 - 108 years old),

consisting of typically hundreds or thousands of members, observed in the galactic plane. Those

stars have similar age due to the same birthplace from the embryonic Giant Molecular Cloud,

while the gravitational force is not as strong to keep the members together for long time, hence

the low age of commonly observed open clusters.

• Globular (stellar) Clusters (GCl) - those systems are very old, some of them born shortly after the

Big Bang (13.7 109 years ago) ”remembering” the formation of the galaxies on consisting of the

9



DEFINITION OF THE CROWDED FIELD

Figure 2: Globular Cluster M15 in Pegasus constellation - red crosses mark the positions of known,

measured and catalogued stars in the USNO-B1.0 catalogue [47]

2nd generation stars (∼ 2nd population of stars with low metalicity). GCls contain mostly 103 -

106 members, which is the reason of the strong attractive gravitational force and long time-scale

stability of those stellar systems. They are uniformly stretched in the galactic halo. Globular

cluster M15 (Pegasus constellation) taken by the 50cm telescope in Ondrejov (CZ) observatory1

with FLI-IMG CCD camera can be seen in figure 1.

For the purposes of the astronomical image processing the term crowded field is used [17] to express

the optical digital data, in which the signal from the falling light of the (mostly stellar) sources is

mutually significantly disturbed. This disturbance

• is stressed by the diffraction of the light in the atmosphere and the optical imaging system (e.g.

telescope, space satellite, camera),

• is mainly caused by high number of the concentrated sources with similar order of the light flux

• and it does not necessarily have to be produced by the combination of more indistinguishable

sources due to the wavelength of the falling light.

Typical representative of such crowded field is already mentioned GCl, whose members produce over-

lapping image signals on the digital sensor. Astrometry and precise photometry of this complicated

image signal is commonly not processed automatically by the robotic telescopes and all-sky surveys.
1http://www.asu.cas.cz/
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DEFINITION OF THE CROWDED FIELD

Figure 3: Globular Cluster M15 in Pegasus constellation - red crosses mark the positions of known,

measured and catalogued stars in the GSC2.3 catalogue [38]

USNO-B is an all-sky catalogue [47] that presents positions, proper motions, magnitudes in various

optical passbands, and star/galaxy estimators for more than 1042 million objects derived from 3643

million separate observations. The data were obtained from scans of 7435 Schmidt plates taken for the

various sky surveys during 50 years. USNO-B1.0 is believed to provide all-sky coverage, completeness

down to V = 21mag, 0.2” astrometric accuracy at the astronomical epoch J2000, 0.3mag photometric

accuracy in up to five photometric colours, and 85% accuracy for distinguishing stars from non-stellar

objects.

The Guide Star Catalog (GSC) is an all-sky database [38] of objects derived from the uncompressed

Digitized Sky Surveys that the Space Telescope Science Institute has created from the Palomar and

UK Schmidt survey plates and made available to the community. GSC-II was primarily created to

provide guide star information and observation planning support for Hubble Space Telescope (HST).

The GSC2.3 catalog contains astrometry, photometry, and classification for 945592683 objects down

to the magnitude limit of the plates. Positions are tied to the International Celestial Reference System

(ICRS) for stellar sources. Astrometric errors are 20% worse in the case of galaxies and approximately

a factor of 2 worse for blended images. Outside of the galactic plane, stellar classification is reliable to

at least 90% confidence for magnitudes brighter than RF = 19.5mag, and the catalogue is complete to

RF = 20mag.

In figure 2 there is GCl (M15 in Pegasus), whose original image can be seen in figure 1, with the red

cross marking the positions of all known, measured and catalogued stars in the USNO-B1.0 catalogue.

The same thing done using the catalogue GSC is in figure 3. By comparing those two figures with the

11



DEFINITION OF THE CROWDED FIELD

Figure 4: Globular Cluster M15 in Pegasus constellation from the figure 1 - the mesh of the image flux.

original one 1 one can easily see the void of catalogue entries in the area of the selected GCl. The need

of effective method providing automatic astrometry and photometry of crowded fields is evident from

those images.

To have the idea about how much the stars are blended in the mentioned GCl M15, one can see the

meshed flux in figure 4.
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STATE OF THE ART

3 State of the art

Data reduction algorithms of crowded fields is tied with the problem of profile photometry as described

in the section 4.5 and therefore has to deal with the image’s PSF and its time or spatial variabilities.

Image processing detection of these data uses thresholding - some parameters representing the degree

of confidence are taken into account in searching through the image for local density maxima which

have the selected full-width half-maximum (FWHM) and a peak amplitude greater than the threshold

above the local background [61]. More sophisticated detection algorithms can be based on the wavelet

transform [21, 53, 5, 3]. When there are a few more stars or other nearby astronomical objects, manual

PSF fitting photometry can be used, taking into account the Point-Spread Function (PSF), which can

be either fixed or space-dependent around the image [59]. If no PSF is known, which happens in the

case of images with crowded stellar fields (where PSF cannot be obtained from bright isolated stars)

or in the case of images from observatories without adaptive optics and where the actual PSF is not

known, various image processing deconvolution methods (including blind image deconvolution) have

been published [15, 54, 37, 64] and are used in astronomy [57].

Historically, the IRAF astronomical package and specifically the DAOPHOT subpackage [59] at-

tempted to deal with crowded fields, but the automatic solution was still an issue (self-iterative complex

problem). The idea of preparing simulations is quite old, and as an example it was developed for the

Hubble Space Telescope during its optics repair [40]. It attempted to deal with varying noise and then

to use Richardson-Lucy deconvolution [54, 41]. Any astronomical space project from X-rays to radio

prepares its own data simulator to estimate the imaging behaviour, while some imagers have recently

focused even on crowded fields. For example the World Space Observatory - Ultraviolet (WSO-UV)

instrument will eventually have a 1.7-meter telescope, and will probably have a small pixel scale, com-

pact PSF and high sensitivity of the instrument [22]. This allows the use of known image abilities to

develop a simulator of crowded fields for this specific instrument. Such a simulator2, called CIS, was

recently made available online, and takes into account a realistic conversion between physical flux and

counts rate [55].

Common practice doesn’t use any automatic methods of profile photometry for its complications

and dependence on the input parameters (PSF, precise noise distribution) [18]. Because of other con-

ditions often existing in astronomical observations lot of otherwise valuable data is not processed (the

author’s estimation is upto 15-20%) in the cases like

• presence of the GCls in the field of view,

• significant optical aberrations in the margins of the images [62],
2http://grupos.unican.es/glendama/CIS.html
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STATE OF THE ART

• too low SNR to deal with using automatic thresholding methods [49],

• low spatial resolution in comparison with the observed objects ⇒ PSF is sampled on several

pixels only. This problem is commonly present not only in wide-field astronomical cameras,

but as well in high energy astrophysics field, where in the X-Ray and γ-Ray areas the light

properties and instrumentation limits doesn’t allow higher spatial resolution. The specific study

about dealing with this problem in the case of INTEGRAL space satellite [70] at the expense of

losing SNR can be found in [14].

The construction of the quality PSF spatial dependence on the image and modelling of the noise spa-

tial distribution are intertwined. However for their complexness some basic approximations are still

assumed in practice. Commonly during the data reduction of the time series of astronomical images

(containing the same observational object) the imaging system is assumed to be time and spatial in-

variable (unless the data were measured using the Adaptive Optics system as mentioned in the section

4.5.2). This assumption is appropriate when only the slow changes of the imaging system itself is

considered. However during the precise astronomical observations (like GRB optical afterglows or

exoplanets’ transits) or under worse observational conditions (omnipresent light pollution) the effects

outside imaging system itself (namely atmosphere) apply stronger, influencing the resulting PSF. More-

over spatial invariant models of noise are used for its description during those measurements and the

correction is widely done just with the simple subtraction of the darkframe [42].

Automatic and effective image data reduction is important namely for the autonomous telescope.

The complex cybernetics management tools and control software are under development worldwide (e.g

ASCOM or RTS23 [35]) and they are in need of data reduction algorithms dealing with complicated

stellar in astronomical images.

In [26] algorithms searching for quality PSFs of specific non-point (non-stellar) objects are de-

signed, while the tendency to ”rediscover” the use of the wavelet transform (formerly rejected by hard-

core astronomers) can be seen during the last years [53], [21]. The wavelet transform seems to be

especially useful for the construction of stellar detection algorithms (à trous) [5].

In this thesis then the approach of the new automatic algorithm for deconvolution of crowded field is

presented based on research of the deconvolution efficiency and two new ideas as discussed in chapters

12 and 13.

3http://rts2.org/
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4 Astronomical data reduction

4.1 Astronomical image processing software

For the astronomical purposes FITS (Flexible Image Transportation System) format of the images is

commonly used [69]. The file consists of text header with keywords according to the published stan-

dards and binary table of the raw data (image itself). The header keywords are important for the data

reduction because it contains information about the conditions the measurements have been taken with

(e.g. temperature, exposition, airmass, location, coordination system etc.).

• IRAF - IRAF4 stands for the Image Reduction and Analysis Facility, a general purpose soft-

ware system for the reduction and analysis of astronomical data. It is written and supported by

the National Optical Astronomy Observatories (NOAO) in Arizona. The main IRAF distribu-

tion includes a selection of programs for general image processing and graphics, plus a large

number of programs for the reduction and analysis of optical and IR astronomy data. Other ex-

ternal or layered packages are available for applications such as data acquisition or handling data

from other observatories and wavelength regimes such as the Hubble Space Telescope (optical),

EUVE (extreme ultra-violet), or ROSAT and AXAF or Chandra (X-ray). Big disadvantage of

IRAF software is its complicated interface and user-unfriendliness. On the other side it provides

uncountable number of tools for photometric or spectroscopic data processing. The most impor-

tant part of IRAF for the purposes of crowded field image processing is DAOPHOT - software

formed and theoretically introduced by Stetson in 1987 [59]. It is still widely used until today.

The procedures of (non-automated) iterative profile photometry are described in the section 4.5.3

and deeper in the IRAF manual [17].

• MUNIPACK5 - this is a free open source tool which tries to be a user-friendly tool for aperture

photometry processing. It was designed in Brno (CZ) and is nowadays widely used for the fast

and semi-automatic data processing of non-complicated astronomical signal.

• SExtractor - SExtractor6 is a program that builds a catalogue of objects from an astronomical

image. Although it is particularly oriented towards reduction of large scale galaxy-survey data, it

can perform reasonably well on moderately crowded star fields.

• OSA - The INTEGRAL Off-line Scientific Analysis7 is used to reduce and analyse data collected

by the INTEGRAL X-Ray and γ-Ray satellite. It helps getting the spectral mosaics of high
4http://iraf.noao.edu/
5http://munipack.astronomy.cz/
6http://www.astromatic.net/software/sextractor
7http://www.isdc.unige.ch/integral/
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energy astrophysical events by deconvolution of Science Windows (raw data) from the coded

mask detector.

4.2 Astrometry

The position of the stars on the image can be determined by those several ways (or their combination):

• Sensors on the telescope mount - Incremental or absolute position sensors on the telescope

mount can read the position of the coordinate wheels and save them to the FITS header. Such

method is very inaccurate unless really expensive hardware and sensors are used. In professional

astronomy this is rarely used unless the telescope field view has only a few stars to implement

software recognition.

• Wide-field cameras as pointers - Nearly all professional telescopes have their own smaller fel-

low represented by Wide-field (WFC) or Ultra Wide-field (UWFC) cameras. They work as tele-

scope pointers and astrometry processors. Because of lower magnitude limit they easily (in com-

parison with the main telescope) recognize the stars either by internal map or rather by software

recognition [68].

• Software recognition - Information about the coordinates and the coordinate system (e.g. phys-

ical, celestial or galactic) can be saved in the FITS header [69] and for the equatorial case so

called ”World Coordinate System” (WCS) is commonly used [24]. This parametric represen-

tation transforms directly the physical coordinates (width, height) of the specific image to the

equatorial (right ascension, declination). The first published algorithm for matching image stars

to catalogue stars automatically irrespective of the image scale presented Groth in 1986 [25]. The

method uses the triangles, with many triangles contributing to each solution. Liebe [39] showed

that the blind astrometry problem is easily solved when

– there is a camera with a large field of view (tens of degrees),

– the image scale is exactly known

– and algorithm works with 1000 or so brightest stars on the sky.

That method uses matching of the triangles of the stars. Other methods then mainly extend the

algorithm from the triangles’ to the polygons’ similitude between the catalogue and the image

data. In practice the astrometry is processed on the WF or UWF cameras assuming their precise

parallelism with the main telescope.
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4.3 Automatic detection of the objects

In 1987 Stetson presented DAOPHOT software package and algorithms [59] for the automatic object

detection and crowded fields photometry. Those algorithms and their extensions are until today com-

monly used, while new approaches using wavelet transform are under development nowadays (e.g. [8]).

Basically they use simple thresholding - few parameters representing the degree of the confidence are

taken to search the images for local density maxima which have selected full-width half-maximum and

a peak amplitude greater than threshold above the local background [49].

4.4 Aperture Photometry

Photometry in astronomy has to count the flux from the specific stellar (galactic, asteroid, ...) objects.

Because of the historical tradition and logarithmic dependence of the human vision on the illumination,

Pogson equation is used to differ the light fluxes F of two objects 1, 2 in the magnitude quantity m [42]

m1 −m2 = −2.5 log
F1

F2
. (1)

Fluxes themselves can be in the most simple way counted as the sum of the flux on the pixels F (~x)

inside the given aperture. Such an aperture can be easily positioned to the weighed flux center ~xC
(rather than local flux maximum)

~xC =

∑
x12 F (~x)~x∑
x12 F (~x)

, (2)

where ~x is 2D position of the pixels on the image (if the PSF is known or approximated then its

maximum can be used to precise the stellar center). The unknown radius of such an aperture is the

largest disadvantage of the aperture photometry. If the radius is too small then the largest stars on the

image would not be measured whole, while if the radius is too high then other smaller stars can be

erroneously included to the measurement. The simple aperture photometry completely fail in the case

of dense crowded stellar fields, where smaller stars are hidden in the wings of the brighter stars.

The photometric fluxes in astronomy are commonly counted using the specific spectral-band filters.

There are lot of common photometric standards while probably the mostly used is due to the traditions

Johnson UBVRI photometric system, whose filter transparencies can be seen in figure 5 [32]. The idea

of calibration between RGB and Johnson filters is drafted in [66].

4.5 Profile Photometry

In the astronomical observations the original flux of the light and its spatial distribution O(x, y) is de-

formed due to the conditions on its travel to the detector, while that degradation (e.g. caused by the
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Figure 5: Transparency of Johnson standard photometric filters

atmosphere and the instrumental aberrations) can be in general described with some transfer function

P (x, y) - Point-Spread Function (PSF). Unless we could work in ideally isolated system with the tem-

perature of 0 Kelvin, the additive noise N(x, y) of many origins (e.g. thermal noise in the detector or

fluctuations of the atmosphere) occurs. The ”real” image R(x, y) (for example captured on the CCD

detector) is therefore [15]

R(x, y) = (P ∗O)(x, y) +N(x, y). (3)

The construction of the PSF describing field of the point-shaped stars seems to be more simple

than e.g. blind image deconvolution of general picture containing complicated shapes. On the other

side the conditions during the exposition - namely high influence of the noise - make the simple 2D-

deconvolution unusable. And furthermore the problem is

• space-variant, due to the aberrations of the optical system, and

• time-variant, because of the changing atmospheric conditions and observational positions on the

sky with different zenit distance (and therefore different airmass).

There are several approaches in the literature to get the image stellar PSF :

• analytic - mathematical model (analytic function) is fitted on the real image data,

• iterative - the PSF is numerically iterated from the images alone to fulfill the optimization param-

eters.

• semi-empiric - optical abberations of the imaging system is measured, and
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4.5.1 Analytic approach

Assuming only few-parametric analytic approximation of the PSF shape, several functions are widely

used. The photons hitting the CCD detector provide the matrix of signal levels according to the Poisson

distribution [42], but if we observe spatial distribution of that incidental process then with no other

influential conditions one can expect elliptical Gaussian function to fit the stellar 2D profile

FG(x, y) = FG(0)
1

2πσxσy
exp
− (x−µx)2

2σ2x
− (y−µy)2

2σ2y . (4)

However this function does not include other real circumstances e.g. optical system, atmospheric

scatter etc. In practice the single stellar peaks have narrower and sharper shape therefore Lorentzian

distribution can be used [49]

FL(r) = FL(0)
2

π

w

4(r − µr)2 + w2
. (5)

In 1969 Moffat derived the function by convolving Gaussian profile with diffraction profiles and

the scattering function appropriate for photographic emulsions, which works on the images obtained by

CCD as well [46].

FM (r) = FM (0)

(
1 +

r2

α2

)−β
(6)

This analytic function is widely used as the first approximation to the real measured PSF of the stel-

lar images. IRAF data reduction system [17] offers the combination of Gaussian core with Lorentzian

wings producing the analytic function called ”Penny” [49] which may produce smaller standard devia-

tion for the model fit.

4.5.2 Semi-empiric approach

If we assume that the optical system does not change or rather change its properties slowly, then labora-

tory measurements of the PSF before the astronomical use can be obtained. Such measurements can be

done by the collimated illumination through the whole optical system and thus giving the information

about the optical aberrations and dispersion on the optical elements (filters and lenses). But during the

astronomical measurements on the ground-based telescopes the atmospheric variations play important

role therefore ”artificial stars” in high altitudes provided by the lasers can be made and observed before

or after any astronomical measurements to obtain the good PSF [51]. This procedure is used in com-

bination with the Adaptive Optics system on the largest terrestrial observatories. Since PSF is known

afterwards, profile photometry can be applied producing better results and measuring precision than

aperture photometry.
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4.5.3 Iterative numerical approach

This method can provide the best photometric results if no Adaptive Optics is used and if PSF is gen-

erally unknown. Which is acutally the most frequent case. It is well described in [17]. The largest

disadvantage of this method is its non-regularity - iterative approach doesn’t guarantee convergence in

all cases. The PSF is constructed from some image data and is backward tested on the same image. Un-

fortunately this does not always provide good results and because of that this method is not automated

yet. The usefulness of the results gotten by this method is in most cases determined by the experience

with the choice of the parameters [17]. Advantage of this method (and in fact the reason, why it is so

widely used) is that nothing else is needed except for the image data themselves.

In general this method use the shape of some ”typical” stars in the image getting them as the first

iteration of the PSF. Higher iterations fit this PSF on those stars’ surroundings trying to clear them from

their stellar neighbours thus profiling the PSF shape. During every step the optimization test checks the

suitability of the newer PSF. This is mostly done by simple subtraction of the adjusted stellar profile

(constructed from the normalized PSF counted with the constant specific for each star gotten by the

least-squares method fit) from the original (or already fitted and several times subtracted) image while

looking on the created residua. The smaller the residua are, the better PSF is constructed. In practice

that procedure is mostly insufficient and therefore several improvements can be used.

• Iterated PSF can be separated to the analytic part (analytic function with few free parameters

e.g. Moffat or Gaussian) and residual part (so called look-up tables) dependent on the position of

the star in the image. 1 look-up table is created for the PSF constant over the image, 3 look-up

tables for the PSF dependent linearly on the position and 6 look-up tables for the PSF dependent

quadratically.

• Sometimes fainter stars can be hidden in the wings of brighter stars. After iterated subtraction

of the fitted bright stars on the image is proceeded, those faint stars occur and can be taken into

account to reshape the PSF.

If (and that’s not always) a good PSF is obtained and only negligible residua occur, then the ad-

vantage of this method for the astrometry and photometry of the stellar images is huge. Not only the

precision of the measured magnitude is boosted, but as well fainter objects may be detected in the noise.

4.5.4 Procedure outline

In this subsection the procedure of iterative numerical approach is described on the example of the FITS

image shown in figure 4.5.4.
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Figure 6: Original example image used for subtraction of PSFs

In general the iterative numerical method use the shape of some ”typical” stars (or all of them -

the resulting differences can be seen in figures in the table 1) on the image getting them as the first

iteration of the PSF. Higher iterations fit this PSF on those stars’ surroundings trying to clear them from

their stellar neighbours thus profiling the PSF shape. During every step the optimization test checks the

suitability of the newer PSF. This is mostly done by simple subtraction of the adjusted stellar profile

(constructed from the normalized PSF counted with the constant specific for each star gotten by the

least-squares method fit) from the original (or already fitted and several times subtracted) image while

looking on the created residua. The smaller the residua are, the better PSF is constructed. In practice

that procedure is mostly insufficient and therefore several improvements can be used.

• Iterated PSF can be separated to the analytic part (analytic function with few free parameters e.g.

Moffat or Gaussian) and residual part (so called look-up tables) dependent on the position of the

star in the image as can be seen in figures in the table 2.

• Sometimes fainter stars can be hidden in the wings of brighter stars. After iterated subtraction

of the fitted bright stars on the image is proceeded, those faint stars occur and can be taken into

account to reshape the PSF.

If (and that’s not always) a good PSF is obtained and only negligible residua occur, then the ad-

vantage of this method for the astrometry and photometry of the stellar images is huge. Not only the

precision of the measured magnitude is boosted, but as well fainter objects may be detected in the

noise. In figure 7 the example of the parameters’ space influence on the number of detected stars on the

example image is shown.

In general the astrometric algorithms (based on polygon similarities between the catalogues and

measured data) reveal the coordinates of the image successfully, while the research is mostly focused

on the efficiency and limits of those algorithms. There is nearly no consensus until today on the object
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Table 1: Look-up tables (deviations from the analytic function) of PSFs constructed with different

choice of model stars from the example image.
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Figure 7: Number of stars found in dependence on threshold (in σ quantities) and supposed FWHM of

the stellar PSF shape on the example image.

detection methods except the simple thresholding needing external parameters as the input. Some of the

observatories and space telescopes use other variations and detection methods specific for the internal

conditions that are not efficient generally yet. For the photometric tasks simple aperture photometry

is automated and used in most cases instead of profile (PSF) photometry except the dense crowded

stellar fields and complicated objects (like galaxies). The reason is the difficulty with the image PSF

extraction.
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(A) (B)

(C) (D)

Table 2: Comparison of the subtracted image from the original figure 4.5.4. Occuring residua are

evident.

(A) Only the analytic function is used to compute the PSF model. The PSF model is constant over the

image.

(B) The analytic function and one look-up table are used to compute the PSF model. The PSF model is

constant over the image.

(C) The analytic function and three look-up tables are used to compute the PSF model. The PSF model

is linearly variable over the image, with terms proportional to 1, x and y.

(D) The analytic function and six look-up tables are used to compute the PSF model. The PSF model

is quadratically variable over the image, with terms proportional to 1, x, y, x2, xy, y2.
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5 Deconvolution algorithms used in astronomy

Convolution ∗ is linear mathematical operator. One of its advantages is its application in the dual space.

Convolution of two functions becomes simple multiplication in the Fourier domain. If we define Fourier

transform in one dimension of the given function f(x) as

f̂(χ) =
1√
2π

∫
R
f(x) exp−2πiχx dx (7)

and suppose g(x) as the convolution of two functions f1(x) and f2(x)

g(x) = (f1 ∗ f2)(x) (8)

then its Fourier transform is the multiplication of f̂1(x) and f̂2(x)

ĝ(χ) = f̂1(χ)f̂2(χ). (9)

Deconvolution is trying to restore the image that has been degraded to its original condition [57]. If

the PSF is unknown then ”Blind deconvolution”, the method widely used in the image processing, can

be proceeded [15]. That is useful for the texture-type objects of the measurements with high SNR like

planets or the Moon, but valuable information can be lost during the process in the case of the precise

astrometric or photometric measurements. If the PSF is known (or at least approximated), one could

suggest the use of the equations (8, 9, 3) to obtain the estimation of the original image from using the

Inverse Fourier Transform of

Ô(χ, ψ) =
R̂(χ, ψ)

P̂ (χ, ψ)
− N̂(χ, ψ)

P̂ (χ, ψ)
. (10)

This is called Fourier-quotient method [57], but for the frequencies approaching the cutoff, the noise

term grows on importance. In practice this method cannot be therefore in the presence of noise (all

experimental cases) used. Even if the noise is slight (which is rarely in the astronomical observations)

there is no guarantee that the inverse convolution (or ”deconvolution”) kernel exists [7]. Such a case

described by (3) is an ill-posed problem with no unique and no stable solution [57].

Even though the convergence of the deconvolution in astronomy is not guaranteed and many of

the methods diverge in general, some progress can be made using several constraints and limits. For

example assumption that all the light from the single star falling on the detector in the photometric (not

interferometric or spectroscopic) observations origins from the point source due to the large distances

and corpuscular-wave dualism ability of the light. Another constraint can be made knowing the back-

ground values of the processing images providing the one-sided limit to the deconvolving algorithms.
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5.1 Bayes approach

Using the variables defined in the head of this section the Bayesian approach constructs following

probability density relation

p(O|R) =
p(R|O)p(O)

p(R)
(11)

to maximize its right term [15].

5.1.1 Gaussian noise

If the observational object (original image) and noise is assumed to follow Gaussian distribution with

zero mean then a solution of (11) leads to the Wiener filter [57]

Ô(χ, ψ) =
P̂ T (χ, ψ)R̂(χ, ψ)

|P̂ (χ, ψ)|2 +
σ2
N

σ2
O

, (12)

where σO is standard deviation of the original image and σN is the standard deviation of the Gaussian

noise. The application of the Wiener filter is fast, but it needs quite precise spectral noise estimation.

Its big disadvantage for the astronomical purposes is that the noise of the data from the digital sensors

(e.g. CCD) produced by the falling photons is distributed correspondingly to those photons according

to the Poisson distribution.

5.1.2 Poisson noise

Using the equation (11) and the assumption of the noise behaving according to the Poisson distribution

the probability p(R|O) is [57]

p(R|O) =
∏
x,y

((P ∗O)(x, y))R(x,y)e−(P∗O)(x,y)

R(x, y)!
. (13)

The maximum given by the derivative of the logarithm of (13) leads to the result [57]

1 =
R(x, y)

(P ∗O)(x, y)
∗ P T . (14)

This equation is afterwards used for the construction of the iterative Richardson-Lucy algorithm as

described in the following section.

5.2 Iterative regularized methods

Further description of the deconvolution methods are based on the successive approximations in small

steps eventually (not always) converging to the estimation of the original non-degraded signal.
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5.2.1 Noise-less iteration

Let’s use the term from (3) to define ”idealistic” noise-less blurred signal I(x, y) which was captured

by the detector

I(x, y) = (P ∗O)(x, y), (15)

where P (x, y) is PSF and O(x, y) represents non-degraded original signal (non-blurred stellar light

without noise). The difference between the noise-less blurred signal I(x, y) and the captured real signal

R(x, y) is nothing more than the noise N(x, y). If we set the condition that the noise is negligible then

in the simplest (non-realistic) form the equation (3) changes to

0 = R(x, y)− I(x, y). (16)

Adding the original signal O(x, y) on the both sides we get

O(x, y) = O(x, y) + [R(x, y)− I(x, y)]. (17)

By performing the operations on the right side of (17) we can iteratively compute a ”new version” of

the original image O(n+1)(x, y) on the left side of the same equation [7]. Using the degraded CCD

image R(x, y) as the first iteration to seed the process we compute better and better estimation with

another iteration assuming the ”correction term” [R(x, y)−I(x, y)] is small in comparison withO(x, y)

(meaning the original signal was not degraded so terribly). The single iteration steps are therefore

O(n+1) = O(n) + [R− (P ∗O(n))] (18)

and sending lim
n→∞ we get back to O = O + R − (P ∗ O) and R = (P ∗ O), the noise-less blurred

degradation from (3). However in the presence of the noise the algorithm in general diverges and the

successive ”correction terms” may grow up instead of decreasing.

5.2.2 Van Cittert method

This method [64] is actually only the modification of the previous one providing the relaxation param-

eter α into (18)

O(n+1) = O(n) + α[R− (P ∗O(n))], (19)

which allows to control the rate at which the iteration converges to the estimation of the original signal.

If α < 1 then only the part of the ”correction term” is added to the new iterated estimation and the

method approaches the estimation of the original signal more slowly. That is more valuable if we replace
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scalar α parameter by the relaxation function α(O(n)(x, y)) [7]. The rate of convergence should be

slowed for the noisy low-value background pixels, while allowing the low-noise pixels (bright stars) run

at full speed. The relaxation function could be for example the sine function with arguments between

0 and π/2. Jansson [30] modified this technique by assuming the constraints on each iteration step.

Commonly used constraints [57] are

• positivity - pixels on every new signal estimation have to be nonnegative,

• upper and lower bounds (e.g. background values of the image) or

• known spatial domain in the dual Fourier space.

5.2.3 Landweber method

In 1951 Landweber [37] presented the successive approximations based on maximum likelihood es-

timation of the signal with Gaussian noise [57]. During each iteration same constraints as discussed

in the previous method can be used. The iteration uses additional convolution with transposed PSF

P T (x, y) and relaxation parameter γ :

O(n+1) = O(n) + γP T ∗ [R− (P ∗O(n))]. (20)

5.2.4 Richardson-Lucy method

While the Van-Cittert or Landweber methods are based on the additive correction, the Richardson-Lucy

(or sometimes Lucy-Richardson) method, first presented in 1972 [54], uses the multiplicative correction

[7]. One of its form [57] using the maximum likelihood results of Bayesian methodology given in (14)

can be written as

O(n+1) = O(n)

[
R

(P ∗O(n))
∗ P T

]
. (21)

This algorithm is, due to the assumption of the Poisson noise distribution and resulting flux preservation,

commonly used in astronomical data processing.

5.3 Analysis of standard deconvolution methods in the case of crowded field

In this subsection standard image processing algorithms as described above are tested on 2 different

astronomical images 8 and 9. The figure 8 contains simple non-complicated stellar field around the

variable star V795 Her in the constellation of Hercules [56], while the figure 5 contains complicated
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Figure 8: Astronomical image of the non-complicated stellar field around the variable star V795 Her.

Figure 9: Astronomical image of the complicated crowded field of the stellar cluster NGC6791.
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Table 3: Properties of the astronomical images used for the tests of the standard deconvolution algo-

rithms
V795 Her NGC6791

right ascension α 17 12 56.09 19 20 53 [h m s]

declination δ +33 31 21.4 +37 46.3 [◦ ’ ”]

constellation Hercules Lyra

date of exposition 2009-04-29 2008-04-01 [yyyy-mm-dd]

time of exposition UT 00:30:41 21:08:48 [hh:mm:ss]

image size 1056 x 1027 1092 x 736 [px]

exposure 20 30 [s]

photometric filter V R

CCD camera FLI IMG4710 G2-3200

telescope diameter 50 65 [cm]

temperature during exposition -40 -35 [◦ C]

sky value (background) 74 748 [ADU]

σ of the sky background 8.5 26 [ADU]

typical FWHM of bright stars 3.7 3.0 [-]

stellar crowded field of the cluster NGC6791 in the constellation of Lyra. Characteristics and properties

of both testing images can be seen in the table 3.

In figure 10 there is the comparison of 3 iterative deconvolution methods described above (Van

Cittert, Landweber, Richardson-Lucy). 3 matrices M1,2,3 were convolved with simple symmetric PSF

and deconvolved back with those three different algorithms. The dependence of RMSE (based on the

difference between original and reconstructed signal) on the number of iterations can be seen on the

graphs.
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M1 =



1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 100 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1



(22)

M2 =



1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 100 1 1 1 130 1 1 1 1 1

1 1 1 1 120 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 140 1 1 1 200 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1



(23)

M3 =



1 5 1 8 1 6

2 2 3 3 4 4

8 7 8 2 4 9

1 6 7 8 1 5

8 1 5 5 5 9

9 4 5 8 9 5


(24)

Because of the unknown original image O(x, y) from (3) one has to develop different method for

the purposes of the deconvolution algorithms’ comparison than just the formation of the estimations

O′(x, y) of the original image.

Let us construct the estimation of the original unblurred and denoised signal O′(x, y) with any of

the deconvolution method discussed above and with the series of the prefabricated PSFs P (x, y). Then

it would be simply possible to convolve such a estimation back into R′(x, y) with the same PSF and

compare it with the former real image R(x, y). Unfortunately some of the deconvolution methods do
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Figure 10: Comparison of Van Cittert, Landweber and Richardson-Lucy deconvolution methods in

dependence on number of the iterations. The graphs from the top in sequence belong to the matrices

M1,2,3 defined in (22, 23, 24).
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not preserve total flux and one have to normalize the resulted images. Such a normalization constant c1
can be defined as

cN =

∑
x

∑
y R
′(x, y)∑

x

∑
y R(x, y)

. (25)

Then one of the metrics µ measuring the scale of the difference between

• the test image R(x, y) and

• deconvolved and once again with the convolution reconstructed image R′(x, y)

can be defined as

µ =
1

wh− 1

∑
x

∑
y

(
1− R(x, y)

cNR′(x, y)

)2

, (26)

where w and h are width and height of the image and cN is the normalization constant (25). Such

a metrics µ represents mean quadratic deviation (not standard deviation) between reconstructed and

input signal and can be used as unbiased indicator of the efficiency (or error deficits) of the different

deconvolution algorithms.

For the purposes of the tests several PSFs were constructed. Those were either analytic or semi-

empiric - deducted with the profile photometry iterative method from the image 8 and 9 [17]. For

each different variability across the test images (constant or space-variant PSF) automatic choice of the

analytic function was used with the data reduction software IRAF8 - those PSFs are boldfaced in the

result tables 4 and 5. Even in the case of the semi-empiric PSFs with more look-up tables with primary

analytic kernel the functions were in general

• Moffat (6) with different β parameters,

• Gauss (27),

• Lorentz (5)

• and Penny - Gaussian core with Lorentzian wings [49].

Deconvolution algorithms were implemented in the MATLAB9 programming language. The compari-

son of the deconvolution methods with computed metrics µ (26) for the images 8 and 9 can be seen in

the tables 4 and 5. The boldfaced PSFs represent the ones chosen by the IRAF software automatically

as the most corresponding (square minimization) to the specific number of look-up tables.
8http://iraf.noao.edu
9http://www.mathworks.com/products/matlab/index.html
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Table 4: Comparison of the Wiener (W), Van Cittert (VC), Landweber (L) and Richardson-Lucy (R-L)

deconvolution methods for the testing image 8 (simple stellar field around V795 Her). The metrics µ

is defined in (26). Boldfaced are the best fitting functions according to the automatic choice of IRAF

software.

PSF
look-up µ [10−3]

tables W VC L R-L

Moffat β = 3 0 22.00 12.87 304.08 12.23

Moffat β = 5 0 11.57 12.42 173.75 8.12

Moffat β = 7 0 9.39 12.10 89.13 11.54

Penny 0 18.18 12.59 12.59 7.75

Penny 1 5.37 12.52 12.52 7.34

Penny 3 5.36 12.52 12.52 7.33

Penny 6 4.80 12.49 12.49 7.25

Moffat β = 1.5 0 22.56 12.80 12.80 10.62

Moffat β = 2.5 0 20.65 12.62 12.62 8.03

Moffat β = 1.5 1 5.26 12.52 12.52 7.31

Moffat β = 2.5 1 5.28 12.52 12.52 7.33

Moffat β = 1.5 3 5.33 12.52 12.52 7.30

Moffat β = 2.5 3 5.31 12.52 12.52 7.32

Moffat β = 1.5 6 4.56 12.50 12.50 7.23

Moffat β = 2.5 6 4.69 12.49 12.49 7.24
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Table 5: Comparison of the Wiener (W), Van Cittert (VC), Landweber (L) and Richardson-Lucy (R-L)

deconvolution methods for the testing image 9 (crowded field of NGC6791). The metrics µ is defined

in (26). Boldfaced are the best fitting functions according to the automatic choice of IRAF software.

PSF
look-up µ [10−3]

tables W VC L R-L

Moffat β = 3 0 8.37 4.37 21.49 3.90

Moffat β = 5 0 3.02 4.02 18.55 1.79

Moffat β = 7 0 2.07 3.74 12.44 3.94

Moffat β = 1.5 0 9.99 4.38 4.38 3.42

Moffat β = 1.5 1 23.49 6.17 6.17 291.21

Lorentz 3 25.19 6.75 1736.14 2986.89

Penny 6 51427.40 2500091.10 22919.01 53934.23

Moffat β = 2.5 0 2.25 4.15 4.15 2.33

Moffat β = 2.5 1 18.25 5.18 5.18 37.00

Moffat β = 2.5 3 19.90 5.81 5.81 61.49

Moffat β = 1.5 3 10.61 4.43 7370.95 38.30

Moffat β = 2.5 6 1058.73 13.68 3343.19 9144.15
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6 Imaging systems in astronomy with the need of crowded field image
processing

In this section the list of several ongoing or planned astronomical experiments with their brief descrip-

tion is presented. The common feature of those projects is the absence of the effective algorithms

solving the complicated image signal caused by some of the following effects :

• overlapping PSFs of nearby stellar sources (crowded fields),

• low SNR of the observed objects,

• low spatial signal sampling,

• and/or significant time or spatial dependence of the PSF.

6.1 Ground optical telescopes

6.1.1 BART

BART (figure 11) is a small intelligent robotic CCD telescope, devoted to rapid observation of prompt

GRB transients [31]. Telescope is located in Astronomical Institute of the Czech Academy of Sciences

in Ondrejov and was originally formed as a student project on the Charles University. The database

of the observation includes the FITS images for over than 8 years and is waiting to be automatically

processed to produce the photometric light curves of observed variable stars.

Figure 11: BART - Burst Alert Robotic Telescope in Ondrejov observatory (CZ)

6.1.2 D50

The D50 telescope (figure 12) is the second robotic telescope of High Energy Astrophysics department

in Ondrejov observatory (CZ) [48]. It is located near the BART telescope. The goal was to build a
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Figure 12: D50 - Robotic telescope in Ondrejov observatory (CZ)

low-cost alert telescope larger than the BART for the follow-up observing of GRBs and other interest-

ing high-energy sources. The first light was captured in January 2008 and observations are not fully

automated yet. The D50 is a Newtonian telescope with a primary parabolic mirror with a diameter

of 500mm and a focal length of f=1.975m. The field of view is 20’ x 20’ with a resolution of 1.18”

per pixel. The limiting magnitude of the main telescope in the V filter is 17.7mag for 10 seconds of

exposure time. The automated pipeline for data reduction of observed data would be necessary to fully

robotize the telescope, while the goal is focused to optical transients of GRBs, which are faint and

rapidly variable objects determined strongly by the noise while captured on CCD.

6.1.3 BOOTES

The Burst Observer and Optical Transient Exploring System (BOOTES) was considered as a part of

the preparations for the ESA’s satellite INTEGRAL and was developed Spain in collaboration with two

Czech institutions [16]. The first light was obtained in July 1998. Today it consists of a net of robotic

telescopes in Spain and New Zealand.

6.1.4 GLORIA

GLORIA is a citizen-science network of robotic telescopes, which would give free access and research

to a virtual community via the Internet. GLORIA partners offer access to a growing collection of robotic

telescopes via a Web 2.0 environment - 17 telescopes on 4 continents by the project’s end. Many of
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Figure 13: INTEGRAL - International Gamma Ray Astrophysics Laboratory (ESA)

the telescopes are already robotized using the same free/open-source RTS2 software [35] and the web

access would be based on Ciclope Astro which currently provides the world’s first free-access robotic

telescope at Montegancedo Observatory10. The challenge is to involve people from around the world,

to maximise their collective intelligence, and to foster their participation in astronomy research both

in data analysis and actual observations. GLORIA is an e-Science network for the virtual community,

demonstrating how networking and open e-Infrastructures can increase the quality of research.

6.1.5 MAIA

MAIA - double-station video observation of the meteor - is the project of both Czech Technical Univer-

sity and the observatory in Ondřejov [67]. The aim is to study sporadic meteors and less active meteor

showers using the double station video experiment. The automatic instrumentation is developed within

the project using commercial-off-the-shelf components. Simultaneously the methods of data recording,

processing and storing will be prepared [4, 45, 20]. On the bases of recorded data the physical properties

of the meteoroids belonging to the different populations of the sporadic background are studied.

6.2 X-Ray and γ-Ray space satellites - INTEGRAL

The ESA observatory INTEGRAL (International Gamma-Ray Astrophysics Laboratory) [70] is ded-

icated to the fine spectroscopy and fine imaging (angular resolution: 12” FWHM) of celestial γ-Ray

sources in the energy range 15 keV to 10 MeV with concurrent source monitoring in the X-Ray (3-35

keV) and optical (V-band, 550 nm) energy ranges. INTEGRAL carries two main γ-Ray instruments,

the spectrometer SPI optimized for the high-resolution spectroscopy (20 keV-8 MeV), and the imager

IBIS optimized for high-angular resolution imaging (15 keV-10 MeV). Two monitors, JEM-X in the
10http://om.fi.upm.es
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Figure 14: Project WILLIAM - Wide-field all-sky image analyzing monitoring system - run by Multi-

media Technology Group of Czech Technical University.

(3-35) keV X-ray band, and OMC in optical Johnson V-band complement the payload. INTEGRAL

was launched on 17 October 2002 and is still operating. The illustration of the INTEGRAL satellite

is in figure 13. The complexity of the data reduction of faint and overlapping objects is described in

[9, 10]. The participation of Czech team in the reduction of INTEGRAL data can be found in [28].

6.3 Small digital cameras

6.3.1 WILLIAM

Project WILLIAM11 (Wide-field all-sky image analyzing monitoring system) is the prototype of the

all-sky experimental camera for astronomical and meteorological support being currently developed in

the Department of Radioelectronics of Czech Technical University (CTU) in Prague [29]. It provides

additional support for bright astronomical phenomena, telescope controller and day/night meteorologi-

cal conditions. The day weather conditions is being processed by the idea of colour segmentation [11]

using the K-means algorithms [6] for various colour spaces other than RGB [65].

6.3.2 Astrophotography

The use of telescopes for GRB optical transients is limited by their speed to track the possible explo-

sion on the sky as soon as possible. Therefore the use of cheap all-sky digital cameras combined in

the worldwide net was suggested. The data reduction from those UWFC is mostly complicated by

low spatial sampling of the signal and significant optical aberrations, both influencing the PSF and its
11http://william.multimediatech.cz
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Figure 15: The all-sky camera image from the observatory Karlovy Vary.

spatial variance significantly. In figure 15 is the example of the image from the all-sky camera recently

operating at the observatory Karlovy Vary.

In [50] it is discussed the use of low-cost digital cameras for the astronomical scientific purposes.

Although lots of additional problems occur, the benefits of the gain of statistically enormous number of

data cannot be overlooked.

40



GLENCOESIM SIMULATOR

7 GlencoeSim Simulator

For the purposes of testing the efficiency of any given deconvolution algorithm on different types of

astronomical images, one has to compare the result (the positions and fluxes of astronomical objects)

with the undegraded original conditions. Simulations of artificial astronomical fields provide a platform

for such efficiency tests by providing the undegraded original conditions (stellar positions and fluxes),

which can be statistically compared with the deconvolution results under many varying circumstances

(e.g., PSF, noise or stellar spatial distributions and overlapping).

Developed GlencoeSim is a simulator of optical data of crowded stellar fields in the FITS format

that is used in astronomy [12]. Its purpose is to create image simulations as similar as possible to

realistic images from astronomical telescopes, while providing knowledge of the initial conditions (a

map of stellar positions and fluxes). The GlencoeSim libraries and GUI can be downloaded from the

webpages mmtg.fel.cvut.cz/glencoe/ of the Multimedia Technology Group (MMTG) of the

Czech Technical University in Prague. Implementation is being developed under the MATLAB/Octave

platform [23, 19]. Similar tasks were traditionally widely performed by the IRAF astronomical package

[61], with lower capabilities for random simulations and joined functional efficiency. The main strength

of the MATLAB/Octave platform is its great matrix-computational advantage. All GlencoeSim func-

tions can be used separately in any step of the algorithm, or together using GUI with a graphical check

of the intersteps. The algorithm is illustrated in figure 16 in the form of a block diagram, and it can be

divided into three basic steps - PSF acquisition, stellar map creation and noising. The red path in figure

16 shows the default settings in GUI, and it is recommended for simple simulations.

7.1 PSF acquisition in GlencoeSim

The create kernel stellar image.m function prepares either a Moffat profile [46] or a Gaus-

sian profile with given parameters or reads 2D data from an external FITS file. A given size of the

resulting specific PSF radius and profile type parameters (α and β for Moffat, or σ for Gaussian) can

be set. Moffat’s radial profile is given by [46] in the equation (6 and the simplified Gaussian profile is

given by

I(x, y) = I0e
−x

2+y2

2σ2 . (27)

Either way the profile is normalized to a peak equal to one. An example of a given PSF made from a

Moffat profile with α = 1.1 and β = 0.8 is shown in figure 17.
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Figure 16: Block diagram of the GlencoeSim algorithm [12]. Red colour shows the basic recommended

path, which is the default in GUI.
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Figure 17: Example of Moffat PSF made by GlencoeSim with α = 1.1 and β = 0.8.

7.2 Stellar map simulation in GlencoeSim

The create astro positions.m function makes a 2D map of random points with random in-

tensities according to given constraints and parameters. They represent the undegraded positions and

fluxes of simulated stars. As for the spatial stellar distribution, one can set either King’s distribution

[33], a 2D elliptic Gaussian distribution (both simulating the stellar Globular Cluster), or a uniform dis-

tribution representing random foreground stars not belonging to the globular cluster itself. GUI offers

to prepare a stellar map including both cluster stars and uniformly distributed foreground stars at the

same time. The cluster stars can be generated namely according to King’s law of stellar surface density

f(r) [33]. It is implemented as

f(r) = k

 1√
1 +

(
r
RC

)2 − 1√
1 +

(
RT
RC

2
)

2

(28)

with k as a normalization factor and RC , RT as functional parameters. RC can be called the core

radius, and RT is a radius where the surface stellar density f goes to zero [33]. The other option is

elliptic Gaussian spatial distribution, where parameters σx and σy control the ellipticity and the size of

the distribution in the image center (µx, µy)

f(x, y) = k exp

(
−(x− µx)2

2σx
− (y − µy)2

2σy

)
. (29)

Stellar fluxes to an already created map can be randomly attached following different distributions.

As a default, the measured luminosity function of the globular cluster M68 is attached to simulated

point stars [43]. This luminosity function is shown in figure 18. The left part shows a semi-logarithmic
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Figure 18: Luminosity function of Globular cluster M68 [43] used in GlencoeSim as a deafult flux

distribution.

distribution in astronomical magnitudes as measured in [43] (with a fitted function of the fifth polyno-

mial degree), and the right part shows the corresponding distribution of stellar counts N in dependence

on flux ratio Φ

Φ =
Imax
I(N)

. (30)

The maximal flux value Imax has to be given to the simulator as a parameter. Such a representation is

algorithmically easier, due to the good fit with a simple luminosity representation

N = k · ΦP , (31)

where the normalizing constant k depends on the given total amount of desired stars in the simulation

and the shaping parameter P = 0.513± 0.025. The simulator creates stars according to the fit (31) up

to one thousand times fainter than the given Imax (which corresponds to the 6 magnitudes of measured

data difference in [43]). Other options for the luminosity functions are uniform intensity distribution or

exponential distribution with growth towards fainter stars. Again, any stellar map can be loaded from

or saved into a FITS file [69].

7.3 Noise in GlencoeSim

Noise is the most important part of (3). This makes issues in deconvolution, especially since in as-

tronomy the contribution of noise is extremely large, for example in comparison with image processing

in car plate recognition. The simulator can separate the contribution of noise to astronomical images

(which are mostly taken by cooled CCD cameras [27]) into 3 steps :

• non-uniform Poisson noise, dependent on the signal level modifying the stellar model itself,

• additive background noise, and
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Figure 19: Example of noise with a Poisson distribution and a mean value of 5000 ADU.

• instrumental artifacts.

GlencoeSim [12] can disable noise completely, or can just simulate some of the steps independently.

Additive background noise made by the provided create background.m function represents

the total sum of the additive parts, such as CCD darkframe, the total background light contribution (at-

mospheric emission), and extremely faint unresolved astronomical phenomena (background galaxies,

moonlight). The user has to choose between desired types of additive noise - Poisson noise (with only

the estimated mean flux given) or white noise (Gaussian, with both estimated mean flux and standard

deviation added to the algorithm).

The create simulation.m function joins the previous preparations together. It convolves the

sky model (a map of both the globular cluster and optional contamination with foreground stars) with

given PSF, modifies the signal (if desired) with non-uniform Poisson noise dependent on the signal

level, and finally adds the additive noise from the previous paragraph. In GUI, the additive noise

histogram, together with the stellar luminosity distributions in a semi-logarithmic histogram, can be

visually checked. An example of an additive Poisson noise contribution with a mean value of 5000

ADU is shown in figure 19.

In most cases, this may be sufficient for deconvolution tests, and the simulation can be saved into a

FITS file. However, real astronomical images from CCD cameras often contain damaged pixels or other

instrumental artifacts. In the function called create instrumental artifacts.m GlencoeSim

offers three types of image deterioration.

• Hot pixels & cosmics - hot pixels have higher dark current than their neighbours and have higher

pixel values, while cosmic particles can form a ray of several overexposed pixels. Both effects

are simulated in GlencoeSim with a given number of overexposed pixels (with a user-given level)

and between one pixel (hot pixels) and three pixels in length in eight different random directions

(cosmics).

• Bad pixels - a given number of pixels on random positions would get 0 ADU values.
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• Dead columns - in real images, for both mechanical and electronic reasons, some of the columns

of the pixels of CCDs have the same signal level in parallel vertical directions. To simplify the

algorithm, GlencoeSim creates all the number of desired columns made of dead pixels with 0

ADU values.

7.4 GUI and examples

The package and its graphical interface can be downloaded online12, and Matlab runtime is recom-

mended. Detailed information can also be found in the help manuals of the functions themselves. Two

examples of simulation with different parameters are shown in figures 20 and 21. The first image shows

a simulation of GCl with good seeing parameters and a high signal-to-noise ratio, while in image 21

there is a detail of blurred and dense GCl with a high number of faint background stars and an extremely

low signal-to-noise ratio. Such a simulation is an example of the test image for deep analysis of the

efficiency of potential new deconvolution methods. A detail of an example made by the default GUI

settings with added instrumental artifacts (cosmic rays, hot pixels and dead columns) is shown in figure

22.

12http://mmtg.fel.cvut.cz/glencoe
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Table 6: Default values and explanations of the most important global parameters in GlencoeSim sim-
ulator [12]

Default Description
value

ImageRows 600 Size of the simulated image (Y)
ImageCols 800 Size of the simulated image (X)
MaxClusterIntens 40000 The top limit for the point stellar flux

of single stars - I0 in (6) or (27) - in the yet
non-blurred not-noised simulated map of point
stars in the cluster spatial distribution
(stars of globular cluster).

SimClusterStars 8000 Estimated number of the stars in the GCl
SimForegrStars 100 Estimated number of the foreground stars
MaxForegrStars 20000 The top limit for the stellar flux of single

stars - I0 in (6) or (27) - in the yet non-blurred
not-noised simulated map of point foreground
stars in the uniform spatial distribution

SpatialDistrib1 150 RC of King’s spatial distribution (28) or σx of
Gaussian spatial distribution (29)

SpatialDistrib2 400 RT of King’s spatial distribution (28) or σy of
Gaussian spatial distribution (29)

NoiseIntensity 10000 Estimated value of mean additive noise (Poisson
or Gaussian)

NoisseGaussStd 200 Estimated standard deviation of additive
noise (only for Gaussian noise)

StellarKernelRad 10 Half of the size (square radius) of simulated PSF
Alpha 5 α parameter from Moffat PSF (6)
Beta 7 β parameter from Moffat PSF (6)
Sigma 4 σ parameter from Gaussian PSF (27)
HotpixCount 0 Number of hot pixels
HotpixFlux 65535 Flux of the hot pixels
BadpixCount 0 Number of bad pixels (0 value)
DeadCols 0 Number of dead columns
SignalPoisson 1 modification of the signal by the non-uniform

Poisson noise dependent on the signal level
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Figure 20: Example of GlencoeSim simulation (inverted colours). PSF radius 100 px, Moffat approx-

imation α = 3.9 & β = 4.1, King’s distribution with RC = 160 & RT = 800, 6000 estimated stars

in GCl and 2000 estimated stars of Universe background, exponential luminosity function, maximal

single stellar flux of 4000 ADU and mean overall Poisson noise contribution of 2000 ADU with stellar

flux corrupted with signal-dependent Poisson noise.
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Figure 21: Simulation of complicated degraded GCl - detail of an extremely noisy and blurred signal

in the periphery of the simulation. PSF radius 100 px, Moffat approximation α = 5 & β = 3, King’s

distribution with RC = 80 & RT = 500, 15000 estimated stars in GCl and 5000 estimated stars of

foreground stellar contamination, exponential luminosity function, maximal individual stellar flux of

500 ADU and a mean overall Poisson noise contribution of 10000 ADU with stellar flux corrupted with

signal-dependent Poisson noise.

Figure 22: Simulation of complicated degraded GCl - PSF radius 10 px, Moffat approximation α = 5

& β = 7, King’s distribution with RC = 150 & RT = 400, 8000 estimated stars in GCl and 100

estimated stars of foreground stellar contamination, luminosity function of M68, maximal single stellar

flux of 40000 ADU noised by non-uniform Poisson modification and the mean overall additive Poisson

noise contribution of an estimated mean level of 10000 ADU. The detail shows a dead column and

several hot pixels and cosmic particles.

49



ASTRONOMICAL IMAGE SIMULATIONS

8 Astronomical image simulations

In this chapter, the creation of image simulations for many various conditions is described. These

simulations would be used for deconvolution tests based on the initial knowledge of stellar fluxes and

positions. For this purpose the author’s simulator GlencoeSim (described in the previous section) was

used [12]. The following analysis would be including statistical dependence and data mining in the

space of various input and output parameters on which the simulations were created (or deconvolved,

or proceeded by astrometry and photometry, ...).

8.1 Variable input parameters

From (3) according to [15] the resulting simulation generally (beside other minor influences) consists

of 3 main steps:

• INITIAL MAP - point stellar positions with attached fluxes according to specific spatial distri-

bution,

• BLURRING - described by PSF, in the simple case spatially invariant

• NOISE - given by two parts - additive noise and non-uniform Poisson modification of a stellar

signal.

The initial simulated maps were chosen to be distributed by King’s distribution [33] with various

number of stars and various maximal values of flux with randomized fluxes according to the luminosity

distribution of GCl M68 [43] as given by (31) in the figure 18. The maximal fluxes were set to 64,

1024, 16384 and 65536 ADU (Analog-Digital unit - quantization step representing the instrumental

flux). The number of stars was similarly set to four options - 64, 1024, 16384 and 65536 estimated stars

around the image. The spatial distribution is dependent on two King’s parameters - the core radius RC
having the values of 50, 100 and 150 pixels and the zero surface stellar density RT having the values of

150, 300, 450 and 600 pixels. Those values have been chosen regarding the attributes of the simulated

images having 400x300 pixels size. It is important to keep in mind that the number of the estimated

stars is not the real number of stars at the simulation (statistically some stars can be distributed behind

the edge of the image). All these combinations make 4 (flux) x 4 (stars) x 4 (RT ) x 3 (RT ) = 192
simulated maps files occupying just 2.6 MB of a hard drive space.

For the various PSFs the Moffat function shape from 6 was chosen with variable parameters α

(influencing ”fatness” of PSF) having 2, 4, 6, 8 and 10 values and the second parameter β (influencing

the ”sharpness” of PSF) having the values of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5. The radius of PSF (half of the
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Table 7: List of combinations for noising of simulations
estimated estimated non-uniform

mean value deviation Poisson noise

[ADU] [ADU]

0 0 no

0 0 yes

4 2 yes

16 4 yes

64 8 yes

256 16 yes

1024 32 yes

4096 64 yes

16384 128 yes

65536 256 yes

kernel/PSF size) is set to 25 pixels. That combination makes 40 simulated images of various PSF FITS

files occupying just 300 kB of a hard drive.

The most important part influencing the efficiency of the deconvolution is the noise - both the level

of additive noise and if the signal is modified by non-uniform Poisson noise. Eight additive noise

(”darkframes”) following the Poisson distribution 41 were created, while for the simulation tests and

comparisons it is useful to include the options when no additive noise is added with both the cases when

the original signal is modified AND unmodified by non-uniform Poisson noise. Table 7 is showing the

summary of the all 10 noise combinations considered for following simulations.

If combined with each other all 40 PSFs, 10 noise options and 192 initial maps create totally 76800
simulated FITS images occupying 14.8 GB of space on hard drive. These simulations together with

all darkframes, maps and simulations can be found at the address of MMTG group13. The preview of

all conditions under which the simulations were created by the GlencoeSim simulator [12] can be seen

in figure 8.

8.2 Methodics for comparison of deconvolution results with simulations

As discussed at the beginning of the thesis in the state of the art, the valuable information for scien-

tific purposes are namely positions (astrometry) and flux measurements (photometry), so the algorithm
13http://dbq.multimediatech.cz/users/blazek/public/thesis
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Table 8: List of all presets and variable settings combinations for all 76800 simulations created by

GlencoeSim [12]

Fixed parameters :
Image size 400x300 px

PSF type Moffat (6)

PSF kernel size (radius) 50 px (25 px)

Spatial distribution King’s [33]

Luminosity function M68

Estimated foreground stars 0

Hot & bad pixels, dead columns 0

Variable parameters :
PSF α 2, 4, 6, 8, 10

PSF β 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5

Number of estimated GCl stars 64, 1024, 16384, 65536

Maximal initial stellar flux 64, 1024, 16384, 65536

RC King’s core radius 50, 100, 150

RT King’s zero surface density 150, 300, 450, 600

Additive noise (darkframes) 0,4,16,64,256,1024,4096,16384,65536

Non-uniform Poisson noise yes & no (see table 7)
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quality analysis have to focus on these two tasks. The first deconvolution efficiency tests should make

it easier with already perfectly known PSF, yet the result is not secure due to the noise and the deconvo-

lution method itself (which sometimes fails and sometimes not). The reason for following analysis is to

find out the dependencies of the efficiency of selected deconvolution methods (as described in previous

sections) on the parameters under which the simulations were created. This would help to enhance the

strength and to eliminate the weakness of any following algorithms.

As for positioning the deconvolution tests in the following analysis have it ”easy” as they know the

correct PSF for each simulation, so the registration of stars between the initial map and the result of the

deconvolution can have an extremely tight number of the degrees of freedom in the spatial accuracy.

As the fluxes and stellar densities vary extremely through all the simulations there is no ”general”

automatic astrometric method [57] to objectively compare all the analysed options (as one would like

to get for instance the spatial differences between the initial and deconvolved positions) - the aperture

would have to vary as well depending on the noise and α Moffat parameter [46]. So the simple aperture

astrometry would not compare the efficiency of the deconvolution itself, but rather the efficiency of

following ”aperture astrometry settings for each condition”, which is not our task. So let’s look rather

on the efficiency of the deconvolution methods to ”point the faint correct stars out and to eliminate the

fake discoveries”. For that we will be looking more at ”tendencies in the efficiency” in the dependence

on various change of parameters to get the idea of the influence of these parameters in the case of

crowded fields (GCl).

Three options can happen in general (and mostly their mix) after the deconvolution :

• some stars were registered correctly between the result after the deconvolution and the initial

map,

• some stars from the initial map (mostly the faint ones) were not recognized in the result after

the deconvolution. This depends strongly on the method of astrometric registration (flux thresh-

olding, aperture size, local surrounding noise estimation, peak finding method - 4-neighbours,

8-neighbours, local maxima, ...), but as we are not looking for the values themselves and much

more focused on the tendencies in different deconvolutions then these presets can be fixed.

• And some stars can be found after the deconvolution which were never in the initial map (from

the reasons discussed in the previous bullet).

So for the following analysis these parameters will be used for objective quality assessment:

• Mapped stars N∗- How many stars were counted in the initial map (there are 192 different

unblurred unnoised maps simulated by GlencoeSim).
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• Found stars NOK - How many stars were registered and identified together between the initial

map and the analysed deconvolution result.

• Missing stars NNOT - How many stars from the initial map of point stars were not found in the

result after deconvolution.

• Fake stellar discoveries NOV ER - How many indwelling fake stars were ”discovered” in the

deconvolution results not being in the initial map.

For the comparisons of different simulations (with different numbers of stars) much more interesting

is to use following ratios

NOK

N∗
,
NNOT

N∗
and

NOV ER

N∗
.

When regarding the efficiency of the deconvolution method in the term of photometric (flux) mea-

surements one has to use some statistic method due to the large number of individual stars, maps and

noise combinations. From (1) it is evident that the magnitude difference (so-called differential pho-

tometry) or appropriate flux ratio is the important information for astronomers to scientifically analyse

the data afterwards. It is logical as the light flux depends on the exposure time and the same two stars

would have ideally (isolated, not noised conditions) twice higher measured flux with doubled exposure

time, yet their ratio in ADUs would keep the same. From this argument it is easier to deal with the sta-

tistical analysis of the results after deconvolution process when comparing it with the point stars with

attached point flux values in the initial maps. The values after deconvolution may vary a lot (depending

on the deconvolution algorithm and its settings), yet in the ideal case overall the image the found and

registered stars would have the values multiplied (or divided) by the same ratio compared to the initial

map. This assumption is valid even regardless the photometric method used after deconvolution process

(integration under fitted PSF, aperture photometry, peak values in the case of symmetric and spatially

invariable PSF, ...).

Let the number of the registered stars on one deconvolved image be NOK and the measured flux

of each registered star i at one image is FD,i. Then the total flux FD of measured and registered stars

(excluding not found mapped stars and fake discoveries) on one image would be

FD =

NOK∑
i

FD,i. (32)

Similarly, the flux of each corresponding star from the corresponding initial map would be FM,i and

the total flux FM of the registered stars (not all of them mapped!) would be

FM =

NOK∑
i

FM,i. (33)
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Let define the ratio R between these two sums of the measured fluxes as

R =
FD
FM

(34)

while keeping in mind that it does not include the stars which were originally in the map (mostly faint

stars) nor the fake.

The metrics which would describe statistically the ”similitude between the photometric measure-

ment results” for each simulation-deconvolution pair of images with simple factor can be similar to

standard deviation of the flux measurements

σ2MET =
1

NOK − 1

NOK∑
i

σ2i , (35)

where σi is the difference for each star i in one image between the flux of that star in the initial map

FM,i and the measured flux FD,i in the deconvolved image adjusted properly by the ratio R that in the

ideal case of hundred percent efficient deconvolution this difference would provide σi = 0 for all stars

i. Each star would contribute to this metrics by following part

σi = FM,i −
FD,i
R

. (36)

The important assumption is that the ”normalizing factor” R would correct the fluxes after deconvo-

lution regardless the photometric method or their actual values. This is definitely not true in the case

of spatially variable PSF or in the case of PSF with complicated shape (especially non-concave shape

with unclear peak). However this does not apply in the case of our simulations and tests right now - the

conditions of the simulations and following deconvolution efficiency tests (namely the known analytic

PSF) allows us even to use just the peak values of found stars to be compared with the initial point

values in the initial map. The proposed metrics σMET from (32, 33, 34, 35, 36) would then be

σMET =

√√√√ 1

NOK − 1

NOK∑
i

(
FM,i − FD,i

∑NOK
i FM,i∑NOK
i FD,i

)2

. (37)

Such a metric (single number for one combination of initial map - deconvolution result) includes

the information about the number of accurate stars, photometric flux accuracy and the efficiency of

deconvolution. Yet the values σMET from the tests with different maximal flux values have to be

compared carefully - weighing is necessary, as the unit of σMET is in ADU (with maximal flux varying

from 64 to 65536 ADUs in our simulations). It is important to keep in mind that the number of stars used

in this metric is NOK , not N∗ as defined at the beginning of this section - the value is not ”smoochy”

due to the extremely faint non-registered stars, yet the value itself is not absolute and depends on the

astrometric results as defined at the beginning of this section. It can be used for the results processed

under the same astrometric conditions as a relative indicator (showing the tendencies), not the absolute

one.
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8.3 Richardson-Lucy deconvolution of prepared simulations

This section describes the application of Richardson-Lucy (R-L) algorithm [54, 7] on the simulations

created by GlencoeSim [12] under the various conditions (see Table 8). This standard algorithm was

used according to the tests in the previous chapters (tables 4, 5 and the figure 10). The Wiener deblurring

[57] is extremely dependent on the good estimation of the noise level (no automatization for 76800

calculations) and beside it counts with Gaussian white noise [23]. The number of iterations was chosen

safe - 100 iterations - according to the results in the figure 10. For the deconvolution in this section

the appropriate known PSF for each of 76800 simulations (various astronomical images) was used. For

such a huge number of simulations it would be computationally overwhelming to try all different shapes

of PSF for each simulation (it would provide 3 millions of images), while the task of this section is to

see the dependence of R-L algorithm on the parameters of the simulator (number of stars, noise level,

...). The R-L deconvolution created 76800 images occupying 60.2 GB of space on hard drive and the

data can be found on the address14.

The simulations and tests created over 230 thousands of the images, which is impossible to

present all in this text. Therefore few examples can be seen in the figures 23, 24, 25, 26, 27 and 28. In

all these figure the middle top 3D graph shows the fluxes and positions of the stars in the initial map,

left bottom picture shows the FITS image of the convolved and blurred simulation and the right bottom

FITS image shows the result after R-L deconvolution.

Figures 23 and 24 show the same initial map with the different level of noise in the simulation,

producing different results after deconvolution. Figures 25, 26 and 27 show various simulations (and

deconvolutions) with different spatial distributions and star numbers. The last example in the figure 28

shows the simulation with extremely high SNR. The variable conditions under which the simulations

were created can be seen in the table 9.

8.4 Stellar registration

For our purposes the extractor of stars in the deconvolved images is based on 8-neighbour local peak

maxima finder (symmetric and concave PSF assumption of the simulated data). Due to the reasons

discussed in the section 8.2 (same PSF for simulation and deconvolution, ...) extremely tight positional

conditions can be set to register the peaks from deconvolution results with the stars in the initial map

- just one pixel difference of the peak position on the deconvolved image towards the original mapped

position is allowed.

Extremely important (as always in any photometric or analysis) is setting of the signal threshold in

the deconvolved images. Local peak maxima detector is generally extremely ”liberal” detector (com-
14http://dbq.multimediatech.cz/users/blazek/public/thesis
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Figure 23: Example from GlencoeSim [12] and deconvolution results - initial point stellar map (top),

blurred and noised simulation (bottom left) and simple R-L deconvolution result (bottom right). 1024

stars estimated with potential maximal flux 65536 ADU, Moffat PSF having α = 6 and β = 3.5, King’s

spatial distribution with parameters RC = 100 and RT = 300. Additive Poisson noise has 65536 ADU

mean level.
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Figure 24: Example from GlencoeSim [12] and deconvolution results - initial point stellar map (top),

blurred and noised simulation (bottom left) and simple R-L deconvolution result (bottom right). 1024

stars estimated with potential maximal flux 65536 ADU, Moffat PSF having α = 6 and β = 3.5, King’s

spatial distribution with parameters RC = 100 and RT = 300. Additive Poisson noise has 1024 ADU

mean level (higher SNR than in the figure 23).
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Figure 25: Example from GlencoeSim [12] and deconvolution results - initial point stellar map (top),

blurred and noised simulation (bottom left) and simple R-L deconvolution result (bottom right). 16384

stars estimated with potential maximal flux 16384 ADU, Moffat PSF having α = 8 and β = 2.5, King’s

spatial distribution with parameters RC = 50 and RT = 450. Additive Poisson noise has 4096 ADU

mean level.
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Figure 26: Example from GlencoeSim [12] and deconvolution results - initial point stellar map (top),

blurred and noised simulation (bottom left) and simple R-L deconvolution result (bottom right). Only 64

stars estimated with potential maximal flux 64 ADU, compact Moffat PSF having α = 2 and β = 1.5,

King’s spatial distribution with parametersRC = 50 andRT = 150. This image is blurred only without

any additive Poisson noise and any signal modification by non-uniform Poisson noise.
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Figure 27: Example from GlencoeSim [12] and deconvolution results - initial point stellar map (top),

blurred and noised simulation (bottom left) and simple R-L deconvolution result (bottom right). 16384

stars estimated with potential maximal flux 16384 ADU, Moffat PSF having α = 4 and β = 1.5, King’s

spatial distribution with parameters RC = 50 and RT = 150 creating extremely dense and compact

GCl. Additive Poisson noise has only 16 ADU of the mean level.
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Figure 28: Example from GlencoeSim [12] and deconvolution results - initial point stellar map (top),

blurred and noised simulation (bottom left) and simple R-L deconvolution result (bottom right). 1024

stars estimated with potential maximal flux 1024 ADU, Moffat PSF having α = 2 and β = 5, King’s

spatial distribution with parameters RC = 150 and RT = 300. Additive Poisson noise has 16384 ADU

mean level - this image has most of the stars hidden inside the noise standard deviation of 128 ADU

(square root of Poisson mean level).
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Table 9: List of condition and settings for the simulations and R-L deconvolutions in the figures 23, 24,

25, 26, 27 and 28.
Fig. Estim. Estim. PSF PSF RC RT Additive Non-uniform

stars max flux α β noise Poisson

[ADU] level noise

23 1024 65536 6 3.5 100 300 65536 yes

24 1024 65536 6 3.5 100 300 1024 yes

25 16384 16384 8 2.5 50 450 4096 yes

26 64 64 2 1.5 50 150 0 no

27 16384 16384 4 1.5 50 150 16 yes

28 1024 1024 2 5 150 300 16384 yes

monly used only with additional methods - see section 4.4). But for such an extremely large set of

data (230 thousands images) it is the most suitable automatic detector when properly thresholded and

interpreted - the numbers of the found stars or fake discoveries have always to be discussed in terms of

SNR conditions. On the other hand we are not interested much in absolute values of NOK , NNOT or

NOV ER, rather into their tendencies viewed inside some parametric sets so the simple peak detector is

valid under following circumstances.

As to minimize the number of events where no potential stars were automatically extracted or where

extremely high number of fake discoveries are announced, the following procedure of image histogram

fitting was used to estimate the noise level and the threshold. Assuming

1. the noise is following the Poisson distribution in the simulation and

2. assuming the succesful deconvolution process increases strongly the value differences be-
tween the expected stars and the noise (stars gets higher ADU values with every iteration in

places of the highest probability compared to the noise pixels which get lower values)

the threshold can be estimated on the 3− σ level (99.7 % statistical assurance) from the corresponding

simulation image. In that case the histogram of all the pixels in the simulation is fitted with the Poisson

function gaining the (partly inaccurate - due to stars) estimation of the noise level D̄. Then the threshold

for the deconvolved images would be

THR = 3σ = 3
√
D̄. (38)

Two things are important to keep in mind :
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• The thresholded pixels on the deconvolved images would be not above D̄ + 3
√
D̄ [ADU] level,

but they would be just and only above 0 + 3
√
D̄ [ADU].

• The second boldfaced assumption may never be guaranteed theoretically in the presence of the

noise [7] (or better mathematically there is no guarantee that the convolution kernel of (10) ex-

ists). Other image processing methods from various astronomical observations have to be used

additionally to prove the results of the deconvolution process when using our assumption!

When the stars are successfully registered for each image (pair simulation and its deconvolution)

then the metrics describing such a combination by simple indicators can be calculated from these regis-

tered stars and their flux values. This metrics σMET is defined in previous sections by (37) while using

the ratio number R from (34). The table with the ”astrometric and photometric” results containing

following measurements

• Total number of stars in the map N∗

• Found and registered stars NOK

• Missing non-registered stars NNOT

• Fake stellar discoveries NOV ER

• Flux ratio R from (34)

• Flux efficiency metrics σMET from (37)

has 76800 rows so just the small part for the illustration is shown in the table 10. The rest can be found

on the address of MMTG group15. First seven columns in the table 10 show the variable parameters

of GlencoeSim settings (see table 8). Not noised simulations are marked ’NaN’ in the (+) column

with estimated mean noise levels. The results are in the columns ’Registered stars’ and ’Metrics’ as

described and discussed above.

8.5 Principal Component Analysis of the efficiency criteria

Principal Component Analysis (PCA) [44] is a statistical tool which looks for relations in different

variables in datasets with normal distribution. It looks for correlations between these variables and can

suggest lower number of parameters to describe these datasets (in case some of these variables seem to

be partly correlated). In generally our two approaches of efficiency tests (astrometric and photometric)

are based on diametrically different principles - the first one is indicating the number of positively
15http://dbq.multimediatech.cz/users/blazek/public/thesis
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Table 10: First page out of 1600 pages with the results of simple R-L deconvolution of GlencoeSim

simulations. First seven columns refer to the variable GlencoeSim parameters (see table 8) with each

line representing one simulation image. Following four columns show the ’astrometric’ results after R-

L deconvolution as defined in the section 8.2 and last two columns show the results of the deconvolution

efficiency as declared by (34, 37). The column marked (+) contains the noise levels (see table 7), while

the not-noised images with no non-uniform Poisson signal modification is marked by ’NaN’. The whole

table can be downloaded from dbq.multimediatech.cz/users/blazek/public/thesis.
GlencoeSim parameters Stellar registration Metrics

PSF MAX MAX RC RT (+) N∗ NOK NNOT NOV ER R σMET
α β STAR FLUX [ADU] [ADU]

2 1.5 64 64 50 150 0 62 62 0 4 0.61173 6.503
2 1.5 64 64 50 150 4 62 31 31 0 0.53733 14.703
2 1.5 64 64 50 150 16 62 14 48 23 0.39105 37.743
2 1.5 64 64 50 150 64 62 12 50 307 0.41582 47.658
2 1.5 64 64 50 150 256 62 15 47 1210 0.93071 49.872
2 1.5 64 64 50 150 1024 62 29 33 5176 3.7773 21.7
2 1.5 64 64 50 150 4096 62 44 18 11511 13.731 15.096
2 1.5 64 64 50 150 16384 62 51 11 11453 56.276 11.808
2 1.5 64 64 50 150 65536 62 51 11 11433 189.61 13.902
2 1.5 64 64 50 150 NaN 62 62 0 4 0.61173 6.503
2 1.5 64 64 50 300 0 61 60 1 10 0.61258 8.0213
2 1.5 64 64 50 300 4 61 47 14 1 0.61375 9.9256
2 1.5 64 64 50 300 16 61 25 36 23 0.44029 25.431
2 1.5 64 64 50 300 64 61 16 45 295 0.37284 52.482
2 1.5 64 64 50 300 256 61 12 49 1218 0.62688 74.948
2 1.5 64 64 50 300 1024 61 25 36 5165 2.6582 30.266
2 1.5 64 64 50 300 4096 61 52 9 11502 13.848 12.544
2 1.5 64 64 50 300 16384 61 46 15 11458 38.046 13.851
2 1.5 64 64 50 300 65536 61 48 13 11435 142.6 13.956
2 1.5 64 64 50 300 NaN 61 60 1 10 0.61258 8.0213
2 1.5 64 64 50 450 0 60 53 7 9 0.61853 3.9749
2 1.5 64 64 50 450 4 60 10 50 1 0.42347 27.532
2 1.5 64 64 50 450 16 60 4 56 22 0.33791 81.262
2 1.5 64 64 50 450 64 60 3 57 304 0.29881 110.92
2 1.5 64 64 50 450 256 60 6 54 1218 1.1082 48.845
2 1.5 64 64 50 450 1024 60 23 37 5176 7.7503 15.917
2 1.5 64 64 50 450 4096 60 40 20 11511 32.62 10.709
2 1.5 64 64 50 450 16384 60 42 18 11464 106.91 5.3507
2 1.5 64 64 50 450 65536 60 47 13 11436 436.23 5.1807
2 1.5 64 64 50 450 NaN 60 53 7 9 0.61853 3.9749
2 1.5 64 64 50 600 0 58 46 12 8 0.63954 4.2019
2 1.5 64 64 50 600 4 58 8 50 1 0.40179 19.237
2 1.5 64 64 50 600 16 58 3 55 23 0.25332 65.7
2 1.5 64 64 50 600 64 58 6 52 298 0.72893 32.138
2 1.5 64 64 50 600 256 58 9 49 1213 1.8417 27.962
2 1.5 64 64 50 600 1024 58 31 27 5169 11.963 12.585
2 1.5 64 64 50 600 4096 58 42 16 11513 40.279 10.548
2 1.5 64 64 50 600 16384 58 43 15 11461 143.9 10.565
2 1.5 64 64 50 600 65536 58 45 13 11437 522.58 10.368
2 1.5 64 64 50 600 NaN 58 46 12 8 0.63954 4.2019
2 1.5 64 64 100 150 0 63 52 11 7 0.61708 4.5449
2 1.5 64 64 100 150 4 63 5 58 0 0.25228 49.836
2 1.5 64 64 100 150 16 63 3 60 23 0.20994 72.676
2 1.5 64 64 100 150 64 63 2 61 305 0.24228 147.79
2 1.5 64 64 100 150 256 63 8 55 1218 1.6675 31.242
2 1.5 64 64 100 150 1024 63 31 32 5168 12.28 12.277
2 1.5 64 64 100 150 4096 63 54 9 11503 53.138 9.5027
2 1.5 64 64 100 150 16384 63 48 15 11456 150.02 9.5859
2 1.5 64 64 100 150 65536 63 43 20 11441 463.56 10.418
2 1.5 64 64 100 150 NaN 63 52 11 7 0.61708 4.5449
2 1.5 64 64 100 300 0 62 61 1 6 0.60694 6.9997
... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ...
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registered stars NOK (or fake stars NOV ER) and the second one is calculating the photometric flux

metrics σMET from the (37) - one scalar number for all the stars in one image.

This section deals with the datamining from the table 10 (which has 76800 rows, each row contain-

ing results for one simulated image) using PCA analysis.

As the input for the PCA analysis have been chosen 3 dependent variables from the table 10 :

NOK

N∗
,
NOV ER

N∗
and

σMET

MAXFLUX
.

The PCA analysis shows following distribution of the main components in term of their strength on

variance :

Component X1 : 99.98928 %

Component X2 : 0.01072 %

Component X3 : 0.000000009 %

The components weights plot can be seen in the figure 29. These results suggest some statistical

correlation between our three different metrics (two astrometric and one photometric here chosen for

PCA). And indeed one good connection exists! With the help of PCA after deep datamining the con-

nection between photometric metrics σMET and the number of well registered stars NOK was found.

The figure 30 shows the dataset results for the number initial stars in the simulations set at 65536 stars

(similar graphs with different magnitudes occur for the other initial stellar numbers). Each point of the

graph represents one simulation (containing 65536 initial stars ∼ N∗). For x axis there is the ratio of

the number of well registered stars NOK
N∗

and for the y axis there is the ratio in log scale of (37) metrics

weighed over maximal flux set for all stars in appropriate simulation. This graph shows strong evi-
dence of power-law dependence, which confirms our good choice of efficiency criteria NOK and
σMET even though they are based on completely different principles! According to the expected

Figure 29: PCA component weights plot for the astrometric and photometric simulation results from

the table 10.
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’goodness’ of these criteria the more stars are well registered at the simulations (right part of graph) the

more precise (and lower) the metrics σMET should be (bottom part of the graph).

Figure 30: The power-law relation between two by principle different criteria - NOK and σMET from

(37). Even though these two efficiency criteria are given by way different principles (see section 8.2)

they correspond together in the term of describing the goodness of the deconvolution tests. Each point

at this graph represent one simulation containing 65536 initial stars (similar graphs occur for the other

initial numbers). The relation on this graph was found due to the PCA analysis of the table 10.
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9 Analysis of R-L deconvolution of simulations

The influence of the input parameters (from GlencoeSim, see table 8) on the efficiency of the simple

R-L deconvolution [57, 54] (under assumptions and conditions discussed in the previous section 8.3)

is presented and discussed. Following results and figures are trying to find the influence of many

initial conditions on the final deconvolution success. All the figures are plotted from the data from the

simulations and deconvolutions as described in the section 8. Small sample of the data is shown in the

table 10 (the rest can be found on the address http://dbq.multimediatech.cz/users/blazek/public/thesis).

9.1 Influence of spatial distribution

In this section we investigate how the efficiency of deconvolution depends on spatial distribution of

globular cluster. In figures 31, 32, 33 and 34 there are four efficiency parameters (σMET , NOK /N∗,

NNOT /N∗, NOV ER/N∗) in dependence on GCl spatial distribution parameters RC , RT and on the

number of estimated stars in GCl.

From the figure 31 it is evident that the efficiency of positive stellar discoveries declines with the

number of stars, which is logical and expected (the denser the GCl is, the harder it is to distinguish stars

from each other). In the diagrams the dense GCl (RC = 50 and RT = 150) represents bottom left

corner while sparse GCL (RC = 150 and RT = 600) is pointed in upper right corner of each diagram.

One could expect the higher efficiency of astrometric accuracy after deconvolution of more sparse GCl,

but the figure 31 does not show any strong evidence for such a hypothesis (only weak tendention in the

case of 1024 stars towards higher RT ). The same happens for two other astrometric results in figures

32 and 32 - no reliable evidence of astrometric efficiency dependence on GCl spatial distribution.
Different situation is in the case of the ’photometric efficiency’ in figure 34. Darker values towards

right upper corners of diagrams in the case of 64 and 1024 stars are fulfilling the expectations that

sparse GCl would get better deconvolution results - in this case the σMET metrics from (37) reveals
statistically the more accurate estimation of the original stellar fluxes in the case of sparse GCl
(with higher both RC and RT ). However this tendency is fainter towards higher total number of stars in

the cluster. The differences of σMET are negligible in the case of 16384 stars and no general tendency

can by found in the case of 65536 stars - in this case probably such a huge number of stars is the reason

itself for lower efficiency compared to the influence of spatial distributional parameters.
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Figure 31: Dependence of the stars found after deconvolution (ratio NOK / N∗) on number of initial

stars and spatial distribution parameters RC , RT .
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Figure 32: Dependence of the non registered stars after deconvolution (ratio NNOT / N∗) on number of

initial stars and spatial distribution parameters RC , RT .
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Figure 33: Dependence of the fake discoveries (ratioNOV ER /N∗) on number of initial stars and spatial

distribution parameters RC , RT .
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Figure 34: Dependence of σMET from (37) on number of initial stars and spatial distribution parameters

RC , RT .

72



ANALYSIS OF R-L DECONVOLUTION

9.2 Influence of noise

Similar analysis (positioning and flux estimation accuracy) can be done regarding the noise level of the

background and the signal. Following figures 35, 36, 37, 38, 39, 40, 41 and 42 are grouped into 12

graphs for each of four regarded result parameters

σMET ,
NOK

N∗
,
NNOT

N∗
,
NOV ER

N∗
. (39)

Each of the 12 graphs is plotted for one combination of spatial distribution parameters RC-RT . Inside

each graph there are four lines of data results belonging to 64, 1024, 16384 and 65536 estimated initial

stars in the initial map in dependence on the noise level. Ten noise levels are described in the table 7 -

logarithmic scale shows the mean level of additive noise from GlencoeSim simulator, POISSON ONLY

value contains the simulation without additive noise yet with non-uniform Poisson signal modification

and NO NOISE describes the case with no noise modification at all. All graphs and data were taken

from the table 10. For visualizations of multidimensional datasets the following parameters were set

fixed in this section - PSF shape α = 4, β = 2 and maximal flux of the initial stars in the map set to
16384 (to test the behaviour in the case of signal being lower than the noise).

9.2.1 Stellar positions accuracy

’Astrometric efficiency’ (number of stars registered well between the deconvolution result and the initial

map) can be seen in figures 35 and 36. As expected always the highest percentage of the ratio NOK
N∗

gets

the red case of 64 estimated initial stars (often close to 100 % efficiency) with green line (1024 stars)

having lower efficiency between 50-80 % for no noise level. Last two lines (pink and purple) for 16384

and 65536 estimated initial stars rarely exceed 20 % of the efficiently found and registered stars. The

other expected tendency is the lower efficiency of the ratio with well registered stars with higher noise

level (except the last two points of each line - as discussed later in this section).

As the total number of initial mapped stars N∗ is equal to

N∗ = NOK +NNOT (40)

then the figures 37 and 38 showing the ratio NNOT
N∗

are actually the complementary graphs to previously

discussed figures 35 and 36 with NOK
N∗

ratio information. It is important to keep in mind that the total

number of initial mapped stars N∗ is not exactly equal to the GlencoeSim parameter of the number of

estimated initial stars! It often can be the same, but due to the random process of creating of simulations

and sometimes wider spatial distribution than the size of the test images, it is not always the same and

may vary a bit!
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Figure 35: Evolution of the number of the found stars (ratio NOK / N∗) on the noise level for various

spatial distribution parameters (part A). Poisson only - no additive noise, only non-uniform Poisson

signal modification. No noise - no noise modification at all.
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Figure 36: Evolution of the number of the found stars (ratio NOK / N∗) on the noise level for various

spatial distribution parameters (part B). Poisson only - no additive noise, only non-uniform Poisson

signal modification. No noise - no noise modification at all.
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Figure 37: Evolution of the number of faint non-registered stars (ratio NNOT / N∗) on the noise level

for various spatial distribution parameters (part A). Poisson only - no additive noise, only non-uniform

Poisson signal modification. No noise - no noise modification at all.
76



ANALYSIS OF R-L DECONVOLUTION

RC = 100, RT = 450 RC = 100, RT = 600

 0

 20

 40

 60

 80

 100

 120

NO

NOISE

POISSON

ONLY

4  10  100  1000  10000  100000

N
N

O
T
 /
 N

* 
[%

]

Noise mean level  [ADU]

64 stars

1024 stars

16384 stars

65536 stars

 0

 20

 40

 60

 80

 100

 120

NO

NOISE

POISSON

ONLY

4  10  100  1000  10000  100000

N
N

O
T
 /
 N

* 
[%

]

Noise mean level  [ADU]

64 stars

1024 stars

16384 stars

65536 stars

RC = 150, RT = 150 RC = 150, RT = 300

 0

 20

 40

 60

 80

 100

 120

NO

NOISE

POISSON

ONLY

4  10  100  1000  10000  100000

N
N

O
T
 /
 N

* 
[%

]

Noise mean level  [ADU]

64 stars

1024 stars

16384 stars

65536 stars

 0

 20

 40

 60

 80

 100

 120

NO

NOISE

POISSON

ONLY

4  10  100  1000  10000  100000

N
N

O
T
 /
 N

* 
[%

]

Noise mean level  [ADU]

64 stars

1024 stars

16384 stars

65536 stars

RC = 150, RT = 450 RC = 150, RT = 600

 0

 20

 40

 60

 80

 100

 120

NO

NOISE

POISSON

ONLY

4  10  100  1000  10000  100000

N
N

O
T
 /
 N

* 
[%

]

Noise mean level  [ADU]

64 stars

1024 stars

16384 stars

65536 stars

 0

 20

 40

 60

 80

 100

 120

NO

NOISE

POISSON

ONLY

4  10  100  1000  10000  100000

N
N

O
T
 /
 N

* 
[%

]

Noise mean level  [ADU]

64 stars

1024 stars

16384 stars

65536 stars

Figure 38: Evolution of the number of faint non-registered stars (ratio NNOT / N∗) on the noise level

for various spatial distribution parameters (part B). Poisson only - no additive noise, only non-uniform

Poisson signal modification. No noise - no noise modification at all.
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Figure 39: Evolution of the number of the fake stars (ratio NOV ER / N∗) after deconvolution on the

noise level for various spatial distribution parameters (part A). Poisson only - no additive noise, only

non-uniform Poisson signal modification. No noise - no noise modification at all.
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Figure 40: Evolution of the number of the fake stars (ratio NOV ER / N∗) after deconvolution on the

noise level for various spatial distribution parameters (part B). Poisson only - no additive noise, only

non-uniform Poisson signal modification. No noise - no noise modification at all.
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9.2.2 Fake discoveries with dependence on SNR level

The last two points of nearly all mentioned graphs in figures 35, 36, 37 and 38 behave ”queer”. For

instance the efficiency ratio NOK
N∗

for 65536 stars ”magically jumps” up for two cases of extremely

high noise level (additive Poisson noise 16384 and 65536 ADU). In these cases the SNR ratio is
statistically always below 1 as the maximal estimated signal flux of initial stars is 16384 ADU in the

datasets in this chapter! This information is well seen in figures 39 and 40, where the parameter NOV ERN∗

is plotted. In these figures the numbers of fake discoveries after the deconvolution can be seen. As

the exact number depends on the methodics used for registration (as discussed in the section 8.2), the

general tendency does not - and all the logarithmic graphs in figures 39 and 40 show only several (max

10) fake stars after deconvolution for all noise levels up to 4096 ADU, but extreme growth afterwards

up to thousands and 10 thousands of fake discoveries for 16384 and 65536 ADU noise levels! This is

the reason why the last two points in all graphs in figures 35, 36, 37 and 38 are not valid registration

information. This explanation fits well with our thresholding calculated from the background noise.

Actually this situation is not surprising when we look at such a case in the example figure 28, where the

simulation, the initial map and the deconvolution result is shown. No surprise the deconvolution fails

even for 64 stars only.

9.2.3 Flux efficiency

The efficiency of the deconvolution marked by the metrics σMET from (37) can be seen in figures 41

and 42. As discussed in the section 9.2.2 the last two points do not represent ”good values” but just fake

stellar discoveries due to the noise level (min. 16384 ADU) being significantly higher than the signal

level (max. 16384 ADU).

The lowest metrics represents good coincidence between the deconvolution result and the initial

stellar map fluxes. It is important to keep in mind that the ”absolute” value of this metrics (37) is not

absolute and for instance it does not imply that non-zero σMET means bad quality of flux estimation

after deconvolution. On the other hand the higher σMET calculated the same way (R-L, same number

of iterations, ...) under some circumstances (e.g., high noise) compared to other σMET under different

circumstances (e.g., lower noise) gives the information about statistically better coincidence in the

stellar flux estimations.

As expected in general the lowest σMET has the red line with 64 estimated initial stars and the

higher the number of the stars the higher the σMET metrics. And as expected the higher the mean

noise level the higher metrics σMET . Usually the metrics starts growing significantly around the noise

level of 256-1024 ADU. Interesting correlation shows the graphs with lowest RT = 150, where the

σMET with low noise does not depend on the number of stars. Interesting thing is the generaly lower
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and stably growing line profiles of lowest RC , RT compared to their higher values. While for lower

noise the line profiles are generally more predictable, for higher noise they become more random when

regarded on all 12 RC-RT combinations.

The σMET is actually close to sort of statistical photometric error by its meaning, the interesting

thing is that even for high noise values the metrics does not grow quadratically or exponentially, but

just roughly linearly with the quadratic growth of total number of stars (64-1024-16384-65536). This

is probably caused by the 2-D surface shape of the ”image” itself with the flux values being its simple

3rd dimension where the concentration of the stars statistically growth with just the square root of the

number of stars.
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Figure 41: Evolution of σMET on the noise level for various spatial distribution parameters (part A).

Poisson only - no additive noise, only non-uniform Poisson signal modification. No noise - no noise

modification at all.
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Figure 42: Evolution of σMET on the noise level for various spatial distribution parameters (part B).

Poisson only - no additive noise, only non-uniform Poisson signal modification. No noise - no noise

modification at all.
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9.3 Influence of PSF shape

In this section the influence of the Moffat PSF shape [46] used for deconvolution on the resulted astro-

metric and photometric accuracy is discussed. All following diagrams show the four discussed accuracy

parameters this time in their absolute value - NOK , NNOT , NOV ER, σMET . Their dependance on the

Moffat PSF paramaters α and β is shown in figures 43, 44, 45, 46, 47, 48, 49 and 50. Each couple of

figures is marked for two sets of numbers of stars - low 64 initial stars and high 16384 initial stars. In

each figure there are 6 diagrams with same resolution and colour range for 6 different noise situations

(No additive noise marks only non-uniform Poisson signal modification). For visualizations of multidi-

mensional datasets the following parameters were set fixed in this section - spatial King’s distribution

set to sparse GCl - RC = 150 and RT = 600 - and maximal flux of the initial stars in the map set to the

highest option 65536 ADU.

The figures 43 and 44 show the success of the stellar registration for 64 and 16384 initial stars.

Surprisingly or not, it is evident that for any level of the noise the the astrometric efficiency in the
terms of NOK decreases with larger α and lower β Moffat parameters. Interesting thing is that all

6 diagrams with various noise look roughly (not exactly) the same which indicates strong dependance

on the shape of PSF regardless the noise level for high signal-to-noise ratio (all the 6 diagrams show

the cases when the signal flux is statistically significantly higher or maximally roughly equal in last

diagram with D̄ = 65536 ADU). The figures 45 and 46 show the complementary diagrams with the

information about NNOT confirming the previous observations.

Much more interesting situation starts with the figures 47 and 48 showing the number of fake

discoveris. As expected there are no fake stars after deconvolution for the cases of no noise. Yet the

number grows significantly with the higher noise (unlike the previous observations). There is as well

obvious tendency for higher parameters α and lower parameters β - this time though making the R-L

deconvolution safer and more robust in the terms of fake discoveries! Unlike in previous astrometric
accuracy the larger α and lower β Moffat parameters makes deconvolution less vulnerable to
leave fake residua which could be potentially called as fake discoveries!

Another interesting observation can be made from the figures 49 and 50 containing the metrics

σMET . Like in astrometric accuracy analysis, the efficiency of accurate flux estimation decreases

(σMET gets higher) with larger α (related to larger astronomical seeing and larger FWHM) and lower

β Moffat parameters (related to the higher sharpness of the PSF shape). In this case the higher the
noise level is, the higher are σMET differences between various shapes of PSF. This information

is actually predictable, the higher noise level, the lower flux estimation accuracy after deconvolution.

While as discussed above the noise level does not influence much if the star was registered well or not

unless the SNR gets close to or under 1 ratio significantly.
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Figure 43: Dependence of the number of correctly registered stars NOK after deconvolution on the
PSF shape - Moffat parameters α and β - for the cas of 64 initial stars on the simulation. Each image
represents various noise levels (central-top for only non-uniform Poisson signal modification).
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Figure 44: Dependence of the number of correctly registered starsNOK after deconvolution on the PSF
shape - Moffat parameters α and β - for the cas of 16384 initial stars on the simulation. Each image
represents various noise levels (central-top for only non-uniform Poisson signal modification).
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Figure 45: Dependence of the number of non-registered stars after deconvolution NNOT on the PSF
shape - Moffat parameters α and β - for the cas of 64 initial stars on the simulation. Each image
represents various noise levels (central-top for only non-uniform Poisson signal modification).
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Figure 46: Dependence of the number of non-registered stars after deconvolution NNOT on the PSF
shape - Moffat parameters α and β - for the cas of 16384 initial stars on the simulation. Each image
represents various noise levels (central-top for only non-uniform Poisson signal modification).
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Figure 47: Dependence of the number of fake discoveriesNOV ER on the PSF shape - Moffat parameters
α and β - for the cas of 64 initial stars on the simulation. Each image represents various noise levels
(central-top for only non-uniform Poisson signal modification).
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Figure 48: Dependence of the number of fake discoveriesNOV ER on the PSF shape - Moffat parameters
α and β - for the cas of 16384 initial stars on the simulation. Each image represents various noise levels
(central-top for only non-uniform Poisson signal modification).
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Figure 49: Dependence of σMET from (37) on the PSF shape - Moffat parameters α and β - for the cas
of 64 initial stars on the simulation. Each image represents various noise levels (central-top for only
non-uniform Poisson signal modification).
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Figure 50: Dependence of σMET from (37) on the PSF shape - Moffat parameters α and β - for the
cas of 16384 initial stars on the simulation. Each image represents various noise levels (central-top for
only non-uniform Poisson signal modification).
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10 Nelder-Mead optimization in search of image properties

This section describes the effort to estimate the image characteristics (PSF, the number of stars, noise

level, ...) of the simulations of crowded fields by the Nelder-Mead optimization method [36]. Simula-

tions were created as before by the software GlencoeSim [12] described in the section 7. The idea is to

combine the deconvolution process with parameter optimization. As in previous sections, the advantage

of having simulations is to compare the results with the original initial maps of point stars - non-blurred

and not noised. With any proper metrics, one can then test the efficiency of any algorithm to get the

estimation of such a map from blurred and noised simulation.

The Nelder-Mead method [36] is a mathematical unconstrained nonlinear optimization looking for

a scalar minimum of a generally complicated function with a higher number of variables. The idea of

the algorithm is following:

1. Create the initial map, PSF and noised simulation by GlencoeSim.

2. Apply R-L deconvolution [54, 7, 57] with various input parameters (number of iteration, conver-

gence criteria, PSF shape) on the simulation.

3. Calculate any metrics to describe the difference between the deconvolution result and the initial

map.

4. Repeat the steps 2 and 3 continuously by Nelder-Mead optimization method [36] with many
different types of variables (PSF shape, convergence criteria, ...) until the metric converges
to the minimum.

5. Estimate the parameters of the image according to the optimization results.

6. Analyse the efficiency of such a procedure in term of which parameters are influencing the de-

convolution results the most, for many possible variations of simulations (as given in table 10 in

section 8).

Such an algorithm should work first for unnoised and only blurred simulations (no additional noise

nor any non-uniform Poisson noise) before it can be enhanced to noised simulations. There can be

many metrics chosen as one scalar number (necessary for the Nelder-Mead mathematical optimization)

for expressing the ’proximity’ of the initial maps and the deconvolution results :

• the sum over an image of the divisions between the deconvolution result and the initial map,

• the sum of the only pixels being over the image median value (getting the information about

higher disproportion of the deconvolution result, which is generally wanted - from blurred stars,
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it should ideally create narrow point stars backwards with many other pixels becoming less im-

portant and with lower values),

• simple RMSE (calculated as standard deviation of the pair - deconvolution result and the initial

map),

• metrics σMET from (37) used in the section 8.2 for deconvolution efficiency,

• number of maximal values above median (similar to quantile statistics [44])

• and finally, some metrics containing the information about the ’sharpness’ of the deconvolution

result.

When assuming the better deconvolution result ideally gets sharper shapes of stars with higher

disproportion between the pixels containing larger and smaller values when the more efficient the de-

convolution is, then the last mentioned metrics and the RMSE should fit best for our case. While

RMSE is not exactly best because any deconvolution may result into a situation of pixel values having

a difference in degrees to other deconvolution result, so the minimal RMSE optimization could give

for instance the solution for ’good deconvolution procedure’ the result where everything is even much

blurred than before, while compared to the ’correct deconvolution procedure’ it has a better degree of

pixel values on the image result.

The following proposed metrics for the Nelder-Mead optimization tries to describe the ’sharpness’

of the deconvolution results.

1. Take the image with the result after the deconvolution.

2. For each pixel of the image calculate the square root sum of the 8-neighbour differences between

the value of the pixels themselves and their 8 neighbours. This number describes the ’sharpness’

of the pixels neighbourhood - the smaller the value is, the smaller the image gradient at this

neighbourhood.

3. Divide this sharpness parameter by the actual pixel value (which may vary a lot with different

deconvolution methods regardless the real value on the initial map).

4. Sum all these ratios over the image pixels.

The maximization of such a metrics (or practically by computer, to use the minimization of its

negative value or inverted fraction) could get to the point of the most sharp deconvolution results
even without the knowledge of the initial map, which could be then used just for confirmation of the

correctness of the results by the test parameters discussed in section 8.2 (NOKN∗
, NNOTN∗

, NOV ERN∗
, σMET ).
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The practical test of the optimization method described in this section should first work on the

non-noised images. Tests were processed under following different conditions - different number of

optimization parameters (PSF shape, a number of iterations, ...), all the metrics mentioned in this section

used (not only the most suitable ’sharpness’ metrics), various initial Nelder-Mead conditions, different

images of globular clusters with even easy parameters (low number of stars, high signal values, high

PSF resolution, its analytic Moffat shape). All the tests show strong sensitivity on initial Nelder-
Mead input parameters! The main problem is the local minima searching principle of Nelder-Mead

optimization method and not the global one or at least any resistance against mathematical trapping

inside a tiny local pit of scalar dependence on a huge number of input variables (whole images and

their deconvolution results). Even the most simple search of correct PSF Moffat shape depended not on

the ’correctness’ of α and β parameters (with all other parameters known), but on the trapping in some

values α and β close to initial values - the metrics was correct and the known deconvolution would

provide the minimal value of the ’sharpness’ metrics for instance correctly, although the optimization

itself always converged to some local scalar pit!

The Nelder-Mead optimization algorithm [36] is highly sensitive in such complicated system
as crowded field deconvolution in term of searching for most fitting deconvolution parameters. It
may be used only when initial algorithm input parameters are already well known to refine the
results.
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11 Summary of partial results

In this chapter, the results from previous sections are outlined. They represent the steps and hints to

design the better and reliable mathematical algorithm to analyse the crowded fields in the astronomical

image processing with as few human interventions as possible. That algorithm (WHIDE) is designed

in the next chapter 13. From the previous chapters, the following hints and results were gained.

• The automatic approach in the case of unknown initial PSF may combine the deconvolution with

the iterative numerical photometry (see sections 4.5.3 and 4.5.4).

• Deconvolution deals better with the shape of PSF than the iterative numerical profile photometry

(see section 4.5.4 and 9.2).

• The best suitable deconvolution method for crowded fields from the ones compared is Richardson-

Lucy [57, 54] (R-L) which does not need to be modified itself, does not need usually more than

dozens of iterations, but needs complex interpretation in terms of artefacts (rings, fake stars),

thresholding and self-correction of proper PSF choice (see sections 5 and 9).

• The complexity of real data having space-variant PSF suggest the possible use of two other meth-

ods to enhance the efficiency of the algorithm - analytic modelling of optical aberrations by

Zernike polynomials [2] and the image processing method dealing with super-resolution [13].

• Good metrics to describe the efficiency tests is the metrics σMET from (37) to be used with data

simulation (see sections 8.2 and 8.5).

• The σMET (∼ ’photometric error’) does not grow quadratically or exponentially with the number

of the stars in the cluster, but just roughly linearly with the quadratic growth of a total number of

stars (see section 9.2.3).

• All observed parameters of the deconvolution efficiency (σMET ,NOK , ...) grow much slower
than with square root dependence on SNR ratio (see section 9). This is particularly important

in the proposal of the new idea of stellar weighing step of WHIDE algorithm in the following

subsection 13.1.

• For any level of the noise, the astrometric efficiency decreases with larger FWHM and higher

sharpness of PSF (see section 9.3).

• The larger FWHM and higher sharpness of PSF make deconvolution less vulnerable to produce

strange residua which could be potentially called as fake discoveries (see section 9.3).
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• The higher the noise level is, the higher the photometric errors between various shapes of PSF

(see section 9.3).

• Nelder-Mead optimization can be used to iterate the deconvolution process only in the case that

the PSF is very precisely known and only slightly varying (see section 10), but due to its trapping

in local (not global) minima, it cannot be used as the main iterative process.

93



FLUX HISTOGRAM NOISE THRESHOLDING

12 Design of ”Flux histogram noise thresholding” algorithm

In this section the use of initial knowledge of observed objects in the images is used to develop general

criteria which could be used in automatic processing of crowded fields. Such a criteria could make the

iterative numerical procedure (as described in the sections 4.5.3 and 4.5.4) automatic. Until recently

thresholding is commonly used usually corresponding with the visual check of all individual results

by the astrophysicists reducting the data manually in the case of complicated fields or GCls [17]. In

this section the use of flux histogram shape with the estimation of the noise is suggested to be used as

the automatic criteria founder, which would allow reliable automatic algorithm for image processing of

crowded fields. Such an algorithm would combine namely - iterative numerical approach [17] (see sec.

4.5.4), Richardson-Lucy deconvolution [54, 57] (see sec. 9) and the proposed method which could be

called ”flux histogram noise thresholding” as suggested and explained in this chapter.

The important thing in the automatic object recognition (such as car plates numbers, robotic vision,

road signs recognition, ...) is the assumption of what is expected to be seen in the image [58]. In the

case of globular clusters in the astronomy this can be used for the estimation of the noise and luminosity

function of the appropriate stars.

The common way how to estimate the noise is to get the mean values and Gaussian standard de-

viations (due to the central limit theorem Poisson distribution converges to Gaussian at higher/infinite

parameters [1]) inside some annulus around analysed star. Such an approach is extremely inconvenient

in the case of crowded fields where no lone stars can be found. Usually the manual thresholding during

the data reduction is set (commonly as the multiplication factor of the standard deviation [17]) to secure

that no noise peaks are taken as potential stellar candidate. Deconvolution is dealing well with such a

noise and determining whether the shape of such a small peak inside the noise range has or has not a

shape of preferred PSF. The results after deconvolution decrease the noise pixels down to zero, yet never

completely and many times new residual artefacts occur. So the mathematical problem of choosing the

threshold is not solved, but rather postponed to the other higher step of the algorithm (from aperture

photometry to deconvolution).

Yet in this chapter the solution is suggested based on the assumptions about the observed objects.

The following assumptions (not always 100 % accomplished in the real data, hence influencing the

efficiency) should be accomplished :

• Stellar objects with generally monotonous luminosity function up to observational upper limits

are in the image. This is valid for crowded fields - globular clusters (GCl) and random stars -

but not for objects like planets or galaxies (in case they are not hidden in the additive cosmical

background).

• Proper darkframe procedure has been accomplished - many non-thermal types of noise given
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Figure 51: Histogram (and its detail) of the simulated GCl with 1024 estimated stars, max. flux 65536

ADU, α = 6, β = 2, additive noise with est. mean of 1024 ADU (see fig. 52).

Figure 52: Additive Poisson noise used for simulation of the GCl at figures 51 and 53
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Figure 53: Simulation of the crowded field used for the demonstration of the algorithm of ”flux his-

togram noise thresholding”.

by the electronics do not follow additive Poisson Probability Density Function (PDF) and may

influence the noise histogram significantly [42].

• Noise follows the Poisson distribution - valid for additive background noise and signal dependent

noise modification (see sec. 7.3).

12.1 Algorithm of the turnpoint and threshold estimation

Figure 51 shows the flux histogram of the simulation given in figure 53. The values represent number

N of the pixels having the values around Fpx (with given histogram bin width). Its bottom graph shows

the detail in the most interesting part of the histogram, which is mainly the additive noise. Although

not exactly - figure 52 shows the noise used as N(x, y) from (3) for the simulation in figure 53 by the

GlencoeSim simulator [12] (see sec. 7). It is evident that during the simulation by adding the faint stars

the shape of the histogram changed significantly. The explanation of the algorithm of ”flux histogram

noise thresholding” will be done in this example (figures 51-54). As we know from the simulation the

estimated (set) attributes should be F̄ = λ = 1024 ADU. Poisson distribution (Probability Density

Function - PDF)

PDF = e−λ
λx

x!
(41)
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Figure 54: Richardson-Lucy deconvolution of the image 53.

has the second central moment (estimation of standard deviation) equal to the square root of the esti-

mated mean value λ :

σPDF =
√
λ. (42)

For this case the simulated additive noise (used for the GCl in figure 53) has indeed

F̄add = 1024.02± 31.94.

Following procedure shows the idea how to get the estimation of this value from the realistic his-

togram of the illustration crowded field in the image 53 with its histogram in figure 51. The idea is

based on the assumption that the shape of the Poisson PDF of the noise is (logically) best fitting in the

left wing of the histogram from its peak.

1. Fit Poisson PDF on whole histogram and estimate λ parameter.

2. Throw away all pixels having values above λ+
√
λ.

3. Iterate again from step 1 until no pixels are thrown away.

4. Save the iterated λ parameter for future use.

5. Create smooth analytic PDF (with the same discrete binning as the histogram data) with Poisson

shape and λ parameter according to 41.
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6. Normalize this analytic Poisson PDF that it fits best to the histogram data with all the higher pixel

values thrown away (as given by the steps 1-3).

7. Deduct the normalized analytic PDF from the histogram data.

8. Get the position FTURN with maximal value in such a differentiated histogram - this po-
sition can be regarded as a turnpoint of the original histogram. It can be interpreted as a
point where there is a maximal growth of stellar pixels compared to the maximal decrease
of the noise pixels.

Steps 1-3 of this procedure converge usually pretty quickly on real data (several/dozens of iterations

only), and it is not never ending loop (it is not throwing potentially all pixels away). The graphical

illustration of the algorithm designed above is in figure 55. The upper graph shows the histogram of the

Globular cluster simulated with the additive noise having F̄add = 1024.02ADU (brown boxes). Steps

1-4 provide (without the implicit knowledge of the noise distribution) the estimation of λ parameter as

λ = 1026.01± 32.03 ADU,

which is extremely close to the value by which the image was simulated (1024 ADU)! Especially

compared to the maximal value of histogram in the position

Fpx,max = 1046.0± 3.3 ADU,

which could be suggested by standard photometric methods as the estimated noise value. The most

important part of figure 55 is the bottom graph, which represents the deduction of normalized analytic

PDF from the original histogram. The turnpoint FTURN is marked there at the position of

FTURN = 1096.0± 3.3 ADU.

12.2 Interpretation of the turnpoint and deconvolution threshold

The physical interpretation of such a turnpoint can be :

• flux level below which one the number of background noise pixels is growing faster than the

number of detectable stars,

• estimated upper limit of the noise (given by completely different process than in standard astro-

metric or photometric algorithms [17], see sec. 4.4)

• or the differential threshold when compared to the estimated λ value of the analytic PDF.
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The disadvantage of the deconvolution is that while depending on the noise and PSF shapes it

creates residual artifacts (rings, stars, circles, fake stars). While the beauty of the computational results

after discrete deconvolution is its tendency to ”enhance” the ”well shaped” objects up into higher values

and to decrease the unprobable noise pixels down to zero levels. As this ”zero level” is equal to the λ

value in the original image then the threshold inside discrete deconvolution results TD is equal to the

”turnpoint” level in the original image :

TD = FTURN − λ. (43)

Also, it is important to keep in mind, that such a threshold is valid in the case the deconvolution

sends ideally most of the noise pixels to zero levels (which often happens). If the integer median

Figure 55: Illustration of the method to get the turnpoint FTURN from the original image histogram

and the analytic PDF estimation of the additive noise. The analytic fitted normalized PDF has λ value

much closer to the implicitly unknown distribution of the additive noise. The turnpoint then can be

found from the deduction of the histogram by the analytic normalized PDF as the maximal point above

the λ level.
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med(D) of the deconvolution resulted image D(x, y) is non-zero then it is important not to forget to

add this median value to the calculated threshold TD :

TD = FTURN − λ+ med(D). (44)

The equation (44) works for any level of the additive noise in the simulations, of course regarding

the un/success of the deconvolution (wrong PSF, few iterations, low SNR) it can provide under harsh

circumstances no probable stellar deconvolution results. But its advantage is to provide general algo-

rithm how to get criteria for automatic deconvolution thresholding regardless the data condition and

the experience of the person analysing the data. The usage of such o threshold is evident from the figure

54 where the R-L deconvolution results are shown for the illustration image 53.

Although for the best error-efficiency it is crucial to choose ’proper binning’ of the histogram cre-

ation. The author tried many options used in the community [44] while the best suitable binning for the

analysis designed in the previous subsection seems to follow these rules:

• Sturges formula [60] of the number of bins k in dependence on number of analysed pixels n

k = log2 n+ 1 (45)

• and the number of analysed pixels n to get the binning width may not be the total number of the

pixels on the image, but just the pixels included in the determination of the analytic Poisson PDF

(steps 1-3 in the algorithm description, see previous sec. 12.1).
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13 Design of WHIDE - Weighed and HIstogram thresholded DEconvo-
lution algorithm

In the chapter 11 the results were summarized and in this chapter they are used to design the new

complete algorithm to deal with the image processing of the crowded fields in astronomy. Such an

algorithm combines several already known methods (namely the R-L deconvolution), but (based on the

results in previous sections) it generally adds two new ideas.

1. To get the process automatic, it uses the method designed in the previous chapter 12 - ”Flux
histogram noise thresholding” algorithm.

2. The second idea suggests switching two steps in their order compared to as they are commonly

processed by the astronomical image processing for the case of many images of the same obser-

vational object - to perform the main deconvolution and any other image processing without
(before) mathematical averaging (or summing) of these many images of the same object!
The details and the reasons for it are explained in the subsection 13.1.

The proposed WHIDE algorithm needs several assumptions to be made. It has its limits given by

the following conditions.

• The stellar FITS image has been rid of unthermal noise by darkframe (which is dealing both with

thermal and the unthermal types of noises [42]). Then the background noise can be described by

Poisson additive noise and the modification of signal just by non-uniform Poisson noise.

• There are no other ’flat’ objects on the image, and it consists of stellar point sources at least up to

the observational limit of the instrument. Then these flat objects (namely deep-sky objects) are

’hidden’ inside additive Poisson noise.

• At least ’few’ sources can be found isolated and have ’significantly high’ SNR (for the first

estimation of PSF).

• The luminosity function of the stars is generally monotonous up to the noise levels.

13.1 Stellar weighing step of WHIDE algorithm

In this subsection, the new (heretic) idea for the case of several different image observations of the same

object (crowded field) is proposed. Usually, the most simple way to get rid of the background noise in

the astronomical images as much as possible is to combine these N images by averaging or summing
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(or other mathematical process [17]). In such a way the variance (square standard deviation σ) of the

background noise gets down [59] from one-image-deviation σ1 to processed-deviation σN as

σN =
1√
N
σ1, (46)

while the average value of the background does not (theoretically) change. Such a background noise (or

even non-uniform signal noise) of the processed image, of course, does not follow Poisson distribution

anymore, even though the modified distribution (by
√
N ) might be still potentially used. Yet in this

thesis, it is suggested in the case when performing the deconvolution process to NOT average these
images together before the deconvolution itself! The idea comes from one result in the previous sec-

tions - the R-L deconvolution INefficiency (measured by any metrics - σMET , NOK , NOV ER from the

section 8.2) grow much slower than with square root dependence on SNR ratio (see section 9.2.3). If

this is to be compared with the general law in (46), then it seems that the complex R-L deconvolution
from complex data with crowded fields tends to produce its artefacts and residua (see figure 54 for

illustration) ’regardless’ on the SNR level. The word ’regardless’ is here chosen to express the com-

parison towards the influence of the denoising by (46). It is if course obvious that the artefacts and the

photometric inaccuracy generally grow with the noise level (and many other complex conditions). But

due to the analysed influence of the noise on the deconvolution results it is suggested that more precise
results would be obtained when the deconvolution is first applied to all the images separately and
just after that the astrometric and photometric results are to be averaged and checked.

The simplistic potential explanation for this unexpected behaviour of the R-L deconvolution might

be seen in the tendency to send all probable noise to zero ADU levels with the artefact levels being

obviously dependent more on the central peak deconvolved signal estimation of the star to which the

artefact partly belong. Even though such a deconvolved signal is secondary of course dependent on the

original image noise (producing self-inconsistency given by the naturalistic behaviour of the noise).

The question is then how to use the information given by the set of many images of the same object

(which naturally gives the advantage in search of the reality hidden in the noise) after the deconvo-

lution is performed on each of the images. The outcome of the deconvolution is not the image to be

potentially averaged with the other results, but already the list of stars with three characteristics - two

position coordinates (with errors) and relative (differential) flux estimation. In this thesis, the other flag

parameter is suggested to keep with these astrometric and photometric results. This flag would contain

the information about the statistical probability if such a stellar candidate in the crowded field is the

residual artefact or not. Let this flag ratio w be defined as

w =
FD
TD

(47)

where FD is the signal value of each candidate after deconvolution (which is generally NOT directly
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comparable with the similar numbers from the other images in the set) and where TD is the turnpoint

threshold value given by (44) in section 12.

The ratio w from (47) is already comparable between the different images in the set, observing the

same object. If it happens that some candidate is not found in any of theseN images within the position

errors then let the flag w value be zero. For each stellar candidate then these flags are weighed (hence

the name of the designed WHIDE algorithm - Weighed and Histogram Thresholded Deconvolution)

wN =
1

N

M∑
k

wk. (48)

This operation gives the similar information as standard denoising by averaging of the images before

processing the astrometry or photometry. Just in the case of WHIDE algorithm this averaging operation

is performed AFTER processing the astrometry and photometry of the deconvolution results on each

image in the dataset.

The interpretation of the weight ratio flag w is simple - the real stellar candidates keep their weight

w over the value 1.

13.2 Procedure of the WHIDE algorithm

As discussed above, the WHIDE algorithm uses namely two new approaches based on Flux Histogram

Noise Thresholding (to get the process automatic) and the weighing step with w flag (47) which allows

combining the information from a larger dataset of the images - with not combining these images

before, but after the deconvolution process inside WHIDE algorithm. The name is based on these

two approaches - Weighed and HIstogram thresholded automatic DEconvolution algorithm. Following

is the outline of this WHIDE algorithm to perform the automatic photometry and astrometry of the

crowded fields in given FITS images. Steps are described in the worst case of the unknown PSF (if PSF

is well known then the steps 1-5 may be skipped).

1. Get the brightest of the symmetric (∼ lonely) stars closest to the image center - this would create

the initial PSF estimation.

2. Perform the Richardson-Lucy deconvolution with this zeroth PSF estimation with few (∼ 20)

iterations.

3. Calculate the ’sharpness metrics’ as proposed in section 10.

4. Take the second (or other) brightest candidate star and calculate the same ’sharpness metrics.’

5. Continue down the list of candidates with the steps 1-4 until the ’sharpness metrics’ is maximized.
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6. Use this PSF and perform more precise R-L deconvolution (> 80 iterations).

7. Get the estimation of λ parameter from ’cleaned’ group of pixels (as described in section 12.1)

where all pixels are under the iteratively fitted Poisson PDF with upper limit of λ+
√
λ. Save the

histogram binning width for the later use.

8. Produce the Poisson PDF with given λ parameter normalized to given histogram cut of the pixels

above λ+
√
λ.

9. Deduct this normalized Poisson PDF from the whole histogram (with a larger number of bins,

yet their width unchanged) of all image pixels.

10. Get the turnpoint from the resulting histogram maximum above the λ noise level.

11. Calculate the threshold for deconvolution results by (44).

12. Create the lists of all local maxima on the deconvolution result and get rid of all maxima under

the calculated threshold.

13. Take the resulting list as the astrometric input for the next profile photometry.

14. Calculate the flux by simple profile photometry with given PSF.

15. Give each analysed star beside the astrometric position and the profile photometry flux another

important attribute (flag) representing the statistical probability of the star having correct infor-

mation - ’weight’ w from (47)

16. Perform all the steps 1-15 on the different image of the same stellar field. Adjust the astrometric

position at 1-pixel precision, average the flux results and calculate the mean of the weight w from

(48) - not found stars having the weight wk = 0.

17. After analysing all the images of the appropriate globular cluster take into the account just the

stars with the weight w being over the ratio 1 - this number can be interpreted so that the average

SNR is at the histogram turnpoint edge.
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14 Practical test of WHIDE algorithm and the results

The algorithm has to be practically tested, yet it is difficult to compare the results with some other

methods for the case of the extremely dense crowded fields (GCl), when there are practically ”no

reliable data to be compared” (which is actually the reason for this thesis topic to be researched) or

extremely difficult to get and to analyse. Standard tool in astronomy is so called aperture photometry

[17, 42] (see section 4.4 and (2)). For such a tool the data with the semi-crowded stellar field (open

cluster with both many individual separable and several overlapping stars) was chosen to be analysed

with both standard aperture photometry and the WHIDE algorithm. The combined (averaged) image of

five raw preprocessed (darkframe, flatfield) stellar FITS images used for the test can be seen in figure

56 (open cluster called M67 or NGC2682). For the aperture photometry the standard astronomical

package IRAF [63] was used. Threshold was set to default value 4-σ and the photometry was applied

on the averaged image made from five FITS files.

The results can be seen in figure 57 where there are two charts of discovered and registered stars

- left (purple) for the aperture photometry and right (red) for the WHIDE algorithm. Figure 57 shows

just detail from the bottom right part of the image 56 while for the analysis whole images were used.

The raw images contained dozens of bright overexposed stars producing blooming [42]. Such a defect

is a big issue for the correct deconvolution which makes around overexposed stars (to the distance of

tens of pixels) significant artefacts which are not eliminated by WHIDE algorithm. It is important to
use the images without such defects (overexposure) or to apply the cover mask (which was done

in our case). On the other hand, when looking more in the detail of figure 57, it is obvious that the

automatic procedure WHIDE found correct stars even though it uses way different approach than the

aperture photometry. For the given manual threshold of the aperture photometry - four background

deviations - it even found weaker correct stars. The efficiency of both methods logically depends on

the overall exposure (5 images per 10 seconds each with FOV of 20 arc minutes in our test), but as can

be seen in the detail several stars with close faint neighbours were successfully detected by WHIDE

algorithm (due to its deconvolution principle) while the aperture photometry failed to distinguish these

few objects.

Figure 57 shows the astrometric success of the WHIDE algorithm, while the figure 58 shows the

photometric flux differences in the measurement. For both analysis - WHIDE and aperture photometry

by IRAF - the instrumental magnitudes are used [42]. For the WHIDE algorithm the peak deconvolved

signal is used to produce the logarithmic magnitude (1) with one of the brightest star chosen as the

reference star. Such a star has the magnitude mREF = (10.651 ± 0.001)mag in the case of the second

method - IRAF aperture photometry (DAOPHOT package [59]). The magnitude-magnitude diagram

58 then shows the flux measurement differences between the aperture photometry and the WHIDE
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Figure 56: Real image of the open cluster M67 taken by the CCD camera FLI IMG-4710 used for the

test of designed WHIDE algorithm in comparison with standard aperture photometry algorithm.

algorithm. On the x-axis, there is the WHIDE magnitude mWHIDE adjusted to zero by the chosen

reference star. The y-axis then shows the difference between the WHIDE calculated magnitude and

the magnitude mIRAF measured with IRAF package by the aperture photometry. The reference value

mREF only adjusts the numbers that the reference star has the relative coordinates (0,0).

From the diagram 58, it is evident that the flux differences (error) between the aperture photometry

and WHIDE go from 0.3mag for bright stars up to 0.6mag error for the stars six magnitudes fainter.

Such an error might be reasonable for the case of five 10-seconds observations, yet for many precise

measurements this is insufficient. It is clear that the strength of the WHIDE algorithm is namely
in the astrometric object detections. For the better precision of the photometric measurements, it

seems more and longer observations are necessary (which is given by the statistical nature of WHIDE

algorithm).

Successful test of the WHIDE algorithm on semi-crowded field shows its advantage both in
the potential research of dense crowded fields, where the standard methods are useless and in the
analysis of standard stellar fields where the automatic approach is regarded.
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Figure 57: Test of the WHIDE algorithm (right, red) on the real astronomical data (open cluster M67 -

figure 56) compared to the standard aperture photometry with the IRAF package (left, purple). Aperture

photometry needs manual thresholding while it has difficulties by distinguishing several close neigh-

bours. WHIDE method finds automatically even fainter objects and separates close neighbours, but it

has to deal with the existence of the artefacts made by the estimation of the PSF. This points to the

statistical behaviour of WHIDE algorithm which gets rid of the artefacts by longer observations from

different instruments with different PSF.
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Figure 58: Error magnitude diagram of the M67 measurements (see figures 56 and 57). X-axis repre-

sents the magnitudes mWHIDE of stars measured by WHIDE algorithm with the zero point adjusted

to the reference star. The y-axis then shows the magnitude difference between the aperture photometry

measurementsmIRAF and the already mentioned WHIDE measurements (modified bymREF constant

value of the reference star in IRAF results to adjust that star to (0,0) relative coordinates).
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15 Conclusion

Image processing in astronomy deals namely with significant noise and optical aberrations. This thesis

is trying to give new opportunity to analyse the images where the high stellar density prevents such an

automatic data reduction. Large international astronomical catalogues still lack the radiometric infor-

mation about dense crowded fields (such as Globular clusters or concentrated Open stellar clusters).

In this thesis the research of various methods (including mathematical deconvolution, Nelder-Mead

optimization, aperture and profile photometry, stellar registration, ...) is presented in search of a re-

liable automatic algorithm which would allow getting the information about the positions and fluxes

of individual stars in dense crowded fields. As an outcome, it offers namely four new approaches and

methods.

1. In chapter 7 the published simulator of astronomical crowded stellar fields - the GlencoeSim

simulator - is presented.

2. ”Flux Histogram Noise Thresholding” method, which is used as a step in the designed WHIDE

algorithm, and its description can be found in chapter 12. This method uses the knowledge

of the observed data (monotonous luminosity function of point stars) and most importantly the

noise distribution. The resulting advantage is to get the criteria for following Richardson-Lucy

deconvolution analysis where such an analysis can now be done automatically.

3. The new idea to statistically weigh the deconvolution results before/without usual denoising op-

erations (averaging of the images to get rid of noise). This approach, its description and its

motivation is described in section 13.1. Generally, it is trying to get rid of the deconvolution

artefacts by the statistical approach.

4. Finally, the proposed algorithm WHIDE is presented in whole chapter 13. Its design is based

on the results received during the various analysis described at this thesis, standard methods

described in the beginning of the thesis such as Richardson-Lucy deconvolution or profile pho-

tometry and finally two new approaches suggested in this thesis - statistical weighing and the

thresholding by noise histogram. The name WHIDE is derived from these two approaches -

Weighed and Histogram Thresholded Deconvolution.

The structure of the thesis was divided into three groups - research, simulations and algorithms

design. Chapters 2 - 6 describe the current situation, definition of the studied topic and the tasks,

overview of the systems where the proposed algorithms are potentially useful and the list of image

processing deconvolution algorithms with their detailed description (and comparative analysis in section

5.3). Chapter 7 presents the algorithm and description of the newly designed simulator GlencoeSim and
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chapters 8 - 9 show the results from the performed simulations. Chapter 10 analyses the advantages

and the limits of Nelder-Mead optimization method to be used with the thesis topic and chapter just

summarizes all the information we got from the chapters 7-10. They are immediately used in following

chapters concerning the newly designed algorithms themselves.

The new proposed algorithms can be found in chapters 12 - 14. Chapter 12 describes the mentioned

Flux histogram noise thresholding method and chapter 13 then the general WHIDE (Weighed and

Histogram Thresholded Deconvolution) algorithm together with the explanation of the idea of statistical

weighing in section 13.1. The algorithm efficiency can be analytically tested only in the simulations

due to the known initial conditions, but the most important asset is of course in practical use - chapter

14 shows the use of WHIDE algorithm on the example of real data compared to the standard aperture

photometry made by IRAF software.

As the WHIDE algorithm helps to get the information about dense stellar crowded fields we can

say that

”The strength of the WHIDE algorithm is in getting us deeper into the deep Universe.”
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TEO SANGUINO, B. DE LA MORENA, J. A. BERNÁ, J. RODRÍGUEZ, A. PEÑA, J. GOROSABEL,
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