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Abstrakt:
Tato práce přináš́ı nový př́ıstup pro monitorováńı leteckých motor̊u pomoćı dis-
tribuovaných bezdrátových senzorových śıt́ı, které zpracovávaj́ı vibračńı signály.

Navržený př́ıstup umožňuje použit́ı výpočetně náročných metod signálové analýzy
ve výpočetně slabých ulzlech bezdrátové senzorové śıtě.

Dále přináš́ı metodu detekce vad, která je založená na detekci neobvyklého chováńı,
a zároveň je vykonávána př́ımo v uzlu senzorové śıtě.

Kĺıčové vlastnosti architektury navrženého systému: adaptivita, rekonfigurabilita a
tři fáze operace, umožňuj́ı dosáhnout okamžitého odhaleńı vady a zároveň zajǐst’uj́ı
dlouhodobý provoz monitorovaćıho systému.

Navržené metody a architektura bezdrátového monitorovaćıcho systému byly
ověřeny experimentálně s využit́ım reálného proudového motoru.
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Abstract:
This work introduces the on-board vibrational condition monitoring of aircrafts
powerplants by its original novel approach of distributed WSN based vibrational
condition monitoring.

Proposed approach allows to employ computationally intensive methods of vibra-
tional signal processing and methods of condition monitoring in computationally
weak wireless sensor network.

It introduces the fault detection method based on novelty detection which is executed
directly in wireless sensor nodes.

The novel framework of WSN condition monitoring system with its key attributes
Adaptivity, Reconfigurability and Three phases of operation enables the immediate
fault detection capability while providing long-term monitoring.

The proposed methods and framework were evaluated by the means of experiment
on the small turbojet engine.
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Chapter 1

Introduction

In recent years there is evident effort of aviation industry to reduce costs of aircraft
operation and maintenance by employing on-board condition monitoring systems.
The main purpose of such systems is to prevent unscheduled maintenance and thus
prevent aircraft downtime by transforming unscheduled maintenance to scheduled.
Such an example is Health and Usage Monitoring System which is the system mon-
itoring helicopter’s drivetrain focusing mainly on its vibrational behavior. Another
case is the Engine Health Management system introduced by Rolls Royce which
serves to monitor turbofan engines of large passenger aircraft. Although the po-
tential of on-board condition based maintenance for aircraft industry is great there
are still only few applications. This is caused mainly by the difficulties connected
with introducing on-board monitoring system especially if new sensors, as vibration
sensors, are needed.

If the implementation of on-board condition monitoring system were easier and
cheaper the next very profitable application could be for example world wide fleets
of turboprop engines operated in long-term service agreements.

The above mentioned implementation difficulties may be overcome by taking
an advantage of Wireless Sensor Networks (WSNs). WSNs have a broad use in
machine condition monitoring and generally in condition based maintenance. Their
main benefit is in easy installation in areas where a classical wired system is not
applicable or is inconvenient. WSN application can save significant resources that
would be spent in heavy-duty wired connection. They usually create a distributed
system with more sensing points than in a classical wired centralized system. Thus
it brings better resistance to unfavorable effects and better robustness.

Addressing the gap in on-board maintenance of aircraft systems not covered by
current applications, the aim of this work is to examine the potential of WSNs for
aircraft powerplant on-board vibrational monitoring.
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Chapter 2

State of the art

2.1 Condition monitoring

Condition monitoring is the process of determining the monitored object condition
while in operation. Condition monitoring is closely tied with the maintenance dis-
cipline. In [1] three general maintenance strategies for wide variety of industries are
identified:

1. Corrective maintenance – Run to failure

2. Preventive maintenance – Time-Based

3. Predictive maintenance – Condition Based Maintenance (CBM)

In the first kind a machine is run until it breaks down. While it gives the longest
time between shutdown, it may result in severe consequential damage or catastrophic
scenario. Also the unscheduled repair increases maintenance time.

The second scenario is based on regular planned maintenance intervals which are
shorter than expected time between failures. While catastrophic failure is greatly
reduced, excessive number of replacement components are consumed.

In the last approach the potential failure is predicted through regular condi-
tion monitoring and maintenance is carried out at the optimal time. Condition
monitoring typically comprises methods of fault detection, fault diagnosis and fault
prediction [2]. In [1] it is recognized that vibration analysis is the most prevalent
method for machine condition monitoring.

2.1.1 Maintenance of aircraft systems and powerplant

Although the maintenance of aircraft is just a subset of general machinery mainte-
nance it is very specific branch with its own strict rules, while the similarities with
the general maintenance strategies mentioned above still may be found.

Primary maintenance processes for aircraft systems and powerplant defined by
Maintenance Steering Group–2nd Task Force (MSG-2) are:

• Hard-Time (HT),

• On-Condition (OC)

• Condition Monitoring (CM)

3



Hard-time maintenance is a preventive primary process that requires a system,
component or appliance to be overhauled periodically at fixed time limits or removed
from service (life limit) [3].

On-condition maintenance is also preventive process that requires that system,
components, or appliance to be inspected periodically to determine if it can continue
in service. The standard of inspection ensures that unit is removed from service
before failure during normal operation [3].

Condition Monitoring (CM) introduced by MSG-2 is the maintenance process
that have neither HT or OC. The user must control the reliability of systems or
equipment based on knowledge gained by the analysis of failures or other indication
of deteriorations [3].

Above defined primary maintenance processes are further developed and ex-
tended within methodology defined by Maintenance Steering Group–3rd Task Force
(MSG-3). MSG-3 methodology enhances and changes MSG-2 approach by rather
task-oriented approach than maintenance-process-oriented approach [3]. For this
approach the availability of on-board condition monitoring system is extremely ben-
eficial because it broadens the knowledge about the historical and actual system
condition. Thus improves better planning within the task-oriented approach.

For that reason there is great effort to introduce on-board health monitoring
systems which perform permanent condition monitoring.

2.1.2 Aircraft CM examples

Health and Usage Monitoring System (HUMS) is on-board vibration-monitoring
system for continuously monitoring vibrations of helicopter drivetrain, which in-
terfaces to hardwired vibration and tachometer sensors [4]. Several companies like
Eurocopter, GE Aviation, Goodrich and Honeywell have their own HUMS products.
A study of Honeywell HUMS [5] employed on AH-64 Apaches found 30% reduction
in mission aborts, 20% reduction in maintenance test flights and 5–10% reduction
in scheduled maintenance.

Rolls Royce uses Engine Health Management (EHM) to track fleet of Trent en-
gines using onboard sensors which monitor engines’ temperatures, pressures, speeds
and vibrations. Acquired sensor data snapshots and captured summaries are trans-
fered through digital data-link Aircraft Communications Addressing and Reporting
System (ACARS). Then the data are on-ground analyzed by Controls and Data
services [6].

Honeywell also introduced Predictive Trend Monitoring and Diagnostic (PTMD)
service for Auxiliary Power Unit (APU) condition based maintenance. PTMD mon-
itors exhaust gas temperature, oil temperature, inlet pressures and starting trends.
Acquired data are transfered via ACARS for on-ground analysis. Customers using
PTMD could reduce overall life cycle cost on average by 15% [7].

Main benefits of above mentioned systems are:

• Increase safety of both individual aircraft and whole fleet.

• Improve dispatch availability and thus avoid down time.

• Reduce costs for maintenance like inventory management and logistics.
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• Could prolong life time of monitored component.

• Could improve maintenance costs estimation especially in Long Term Service
Agreement business model.

2.2 Wireless Sensor Networks

A Wireless Sensor Network consist of nodes which are capable of sensing a certain
physical phenomena and also are capable of wireless radio communicating to share
gained information.

The term WSN often overlaps with modern trends as Smart Sensors, Internet of
Things (IoT), Database of things or Radio Frequency Identification (RFID).

The initial impulse for WSN evolution came from military background in
Cold-War era as systems for submarine surveillance and networks of defense radars
[8]. Since 1990s the WSNs have been asserted also in commercial applications.

The rapid progress of both technologies and standards in sensors, microcon-
trollers, radio communication and power systems gave rise to WSNs expansion.

Gay: ”We do not expect new technology to remove these limitations: the ben-
efits of Moore’s Law will be applied to reduce size and cost, rather than increase
capability.” [9].

Also the standardization is a key issue for success of WSN markets while it sim-
plifies the design procedurem reduces costs of production and significantly increases
the compatibility of WSN devices from different vedors [10].

Typical features of WSN: restrictions and requirements

• Processing resources
Computing capability and memory resources of a single node are restricted.
A programming paradigm has to adapt to that.

• Energy resources
A node is generally self-powered and has to usually operate unattended for
the whole life-time. A typical source of power are batteries, which can be
combined with an energy harvesting system.

• Communication capability
Nodes of WSN are typical by a low data throughput and short communication
range. While a short communication range can be overcame by multi-hop rout-
ing, a low data throughput can be surmounted by in-node signal processing,
i.e. data compression.

• Cost, size
A general requirement for a WSN is low cost and small size of a single node,
which leads to the use of miniaturized mass produced Commercial off-the-shelf
(COTS) devices.

• Application, reliability
Great advantage of WSNs is ease of deployment due to no constraints caused
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by wires. It brings a profit in scalability and thanks to possibly high number
of nodes also redundancy. Especially in industrial processes there are strict
requirements for reliability, security and data integrity.

The above mentioned features outline the specific approach which is necessary for
development and use of Wireless Sensor Networks. This interdisciplinary approach
combines skills and knowledge in a wide range of areas like measurement theory, sig-
nal processing, embedded systems programming, wireless communication or analog
circuity design. In-depth understanding of monitored system is also crucial, be-
cause the development of WSN has to be adapted to its special needs. Primarily a
trade-off between raw data transmitting and complex in-node computation related
to available resources has to be found. Generally in-node computation and thus
the data compression brings the great energy-efficient benefit compared to raw data
transmission [11].

2.2.1 WSN Hardware

The node is an embedded system composed of a microcontroller, sensors, radio
transceiver and power source as it is depicted in Figure 2.1.

power system sensor system main node system
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Figure 2.1: Concept of a node

Further see the description of components important for WSN monitoring system
implementation.

Microcontroller Unit (MCU)

The core part of a node is a microcontroller unit (MCU). Microcontrollers employed
for WSN can be divided into the following classes depending on their processing
power and with that related power consumption (see also the table 2.1):

• Low performance class – Usually 8-bit microcontroller with memory (both for
program and data) less than 400 KB. This class is represented for example by
Microchip PIC16LF which is equipped only by 28 KB FLASH memory, 1 KB
RAM and 256 B EEPROM and it consumes about 0.1 µW in sleep mode and
77 µW in operating mode. This microcontroller is capable to handle a basic
node’s behavior, i.e. to sense an individual value, send and receive message
and to control the performance regime (sleep or active).

• Middle performance class – Usually 8-bit or 16-bit microcontrollers operating
at 8 MHz equipped with total memory (both for program and data) around
1 MB and power consumption up to 25 mW in active mode and 25 µW in
sleep mode. Into this class belong Atmel ATmega 1281 and Texas Instrument
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MSP430. In this class it is possible to maintain faster samples collection and
signal processing, however the methods for data analysis has to be selected
with care due to the restricted memory size.

• High performance class – Into this class fall 32-bit microcontrollers with op-
erating frequency up to hundreds on MHz. In the comparison of the former
classes, there is no limitation in memory size which is usually in tens of MB,
although a data memory is usually peripheral. The maximum power con-
sumption could be up to 300 mW at the maximum frequency, however these
microcontrollers provide a set of power regimes which enable a sophisticated
control of MCU processing power and energy consumption. This MCUs enable
even very sophisticated signal processing or historical data storing. Typical
representatives of this class are NXP LPC175x and STM32L1 both based on
Cortex M3 architecture or older Intel (Marvell) Xscale PXA271.

Table 2.1: Performance classes of MCU

Performance
class

MCU archi-
tecture

Memory (pro-
gram + data)

Consumption
sleep /active

Typical rep-
resentative

Low 8-bit 400 KB
0.1 µW /
100 µW

PIC16LF

Middle 8-bit, 16-bit 1 MB
25 µW /
25 mW

ATmega1281,
MSP430

High 32-bit
tens-hundreds
MB (external)

1 µW /
300 mW

STM32L,
PXA271

Up to date trend is integration of a node’s parts into one single chip, where MCU
is a core. This is step forward, which simplifies design and usage of WSNs. Based
on the degree of integration there is:

• Radio-on-the-Chip (RoC) – Newly are emerging MCUs which integrated radio
module directly in one chip. As an example could be mentioned STM32W
which is embedded with a 2.4 GHz IEEE 802.15.4 radio.

• System-on-the-chip (SoC) – It is a concept where all core parts of a node
(battery/energy harvester, sensor, MCU, radio) are integrated on a one single
chip. As far as the author knows there is not such commercial product available
on the market, but one could expect its arise in a near future.

Energy

Use only batteries in WSNs as a source of energy may be complicated. Periodical
replacement of batteries is usually unfeasible. Thus an energy harvesting (ener-
gy scavenging) technique which extract the energy from the ambient environment
surrounding nodes are needed. Table 2.2 compares some of the most promising tech-
niques. Work [12] brings detailed survey of the state-of-the-art energy harvesting
techniques.

For industrial environments the most suitable energy sources are the thermo-
electric and vibrations. Energy harvesting form continually vibrating machines (like
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Table 2.2: Comparison of energy harvesting techniques [13]

Source Performance
Necessary
dimension

Battery 2880 J/cm3 –
Light (indoor) 10–100 µW/cm2 59–590 cm2

Airflow 0.4–1 mW/cm3 6–15 cm3

Vibrations
200–380
µW/cm3 16–30 cm3

Thermoelectric 40–60 µW/cm2 98–148 cm2

Electromagnetic
radiation

0.2–1 mW/cm2 60-30 cm2

rotating machines) is the most efficient when the resonant frequency of a harvester
matches a significant machine’s vibration frequency. Energy from vibrations can be
harvested using piezoelectric, electrostatic or electromagnetic conversion [14].

Energy harvesting device can be used as the single source of energy, but usually
it is used in combination with a battery. In this combination of sources it is essential
to predict a battery remaining life. Paper [15] deals with battery life evaluation.

Current WSN Platforms (Development kits)

A WSN platform is generally a complete WSN node as defined in 2.2.1 (Fig. 2.1)
with a toolchain for programming and several examples of networking. Such set of
nodes is directly prepared to be used for experiments, for prototype development or
even for deployment in a real environment.

There is a large group of general-purpose platforms discussed in depth in [16]
and [17]. Among typical representative of present-day platforms, which are suitable
for development applications for industrial environment, belong: IRIS and LOTUS
from Memsic [18] (IRIS was originally developed by Crossbow), radio-on-the-chip
Ember from Silicon Labs or IQRF [19] from Microrisc [20]. See the comparison table
2.3.

For direct use in industrial areas there are also specific-purpose platforms, which
are usually very restricted in the ability of individual programming and in the abil-
ity of rapid measurements. The typical example is NI WSN-3202 from National
Instruments [21].

2.2.2 WSN programming

WSN is a special case of embedded system which is specific by limited resources
(memory, computation, energy) and by the nature of processing of immediately
incoming concurrent events, e.g. multiple sensor reading and radio message reading.
Except the time, when the node is reacting on an event, it tends to be in a mode of
low-power consumption (sleep mode).

Because of this characteristic of a WSN system it is necessary to adopt ap-
propriate programming paradigm. The widespread process-based programming
paradigm is based on concurrent (parallel) execution of multiple processes. This ap-
proach suffers in the case of relatively small tasks with respect to interruption routine
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Table 2.3: Present-day WSN platforms

Platform IQRF IRIS LOTUS Ember
NI WSN-
3203

Producer Microrisc
Memsic
(Cross-
bow)

Memsic
Silicon
Labs

National
Instru-
ments

MCU
8-bit
PIC16LF

8-bit AT-
mega1281

32-bit
ARM
Cortex-M3

32-bit
ARM
Cortex-M3

16-bit
MSP430

Performance
class (accord-
ing to 2.2.1)

Low Middle High High Middle

Radio
External
433/868/
916 MHz

External
2.4 GHz

External
2.4 GHz

Integrated
2.4 GHz

External
2.4 GHz

Purpose

General/
slow
process
monitoring

General General General

Industrial/
slow
process
monitoring

Programming IQRF-OS TinyOS TinyOS
Ember
App-
Builder

LabVIEW

which handles the switching between them. This is the typical case of WSNs. In
addition the interruption routine requires an extra space of memory [11].

The event-based programming, which is closer to the reactive WSNs’ nature,
is the other approach. It adopts following paradigm: The system waits for an event,
when an event happens it is detected by an event handler. Event handler performs
just a short set of instructions to store necessary information about an event. The
actual processing of an incoming information is done outside the event handler in a
task procedure. Such a short event handler can interrupt a task, but a task can not
interrupt other task or an event handler. Evoked tasks are processed sequentially in
the first-in-first-out order.

There is a number of operating systems (OS) which facilitates the development
of WSN embedded systems. Such OS brings a programming model, which serves to
control and manage resources (memory, processor, input/output), controls schedul-
ing and also supports energy management and directly supports radio communica-
tion. Survey [22] examines and compares the state-of-the-art OS for WSNs: TinyOS,
MANTIS, Nano-RK and LiteOS.

TinyOS is one of the most widely used OS for WSN’s development. It is event-
based open-source system, which core requires only 400 bytes of code and data
memory. TinyOS was developed by UC Berkley and has been supported by a large
community of users.
Among other TinyOS supports Over-the-Air-Programming (OTAP), multihop rout-
ing communication, sleep modes and time-synchronization.

Article [23] compares a general-purpose multi-tasking operating system and
event-based TinyOS on the same embedded system. The results show that event-
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based system achieves an 8x improvement in performance, 2x and 30x improvement
in instruction and data memory requirement, and a 12x reduction in power con-
sumption.

2.2.3 WSN communication methods

Physical medium for communication – available frequency bands

For wireless communication among WSN are largely used so called ISM (Industrial,
Scientific and Medical) frequency bands defined by International Telecommunication
Union. Primarily ISM bands were established for ISM-licensed applications, which
are usually non-communicating such as microwave ovens, diathermy machines or
electric cookers. Secondly ISM bands are shared with license-free communication
applications such as WSNs. That implies, that communicating devices has to be
error-prone since there is no guarantee of electromagnetic interference. Most often
is for WSNs utilized the ISM frequency band from 2.4 GHz to 2.5 GHz (further
referred as 2.4 GHz).

Network topology

Figure 2.2: Network topology [11]

The simplest topology of a wireless sensor network is the star topology (Fig. 2.2a),
where each node is connected directly to the sink node. The end-nodes are not able
to pass data or commands between each other, but only with the sink node, which
serves as an overall coordinator. The message from the end-node performs just a
single-hop. When the connection from the end-node to the sink is broken (e.g. due
to obstacle or interference), the communication is lost.

On the other hand in the topology called a mesh network (Fig. 2.2b) every node
has the routing capability. The nodes can communicate between each other and they
can multi-hop a message from one node to another until it reaches its destination.
This brings the ability of self-organizing, self-healing, path redundancy and thus
improving robustness of the network. A multi-hop principle allows a message to
overcome large distance and obstacles and also improves the energy efficiency of
communication, because the attenuation of radio signals is quadratic in relation to
increasing distance (in most environments) [11]. However message multi-hopping in
mesh networks brings a higher demands for routing algorithms.
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An appropriate topology is always strongly depended on the type of application
(i.e. size of a network, number of nodes or a kind of monitored object). Usually the
WSN’s topology can by created as a hybrid network (Fig. 2.2c), where are combined
routing and non-routing nodes. The network can by organized in clusters or can
be a tree topology with the backbone structure of routing nodes and end-nodes
connected to them.

Routing protocols in a mesh network of WSN must optimize requirements es-
pecially for energy consumption and latency. These routing algorithms are specific
by strong interactions between MAC and NWK layer. Chapter 11 of [24] brings
a survey of routing protocols solutions proposed for WSNs deployed in industrial
environments.

Standards and protocols for WSN

Since the year 2000 there has been significant development in the field of wire-
less communication. To ensure consistency and interoperability between developed
applications, it is crucial to follow widely respected standards. Institute of Electri-
cal and Electronics Engineers Standards Association (IEEE-SA) brings the family
of standards IEEE 802 which specify the lower two layers of OSI reference mod-
el: Physical layer (PHY) and Data link layer (DLL), which is further divided in
sub-layers called Logical Link Control (LLC) and Media Access Control (MAC).

Standard IEEE 802.11 (Wi-Fi), operating at 2.4 GHz is primarily determined
for Wireless Local Area Network (WLAN). Thanks to its wide expansion and high
bitrate, it is often used as substitution of wire link also in industrial environments.
However due to its high energy consumption and high price of devices using Wi-Fi,
this standard is not suitable for Wireless Sensor Network communication, how it is
defined in 2.2.3.

The group of standards IEEE 802.15 is specified for Wireless Personal Area
Network (WPAN).

IEEE 802.15.1 (Bluetooth) operates also at 2.4 GHz and is intended for short
range communication among mobile devices and accessories, for example handsfree
set connected to a mobile phone. In comparison with above mentioned Wi-Fi it has
much lower consumption, but still it is not very suitable for WSNs.

The most recent version Bluetooth 4.0 introduces the Bluetooth Low Ener-
gy technology (BLE), which is aimed for healthcare, fitness, security and home
entertainment applications.

International standards based on IEEE 802.15.4

IEEE 802.15.4 is designed for low-power, low data rate, short-range, and low-cost
wireless communication. This meets requirements of WSNs. Within this standard
only physical (PHY) and medium access control (MAC) layer of the OSI (Open
Systems Interconnection) model is specified.

Physical layer of IEEE 802.15.4 uses Direct Sequence Spread Spectrum (DSSS)
working at 868 MHz (only Europe), 915 MHz (only North America) or 2.4 GHz
(worldwide) with a maximal data rate 250 kb/s. In MAC layer is employed Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA). Network topology
can be built as star or peer-to-peer, which enables mesh topologies implemented at
higher layers of OSI model. More details may be found in [25].
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Amendment IEEE 802.15.4a from 2007 extends the specification of physical lay-
er of this standard. It specifies the PHY layer using ultra-wide band (UWB)
technology. It brings advantages in spectral efficiency, ability of high data rate with
low-power or device location ability, however it is not suitable for unsafe zones due
to the high peak energy of pulses.

The PHY and MAC layer of standard 802.15.4 gives a basis for the whole range of
standardized protocols like ZigBee, WirelessHART, ISA100.11a, 6LoWPAN. They
differs in their implementations of higher layers of OSI model.

Zigbee was introduced by Zigbee Alliance in 2004. Its objective is to be a cost-
effective, low-rate, low-power communication technology for embedded devices in
home automation, monitoring and control applications.

It is built on IEEE 802.15.4 and further specifies network (NWK) and application
layer (APL). The MAC layer employs only CSMA/CA technique and supports mesh
routing. At startup it scans the channel with the least amount of interference, but
there is no frequency hopping. Although there is support for security, including
authentication, integrity and encryption in NWK and APL layer, the security is not
mandatory.

Paper [26] compares the performance of ZigBee Pro and ISA100.11a in an
aerospace environment. They concluded that even simpler and cheaper protocol
ZigBee Pro performs relatively well under moderate levels of interference, but to en-
sure reliable data delivery under heavier interference, the more complex and costly
protocol ISA100.11a is needed.

Due to the lack of industrial-grade robustness, coexistence and security, ZigBee
is not considered suitable for the use in most industrial applications. This was a mo-
tivation for developing new standards such as WirelessHART or ISA 100.11a which
meets requirements of communication in harsh industrial process environments. [27]

WirelessHART gives the Highway Addressable Remote Transducer Protocol
(HART) a wireless ability. It was introduced in 2007 by a large group of industrial
companies and since 2010 it was approved as the international standard IEC 62591.

The protocol creates a mesh topology, which aims to be time synchronized, self-
organizing and self-healing.

WirelessHART is fully compliant with IEEE 802.15.4 MAC layer and further em-
ploys a Time Division Multiple Access (TDMA). All devices are time synchronized
and communicates in pre-scheduled fixed length time-slots. To avoid interference it
uses a a Frequency Hopping Spread Spectrum (FHSS) across 16 channels.

Security is mandatory and there is a number of security measures implemented
in all layers of protocol stack.

WirelesHART uses strictly the HART protocol and defines only one NWK layer,
which simplifies implementation for the end user. WirelesHART has wider vari-
ety of available devices manufactured by multiple manufacturers with guaranteed
interoperability between them.

Since 2009 ISA100.11a, is the standard approved by the International Society
for Automation (ISA). It is intended to provide reliable and secure wireless connec-
tion for non-critical monitoring and control industrial applications.

MAC layer combines TDMA and CSMA/CA and similar to WirelessHART it
uses also frequency hopping. TDMA provides deterministic features of communica-
tiom, while CSMA/CA improves ability of retransmission on failure links.

12



ISA100.11a provides a number of options that must be specified by the end user,
e.g. it defines several network layer header formats supporting IPv6. Due to the
higher variability in ISA100.11a devices, the end user should be more careful to
ensure interoperability between devices from different suppliers.

WirelessHART and ISA100.11a are two independent and competing standards
specifically designed for industrial wireless applications. Papers [28] and [29] bring
the detailed description and comparison of both industrial WSN protocols. Table
2.4 further summarizes main features of ZigBee, WirelessHART and ISA100.11a

Table 2.4: Comparison of IEEE 802.15.4 based industrial standardized protocols

Attribute ZigBee WirelessHART ISA100.11a

PHY layer
IEEE 802.15.4
(2.4 GHz)

IEEE 802.15.4
(2.4 GHz)

IEEE 802.15.4
(2.4 GHz )

MAC layer
IEEE 802.15.4
(CSMA/CA)

IEEE 802.15.4 +
TDMA + fre-
quency hopping

IEEE 802.15.4 +
TDMA + CS-
MA/CA + fre-
quency hopping

Max. datarate 250 kb/s 250 kb/s 250 kb/s
Robustness
in industrial
environments

low high high

Security middle high high
Implementation easy moderate challenging

Compatibility – HART

Implements
tunneling to
encapsulate
foreign protocols

Number of sup-
pliers supplying
products

high high low

Custom-defined standards and protocols supported by local groups

Besides the internationally standardized protocols based on IEEE 802.15.4 de-
scribed in 2.2.3, there is a number of protocols developed by individual researchers
or industrial alliances.

For example 6LoWPAN integrates the IPv6 network protocol to low-power
WPANs. It is based on PHY and MAC layer of IEEE 802.15.4 and it defines
encapsulation and header compression mechanism, that allow IPv6 packets to be
sent and received. The contribution of this standard is mainly in the interoperability
with other IP devices. Paper [30] brings an experimental evaluation of 6LoWPAN
in industrial applications.

Another protocols suitable for industrial applications are ANT, Dash7, EnO-
cean, Z-Wave and many others, which are discussed in [31].
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2.3 WSN applications

This section brings state-of-the art studies where WSNs are used in industrial envi-
ronment for machinery condition monitoring. The industrial environment is a term
used to describe working conditions that may be outside of optimal, which is very
similar to the environment of aircraft applications.

The industrial environment is covered by the WSN studies for condition moni-
toring especially due to the fact that these general areas are easily accessible than
the aviation tightened by strict rules.

Nevertheless the studies for general industrial WSNs application are pioneers
giving good basis even for WSNs applied within aircraft industry.

The WSN applications may be found for example for water supply pump diag-
nosis [32], for condition monitoring in end-milling [33], for monitoring oil and gas
processes in refineries [34], for monitoring manufacturing processes like metal cut-
ting by a CNC machine [35], for pipelines infrastructure monitoring [36] and for
many others.

Recent papers deal with the application of IWSN in performance monitoring of
electrical machines [37], induction motors [38], manufacturing machines [39], pump
and pipeline diagnosis [40], auxiliaries in power plants [41], Smart Grids [42] and
structural health monitoring [43].

Reference [41] introduces a concept for vibration data acquisition and an on-
line decision IWSN system for monitoring rotating auxiliaries at power plants. This
paper introduces a data-level fusion algorithm for similarity judgment of time series,
and a task-level fusion algorithm which decides about the sending data strategy –
merge and piggyback similar data and thus reduce the total bandwidth and power
needs.

Papers [44] and [45] propose IWSN-based induction motor condition monitor-
ing and fault diagnosis. The system monitors the motor stator current and the
vibrational signature from two nodes. Data acquisition, feature extraction and clas-
sification by the Neural Network Classifier are implemented in the node. Decision
level fusion using Dempster-Shafer theory is further executed in the center. The
training phase is performed off-line in supervised manner. To complete the train-
ing, the four states have to be introduced manually to an experimental machine
by adding load and imbalance. The system brings a power-effective approach with
distributed signal processing. However, supervised classifier training limits the use
to cases where it is possible to introduce a faulty behavior to a tested machine.

2.4 Summary

This chapter brings an overview of the key areas needed for this work. First it
describes current trends in condition monitoring of aircraft. Then it brings extensive
overview of Wireless Sensor Networks and at last it summarizes the WSN state-of-
the art studies and applications in industrial environment.
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Chapter 3

Aims of the doctoral thesis

Based on the research of state-of-the art applications summarized in Chapter 2
there emerges a need to increase aircraft components on-board condition monitoring
capabilities. Special focus is held on powerplant, systems and components which
manifest its health in vibrational behavior. To broaden current condition monitoring
systems there are requirements especially to:

• Provide on-line, long-term on-board vibration monitoring capabilities, while
energy resource is constrained.

• Perform fault detection while no example of faulty behavior is available.

• Deploy system with no wires, which allows easy installation at multiple spots
and gives possibility of retrofit into legacy engines.

The aims of the presented thesis are therefore as follows:

Introduce a novel approach based on WSN

The main objective of this thesis is to introduce a novel approach for aircraft
components condition monitoring employing computationally intensive methods of
vibrational signal processing and methods of condition monitoring in computation-
ally weak wireless sensor network.

Propose a fault detection method based on novelty detection

Propose a fault detection method detecting a novelty in vibrational signatures rel-
ative to the baseline signature obtained during condition monitoring system in-
stallation phase. The character of process of vibration sensing requires the fault
detection method to be created individually for each sensor node.

Propose a novel distributed WSN framework

Propose a novel WSN framework allowing distributed signal processing to maximize
the immediate fault detection capability while provide long-term monitoring. And
further enable the system to react to ambiguous machine states by temporarily
changing the diagnostic focus.
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Evaluate on jet engine use case

Design an experiment to evaluate proposed methods and framework on aircraft jet
engine use case.
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Chapter 4

WSN based vibration condition
monitoring system

4.1 Analysis of requirements

Based on the high level requirements summarized in Chapter 3 the requirements
for vibration condition monitoring system based on WSN are further identified and
elaborated in this Chapter.

The requirement for no wires, easy to install and possibility of retrofit was ful-
filled by decision to employ Wireless Senor Network. This decision introduces strong
boundaries to proposed system architecture by limits and capabilities of WSNs de-
scribed in Section 2.2.

The requirement for easy installation is also translated as very limited possibility
for further physical action to the system as its service, repair or battery replacement.

The need for long-term monitoring capability, while the energy resources are
constrained with the requirement for vibrational signal sampling rate at least at
units of kHz brings a challenge because these requirements are contradictory.

The approach to fulfill above mentioned requirements is based on:

• Distributed decentralized in-node signal (pre)processing, which allows to rad-
ically reduce the communication which is the major energy consumer (see
Section 4.2.1). Streaming a raw vibrational signal is not only extremely ener-
gy consuming but also it is not possible to stream simultaneously large amount
of data from multiple sensor nodes due to low data throughput of low-power
wireless communication protocols.

• Event-based programming scheme and software architecture, where the nodes
spend the majority of time in extremely low-power sleep and wake up just for
short periods where the all necessary work is done.

• Low-power hardware design and potentially energy harvesting. However this
is over the scope of this thesis.

The requirement for on-line capability which means the ability of the individual
node to be available for real-time interaction upon the system’s request is achieved
within the system’s topology, software and communication protocol scheme.

The last but very crucial is the requirement for the fault detection where no ex-
ample of a fault is available. At the moment when the monitoring system is installed
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on a machine, there is no information how the potential fault could manifest. At
the same time a monitored object is considered as in health state. For that reason a
special kind of pattern recognition design for novelty detection called also one-class
classification or outlier detection was employed, see details in Section 5. One-class
fault detection together with learning and testing phases of operation described in
4.4 allow to run the fault detection algorithm directly in-node.

To further maximize detection capability and long-term monitoring the moni-
toring system has ability of:

• Adaptive behavior

• Reconfigurability, see Section 4.3

Table 4.1: Analysis of requirements and proposed solutions

Requirement Consequence (Restriction) Proposed solution

No wires, easy to install. Employ WSN.
Propose WSN based moni-
toring system (4.2).

Long-term monitoring

Limited energy resource

Low-energy design

Distributed decentral-
ized in-node signal
(pre)processing (4.2.1).

Event-based software
design (2.2.2).

Vibration monitoring: Sam-
pling rate at least at units of
kHz

Not possible to stream raw
samples.

Distributed decentral-
ized in-node signal
(pre)processing (4.2.1).

On-line capability
Real-time interaction upon
request

System architecture and
topology (4.2).

Fault detection where, no
example of fault is available.

Track a change of behav-
ior rather than an absolute
measurement.

Develop a Fault Detection
algorithm (5).

Maximize a detection capa-
bility and long-term moni-
toring

Requirements are contrary
to each other

System’s adaptability and
reconfigurability (4.3).

Section 4.1 provides analysis of the key requirements emerging from the state
of the art in machine condition monitoring. In addition to that it also provides
the proposal of solutions of individual requirements which are summarized in the
Table 4.1 and thus serves as the guide for further thesis subsections.
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4.2 System architecture

Following sections are describing proposed framework which is introducing a novel
approach for condition monitoring. This approach enables to employ computation-
ally intensive methods of vibrational signal processing and methods of condition
monitoring in computationally weak nodes of WSN.

The architecture of proposed framework creates a core part of author’s contri-
bution. The framework is innovative primarily by its approach of distributed signal
processing, and by its adaptivity and reconfigurability allowing to change the diag-
nostic focus of proposed monitoring system.

As stated before the proposed solution is based on Wireless Sensor Networks.
Features determining the machine behavior are processed directly in node. Then
a machine condition is classified locally in each sensor node. Further the trade off
between the precise analysis of machine condition and nodes’ energy consumption is
achieved thanks to Adaptive behavior. The roles are divided between sensor nodes
and central node. Methods of fault detection are carried out in sensor nodes while
methods of fault localization and trend watching are processed in the central node.
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Figure 4.1: Top Level Architecture

This work is aimed above all to the methods of fault detection which are pro-
cessed directly in the sensor nodes. However the proposed framework allows further
fault diagnosis and prognosis in the central node or ground bases system as depicted
in the Table 4.2 and Fig. 4.1
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Table 4.2: Top level monitoring system architecture

Task Location Manner

Fault Detection In-node On-line, immediatelly

Fault Diagnostics Central node On-line

Prediction
Central node/Ground
based system

Off-line

4.2.1 In-node signal processing

Due to the restricted energy resources and limited data throughput it is not possible
to create a centralized system where the role of the nodes is just to sample vibrations
and stream them to the central node for further processing (see case A in Fig. 4.2).
However as the node has this ability, it can be useful for detailed analysis performed
off-line in the central node, but due to the network data throughput it is not possible
to transmit the data from all the nodes simultaneously.

Figure 4.2: In-node methods of a sensor node (RF – Radio Frequency transmission)

The only way how to enable vibrational signal handling in a WSN is that the
sampled signals is processed directly in node. The in-node signal processing results
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in a set of features which contain the compressed information (see case B in Fig. 4.2).
The number of features is usually of much lower order than the number of samples
of signal. Obtained features may be send to the central node or they serve as the
input for fault detection.

In-node fault detection

Transmitting the messages is the most energy consuming operation of a node. To
further decrease the energy consumption and thus enable long-term monitoring ca-
pability, it is profitable to perform fault detection directly in node. A method of
pattern recognition is applied in node to obtain a decision about a fault. This step
further compress the useful information and helps to save the energy when it is
transmitting.

4.2.2 Sensor node vs. central node

A set of sensor nodes is deployed on a tested machine when a machine is man-
ufactured and assembled or when it is after overhaul. Nodes are put on selected
positions as close to the source of expected vibrations as possible, e.g. on bearing
house.
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Figure 4.3: Sensor node vs. central node

As depicted in Fig. 4.3 a), the only source of information for a sensor node are ac-
celerometer (one per sensor node) and radio module. An accelerometer connected to
Analog to Digital Converter (ADC) provides an instantaneous high-sampled signal.
Thanks to radio module a node can receive additional information helpful for fault
detection (e.g. shaft rotational speed). But due to the limited time-synchronization
this information is not instantaneous neither synchronized. Thus, it is preferable to
implement certain level of autonomy within sensor node. It routinely performs its
default regime unless it is commanded by the central node to adapt its behavior or
perform non-default operation.

Table 4.3 shows a relative comparison of power consumption of sensor node’s
operational regimes. However a specific WSN system has its own power values, this
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relative comparison shows that generally the communication (both transmit and
receive) has much higher power demands than in-node signal processing. On the
other hand the sleep regime has usually multiple-order lower power demands than
active regimes (2.2.1). Control of switching and duration of sensor node operational
regimes has a crucial effect on its energy consumption, while the source of energy is
restricted.

Table 4.3: Relative comparison of power consumption of sensor node individual operations, esti-
mate based on [46] and on [47]

Sensor node operational
regime

Relative power consump-
tion (-)

Transmit (Tx) 100
Receive (Rx) 80
Process signal 25
Idle 10
Sleep 0.1

A central node depicted in Fig. 4.3 b), contrary to a sensor node has relatively
unlimited power source, which enables a high computational power. Central node
has its radio module connected directly or using gateway, when there is different
hardware and software architecture of sensor and central node. It is also connected
to the machine’s control (and monitoring unit, when available), which provides
instant information about machine operational regime and another process values.
Thus a central node records information received from all sensor nodes and merges
them with machine operational regime. A central node commands sensor nodes
connected in network to adapt their default behavior.
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4.3 Adaptivity and Reconfigurability

Within the proposed architecture there is introduced Adaptivity and Reconfigurabil-
ity of the monitoring system. Adaptivity enables the system to react to ambiguous
machine states by temporarily changing the sensor nodes methods of signal analysis.

While Reconfigurability allows to completely reconfigure the whole monitoring
system functionality without a need of physical approach to the monitoring system.

Fault Detection

Decision

Reconfigure SystemAdapt Behavior

no fault
detected

complete
reconfiguration

needed

FD adaptation
needed

No change
of system
needed

a fault
detected

Fault Detection
(novel setup)

Figure 4.4: Adaptivity and Reconfigurability

Fig. 4.4 describes the Adaptivity and Reconfigurability approach. Default regime
of monitoring system is in-node Fault Detection (top of the Fig. 4.4) where each
sensor node of the system autonomously carries out in-node fault detection. When
a fault is detected a Decision (4.3.1) has to be undertaken. Action performed
based on the decision carries out additional in-node methods which improve the
fault detection result and enable central-node fault diagnosis. When there is, based
on the Decision, performed Adaptation or Reconfiguration the monitoring system
creates new default Fault Detection state, in Fig. 4.4 depicted as Fault Detection
(novel setup).

The Decision is made on the level of the central node, which can combine fault
detection results of a group of sensor nodes and additional information such as
machine’s operational regime.

The decision result for this case is to Adapt Behavior (4.3.2) of an individual
node’s or subset of nodes’ behavior or to Reconfigure System (4.3.3), i.e. to
reconfigure the whole condition monitoring system.
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The key criterion for decision is to achieve the trade-off between the quality of
information needed for fault detection and diagnosis on the one hand and the energy
consumption of the operation which is taken based on that decision on the other
hand. The reason of adaptivity and reconfigurability is to maximize the detection
and diagnosis capability and immediate precise information while ensure long-term
monitoring.

4.3.1 Decision

The inputs for decision taken on the central-node’s level are:

• Sensor nodes’ fault detection results (could be one result from one sensor node
or subset of sensor nodes),

• machine’s operational regime and its control system signals,

• additional machine monitoring system results,

• state of machine monitoring system, e.g. energy remaining/available.

Criteria of decision

Action taken based on the decision is evaluated using following criteria:

1. Scenario rating: Scenario is a combination of operations, methods and their
timing which will be performed based on the decision. There are several pos-
sible scenarios, each of them is judged by the scenario rating. Two main
elements of scenario rating are the contribution of a scenario to fault detec-
tion and diagnosis and its energy demand.
The scenario’s contribution is performance of methods and their application.
Generally for features obtained from a raw signal their contribution is higher
as they react to a machine’s faulty behavior with higher sensitivity and vice
versa. For a fault detection method its performance is evaluated based on
its ability to detect and/or localize a fault and on its fault positive and fault
negative errors.
The scenario’s energy demand is determined based on the sum of operation
power demand, as depicted in Table 4.3, and its duration.

Energy Demandscenario =
∑
i

(Operation Poweri ·Operation Durationi)

(4.1)
where i stands for individual operation within the scenario.

2. Requirement for additional method: Based on the results of running
fault detection and/or diagnosis process there could arise a requirement for a
custom operation of a sensor node to carry out. A custom operation performs
a different method than in-node fault detection which improves fault detection
or allows fault localization.
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3. Aggregated energy consumption: The energy drawn from individual sen-
sor nodes by executing operations is controlled by aggregated energy consump-
tion mechanism. This mechanism limits the extensive usage of high-energy-
demanding operations by keeping the average energy consumption under the
limit given for the time window. The length of time window and the average
consumption limit is given mainly by: the type and amount of system’s energy
resources, planned monitoring period and system’s criticality.

4.3.2 Adaptivity

To adapt the monitoring system’s behavior means that the default in-node monitor-
ing method is adapted to improve machine condition monitoring result. Adaptation
enables to perform not only improved fault detection but also fault diagnosis and
localization. Regime of adapted behavior is connected with higher energy demands
and so it takes only the necessary time and the monitoring system returns back
to default regime as soon as possible. The trade-off between energy consumption
and improved performance of fault detection and diagnosis is driven by Aggregated
Energy Consumption (4.3.1).

The fundamental elements of adaptive behavior are:

• Adjust measurement update period TM : Measurement update period
is the time between individual sensor’s collection of readings, see Fig. 4.5–1.
The shorter is this period the more continuous is the coverage of machine’s
behavior but the higher is the energy consumption. A default measurement
update period is given by the monitoring system type and requirements for
continuous monitoring, criticality and monitoring system expected life. When
an in-node fault is detected this period could be shortened to confirm machine’s
faulty behavior or to refuse it as false alarm.

• Adjust transmit update period TT : Transmit update period is the time
between sending off the in-node fault detection result to the central node, see
Fig. 4.5–1. If TT = TM the fault detection result is sent after each individual
in-node fault detection procedure. The process of transmitting is very ener-
getically consuming, thus it is profitable to set default transmit update period
longer than measurement update period: TT = TM · k, where k = 2, 3, 4 . . .
When an in-node fault is detected this period could inform the central-node
immediately.

• Send features to central node: The process of fault detection is as default
executed in-node. The most significant limit of in-node fault detection is that
node’s input is isolated only to its own sensor readings (see 4.2.2). On the
request from the central node, the sensor node sends the in-node-computed
features, see Fig. 4.5–2. Then the central node executes fault detection and
diagnosis with all inputs available as described in 4.3.1. A sensor node can
also compute and send different set of features, if its computing and memory
capabilities enable it.

• Send raw samples to central node: The sensor node is also able to send
its acquired raw time samples on the request of central node, see Fig. 4.5–
3. Although this operation is from the above mentioned the most energetic
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demanding, it considerably improves fault detection and fault diagnosis espe-
cially. Main benefit of this step is the whole signal processing in the central
node with high computational capabilities and connection to whole sensor net-
work and additional information sources. Based on the results the monitoring
system is further adapted or reconfigured. Raw data samples and signal anal-
ysis results are also stored for further off-line analysis.

4.3.3 Reconfigurability

To reconfigure the system means that the node’s behavior is completely changed,
new methods of features computation and fault detection are implemented. Recon-
figuration ability is achieved thanks to Over-the-Air-Programming (OTAP), when
new program is created and built in the central node and then is over the air upload-
ed and introduced to the target sensor node. When the reconfiguration is evoked
steps of Learning phase, described in section 4.4.2 are activated. Reconfiguration
may be applied to all sensor nodes within the sensor network or only to a subset o
them. Besides, the main portion of this operation is performed by the central node
it is very energetic demanding for the sensor nodes: a sensor node must receive the
whole program.

Although reconfiguration is the most energy demanding method it is very benefi-
cial in log-term horizon in the case when the machine condition default regime stops
performing well. This situation happens when machine’s healthy behavior changes
during its operation, see the instance labeled by red circle in Fig. 4.6. The default
in-node fault detection methods would cause only false alarm and the system would
became infective for the long-term perspective.
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Figure 4.6: A node’s energy consumption: A – monitored machine does not change its health
behavior, B – monitored machine change its health behavior and node’s default in-node fault
detection creates false alarms, C – Monitoring system reconfiguration is applied
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4.4 Phases of operation

The key idea of monitoring system’s phases of operation is to split data acquisi-
tion, fault detection method developing and condition monitoring between different
units of the system. The computationally intensive operations are held in power
unrestricted central node while the performing regular fault detection is held in
computationally week and energy restricted sensor nodes.

1. Deployment and acquisition 2. Learning 3. Monitoring
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Figure 4.7: Phases of operation

The monitoring system is autonomously learns the engine’s healthy behavior and
then monitors the change of its behavior which indicates an incipient failure.

The usage of the proposed system is split up into three phases: 1. Deployment
and acquisition, 2. Learning, and 3. Monitoring (see Fig. 4.7). At the beginning of
the operation the sensor nodes are deployed on the monitored engine and the fault
detection algorithm is created, after that the monitoring phase is initiated. The
first and second phase are relatively short compared to the third phase, when the
systems performs health monitoring. The key features of this process are:

• At the beginning of the process the healthy behavior of an engine is recorded
as a baseline.

• An individual fault detection algorithm is developed for each specific sensing
point.
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• Development of fault detection algorithms takes place in the central node.

4.4.1 Phase 1: Deployment and acquisition

In the first phase the baseline of vibrational behavior of the healthy engine is record-
ed. The state of health is confirmed by a conventional testing procedure, in case
of aircraft engine after an overhaul. The sensor nodes are deployed on a monitored
engine where they will remain during all three phases, i.e. they will remain at their
location for the whole monitoring system’s life cycle. When a machine runs at de-
fault operational regime (e.g. nominal rotational speed), the central node initiates
process of sampling by the command addressed to all sensor nodes. The sensor
nodes are equipped with a program optimized for raw data sampling and trans-
mitting them to the central node. The acquired signal is split into a sequence of
individual messages, which are stepwise delivered into the central unit. Integrity of
transmitted data has the highest importance contrary to on-line demand. The data
messages cannot be transmitted from all nodes simultaneously because of limited
data throughput. This phase finishes when complete data sequences have been de-
livered from all sensor nodes into the central node. The central node has the full
authority over the sensor nodes, while sensor nodes perform just raw data sampling
and sending. See the process flow of data acquisition in Fig. 4.8.
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Figure 4.8: Deployment and acquisition

4.4.2 Phase 2: Learning and programming

When the acquisition phase is finished the raw signal samples from all sensor nodes
are assembled in the central node, where process of features and fault detection
method creating and automatic programming is held. While the the complexity
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of above mentioned creating process may be relatively high thanks to high com-
putational and energy resources of the central node, the execution of the proposed
methods must be feasible in target low-power sensor nodes.

Features creating

The first step within the learning phase is to create and implement appropriate
features which enable the condition of the machine to be detected.

The input blocks Character of engine and Character of signal (Fig. 4.9) give the
information about components of engine, its default regime of operation and about
position of a sensor node. This provides requirements for time-frequency resolu-
tion of a given feature (minimal sampling frequency, minimal number of samples)
and also requirements for a feature to be able to detect a typical failures of en-
gine’s components. The better the feature describes an engine’s behavior the better
contribution it has. See details in Section 6.

The inputs Computational and Energy resources (Fig. 4.9) give the information
about the computational and energy restrictions for features computing. Compu-
tational restrictions are given mainly by the type of hardware of sensor node, see
details in Section 2.2.1. The energy restrictions are given by the energy consumption
of sensor node and its power regimes (4.3), by the node’s energy resources available
and also by the planned sensor node operating time.

The energy demand of in-node computed feature is given particularly by the
time needed for computation and power consumption during this operation, see 4.2:

Energy Demandfeature = (Operation Power ·Operation Duration) (4.2)

The output of the feature creation is a set of features, which are in compliance
with following criteria:

• sensitivity on behavior of given engine’s components,
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• to be feasible on given low-power sensor node,

• the energy demand for their execution is known.

Fault detection method creating

The second step within the Learning phase is proposal of fault detection method (the
middle part of Fig. 4.9), specifically one-class classifier. Details of fault detection
methods and classifiers are described in Section 5. The fault detection method is
also restricted by computational and energy resources of sensor node. Moreover,
the computational demand of a classifier increases exponentially with the number
of input features (5.2), so the number of features selected for fault detection must
be relatively low.

The performance of a classifier method is evaluated based on its ability to detect
a fault and on its fault positive and fault negative errors.

The result of learning step is a classifier model trained for each individual sensor
node.

Automatic programming

Using a Program template and based on Target description (microcontroller archi-
tecture), and List of node’s resources (the available resources as volatile and non-
volatile memory and peripherals) the created features and classifier are implemented
to a ready-to-upload, compiled program specific for each sensor node.

This program is uploaded via Over-The-Air-Programming (OTAP) to the sensor
node. The OTAP technique enables the node to be booted to a specific regime, when
it expects to download the new program segmented in a sequence of messages. When
the new program is downloaded, the sensor node reboots and starts executing the
new program.

4.4.3 Phase 3: Monitoring and Fault Detection

In the third phase the proposed system performs its main objective: to monitor
engine’s condition and perform fault detection.

The sensor nodes perform its default operation: in-node fault detection accord-
ing to the default scenario. This scenario sets default transmit update period
(TTdefault) and default measurement update period (TMdefault) which may be indi-
vidual for each sensor node. See the update periods in Fig. 4.5. Parameters of
default scenario are based on:

• Need for continuous monitoring: TMdefault is shorter with demand on con-
tinuous monitoring (risk of missing short-time change of behavior), while it is
longer where several snapshots are sufficient for engine’s condition monitoring.

• Criticality and rapid reaction of change: Both TTdefault and TMdefault are small
when there is demand of very fast reaction and adaptivity of monitoring system
and vice versa.

• Type of sensor node energy resources and planned monitoring phase duration:
TMdefault and TTdefault play the key role in expected monitoring system life
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cycle. For given expected life cycle the trade-off between sensor node energy
resource and TMdefault and TTdefault must be found.

Fig. 4.10 shows simplified flow diagram for the monitoring phase and depicts
different roles of a sensor node and the central node. Sensor nodes perform in-node
fault detection and are capable to adapt its behavior, perform another monitoring
methods or completely reconfigure as described in Section 4.3. Central node controls
the monitoring and fault detection process and when necessary commands the sensor
nodes to adapt (4.3.2) or reconfigure (4.3.3). Based on the character of engine’s
monitoring system the central node also initiates the monitoring phase.
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Figure 4.10: Phase: Monitoring

4.5 Summary

This chapter introduces the novel and original approach for WSN based condition
monitoring. This approach enables to employ computationally intensive methods of
vibrational signal processing and methods of condition monitoring in computation-
ally weak nodes of WSN.

Thanks to the approach key attributes Adaptivity, Reconfigurability and Three
phases of operation enables the immediate fault detection capability while providing
long-term monitoring.
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Chapter 5

Novelty fault detection

From the requirements defined in Section 3 there arises a need of development of
monitoring system which is able to detect a fault of a machine, while there is no
example of a fault when a system is created. In other words there arises the question:
”How to detect a fault of monitored machine, when there is no example
of fault available?”

Usually it is easy to obtain a measurement of monitored machine at normal work-
ing conditions, which represents healthy state of a machine. In opposite it is very
difficult, expensive and often impossible to obtain a measurement which represents
a state of machine’s fault. Such a measurement would require introduction of some
kind of destruction to a machine.

Automatized fault detection system involves data-driven approach of machine
learning: pattern recognition (or classification). Conventional methods of pattern
recognition require a data set which comprises all classes (situations) of behavior,
while each class is sufficiently represented. These conventional methods can not be
used in the case, when only one class is described well and there is no (or very little)
information about the other classes. However, solution of this specific problem can
be accomplished by method called one-class classification.

5.1 Features

Feature x is obtained (computed) from the sampled signal. Set of features represent
a pattern (i.e. a object, a state). An object is a single point in the d-dimensional
space. The most important task is to find such features which create compact and
separable regions in the feature space for each class to be classified.

For multi-class recognition task a process of discovering of appropriate features
is provided by feature selection or extraction. The goal of feature selection is to
find the most suitable features from a large set of all possible features (from mea-
surement vector). It means that the most important features are used, whereas the
non-important are discarded. In opposite, the feature extraction approach trans-
forms the space of original measured vector into space with reduced dimension. It
leads to features which contain condensed information from the signal. Quantitative
criteria like inter/intra class distance, Chernoff–Bhattacharyya distance, probabilis-
tic distance measures, probabilistic dependence serve to determine quality of selected
or extracted feature. [48]

For one-class recognition task it is not possible to use above mentioned methods
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of features extraction and selection, because it is not known, how the features would
react in the case of machine’s fault.

Thus the features must be obtained based on the knowledge of the machine sub-
stance, its components and expected behavior. This is rather model-based approach,
than data-driven selection/extraction. Furthermore, in the case that features are
computed at low-power microcontrollers, the computation demands has to be taken
into account.

5.2 Classification

A classifier is a function which outputs a class label for each input object. An input
object is specified by the feature vector x = (x1, · · ·xd). Dimension of feature space
is determined by number of features d.

The recognition system is commonly operated in the two phases: training (learn-
ing) and classification (testing), see in the Figure. 5.1. In the training phase there
has to be found preprocessing techniques, feature selection/extraction methods and
has to be set up a function of a classifier. In the testing phase, the system indepen-
dently process features x and classifies the input pattern to one of the categories
ω1, ω2, · · · , ωc.

Figure 5.1: Training and testing phase of pattern recognition [49]

Classifier learning can be supervised or unsupervised. For the supervised learning
the training samples are labeled by a class. While in the unsupervised learning the
classes must be found in the pattern without this information. [49]

In the process of classification, one of the four situations depicted in Table 5.1
can happen. Two kind of errors may be distinguished:

• error of first kind εI – for MCM it means a false alarm,

• error of second kind εII – fault which was not detected.

Optimizing a classifier to maximize its performance on the training set does not
always lead to the desired performance on the testing set, because the training set
may not describe the real complete situation but just its subset. Therefore there
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Table 5.1: Result of an object classification

Object from
target class

Object from
outlier class

Classified as a
target object

true positive
false positive
(error εII)

Classified as an
outlier object

false negative
(error εI)

true negative

is requirement for a good generalization of a classifier, i.e. an ability to perform
well on the testing set. Main factors which may harm a good generalization and
performance of a classifier are overfitting, too many unknown parameters of classifier
model (function) and curse of dimensionality.

The overfitting or also overtraining problem arises when a classifier is trained
too precisely on the training samples with a low complexity. This is strengthened
by a large number of features per object (pattern) and also by too complex (many
unknown parameters) function of classifier.

The term curse of dimensionality describes the fact that a volume of the feature
space increases exponentially with a number of features. That implies that some
compromise between number of features, complexity of classifier and amount of
training data must be found. [50]

5.3 One-class classification

One-class classification is a special case of classification problem, where only infor-
mation about one class – target class is available. This means that in the training
process there are only the samples which represent the object of target class. The
boundary of a classifier has to be estimated just based on this target class. The task
is to find a such boundary that accepts as much target class while minimizes the
chance of accepting the outlier objects. [50]

Several methods are known [50] to construct a model f(x; w) (where x is a
feature vector and w is a vector o weights) of one-class classifier. Three main
approaches may be distinguished: probability density estimation, boundary methods
or reconstruction methods.

In density methods a probability density of training samples is estimated and
a threshold is determined. Usually a probability density function is assumed as
Gaussian or Poisson. Function of Gaussian model f(x;µ,C) is shown in 5.1

f(x;µ,C) =
1

(2π)
3
2 |C| 12

· e−
1
2
(x−µ)T·C−1·(x−µ) (5.1)

where x is the classified object in the feature domain and weights w are µ – vector
of mean values, and C – covariance matrix. Weights µ, C and threshold are found
in the process of training, while the main computational effort is the inversion of
the covariance matrix C.

Tested object is accepted or rejected based on the threshold Θ in 7.2:

h(f(x)) =

{
target if f(x) ≤ Θ
outlier if f(x) > Θ

(5.2)
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The threshold Θ has to be found based on the trade off between the fraction
of the target class accepted and the fraction of outliers rejected [50]. It could be
determined analytically thanks to the assumption that the objects have Gaussian
distribution. Because the assumption of Gaussian distribution does not always hold
ideally, it is better to determine the threshold Θ empirically in the process of training
based on the fraction of target class to be rejected chosen by the user. However, this
setup results in certain false negative error εI (i.e. false alarm), it prevents classifier
from overtraining and helps to provide better generalization.

The computation complexity is d3 and to store the classifier model takes d+d2+1
constants (µ + C + Θ).

When the amount of training samples is big enough more flexible density model
can be used e.g. mixture of Gaussians or Parzen density estimation. Mixtuture
of Gaussians solves better a situation when the data in dataset are not unimodal
and convex. But the user has to provide another parameter – number of Gaussians.
That also increases computational demands of testing phase. While the computa-
tional cost for training a Parzen density estimator is almost zero, the testing is very
expensive because all training objects have to be stored. [50].

The greate advantage of density methods is in relatively easy computation and
direct connection with the substance of solved problem.

Boundary methods come out of the Vapnik statement, that when just a limited
amount of data is available, one should avoid solving a more general problem as an
intermediate step to solve the original problem [51]. That means that it is not
necessary to estimate the complete data density (as in density methods), when
only the boundary around the objects is necessary. Boundary methods are based
on the distances thus they are very sensitive to the scaling of features and the
output can not be interpreted as a probability. Into these methods may be included:
k-centers, Nearest Neighbor method (NN-d) or Support Vector Data Description
(SVDD) [48, 50].

Reconstruction methods make assumptions about the clustering character-
istics of the samples or their distribution in subspaces. A set of prototypes or
subspaces is defined and the a reconstruction error is minimized [50]. Here may
be placed methods such as k-means, learning vector quantization (LQM), principal
components analysis (PCA) or auto-encoders and diabolo networks based on neural
networks. Reconstruction methods are usually computationally demanding (both in
training and testing phase) and the direct connection with a problem substance is
mainly lost.

5.4 Summary

This chapter summarizes the state-of-the art methods suitable for in-node fault
detection. The method of one-class classification was identified as favorable approach
novelty in-node fault detection. Especially the density method is very convenient
for the given application thanks to its low computational complexity of the testing
phase.
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Chapter 6

Vibration-based monitoring of
turbine engines

The typical application for vibrational monitoring of aircraft systems, components
and powerplant is the gas turbine engine. Generally the engine is one of the most
important and expensive elements of an aircraft. Further the gas turbine engines
are found in a large number of platforms and in large number of applications. Typ-
ically as turbofan engines of large passenger aircrafts and business jets, turbo-shaft
application in helicopters or in Auxiliary Power Units or as turboprop engines in
propeller driven aircrafts.

This chapter introduces methods of vibration-based signal analysis with focus on
methods suitable for distributes signal processing implemented in Wireless Sensor
Networks.

For the vibration-based monitoring of the aircraft turbine engines it is important
to understand an engine operation and to analyze its components significant for
vibrodiagnosis. Further by the application of signal analysis methods are extracted
features which describe engine’s behavior and allow to detect and/or diagnose a
faulty behavior.

6.1 Aircraft Gas Turbine Engines

The general classification of aircraft gas turbines and their components significant
for vibration monitoring is described in Table 6.1:

Additionally based on an engine design there may by multiple shafts, multiple
compressor and turbine stages each rotating at different velocity and additional
systems such as an accessory gearbox.

From the vibrodiagnostic perspective gas turbine engines are rotating machines
which suffers mainly in:

• Imbalance, misalignment, looseness (improper fit) of shafts, compressors, tur-
bines.

• Bearings faults.

• Gearboxes faults.
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Table 6.1: Aircraft turbines and their components significant for vibration monitoring

Turbine Engine Significant components for vibration monitoring

Turbojet Compressor, shaft, turbine

Turbo-shaft
Compressor, shaft, turbine, gear box (gear box connect-
ed to free turbine stage)

Turboprop
Compressor, shaft, turbine, gear box, propeller (gearbox
which powers a propeller is connected directly to the
shaft)

Turbofan Fan, compressor, shaft, turbine.

6.2 Time domain methods

Some features can be calculated from the raw time signal obtained from sensor. But
usually data must be conditioned or preprocessed using technique as amplification,
mean value removal, time synchronous averaging or filtering [52]. Conditioning and
preprocessing improves the possibility to extract useful information from signal, but
in some cases these techniques are demanding or unfeasible. Methods of signal
preprocessing are depicted in Figure 6.1. Following features are divided into groups
according to signal preprocessing technique.

6.2.1 Raw time signal

The simplest approach in time domain is to measure root-mean-square (6.1). This
feature measures the power content in vibration signature. It describes the overall
noise level, but can not localize the faulty element. It can very effective detect major
out-of-balance of a rotary machine, but can not detect appreciable changes in early
stages of gear and bearing damages [52].

RMS =

√√√√ 1

N

N∑
i=1

xi2 (6.1)

where N is the number of samples in measured discretized signal, and xi is the value
of the i-th sample of the signal.

More robust is to use the ratio of the peak level of the measured signal to the
RMS level, which is called crest factor (6.2). For normal operations, crest factor
ranges between values 2 to 6. Higher values usually point to machinery problems
[52].

crest =
peak

RMS
(6.2)

It is usually also quite useful to use statistical moments, which describe probabil-
ity density curve and its deviation from Gaussian distribution. The first and second
moments are known as a mean value (6.3) and variance (6.4). The third normalized
moment is known as the coefficient of skewness (6.5), fourth normalized moment is
called kurtosis (6.6). For an undamaged bearing, the kurtosis value is close to 3. A
greater value indicates impending failure [53].
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Figure 6.1: Time signal – extraction methods [52]

x =
1

N

N∑
i=1

xi (6.3)

σ2 =
1

N − 1

N∑
i=1

(xi − x)2 (6.4)

skewness =

∑N
i=1(xi − x)3

Nσ3
(6.5)

kurtosis =

∑N
i=1(xi − x)4

Nσ4
(6.6)

6.2.2 Time synchronous averaged signal – TSA

Time synchronous averaging is a technique, which extracts repetitive signals from
additive noise. Signal is divided into segments with the same length based on the
synchronizing signal (tacho pulse). Then the signals segments are averaged, thus
the random noise is suppressed.

FM0 (6.7) detects major tooth faults, which usually manifest by an increase of
the peak-to-peak level of the signal, but do not change the meshing frequency.

FM0 =
PPA∑n
i=1A(fi)

(6.7)
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where PPA is peak-to-peak value of TSA and
∑n

i=1A(fi) is the sum of ampli-
tudes correspond to the mesh frequency and its harmonics. FM0 is a good indicator
of a major, but not minor tooth damage. [52]

6.2.3 Residual signal – RES

Residual signal is obtained from TSA signal by removing fundamental shaft frequen-
cy and its harmonics.

NA4 (6.8) was developed to detect the onset of damage and to continue to react
to this damage as it spreads and increases in the amplitude [54].

NA4 =
N
∑n

i=1 (ri − r)4[
1
m

∑m
j=1

(∑n
i=1 (rj − rj)2

)]2 (6.8)

where r is residual signal, r is mean of the residual signal, N is the total number of
data points in time record, m is the current time record in the run ensemble [52]

6.2.4 Difference signal – DIF

Difference signal is created by removing the sidebands of the primary meshing fre-
quencies of the RES signal [52].

FM4 feature detects changes in the vibration pattern resulting from damage on
a limited number of gear teeth [54]

FM4 =
N
∑n

i=1

(
di − d

)4[∑n
i=1

(
di − d

)2]2 (6.9)

where d is the difference signal and d is its mean value.
Features M6A(6.10) and M8A (6.11) were proposed to detect surface damage

on machinery components. It is expected, that both features are more sensitive to
the peaks in DIF signal in compare to FM4.

M6A =
N2
∑n

i=1

(
di − d

)6[∑n
i=1

(
di − d

)2]3 (6.10)

M8A =
N3
∑n

i=1

(
di − d

)8[∑n
i=1

(
di − d

)2]4 (6.11)

6.2.5 Band-pass mesh signal – BFM

Band-pass mesh signal is the TSA signal filtered around the primary gear mesh
frequency, including as many sidebands as possible [52]

NB4 (6.12) uses the envelope of a BFM signal. This feature points to the
damaged teethes, which express as a transient load fluctuations.

NB4 =
N
∑n

i=1

(
Ei − E

)4[
1
m

∑m
j=1

(∑n
i=1

(
Eij − Ej

)2)]2 (6.12)

where E is the envelope of the BFM signal and E is its mean value.
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6.3 Frequency domain methods

Spectral analysis of the vibrational signal of a rotating machine is a very useful and
widely used tool for machine condition monitoring. From the essence of a machine,
which rotates periodically implies that the faults are also periodically repeated in
the signal and thus can be remarkable in the frequency domain. Fourier transform
decomposes the time signal into the set of harmonics components:

F(f) =

∫ ∝
−∝

x(t)e−2jπftdt (6.13)

where F(f) is a complex spectrum of a time signal x(t).
Often is used a Power Spectral Density (PSD) for random continuous signals.

PSD is a distribution function, which describes the distribution of the power of
signal in frequency domain.

To compute Discrete Fourirer Transform (DFT) of N points takes N2 arithmeti-
cal operations. Using algorithm of Fast Fourier Transform reduces the number of
arithmetical operations to N log2(N).

Techniques of MCM from spectrum are based on examination of present frequen-
cy components, their magnitudes and phase shifts. Each element of a machine has
its specific contribution to the spectrum. If the parameters of elements are known it
is possible to compute the frequencies were the faults are expected. Then the levels,
ratios and other features of this frequencies can be tracked. In global the frequency
domain methods are good in localizing the defects, but can not react to the earliest
stages of faults.

Bellow are described methods of vibordiagnostic signal analysis based on spec-
trum evaluation.

6.3.1 Misalignment

Misalignment occurs when shafts, couplings and bearings are not aligned along their
centerline. Angular misalignment is caused by improper joint of two shafts in such
way, that there is induced a banding force on the shaft. Parallel misalignment occurs
when two shaft are aligned parallelly but shifted from each other. Missalignment
can mainly cause a bearing fault due to introducing a higher load than a bearing is
designed.

Angular misalignment can be recognized by axial vibration at running frequency
(1st order frequency) and also by 180 ◦ phase shift across the coupling of machine.
Parallel misalignment produces radial vibration at twice the running speed frequency
(2nd order frequency). Phase shift from 0 ◦ to 180 ◦ can be observed from horizontal
to vertical position of sensor. Usually angular and parallel misalignment are com-
bined. Severe misalignment is typical by emerging of higher orders in spectrum (3rd
to 10th order).

6.3.2 Imbalance

Imbalance occurs when the center of rotation is not the same as the shaft’s mas
centerline. Static imbalance (can be observed at rest) only one force (weight) is
involved, while in couple imbalance there are two forces involved. Couple imbalance
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is observed only when a shaft is rotating. Usually the static and couple imbalance
are combined into adaptive imbalance. Imbalance can, similarly as misalignment,
contribute mainly to bearing fault.

Imbalance is usually emerged by increase of radial vibrations at 1st order frequen-
cy, while very low axial vibrations. There is phase shift of 90 ◦ between horizontal
and vertical radial vibrations and and there is usually no phase shift across the
machine.

6.3.3 Looseness

Looseness is caused by improper fit between component parts: typically distortion
of the base frame, loose bolts, cracks in bearing pedestal, bearing liner loose in its
cap or loose shaft.

It is typical by long string of harmonics (up to 10th harmonics) and also by sub-
harmonics multiples of 0.5. Occurrence of looseness is unstable and can significantly
vary from one measurement to the other.

6.3.4 Defects of rolling bearings

Bearing failure is one of the most frequent reasons of machine breakdown. A bearing
may fail for many reasons e.g. ineffective/contaminated lubrication, heavier loading
than anticipated or improper installation, however a bearing defect is usually caused
by some other machinery problem.

Figure 6.2: Bearing faults

Bearing faults can be classified into four stages based on the degree of severity
as depicted in the Fig. 6.2.

In Stage 1 the very beginning of bearing fault is emerging in ultrasonic fre-
quencies over 200 kHz up to units of MHz. Stage 2 is typical by natural bearing
frequencies, i.e. resonance of bearing material, ranging from 30 kHz to 120 kHz.
Due to relatively high frequencies detected in stage 1 and 2, it is not possible to use
conventional accelerometers.
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In Stage 3 there are observed discrete bearing frequencies generated by balls
passing over a defect. Discrete frequency is determined by the shaft speed ωs, bearing
geometry and defect location. The characteristic defect frequency for the radial ball
bearing can me estimated as (6.14) for outer race defect, (6.15) for inner race defect,
(6.16) for cage defect and (6.17) for ball spinning.

ωor = Zωc =
Zωs

2

(
1− d

D
cosα

)
(6.14)

ωir = Z(ωs − ωc) =
Zωs

2

(
1 +

d

D
cosα

)
(6.15)

ωc =
ωs
2

(
1 +

d

D
cosα

)
(6.16)

ωb =
Dωs
2d

(
1− d2

D2
cos2 α

)
(6.17)

where ωs is the shaft rotation frequency, d is the diameter of ball, D is the pitch
diameter, Z is the number of balls, and α is the contact angle [53, 55].

In this stage also a bearing wear is visible and bearings have approximately 1–5 %
of remaining life. Bearing in this stage should be replaced immediately.

In the final Stage 4 discrete bearing frequencies and natural frequencies dis-
appear, while 1st order grows and the broadband noise floor increases. Severity of
bearing damage is very high, there is less than 1 % of remaining life.

More information may be found in [1] or [55].

6.3.5 Gears defects

Thanks to spectral analysis it is possible to observe the energy changes in gear
rotating and meshing frequency (6.18) and their harmonics.

fm = fsN (6.18)

where fm is the meshing frequency, fs is the gear speed and N is the number of
teeth. From the parameters of the gear elements it is possible to find and localize
defects at certain frequencies. Gearbox spectrum is characteristic by amplitude
modulation caused by damaged teeth. This can be evaluated directly from the
spectra or advanced techniques as enveloping (see 6.4.2) and cepstral analysis (see
6.4.3) may be used.

6.4 Other methods

6.4.1 Order analysis

Order analysis is a special case of spectrum analysis, when sampling is synchronized
with shaft rotational speed. The key benefit is when the rotational speed of a
machine is not constant (e.g. run-up, run-down). First order at the x-axis relates
to the shaft rotational speed and thanks to synchronizing it is related to the certain
position of the shaft. Then the higher orders can be related for example to the
number of the teeth (e.g. meshing frequency) in a gearbox.
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6.4.2 HFRT – Envelope

High-Frequency Resonance Technique (HFRT) is used to monitor the high-frequency
response of the mechanical system periodic impacts. Each time the rolling element
of a bearing hits a part with a defect or the tooth of gearbox meets a faulty tooth, the
impulse and its response in the material is produced. This response is at much higher
frequency than defect frequencies and its energy is extended at relatively narrow
frequency band. The method analyzes frequencies of the structural response. First,
the vibrational signal is band-pass filtered around the excited structure resonance
frequency. Second, the envelope is created using rectifier, peak-holder and smoother.
Then the spectra of envelope is estimated and compared with the defect frequencies.
[52, 55]

For simple machines good results may be obtained, but for more complex ma-
chines it is difficult to select appropriate structural frequencies. [55]. Enveloping
also proved in early detection of bearing faults [52].

6.4.3 Cepstral analysis

Cepstrum, which can be described as the spectrum of the logarithmic power spec-
trum (6.19), is useful in detecting spectrum periodicity, e.g. components which are
uniformly spaced in spectrum. This method can for example detect periodic impuls-
es caused by faulty bearing (6.4.2) and so the wear or damage of tooth in gearbox.
Cepstrum analysis can in this case prove the amplitude modulation, because the
sidebands are uniformly disposed around the gear mesh frequency and thus point to
fault, which has not to be so obvious from spectrum. [52, 55]

xc = F [ln |X(ω)|] (6.19)

where X(ω) is spectrum of x(t).

When the X(ω) is complex, the cepstrum is known as the complex cepstrum
although its module is even and its phase is odd, the complex cepstrum is real-
valued. When the power spectrum is used to replace spectrum X(ω), the resulting
spectrum is known as the power spectrum or real cepstrum and is thus a scaled
version of complex spectrum where the phase of the spectrum has been set to zero.
[55]

6.4.4 Time–frequency domain methods

While methods based on spectral analysis are good in localizing defects compare to
time domain methods, they are less effective with nonstacionary phenomena asso-
ciated with localized faults. Time–frequency analyses such as Short-Time Fourier
Transform (STFT, spectrogram), Wavelet Transform (WT), the Winger-Ville distri-
butions (WVD) or the Choi-Williams distributions (CWD) are designed to give the
best in both time and frequency resolution. They describe the energy distribution
over frequencies changes over the time. [55]

But main drawback of time–frequency methods are high computational cost and
non-trivial evaluation of features.
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6.5 Summary

See the Table 6.2 which summarizes the methods for vibration based monitoring
and also brings their assessment of applicability for in given situations.

Table 6.2: Vibration-based monitoring methods summary

Feature
Comp. &
Memory
Demands

Comment

Time-Domain – from raw
signal (RMS, crest, ampli-
tude, kurtosis, skewness)

*
Describe well the overall machine
behavior

Time-Domain – from con-
ditioned signal (FM0, NA4,
Fm4, M6A, M8A)

**

Synchronized averaging requires
a tacho pulse, machine rotation
freq. has to be known; filtering
increases comp. demands;–

FFT – only amplitude spec-
trum

***
Describes machines overall be-
havior more detailed than time-
domain methods

FFT – amplitude and phase ***

Requirement of very precise time
synchronization of nodes to per-
form phase analysis of signals
measured at different spots

Order analysis ***

Requires instant information
about the shaft position or at
least precise instant rotational
frequency

Enveloping (HFRT) ****
Useful for analyzing high-
frequency signals (material
structural response)

Cepstral analysis ****
To evaluate a feature requires pre-
cise information of rot. frequency

Time-Frequency methods *****

Besides computational cost non-
trivial evaluation of features; use-
ful for non stable regimes of en-
gine

This chapter analyzed the methods for vibrational monitoring of aircraft turbine
engines with focus on methods suitable for distributed signal processing implemented
in Wireless Sensor Networks.
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Chapter 7

Experimental evaluation of the
proposed approach

Evaluation of proposed novelty fault detection method and of proposed WSN frame-
work for vibrational condition monitoring was carried out by means of designed
experiment using a small turbojet engine test case.

Proposed framework and methods were implemented in WSN platform Crossbow
IRIS. As a test case the small aircraft turbojet engine was selected representing the
typical use case.

7.1 Design of experiment

The experiment is designed to prove key abilities of proposed system. Its main
aim was to evaluate proposed fault detection method and proposed WSN based
vibrational monitoring system framework, especially its features of adaptivity and
reconfigurability.

The main features of this experiment are:

• Once the suitable spots for vibrational monitoring were selected, the sensor
were deployed and remained for the whole duration of the experiment.

• The engine was operated in different regimes of operation and different states
of its health.

• Conventional data acquisition: To achieve the repeatability of the experiments
the engine’s vibration were at first phase recorded using conventional equip-
ment, see the Fig. 7.1,a).

• Simulated engine run: evaluation of proposed framework was then performed
by reproducing recorded signal, see the Fig. 7.1, b).

In the phase of simulated engine run the digitalized stored signal was reproduced
using Digital to Analog Converter and after signal conditioning (low-pas filter, gain,
offset) was brought directly to a sensor’s node Analog to Digital Converter, see
the Fig. 7.1, b). In this phase the laptop has two roles: First, to reproduce engine’s
vibrations of given operational phase and state of condition; second, to act as central
node. This scheme allows to focus directly on the evaluation of in-node algorithms
and its behavior of the engine monitoring system.
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Control measurement
and save Simulate tested object

and act as Central node

Digital/Analog
Converter

Gateway

Sensor nodes

Turbojet TS20

Analog/Digital
Converter

A) Conventional data acquisition B) Simulated engine run

Figure 7.1: Setup of experiment

7.2 Object of experimental evaluation

7.2.1 Turbojet TS20

TS20 is a small experimental single shaft turbojet engine originated from TS-20B
turboshaft which served for starting a large turbojet engine AL 7F-1. It is composed
of a single 20-blades radial compressor and single stage 26-blades turbine. It is
equipped by two bearings: the first ball bearing at front part and the second roller
bearing at rear part. See detailed description and mechanical parameters in [56].
The tested turbojet engine TS20 is located at University of Defence, Brno, Czech
Republic and operated by Department of Air Force and Aircraft Technology.

Figure 7.2: Turbojet engine TS20 at University of Defence Brno
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Engine is started using an electrical starter. When the revolutions builds up to
its nominal value it operates at constant speed for up to 50 seconds. The variation
of constant speed is not bigger than 5%. See summary of operational regimes in
Tab. 7.1.

Table 7.1: TS20 operational regimes (RPM – Revolutions Per Minute)

Regime Rotational
speed

Description

Cold rotation 7.5k RPM Stable speed rotating the engine
by electrical starter with no igni-
tion

Reduced speed 44k RPM Nominal reduced stable speed

Full speed 49.5k RPM Nominal full stable speed

Maximal speed 50.5k RPM Limiting speed

7.2.2 Vibration monitoring sensors

As sensors of vibrational behavior of the tested engine accelerometers were used. Ex-
periments were undertaken at compressor and at turbine stage. But due to a high
temperature at turbine stage it was not possible to perform there long-term mea-
surement. However it was proven that compressor stage is very well representative
for the judgment about the overall engine condition.

The sensors were firmly attached using customized holders tightened by screws
joining the compressor flange to the middle part of the engine as depicted in the
Fig. 7.3. Orientation of accelerometer’s axis of sensitivity was radial and axial,
while radial vibrations are usually more important for vibrodiagnosis. Two kind of
accelerometers were utilized, see details in Tab. 7.2.

Cross section 1:
Flange of compressor 1

Starter

Compressor Combustion
chamber

Turbine

Nozzle

S1
radial

S3
axial

S2
radial

12
1

2
3

4

5
6

2

Figure 7.3: Position of sensors

To cover the general engine behavior the expected frequency range of the mea-
sured signals is several multiples of engine’s rotating frequency (1st order frequency).
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Maximal expected frequency is at 26th multiple of 1st order frequency which is re-
lated to the turbine stage. The accelerometer S3 does not cover the full expected
frequency range however it can be used for relative comparison of vibrations at low
frequencies, but must not be used for measurement of absolute value of vibrational
energy or for absolute values of amplitudes in frequency spectrum.

Table 7.2: Vibration monitoring sensors details

Sensor
mark

Sensor type Dynamic
range

Frequency
range

Position
and orienta-
tion

Engine’s
part

SN 1 Endevco 75-10 ± 500 g 50 kHz 11 O‘Clock,
Radial

Flange of
compressor

SN 2 Endevco 75-10 ± 500 g 50 kHz 2 O‘Clock,
Radial

Flange of
compressor

SN 3 Bruel&Kjaer
BK4507

± 50 g 6 kHz 7 O‘Clock,
Axial

Compressor,
fuel input

7.2.3 Tested engine’s conditions

The engine was monitored at different regimes of operation (7.1) and at different
states of condition (7.3).

The combination of regime and condition is marked as A, B, C and D:

Table 7.3: States of engine’s condition

Mark Regime Description

A Full speed Health state

B Full speed Serious compressor damage

C Reduced speed Minor Damage

D Reduced speed Serious compressor damage

Mark A stands for the full speed regime when the engine was considered as in
health state. See a short snapshot from the signal taken by sensor S1 in the upper
graph in Fig. 7.4 and amplitude spectrum in Fig. 7.4. In the signal there is present
a frequency peak at 1st order frequency and also smaller peaks at 2nd and 3rd order
frequency. Further there is a significant amount of energy between frequencies 6 kHz
– 10 kHz which may be caused by gasdynamic vibrations. Any possible bearings
defects were not identified in the signal particularly due to the fact that no sensor
was placed directly at the bearing house.

However the analysis of the vibrational signals indicate imbalance of the machine,
the experimental engine is normally operated and is considered as health.

Mark C indicates the state of the engine as minor damage when it can be
operated for short period of time at reduced speed.
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Marks B and D are related to a state after a serious damage when the blades
of compressor were damaged by foreign object. The overall energy of signal rose at
the whole frequency range, and strong frequency peaks which are not related to any
multiple of order frequency emerged. Mark B indicates a run at full speed and mark
D at reduced speed.
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Figure 7.4: Illustration of 1 s record of signals acquired by sensor SN 1
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Figure 7.5: Illustration of amplitude frequency spectrum of signals acquired by sensor SN 1
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7.3 WSN platform

A WSN platform Crossbow IRIS [47] from middle performance class (as defined in
2.2.1) was selected. See detailed description of a sensor node and a central node
bellow.

7.3.1 Sensor node

The sensor node Crossbow IRIS (see Fig. 7.6) is based on the Atmel ATmega1281
low-energy, 8-bit microcontroller (8 KB RAM, 128 KB program flash memory, 512
KB data serial flash memory) and Atmel RF230 IEEE 802.15.4 compliant ZigBee
Radio Frequency (RF) transceiver (2.4 GHz, max. data rate: 250 kbps). It is
equipped with an eight-channel 10-b Analog-to-Digital Converter (ADC) and pow-
ered by a pair of AA batteries. The nodes are programmed under the TinyOS
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Figure 7.6: Sensor node architecture, [47]

operating system (MoteWorks distribution), which employs event-based program-
ming, see its description in Section 2.2.2. MoteWorks also employs TinyOS support
for mesh networking, time-synchronization up to 1 ms, bi-directional communica-
tion and Over-the-Air-Programming (OTAP). The achievable sampling frequencies
of this setup are 1.8 kHz, 6.3 kHz and 7.7 kHz [47].

7.3.2 Central node

The central node is composed of Crossbow MIB520 gateway and a laptop run-
ning under Windows operating system. MIB520 has the same architecture as IRIS
sensor node and ensures just communicational interface between sensor nodes and
laptop. The central-node’s software is realized in LabVIEW programming environ-
ment, which is very suitable for this purpose thanks to its event-based state machine
nature.

7.4 Phases of operation

This section describes implementation and evaluation of there phases of operation:
1. Deployment and acquisition, 2. Learning and programming, and 3. Monitoring
and Fault Detection proposed in Section 4.4.
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7.4.1 Phase 1: Deployment and acquisition

Implementation of Phase 1 follows the scheme in Fig.4.8 described in Section 4.4.1.

Deployed sensor nodes are equipped with an acquisition program and wait for
the trigger command from the central node to star the measurement.

Central node initiates the measurement when the engine operational conditions
are met, i.e. when the engine is at constant speed. Trigger message is spread to the
waiting sensor nodes and they start acquisition simultaneously.

Sensor nodes perform its acquisition at the highest possible sampling rate:
7.7 kHz. In this experimental setup the signals previously recorded by conven-
tional equipment were low-pas filtered to meet the Nyquist sampling limit and then
fed to the sensor nodes.

Record of 3000 samples is recorded, which means 390 ms of vibrational signal is
acquired. Because of the restricted length of one message, the samples are divided
into 150 messages by 20 samples and are then sent stepwise to the central node,
which takes around 1.5 s; see Fig. 7.7.

time (s)

acquire
3000 samples

send samples in
150 messages

wait for next trigger

0 1.90,39

Figure 7.7: Scheduling of the signal acquisition program

To acquire sufficient number of samples for the learning phase, the acquisition
cycle is repeated 20 times. The individual acquisition cycles of certain nodes are
synchronized and are fully controlled by the central node.

7.4.2 Phase 2: Learning and programming

Implementation of Phase 2 follows the scheme in Fig.4.9 described in Section 4.4.2.

Raw signals acquired in the Learning phase from sensor nodes S1, S2 and S3 are
stored in central node.

Character of the engine: The most important characteristics is that it is
single shaft turbojet engine with single stage radial compressor and single stage
axial turbine, two bearings and no gearbox. See detailed description in 7.2.

Character of the signals: While sensor nodes S1 and S2 sense radial engine’s
vibration, the S3 has axial orientation, see details in Section 7.2.2 and Table 7.2.
All the sensors are close to the 20-blades compressor.

Sensor-node’s maximal sampling frequency 7.7 kHz limits the available frequency
range for signal analysis only up to 3.85 kHz, which covers 4 multiples and 5 multiples
of engine’s 1st order frequency at full speed and at reduced speed respectively. Given
frequency range allows to focus on general engine’s behavior only, which implies
selection of suitable methods described in Section 6. However the 7.7 kHz sampling
frequency is the minimal for engine’s health monitoring.

Energy resources: The energy resource of the sensor node is a 2xAA battery
or primary cell pack, which capacity could be between 3200 mAh to 4500 mAh. The
IRIS sensor node is experimental platform so its energy resource is not designed to
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accomplish requirements of engine’s health monitoring system. However the design
of such energy source is out of the scope of the thesis, see 2.2.1.

Computational resources: The sensor-node’s computational capability is giv-
en mainly by its 8-bit MCU architecture and 8 KB RAM memory.

Only 1 ms time synchronization of signals acquired by different sensor-nodes and
no tacho pulse available at the sensor node level implies that the signal processing
methods, described in Table 6.2, which need those inputs are not applicable

Due to above described limits the applicable methods of vibrational signal pro-
cessing are non-conditioned time-domain methods and amplitude spectral analysis
based on Fast Fourier Transform.

Extraction of features

As the first step it is necessary to determine a length of a signal snapshot for the
feature extraction. This decision is driven mainly by demanded time-frequency
resolution based on the character of analyzed signal.

On the one hand a long snapshot improves frequency resolution i.e. allows to
distinguish between a small change of frequency of given signal’s elements and also
helps to make the time-domain features more prone to random fluctuations. On
the other hand a short snapshot allows to better focus on immediate incident and
thanks to less time needed for sampling and processing saves the power consumption
of a sensor node.

For given setup the most important factors are the sensor-node’s energy con-
sumption while a good performance of features is accomplished.

For this demonstration a length of snapshot 256 samples at 7.7 kHz sampling
frequency was selected. It gives approximately 33 ms of signal with theoretical 30 Hz
frequency resolution. Selected values serve very well for feature extraction needed
for engine general behavior monitoring.

The time-domain features RMS (based on equation 6.1), crest (equation 6.2) and
kurtosis (equation 6.6) were selected for demonstration. Those three features are
robust and describe the general behavior while are inexpensive for in-node compu-
tation.

RMS measures the power content of the signal and is very robust but is sensitive
to engine’s rotational frequency. Crest factor is, compared to RMS, more sensitive
to incipient damage, when the peak values develops and at the same time the overall
vibrational energy still remains the same. When also RMS develops with increasing
damage the crest factor loses its sensitivity. Based on the expert knowledge [53]
kurtosis is related to a machine damage especially when it exceeds value 3.

Fig. 7.8 shows time-domain features computed in sensor nodes SN 1, SN 2 and
SN 3 for signals acquired during engine’s run in state A: full speed, health state and
in state C: reduced speed, minor damage.

The features in feature space for all three sensor nodes during the Regime A
create a compact bodies which slightly differs from each other, but the ranges of
individual features axes are still comparable. However the situation for regime C
is different, where especially SN 3 does not give good expectation for successful
one-class classification.

For given time-domain features it takes 309 ms to in-node process one point in
feature space. Its asymptotic complexity is O(N), where N is number of samples.
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Figure 7.8: Time-domain features extracted on engine regimes A and C
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To obtain frequency-domain features the Fast Fourier Transform is implemented.
The amplitude spectrum of the 33 ms signal snapshot results in 128 frequency bins,
i.e. 128 features in feature space. The in-node processing takes 426 ms and its
asymptotic complexity is O(N · logN), where N is number of samples.

When the feature space needs to be reduced the most robust technique is to
obtain energy of several given frequency range intervals or simplified spectrum mask.

This approach is shown in Fig. 7.9 where feature space is reduced to 10 equidis-
tant spaced frequency bands.

Fig. 7.9 shows example of features extracted from frequency domain for sensor
nodes SN 1, SN 2 and SN 3 for signals acquired during engine’s run in state A in
state C. The

Another approach like tracking the energy of narrow frequency range focused to
1st order frequency and its multiplies may be applied while it increases the compu-
tational complexity, looses robustness and may require additional information from
central node.

Figures 7.8 and 7.9 depict exactly the situation when signals representing health
state are acquired during the Learning phase, no signals representing the other
states of engines. Suitable features has to be created based on the knowledge about
character of signal and engine and are limited by sensor-node’s computational and
energy resources as proposed in Fig. 4.9.

Table 7.4: Marking of extracted features

Mark Origin of feature Detail

F-TD-3 Unconditioned raw time-
domain signal, 33 ms snap-
shot

RMS, crest, kurtosis

F-FD-8 Amplitude spectrum, 128
bins, 0–3.85 kHz

Amplitude spectrum re-
duced to 8 equidistantly
spaced frequency bands.

F-FD-10 Amplitude spectrum, 128
bins, 0–3.85 kHz

Amplitude spectrum re-
duced to 10 equidistantly
spaced frequency bands.

F-FD-14 Amplitude spectrum, 128
bins, 0–3.85 kHz

Amplitude spectrum re-
duced to 14 equidistantly
spaced frequency bands.
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Figure 7.9: Frequency-domain features extracted on engine regimes A and C
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Implementation in-node fault detection method

The next step within the Learning phase depicted in Fig. 4.9 is creation and im-
plementation of in-node fault detection method. In this phase there are available
vibrational signals from the sensor nodes related to the health state of the engine on-
ly. There are no signals representing any engine’s fault. For this reason the one-class
classification, proposed in Section 5.3 is employed.

Due to sensor-node’s computational and memory limits, limited size of training
dataset and thanks to nature of features, the density-method-based normal one-class
classifier based on Eq. 5.1 is selected.

While the computational complexity of the training phase, which is held in cen-
tral node is O(d3), the complexity of testing phase (i.e. fault detection), which is
held in sensor node, is O(d), where d is the size of feature space.

To avoid numerical instabilities and to reduce the computational difficulty the
Mahalonobis distance f(x) 7.1 is used instead of 5.1.

Then the classifier function is:

f(x) = (x− µ)T ·C−1 · (x− µ) (7.1)

where x is the classified object in the feature domain and the parameters of the
model µ, C−1.

The classifier creates a continuous area around the training objects in the feature
domain. If the tested object belongs to this area it is classified as a target, i.e. health
state. If it belongs outside the area it is an outlier, i.e. it detects a fault. So the
result of fault detection is h(f(x)):

h(f(x)) =

{
target if f(x) ≤ Θ
outlier if f(x) > Θ

(7.2)

where Θ is the threshold directly related to the false negative error rate found during
the testing process.

The classifier training is held in computational unrestricted central node. For this
demonstration the MATLAB DD Tools toolbox was employed. There is individual
classifier trained for each individual sensor node.

In the classifier set point (threshold Θ) must be set a priori. This this setup
results in given false negative error which is related to false alarms. It is preferred
to set this threshold to create at least 5% false alarm rate. This improves classifier
generalization and robustness and lowers false positive rate. The engine health
monitoring system overall false alarm rate is mitigated in later steps.

Selected method of feature extraction and fault detection is implemented in-
to prepared nesC program template as depicted in Fig 4.9. Then the program is
automatically compiled for given target sensor node running under TinyOS.

When all programs are ready to upload Over-the-Air-Programming is initiated.
It is driven by the central node and is finished when all sensor node reboot to their
specific program.
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7.4.3 Phase 3: Monitoring and Fault Detection

As proposed in Section 4.3.2 and 4.4.3 in the Monitoring and Fault Detection phase
the sensor node starts performing its its default operation: vibrational signal sam-
pling and in-node fault detection executing, see Fig. 7.10 a).

The central node has the ability to send a command to sensor node which adapts
sensor-node’s default behavior by adjusting TT and TM periods. Further the central
node is capable to send the command with request for features and raw signal
samples, see Fig. 7.10 b) and c) respectively.

b) c)

request
features

sample
signal

compute
complex features

send multiple
messages
stepwise

set to
default

request
raw signal

sample
signal

send multiple
messages
stepwise

set to
default

a)

t T> M

t > TT

or
fault?

yes

no

no

yes

sample signal
and

fault detection

send one
message

Figure 7.10: In-node program

The in-node operation was implemented in nesC language and was executed un-
der TinyOS operational environment running in sensor nodes. The central-node
operation was implemented in LabVIEW language running under Windows operat-
ing system.

7.5 Summary

This chapter brings the experimental evaluation of the proposed novelty detection
method and of proposed WSN framework for vibrational condition monitoring. The
evaluation was carried out by means of designed experiment on small turbojet engine
TS20. The proposed framework was successfully implemented using WSN platform
IRIS and its capability was confirmed. It was proven that applied approach serve
to the condition monitoring purpose as it was designed.
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Chapter 8

Results evaluation

This chapter brings the detailed evaluation of results obtained by designed experi-
ment described in Chapter 7.

The performance of in-node fault detection method is evaluated i Section 8.1.
While the achievements of proposed WSN framework are summarized in Section 8.2.

8.1 Performance of in-node fault detection

method

Performance of in-node fault detection method depends both on contribution of ex-
tracted features and by performance of fault detection technique itself. For features
obtained from vibrational signal, their performance is higher as they react to a ma-
chine’s faulty behavior with higher sensitivity and vice versa. For a fault detection
method its performance is evaluated based on its ability to detect a fault and on its
fault positive and fault negative errors.

See bellow the detailed evaluation of achieved results.

8.1.1 Features performance

Fig. 8.1 shows comparison of time-domain features F-TD-3 (7.4) measured and ex-
tracted at given sensor nodes: top SN 1, middle SN 2, bottom SN 3 (see the sensor
nodes marking in Tab 7.2). The group of feature objects represents the whole engine
run in given health condition.

Left part of Fig. 8.1 compares features extracted on signals acquired during the
engine’s full-speed run at heath state (A) and engine’s full-speed run at engine’s
serious damage (B), as defined in Tab. 7.3. It is obvious that these two states of
health may be easily distinguished with given features for all three sensor nodes.
Both states create a compact body in feature space.

Right part of Fig. 8.1 compares features extracted on signals acquired during the
engine’s reduced-speed run at minor damage (C) and engine’s reduced-speed run at
engine’s serious damage (D). In this comparison the feature objects representing
engine’s states are mixed up together and it is not possible to easily distinguish
between give engine’s states.
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Figure 8.1: Comparison of time-domain features F-TD-3 for sensor nodes SN 1, SN 2, SN 3 and
different states of engine’s health

Fig. 8.2 shows comparison of frequency-domain features F-FD-14 measured and
extracted at given sensor nodes: top SN 1, middle SN 2, bottom SN 3 (see the
sensor nodes marking in Tab 7.2). The feature set represents one snapshot taken
during the engine run in given health condition. Therefor Fig. 8.2 gives the example
of feature space rather than description of the features behavior during the whole
engine run.

From the left part of Fig. 8.2 which represents comparison between engine’s
states A and B its obvious that these two states differs significantly from each other.

While in the right part of Fig. 8.2 the feature objects are more close to each
other, it is still obvious engine’s states C and D are represented by different pattern.
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Figure 8.2: Example of frequency-domain features F-FD-14 for sensor nodes SN 1, SN 2, SN 3 and
different states of engine’s health

Demonstration of features performance given in Fig. 8.1 and Fig. 8.2 shows that
time-domain features extracted from unconditioned raw signal are robust and cover
the difference between engine’s health state and serious damage very well. However
they do not perform very well in situation where engine’s health and fault states are
more similar to each.

The features extracted by robust technique described in 7.4.2 from frequency-
domain could give much better resolution between the engine’s health states even for
distinguishing between minor and serious damage. On the other hand the frequency
domain features are computationally more demanding. It takes 38 % more time
of the in-node processing compared to the frequency domain features. See details
in Section 7.4.2. In the other words they are responsible for 38 % more energy
consumption of sensor node computation.
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8.1.2 One-class classifier performance

Implemented method of novelty fault detection was one-class classifier. Its main
criteria is its sensitivity, i.e. ability to reveal a fault correctly. This ability is
measured by the false negative error rate (i.e. false alarm rate) and by false positive
error rate (i.e. missed fault).

In the Table 8.1 see the comparison of classifier performance for different type
of features. Feature set marked as F-TD-3 are 3 features RMS, crest, kurtosis
extracted on time-domain as described in 7.4.2. Feature set marked F-FD-8 and
F-FD-14 are created from frequency domain (7.4.2) so they create set of 8 and 14
features respectively (see the features summary in Tab. 7.4).

Table 8.1: Performance of classifier

Situation False neg-
ative rate
(%)

False positive rate (%)

Training :
Testing

Sensor
Node

For all fea-
tures

F-TD-3 F-FD-8 F-FD-14

A : B SN 1 5 0 0 0

A : B SN 2 5 0 0 0

A : B SN 3 5 0 0 0

C : D SN 1 5 48.28 0.44 0

C : D SN 2 5 2.55 0.11 0

C : D SN 3 5 0 0 0

First three rows of Table 8.1 depict the situation when classifier was trained on
features extracted from signal representing the health state of the engine at full
speed – mark A (see the definition of engine’s states marks in Table 7.3). Then the
classifier is tested on signal marked B – seriously damaged engine at full speed. The
false positive rate for all sensor nodes and different feature sets is 0 which means
that faulty behavior was reliably detected, while the false negative rate is for 0.05.
False negative rate is set during the training process as described above in 7.4.2.

The forth and fifth row of the Table 8.1 shows very poor performance of time-
domain feature set F-TD-3, while feature sets F-FD-8 and F-FD-14 performing very
well.

The last row of the Table 8.1 stands for sensor node SN 3 which does not have
sufficient frequency and dynamic range to be used for reliable measurement of signals
produced during engine regimes C and D. Even the fault detection method performs
very well in this case the results of this sensor node may be misleading and must be
avoided.

Fig. 8.3 shows the receiver operating characteristic (ROC) for sensor node SN 1
of the classifier trained on signal C – minor damage, reduced speed, and tested on
signal D – serious damage, reduced speed.
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ROC curve further shows that F-TD-3 feature set is not suitable for this specific
fault detection. While the feature sets F-FD-8 and F-FD-14 are performing very
well. The set point The false negative error assigned to 0.05 gives them a good set
point.
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Figure 8.3: Performance of classifier trained on C tested on D for Sensor Node 1

However this performance comparison is based on engine’s fault states available
in this demonstration, they are not available in the Learning phase. So the classifier
set point (threshold Θ) must be set a priori. It is preferred to set this threshold
to create at least 5% false alarm rate. This improves classifier generalization and
robustness and lowers false positive rate. The engine health monitoring system
overall false alarm rate is mitigated by monitoring system adaptive behavior.

The results of fault detection method performance demonstrate that proposed
method of in-node fault detection is suitable for real jet engine condition monitoring.

The computationally less demanding fault detection based on time-domain fea-
tures performed well to distinguish between healthy state and a serious engine fault,
which was still difficult to reveal by operator.

The computationally more demanding in-node fault detection based on feature
set from amplitude spectrum was able to reliably detect engine incipient fault even
in all conditions.
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8.2 Distributed WSN framework achievements

Distributed WSN framework for vibrational condition monitoring was designed es-
pecially to accommodate computationally intensive methods of vibrational signal
processing and methods of condition monitoring in computationally weak wireless
sensor network.

The key feature of this novel WSN framework is the ability to maximize the
immediate fault detection capability while provide long-term monitoring.

Evaluation of the framework is based primarily on its capability to effective-
ly employ the developed in-node fault detection methods and the ability to react
to ambiguous machine states by temporarily changing the diagnostic focus. This
was achieved by proposed system’s Adaptivity, see its results evaluation in Sec-
tion 8.2.1.

Moreover the introduced distributed WSN framework enables the vibrational
condition monitoring system to completely Reconfigure its setup. Reconfigurabil-
ity is summarized in Section 8.2.2

8.2.1 Evaluation of Adaptivity

Fig. 8.4 brings the comparison of in-node operations during the monitoring phase.
The Fig. 8.4 a) shows the default in-node operation during the monitoring phase

when each sensor nodes acquires 33 ms of vibrational signal and extracts features
F-FD-14 in-node and performs fault detection. In-node operation of in-node feature
extraction and classification takes 426 ms. Here the sensor’s node transmit update
period TT is set to be equal to measurement update period TM so each time the
sensor node performs in-node fault detection it also sends its result to central node.
To send one message it takes on average 10 ms including acknowledgment from
central node.

As described in Section 7.4.2 the in-node fault detection method is in the learning
phase set so it produces 5% of false alarms. This setup helps to achieve a good
generalization of the method.

The Fig. 8.4 b) depicts the situation when in-node fault detection methods has
detected engine’s fault and sent that result to central node. The central node based
on also on the information from the other sensor nodes and information about
engine’s operational regime decided to command the sensor node to adapt its in-
node method. Instead of default operation the sensor node computes the amplitude
spectrum of vibrational signal and sends the 128 spectral values in 7 messages to
the central node.

Based on this information the central node performs detailed analysis to decide
if that was a false alarm or engine’s faulty behavior. If the amplitude spectrum is
not sufficient of central-node’s decision it commands the central node to acquire and
send the raw samples of engines vibrations as depicted in the Fig. 8.4 c).

The amount of data transfered from the sensor node to the central node is the
best benchmark to compare level of data compression. In implemented setup the
atomic unit of data transfer is one message which carries payload of 20 numerical
values. As stated in Section 4.2.2 the data transferring is in WSN the most ener-
gy consuming operation so the less data are transfered the more is prolonged the
sensor nodes life time. Moreover it is not possible to stream raw samples simulta-
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Figure 8.4: In-node operation: Adaptivity

neously from a number of sensor nodes due to low data through put of low-power
communication protocols used for WSNs.

Fig. 8.5 compares the amount of data transfered for given setup. The baseline
creates the raw data sampling as depicted in Fig. 8.4 c) which repeats with period
1 s. It is obvious that number of messages transfered during the raw data streaming
is far more higher than for the other two situations: Simple in-node operation and
Adaptive in-node operation. In Fig. 8.6 see the detailed comparison of Simple in-
node operation and Adaptive in-node operation.

Simple in-node operation depicts the situation when sensor node regularly
executes vibrational signal sampling and in-node feature extraction and computation
of result of in-node fault detection with Measurement Update Period TM = 1s. And
it sends the result of in-node fault detection to the central node with Transmit
Update Period TT = 2s.

Finally the Adaptive in-node operation depicts the situation when sensor
node performs its default in-node operation: vibrational signal sampling, in-node
feature extraction and in-node fault detection with periods TM = 1s and TT = 2s
as described for In-node operation above. Moreover when a fault is detected by
sensor node, central node decides to command this sensor node to send its values of
amplitude spectrum in 7 messages as depicted in Fig. 8.4 b).

The Adaptive in-node operation shown in Fig. 8.6 directly corresponds to the
situation when the engine runs in its health state in normal operational conditions.
So the 5% of false alarms raised by in-node fault detection are resolved by described
adaptation of behavior. The central node executes detailed analysis and intercor-
porates also the results of the neighboring nodes so it is able to evaluate the false
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Figure 8.5: Messages transmitted

alarm created by single sensor node.
In the case that central node based on its information also detects the engine

failure it commands the sensor node by shortening the TM and TT periods and by
further commanding the sensor node to adapt for more demanding in-node operation
up to by commanding it to send raw data samples as in Fig. 8.4 c).
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Figure 8.6: Messages transmitted: detail

In the situation that the engine is becoming to its failure the monitoring system is
protected from sudden power source discharge by its Aggregated Energy Consump-
tion proposed in Sec. 4.3.1. This approach rather provides raw signal snapshots
describing the middle-term failure progress than a short-time information describ-
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ing the beginning of the failure resulting in fully discharged and thus non-working
monitoring system.

The amount of data messages transfered from the sensor node to the central
node is the best benchmark to compare level of data compression.

The compression of transfered data is presented in Fig. 8.7 via ratio of reduc-
tion of messages transmitted from sensor node to central node for Simple in-node
operation and Adaptive in-node operation. Messages Reduction Ratio (MRR) is
computed based on Eq. 8.1:

MRR (%) = 1− #Messages of Proposed Operation

#Messages of Raw Samples Streaming
(8.1)

Fig. 8.7 shows how the reduction ratio changes with increasing Transmit Update
Period TT for constant Measurement Update Period TM = 1s. For both reduction
ratios of Simple in-node operation and Adaptive in-node operation change very
rapidly for low values of TT while for high values of TT they converge to their
maximal values.
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Figure 8.7: Reduction of transmitted messages compared to raw data streaming baseline

Table 8.2 further generalizes the messages reduction ratio for TT = TM ·k, where
k = 2, 3, 4 . . . as proposed in Section 4.3.2

Transmit update period TT is the key factor for reduction of the sensor-node’s
energy consumption and for setting of the immediate response of the monitoring
system.

Even though Adaptive in-node operation has about 2 % lower Messages Reduc-
tion Ratio than the Simple in-node operation, it achieves almost 90 % reduction
of messages transmitted form sensor node to the central node for TT = 1 · TM
which gives the most immediate monitoring system reaction. Moreover the adap-
tive in-node operation actively solves the in-node false alarms and gives detailed
information about the engine’s state which is further used for fault diagnostics and
condition trending.
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Table 8.2: Reduction of transmitted messages

Transmit update
period TT

Raw data
streaming

Simple
in-node
operation

Adaptive
in-node
operation

TT = 1 · TM 0 % 92.3 % 89.6 %

TT = 3 · TM 0 % 97.2 % 94.7 %

TT = 5 · TM 0 % 98.2 % 95.8 %

TT = 10 · TM 0 % 98.9 % 96.5 %

TT = 100 · TM 0 % 99.5 % 97.2 %

8.2.2 Reconfigurability

In the case that the engine changes its default but still healthy vibrational behavior
the monitoring system is protected from the sudden discharge by its Reconfigura-
bility proposed in Section 4.3.3.

The Reconfigurability is demonstrated for the case when tested engine changed
in its operable regime from Health State (mark A) to its Minor Damage state (mark
C). Even there suddenly emerged a minor damage of the engine, the engine’s oper-
ator decided to continue its operation in regime of reduced speed until its planned
overhaul.

Due to the fact that engine changed its state considered as health and also the
operational condition was changed from full speed to reduced speed the Acquisi-
tion and Learning phase of the monitoring system was executed as proposed in
Section 4.4.

Although the state of minor damage allows continuing the engine operation it is
necessary to increase monitoring activity to ensure the further damage increase is
reliably and immediately detected. Thus the more computationally demanding but
more precise frequency domain features F-FD-14 were selected. One-class classifier
was trained on datasets acquired by individual nodes and complete in-node fault
detection program was uploaded to the sensor nodes via OTAP.

Figure 8.3 demonstrates good performance of feature set F-FD-14 when tested
on engine’s serious damage at reduced speed.

Table 8.1 further shows that this setup has 0 false positive error while having
demanded 5% false negative error, which was set to it in the Learning phase.

8.3 Summary

This chapter summarizes the evaluation of results obtained by experiment performed
on small turbojet engine TS20. There is evaluation of performance of in-node fault
detection method and also the performance of proposed WSN framework which
implements adaptivity and reconfigurability.
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Chapter 9

Conclusion

This work has investigated the aircraft on-board condition monitoring by employing
Wireless Sensor Networks. It focuses especially on vibrational condition monitor-
ing which is specific by its computational and communicational demands of signal
processing. Even though that WNS are typically limited in communicational, com-
putational and energy resources, this thesis proposes novel methods and approach
on how to achieve immediate fault detection capability simultaneously with long
term monitoring.

Implementation of the proposed system into aircraft application would primarily
reduce maintenance costs and improve reliability and safety.

9.1 Contribution of this work

This work is contributing to the current state of the on-board vibrational condition
monitoring of aircrafts’ power power plants by its original novel approach of
distributed WSN based vibrational condition monitoring.

Proposed approach allows to employ computationally intensive methods of vi-
brational signal processing and methods of condition monitoring in computationally
weak wireless sensor network.

In-node fault detection method based on novelty detection was devel-
oped. It employs one-class classification which allows detection of novelty in vi-
brational signatures relative to the baseline representing healthy state of monitored
machine.

Integral part of fault detection method is application of appropriate methods of
vibrational signal processing to create feature space which is the input for classi-
fication. The approach based on character of vibration signal features extraction,
the a priori knowledge of a monitored machine components and on WSN limits and
resources was introduced and evaluated.

The fault detection method was evaluated via designed experiment on real tur-
bojet engine running at different regimes of operation and different levels of degra-
dation.

It was proven experimentally that the in-node fault detection method imple-
mented in the sensor nodes detects incipient faults reliably. Detailed evaluation of
the fault detection method is summarized in Section 8.1.
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A novel distributed WSN framework allowing distributed signal process-
ing to maximize the immediate fault detection capability while provide long-term
monitoring was introduced.

The immediate fault detection capability while providing long-term monitoring
was achieved by the following key attributes of the proposed WSN framework ar-
chitecture:

• In-node fault detection

• Adaptivity and Reconfigurability

• Three phases of operation:

1. Deployment and acquisition,

2. Learning and programming,

3. Monitoring and fault detection

The designed framework was implemented in the TinyOS WSN platform IRIS
and was evaluated by the means of designed experiment on real turbojet engine.

It was experimentally proven that implemented Adaptive in-node operation re-
duced the energy consumption of radio communication transmission of 90 % com-
pared the raw time signal streaming while achieving the same quality of information
about the monitored machine’s health, see details in Section 8.2.

Proposed methods and framework were evaluated by the means of the
experiment designed and performed on small jet engine TS20.

This experiment demonstrates and justifies proposed work for next experimental
implementation into current aircraft powerplant or drivetrain system.

9.2 Future work

Next step to further shift this work to higher Technology Readiness Level is to select
a real aircraft platform and adjust the implementation to its specific requirements.

This step was initiated in cooperation with Department of Avionics, Faculty of
aeronautics of Technical University of Kosice, Slovak Republic and with Department
of Air Force and Aircraft Technology, University of Defence, Brno, Czech Republic.
Within this cooperation the database of vibrational signals recorded for small jet
engines: MPM20, TJ100 and TS20 was created. This database was opened to
broader academic community.

Moreover the methods for fault diagnosis, fault prediction and information fusion
which are to be held in the central node could be developed.

The methods of fusion based on classifier combining method presented in the
author’s paper [57] are very promising to improve fault detection results at the level
of sensor in-node and central node operation.

General method of of quality-based sensor fusion for WSNs presented in [58],
co-authored by the author of this thesis brings a powerful tool to fuse information
at the all levels of engine condition monitoring system.
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Table 9.1: Participation of authors on given papers.

Publication Author Authorship (%)
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Neuzil, J. 40
Kreibich O. 30
Smid, R. 30
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Kreibich O. 40
Neuzil, J. 30
Smid, R. 30
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Kreibich O. 15
Smid, R. 5
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Kreibich O. 80
Neuzil, J. 15
Smid, R. 5
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Kreibich O. 15
Smid, R. 20
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Mikes J. 33.3
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[D1]

Kubinyi, M. 55
Neuzil, J. 15
Kreibich O. 15
Smid, R. 15
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