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Abstract

A number of algorithms and its applications for automatic classifiers learning from examples
is ever growing. Most of existing algorithms require a training set of completely annotated
examples, which are often hard to obtain. In this thesis, we tackle the problem of learning
from partially annotated examples, which means that each training input comes with a set
of admissible labels only one of which is correct. We contributed to two different cases of
this scenario. In the first case, we studied the problem of learning the ordinal classifiers from
examples with interval annotation of labels. We designed a convex learning algorithm for this
case and demonstrated its advantage on real data empirically. At the same time, we made
several contributions to the supervised learning of the ordinal classifiers, namely, we proposed
new parametrization of the ordinal classifier, we introduced more flexible piece wise version
of the ordinal classifier, and we proposed a generic cutting plane solver with convergence
guarantees. In the second case, we studied the problem of learning the structured output
classifiers from examples with missing annotation of a subset of labels. We have defined
the concept of a surrogate classification calibrated partial loss, the minimization of which
guarantees that learning is statistical consistent under fairly general conditions on the data
generating process. We proved the existence of a convex classification calibrated surrogate loss
for learning from partially annotated examples. We showed which existing surrogate losses
are classification calibrated and which are not. Our work thus provides a missing theoretical
justification for so far heuristic methods which have been successfully used in practice.
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Abstrakt

Počet aplikaćı algoritmů pro automatické učeńı klasifikátor̊u z př́ıklad̊u stále roste. Většina
uč́ıćıch algoritmů vyžaduje trénovaćı množinu kompletně anotovaných př́ıklad̊u, které je
často težké źıkat. V této disertaci se zabýváme problémem učeńı z částečně anotovaných
př́ıklad̊u. Částečná anotace znamená, že každému trénovaćımu vstup je přǐrazena množina
př́ıpustných skrytých stav̊u, z nichž pouze jediný je spravný. V disertaci popisujeme dva
př́ıpady patř́ıćı do tohoto scénaře. V prvńım př́ıpadě jsme zkoumali učeńı ordinálńıch klasi-
fikátor̊u z př́ıklad̊u anotovaných intervalem skrytých stav̊u. Pro tento př́ıpad jsme navrhli
konvexńı uč́ıćı algoritmus a ověřili jeho funkčnost na reálných datech. Současně jsme přispěli
k řešeńı problému učeńı ordinálńıch klasifikátor̊u z kompletně anotovaných dat, a to konkrétně
návrhem nové parametrizace ordinálńıho klasifikátoru, flexibilněǰśım model pro ordinálńı
klasifikaci a obecným optimalizačńım algoritmem s garanćı konvergence. V druhém př́ıpadě
jsme studovali problém učeńı strukturńıch klasifikátor̊u z př́ıklad̊u s chyběj́ıćı anotaćı u
podmnožiny skrytých stav̊u. Definovali jsme pojem náhradńı klasifikačně kalibrované částečné
ztrátové funkce, jej́ıž minimalizace zaručuje, že učeńı je statisticky konzistentńı za dosti
obecných podmı́nek na proces generuj́ıćı data. Dokázali jsme, že existuje konvexńı kalibrovaná
náhradńı ztrátová funkce pro učeńı z částečně anotovaných př́ıklad̊u. Ukázali jsme, které z
existuj́ıćıch náhradńıch ztrátových funkćı jsou kalibrované, a které nejsou. Naše práce tak
doplňuje chyběj́ıćı teoretické od̊uvodněńı pro doposud heuristické metody úspěšně použ́ıvané
v praxi.
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1. Introdution

In this thesis, we consider a problem of learning classifiers from partially annotated examples.
This means that instead of a single label per instance, we are given a set of admissible labels
only one of which is correct. Such scenario is common in practice. For instance, the problem
of learning from partially annotated examples naturally arises in age recognition from facial
images. Instead of acquiring a precise age for each facial image in the training set, which
is often expensive or impossible, it is easier to collect age ranges that can be, for example,
estimated by a human annotator. See Figure 1.1 where each subject is annotated by a range
of ages instead of a precise age. Another motivating application can be image segmentation
as illustrated in Figure 1.2. Obtaining a ground true label for each pixel in the image is
obviously tedious and expensive, therefore very often we are provided with an incomplete
labeling, meaning that some pixels in the training image are left unannotated.

To put the problem of learning from partial annotations into perspective, it is useful to list
other common learning scenarios (see also Figure 1.3):

• In the supervised scenario each training instance is annotated with a single label.

• In the unsupervised scenario training instances have no label at all.

• In the semi-supervised scenario each training instance either has a single label or it has
no label at all.

• In the multi-instance scenario training instances are not individually labeled but grouped
into sets, which either contain at least one positive example or only negative examples.

• In the partially annotated scenario, i.e. the scenario analyzed in this thesis, each training
instance is annotated with a set of admissible labels only one of which is correct.

There exists two standard paradigms that have been used for learning from partially an-
notated examples: the generative approach and the discriminative approach. The generative
approach tries to model the joint probability distribution of the input observations and the
labels. To this end, one has to select an appropriate class of probabilistic models. As soon
as the class of the probabilistic models is chosen, the maximum likelihood method (or other

Figure 1.1. Example of facial images with partial annotation of age. Getting rough age ranges of
each person is relatively easy while providing exact age is difficult.
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(a) (b) (c)

Figure 1.2. An example of a training instance when learning structured output classifier for image
segmentation task. Example of an input image (a), a good(complete) labeling (b), coarse (partial)
labeling (c).

instance label

(a) supervised

instance ???

(b) unsupervised

instance

instance

label

???

(c) semi-supervised

instance

instance

instance

label

(d) multi-instance

instance label

label

label

(e) partial-label

Figure 1.3. Different learning scenarios (figure adopted from [Cour et al., 2011]).

estimation method) is used to select a single model best fitting to the training data. Finally,
the required classification rule is inferred from the learned probabilistic model. On the other
hand, the discriminative approach tries to learn the classification rule directly. To this end,
one has to select an appropriate class of classification rules. Once the classification model is
chosen, the Empirical Risk Minimization (ERM) principle (or other method) is used to select
a single classification rule best fitting to the training data.

In this thesis, we follow the discriminative approach. The existing discriminative methods
for learning from partially annotated examples often suffer from the following problems:

1. There is no clear connection between the target objective and the objective function actually
optimized by the learning algorithm. The target objective is typically the expectation of
the complete loss which evaluates the response of the classifier given the ground truth label.
The objective function of the learning algorithm is typically an average of a “partial loss”
computed on the partially annotated examples. The partial loss is a certain function which
evaluates the response of the classifier given the partial annotation.

2. The learning problem is usually transformed into a non-convex minimization problem which
is then approached by a local optimization method with no certificate of optimality.

During our work, we were mainly focused on these two problems. In short, our main
contributions are the following:

• (Ad problem 1) We developed tools which allow to analyze the statistical consistency of
algorithms learning the structured output classifiers from partially annotated examples.
Here the partial annotation means that a subset of output labels describing the training

5



1. Introdution

instance is missing, e.g. like in the image segmentation examples show in Figure 1.2. We
applied the proposed methodology to existing ad-hoc algorithms and we showed which
of them are statistically consistent and which are not. Loosely speaking, the consistent
algorithm provides a minimizer of the target objective, i.e. the expectation of the complete
loss, provided the number of partially annotated training examples goes to infinity. That
is, we built a missing bridge between the objective function of the consistent algorithms
and the target objective.
• (Ad problem 2) We introduced a new partial loss applicable for learning the ordinal clas-

sifiers from examples with the interval annotation of the labels, e.g. like in the example
shown in Figure 1.1. We establish a connection between the proposed partial loss and an
associated complete target loss. We designed a convex surrogate of the partial loss which
allows to convert learning into an optimization problem which can be solved efficiently
and we show how to do it by cutting plane methods. As a byproduct we made several
contributions to the supervised learning of the ordinal classifiers, namely, we proposed new
parametrization of the ordinal classifier and we introduced more flexible piece wise version
of the ordinal classifier.

In the following two sections we briefly describe the ERM based learning algorithms. We
first outline the standard supervised scenario and then the scenario with the partially anno-
tated examples. We use the two sections in order to introduce a notation which allow us to
describe goals and contributions of the thesis more precisely at the very end of this chapter.

1.1. Discriminative learning from fully annotated examples

Let us briefly describe supervised learning algorithms based on the ERM principle. The
supervised algorithms require a set of completely annotated training examples

Dmxy = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m (1.1)

typically assumed to be drawn from independent and identically distributed (i.i.d.) random
variables with some unknown distribution p(x, y). The symbol X denotes a set of input
observations and Y is a set of labels to be predicted. In this thesis we assume that Y is
finite. The goal of the supervised learning is formulated as follows. Given a loss function
` : Y × Y → R+ and the training examples (1.1), the task is to learn the classifier h : X → Y
whose Bayes risk (the target objective)

R`(h) = Ep(x,y)`(y, h(x)) (1.2)

is as small as possible, i.e. ideally, we would like to obtain the best Bayes classifier 1

h`∗ ∈ Argmin
h : X→Y

R`(h) . (1.3)

The minimization problem (1.3) cannot be solved directly due to the unknown distribution
p(x, y). The ERM principle approaches the problem (1.3) by the following approximations:

1Strictly speaking one has to consider inf
h : X→Y

R`(h) here, however, in order to make the main message clear

we assume that infimum is reachable and we can use minimum instead. Later, in Chapter 4, we describe
our contribution in the strict way using infimums.

6



1.1. Discriminative learning from fully annotated examples

• The empirical distribution

s(x, y) =
1

m

m∑
i=1

[[xi = x ∧ yi = y]] (1.4)

is used instead of the true but unknown distribution p(x, y).
• The set of all possible classifiers h : X → Y is restricted to some predefined set of rules H

(the hypothesis space).
Using these approximations, the ERM amounts to solving

hemp
∗ ∈ Argmin

h∈H
R`emp(h) , (1.5)

where
R`emp(h) = Es(x,y)`(y, h(x)) (1.6)

is the empirical risk and hemp
∗ is the learned classification rule. Under certain conditions [Vap-

nik, 1995], the ERM is statistically consistent learning algorithm, i.e. for the number of
examples going to infinity the expected risk of the learned classifier R`(hemp

∗ ) converges in
probability to the minimal Bayes risk R`(h`∗).

Unfortunately even simple instances of the ERM problem (1.5) are hard to solve efficiently
and thus it is further simplified in the following way. The original loss function ` : Y×Y → R+

is replaced by a surrogate loss function ψ : Y × T̂ → R operating on a surrogate decision set
T̂ ⊂ RY . With the help of the surrogate loss function ψ we learn a surrogate decision function
f : X → T̂ , which is then used to construct the decision function h : X → Y via a predefined
transform pred: T̂ → T , i.e. h = pred ◦ f . As before, the set of all surrogate decision
functions f : X → T̂ is restricted to a subset F . With these changes, the ERM problem (1.5)
is simplified to a search for the the best surrogate decision function by solving

f emp
∗ ∈ Argmin

f∈F
Rψemp(f) , (1.7)

where
Rψemp(f) = Es(x,y)ψ(y, f(x)) (1.8)

and the resulting classification rule is h = pred ◦ f emp
∗ . The surrogate loss function ψ is

typically chosen to be a convex function that upper bounds the original loss `. The convex
surrogate loss makes the problem (1.7) convex and much easier to deal with than the original
problem (1.5). Besides the convexity, however, the used surrogate loss should have a clear
statistical meaning. A natural requirement is to use such surrogate losses which preserves the
statistical consistency of the ERM principle.

Loosely speaking, if a given surrogate loss ψ : Y × T̂ → R is so called classification cali-
brated [Ramaswamy and Agarwal, 2012] (or statistically consistent [Zhang, 2004a,b], or Fisher
consistent [Shi et al., 2015]) with respect to the original loss ` : Y × Y → R+ then it holds
that

pred ◦ fψ∗ ∈ Argmin
h : X→Y

R`(h) (1.9)

for any distribution p(x, y), where

fψ∗ ∈ Argmin
f : X→T̂

Rψ(f) (1.10)
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1. Introdution

and
Rψ(f) = Ep(x,y)ψ(y, f(x)) (1.11)

is the expectation of the surrogate loss. In words, using a classification calibrated surrogate
guarantees that a solution of the surrogate problem (1.10) is a decision function fψ∗ which

defines a classification rule h = pred ◦ fψ∗ being itself a minimizer of the original task (1.9).
In practice the distribution p(x, y) is unknown and thus we do not minimize the surrogate

risk Rψ(f) but rather its empirical estimate Rψemp(f). However, it can be still shown that the
classification calibrated surrogate preserves the statistical consistency of the ERM.

It should be emphasized that the classification calibrated surrogate loss does not have to
be an upper bound of the target loss ` : Y × Y → R+ since the inclusion in (1.9) is required
for the minimizers of the surrogate loss. Of course, an analysis of the minimizers is often
more difficult and hence, it is common in practice to deal with surrogate losses that are upper
bounds of the target loss. See Figure 1.4 for illustration.

Example. Let us consider learning of a multi-class linear classifier. A surrogate decision
function is learned from a set of linear functions

F =
{
f(x) = (〈w1,x〉, · · · , 〈wY ,x〉)T | (w1, . . . ,wY ) ∈ Rn×Y , ‖w1‖2 + · · ·+ ‖wY ‖2 ≤ λ

}
with parameters whose Euclidean norm is bounded by λ > 0. Each f ∈ F maps an input
x ∈ Rn onto t ∈ T̂ ⊂ RY . The classification rule is constructed by composing the decision
function f with a transform pred(t) , argmax

y∈Y
ty so that the resulting classification rule reads

h(x) = pred ◦ f(x) = argmax
y∈Y

fy(x) = argmax
y∈Y

〈wy,x〉 .

For example, the multi-class Support Vector Machine algorithm learns the decision function
f by solving the problem (1.7) with different surrogate loss functions used in practice:
1. A commonly used surrogate

ψ(ŷ, f(x)) = max
y∈Y

(1 + fy(x)− fŷ(x))

is not statistically consistent w.r.t. to the target 0/1-loss `(ŷ, y) = [[ŷ 6= y]], unless we deal
only with those distributions p(x, y) such that ∃y ∈ Y, p(y | x) > 1

2 ([Liu, 2007]).
2. In contrast, less commonly used surrogate loss

ψ(ŷ, f(x)) =
∑
y 6=ŷ

max(0, 1 + fy(x)− fŷ(x))

is consistent with respect to the target 0/1-loss `(ŷ, y) = [[ŷ 6= y]] ([Liu, 2007]).
The statistical consistency of the ERM based fully supervised learning algorihtms have been

intensively studied. Unfortunately, it is not possible to directly apply all the existing results
in the case of partially annotated examples. In the next section we are going to explain main
issues which raise when we apply the ERM methods to the partially annotated examples.
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(a) Inconsistent surrogate loss function
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(b) Consistent surrogate loss function
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(c) Consistent convex surrogate loss function
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(d) Consistent convex surrogate loss function that upper
bounds the original loss function

Figure 1.4. The figure illustrates different cases of the surrogate loss and the target loss function. For
some fixed p(x, y), x ∈ X and y ∈ Y, we plot the value of original loss as `(y,pred ◦ f(x)) and the
surrogate loss as ψ(y, f(x)). The x-axis corresponds to f ∈ F and the y-axis shows the value of the
target loss `(y,pred ◦ f(x)) shown in black and the surrogate loss ψ(y,pred ◦ f(x)) shown in blue.
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1. Introdution

1.2. Discriminative learning from partially annotated examples

In the case of learning from partially annotated examples, we are provided with a set of
admissible labels only one of each is correct. This differs from the supervised setting, where
we have one to one correspondence between the input instances and labels. More precisely,
we consider a set of partially annotated training examples

Dmxa = {(x1,a1), . . . , (xm,am)} ∈ (X × 2Y)m , (1.12)

assumed to be drawn from i.i.d. random variables with some unknown joint distribution

p(x,a) =
∑
y

p(x,a, y) .

Each training input xi comes along with a set of candidate labels ai ⊂ 2Y ( |a| ≥ 1). A
common assumption on the data generating distribution p(x,a, y) is that the ground truth
label yi is among the known candidate labels ai, i.e. yi ∈ ai.

The ultimate goal is the same as in the supervised learning, that is, for a given loss function
` : Y × Y → R+ we want to learn a classifier h : X → Y whose Bayes risk (1.2) defined w.r.t

p(x, y) =
∑
a

p(x,a, y)

is as small as possible. Although the goals are the same, the learning algorithms are not.
Namely, the ERM methodology cannot be used directly because the loss function ` : Y×Y →
R+ is undefined over the annotations (i.e. the subsets 2Y) contained in the partially annotated
training set Dmxa. One option to make the ERM applicable is to derive so called partial loss
`P : Y × 2Y → R+ from a given complete (target) loss ` by minimizing over admissible labels:

`P (y,a) = min
ŷ∈a

`(ŷ, y) . (1.13)

The partial loss `P has been explicitly defined in [Cour et al., 2011] for a case when ` is the
0/1-loss. However implicitly, via defining a learning algorithm which in its core minimizes the
partial loss, it has been used many times in various contexts. For example, it is minimized
by an algorithm learning the Hidden Markov Chain based classifiers [Do and Artières, 2009],
generic structured output models [Lou and Hamprecht, 2012], the multi-instance learning [Luo
and Orabona, 2010] or the named entity recognizer [Fernandes and Brefeld, 2011a].

Having the partial loss, we can define the partial risk

R`
P

(h) = Ep(x,a)`
P (h(x),a) , (1.14)

and search for the best (Bayes) classifier h : X → Y that minimizes the partial risk

h`
P

∗ ∈ Argmin
h : X→Y

R`
P

(h) . (1.15)

The partial risk minimization problem (1.15) can be already approached by the ERM methods.
However, the central question is whether the ERM methods can provide a good approximation
of the target problem (1.3). An answer to this question in the case of structured output
classification (i.e. when y is a vector of labels) is one of the contributions of the thesis. Our
approach is very briefly outlined in the rest of this section.
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1.2. Discriminative learning from partially annotated examples

We will show that for some distributions p(x,a, y) the problem (1.15) is equivalent to the
target problem (1.3) in the sense that both problems share the set of solutions. In particular,

the classifier h`
P

∗ obtained by minimizing the partial risk (1.15) is a minimizer of the target
(complete) risk (1.2) as well, i.e. the inclusion

h`
P

∗ ∈ Argmin
h : X→Y

R`(h) (1.16)

holds or equivalently
R`(h`

P

∗ ) = R`(h`∗) . (1.17)

After establishing the equivalence (1.17), one can solve the partial risk minimization prob-
lem (1.15) by the ERM methods as follows. The partial risk (1.14) can be approximated by
the empirical risk

R`
P

emp(h) = Es(x,a)`
P (h(x),a) , (1.18)

where

s(x,a) =
1

m

m∑
i=1

[[xi = x ∧ ai = a]] . (1.19)

As in the supervised setting, the partial empirical risk (1.18) is hard to minimize directly.
Hence, the partial loss `P : Y×2Y → R+ is replaced by an easier-to-minimize surrogate partial
loss ψP : 2Y × T̂ → R+, which operates on the surrogate decision set T̂ ⊂ RY . The surrogate
ψP loss is used to learn a surrogate decision function f : X → T̂ such that

f emp,ψp

∗ ∈ Argmin
f∈F

Rψ
P

emp(f) , (1.20)

where
Rψ

P

emp(f) = Es(x,a)ψ
P (a, f(x)) . (1.21)

Finally, the resulting classification rule is constructed by composing the learned function
f emp,ψp

∗ and a fixed prediction function pred, i.e. h = pred ◦ f emp,ψp

∗ .
Likewise in the supervised setting, in order to justify the ERM problem (1.20) we also need

to study consistency of the surrogate partial loss. To this end, we introduce in this thesis a
concept of a classification calibrated partial loss. Loosely speaking, if a surrogate partial loss
ψp is classification calibrated w.r.t. the partial loss `p then for any distributions p(x,a) it
holds that

pred ◦ fψP

∗ ∈ Argmin
h : X→Y

R`
P

(h) , (1.22)

where fψ
P

∗ is a minimizer of the partial surrogate risk, i.e.,

fψ
P

∗ ∈ Argmin
f : X→T̂

Rψ
P

(f) , (1.23)

Rψ
P

(f) = Ep(x,a)ψ
P (a, f(x)) . (1.24)

Consequently, using the inclusion (1.20) we can show that any minimizer of the partial sur-

rogate risk fψ
P

∗ is the Bayes classifier of the target (complete) risk, i.e., it holds that

pred ◦ fψP

∗ ∈ Argmin
h : X→Y

R`(h) . (1.25)

11



1. Introdution

In this sense the minimization of the surrogate partial risk Rψ
P

(f) is equivalent to (or consis-
tent with) the minimization of the target risk R`(h). Under some conditions, the equivalence
is preserved even if the true risks are replaced by their empirical estimates. This allows us to
show that the learning algorithms which in their core solve the problem (1.20) with calibrated
surrogate partial loss are statistically consistent. Namely, we will prove that for the number
of examples going to infinity the expected risk of the learned classifier R`(pred ◦ f emp,ψp

∗ )
converges in probability to the minimal (Bayes) risk R`(h`∗).

1.3. Thesis goals

This thesis is centered around the ERM based algorithms learning classifiers from partially
annotated examples. More precisely, we concentrated on learning algorithms which in their
core solve the surrogate ERM problem (1.20). At the beginning of our work on this topic,
there were many ad-hoc methods showing that algorithms implementing (1.20) give promising
results, i.e. they were shown to provide a good approximations of the Bayes classifier (1.3).
However, there was no firm theory which would support these empirical findings. In addition,
the existing algorithms often suffer from using a non-convex surrogate partial losses making
the problem (1.20) hard to optimize. And thus a further question is in which cases one can
construct a good convex and, at the same time, easy-to-optimize surrogate partial loss. After
recognizing the open problems, we focused our work on the following questions:

• How to design a convex surrogate of the partial loss (1.13)?

• How to solve ERM problem (1.20) efficiently?

• Under which conditions are algorithms implementing ERM problem (1.20) statistically
consistent?

We have not found a complete and general answer to these questions, yet we managed to
contributed to all of them. A summary of our contributions is provided in the next section.

1.4. Contributions

In this work, we investigated two different classification scenarios both falling under the um-
brella of learning from partial annotations. First, learning of ordinal classifiers from interval
annotations. Second, learning of structured output classifiers from examples with missing
labels.

1.4.1. Learning ordinal classifier from interval annotations

We consider learning of the ordinal classifiers (i.e. classification model assuming ordered
labels) from examples of inputs annotated by intervals of admissible labels.

• We propose an interval insensitive loss (IIL) function to measure discrepancy between the
interval of admissible labels given in the annotation and a label predicted by the classifier.
The IIL can be build from arbitrary target (complete) V-shape loss like, for example,
the 0/1-loss or mean absolute error (MAE). The IIL is an instance of the generic partial
loss (1.13). In contrast to existing instances of the partial loss (1.13), the IIL for ordinal
classification can be approximated by tight convex surrogates as we will show.

• We show that the expectation of the IIL is a reasonable proxy of the expectation of the
target complete loss. In particular, we show that the target risk R` is upper bounded by
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1.4. Contributions

a linear function of the partial risk R`
P

. We show how the tightness of this upper bound
depends on the annotations process which was used to generate the training examples.

• We show how to build tight convex surrogates of the IIL. The convex surrogates are obtained
by extending surrogates known from existing supervised algorithms for ordinal regression.
These surrogates are can be used as a proxy for the 0/1-loss or the MAE loss. We also
propose a novel convex surrogate of a generic V-shaped interval-insensitive loss.

• We propose an efficient cutting plane solver for minimization of the ERM problem (1.20). In
contrast to existing CPA solvers, it can deal with situations when the quadratic regularizer
is not imposed on all model parameters which, as will be also shown, has significant influence
on the final accuracy of the learned ordinal classifier.

• We have not managed to prove consistency of the IIL. Instead, we performed a thorough
empirical evaluation showing that minimization of the interval insensitive loss provides a
good approximation of the target Bayes classifier (1.3).

While working on this topic, we also made some progress on supervised learning of ordinal
classifiers as a byproduct:

• We proved that the ordinal classifier is equivalent to a linear multi-class classifier whose
class parameter vectors are collinear and with magnitude linearly increasing with the labels.
We call the new representation as the Multi-class Ordinal classifier (MORD) classifier. Our
equivalence proof is constructive so that we can convert any ordinal classifier to the MORD
classifier and vice-versa.

• The MORD representation allows to express the space of ordinal classifiers Hord as compo-
sition of the “argmax” prediction transform pred(t) = argmaxy∈Y ty and a linear decision
function f ∈ F , i.e. Hord = {pred ◦ f | f ∈ F}. In turn, the MORD representation can
be beneficial for learning and analysis of the ordinal classifiers by using algorithms and
results for well understood multi-class linear classification. For example, we show that a
generic Structured Output Support Vector Machine (SO-SVM) algorithm can be applied
for learning of the MORD classifier and that it delivers the same (or slightly better) results
when compared to the existing learning algorithms for the ordinal classification. Moreover,
the SO-SVM approach works for arbitrary loss function in contrast to existing methods
which require the V-shaped losses.

• We show that the MORD representation allows introduce more complex models for ordinal
classification. Namely, we propose a Piece-Wise Multi-class ORDinal classifier (PW-MORD)
which subsumes the standard ordinal classifier and unrestricted multi-class classifies as spe-
cial cases. We demonstrate advantages of the proposed models on standard benchmarks as
well as on solving a real-life problem of estimating human age from facial images.

1.4.2. Learning structured output classifier from examples with missing labels

We concentrate on a scenario, when the object is characterized by an input observation and
labelling of a set of local parts, however, a training set contains examples of inputs and
labelings only for a subset of the local parts.

• We provide sufficient conditions which admit to prove that the expected risk R`(h) of the

structured predictor h learned by minimizing the partial risk R`
P

(h) converges in probabil-
ity to the optimal Bayes risk R`(h`∗). The sufficient conditions restrict the target loss ` to
be additive over the local parts while the data generating process p(x,a,y) can be fairly
generic.
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• We define a concept of classification calibrated surrogate partial losses which are easier to
optimize, yet their minimization preserves the statistical consistency.
• We analyze surrogate losses used by the existing algorithms implementing the ERM min-

imization (1.20) for learning of structured output classifiers from examples with missing
labels. For example, we show that the ramp-loss and some of its modifications which have
been most frequently used are classification calibrated and, in turn, the corresponding algo-
rithms are statistically consistent. Our analysis provides a missing theoretical justification
for so far heuristic methods.
• We prove the existence of a convex classification calibrated surrogate for partial learning.

The proof is based on establishing a connection between learning from partially annotated
examples and the recently published theory on consistency of supervised learning.

1.5. Thesis outline

Chapter 2 contains the state-of-the-art relevant to the topics studied in the thesis. In
particular, we review works related to the statistical consistency of algorithms learning from
fully annotated and partially annotated examples, we also review optimization algorithms
which have been used to solve the ERM problem (1.20) and, finely, we review existing
discriminative learning methods for the ordinal classifiers.

Chapter 3 describes our contributions to the problem of learning ordinal classifiers from
fully annotated examples and examples with interval (partial) annotation of labels.

Chapter 4 describes our contributions to the problem of statistical consistency of algo-
rithms learning structured output classifiers from examples with missing labels.

Chapter 5 contains conclusions resulting from the work done in this thesis and also a
discussion of a possible future work.

We give a more detailed road map of the each individual chapter at its beginning.
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2.1. Development of the statistical consistency of learning
methods

Undisputably, the consistency of a learning method is a desirable property, i.e. a good learn-
ing method should recover the Bayes classifier at least if provided with an infinitely large
training set under the condition that the class of considered classifiers contains the Bayes
classifier. The design of consistent learning methods for supervised multiclass prediction re-
ceived the attention in the last decade: [Zhang, 2004b,a; Bartlett et al., 2006; Hill and Doucet,
2007; Tewari and Bartlett, 2007; Liu, 2007; Santos-Rodŕıguez et al., 2009; Zhang et al., 2009;
Ramaswamy and Agarwal, 2012]. Statistical properties of learning algorithms based on the
risk minimization formulation are relatively well-understood for the supervised setting due
to the aforementioned works and others. However, there are quite few works studying risk
based minimization methods for the learning setting with the missing labels. Among the few
exceptions belong the works of [Cour et al., 2011; Cid-Sueiro et al., 2014; Yu et al., 2014].

2.1.1. Statistical consistency of the supervised flat classifiers

[Zhang, 2004b] showed first that binary classifiers obtained by minimizing infinite-sample
consistent surrogate loss for supervised learning (e.g. the hinge-loss, logistic loss, etc.) can
approach Bayes classifier. [Zhang, 2004a] analysed the consistency of the hinge loss and its
modifications in the context of the multiclass classification formulations such as pairwise com-
parison, constrained comparison and One-Versus-All methods. [Liu, 2007] considered several
multiclass generalizations of the hinge-loss used in various multiclass SVMs algorithms and
showed that some of them were and others were not statistically consistent. For some incon-
sistent losses, [Liu, 2007] showed how to modify training algorithm to make the losses behave
consistently. [Tewari and Bartlett, 2007] characterized classification calibration of supervised
multiclass problems in terms of geometric properties of some sets associated with the sur-
rogate loss function. Based on these properties, they provided certain sufficient conditions
for the classification calibration and examine the consistency of a few multiclass methods.
[Ramaswamy and Agarwal, 2012] extended the notion of the classification calibration from
0/1-loss and/or binary classification problems to the general multiclass setting with a gen-
eral loss. [Ramaswamy and Agarwal, 2012] deriveed necessary and sufficient conditions for
a surrogate loss function to be classification calibrated with respect to a given target loss.
They introduced the notion of so called convex classification calibration dimension of a mul-
ticlass loss matrix measuring the size of a prediction space, in which it is possible to design
a convex surrogate that is calibrated with respect to the target loss. They derived lower and
upper bounds of the classification calibration dimension as well. These notions can be very
useful if for a given target loss one has to prove existence or non-existence of a corresponding
convex calibrated surrogate loss. The consistency of multiclass losses were also considered in
the development of various types of other settings, e.g. the multiclass classification with re-
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ject option [Ramaswamy et al., 2015a], hierarchical classification [Ramaswamy et al., 2015b],
multiclass boosting [Zhu et al., 2009; Mukherjee and Schapire, 2013], etc.

2.1.2. Statistical consistency of the supervised ordinal classifiers

[Pedregosa et al., 2014] studied the statistical consistency of methods used for supervised
ordinal classifier learning of rich family of surrogate loss functions including proportional odds
and support vector ordinal regression. Authors consider the threshold and the regression
based models for which they derived sufficient conditions on statistical consistency for the
margin based methods and the surrogates of the V-shape loss functions. In Section 3.3, we
will extend the notion of V-shaped surrogate losses for dealing with interval annotations.

2.1.3. Statistical consistency of the supervised structured output classifiers

Although there is a progress in studying the supervised multiclass setting for flat classifiers,
there are only few works dedicated directly to the structured output prediction. [Shi et al.,
2015] investigated the relationship between the classification calibration of multiclass losses
and losses for a structured output prediction in supervised scenario. They proposed a hybrid
loss for supervised multiclass and structured output problems that is a convex combination of
a logarithmic loss for Conditional Random Field (CRF) and a multiclass hinge loss from the
SVM methods. Their family of losses is similar to those proposed previously by [Zhang et al.,
2009] for 0/1 loss. [Shi et al., 2015] provided a condition for a given loss to be statisticaly
consistent for classification, which depends on a measure of dominance between labels, i.e.
the gap between probabilities of the best labeling and the second best labeling. They showed
that the statistical consistency is necessary also for so called parametric consistency which is
needed when learning models such as the CRFs.

2.1.4. Statistical consistency of the flat classifiers learned from partially
annotated examples

The literature on consistency of supervised learning methods is rich. The consistency of meth-
ods learning from partially annotated examples has been addressed very rarely so far. We are
aware only of two works addressing the problem, namely [Cour et al., 2011] and [Cid-Sueiro
et al., 2014]. [Cour et al., 2011] considered the multiclass learning of flat classifiers from
examples with candidate set of admissible labels. They proposed a convex learning formula-
tion based on a minimization of a certain partial loss. They also analyzed conditions under
which their partial loss is asymptotically consistent against the target 0/1 loss. [Cid-Sueiro
et al., 2014] proposed a generic framework which, for a given supervised target loss, allows to
derive a classification calibrated surrogate suitable for learning from training examples with
missing labels. Authors introduced a statistical model under which they show that consistent
surrogate losses for learning with missing labels can be obtained by a linear transformation
of any surrogate consistent loss for the supervised setting. Authors showed that convexity
can be sometimes preserved when adapting a supervised surrogate loss to its weak consistent
counterpart.

Although the setting studied in [Cour et al., 2011; Cid-Sueiro et al., 2014] is quite general,
(they considered any subset of labels as candidate label set), neither of them can be used to
analyze existing methods learning the structured output classifiers, i.e. the multiclass clas-
sification with exponentially large number of labels. Their convex surrogate losses designed
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for flat classifiers are not suitable for structured case since their evaluation requires solving
computationally intractable subproblems.

Nevertheless, part of the community drops the statistical part of the problem and tries
to solve the problem using ad-hoc heuristics that give very often reasonably good results in
practice. For the sake of completeness, we give a brief overview of existing approaches below.

2.2. Existing methods for structured output learning from partial
annotations

Most of the following works try to contribute to the practical part of the problem by improving
existing heuristics for solving the non-convex ERM task (1.20) in a context of particular
application. We provide a short overview of optimization methods used in the structured
output learning from partially annotated examples.

2.2.1. Convex concave procedure

Many different approaches assuming that the minimization of the partial empirical risk to be
good estimate have beed proposed during last decade [Chuong et al., 2008; Girshick et al.,
2011; Yu and Joachims, 2009; Fernandes and Brefeld, 2011a; Zhu et al., 2010; Vedaldi and
Zisserman, 2009; Wang and Mori, 2010; Luo and Orabona, 2010; Lou and Hamprecht, 2012;
Sarawagi and Gupta, 2008; Yu et al., 2014]. Most of these works derived a non-convex bound
on the partial empirical risk (1.14) and proved empirically that it gives good estimates in
various types of applications. Non-convex optimization problems trying to solve (1.20) are
reduced to a sequence of convex problems, by so called Convex-Concave Procedure (CCCP),
which reduces the non-convex problem into a sequence of convex ones. Convex subproblems
are often solved with the help of proximal bundle method [Kiwiel, 1990]. Most of proposed
improvements for CCCP consist of:
• An adaptive increasing of the precision of supervised problem on each CCCP iteration until

the required precision is reached. This reduces the number of gradient evaluations needed
for Bundle Method for Risk Minimization (BMRM) on each CCCP iteration.
• Reusing “good” cutting planes across multiple CCCP iterations and avoiding computing

them from the scratch.
Different kind of CCCP ’s improvement was proposed by [Kumar et al., 2010], so called
Self-Paced Learning. Their algorithm simultaneously selects easy examples and updates pa-
rameters on each iteration in order to escape local optima. The number of samples selected
at each iteration is determined by a weight that is gradually annealed so that later iterations
introduce more samples. The algorithm convergences after all samples have been considered
and the objective function can not be improved further.

2.2.2. Regularized bundle methods for convex and non-convex risks

[Do and Artières, 2012] adapted the convex solver BMRM [Teo et al., 2010] for non-convex
optimization problem. The main idea of the Non-Convex Bundle Method for Risk Minimiza-
tion (NBMRM) is, likewise in BMRM, to build an approximation of the partial surrogate loss
via the cutting plane technique iteratively. Such an approximation is not an underestimator
of the objective function anymore, since the objective function is no more convex. The cutting
plane approximation of the objective function may cause conflict with target function, i.e. it
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may lead to the overestimation of the objective function at certain points. Authors overcome
the conflicts between the cutting planes similarly to classical non-convex bundle methods [Ki-
wiel, 1985; Gaudioso and Monaco, 1992] and prove the global convergence to cluster points
which are stationary solutions (not necessarily a local minimum but may be a saddle point or
even a local maximum). Their method requires fine tuning of many hyper-parameters, which
makes the algorithm very sensitive for each particular application.

2.2.3. Branch and bound algorithm

[Kawahara and Washio, 2011] used branch and bound algorithm for structured output learning
problems with missing labels known in global optimization theory [Horst et al., 1991]. Instead
of difference of two convex functions, authors considered submodular functions, the discrete
analog of convex functions. In addition, instead of solving Linear Programming (LP) problem
needed for computing a lower bound in a continuous case, authors solved binary-integer linear
program using state of the art optimization techniques developed for the optimization of
submodular functions. Authors showed empirically the advantage of the model corresponding
to the global optimum of objective function over the models corresponding to local optima.
Although, the branch and bound algorithm is not really suitable for large scale problems, it
shows the advantage of the global solution against the local one in the considered approach
(structured output learning from partially annotated data).

2.2.4. Perceptron-like algorithms

The structured output perceptron, analogous to its “flat” counterpart, has been proposed in
[Schlesinger and Hlaváč, 2002; Altun et al., 2003; Collins and Koo, 2005]. Later [Fernandes
and Brefeld, 2011b] derived an extension of the loss-augmented perceptron for structured
output learning that allows to deal with partialy annotated sequences. To learn from partialy
annotated data [Fernandes and Brefeld, 2011b], performed a transductive step to extrapolate
the partial annotations to the unlabeled part using the constrained Viterbi algorithm [Cao and
Chen, 2003]. The perceptron-like algorithms have a clear advantage, namely, that they are an
online type of algorithms suitable for learning from large scale data. The main disadvantage
of such algorithms is an incomplete theoretical understanding like the convergence analysis (in
turn it is unclear when to stop the algorithm) or a firm statistical justification [Fernandes and
Brefeld, 2011b]. Nevertheless, most of the existing works show empirically that minimization
of the partial loss function when learning the structured output classifiers from missing labels
is a good heuristic.

2.3. Ordinal classification

First it should be mentioned that there is a plethora of works in machine learning community
addressing supervised learning of ordinal classifiers. However, there is a lack of discriminative
methods for learning from partially annotated examples. The existing approaches are briefly
discussed below.

The ordinal classification models can be split to two groups: a regression based approaches
and a threshold based approaches. The former approach involves the standard regression
model the real-valued output of which is then projected on a discrete domain corresponding
to the ordinal labels [Crammer and Singer, 2005]. On the other hand, the threshold based
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approaches provide a greater flexibility by seeking a mapping f : X → R along with a vector
of non-decreasing thresholds which partition the real-valued prediction into an ordered set of
labels. The existing learning paradigms can be split into two groups as well: the maximum
likelihood based methods and the discriminative methods which are briefly outlined below.

2.3.1. Maximum likelihood methods for learning of ordinal classifier

A plug-in ordinal classifier can be constructed by substituting a probabilistic model estimated
by the ML method to the optimal decision rule derived for a particular loss function (see
e.g. [Debczynski et al., 2008] for a list of losses and corresponding decision functions suitable
for ordinal classification). Parametric probability distributions suitable for modeling the
ordinal labels have been proposed in [McCullagh, 1980; Fu and Simpson, 2002; Rennie and
Srebro, 2005]. Besides the parametric methods, the non-parametric probabilistic approaches
like the Gaussian processes were also proposed [Chu and Ghahramani, 2005].

The maximum likelihood approach can be directly applied in the presence of incomplete an-
notation (e.g. the setting considered in this work when label interval is given instead of a single
label) by using the Expectation-Maximization algorithms [Schlesinger, 1968; Dempster et al.,
1997]. However, the maximum likelihood methods are sensitive to model mis-specification
which complicates their application in modeling complex high dimensional data. In con-
trast, the discriminative methods reviewed below are known to be robust against the model
misspecification while their extension for learning from partial annotations is not trivial.

2.3.2. Discriminative methods for supervised learning of ordinal classifiers

The existing discriminative methods learn parameters of the ordinal classifier by minimizing a
convex proxy of the empirical risk. A Perceptron-like on-line algorithm PRank has been pro-
posed in [Crammer and Singer, 2001]. A large-margin principle has been applied for learning
ordinal classifiers in [Shashua and Levin, 2002]. The paper [Chu and Keerthi, 2005] proposed
Support Vector Ordinal Regression: Explicit Constraints on Thresholds (SVOR-EXP) and
the Support Vector Ordinal Regression: Implicit Constraints on Thresholds (SVOR-IMC).
Unlike [Shashua and Levin, 2002], the SVOR-EXP and SVOR-IMC guarantee the learned
ordinal classifier to be statistically plausible. The same approach have been proposed inde-
pendently by [Rennie and Srebro, 2005], who introduce so called immediate-threshold loss
and all-thresholds loss functions. Minimization of a quadratically regularized immediate-
threshold loss and the all-threshold loss are equivalent to the SVOR-EXP and the SVOR-IMC
formulation, respectively. A generic framework proposed in [Li and Lin, 2006], of which the
SVOR-EXP and SVOR-IMC are special instances, allows to convert learning of the ordinal
classifier into learning of two-class SVM classifier with weighted examples.
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3. Learning ordinal classifiers from interval annotations

A road map of the chapter:

• Classification models for ordinal classification are discussed in Section 3.1. In Subsec-
tion 3.1.1 we show that the standard ordinal rule can be equivalently parametrized as a
specific form of a linear multi-class classifier, which we denote as the MORD classifier.
In Subsection 3.1.2 we propose a more flexible model for ordinal classification which we
denoted as the PW-MORD classifier. A unified view of existing and proposed models for
ordinal classification is presented in Subsection 3.1.3.

• Supervised learning algorithms for ordinal classification are discussed in Section 3.2. Two
existing methods, the support vector ordinal machine with explicit constraints (SVOR-EXP)
and the support vector ordinal machine with implicit constraints (SVOR-IMC) [Chu and
Keerthi, 2005], are reviewed in Subsection 3.2.1 and Subsection 3.2.2, respectively. In Sub-
section 3.2.3 we show how to design an instance of the SO-SVM which can learn ordinal
classifiers while minimizing a surrogate of an arbitrary V-shaped loss.

• Learning from interval annotations is discussed in Section 3.3. The interval-insensitive
loss function and its application as an upper bound of the target (complete) loss is a subject
of Subsection 3.3.1. Modifications of two existing supervised methods, the SVOR-EXP and
the SVOR-IMC algorithms, in order to minimize a surrogate of the interval-insensitive loss
is presented in Subsection 3.3.2 and Subsection 3.3.3, respectively. A generic surrogate of
the interval-insensitive loss which can be derived from arbitrary V-shaped loss is proposed
in Subsection 3.3.4. In Subsection 3.3.4 we also propose an instance of a generic ERM based
algorithm, called V-shaped interval insensitive loss minimization algorithm (VILMA), and
we discuss its relation to other methods.

• Optimization algorithm that is suitable for solving large instances of the convex prob-
lems formulated in this chapter is proposed in Subsection 3.4. The algorithm, denoted as
a double-loop Cutting plane algorithm (CPA), can solve convex quadratically regularized
risk minimization problems. In contrast to existing instances of the CPA, the double-loop
CPA allows a subset of parameters not to be included in the quadratic regularizer which is
very important when modeling the intercepts of the ordinal classification rules as will be
shown experimentally.

• Experiments are presented in Section 3.5. The experiments provide a thorough evaluation
of the supervised methods and the methods for learning from interval annotations discussed
in this chapter. The evaluation is carried out on both standard UCI benchmarks as well as
on a real-life problem the goal of which is the estimation of human age from facial images.
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Figure 3.1. The figure vizualizes division of the 2-dimensional feature space into four classes realized
by an instance of the ordinal classifier (3.1).

3.1. The model

Let X ⊂ Rn be a space of input observations and Y = {1, . . . , Y } a set of hidden labels
endowed with a natural order1. We consider learning of an ordinal classifier h : X → Y of the
form

h(x;w,θ) = 1 +
Y−1∑
k=1

[[〈x,w〉 > θk]] , (3.1)

where w ∈ Rn and θ ∈ Θ = {θ′ ∈ RY−1 | θ′y ≤ θ′y+1, y = 1, . . . , Y − 1} are admissible
parameters. The brackets 〈·, ·〉 denote the dot product and the operator [[A]] is the Iverson
bracket. It evaluates to 1 if A holds, otherwise it is 0. The classifier (3.1) splits the real line
of projections 〈x,w〉 into Y consecutive intervals defined by thresholds θ1 ≤ θ2 ≤ · · · ≤ θY−1.
The observation x is assigned a label corresponding to the interval, to which the projection
〈w,x〉 falls to. The classifier (3.1) is a suitable model if the label can be thought of as a rough
measurement of a continuous random variable ξ(x) = 〈x,w〉 + noise [McCullagh, 1980]. An
example of the ordinal classifier applied to a toy 2D problem is depicted in Figure 3.1.

We define an equivalent parametrisation of an ordinal classifier in the next section.

3.1.1. Ordinal regression as linear multi-class classification

Let us start with one-dimensional observations x ∈ X = R. In such case the ordinal classifier
h(x) = 1 +

∑Y−1
k=1 [[x > θk]] splits the real axis into Y intervals defined by thresholds θ1 ≤ θ2 ≤

· · · ≤ θY−1. One may think of representing the ORD classifier in the form

h′(x) = argmax
y∈Y

f(x, y) , (3.2)

where f : R× Y → R is a discriminant function. If we manage to construct the discriminant
functions such that f(x, y) > f(x, y′), y′ ∈ Y \ {y} iff h(x) = y then both representations

1The sequence 1, . . . , Y is used just for a notational convenience. However, any other finite and fully ordered
set can be used instead.
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3. Learning ordinal classifiers from interval annotations

θ1 θ2

2x+ b2

3x+ b3

x+ b1

Figure 3.2. The figure illustrates the relation between the ordinal classifier h(x) = 1 +
∑Y−1
k=1 [[x > θk]]

and its alternative representation h′(x) = argmaxy∈Y(x · y + by) for the (Y = 3)-class problem.
Note, that x and y-axes have different scale in order to save space.

will be equivalent i.e. h′(x) = h(x), x ∈ R. Let us consider a linear discriminant function
with the slope equal to y, i.e. f(x, y) = x · y + by. In such case (3.2) becomes a linear
multi-class classifier. It is not difficult to see that such linear classifier also splits the real axis
into intervals. Figure 3.2 shows an example of the ordinal classifier and its equivalent linear
classifier h′(x).

The same idea can be applied for n-dimensional observations x ∈ X = Rn. The multi-class
linear classifier which can represent the ordinal classifier (3.2) reads

h′(x;w, b) = argmax
y∈Y

(
〈x,w〉 · y + by

)
, (3.3)

where w ∈ Rn is the parameter vector and b = (b1, . . . , bY ) ∈ RY is a vector of intercepts. We
denote (3.3) as the Multi-class Ordinal classifier (MORD). Later in this text, we assume that
the “argmax” operator returns the minimal label in the case of more than one maximizer.

A natural question is whether both representations are equivalent in the sense that any
ordinal classifier can be represented by some MORD classifier and vice-versa. The following
theorem gives the positive answer to the question.

Theorem 1. The ordinal classifier (3.1) and the MORD classifier (3.3) are equivalent in
the following sense. For any w ∈ Rn and admissible θ ∈ Θ there exists b ∈ RY such that
h(x,w,θ) = h′(x,w, b), ∀x ∈ Rn. For any w ∈ Rn and b ∈ Rn there exists admissible θ ∈ Θ
such that h(x,w,θ) = h′(x,w, b), ∀x ∈ Rn.

Our proof (see Appendix A.1) is constructive in the sense that we can provide a conversion
from the ordinal classifier to the MORD classifier and vice-versa.

In exotic cases, which however may appear in practice, some classes can collapse to a single
point and effectively disappear. To cover all such situations, we first define the concept of
non-degenerated classifier and then we give formulas for the conversions.

Definition 1 (Degenerated and non-degenerated classifier). We call class y ∈ Y non-degenerated
for classifier h′(x) iff Xy = interior({x ∈ X : h′(x) = y}) 6= ∅. Classifier h′(x) is non-
degenerated iff all classes are non-degenerated. In the opposite case, the classifier is called
degenerated.
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3.1. The model

Definition 2. Given a MORD classifier, the class ŷ ∈ Y is non-degenerated iff the linear
inequalities

zŷ + bŷ > z(ŷ − k) + bŷ−k, 1 ≤ k < ŷ ,
zŷ + bŷ ≥ z(ŷ + t) + bŷ+k, 1 < t ≤ Y − ŷ , (3.4)

are solvable w.r.t. z ∈ R.

Note that the validity of (3.4) can be verified in O(Y ) time. The proof of Theorem 1 can
be found in Appendix A.1. The proof is a constructive, i.e., it provides formulas which allow
to convert the MORD classifier (3.3) to the standard ordinal classifier (3.1) and vice-versa.

Conversion formulas. Given parameters of the ordinal classifier w ∈ Rn, θ ∈ Θ, the equiv-
alent MORD classifier has parameters w and b given by

b1 = 0 and by = −
y−1∑
i=1

θi, y = 2, . . . , Y. (3.5)

The conversion from the MORD classifier to the ordinal classifier is done differently for the
non-generated and the degenerated classifier. Given parameters of a non-degenerated MORD
classifier w ∈ Rn and b ∈ RY , we can compute thresholds θ ∈ Θ of the equivalent ordinal
classifier by

θy = by − by+1, y = 1, . . . , Y − 1 . (3.6)

Given parameters of a degenerated MORD classifier w ∈ Rn and b ∈ RY , we compute
thresholds θ ∈ Θ of the equivalent ORD classifier by

θyi = · · · = θyi+1−1 =
byi−byi+1

(yi+1−yi) , i = 1, . . . , p, (3.7)

where yi ∈ Y, i = 1, . . . , p is an increasing subsequence of non-degenerated classes.

Finally, let us note that the MORD classifier is represented by n + Y parameters insted
of n + Y − 1 parameters of the ordinal classifier. However, the parameters of the MORD
classifier are unconstrained, which makes the MORD representation attractive for learning
because no additional constraints on the intercepts θ ∈ Θ are needed.

3.1.2. Piece-wise ordinal regression classifier

The discriminative power of the ordinal classifier can be limiting in some cases. Mapping
the observations into higher dimensional space via usage of kernel functions is one way to
make the linear ordinal classifier more discriminative. Though the “kernalization” of the
ordinal classifier is straightforward it is not suitable in all cases. For example, the kernels are
prohibitive in applications, which require processing of large amounts of training examples
and/or if a real-time response of the classifier is the must. Instead, we proposed to stay
in the original feature space where we construct a combined classifier from a set of simpler
component classifiers. In our case, the component classifiers will be the MORD classifiers,
each responsible for a subset of labels.

Let Z > 1 be a number of cut labels (ŷ1, ŷ2, . . . , ŷZ) ∈ YZ such that ŷ1 = 1, ŷZ = Y and
ŷz ≤ ŷz+1, z ∈ Z = {1, . . . , Z − 1}. The cut labels define a partitioning of Y into Z subsets
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3. Learning ordinal classifiers from interval annotations

Yz = {y ∈ Y | ŷz ≤ y ≤ ŷz+1}, z ∈ Z. We will model a dependence between the observation
x and a subset of labels Yz by the component classifier

hz(x) = argmax
y∈Yz

fz(x, y) , (3.8)

where fz : Rn × Yz → R is a discriminant function. We define a combined classifier whose
discriminant function is composed of discriminant functions of the component classifiers as
follows

h′′(x) = argmax
z∈Z

max
y∈Yz

fz(x, y) . (3.9)

We set the discriminant functions to be

fz(x, y) =
〈
x,wz(1− α(y, z)) +wz+1α(y, z)

〉
+ by , (3.10)

where

α(y, z) =
y − ŷz

ŷz+1 − ŷz
and W = [w1, . . . ,wZ ] ∈ Rm, b ∈ RY , (where m = n × Z) are parameters. With these
definitions, it can be claimed that:
1. the component classifiers (3.8) are the ordinal classifiers,
2. the combined classifier (3.9) is well defined because all its neighboring discriminant functions

are consistent at the cut labels, i.e. fz(x, ŷz+1) = fz+1(x, ŷz+1), z ∈ Z, holds.
The claim 1 is seen after substituting (3.10) into (3.8), which after some algebra yields

hz(x) = argmax
y∈Yz

(
〈x,wz+1 −wz〉α(y, z) + by

)
.

Since α(y, z) is linearly increasing with y, Theorem 1 guarantees that hz(x) is the MORD clas-
sifier equivalent to the ordinal classifier. The claim 2 follows from the fact that α(ŷz+1, z) = 1
and α(ŷz+1, z + 1) = 0, and thus fz(x, ŷz+1) = 〈x,wz+1〉+ bŷz+1 = fz+1(x, ŷz+1).

We can write explicitly the component classifier, which we call the PW-MORD, as follows

h′′(x,W , b) = argmax
z∈Z

argmax
y∈YZ

(
〈x,wz(1− α(y, z)) +wz+1α(y, z)〉+ by

)
. (3.11)

Figure 3.3 visualizes the ordinal (=MORD) and the PW-MORD classifier on a toy data.
It is seen that the distribution of the data cannot be well described by the ordinal classifier,
while the PW-MORD composed of three ordinal classifiers provides much better model in
this case.

3.1.3. Unified view of classifiers for ordinal regression

In this section, we are going to describe several instances of the classifier

h(x,W , b) = argmax
y∈Y

(
〈x,

Z∑
z=1

β(y, z)wz〉+ by

)
, (3.12)

where W = [w1, . . . ,wZ ] ∈ Rn×Z , b = [b1; . . . ; bY ] ∈ RY are parameters and β : Y ×
{1, . . . , Z} → R are fixed numbers, that can be useful models for ordinal regression. The
instances of (3.12) differ in the way how one defines β and Z. We show below how to derive
various instances of the ordinal classifier.
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Figure 3.3. The figure shows the partitioning of 2-dimensional feature space realized by the ordinal
classifier and the PW-MORD classifier with Z = 3 components. The cut labels for the PW-MORD
classifier were set to {1, 4, 7, 10}.

1. Rounded linear-regression rule

h(x,w, b) = max(1,min(Y, round(〈w,x〉+ b))) (3.13)

is the most simplest model for the ordinal regression obtained by clipping a rounded response
of the standard linear regression rule to the interval [1, Y ]. It is easy to show that (3.13)
is an instance of (3.12) recovered after setting Z = 1, β(1, y) = 2y, y ∈ Y, and fixing the
components of the intercept vector b to by = 2by − y2. Using the conversion formula (3.6),
we can show that the rounded linear-regression rule is equivalent to the ordinal classifier with
equal width of the decision intervals, namely, with θk+1 − θk = 2, k = 1, . . . , Y − 2.

2. Multi-class linear classifier

h(x,W , b) = argmax
y∈Y

(
〈wy,x〉+ by

)
(3.14)

is recovered after setting Z = Y and β(y, z) = [[y = z]], y ∈ Y, z ∈ {1, . . . , Z}. It is the most
generic (and also most discriminative) form of (3.12), which completely ignores ordering of
the labels.

3. The proposed MORD classifier (3.3) is recovered after setting Z = 1, W = w1, and
β(y, 1) = y, y ∈ Y. We showed that the MORD classifier is equivalent to the standard ordinal
classifier (3.1) most frequently used in the ordinal regression.

4. The proposed PW-MORD classifier (3.11) is recovered after setting β(y, z) according
to

β(y, z) = 1− α(y, z) for z = 1, . . . , Z − 1 , y ∈ Yz ,
β(y, z) = α(y, z − 1) for z = 2, . . . , Z , y ∈ Yz ,
β(y, z) = 0 otherwise.

(3.15)
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3. Learning ordinal classifiers from interval annotations

The PW-MORD is composed of Z − 1 MORD classifiers each modeling a subset of labels
(see Section 3.1.2). The PW-MORD is most flexible as it allows controling its complexity
smoothly by a single parameter Z. It is easy to see that for Z = 2 the PW-MORD is equivalent
to the MORD (=ordinal) classifier. For Z = Y , it becomes the multi-class linear classifier.

To summarize, one can see PW-MORD classifier as a classifier whose discriminative power
varies from MORD classifier (Z = 1, labels are fully ordered) to multi-class linear classi-
fier (3.14) (Z = Y , no order of labels) depending on the number cutting labels Z.

3.2. Supervised learning

There exist several discriminative methods for learning parameters (w,θ) of the ordinal clas-
sifier (3.1) from examples, e.g. [Crammer and Singer, 2001; Shashua and Levin, 2002; Chu
and Keerthi, 2005; Li and Lin, 2006]. To our best knowledge, all the existing methods are
fully supervised algorithms requiring a set of completely annotated training examples

Dmxy = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m (3.16)

typically assumed to be drawn from i.i.d. random variables with some unknown distribution
p(x, y). The goal of the supervised learning algorithm is formulated as follows. Given the
loss function ` : Y ×Y → R and the training examples (3.16), the task is to learn the ordinal
classifier h : X → Y with the Bayes risk

R`(h) = Ep(x,y) `(y, h(x)) (3.17)

is as small as possible

h`∗ ∈ Argmin
h : X→Y

R(h) . (3.18)

The loss functions most commonly used in practice for ordinal classification are the Mean
Absolute Error (MAE) `MAE(y, y′) = |y − y′| and the 0/1-loss `0/1(y, y′) = [[y 6= y′]]. Both
MAE and 0/1-loss are instances of so called V-shaped losses.

Definition 3. (V-shaped loss). A loss ` : Y ×Y → R is V-shaped if `(y, y) = 0 and `(y′′, y) ≥
`(y′, y) holds for all triplets (y, y′, y′′) ∈ Y3 such that |y′′ − y′| ≥ |y′ − y|.

That is, the value of a V-shaped loss grows monotonically with the distance between the
predicted and the true label. We constrain our analysis to the V-shaped losses.

Because the expected risk R`(h) is not accessible directly due to the unknown distribution
p(x, y), the discriminative methods like [Shashua and Levin, 2002; Chu and Keerthi, 2005; Li
and Lin, 2006] minimize a convex surrogate of the empirical risk over a set of linear decision
functions. In particular, the existing methods approximate the Bayes risk minimization (3.18)
by a surrogate ERM problem

f emp
∗ ∈ Argmin

f∈F
Rψemp(f) , (3.19)

where

Rψemp(f) = Es(x,y)ψ(y, f(x)) (3.20)
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is the empirical risk and the resulting classification rule is h = pred ◦ f emp
∗ . In the case of

ordinal classification, the space of decision functions is defined as

F =
{
f(x) = (〈w,x〉 − θ1, . . . , 〈w,x〉 − θY−1)T ∈ RY−1 | w ∈ Rn,θ ∈ Θ,Ω(w,θ) ≤ r

}
,

where r > 0 is a hyper-parameter and Ω: Rn × RY−1 → R+ is a convex regularization
function. The form of the prediction transform pred is defined implicitly by (3.1). Because
the decision function f ∈ F is parametrized by (w,θ) we will use a shortcut ψ(w,θ;x, y) =
ψ(y, f(x;w,θ)) which slightly abuses the notation but should not cause a big confusion. In
practice it is more convenient to solve a problem

(w∗,θ∗) ∈ Argmin
w∈Rn,θ∈Θ

(λ
2

Ω(w,θ) +
1

m

m∑
i=1

ψ(w,θ;xi, yi)
)
, (3.21)

which is however equivalent to (3.19) with appropriately set regularization constant λ > 0.
In Section 3.2.1 and Section 3.2.2 we review the most polular methods, i.e. the SVOR-EXP

algorithm and the SVOR-IMC algorithm [Chu and Keerthi, 2005], respectively. We will show
that both algorithms are instances of (3.21) using a different surrogate loss ψ. We show that
the surrogate of the SVOR-EXP is an upper bound of the 0/1-loss and that the surrogate of
the SVOR-IMC is an upper bound of the MAE loss.

In Section 3.2.3 we derive an instance of the SO-SVM algorithm suitable for learning param-
eters of the MORD and the PW-MORD rules. In contrast to the SVOR-EXP and SVOR-IMC,
the SO-SVM based algorithm uses a generic surrogate loss ψ which can approximate arbi-
trary target loss function. Another advantage of the SO-SVM algorithm is that it leads to an
unconstrained variant of the problem (3.21). Therefore larger set of optimization solvers can
be used in contrast to SVOR-EXP and SVOR-IMC which have to deal with the constraints.

A final remark is related to the regularization function Ω. A common choice in the case of
ordinal classifier is either Ω(w,θ) = ‖w‖2 + ‖θ‖2 or Ω(w,θ) = ‖w‖2. The former regularizer
makes the objective to be smooth, to have a unique minimizer and easier to deal with in
general. However, an influence of the regularizer on the classification accuracy is unclear. In
Section 3.4 we develop a generic optimization algorithm which can deal with both variants
of the regularization function. In Section 3.5 we compare both variants empirically and show
that the choice of the regularizer has a significant impact on the overall classifier accuracy.

3.2.1. Support vector ordinal regression: explicit constraints on thresholds

The original SVOR-EXP algorithm [Chu and Keerthi, 2005] considers only adjacent cat-
egories. In particular, it learns parameters of the ordinal classifier (3.1) from completely
annotated examples Dmxy by solving the following convex quadratic optimization problem

(w∗,θ∗) ∈ Argmin
w∈Rn,θ∈RY−1

[
λ

2
||w||2 +

r−1∑
j=1

( nj∑
i=1

ξji +
nj+1∑
i=1

ξ∗j+1
i

)]
(3.22)

subject to

〈xji ,w〉 − θj ≤ −1 + ξji , ξ
j
i ≥ 0, ∀i = 1, . . . , nj ,

〈xj+1
i ,w〉 − θj ≥ 1− ξ∗j+1

i , ξ∗j+1
i ≥ 0, ∀i = 1, . . . , nj+1 ,

θj ≤ θj+1, ∀j ∈ {1, . . . , Y − 1} .
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Figure 3.4. The figure explains the meaning of slack variables ξ and ξ∗ for the SVOR-EXP formulation.
Note, example y+ 1 can be counted twice if its projection falls into segment [θj+1−1, θj + 1], where
(θj+1 − 1 < θj + 1). The idea of the figure taken from [Chu and Keerthi, 2005].

In this setting, the support vector formulation attempts to find the optimal mapping di-
rection w and thresholds w ∈ Rn and θ ∈ Θ = {θ′ ∈ RY−1 | θ′y ≤ θ′y+1, y = 1, . . . , Y − 1},
which define Y − 1 parallel discriminative hyperplanes for Y ordered classes accordingly. In
this formulation, each sample in the y-th category should have a function value that is less
than the lower margin θy − 1, otherwise 〈xyi ,w〉 − (θy − 1) is the error (denoted as ξyi ). Simi-
larly, each sample from (y + 1)-th category should have a function value that is greater than
the upper margin θy + 1, otherwise (θy + 1) − 〈xy+1

i ,w〉 is the error (denoted as ξ∗yi ). See
Figure 3.4 to get more insight to meaning of ξyi and ξ∗yi .

Using auxiliary variables θ0 = −∞ and θY = ∞, we reformulate (3.22) as an equivalent
problem in terms of ERM framework as follows

(w∗,θ∗) ∈ Argmin
w∈Rn,θ∈Θ̂

[
λ

2
‖w‖2 +

m∑
i=1

ψEXP(w,θ;xi, yi)

]
, (3.23)

where the optimized convex surrogate loss reads

ψEXP(w,θ;x, y) = max(0, 1− 〈x,w〉+ θy−1) + max(0, 1 + 〈x,w〉 − θy)

and Θ̂ = {θ ∈ RY+1 | θ0 = −∞, θY = ∞, θy ≤ θy+1, y = 1, . . . , Y − 1}. Note, that the
surrogate ψEXP(w,θ,x, y) is a convex upper bound of the 0/1-loss

`0/1(y, h(x;w,θ)) = [[y 6= h(x;w,θ)]] = [[〈x,w〉 < θy−1]] + [[〈x,w〉 ≥ θy]] ,

obtained by replacing the step function [[t ≤ 0]] by the hinge loss max(0, 1− t).

3.2.2. Support vector ordinal regression: implicit constraints on thresholds

Instead of considering errors only from the samples of adjacent categories in SVOR-EXP, the
SVOR-IMC algorithm allows the samples in all categories to contribute errors for each thresh-
old. That is to say, SVOR-IMC algorithm learns parameters of the ordinal classifier (3.1) from
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3.2. Supervised learning

completely annotated examples Dmxy by solving the following quadratic optimization problem

(w∗,θ∗) ∈ Argmin
w∈Rn,θ∈RY−1

[
λ

2
||w||2 +

r−1∑
j=1

( j∑
k=1

nk∑
i=1

ξjki +
r∑

k=j+1

nk∑
i=1

ξ∗jki

)]
(3.24)

subject to

〈xki ,w〉 − θj ≤ −1 + ξjki, ξ
j
ki ≥ 0, k = 1, . . . , j, i = 1, . . . , nk ,

〈xki ,w〉 − θj ≥ 1− ξ∗jki , ξ
∗j
ki ≥ 0, k = j + 1, . . . , r, i = 1, . . . , nk .

The authors of [Chu and Keerthi, 2005; Li and Lin, 2006] proved that the optimal parame-
ters are admissible, i.e. (w∗,θ∗) ∈ (Rn,Θ) holds, hence the explicit constraints θ ∈ Θ are not
needed in this case. It is also shown that the sum of slack variables in (3.24) upper bounds
the average of the MAE loss `(y, y′) = |y − y′| computed on the training examples. We re-
formulate (3.24) as an equivalent unconstrained minimization problem in terms of SO-SVM
framework as follows

(w∗,θ∗) ∈ Argmin
w∈Rn,θ∈Θ̂

[
λ

2
‖w‖2 +

m∑
i=1

ψIMC(w,θ;xi, yi)

]
(3.25)

where the convex surrogate reads

ψIMC(w,θ;x, y) =

y−1∑
y=1

max(0, 1− 〈x,w〉+ θy−1) +
Y−1∑
y=y

max(0, 1 + 〈x,w〉 − θy) .

As in the previous case, the problem (3.25) is an equivalent reformulation of the quadratic
program defining the SVOR-IMC algorithm in [Chu and Keerthi, 2005]. It is seen that the
surrogate ψIMC(w,θ;x, y) is a convex upper bound of the MAE loss

`MAE(y, h(x;w,θ)) = |y − h(x;w,θ)| =
y−1∑
y′=1

[[〈x,w〉 < θy′−1]] +
Y−1∑
y′=y

[[〈x,w〉 ≥ θy′ ]] .

3.2.3. Generic learning algorithm for ordinal regression

In Section 3.1.3 we showed that various models for ordinal classification can be seen as a
special instances of linear classifier (3.12). In this section, we derive generic algorithm to
learn (3.12) from given fully-supervised set Dmxy via SO-SVM framework. It is a generic and
well understood framework originally developed for the structured output learning [Tsochan-
taridis et al., 2005].

Following [Tsochantaridis et al., 2005], we propose to approximate the empirical risk by

R(W , b) =
1

m

m∑
i=1

max
y∈Y

[
`(y, yi) +

〈
xi,
∑
z∈Z

β(y, z)wz

〉
(y − yi) + by − byi

]
. (3.26)

This risk approximation uses the idea of the margin-rescaling loss functions [Tsochantaridis
et al., 2005] applied to the classifier (3.12). It is easy to prove that R(W , b) is a convex upper
bound on the true empirical risk

Remp(W , b) =
1

m

m∑
i=1

`(yi, h(xi,W , b))
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3. Learning ordinal classifiers from interval annotations

simply by showing that

ψ(w, b;x, y) = max
ŷ∈Y

[
`(ŷ, y) +

〈
x,
∑
z∈Z

β(ŷ, z)wz

〉
(ŷ − y) + bŷ − by

]
(3.27)

is a convex upper bound on `(ŷ, y). We can formulate learning of the classifier (3.12) as the
following convex unconstrained minimization problem

(W ∗, b∗) ∈ Argmin
W∈Rn,b∈RY

[
λ

2
Ω(W , b) +R(W , b)

]
, (3.28)

where Ω(W , b) is typically ‖W ‖2 or ‖W ‖2 + ‖b‖2 and λ > 0 is a prescribed (regularization)
constant used to control over-fitting.

A big effort has been put by the machine learning community into development of effi-
cient solvers for the problem (3.28). For example, a generic cutting plane methods like the
BMRM [Teo et al., 2010] or its accelerated variant [Franc and Sonneburg, 2009] can be read-
ily applied to solve (3.28). However, the existing cutting methods require the regularizer
Ω(W , b) = ‖W ‖2 + ‖b‖2. In Section (3.4), we propose a generic solver of (3.28) able to deal
with both regularizers.

Let us compare SO-SVM framework with the existing algorithms for learning the ordinal
classifier. First, the SO-SVM formulation (3.28) can learn a generic rule (3.12) while the ex-
isting methods are tailored to the canonical form (3.1) only. Second, the existing algorithms
consider a limited set of loss functions `(y, y′), namely MAE and 0/1-loss. The most generic
approach of [Li and Lin, 2006] derives an upper bound for V-shaped losses. The third limita-
tion of the existing algorithms is that they have to care about feasibility of thresholds θ ∈ Θ
because they work directly on the parameters of the ordinal classifier (however, it does not
apply to SVOR-IMC). This requires to either introduce additional constraints on the thresh-
olds θ ∈ Θ or to impose additional constraints on the loss function, namely, that the loss
must be convex [Li and Lin, 2006]. For instance, the 0/1-loss is not convex hence the learning
algorithms require extra inequality constraints (like the SVOR-EXP algorithm of [Chu and
Keerthi, 2005]), which may complicate the optimization. Note that in the proposed approach
the problem (3.28) remains unconstrained irrespectively to the selected loss.

The generality of our framework, however, does not automatically imply that the risk ap-
proximation (3.26) is better (tighter) than those used in existing methods. We experimentally
show in Section 3.5.4 that in the case of the most frequently used MAE loss, the proposed ap-
proximation (3.26) provides a slightly but consistently better test accuracy than the existing
ones.

Now we are ready to formulate learning of the ordinal classifiers from partially annotated
examples, namely, from interval annotations of the labels.

3.3. Learning from interval annotations

Analogically to the supervised setting, we assume that the observation x ∈ X and the cor-
responding hidden label y ∈ Y are generated from some unknown distribution p(x, y). In
contrast to the supervised setting, the training set does not contain a single label for each
instance. Instead, we assume that an annotator provided with the observation x, and pos-
sibly with the label y, returns a partial annotation in the form of an interval of candidate

30



3.3. Learning from interval annotations

labels [yl, yr] ∈ P. The symbol P = {[yl, yr] ∈ Y2 | yl ≤ yr} denotes the set of all possible
partial annotations. The partial annotation [yl, yr] means that the true label y is from the
interval [yl, yr] = {y ∈ Y | yl ≤ y ≤ yr}. We assume that the annotator can be modeled by a
stochastic process determined by a distribution p(yl, yr | x, y). That is, we are given a set of
partially annotated examples

DmxI = {(x1, [y1
l , y

1
r ]), . . . , (x

m, [yml , y
m
r ])} ∈ (X × P)m (3.29)

assumed to be generated from i.i.d. random variables with the distribution

p(x, yl, yr) =
∑
y∈Y

p(yl, yr | x, y) p(x, y)

defined over X × P. The learning algorithms described below do not require the knowledge
of p(x, y) and p(yl, yr | x, y). However, it is clear that the annotation process given by
p(yl, yr | x, y) can not be arbitrary in order to make learning possible. For example, in the
case when p(yl, yr | x, y) = p(yl, yr), the annotation would carry no information about the
true label. Therefore we will later assume that the annotation is consistent in the sense that
y /∈ [yl, yr] implies p(yl, yr | x, y) = 0. The consistency of the annotation process is a standard
assumption used, e.g. in [Cour et al., 2011].

The goal of learning from the partially annotated examples is formulated as follows. Given
a (supervised) loss function ` : Y × Y → R and partially annotated examples (3.29), the task
is to learn the ordinal classifier (3.1) whose Bayes risk R`(h) defined by (3.17) is as small
as possible. Note that the objective remains the same as in the supervised setting but the
information about the labels contained in the training set is reduced to intervals.

3.3.1. Learning by minimizing the interval insensitive loss

We define an interval-insensitive loss function in order to measure discrepancy between the
interval annotation [yl, yr] ∈ P and the predictions made by the MORD classifier h(x;w,θ) ∈
Y defined by (3.3).

Definition 4. (Interval insensitive loss) Let ` : Y × Y → R be a supervised V-shaped loss.
The interval insensitive loss `I : P × Y → R associated with ` is defined as

`I(yl, yr, y) = min
y′∈[yl,yr]

`(y′, y) =


0 if y ∈ [yl, yr] ,

`(y, yl) if y ≤ yl ,
`(y, yr) if y ≥ yr .

(3.30)

The interval-insensitive loss `I(yl, yr, y) does not penalize predictions, which are in the
interval [yl, yr]. Otherwise the penalty is either `(y, yl) or `(y, yr) depending on which border
of the interval [yl, yr] is closer to the prediction y. In the special case of the MAE `(y, y′) =
|y − y′|, one can think of the associated interval-insensitive loss `I(yl, yr, y) as the discrete
counterpart of the ε-insensitive loss used in the Support Vector Regression (SVR) [Vapnik,
1998].

The interval-insensitive loss (3.30) is a special case of the generic partial loss (1.13) that
has been previously used in the context of different classification models like the generic
multi-class classifiers [Cour et al., 2011], the Hidden Markov Chain based classifiers [Do
and Artières, 2009], generic structured output models [Lou and Hamprecht, 2012], the multi-
instance learning [Luo and Orabona, 2010], etc. However, as it will be shown later the ordinal
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3. Learning ordinal classifiers from interval annotations

classification model allows for a tight convex approximations of the partial loss in contrast to
previously considered classification models which either require crude approximation or more
frequently a non-convex loss function which is then hard to optimize.

Having defined the interval-insensitive loss, we can approximate minimization of the Bayes
risk R`(h) defined in (3.17) by minimization of the expectation of the interval-insensitive loss

R`I(h) = Ep(x,yl,yr) `I(yl, yr, h(x;w,θ)) . (3.31)

We denote R`I(h) as the partial risk in the sequel. The question is how well the partial risk
R`I(h) approximates the Bayes risk R`(h) being the target quantity to be minimized. In the
rest of this section, we analyze first this question for the 0/1-loss adapting results of [Cour
et al., 2011]. Next, we present a novel bound for the MAE loss. In particular, we show that
the Bayes risk R`(h) for both losses can be upper bounded by a linear function of the partial
risk R`I(h).

In the sequel, we assume that the annotation process governed by the distribution p(yl, yr |
x, y) is consistent in the following sense.

Definition 5. (Consistent annotation process) Let p(yl, yr | x, y) be a properly defined dis-
tribution over P for any (x, y) ∈ X × Y. The annotation process governed by p(yl, yr | x, y)
is consistent if any y ∈ Y, [yl, yr] ∈ P such that y /∈ [yl, yr] implies p(yl, yr | x, y) = 0.

The consistent annotation process guarantees that the true label is always contained among
the candidate labels in the annotation.

We first apply the excess bound for the 0/1-loss function, which has been studied in [Cour
et al., 2011] for a generic partial annotations when P is not constrained to be a set of label
intervals. The tightness of the resulting bound depends on the annotation process p(yl, yr |
x, y) characterized by so called ambiguity degree ε. If adopted to our interval-setting, is
defined as

ε = max
x,y,z 6=y

p(z ∈ [yl, yr] | x, y) = max
x,y,z

∑
[yl,yr]∈P

[[yl ≤ z ≤ yr]] p(yl, yr | x, y) . (3.32)

In words, the ambiguity degree ε is the maximum probability of an extra label z co-occurring
with the true label y in the annotation interval [yl, yr], over all labels and observations.

Theorem 2. Let p(yl, yr | x, y) be a distribution describing a consistent annotation process
with the ambiguity degree ε defined by (3.32). Let R0/1(h) be the Bayes risk (3.17) instan-

tiated for the 0/1-loss and let R
0/1
I (h) be the partial risk (3.31) instantiated for the interval

insensitive loss associated to the 0/1-loss. Then the upper bound

R0/1(h) ≤ 1

1− εR
0/1
I (h)

holds true for any h ∈ X → Y.

Theorem 2 is a direct application of Proposition 1 from [Cour et al., 2011].
Next we introduce a novel upper bound for the MAE loss, which is more frequently used in

applications of the ordinal classifier. We again consider consistent annotation processes. We
characterize the annotation process by two numbers describing the amount of uncertainty in
the training data. First, we use α ∈ [0, 1] to denoted a lower bound of the portion of exactly
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3.3. Learning from interval annotations

annotated examples, that is, examples annotated by an interval having just a single label
[yl, yr], yl = yr. Second, we use β ∈ {0, . . . , Y − 1} to denote the maximal uncertainty in
annotation, that is, β + 1 is the maximal width of the annotation interval, which can appear
in the training data with non-zero probability.

Definition 6. (αβ-precise annotation process) Let p(yl, yr | x, y) be a properly defined distri-
bution over P for any (x, y) ∈ X × Y. The annotation process governed by p(yl, yr | x, y) is
αβ-precise if

α ≤ p(y, y | x, y) and β ≥ max
[yl,yr]∈P

[[p(yl, yr | x, y) > 0]] (yr − yl)

hold for any (x, y) ∈ X × Y.

Let us consider the extreme cases, to illustrate the meaning of the parameters α and β.
If β = 0 or α = 1 then all examples are annotated exactly. We are back in the standard
supervised setting. On the other hand, if β = Y − 1 and α = 0 then it may happen that the
annotation brings no information about the hidden label because the intervals can contain
all labels in Y. With the definition of αβ-precise annotation, we can upper bound the Bayes
risk in terms of the partial risk as follows:

Theorem 3. Let p(yl, yr | x, y) be a distribution describing a consistent αβ-precise annotation
process. Let RMAE(h) be the Bayes risk (3.17) instantiated for the MAE-loss and let RMAE

I (h)
be the partial risk (3.31) instantiated for the interval insensitive loss associated to the MAE-
loss. Then the upper bound

RMAE(h) ≤ RMAE
I (h) + (1− α)β (3.33)

holds true for any h ∈ X → Y.

Proof of Theorem 3 is deferred to Appendix A.2.

The bound (3.33) is obtained by the worst case analysis hence it may become trivial in some
cases. For example, if all examples are annotated with wide intervals because then α = 0 and
β is large. The experimental study presented in Section 3.5 nevertheless shows that the partial
risk RI is a good proxy even in cases when the upper bound is large. This suggests that better
bounds might be derived, for example, when additional information about p(yl, yr | x, y) is
available.

In order to improve the performance of the resulting classifier via the bound (3.33), one
needs to control the parameters α and β. A possible way, which allows to set the parameters
(α, β) exactly, is to control the annotation process. For example, given a set of unannotated
randomly drawn input samples {x1, . . . ,xm} ∈ Xm, we can proceed as follows:

1. We generate a vector of binary variables π ∈ {0, 1}m according to Bernoulli distribution
with the probability α that the variable is 1.

2. We instruct the annotator to provide just a single label for each input example with index
from {i ∈ {1, . . . ,m} | πi = 1} while the remaining inputs (with πi = 0) can be annotated
by intervals not larger than β + 1 labels. That means that approximately m · α inputs will
be annotated exactly and m · (1− α) inputs with intervals.

This simple procedure ensures that the annotation process is αβ-precise though the distribu-
tion p(yl, yr | x, y) itself is unknown and depends on the annotator.
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3. Learning ordinal classifiers from interval annotations

Above we argued that the partial risk defined as an expectation of the interval insensitive
loss was a reasonable proxy of the target Bayes risk. In next section, we design algorithms
learning the ordinal classifier via minimization of the quadratically regularized empirical risk
used as a proxy for the expected risk. Similarly to the standard supervised case, we can-
not minimize the empirical risk directly due to a discrete domain of the interval insensitive
loss. For this reason, we derive several convex surrogates, which allow to translate the risk
minimization to tractable convex problems.

We first show how to modify two existing supervised methods in order to learn from
partially annotated examples. Namely, we extend the SVOR-EXP and SVOR-IMC algo-
rithms. The extended interval-insensitive variants are named Interval-Insensitive SVOR-
EXP (II-SVOR-EXP) (section 3.3.2) and Interval-Insensitive SVOR-IMC (II-SVOR-IMC)
(section 3.3.3), respectively. The II-SVOR-EXP is a method minimizing a convex surrogate
of the interval-insensitive loss associated to the 0/1-loss while the II-SVOR-IMC is designed
for the minimization of MAE loss.

In section 3.3.4, we show how to construct a generic convex surrogate of the interval-
insensitive loss associated to an arbitrary V-shaped loss. We call a method minimizing this
generic surrogate as the VILMA. We prove that the VILMA subsumes the II-SVOR-IMC (as
well as the SVOR-IMC as a special case).

3.3.2. Interval insensitive support vector ordinal regression: explicit constraints
on thresholds

The interval insensitive loss `
0/1
I (yl, yr, y) derived for the target 0/1-loss reads

`
0/1
I (yl, yr, h(x;w,θ)) = min

y′∈[yl,yr]
[[y′ 6= h(x;w,θ)]] = [[〈x,w〉 < θyl−1]] + [[〈x,w〉 ≥ θyr ]] .

We derive its surrogate by replacing the step functions with the hinge loss which yileds

ψEXP
I (w,θ;x, yl, yr) = max(0, 1− 〈x,w〉+ θyl−1) + max(0, 1 + 〈x,w〉 − θyr) .

The surrogate ψEXP
I (w,θ;x, yl, yr) is clearly a convex upper bound of `

0/1
I (yl, yr, h(x;w,θ))

as can be also seen in Figure 3.5.

We propose II-SVOR-EXP algorithm to learn parameters (w,θ) of the ordinal classi-
fier (3.1) from partially annotated examples DmI by solving the following convex problem

(w∗,θ∗) ∈ Argmin
w∈Rn,θ∈Θ̂

[
λ

2
‖w‖2 +

m∑
i=1

ψEXP
I (w,θ;xi, yil , y

i
r)

]
. (3.34)

3.3.3. Interval insensitive support vector ordinal regression: implicit constraints
on thresholds

Analogically, we derive a convex surrogate of the interval insensitive loss `MAE
I (yl, yr, y) as-

sociated with the MAE as follows

`MAE
I (yl, yr, h(x;w,θ)) = min

y′∈[yl,yr]
|y′ − h(x;w,θ)| =

yl−1∑
y′=1

[[〈x,w〉 < θy]] +

Y−1∑
y′=yr

[[〈x,w〉 ≥ θy]] .
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Figure 3.5. The left figure shows the interval insensitive loss `
0/1
I (x, yl, yr, h(x;w,θ)) associated with

the 0/1-loss and its surrogate ψEXP
I (w,θ;x, yl, yr)). The right figure shows the interval insensitive

loss `MAE
I (x, yl, yr, h(x;w,θ)) associated with the MAE loss and its surrogate ψIMC

I (w,θ;x, yl, yr)).
The losses are shown as a function of the score 〈x,w〉 evaluated for θ1 = 1, θ2 = 2, . . . , θY−1 = Y −1
and yl = 4, yr = 6. Note that for this particular setting of θ the surrogate ψEXP

I (w,θ;x, yl, yr))
also appears to upper bound `MAE

I (x, yl, yr, h(x;w,θ)), however, this does not hold in general.

We obtain a convex surrogate by replacing the step functions by the hinge loss

ψIMC
I (w,θ;x, yl, yr) =

yl−1∑
y′=1

max(0, 1− 〈x,w〉+ θy′−1) +

Y−1∑
y′=yr

max(0, 1 + 〈x,w〉 − θy′) ,

which is obviously an upper bound of `MAE
I (yl, yr, h(x;w,θ)) as can be also seen in Figure 3.5.

Given the partially annotated examples DmI , we can learn parameters (w,θ) of the ordinal
classifier (3.1) by solving

(w∗,θ∗) ∈ Argmin
w∈Rn,θ∈Rn

[
λ

2
‖w‖2 +

m∑
i=1

ψIMC
I (w,θ;xi, yil , y

i
r)

]
. (3.35)

We denote the modified variant as the II-SVOR-IMC algorithm. Note that due to the equality
ψIMC
I (w,θ;x, y, y) = ψIMC(w,θ;x, y) it is clear that the proposed II-SVOR-IMC subsumes

the original supervised SVOR-IMC as a special case.

3.3.4. V-shaped interval insensitive loss minimization algorithm

In this section, we propose a generic method for learning the ordinal classifiers with arbitrary
interval insensitive V-shaped loss. The MORD parametrization allows to adopt existing tech-
niques for linear classification. Given a V-shaped supervised loss ` : Y × Y → R, we propose
to approximate the value of the associated interval insensitive loss `I(yl, yr, h

′(x;w, b)) by a
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surrogate loss ψI : Rn × RY ×X × P → R defined as

ψI(w, b;x, yl, yr) = max
y≤yl

[
`(y, yl) + 〈x,w〉(y − yl) + by − byl

]
+ max
y≥yr

[
`(y, yr) + 〈x,w〉(y − yr) + by − byr

]
.

(3.36)

It is seen that the function ψI(w, b;x, yl, yr) is a sum of two point-wise maxima over linear
functions for fixed (x, yl, yr). Hence, it is convex in the parameters (w, b). The following
proposition states that the surrogate is like the previous surrogates an upper bound of the
interval insensitive loss.

Proposition 1. For any x ∈ Rn, [yl, yr] ∈ P, w ∈ Rn and b ∈ RY the inequality

`I(yl, yr, h
′(x;w, b)) ≤ ψI(w, b;x, yl, yr)

holds where h′(x;w, b) denotes response of the MORD classifier (3.3).

Proof is deferred to Appendix A.3.
Given partially annotated training examples DmI , we can learn parameters (w, b) of the

MORD classifier (3.3) by solving the following unconstrained convex problem

(w∗, b∗) = argmin
w∈Rn,b∈RY

[
λ

2
‖w‖2 +

1

m

m∑
i=1

ψI(w, b;x
i, yil , y

i
r)

]
, (3.37)

where λ ∈ R++ is a regularization constant. A suitable value of the regularization constant
is typically tuned on the validation set. In the sequel, we denote the method based on
solving (3.37) as the VILMA.

As important example, let us consider the surrogate (3.36) instantiated for the MAE loss.
In this case, the surrogate becomes

ψMAE
I (w, b;x, yl, yr) = max

y≤yl

[
yl − y + 〈x,w〉(y − yl) + by − byl

]
+ max
y≥yr

[
y − yr + 〈x,w〉(y − yr) + by − byr

]
.

(3.38)

It is interesting to compare the VILMA instantiated for the MAE loss with the II-SVOR-IMC
algorithm, which optimizes a different surrogate of the same loss. Note that the II-SVOR-IMC
learns the parameters (w,θ) of the ordinal classifier (3.1) while the VILMA parameters (w, b)
of the MORD rule (3.3). The following proposition states that surrogates of both methods
are equivalent.

Proposition 2. Let w ∈ Rn,θ ∈ Θ, b ∈ RY be a triplet of vectors such that h(x;w,θ) =
h′(x;w, b) holds for all x ∈ X where h(x;w,θ) denotes the ordinal classifier (3.1) and
h′(x;w, b) the MORD classifier (3.3). Then the equality

ψIMC
I (w,θ;x, yl, yr) = `MAE

I (w, b;x, yl, yr)

holds true for any x ∈ X and [yl, yr] ∈ P.

Proof is deferred to Appendix A.4.
Proposition 2 ensures that the II-SVOR-IMC algorithm and the VILMA with MAE loss

both return the same classification rules although differently parametrized.
The core properties of the generic method, the VILMA, proposed in this section:
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1. VILMA is applicable for an arbitrary V-shaped loss,
2. VILMA subsumes the II-SVOR-IMC algorithm optimizing the MAE loss as a special case,
3. VILMA converts learning into an unconstrained convex optimization. Note that the II-SVOR-EXP

and the II-SVOR-IMC in contrast to VILMA maintain the set of linear constraints θ ∈
Θ = {θ′ ∈ RY−1 | θ′y ≤ θ′y+1, y = 1, . . . , Y − 1}.
In next section we will describe a solver for the optimisation problem (3.37).

3.4. Generic cutting plane solver

The proposed method VILMA translates learning into a convex optimization problem (3.37)
that can be re-written as

(w∗, b∗) ∈ Argmin
w∈Rn,b∈R

[
λ

2
‖w‖2 +

1

m

m∑
i=1

ψI(w, b;x
i, yil , y

i
r)

]
. (3.39)

Note, we dropped regularization over bias term b in formulation (3.39). The motivation for
this comes from practical problems. Experiments in Section 3.5.5 show that in case of high
dimensional parameter vector w and small number of classes the formulation (3.39) has an
advantage over its possible alternative

(w∗, b∗) ∈ Argmin
w∈Rn,b∈R

[
λ

2
(‖w‖2 + ‖b‖2) +

1

m

m∑
i=1

ψI(w, b;x
i, yil , y

i
r)

]
. (3.40)

Therefore we concentrate our attention to problem (3.39). Of course, the task (3.39) can be
reformulated as a quadratic program with O(n+m+ Y ) variables and O(Y ·m) constraints.
However, generic off-the-shelf Quadratic Programming (QP) solvers are applicable only to
small problems. Unlike problem (3.40), we can not plug problem (3.39) into CPA framework
directly due to the regularizer that operates only on part of variables to be optimized. In this
section, we derive the instance of the CPA tailored to the problem (3.39). The resulting CPA
is applicable for large problems and it provides a certificate of the optimality.

More details on the CPA based solvers applied to the machine learning problems can be
found for example in [Teo et al., 2010; Franc et al., 2012]. The standard CPA is suitable for
solving convex tasks of the form

w∗ ∈ Argmin
w∈Rn

F (w) , where F (w) =
λ

2
‖w‖2 +G(w) (3.41)

and G : Rn → R is a convex function. In contrast to our problem (3.39), the objective
of (3.41) contains a quadratic regularization imposed on all variables. It is well known that
the CPA applied directly to the un-regularized problem like (3.39) exhibits a strong zig-zag
behavior leading to a large number of iterations. A frequently used an ad-hoc solution is to
impose an artificial regularization on b, which may however significantly spoil the results as
demonstrated in section 3.5. In the rest of this section, we first outline the CPA algorithm
for the problem (3.41) and then show how it can be used to solve the problem (3.39).

The core idea of the CPA is to approximate the solution of the master problem (3.41) by
solving a reduced problem

wt ∈ Argmin
w∈Rn

Ft(w) , where Ft(w) =
λ

2
‖w‖2 +Gt(w) . (3.42)
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3. Learning ordinal classifiers from interval annotations

Algorithm 1: Cutting Plane Algorithm

Input: ε > 0, w0 ∈ Rn, t← 0
Output: vector wt being ε-precise solution of (3.41)
repeat

t← t+ 1
Compute G(wt−1) and G′(wt−1)
Update the model Gt(w)← maxi=0,...,t−1G(wi) + 〈G′(wi,w −wi〉
Solve the reduced problem wt ← argminw Ft(w) where Ft(w) = λΩ(w) +Rt(w)

until F (wt)− Ft(wt) ≤ ε;

The reduced problem (3.42) is obtained from (3.41) by substituting a cutting-plane model
Gt(w) for the convex function G(w) while the regularizer remains unchanged. The cutting
plane model of G(w) reads

Gt(w) = max
i=0,...,t−1

[
G(wi) + 〈G′(wi),w −wi〉

]
, (3.43)

where G′(w) ∈ Rn is a sub-gradient of G at point w. Thanks to the convexity of G(w),
Gt(w) is a piece-wise linear underestimator of G(w), which is tight in the points wi, i =
0, . . . , t − 1. In turn, the reduced problem objective Ft(w) is an underestimator of F (w).
The cutting plane model is build iteratively by the following simple procedure. Starting from
w0 ∈ Rn, the CPA computes a new iterate wt by solving the reduced problem (3.42). In each
iteration t, the cutting-plane model (3.43) is updated by a new cutting plane computed at
the intermediate solution wt leading to a progressively tighter approximation of F (w). The
CPA halts if the gap between F (wt) and Ft(wt) gets below a prescribed ε > 0, meaning that
F (wt) ≤ F (w∗)+ε holds. The CPA is guaranteed to halt after O( 1

λε) iterations at most [Teo
et al., 2010]. The CPA is outlined in Algorithm 1.

We can convert our problem (3.39) to (3.41) by setting

G(w) = Remp(w, b(w)) , where b(w) ∈ Argmin
b∈RY

Remp(w, b) . (3.44)

It is clear that if w∗ is the solution of the problem (3.41) with the function G(w) defined
by the equation (3.44). Consequently, (w∗, b(w∗)) must be a solution of (3.39). Because
Remp(w, b) is jointly convex in w and b, the function G(w) in (3.44) is also convex in w
(see for example [Boyd and Vandenberghe, 2004]). Hence, the application of Algorithm 1 to
solve (3.39) will preserve all its convergence guarantees. To this end, we only need to provide
the first-order oracle computing G(w) and the sub-gradient ∇G(w) required to build the
cutting plane model. For given b(w), the subgradient of G(w) reads [Boyd and Vandenberghe,
2004]

∇G(w) =
1

m

m∑
i=1

xi(ŷil + ŷir − yil − yir) (3.45)

where
ŷil = argmax

y≤yil

[
`(y, yil) + 〈w,xi〉y − by(w)

]
,

ŷir = argmax
y≥yir

[
`(y, yir) + 〈w,xi〉y − by(w)

]
.

The proposed CPA transforms solving of the problem (3.39) into a sequence of two simpler
problems:
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1. The reduced problem (3.42) solved in each iteration of the CPA. The problem (3.42) is a
quadratic program that can be approached via its dual formulation [Teo et al., 2010] having
only t variables where t is the number of iterations of the CPA. Since the CPA rarely needs
more than a few hundred iterations, the dual of (3.42) can be solved by off-the-shelf QP
libraries.

2. The problem (3.44) providing b(w), which is required to compute G(w) = Remp(w, b(w))
and the sub-gradient G′(w) via equation (3.45). The problem (3.44) has only O(Y ) (the
number of labels) variables. Hence it can be approached by generic convex solvers like the
Analytic Center Cutting Plane Method (ACCPM) algorithm [Gondzio et al., 1996].

We call the proposed solver as the double-loop CPA, because we use another cutting plane
method in the inner loop to implement the first-order oracle.

Finally, we point out that the convex problems associated with the generic SO-SVM for-
mulation (3.28) can be solved by the same solver. The only change is in using a different
formulas for evaluating the risk and its subgradient. The same holds for the convex problems
associated with the II-SVOR-EXP and the II-SVOR-IMC, in which case, however, we have
to use additional constraints θ ∈ Θ̂ in (3.39) which propagate to the problem (3.44).

3.5. Experiments

In this section we present results of a series of experiments including:

• Section 3.5.4: Comparison of surrogate losses for supervised learning.

• Section 3.5.5: Assessment of the influence of regularization terms on the final accuracy.

• Section 3.5.6: Evaluation of the flexibility of the propose PW-MORD model.

• Section 3.5.7: Learning from the interval annotations by using the interval insensitive loss.

• Section 3.5.8: Evaluation of the tightness of the upper bound from Theorem 3.

• Section 3.5.9: Comparison of surrogate losses for learning from partial annotations.

• Section 3.5.10: Empirical verification of Proposition 2.

Before jumping on the experiments we first list the compared methods in Section 3.5.1,
then we describe the used datasets in Section 3.5.2 and also the experimental protocol in
Section 3.5.3.

3.5.1. Compared methods

In the experiments we evaluate all algorithms discussed in this chapter. First, the existing
methods for supervised learning of the ordinal classifiers like SVOR-EXP and SVOR-IMC,
as well as a simple Rounded linear regressor (LinReg) and a generic Linear Multi-class SVM
classifier (LinCls). Second, we evaluate the proposed algorithms for supervised learning based
on the SO-SVM algorithm and the generic algorithm VILMA for learning from partial an-
notations. A summary of all evaluated algorithms is presented in Table 3.1. Note that each
instance of the evaluated algorithms has its unique name which encodes the learning problem,
the regularization term and the loss function optimized.

Used convex solvers. All the evaluated algorithms translate learning into a certain convex
minimization problem. We used BMRM solver [Teo et al., 2010] for problems where the
quadratic regularization term includes all variables. We used the ACCPM solver [Antoniuk
et al., 2012] for problems with no regularization term. When a part of the variables (b or θ) is
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3. Learning ordinal classifiers from interval annotations

Name used Partial Classification Learning
in the text annotations model problem

LinReg(reg,loss) NO LinReg (3.13) SO-SVM (3.28)

LinCls(reg,loss) NO LinCls (3.14) SO-SVM (3.28)

SVOR-EXP(reg) NO ORD (3.1) SVOR-EXP (3.23)

SVOR-IMC(reg) NO ORD (3.1) SVOR-IMC (3.25)

MORD(reg,loss) NO MORD (3.3) SO-SVM (3.28)

PW-MORD(reg,loss) NO PW-MORD (3.11) SO-SVM (3.28)

VILMA(reg,loss) YES MORD (3.3) VILMA (3.37)

II-SVOR-EXP(reg) YES ORD (3.1) II-SVOR-EXP (3.34)

II-SVOR-IMC(reg) YES ORD (3.1) II-SVOR-IMC (3.35)

Table 3.1. The summary of evaluated algorithms. The argument reg ∈ {∅,w,wb,wθ} determines
whether no regularizer, ‖w‖2, ‖w‖2+‖b‖2 or ‖w‖2+‖θ‖2 is used, respectively. The second argument
loss ∈ {MAE, 0/1}, applicable only for generic methods, determines which target loss is used. The
column “partial annotations” indicates whether the method can deal with partial annotations. The
last two columns show which classification model is learned and which optimization problem is
solved by the given method, respectively.

not included in the regularized term, we use the proposed double-loop CPA (c.f. Section 3.4),
which is a combination of both aforementioned methods. That is, the double-loop CPA runs
BMRM in the main loop and ACCPM to solve the internal problem (3.44). In particular,
we used a modified version of the BMRM from the Shogun machine learning library [Son-
nenburg et al., 2010] and the Oracle Based Optimization Engine (OBOE) implementation of
the Analytic Center Cutting Plane algorithm being a part of COmputational INfrastructure
for Operations Research project (COIN-OR) [Gondzio et al., 1996]. We configured the used
solvers to find the ε-optimal solution of the learning objective in all cases. In particular, we
stopped the solver if the objective was below a factor of 1.01 of the optimal value 2.

3.5.2. Benchmark data

In our experiments, we use a subset of seven datasets3 from UCI repository which were used
in [Chu and Keerthi, 2005; Li and Lin, 2006] and two large face databases with year-precise
annotation of the age of depicted subjects:

1. UCI data sets collection listed in Table 3.2, same as in [Chu and Keerthi, 2005; Li and
Lin, 2006]. The data were produced by discretising metric regression problems into Y = 10
bins.

2. MORPH database [Ricanek and Tesafaye, 2006] is the standard benchmark for age esti-
mation. It contains 55,134 face images with the ground true age annotation ranging from 16
to 77 years. Because the age category 70+ is severely under-represented (only 9 examples
in total) we removed faces with age higher than 70. The database contains frontal police
mugshots taken under controlled conditions. The images have resolution 200×240 pixels
and most of them are of very good quality.

2Our implementation is available at Github: https://github.com/K0stIa/VILMA
3The link http://www.dcc.fc.up.pt/~ltorgo/Regression/census.tar.gz to the eight dataset “Census”

was broken hence we could not include it.
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3. WILD database is a collection of three public databases: Labeled Faces in the Wild [Huang
et al., 2007], PubFig [Kumar et al., 2009] and PAL [Minear and Park, 2004]. The images are
annotated by several independent annotators. We selected a subset of near-frontal images
(yaw angle in [−30◦, 30◦]) containing 34,259 faces in total with the age from 1 to 80 years.
The WILD database contains challenging “in-the-wild” images exhibiting a large variation
in the resolution, illumination changes, race and background clutter.

Pre-processing of MORPH and WILD database. In both MORPH and WILD data sets, we
made sure that images of the same identity never appear in different parts simultaneously. The
feature representation of the facial images of both MORPH and WILD data sets was computed
as follows. We first localized the faces by a commercial face detector4 and consequently applied
a Deformable Part Model based detector [Uřičář et al., 2012] to find facial landmarks like the
corners of eyes, mouth and tip of the nose. The found landmarks were used to transform
the input face by an affine transform into its canonical pose. Finally, the canonical face of
size 60×40 pixels was described by multi-scale LBP descriptor [Sonnenburg and Franc, 2010]
resulting in n = 159, 488-dimensional binary sparse vector serving as an input of the ordinal
classifier.

3.5.3. Experimental protocol

Supervised setting For UCI data sets collection, we followed exactly the same evaluation
protocol as in [Chu and Keerthi, 2005; Li and Lin, 2006]. Data is randomly partitioned to
the training and testing part. The partitioning are repeated 20 times. The features are
normalized to have zero mean and unit variance coordinate wise. The reported results are
averages and standard deviations computed over the 20 partitions. The feature dimension
and training and testing ratios are listed in Table 3.2. The regularization constant λ is chosen
from a fixed set of values Λ = {1, 0.1, 0.01, 0.001, 0} using 5-fold cross-validation estimate of
the minimizing loss (MAE or 0/1) on the training split.

For both face data sets, MORPH and WILD, we used images with the year-precise age
annotations. While in the MORPH data set the annotation is the biological age in the WILD

4Courtesy of Eydea Recognition Ltd, www.eyedea.cz

Dataset
number of number of number of
features training examples test examples

Pyrimidines 27 50 24

MachineCPU 6 150 59

Boston 13 300 206

Abalone 8 1000 3177

Bank 32 3000 5192

Computer 21 4000 4192

California 8 5000 15640

Table 3.2. A subset of seven datasets from UCI repository used for benchmarking the algorithms for
ordinal classification. The table shows the number of input features as well as the number of the
training and the testing examples used in each random partition.
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3. Learning ordinal classifiers from interval annotations

dataset it is a human estimate of the age. We constructed a sequence of training sets with
the number of examples m varying from m = 3, 300 to m = 33, 000 in case of MORPH or
from m = 3, 300 to m = 21, 000 in case of WILD. For each training set we learned classifiers
with the regularization parameters set to λ ∈ {1, 0.1, 0.01, 0.001} and sometimes to 0.0001,
when it was needed. The classifier corresponding to λ with the smallest validation error was
applied to the testing examples. This process was repeated for the three random splits on
training, validation and testing part in the ratio 60/20/20. We report the averages and the
standard deviations of the MAE computed on the test examples over the three splits.

Learning from partial (interval) annotations The MORPH and the WILD databases con-
tain the year-precise annotation. We generated partial annotation from the precise one in
order to have a ground-truth against which we can compare. The interval annotations were
generated in a way mimicking a possible real situation as follows:

1. The number of mP randomly selected examples were annotated precisely by taking the
annotation from the databases.

2. The number of mI randomly selected examples were annotated by intervals. The admissible
annotation intervals were chosen so that they partition the set of ages and have the same
width (up to the border cases). The interval width was varied from u ∈ {5, 10, 20}. The
interval annotation was obtained by rounding the true age from the databases into the
admissible intervals. For example, in case of (u = 5)-years wide intervals the true ages y ∈
{1, 2, . . . , 5} were transformed to the interval annotation [1, 5], the ages y ∈ {6, 7, . . . , 10}
to [6, 10] and so on.

Note that the used annotation process is approximately αβ-precise (c.f. Definition 6) with
α = mP /(mP +mI) and β = u− 1 ∈ {4, 9, 19}. We varied mP ∈ {3300, 6600} and mI from 0
to mtotal−mP , where mtotal is the total number of the training examples in the corresponding
database.

We used the same random splits into training/validation/test examples as in the supervised
setting with the only difference that instead of supervised annotation the interval annotation
is used for the training set. The precise (supervised) annotation is used in the validation and
the test set. We also performed experiments when the validation sets had interval annotations.
However, the obtained results were almost identical hence they are not presented here.

3.5.4. Comparison of surrogate losses for supervised learning

In this experiments we consider the supervised learning of the ordinal classifier in the case
when the target loss ` is either the 0/1-loss or the MAE loss. In particular, we compare the
existing algorithms SVOR-EXP(∅), SVOR-IMC(∅) and the proposed methods MORD(∅,loss)
and VILMA(∅,loss). All compared methods solve an instance of the surrogate ERM prob-
lem (3.19) with different surrogate losses ψ. The goal is to measure which surrogate ψ is
a better approximation of the target loss `. To this end, we evaluated the true empiri-
cal risk R`emp(h) for the classifier h = pred ◦ f emp

∗ obtained by solving the surrogate ERM
problem (3.19). In this experiment we set the parameter λ = 0 in order to switch of the
regularization term. Table 3.3 summarizes the empirical risk of the algorithms minimizing
the surrogate of the MAE loss. The results for the algorithms minimizing the surrogate of
the 0/1-loss are in Table 3.4. Note that in both tables we report the empirical risk defined
by the MAE loss as well as the 0/1-loss. Based on the results we can derive the following
conclusions:
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• The proposed algorithm MORD(∅,MAE) achieves consistently (up to one near draw for
“Computer” data) the minimal RMAE

emp . That is, the SO-SVM learning the MORD classifier
with the margin-rescaling loss provides the best approximation of the target MAE loss.
• The proposed algorithm VILMA(∅,MAE) and the existing algorithm SVOR-IMC(∅) yield

the same RMAE
emp and R

0/1
emp. This observation is an experimental “check-up” of Proposition 2

which states that the surrogate losses of the two algorithms are equivalent although each is
defined for different parametrizations of the ordinal classifier. In turn both methods must
produce the same (up to numerical errors) classifier but differently parametrized.

• The SVOR-EXP(∅) algorithm achieves consistently the minimal R
0/1
emp.

• A surprising result is that the MORD(∅,MAE) and VILMA(∅,MAE) achieve consistently

lower R
0/1
emp than their counterparts, MORD(∅,0/1) and VILMA(∅,0/1), minimizing surro-

gates of the 0/1-loss. Moreover, the R
0/1
emp of the MORD(∅,MAE) and VILMA(∅,MAE) is

only slightly worse than that of the SVOR-EXP(∅). This suggests that the surrogates of
the MAE loss are good approximations of both target losses. An explanation of this finding
remains an open question.
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TrnRisk MORD(∅,MAE) VILMA(∅,MAE) SVOR-IMC(∅)
Pyrimidines MAE 0.433 (0.093) 0.487 (0.105) 0.482 (0.104)

0/1 0.343 (0.064) 0.399 (0.070) 0.391 (0.069)

MachineCPU MAE 0.914 (0.052) 0.917 (0.045) 0.920 (0.046)
0/1 0.602 (0.035) 0.609 (0.024) 0.611 (0.027)

Boston MAE 0.812 (0.043) 0.823 (0.045) 0.823 (0.047)
0/1 0.558 (0.026) 0.575 (0.027) 0.573 (0.027)

Abalone MAE 1.412 (0.038) 1.424 (0.042) 1.422 (0.041)
0/1 0.734 (0.015) 0.748 (0.015) 0.748 (0.017)

Bank MAE 1.421 (0.021) 1.427 (0.021) 1.429 (0.021)
0/1 0.700 (0.006) 0.715 (0.009) 0.716 (0.007)

Computer MAE 0.632 (0.010) 0.632 (0.009) 0.632 (0.010)
0/1 0.477 ( 0.006) 0.481 (0.005) 0.480 (0.006)

California MAE 1.178 (0.013) 1.287 (0.326) 1.182 (0.014)
0/1 0.692 (0.008) 0.706 (0.028) 0.697 (0.007)

Table 3.3. Comparison of various algorithms in terms of their ability to minimize the target empirical
risk on the UCI datasets. The training risk was computed w.r.t. the 0/1 loss and the MAE loss.
All compared algorithms minimize various surrogates of the target MAE loss and they use no
regularization.

TrnRisk MORD(∅,0/1) VILMA(∅,0/1) SVOR-EXP(∅)
Pyrimidines MAE 0.544 (0.157) 0.506 (0.113) 0.491 (0.125)

0/1 0.395 (0.083) 0.400 (0.079) 0.329 (0.078)

MachineCPU MAE 1.368 (1.044) 0.939 (0.062) 0.972 (0.068)
0/1 0.659 (0.084) 0.616 (0.027) 0.594 (0.029)

Boston MAE 3.765 (1.465) 0.890 (0.045) 0.869 (0.050)
0/1 0.901 (0.010) 0.600 (0.025) 0.551 (0.028)

Abalone MAE 4.496 (0.096) 1.766 (0.923) 1.632 (0.063)
0/1 0.734 (0.015) 0.777 (0.046) 0.715 (0.016)

Bank MAE 3.965 (0.043) 2.108 (1.089) 1.913 (0.051)
0/1 0.796 (0.005) 0.717 (0.047) 0.690 (0.005)

Computer MAE 0.761 (0.015) 0.655 (0.010) 0.653 (0.012)
0/1 0.551 (0.010) 0.491 (0.006) 0.477 (0.008)

California MAE 4.511 (0.036) 1.212 (0.018) 1.233 (0.014)
0/1 0.901 (0.002) 0.709 (0.010) 0.681 (0.008)

Table 3.4. Comparison of various algorithms in terms of their ability to minimize the target empirical
risk on the UCI datasets. The training risk was computed w.r.t. the 0/1 loss and the target
MAE loss. All compared algorithms minimize various surrogates of the 0/1-loss and they use no
regularization.
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3. Learning ordinal classifiers from interval annotations

3.5.5. Impact of the regularization term

In this experiment we compared the performance of the SVOR-IMC(reg), VILMA(reg),
MORD(reg,MAE) and PW-MORD(reg,MAE) using different regularization terms. Table 3.6
shows the test accuracy of the compared methods as a function of the number of training ex-
amples obtained on the MORPH and the WILD datasets. Table 3.5 shows the test accuracy
on the UCI benchmarks. The test accuracy is an estimate of the Bayes risk defined with the
MAE loss.

The experiments on the MORPH and the WILD datasets show that pushing the bias terms
(b or θ) towards zero by the quadratic regularizer may have a detrimental effect on the classifi-
cation accuracy. This holds consistently for all methods but the PW-MORD(reg,MAE) algo-
rithm which benefits from the bias regularizer when training from a small number of examples.
This can be explained by the fact that unlike the other methods, the PW-MORD(reg,MAE)
algorithm learns more flexible classification models with a higher number of parameters and
hence it requires stronger regularization. The obtained bad results when regularizing the
bias term of standard ordinal classifiers show that the projecting vector w and the bias
term (b or θ) have different influence on the separating surface and hence they can not be
treated in the same manner. However, this effect is negligable on the low-dimensional UCI
benchmarks as can be seen in Table 3.5. It suggests that the choice of the regularizer becomes
especially important in the case of high dimensional features.

3.5.6. Testing flexibility of the PW-MORD model

In this section, we demonstrate the benefits of the proposed PW-MORD model for ordinal
classification. As shown in Section 3.1.2, the PW-MORD model subsumes the standard (i.e,
the simplest) ordinal classifier as well as the unconstrained multi-class classifier as special
cases. The complexity of the PW-MORD model is controlled by defining the set Z containing
the “cut labels”. Recall that the classes between the cut labels are modeled by a standard
ordinal classifier. We used a different number of the cut labels and we set their position
equidistantly between the minimal and the maximal label. In particular, we used the following
settings:

• UCI benchmark: Z ∈
{
{1, 10}, {1, 5, 10}, {1, 4, 7, 10}

}
.

• MORPH dataset: Z ∈
{
{0, 20, 40, 54}, {0, 14, 26, 38, 54}, {0, 11, 22, 33, 44, 54}

}
.

• WILD dataset: Z ∈
{
{0, 25, 54, 79}, {0, 20, 40, 60, 79}, {0, 16, 32, 48, 54, 79}

}
.

Note that PW-MORD with Z=2 corresponds to the MORD classifier. Parameters of the
PW-MORD model were learned by the PW-MORD(reg,MAE) algorithm, i.e. we used the
MAE loss as the target loss. The optimal setting of Z was selected based on the same
procedure as was used for the regularization constant, i.e. using 5-fold cross-validation in
case of UCI benchmark and using validation set in case of MORPH/WILD datasets (c.f.
Section 3.5.3). Results obtained on the UCI benchmark and the MORPH/WILD datasets
are summarized in Table 3.5 and Table 3.6, respectively. The main empirical findings are as
follows:

• UCI benchmarks. The PW-MORD(reg,MAE) algorithm outperformed the other meth-
ods in most cases. It is not surprising since the PW-MORD model subsumes the other mod-
els as special cases and, moreover, the surrogate minimized by PW-MORD(reg,MAE) best
approximates the target MAE loss as shown in Section 3.5.4. The PW-MORD(reg,MAE)
was outperformed only by the LinReg(reg,MAE) on the “Pyrimids” data and by the
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3.5. Experiments

MORPH

m = 3300 m = 6600 m = 13000 m = 23000 m = 33000

SVOR-IMC(w) 5.54± 0.03 5.10± 0.02 4.83 ± 0.01 4.69 ± 0.03 4.61± 0.03

SVOR-IMC(wθ) 5.67± 0.04 5.24± 0.02 5.04± 0.04 4.99± 0.03 5.01± 0.03

VILMA(w, MAE) 5.56± 0.02 5.12± 0.02 4.83 ± 0.02 4.66 ± 0.01 4.55 ± 0.02

VILMA(wb, MAE) 8.16± 0.44 8.01± 0.43 7.94± 0.42 7.79± 0.44 7.72± 0.43

MORD(w, MAE) 5.71± 0.04 5.24± 0.01 5.11± 0.04 5.06± 0.04 5.04± 0.03

MORD(wb, MAE) 8.04± 0.30 7.89± 0.13 7.69± 0.14 7.78± 0.40 7.70± 0.39

PW-MORD(w, MAE) 5.56± 0.04 5.10± 0.04 4.92± 0.05 4.74± 0.03 4.59± 0.03

PW-MORD(wb, MAE) 5.52 ± 0.06 5.07 ± 0.05 4.97± 0.06 4.96± 0.06 4.87± 0.06

WILD

m = 3300 m = 6600 m = 11000 m = 16000 m = 21000

SVOR-IMC(w) 10.30± 0.11 9.51± 0.16 9.09± 0.20 8.90± 0.11 8.74± 0.10

SVOR-IMC(wθ) 10.18± 0.12 9.54± 0.16 9.17± 0.13 9.06± 0.08 8.96± 0.15

VILMA(w, MAE) 10.40± 0.13 9.60± 0.13 9.14± 0.12 8.89± 0.12 8.68± 0.12

VILMA(wb, MAE) 17.27± 0.77 17.21± 0.19 16.90± 0.23 16.74± 0.21 16.71± 0.12

MORD(w, MAE) 10.68± 0.05 10.01± 0.07 9.65± 0.07 9.46± 0.09 9.39± 0.08

MORD(wb, MAE) 17.22± 0.85 17.13± 0.24 16.78± 0.23 16.75± 0.19 16.69± 0.10

PW-MORD(w, MAE) 9.25± 0.17 8.45± 0.16 7.86 ± 0.15 7.54 ± 0.10 7.36 ± 0.12

PW-MORD(wb, MAE) 9.08 ± 0.16 8.41 ± 0.13 8.32± 0.16 8.25± 0.08 8.20± 0.07

Table 3.6. The test MAE of the ordinal classifier learned from the precisely annotated examples by
the SVOR-IMC, VILMA, MORD and PW-MORD with different regularizer settings. The results
are shown for the training sets generated from the MORPH and WILD databases by randomly
selecting different number of the training examples m.

LinCls(reg,MAE) on the “California” data. This result is not surprising as well because
the “Pyrimids” data has very few training examples, hence the simplest regression model
avoids over-fitting best. On the other hand, the “California” data are low dimensional with
a high number of training examples and thus the general and most flexible classification
model learned by LinCls(reg,MAE) can describe the data without over-fitting best, i.e. the
ordering prior imposed by the ordinal model is not needed in this case.

• MORPH & WILD The PW-MORD(reg,MAE) provides consistently best results on the
WILD dataset which contains more complicated photographs than those from the MORPH
dataset taken under controlled conditions. In the case of less complex MORPH dataset the
benefits of the PW-MORD model are not that significant. Namely, PW-MORD(reg,MAE),
SVOR-IMC(w,MAE) and VILMA(w,MAE) provide similar accuracy with difference around
the level of the standard deviation.

To sum up, the experiments confirm our expectation that the PW-MORD model is ben-
eficial when the data are complex and the total ordering imposed by the standard ordinal
model is partially violated.
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3. Learning ordinal classifiers from interval annotations

3.5.7. Learning from interval annotations

In this section we evaluate the proposed algorithm VILMA(w,MAE) when used for learning
from interval annotations. We preformed experiments on the age estimation datasets MORPH
and WILD. We optimized MAE as the target loss since it is the standard performance measure
used in this application. In the experiment we varied the number of examples with the interval
annotations mI , the number of precisely annotated examples mp as well as the width of the
annotation interval u (c.f. Section 3.5.3 describing the experimental protocol). The obtained
results are summarized in Table 3.7 and Figure 3.6. The main empirical findings are as
follows:

• We observe that adding the partially annotated examples improves the accuracy mono-
tonically. This observation holds true for all tested combinations of mI , mP , u and both
databases. This observation is of a significant practical importance. It suggests that adding
cheap partially annotated examples only improves and never worsens the accuracy of the
ordinal classifier.

• It is seen that the improvement caused by adding the partially annotated examples can
be substantial. Not surprisingly, the best results are obtained for the annotation with the
narrowest (5-years) intervals. In this case, the performance of the classifier learned from
the partial annotations matches closely the supervised setting. In particular, the loss in
accuracy resulting from using the partial annotation on the WILD database is on the level
of standard deviation. Even in the most challenging case, when learning from 20-years wide
intervals, the results are practically useful. For example, to get classifier with ≈ 9 MAE on
the WILD database one can either learn from ≈ 12, 000 precisely annotated examples or
instead from 6, 600 precisely annotated plus 14, 400 partially annotated with 20-years wide
intervals.

3.5.8. Tightness of the upper bound on the Bayes risk

In Section 3.3.1 we showed that the target Bayes risk RMAE can be upper-bounded by a
linear function of the Bayes risk R`I defined by the interval-insensitive loss. Recall that
the proposed algorithm VILMA(w,MAE) minimizes a convex surrogate of the R`I . In this
section we evaluate tightness of the upper bound empirically. Let us define a quantity
γ(α, β) = R̂MAE(hα,β) − R̂MAE(h∗), where R̂MAE(·) denotes the test MAE, hα,β is the
classifier learned by VILMA(w,MAE) from partially annotated examples generated by the
αβ-precise annotation process and h∗ is the classifier learned from the precise annotations
only. The quantity γ(α, β) thus measures the loss in test accuracy caused by using the impre-
cise annotation. The values of γ(α, β) observed on both databases are shown in Figure 3.7.
We see that the loss in accuracy grows proportionally with the interval width u = 1 + β and
with the portion of partially annotated examples 1 − α. This observation complies with the
theoretical upper bound γ(α, β) ≤ (1 − α)β given in Theorem 3. Although the slope of real
curve γ(α, β), if seen as a function of 1 − α, is considerably smaller than β, the tendency is
approximately linear at least in the regime 1− α ∈ [0, 0.5].

3.5.9. Comparison of surrogate losses for learning from interval annotations

In this section we compare four different algorithms, namely, VILMA(w,MAE), VILMA(w,0/1),
II-SVOR-EXP(w) and II-SVOR-IMC(w). The methods use different convex surrogates which
can be evaluated on interval annotated examples. The goal is evaluate which algorithm, or
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which surrogate, is the best approximation of the target MAE loss. The evaluation is done on
the MORPH and the WILD datasets using the same protocol as described in Section 3.5.7.
The results are summarized in:
• Table 3.7 showing results of VILMA(w,MAE).
• Table 3.8 showing results of II-SVOR-IMC(w).
• Table 3.9 showing results of VILMA(w,0/1).
• Table 3.10 showing results of II-SVOR-EXP(w).
The main empirical findings are as follows:
• The proposed method VILMA(w,MAE) clearly outperforms VILMA(w,0/1), i.e., the sur-

rogate derived for MAE, being the target loss, is indeed better than the surrogate for
0/1-loss. The margin between the both methods becomes more clear as the number of
examples grows, but it is not easy to see with small number of examples. The tendency
holds for all considered widths of the annotation interval u ∈ {5, 10, 20}.
• Unlike in the case of VILMA(reg,loss), the difference between the performance of II-SVOR-IMC(w)

and II-SVOR-EXP(w) does not depend on the number of examples used in the experiment.
It only grows for all considered annotation interval widths u ∈ {5, 10, 20} as number of ex-
amples in data increasing.

3.5.10. Equivalence between SVOR-IMC and VILMA-MAE

Although the VILMA(reg,MAE) and the SVOR-IMC(reg) learn different parametrizations of
the ordinal classifier, the resulting rules are equivalent (up to numerical errors) as predicted
by Proposition 2. The equivalence can be verified empirically as seen from comparing the
results in Table 3.7 and Table 3.8. It is seen that the test accuracy of both methods differs
only on the level of standard deviation.

3.6. Conclusions

We have established relationship between the classification rule used in the ordinal regression
and a class of linear multi-class classifiers. The established relationship has the following
benefits. First, it allows to understand various classification models better. Second, it pro-
vides a path to develop new learning algorithms for ordinal regression borrowing from well
understand multi-class classification, e.g. by adopting the generic SO-SVM framework as we
showed. Third, it allows to design new more flexible models for ordinal regression with higher
discriminative power, e.g the proposed PW-MORD model. A functionality of the proposed
methods has been successfully shown on standard benchmarks as well as on a real-life problem
of estimating the human age from facial images.

We have proposed a V-shaped interval-insensitive loss suitable for risk minimization based
learning of ordinal classifiers from partially annotated examples. We proved that under rea-
sonable assumption on the annotation process the Bayes risk of the ordinal classifier can be
bounded by the expectation of the associated interval-insensitive loss. We showed how to
construct a convex surrogate of the interval-insensitive loss instantiated for an arbitrary (tar-
get) V-shaped loss. We also derived other convex surrogate losses of the interval insensitive
loss by extending the existing supervised methods like the SVOR-EXP and SVOR-IMC al-
gorithm. We derived a generic algorithm VILMA which translates learning from the interval
annotations to a convex optimization problem. We have proposed a generic cutting plane
solver allowing to impose a quadratic regularization on a subset of parameters which turned
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3. Learning ordinal classifiers from interval annotations

out to be important in practice. The experiments conducted on a real-life problem of human
age estimation from facial images show that the proposed method has a practical potential.
We demonstrated that a precise ordinal classifier with accuracy matching the state-of-the-art
results can be obtained by learning from cheap partial annotations.

Our work is based on the interval insensitive loss and its convex surrogates, which turned
out to work well empirically. We showed that under certain assumptions the expectation of
the interval insensitive loss can be used to upper bound expectation of the associated target
loss. However a deeper theoretical understanding is needed. For example, an open issue is
whether there exists a distribution, for which the upper bound is sharp. Another interesting
question is how to weaken the assumptions on the annotation process, e.g. the requirement
on the consistency of the annotation. It is also unclear, which of the introduced convex
surrogates is better theoretically. We believe that this issue could be resolved by analyzing
statistical consistency of the surrogates which remains the open question.
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Figure 3.6. Figures show test MAE for the ordinal classifiers learned by the VILMA(w, MAE) from
different training sets. The x-axis corresponds to the total number of examples in the training set.
In the case of partial annotation, x-axis corresponds mP +mI , where mP is the number of partial
and mI the number of precisely annotated examples, respectively. The figures (a)(c) show results
for mP = 3300 and figures (b)(d) for mP = 6600, respectively. In the supervised case, the x-axis is
just the number of precisely annotated examples. Each figure shows one curve for the supervised
setting plus three curves corresponding to the partial setting with different width u ∈ {5, 10, 20} of
the annotation intervals. The results for MORPH database are in figures (a)(b) and the results for
WILD in (c)(d).
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MORPH

m = 3300 m = 6600 m = 13000 m = 23000 m = 33000

Supervised 5.56± 0.02 5.12± 0.02 4.83± 0.02 4.66± 0.01 4.55± 0.02

mP u mI = 0 mI = 3300 mI = 9700 mI = 19700 mI = 29700

33
00

5 5.56± 0.02 5.21± 0.04 4.89± 0.03 4.70± 0.01 4.62± 0.01
10 5.56± 0.03 5.25± 0.02 5.15± 0.05 4.97± 0.01 4.90± 0.04
20 5.56± 0.03 5.32± 0.03 5.26± 0.06 5.06± 0.04 4.97± 0.01

mP u mI = 0 mI = 0 mI = 6400 mI = 16400 mI = 26400

6600

5 — 5.12± 0.02 4.86± 0.02 4.69± 0.00 4.61± 0.00
10 — 5.13± 0.02 4.96± 0.03 4.81± 0.01 4.84± 0.04
20 — 5.13± 0.02 5.03± 0.02 4.86± 0.04 4.86± 0.01

WILD

m = 3300 m = 6600 m = 11000 m = 16000 m = 21000

Supervised 10.40± 0.13 9.60± 0.13 9.14± 0.12 8.89± 0.12 8.68± 0.12

mP u mI = 0 mI = 3300 mI = 7700 mI = 12700 mI = 17700

3300

5 10.40± 0.13 9.69± 0.12 9.23± 0.15 8.89± 0.12 8.71± 0.12
10 10.40± 0.13 9.76± 0.12 9.42± 0.14 9.09± 0.12 8.99± 0.12
20 10.40± 0.13 9.88± 0.13 9.67± 0.14 9.51± 0.10 9.40± 0.11

mP u mI = 0 mI = 0 mI = 4400 mI = 9400 mI = 14400
6
600

5 — 9.60± 0.13 9.22± 0.16 8.89± 0.12 8.71± 0.12
10 — 9.60± 0.13 9.22± 0.12 9.04± 0.13 8.90± 0.12
20 — 9.60± 0.13 9.35± 0.16 9.14± 0.13 9.04± 0.12

Table 3.7. The table summarizes test MAE of the ordinal classifier learned from the training set
with m examples using VILMA(w, MAE). The upper row shows results of the supervised setting
when all m examples are precisely annotated. The bottom rows show results of learning from mp

precisely annotated examples and mI = m−mP examples annotated by intervals of width u.
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MORPH

m = 3300 m = 6600 m = 13000 m = 23000 m = 33000

Supervised 5.54± 0.03 5.10± 0.02 4.83± 0.01 4.69± 0.03 4.61± 0.03

mP u mI = 0 mI = 3300 mI = 9700 mI = 19700 mI = 29700

33
00

5 5.54± 0.03 5.20± 0.04 4.93± 0.02 4.82± 0.03 4.76± 0.03
10 5.54± 0.03 5.25± 0.02 4.99± 0.02 4.95± 0.05 4.98± 0.02
20 5.54± 0.03 5.34± 0.02 5.14± 0.03 5.07± 0.04 4.97± 0.01

mP u mI = 0 mI = 0 mI = 6400 mI = 16400 mI = 26400

6600

5 — 5.10± 0.02 4.88± 0.02 4.76± 0.01 4.73± 0.03
10 — 5.10± 0.02 4.93± 0.02 4.81± 0.02 4.84± 0.04
20 — 5.10± 0.02 5.00± 0.03 4.86± 0.03 4.86± 0.01

WILD

m = 3300 m = 6600 m = 11000 m = 16000 m = 21000

Supervised 10.30± 0.11 9.51± 0.16 9.09± 0.20 8.90± 0.11 8.74± 0.10

mP u mI = 0 mI = 3300 mI = 7700 mI = 12700 mI = 17700

3300

5 10.30± 0.11 9.57± 0.16 9.30± 0.10 9.00± 0.12 8.85± 0.13
10 10.30± 0.11 9.65± 0.15 9.34± 0.17 9.10± 0.12 8.99± 0.08
20 10.30± 0.11 9.87± 0.16 9.65± 0.21 9.49± 0.15 9.29± 0.11

mP u mI = 0 mI = 3300 mI = 7700 mI = 12700 mI = 17700
6
600

5 — 9.51± 0.16 9.17± 0.15 9.05± 0.09 8.86± 0.14
10 — 9.51± 0.16 9.21± 0.15 8.99± 0.11 8.89± 0.16
20 — 9.51± 0.16 9.28± 0.15 9.15± 0.17 9.06± 0.16

Table 3.8. The table summarizes test MAE of the ordinal classifier learned from the training set
with m examples using II-SVOR-IMC(w). The upper row shows results of the supervised setting
when all m examples are precisely annotated. The bottom rows show results of learning from mp

precisely annotated examples and mI = m−mP examples annotated by intervals of width u.
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3. Learning ordinal classifiers from interval annotations

MORPH

m = 3300 m = 6600 m = 13000 m = 23000 m = 33000

Supervised 5.72± 0.05 5.20± 0.02 5.02± 0.01 4.96± 0.04 4.92± 0.00

mP u mI = 0 mI = 3300 mI = 9700 mI = 19700 mI = 29700

33
00

5 5.72± 0.05 5.16± 0.01 4.91± 0.02 4.79± 0.02 4.74± 0.02
10 5.72± 0.05 5.23± 0.05 5.00± 0.04 4.91± 0.03 4.91± 0.04
20 5.72± 0.05 5.40± 0.03 5.32± 0.04 5.22± 0.04 5.19± 0.05

mP u mI = 0 mI = 0 mI = 6400 mI = 16400 mI = 26400

6600

5 — 5.20± 0.02 4.86± 0.02 4.89± 0.03 4.72± 0.02
10 — 5.20± 0.02 4.96± 0.03 4.95± 0.03 4.80± 0.03
20 — 5.20± 0.02 5.03± 0.02 5.20± 0.06 5.08± 0.05

WILD

m = 3300 m = 6600 m = 11000 m = 16000 m = 21000

Supervised 10.31± 0.25 9.46± 0.17 9.12± 0.13 9.05± 0.16 9.00± 0.16

mP u mI = 0 mI = 3300 mI = 7700 mI = 12700 mI = 17700

3300

5 10.31± 0.25 9.52± 0.15 9.10± 0.11 8.93± 0.07 8.86± 0.02
10 10.31± 0.25 9.52± 0.15 9.21± 0.12 9.06± 0.09 8.98± 0.02
20 10.31± 0.25 9.75± 0.11 9.70± 0.15 9.48± 0.17 9.46± 0.01

mP u mI = 0 mI = 0 mI = 4400 mI = 9400 mI = 14400
6
600

5 — 9.46± 0.17 9.33± 0.13 9.23± 0.11 9.15± 0.14
10 — 9.46± 0.17 9.29± 0.19 9.03± 0.10 8.96± 0.11
20 — 9.46± 0.17 9.43± 0.06 9.18± 0.08 9.31± 0.18

Table 3.9. The table summarizes test MAE of the ordinal classifier learned with help VILMA(w,
0/1) from the training set with m examples. The upper row shows results of the supervised setting
when all m examples are precisely annotated. The bottom rows show results of learning from mp

precisely annotated examples and mI = m−mP examples annotated by intervals of width u.
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MORPH

m = 3300 m = 6600 m = 13000 m = 23000 m = 33000

Supervised 5.52± 0.03 5.29± 0.03 5.19± 0.02 5.17± 0.01 5.16± 0.03

mP u mI = 0 mI = 3300 mI = 9700 mI = 19700 mI = 29700

33
00

5 5.52± 0.03 5.26± 0.07 5.01± 0.05 4.86± 0.05 4.83± 0.04
10 5.52± 0.03 5.44± 0.05 5.10± 0.02 4.93± 0.02 4.85± 0.02
20 5.52± 0.03 5.57± 0.03 5.59± 0.02 5.29± 0.08 5.16± 0.07

mP u mI = 0 mI = 0 mI = 6400 mI = 16400 mI = 26400

6600

5 — 5.29± 0.03 4.98± 0.03 4.83± 0.04 4.80± 0.03
10 — 5.29± 0.03 5.15± 0.04 4.93± 0.03 4.83± 0.04
20 — 5.29± 0.03 5.42± 0.07 5.30± 0.08 5.16± 0.07

WILD

m = 3300 m = 6600 m = 11000 m = 16000 m = 21000

Supervised 10.35± 0.14 9.64± 0.22 9.35± 0.14 9.28± 0.11 9.26± 0.18

mP u mI = 0 mI = 3300 mI = 7700 mI = 12700 mI = 17700

3300

5 10.35± 0.14 9.65± 0.17 9.26± 0.13 9.05± 0.12 8.99± 0.12
10 10.35± 0.14 9.80± 0.13 9.63± 0.33 9.20± 0.08 9.11± 0.06
20 10.35± 0.14 9.97± 0.07 10.11± 0.19 9.79± 0.06 9.66± 0.06

mP u mI = 0 mI = 3300 mI = 7700 mI = 12700 mI = 17700
6
600

5 — 9.64± 0.22 9.24± 0.16 9.06± 0.13 9.01± 0.15
10 — 9.64± 0.22 9.40± 0.15 9.22± 0.08 9.16± 0.06
20 — 9.64± 0.22 9.59± 0.12 9.72± 0.14 9.76± 0.04

Table 3.10. The table summarizes test MAE of the ordinal classifier learned from the training set
with m examples using II-SVOR-EXP(w). The upper row shows results of the supervised setting
when all m examples are precisely annotated. The bottom rows show results of learning from mp

precisely annotated examples and mI = m−mP examples annotated by intervals of width u.
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Figure 3.7. The figures show γ(α, β) = R̂MAE(hα,β)−R̂MAE(h∗) which is the loss in accuracy caused
by training from partially annotated examples generated by αβ-precise annotation process relatively
to the supervised case. The value of γ(α, β) is shown for different β (note that u = β + 1 is the
interval width) as a function of the portion of the partially annotated examples 1 − α. The figure
(a) and (b) contains the results obtained on the MORPH and the WILD database, respectively.
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4. Statistical consistency of structured output learning
with missing labels

A roadmap of the chapter:
• Supervised learning of the structured output classifiers based on the ERM principle is

described in Section 4.1. The main purpose of this section is to defined the class of consid-
ered structured output classifiers and the tasks of learning classifier from the completely
annotated examples.
• Minimization of the partial loss is a subject of Section 4.2. In this section we define

the task of learning from examples with missing annotation of a subset of labels and we
introduce the concept of the partial loss.
• Statistical model of partial annotations is defined in Section 4.3. In this section we

provide sufficient conditions on the data generating distribution which admit to prove the
consistency of algorithms based on minimization of the partial loss.
• Consistency of the partial loss is stated in Section 4.4. In this section we introduce

the main theorem which claims that minimization of the partial loss is equivalent to the
minimization of the target (complete) loss in the sense that both problems have the same
minimizers. Here by minimizers we mean sequences of classifiers converging in probability.
• The classification calibrated surrogate of the partial loss is defined in Section 4.5.

This section combines the consistency of the partial loss stated in Section 4.4 and the
results of [Ramaswamy and Agarwal, 2012] in order to show that minimizing a calibrated
surrogate of the partial loss remains statistically consistency.
• Existence of a convex surrogate of the partial loss is stated in Section 4.6. The exis-

tence of the convex surrogate is another outcome derived from connecting the consistency
of the partial loss and the existing results for supervised learning presented in [Ramaswamy
and Agarwal, 2012].
• Examples of surrogate losses are discusses in Section 4.7. We analyze the surrogate

losses which are in the core of many existing methods, namely, we analyzed the method
published in: [Chuong et al., 2008; Girshick et al., 2011; Yu and Joachims, 2009; Fernandes
and Brefeld, 2011a; Zhu et al., 2010; Vedaldi and Zisserman, 2009; Wang and Mori, 2010;
Luo and Orabona, 2010; Lou and Hamprecht, 2012; Sarawagi and Gupta, 2008; Yu et al.,
2014]. We show which surrogates are classification calibrated and which are not.

• Relation to existing works is discussed in Section 4.8.
• Conclusions are drawn in Section 4.9.

4.1. Supervised learning of structured output classifiers

Let X be an input space, V a finite set of local parts and Y a finite set of labels. An object
is fully characterized by an input (observation) x ∈ X and a labelling y = (yv ∈ Y | v ∈ V)
of local parts V. In the supervised setting, we are given the training set

Dmxy = {(x1,y1), . . . , (xm,ym)} ∈ (X × YV)m
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4. Statistical consistency of structured output learning with missing labels

drawn from i.i.d. random variables with distribution p(x,y) defined over X × YV . We want
to design a decision function h : X → T V , which maps an input x ∈ X to a vector of decisions
t = (tv ∈ T | v ∈ V) ∈ T V . We assume that the decision set T for each local part is finite.
For example, in the most typical setting T = Y and h is the structured output classifier
predicting directly the labels. Note that T can be different from Y in general. For example,
in the case of the classification with the reject option T = Y ∪ {don’t know}.

Let ` : YV × T V → R+ be a given loss function assigning a non-negative number to each
pair of labelling y ∈ YV and a decision t ∈ T V . We confine ourselves to losses additive over
the local parts which is a natural choice in many applications, i.e.

`(y, t) =
∑
v∈V

`v(yv, tv) , (4.1)

where `v : Y × T → R+, v ∈ V, are single label losses. We assume that `v are bounded and
non-trivial, i.e. `v(y, t) <∞ and ∀y∃t such that `v(y, t) > 0. An example of a frequently used
additive loss is the Hamming loss obtained when T = Y and `v(yv, tv) = [[yv 6= tv]], v ∈ V. A
decision function h is then evaluated by the `-risk

R`(h; p) = Ep(x,y) `(y,h(x)) = Ep(x)

∑
y∈YV

p(y | x) `(y,h(x)) = Ep(x) py(x)> `h(x) ,

where py(x) = (p(y | x) | y ∈ YV) is a vector function denoting the conditional probabilities
at x and `t = (`(y, t) | y ∈ YV) is a vector of losses for the decision t ∈ T V . The ultimate
goal is to learn from Dm a decision function with the `-risk close to the Bayes `-risk

R`∗(p) = inf
h : X→T V

R`(h; p) = Ep(x) min
t∈T V

py(x)>`t .

A direct minimization of the loss ` is often a hard problem. Therefore it is common to
replace ` : YV × T V → R+ by a surrogate loss function ψ : YT × T̂ → R+, which operates on
a surrogate decision set T̂ ⊆ Rd. The goal is then to learn a function f : X → T̂ minimizing
the ψ-risk

Rψ(f ; p) = Ep(x,y) ψ(y,f(x)) = Ep(x)

∑
y∈YV

p(y | x)ψ(y,f(x)) = Ep(x) py(x)>ψf(x) ,

where ψt̂ = (ψ(y, t̂) | y ∈ YV) is a vector of proxy losses at the decision t̂ ∈ T̂ . The

learned function f is used to construct the decision function via a transform pred: T̂ →
T . The `-risk of the resulting decision function pred(f(x)) is R`(pred ◦ f ; p). For exam-
ple, f(x) = (〈w,Ψ(x,y)〉 | y ∈ YV) is a vector of scores linear in parameters w ∈ Rn
and pred(t̂) ∈ Argmaxy∈YV t̂y, which yields the linear structured output classifier h(x) ∈
Argmaxy∈YV 〈w,Ψ(x,y)〉.

Under suitable conditions the uniform law of large numbers applies (e.g. [Vapnik, 1998])

and learning fm from Dmxy by minimizing the empirical risk Rψemp(f) = 1
m

∑m
i=1 ψ(yi,xi)

is statistically consistent, i.e. for the number of examples m going to infinity, Rψ(fm; p)
converges in probability to the minimal (Bayes) ψ-risk

Rψ∗ (p) = inf
f : X→T̂

Rψ(f ; p) .
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4.2. Minimization of the partial loss

It has been shown (e.g. [Zhang, 2004a; Tewari and Bartlett, 2007; Gao and Zhou, 2013])
that the consistency with respect to the ψ-risk implies the consistency with respect to the
`-risk provided the surrogate loss ψ is so called classification calibrated w.r.t the loss `. In
this chaper, we will extend this result to the setting when the training examples are partially
annotated as defined in the next section.

4.2. Minimization of the partial loss

Let us consider that we are given a training set

Dmxa = {(x1,a1), . . . , (xm,am)} ∈ (X ×AV)m

drawn from i.i.d. random variables with the distribution

p′′(x,a) =
∑
y∈YV

p(x,y,a) ,

where A = {Y ∪{Y}} denotes a set of admissible annotations of a local part and p(x,y,a) is
a properly defined distribution over X × YV ×AV . At a given part v ∈ V, the label is either
known av ∈ Y or missing av = Y meaning that all labels are possible. The partial annotation
of the i-th training instance is a vector ai = (aiv ∈ A | v ∈ V) assigning labels to the local
parts V iknown = {v ∈ V | |aiv| = 1} while the labels of the remaining local parts V \ V iknown are
missing.

The distribution p′(x,y) over input-label space X ×YV can be obtained from p(x,y,a) by
marginalization over the annotations AV , i.e.,

p′(x,y) =
∑
a∈AV

p(x,y,a) .

Our ultimate goal is to learn from Dmxa a decision function h : X → T V with `-risk R`(h; p′)
close to the Bayes `-risk R`∗(p

′). It is important to stress that the objective (i.e. the `-risk) of
learning from the missing labels analyzed in this paper is exactly the same as the objective in
the conventional fully supervised setting, however, the annotation of the training examples is
different.

In order to make learning from missing labels possible, we define a partial loss:

Definition 7. For a given (complete) additive loss ` : YV × T V → R+ defined by (4.1) the
associated partial loss `p : AV × T V → R+ is defined as

`p(a, t) =
∑
v∈V

[[|av| = 1]]`v(av, tv)
1 , (4.2)

where `v : Y × T → R+, v ∈ V, are the same single label losses used to define the complete
loss `.

1Strictly speaking the correct formula here is `p(a, t) =
∑

v∈{v′∈V| |a′
v|=1} `v(av, tv). However for the sake of

simplicity we slightly abuse the notation.
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4. Statistical consistency of structured output learning with missing labels

The partial loss `p simply neglects the local losses corresponding to the missing labels. Note
that the partial loss for missing labels (4.2) is an instance of the generic partial loss (1.13).
We can now learn a decision function h : X → T V by minimizing the `p-risk

R`
p
(h; p′′) = Ep′′(x,a) `

p(a,h(x)) = Ep(x)

∑
a∈AV

p(a | x)`p(a,h(x)) = Ep(x) pa(x)>`ph(x) ,

where pa(x) = (p(a | x) | a ∈ AV) is a vector function denoting the conditional probabilities
at x ∈ X and `pt = (`p(a, t) | a ∈ AV) is a vector of partial losses for the decision t ∈ YV .
The Bayes `p-risk is defined as

R`
p

∗ (p′′) = inf
h : X→T V

R`
p
(h; p′′) = Ep(x) min

t∈T V
pa(x)>`pt .

It is clear that learning from the partial annotations is not possible without imposing
constraints on the distribution p(x,y,a). For example, when p(x,y,a) = p(x,y) p(a) the
annotations carry no information about the labels and hence learning is not possible. In
the next section we provide sufficient conditions on p(x,y,a) which allow to prove that
minimization of the `p-risk is equivalent to the minimization of the `-risk.

4.3. Statistical model of partial annotations

In this section, we describe a generative model of the partially annotated data which will be
used later in this chapter. The standard model p(x,y) is defined over the input-label space
X × YV . We augment the standard model by additional binary random variables z = (zv ∈
{0, 1} | v ∈ V) ∈ ZV assumed to be a realization of a random field distributed according to
p(z | x). The binary variables z ∈ ZV determine, which labels in y = (yv ∈ Y | v ∈ V) are
annotated. Specifically, zv = 1 means that the local part v is annotated, while zv = 0 means
that the label is missing. The annotation a ∈ AV is created from y and z by copying those
labels which are annotated, or formally via a vector function α : YV × ZV → AV defined as
a = (a1, . . . , a|V|) = α(y, z) =

(
α(y1, z1), · · · , α(y|V|, z|V|)

)
where

av = α(yv, zv) =

{
yv if zv = 1 ,
Y if zv = 0 .

We assume that the random variables y and z are conditionally independent, i.e.

p(y, z | x) = p(y | x) p(z | x) , (4.3)

which implies that for fixed x the annotation a is distributed according to

p(a | x) =
∑
y∈YV

∑
z∈ZV

p(y | x) p(z | x) [[a = α(y, z)]] . (4.4)

The model described above defines a random process generating a set of partially annotated
examples according to the distribution

p(x,a) = p(x) p(a | x) . (4.5)
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Let as define a function c : YV ×AV → {0, 1} as

c(y,a) =
∏
v∈V

[[yv ∈ av]] ,

which evaluates to 1 if the labeling y is consistent with the annotation a and it is 0 otherwise.
It is not difficult to show that

p(y |x,a) =
p(y |x) c(y,a)∑

y′∈YV p(y
′ |x) c(y′,a)

, (4.6)

We use the convention that p(y |x,a) = 0 if the denominator and the numerator are zero.
The distribution (4.6) together with (4.5) defines a joint distribution

p(x,y,a) = p(x) p(a | x) p(y |x,a) (4.7)

describing dependency of the random variables (x,y,a) ∈ X × YV ×AV .

Definition 8. A distribution p(x,y,a) defined over X × YV ×AV has a property A if there
exists a triplet of properly defined distributions p(x), p(y | x), p(z | x), which satisfy the
following conditions:

1. The equations (4.4), (4.6) and (4.7) hold true simultaneously.
2. There exists a constant ρ > 0 such that p(y | x) ≥ ρ, ∀y ∈ YV and

p(zv = 1 | x) ≥ ρ, ∀v ∈ V.

The condition 2 is required for two reasons. First, it implies that the space of probabilities
with property A is a compact set which is needed to prove the consistency. Second, the
nonzero marginal distributions p(zv = 1 | x) ≥ ρ, v ∈ V, guarantee that each local part has a
chance to be annotated otherwise it is clear that learning from partial annotations would not
be possible in general.

Example application We give an example of a prototypical application, in which the prop-
erty A is guaranteed by steering the annotation process. In particular, let us consider a
problem of learning structured output detector of facial landmarks (e.g. [Uřičář et al., 2012]).
The facial landmarks are well discriminative features of human face like the corners of eyes
or the corners of mouth. The parameters of the detector are learned from a set of training
images with manually annotated landmark positions. The annotation of the training images
is tedious and time consuming work. For example, in the work of [Uřičář et al., 2012] around
13,000 images had to be annotated to get desired accuracy. In the fully supervised case, the
annotator is asked to mark positions of all landmarks in a given image. This corresponds to
the annotation scheme p(zt | x) = 1, ∀t ∈ V. However, we can instruct the annotator to mark
only a subset of landmarks by using the following annotation scheme:
• In each even image, the annotator marks only the positions of landmarks on the left part

of the face (yt ∈ Yt | t ∈ Vleft).
• In each odd image, the annotator marks only the positions of landmarks on the right part

of the face (yt ∈ Yt | t ∈ Vright).
Provided the annotator follows these instructions and the images are presented in a random
order (which we can easily assure by randomly reshuffling the images before annotation)
implies that

p(zt | x) =
1

2
, t ∈ Vleft ∪ Vright .
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4. Statistical consistency of structured output learning with missing labels

This implies that with the same afford (i.e. when the annotator clicks the same amount of
landmark positions) we can annotate twice as much different faces compared to the supervised
framework. It is reasonable to expect that the variation in landmarks of different faces (e.g.
depicting different identities) is much higher than variation between the paired landmarks
of the same face. Hence the partial learning should deliver more robust landmark detector
without increasing the cost of annotations.

4.4. Consistency of the partial loss

In this section, we present the principal result which justifies learning of the structured clas-
sifiers by minimization of the partial loss provided the data are generated from the statistical
model defined in section 4.3.

Theorem 4. Let p(x,y,a) be an arbitrary distribution defined over X ×YV ×AV with prop-
erty A and p′(x,y) =

∑
a∈AV p(x,y,a) and p′′(x,a) =

∑
y∈YV p(x,y,a) be the corresponding

marginal distributions. Let ` be an additive loss (4.1) and let `p be an associated partial loss
defined by (4.2). Then, for all sequences of random decision functions hm : X → T V (depend-
ing on training data generated from i.i.d variables with p′′(x,a)), it holds

R`
p
(hm; p′′)

P→ R`
p

∗ (p′′)⇔ R`(hm; p′)
P→ R`∗(p

′) .

We start with a key lemma which shows that under proper assumptions a set of minimizers
of the supervised risk is the same as the set of minimizers of the partial risk although the risk
functions and their values are different.

Lemma 1. Let ` : YV × T V → R+ be an additive loss function and let `p : AV × T V → R+

be the associated partial loss. Let p(x,y,a) be a distribution with the property A. Then,
h∗ : X → T V is a minimizer of R`(h; p′) if and only if it is a minimizer of R`

p
(h; p′′), where

p′(x,y) =
∑
a∈AV p(x,y,a) and p′′(x,a) =

∑
y∈YV p(x,y,a) .

proof: The risk R`
p
(h; p′′) can be rewritten as follows:

R`
p
(h; p′′) = Ep(x)

∑
a∈AV

p(a | x) `p(a,h(x))

= Ep(x)

∑
a∈AV

p(a | x)
∑
v∈V

[[|av| = 1]] `v(yv, hv(x))

= Ep(x)

∑
v∈V

∑
av∈A

p(av | x) [[|av| = 1]] `v(yv, hv(x))

(∗)
= Ep(x)

∑
v∈V

∑
yv∈Y

p(zv = 1 | x) p(yv | x) `v(yv, hv(x))

= Ep(x)

∑
v∈V

p(zv = 1 | x)
∑
yv∈Y

p(yv | x) `v(yv, hv(x)) .

Here equality (∗) holds because of the equality following from (4.4):

p(av | x) =
∑
yv∈Y

∑
zv∈Z

p(yv | x) p(zv | x) [[av = α(yv, zv)]] ,
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4.4. Consistency of the partial loss

which for av = {yv} gives us the following equality

p(av | x) = p(zv = 1 | x) p(yv | x) .

It is seen from the last equation that if h(x)∗ = (hv(x) | v ∈ V) is a minimizer of R`
p
(h; p)

then for any x ∈ X and v ∈ V it holds that

h∗v(x) ∈ Argmin
t∈T

∑
yv∈Y

p(yv | x) `v(yv, t), (4.8)

because the marginals p(zv | x) > 0 thanks to Definition 8. Analogically, one can rewrite the
risk R`(h; p′) as follows:

R`(h; p′) = Ep(x)

∑
y∈YV

p(y | x) `(y,h(x)) = Ep(x)

∑
v∈V

∑
yv∈Y

p(yv | x) `v(yv,hv(x)) ,

showing that also any minimizer h(x)∗ = (hv(x) | v ∈ V) of R`(h; p′) has to satisfy (4.8).

Note that Lemma 1 shows that the `-risk and the `p-risk have the same set of minimiz-
ers. However, they do not have the same minimal value because the `-risk upper bounds
the `p-risk. The lemma is easy to prove and understand. However, it is not immediately
applicable in practice because we cannot minimize the risks due unknown data generating
distribution p(x,y,a). Instead, we resort to minimization of the empirical risk, by which we
obtain approximate minimizers. The conditions under which the minimizers of the empirical
risk converge are well studied [Vapnik, 1998]. It remains to show that convergence of the
minimizers of the empirical partial risk to the expected partial risk implies the convergence
of the same minimizers the expected true risk as stated in Theorem 4. The rigorous proof
is not trivial. In the rest of the section, we give a road map of the proof and we leave the
details to Appendix A.5.

It follows from Lemma 1 that for a fixed probability model p induced by a model with
property A the function Hp(ε,pya) : R×∆|YV |×|AV | → R2 whose values is defined by

minimize
t∈T V

pa
>`pt − min

t′∈T V
pa
>`pt′

subject to py
>`t − min

t′∈T V
py
>`t′ ≥ ε

is always positive for any ε > 0, where pya(x) = (p(y,a | x) | a ∈ AV ,y ∈ YV). Flipped
function H(ε,pya) : R×∆|YV |×|AV | → R whose values is defined by

minimize
t∈T V

py
>`t − min

t′∈T V
py
>`t′

subject to pa
>`pt − min

t′∈T V
pa
>`pt′ ≥ ε

is positive as well for any ε > 0. It is possible to show (see Lemmas 4 and 8 in Appendix)
even stronger statement that for any ε > 0, Hp(ε) , inf

pay∈Px

Hp(ε,pay) > 0 and H(ε) ,

2We use ∆n = {p ∈ Rn | pi ≥ 0, ∀i ∈ [n],
∑n

i=1 pi = 1} to denote the probability simplex in Rn. In case
when x does not change, the argument x is omitted. We simply write py, pa, pya.
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4. Statistical consistency of structured output learning with missing labels

inf
pay∈Px

H(ε,pay) > 0. Thanks to this it is possible to show3 that for loss functions `(y, t)

and `p(a, t) defined by (4.1), (4.2) there exist nonnegative concave functions ξ : R→ R+and
ζ : R→ R+, both right continuous at 0 with ξ(0) = 0 and ζ(0) = 0, such that ∀ h : X → T V
and for all distributions with property A it holds that

Ep(x) py(x)>`h(x) − Ep(x) min
t′∈T V

py(x)>`t′ ≤

ξ

(
Ep(x) pa(x)>`ph(x) − Ep(x) min

t′∈T V
pa(x)>`pt′

)
,

Ep(x) pa(x)>`ph(x) − Ep(x) min
t′∈T V

pa(x)>`pt′ ≤

ζ

(
Ep(x) py(x)>`h(x) − Ep(x) min

t′∈T V
py(x)>`t′

)
.

See Lemmas 5 and 9 in Appendix for complete proof.
Functions ξ and ζ make Theorem 4 easy to prove.

proof: (⇒) We have that for any ε > 0 and pya(x) ∈ Px the inequality

P{Ep(x) py(x)>`hm(x) − Ep(x) min
t′∈T V

py(x)>`t′ > ε} ≤

P{ξ(Ep(x) pa(x)>`phm(x) − Ep(x) min
t′∈T V

pa(x)>`pt′) > ε}

holds. Since ξ(x) is right continuous at 0, there exists δ > 0 such that ∀x : x − 0 ≤ δ ⇒
ξ(x)− ξ(0) ≤ ε. Hence, if ξ(x) > ε then x > δ, thus we obtain

P{ξ(Ep(x) pa(x)>`phm(x) − Ep(x) min
t′∈T V

pa(x)>`pt′) > ε} ≤
P{Ep(x) pa(x)>`phm(x) − Ep(x) min

t′∈T V
pa(x)T `pt′ > δ} −→ 0 ,

given m→∞.
(⇐) implication is proved by repeating the same steps but using relation with function ζ.

4.5. Classification calibrated surrogates of the partial loss

In the previous section, we proved consistency of the minimization of the partial loss `p.
Unfortunately, a direct minimization of the partial loss is hard due to its discrete domain.
For this reason it is useful to employ a surrogate loss ψp : AV × T̂ → R+ and learn a function
f : X → Rd by minimizing the ψp-risk

Rψ
p
(f , p′′) = Ep′′(x,a)ψ

p(a,f(x)) .

Under suitable conditions, the ψp-risk of functions learned by the empirical risk minimization

principle, i.e. fm ∈ Argminf∈F
1
m

m∑
i=1

ψp(ai,f(xi)), will converge in probability to the Bayes

ψp-risk
Rψ

p

∗ (p′′) = inf
f : X→T̂

Rψ
p
(f ; p′′) .

3This proof is technically complicated, therefore it is moved to Appendix. There we provide full set of lemmas
with complete proofs.
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4.6. Existence of the convex surrogate for partial loss

It has been shown (e.g. [Zhang, 2004a; Tewari and Bartlett, 2007; Gao and Zhou, 2013; Ra-
maswamy and Agarwal, 2012]) that the question whether the statistically consistent estimator
w.r.t ψp-risk implies the consistency w.r.t the `p-risk is equivalent to the question whether the
surrogate loss is so called classification calibrated. Below we define a concept of a surrogate
loss classification calibrated with respect to a the partial loss and the consistency theorem.
These definitions are straightforward adaptations of Definition 1, Theorem 3 and Theorem
11 from [Ramaswamy and Agarwal, 2012] to our setting.

Definition 9. A surrogate loss ψp : AV × T̂ → R+ is said to be classification calibrated with
respect to the partial loss `p : AV × T V → R+ over P ⊆ ∆|YV |×|AV | if there exists a function

pred: T̂ → T V such that ∀pya ∈ P :

inf
t̂∈T̂ : pred(t̂)/∈Argmin

t∈T V p
>
a `

p
t

p>aψ
p(t̂) > inf

t̂∈T̂
p>aψ

p(t̂) .

Theorem 5. Let `p : AV × T V → R+ and ψp : AV × T̂ → R+. Then ψp is classification
calibrated with respect to the partial loss `p over P ⊆ ∆|YV |×|AV | iff there exists a function

pred: T̂ → T V such that for all distributions p(x,a) over X×AV and all sequences of random
vector functions fm : X → T̂ ,

Rψ
p
(fm; p)

P→ Rψ
p

∗ (p) implies R`
p
(pred ◦ fm; p)

P→ R`
p

∗ (p) .

Combination of Theorem 5 and Theorem 4 directly provides the following corollary:

Corollary 6. Let ` : YV ×T V → R+ be additively decomposable loss function defined by (4.1)
and ψp : AV × T̂ → R+. Then ψp is classification calibrated with repect to ` over P ⊆
∆|YV |×|AV | iff there exists a function pred: T̂ → T V such that for all distributions p(x,y,a)

over X ×YV×AV with the property A and all sequences of random vector functions fm : X →
T̂ ,

Rψ
p
(fm; p′′)

P→ Rψ
p

∗ (p′′) implies R`(pred ◦ fm; p′)
P→ R`∗(p

′) ,

where p′(x,y) =
∑
a∈AV p(x,y,a) and p′′(x,a) =

∑
y∈YV p(x,y,a).

Corollary 6 guarantees that `-risk of a decision function h(x) = pred ◦ f(x) learned by
a statistically consistent algorithm minimizing the surrogate loss ψp, which is classification
calibrated w.r.t. the partial loss `p associated to `, converges in probability to the Bayes risk
R`∗(p

′), i.e. learning algorithm minimizing ψp is Bayes consistent. In the next section, we give
some examples of the classification calibrated surrogate partial losses.

4.6. Existence of the convex surrogate for partial loss

[Ramaswamy and Agarwal, 2012] introduced a notion of so called classification calibration
dimension, which allows us to prove that for any partial loss function `p defined by (4.2) there
always exists classification calibrated convex surrogate loss ψp. First, we give a definition of
the classification calibration dimension adapted to our setting.

Definition 10. Let `p : AV ×T V → R+ be the partial loss defined by (4.2). The classification
calibration dimension of `p is defined as

CCdim(`p) = min
{
d ∈ N | exists a convex set T̂ ⊆ Rd and a convex surrogate

ψP : T̂ → Rn+ that is classification calibrated w.r.t. `P over P ⊆ ∆|YV |×|AV |
}
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4. Statistical consistency of structured output learning with missing labels

provided the above set is non-empty, and it is CCdim(`p) =∞ otherwise.

In words it means that if finite, the CCdim(`p) gives the minimal dimension of the auxil-
iary output space T̂ which allows to construct a convex surrogate for `p. [Ramaswamy and
Agarwal, 2012] show that classification calibration dimension of any loss defined over discrete
label space is always finite, see Theorem 11 in [Ramaswamy and Agarwal, 2012].

Corollary 7. Let `p : AV × T V → R+ be the partial additively decomposable loss defined
by (4.2), then CCdim(`p) <∞.

Combination of Corollary 7 and our main result proved in Theorem 4 implies existence
of a convex surrogate loss ψp which is classification calibrated with respect to an arbitrary
additive target loss ` : YV × T V → R+ defined by (4.1).

Corollary 8. There exists convex surrogate ψp : AV × T̂ → R+ which is classification cali-
brated w.r.t. ` : YV × T V → R+ defined by (4.1).

4.7. Examples of surrogate losses

In this section, we study classification calibration of surrogate losses that have been used in
existing algorithms learning structured output classifiers from partially annotated examples.

The majority of existing algorithms is based on minimization of so called ramp-loss and its
mild modifications. Different modifications of the ramp-loss for structured output learning
from partially annotated data were summarized in [Lou and Hamprecht, 2012] with the help
of the following generic function

ψp(a, t̂) =

∣∣∣∣max
t∈UP

(
`p(a, t) + t̂t

)
− max
t∈UR

t̂t

∣∣∣∣
+

, (4.9)

where |·|+ = max {·, 0}. The function f : X → T̂ learned by minimizing ψp(a, t̂) is converted
to the decision function h(x) = pred(f(x)) via

pred(t̂) ∈ Argmax
t∈T V

t̂t .

[Lou and Hamprecht, 2012] use UP to denote so called “Penalty” space, elements of which
contribute a positive value to the loss. Accordingly, UR stands for “Reward” space whose
elements make the negative contribution. Table 4.1 lists different instances of the generic
function (4.9) and their appearance in the literature.

Apart from the generic form of the partial surrogate loss (4.9), one can extend loss of [Sarawagi
and Gupta, 2008] for the learning with missing labels. Given partial loss `p composed of label
losses `v, v ∈ V, it can be approximated by the following additive surrogate loss

ψp(a, t̂) =
∑
v∈V

[[|av| = 1]]ψv(av, t̂v) , (4.10)

where T̂ ⊆ R|T V |, t̂ ∈ T̂ is a concatenation of |V| vectors t̂v ∈ T̂v ⊆ R|T | and ψv : Y×T̂v → R+

are some surrogate single label losses. The function f : X → T̂ is converted to the decision
function h(x) = pred(f(x)) via

pred(t̂) = (predv(t̂v) | v ∈ V) with predv(t̂v) ∈ Argmax
t∈T

t̂v,t ,
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4.7. Examples of surrogate losses

where t̂v,t denotes t-th component of the vector tv. [Yu et al., 2014] proposed an instance of
the surrogate (4.10) for learning from examples with missing labels. They consider the setting
with only two labels, Y = {−1,+1}, and they use the hinge-loss ψp(a, t) = max{0, 1 − a · t}
as the single label surrogate.

Table 4.1 provides the summary of the existing surrogate losses we are aware of. For each
of the listed surrogate, we either prove that it is classification calibrated or that it is not. The
corresponding theorems are given in the remainder of this section.

Loss CC UP UR Appeared in the literature

Ramp Yes T V T V [Chuong et al., 2008; Girshick et al., 2011]

Hinge No T V a [Yu and Joachims, 2009; Fernandes and Brefeld, 2011a]
[Zhu et al., 2010; Vedaldi and Zisserman, 2009]

[Wang and Mori, 2010]

Max Yes T V/a T V [Luo and Orabona, 2010]

Bridge No T V/a a [Lou and Hamprecht, 2012]

S.A.L. Yes – – [Sarawagi and Gupta, 2008; Yu et al., 2014]

Table 4.1. List of surrogate loss functions, which have appeared in the literature. The naming given
in the first column has been adopted from [Lou and Hamprecht, 2012] except for the S.A.L., which
stands for the surrogate additive loss. The losses “Ramp”, “Hinge”, “Max”, and “Bridge” are
instances of (4.9) with particular form of the penalty space UP and the reward space UR. The loss
S.A.L. is defined in (4.10). The second column, CC, indicates whether the corresponding surrogate
is classification calibrated.

Theorem 9. Let `p be a partial loss (4.2). Then the ramp loss ψp constructed from `p by

ψp(a, t̂) = max
t∈T V

(
`p(a, t) + t̂t

)
− max
t∈T V

t̂t , (4.11)

is classification calibrated with respect to `p.

proof: Let us introduce a shortcut for a set of non-optimal decisions

T̂non = {t̂ ∈ T̂ | pred(t̂) /∈ Argmin
t∈T V

pTa`
p
t} .

Then we can write ∀p ∈ P :

inf
t̂∈T̂non

p>aψ
p(t̂) ≥ inf

t̂∈T̂non
p>a `

p

pred(t̂)
> min
t∈T V

p>a `
p
t , (4.12)

where the first inequality follows from the fact that the ramp loss ψp(a, t̂) upper bounds
the partial loss `p(a,pred(t̂)) for any a ∈ AV , t̂ ∈ T̂ (e.g. [Chuong et al., 2008]). Let

t∗ ∈ Argmint∈T V p
>
a `

p
t be an optimal decision and let us define t̂

′ ∈ T̂ such that t̂
′
t∗ = 0

and t̂
′
t < K, ∀t ∈ T V \ {t∗}, where K = −maxa,t `

p(a, t). Then, ψp(a, t̂
′
) = `p(a, t∗) for

all a ∈ AV and thus p>a `
p
t∗ = p>aψ

p(t̂
′
). Therefore we have mint∈T V p

>
a `

p
t ≥ inf t̂∈T̂ p

>
aψ

p(t̂)
which after combining with (4.12) gives

inf
t̂∈T̂non

p>aψ
p(t̂) > inf t̂∈T̂ p

>
aψ

p(t̂) .
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4. Statistical consistency of structured output learning with missing labels

Theorem 10. Let `p be a partial loss (4.2). Then the max loss ψp constructed from `p by

ψp(a, t̂) =

∣∣∣∣max
t/∈a

(
`p(a, t) + t̂t

)
− max
t∈T V

t̂t

∣∣∣∣
+

, (4.13)

is classification calibrated with respect to `p if `p(a,y) = 0 , ∀y ∈ a.

proof: We will show how to adapt the proof of Theorem 9 to prove this theorem. In context
of proof of Theorem 9, let t∗ ∈ Argmint∈T V p

>
a `

p
t be optimal decision and let us define t̂

′ ∈ T̂ in

the same way, i.e. such that t̂
′
t∗ = 0 and t̂

′
t < K, ∀t ∈ T V \{t∗}, where K = −maxa,t `

p(a, t).

What we have to show now is that ψp(a, t̂
′
) = `p(a, t∗) holds for all a ∈ AV . For all

a ∈ {a ∈ AV | t∗ /∈ a} we clearly have ψp(a, t̂
′
) = `p(a, t∗). On the other hand, for all

a ∈ {a ∈ AV | t∗ ∈ a} we have ψp(a, t̂
′
) = 0 and `p(a, t∗) = 0. Thus, proof of Theorem 9

stays valid in this case as well.

Theorem 11. Let `p be a partial loss (4.2). Then the bridge loss constructed from `p by

ψpbridge(a, t̂) =

∣∣∣∣max
t/∈a

(
`p(a, t) + t̂t

)
−max

t∈a
t̂t

∣∣∣∣
+

, (4.14)

and the hinge loss
ψphinge(a, t̂) = max

t∈T V

(
`p(a, t) + t̂t

)
−max

t∈a
t̂t , (4.15)

are not classification calibrated with respect to `p.

proof: W.l.o.g. let us consider distribution pa so that p(zv = 1 | x) = 1 ∀v ∈ V, i.e. our
distribution generates only supervised data. Note that this assumption does not break the
property A. In the supervised scenario the bridge loss (4.14) reads

ψpbridge(y, t̂) =

∣∣∣∣max
t/∈a

(
`p(a, t) + t̂t

)
−max

t∈a
t̂t

∣∣∣∣
+

=

∣∣∣∣max
t6=y

(
`p(y, t) + t̂t

)
− t̂y

∣∣∣∣
+

, (4.16)

and the hinge loss (4.15) reads

ψphinge(y, t̂) = max
t∈T V

(
`p(y, t) + t̂t

)
−max

t∈y
t̂t = max

t∈T V

(
`p(y, t) + t̂t

)
− t̂y . (4.17)

In both cases, it is nothing but the standard hinge-loss for the supervised multiclass classifi-
cation, so called construction of [Crammer and Singer, 2002]. Using results from [Tewari and
Bartlett, 2007] for a general multiclass setting or [Liu, 2007] for 0/1 multiclass loss it can be
shown that the losses (4.17) and (4.16) are not classification-calibrated.

Theorem 12. Let ψv : Y × T̂v → R+, v ∈ V, be a set of single label losses classification
calibrated w.r.t. to some `v : Y × T → R+. Then, the loss ψp composed of ψv, v ∈ V,
according to (4.10) is classification calibrated w.r.t. the partial loss `p composed of `v, v ∈ V.

proof: Let us introduce a shortcut for a set of non-optimal decisions for v ∈ V :

T̂non = {t̂ ∈ T̂ | pred(t̂) /∈ Argmin
t∈T V

p>a `
p
t}
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and

T̂ vnon = {t̂ ∈ T̂ v | predv(t̂) /∈ Argmin
t∈T

p>a,v`
p
v,t} .

Then we can write

inf
t̂∈T̂non

p>aψ
p(t̂) = inf

t̂∈T̂non

∑
v∈V

p>v ψ
p
a,v(t̂v) =

∑
v∈V

inf
t̂v∈T̂ v

non

p>a,vψ
p
v(t̂v) >∑

v∈V
inf
t̂v∈T̂ v

p>a,vψ
p
v(t̂v) = inf

t̂∈T̂

∑
v∈V

p>a,vψ
p
v(t̂v) = inf

t̂∈T̂
p>aψ

p(t̂) ,

where strict inequality follows from the fact that for every v ∈ V the inequality inf
t̂v∈T̂ v

non

p>a,vψ
p
v(t̂v) >

inf
t̂v∈T̂ v

p>a,vψ
p
v(t̂v) holds.

Theorem 12 shows that the additive surrogate loss (4.10) preserves the property of clas-
sification calibration. This allows to convert any set of single label classification calibrated
losses to the loss calibrated w.r.t. the partial loss `p. This proves that the surrogate proposed
in [Yu et al., 2014] for binary labels Y = {−1,+1} is calibrated. To our best knowledge, the
additive surrogate (4.10) constructed for the case |Y| > 2 has not been proposed so far.

4.8. Relation to existing works

We have shown that under quite general assumptions on the data generating process the min-
imization of the partial loss yields structured output classifier whose expected risk converges
in probability to the Bayes risk defined by the associated complete loss. Our result connects
learning from partially annotated examples, the scenario when labels of some local parts are
missing, with the supervised learning in which case all local parts are annotated. We have
used the established connection to extend the results of [Ramaswamy and Agarwal, 2012],
who study consistency of the supervised methods learning multiclass classifiers under generic
loss function. In particular, we adopted the notation of classification calibrated surrogate loss
functions to the realm of learning with missing labels. In turn, we could analyze the so far
heuristic algorithms learning structured output classifiers from partially annotated examples
and to show, which of them are statistically consistent and which are not. Second, the same
connection allowed us to show the existence of a convex classification calibrated surrogate
loss for learning from partially annotated examples.

Another work closely related to ours has been published in [Cid-Sueiro et al., 2014]. [Cid-
Sueiro et al., 2014] proposed a generic framework of deriving classification calibrated surro-
gates for the multiclass learning of flat classifiers from examples with missing labels. The
authors introduce statistical model, in which they show that consistent surrogate losses for
partial learning can be obtained by a linear transformation of any conventional surrogate that
is consistent in the supervised setting. The authors also show that the linear transform in
some cases preserves the convexity of the original supervised surrogate. Their framework,
however, is not tractable in the structured output setting because the constructed surrogate
would be defined as a sum of exponential number of terms.

In this work, we do not analyze trivial extension of convex surrogate classification calibrated
loss to the structured output setting, like the extension of the “one versus all loss” [Cour
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4. Statistical consistency of structured output learning with missing labels

et al., 2011] that was mentioned (but not implemented) in [Lou and Hamprecht, 2012]. Such
surrogates are not tractable in the structured output setting since their evaluation involves
summation over exponentially large sets. A construction of a tractable convex surrogate losses
for structured output setting thus remains an open problem. A promising direction might be
to investigate the notation of so called composite proper losses introduced in [Vernet et al.,
2011; Reid and Williamson, 2010]. The composite proper losses are especially interesting
from practical point of view since they provide a way to design convex surrogate losses [Reid
et al., 2012] that keep statistical properties. However, all these works analyze only the flat
classification. It is unclear whether the extension to the structured output setting and learning
from missing labels is possible.

The last work to mention is the paper of [McAllester and Keshet, 2011] who study the con-
sistency of the ramp-loss. However, there are two major differences compared to our results.
First, they analyze consistency under the PCA-Bayesian setting, which threats the param-
eters to be learned as random variables, while we stay in the classical frequentist statistics.
Second, they consider only the standard supervised setting, when the labels to be predicted
are not missing in the training set. Although they consider also latent variables these are
introduced just to make the model more flexible but they do not appear in the loss function
and hence the problem remains supervised in principle.

4.9. Conclusions

In this chapter, we have analyzed a partial loss which can be constructed for any (com-
plete/supervised) additive loss function by neglecting the local parts which are not annotated
in the training examples. The partial loss provides a way how to use the ERM principle
for learning structured output classifiers from examples with missing labels. We have shown
that under quite general assumptions on the data generating process the minimization of the
partial loss yields structured output classifier whose expected risk converges in probability to
the Bayes risk defined by the associated complete loss. Further, we have proposed a concept
of so called classification calibrated surrogate of the partial loss. We have shown that the
algorithms minimizing a classification calibrated surrogate of the partial loss are statistically
consistent. We have analyzed many existing algorithms which in their core optimize a surro-
gate of the partial loss function. We have shown which of the used surrogates are classification
calibrated and which are not. It should be mentioned that none of the existing surrogates is
a convex function of the parameters of the learned decision function. We have proved that
there exists a classification calibrated convex surrogate of the partial loss. Unfortunately,
the existence theorem is not constructive and hence the construction of a feasible convex
classification calibrated surrogate of the partial loss remains and open problem.
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In this work we tried to push forward the ERM based methods for learning from partially
annotated examples. We designed a convex algorithm for learning ordinal classifiers from
interval annotations and demonstrated empirically its advantage on real-life data. At the
same time we made several contributions to the supervised learning of the ordinal classifiers,
namely, we proposed new parametrization of the ordinal classifier, we introduced more flexible
piece wise version of the ordinal classifier, and we proposed a generic cutting plane solver.

In the case of learning the structured output classifiers from examples with missing labels,
we have defined the concept of a surrogate classification calibrated partial loss, the minimiza-
tion of which guarantees the statistical consistency under fairly general conditions on the data
generating process. We showed the existence of the statistically consistent convex surrogate
loss for learning from partially annotated examples. We showed which existing surrogate
losses are classification calibrated and which are not. Our analysis thus provides a missing
theoretical justification for so far heuristic methods which have been used in practice.

A list of open questions which can be investigated in the future is as follows:

Restrictions of consistency analysis in the structured output setting Our analysis of the
statistical consistency in the structured output learning is valid only under some assumptions
on the data generating process, the loss function and the hypothesis space. Namely, the
loss function must be additive over the local parts which is frequent in practice, yet non-
decomposable loss functions are important as well. As for the annotation process, the main
restriction is that for each local part the label has to be either known exactly or completely
missing. It is natural to consider an intermediate case when each local part is annotated by a
candidate set of labels. Finally, our analysis requires that the Bayes classifier is contained in
the hypothesis space from which we learn. The assumption, although common in theory, is
often violated in practice where we often learn the linear classifiers unlikely to be Bayes opti-
mal. Therefore providing guarantees in the case when the hypothesis space can be arbitrary
is very wanted. Any extension in these directions would be interesting both from practical
and theoretical point of view.

Statistically consistent convex surrogate loss for structured output learning. One of the
main contribution of this work is showing the existence of a convex statistically consistent
surrogate loss for learning from examples with missing labels. We were a bit disappointed to
obtain this result, since we spent quite a lot of time on trying to show that such surrogate does
not exist. Unfortunately, the existence proof is not constructive so a computationally feasible
convex surrogate remains an open problem. An option to look in the quest for a computa-
tionally feasible convex surrogate loss is a recently proposed framework of so called composite
losses [Vernet et al., 2011; Reid et al., 2012]. The composite losses allow designing convex
statistical consistent surrogates for supervised learning of flat classifiers. Unfortunately, the
existing results are not immediately applicable to our problem, since this framework is neither
developed for the learning from partially annotated examples nor for the structured output
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classification. Yet the composite losses are definitely a promising direction to pursue in the
future.

Statistical consistency of the V-shaped interval insensitive loss. The proposed algorithm
VILMA for learning of ordinal classifiers from interval annotations is convex and works well in
practice as we demonstrated. Unfortunately, the surrogate of the V-shaped interval insensitive
loss minimized by the VILMA is unlikely to be consistent in general. For example, the
SVOR-IMC algorithm, which is a supervised counterpart of VILMA with MAE loss, has
been recently proved not to be statistically consistent [Pedregosa et al., 2014]. Still it may
be interesting to investigate special cases of the data generating distribution under which the
consistency can be shown.
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A. Proofs

A.1. Proof of Theorem 1

Let us prove the first part of the theorem stating that for any w ∈ Rn and admissible θ ∈ Θ
there exists b ∈ RY such that h(x,w,θ) = h′(x,w, b), ∀x ∈ Rn. In particular, we show that
b ∈ RY given by the formula (3.5) satisfies theorem.

First, suppose the ORD classifier h(x;w,θ) outputs y ∈ Y for some x ∈ X , i.e. θy ≥
〈w,x〉 > θy−1 holds1. The MORD classifier h′(x,w, b) outputs the same y iff the system of
inequalities

〈w,x〉y + by > 〈w,x〉(y − k) + by−k, 1 ≤ k < y,
〈w,x〉y + by ≥ 〈w,x〉(y + t) + by+t, 1 ≤ t ≤ Y − y (A.1)

holds. The system (A.1) can be rewitten as2

〈w,x〉k >
y−1∑
i=y−k

θi, 1 ≤ k < y,

〈w,x〉t ≤
y+t−1∑
i=y

θi, 1 ≤ t ≤ Y − y.
(A.2)

The validity of (A.2) follows from

〈w,x〉k > θy−1k ≥
y−1∑
i=y−k

θi, 1 ≤ k < y,

〈w,x〉t ≤ θyt ≤
y+t−1∑
i=y

θi, 1 ≤ t ≤ Y − y ,
(A.3)

where the first inequality (on both lines) is induced by θy ≥ 〈w,x〉 > θy−1 and the second
inequality (also on both lines) is due to θ1 ≤ θ2 ≤ · · · ≤ θY−1.

Second, suppose the MORD classifier h′(x,w, b) outputs y ∈ Y for some x ∈ X , which
means that

〈w,x〉y + by > 〈w,x〉(y − 1) + by−1,
〈w,x〉y + by ≥ 〈w,x〉(y + 1) + by+1,

(A.4)

which is equivalent to

by − by+1 ≥ 〈w,x〉 > by−1 − by . (A.5)

Finally, after combining (A.5) with (3.5) we obtain θy ≥ 〈w,x〉 > θy−1, which implies that
the ordinal classifier h(x,w,θ) outputs the same y.

Let us make the observation before proving the second part of the theorem. Let y1, . . . , yp,
denote an increasing subsequence of the non-degenerated classes of the MORD classifier

1The inequalities are different in the case of y ∈ {1, Y }. However, the analysis remains similar thus it is
omited here.

2We use convention that a sum is zero if its upper index is less than the lower one.
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h′(x,w, b). For arbitrary xyi ∈ Xyi = {x ∈ Rn | h′(x,w, b) = yi}, i = 1, . . . , p, it holds
that

〈w,xyi〉yi + byi > 〈w,xyi−1〉yi−1 + byi−1 ,
〈w,xyi〉yi + byi ≥ 〈w,xyi+1〉yi−1 + byi+1 ,

(A.6)

It follows that
byi−byi+1

yi+1−yi ≥ 〈w,xyi〉 >
byi−1−byi
yi−yi−1

, i = 1, . . . , p− 1.

Thus, for any MORD classifier h′(x,w, b) with non-degenerated classes y1, . . . , yp, it holds
that

byp−1−byp
yp−yp−1

> · · · > byi−1−byi
yi−yi−1

> · · · > by1−by2
y2−y1 .

(A.7)

We are now ready to prove the second part of the theorem stating that for any w ∈
Rn, b ∈ RY and the admissible vector θ ∈ Θ computed by the formula (3.7) the equality
h(x,w,θ) = h′(x,w, b) holds ∀x ∈ Rn. It is enough to show that the ordinal classifier
h(x,w,θ) outups yi for arbitrary x ∈ X iff the MORD classifier h′(x,w, b) outputs the same
output yi.

First, suppose the MORD classifier h′(x;w, b) outputs yi ∈ Y for some x ∈ X . We want
to show that the ordinal classifier h(x;w,θ) outputs the same label yi. We shall analyse only
the cases 1 < i < p. However, the proof for i ∈ {1, p} is similar and hence omitted. The
equality h′(x,w, b) = yi implies that

〈w,x〉yi + byi > 〈w,x〉yi−1 + byi−1 ,
〈w,x〉yi + byi ≥ 〈w,x〉yi+1 + byi+1 ,

(A.8)

which is equivalent to
byi−byi+1

yi+1−yi ≥ 〈w,x〉 >
byi−1−byi
yi−yi−1

and after combining with (3.7) we see

that the ordinal classifier h(x,w,θ) outputs the same yi.

Second, suppose the ordinal classifier h(x,w,θ) outputs yi for some arbitrary x ∈ X , i.e.
byi−byi+1

yi+1−yi ≥ 〈w,x〉 >
byi−1−byi
yi−yi−1

holds. To show that MORD classifier h′(x;w,θ) outputs the
same yi it is enough to prove that the system

〈w,x〉yi + byi > 〈w,x〉yj + byj , ∀yj < yi, (A.9)

〈w,x〉yi + byi ≥ 〈w,x〉yj + byj , ∀yj > yi (A.10)

holds. Indeed, from the inequality 〈w,x〉 > byi−1−byi
yi−yi−1

after some algebra and applying (A.7)

(after third line) we have

〈w,x〉(yi − yj) > (yi − yj)
byi−1−byi
yi−yi−1

= (−yj + yj+1 − yj+1 + · · ·+ yi−1 − yi−1 + yi)
byi−1−byi
yi−yi−1

= (yj+1 − yj)
byi−1−byi
yi−yi−1

+ · · ·+ (yi − yi−1)
byi−1−byi
yi−yi−1

> (yj+1 − yj)
byj−byj+1

yj+1−yj + · · ·+ (yi − yi−1)
byi−1−byi
yi−yi−1

= byj − byj+1 + byj+1 − · · · − byi−1 + byi−1 − byi = byj − byi ,

from which the inequalities (A.9) follow for ∀yj < yi. The proof of the inequalities (A.10) is
analogical. �
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A.2. Proof of Theorem 3

We will prove the bound (3.33) for each observation x ∈ X separately, that is, we prove

RMAE(h | x) ≤ RMAE
I (h | x) + (1− α)β , (A.11)

where RMAE(h | x) = Ey∼p(y|x)|y − h(x)| and

RMAE
I (h | x) = E[yl,yr]∼p(yl,yr|x) min

y′∈[yl,yr]
|y′ − h(x)| .

It is clear that (A.11) satisfied for all x ∈ X implies (3.33). Let us define a function, which
measures a discrepancy between the MAE and the its interval insensitive counterpart:

δ(h(x), y, yl, yr) = |y − h(x)| − min
y′∈[yl,yr]

|y′ − h(x)| =


|h(x)− y| if h(x) ∈ [yl, yr] ,

y − yl if h(x) < yl ,
yr − y if h(x) > yr .

(A.12)
Let us denote a set of intervals of unit length as P1 = {[yl, yr] ∈ P|yl = yr}. Recall also
that due to the assumption that p(yl, yr | x, y) is consistent and αβ-precise, we have p(y, y |
x, y) = α and

∑
[yl,yr]∈P1

p(yl, yr | x, y) = (1 − α). With these definitions we can write the
following chain of equations:

RMAE
I (h | x) =

∑
y∈Y

∑
[yl,yr]∈P

p(y | x)p(yl, yr | x, y) min
y′∈[yl,yr]

|y′ − h(x)|

=
∑
y∈Y

p(y | x)

[
α|y − h(x)|+

∑
[yl,yr]/∈P1

p(yl, yr | x, y) min
y′∈[yl,yr]

|y′ − h(x)|
]

=
∑
y∈Y

p(y | x)

[
α|y − h(x)|+

∑
[yl,yr]/∈P1

p(yl, yr | x, y)
(
|y − h(x)| − δ(h(x), y, yl, yr)

)]
=
∑
y∈Y

p(y | x)

[
|y − h(x)| −

∑
[yl,yr]/∈P1

p(yl, yr | x, y)δ(h(x), y, yl, yr)
)]

= RMAE(h | x)−
∑
y∈Y

∑
[yl,yr]/∈P1

p(y | x)p(yl, yr | x, y)δ(h(x), y, yl, yr) .

(A.13)
By (A.12), we have that δ(h(x), y, yl, yr) ≤ β for all x ∈ X , y ∈ Y, [yl, yr] ∈ P and hence∑

y∈Y

∑
[yl,yr]/∈P1

p(y | x)p(yl, yr | x, y)δ(h(x), y, yl, yr) ≤ (1− α)β . (A.14)

The bound (A.11) to be proved is obtained immediately by combing (A.13) and (A.14).

A.3. Proof of Proposifion 1

Let us first consider a triplet of labels (y, yl, yr) such that y /∈ [yl, yr]. In this case, the left
max-term maxy≤yl

[
∆(y, yl) +

〈
x,w

〉
(y − yl) + by − byl

]
appearing in the surrogate (3.36) is

an instance of the margin-rescaling loss instantiated for the supervised loss ∆(y, yl) defined
on labels y ∈ [1, yl − 1]. The margin-rescaling loss is known to be the upper bound of the
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respective supervised loss [Tsochantaridis et al., 2005] and hence it upper bounds ∆I(yl, yr, y).
Analogically, we can see that the right max-term maxy≥yr

[
∆(y, yr)+

〈
x,w

〉
(y−yr)+by−byr

]
of (3.36) is a margin-rescaling upper bound of the loss ∆(y, yr) defined on labels y ∈ [yr+1, Y ]
and hence also an upper bound of ∆I(yl, yr, y). The V-shaped loss ∆(y, y′) is non-negative by
definition and hence both max-terms are also non-negative and their sum upper bounds the
value of ∆I(yl, yr, y) for y /∈ [yl, yr]. In the case when y ∈ [yl, yr], the value of ∆I(yl, yr, y) is
defined to be zero and hence it cannot be greater than a sum of the non-negative max-terms.

A.4. Proof of Proposition 2

To prove the proposition it is enough to show that following equalities hold

yl−1∑
ŷ=1

max(0, 1−
〈
x,w

〉
+ θŷ) = max

y≤yl

[
yl − y +

〈
x,w

〉
(y − yl) + by − byl

]
, (A.15)

Y−1∑
ŷ=yr

max(0, 1 +
〈
x,w

〉
− θŷ) = max

y≥yr

[
y − yr +

〈
x,w

〉
(y − yr) + by − byr

]
. (A.16)

We will provide the proof only for the equality (A.15). The proof for the equality (A.16) is
similar and thus omitted. Let us do some algebra on (A.15):

yl−1∑
ŷ=1

max(0, 1−
〈
x,w

〉
+ θŷ)

(a)
= max

y≤yl

[
max(0,

yl−1∑
ŷ=y

1−
〈
x,w

〉
+ θŷ)

]
(b)
= max

y≤yl

[
max(0, yl − y +

〈
x,w

〉
(y − yl) +

yl−1∑
ŷ=y

θŷ)
]

(c)
= max

y≤yl

[
max(0, yl − y +

〈
x,w

〉
(y − yl) + by − byl)

]
(d)
= max

y≤yl

[
yl − y +

〈
x,w

〉
(y − yl) + by − byl

]
.

(A.17a)

(A.17b)

(A.17c)

(A.17d)

Equality (a) holds since θy , y = 1, . . . , Y is a nondecreasing sequence. Equality (c) is possible
due to conversion formulas1 (3.5), (3.6). Since yl − y +

〈
x,w

〉
(y − yl) + by − byl ≥ 0 ,∀y ≤ yl

internal maximum in the equality (d) is redundant and thus can be omitted.

A.5. Proof of Theorem 4

In this section, we give detailed proofs mentioned in Section 4.4. We start with showing
positiveness of functions Hp(ε) and H(ε). To show this, we need to show first that the set of
all conditional distributions p(y,a | x) is a compact set.

1Here, for simplicity, we provide proof in non-degenerated case, it can be adopted however for the generated
case as well.
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Lemma 2. For any x ∈ X a set Px containing all distributions p(y,a | x) = p(y | x) p(a |
y,x) induced from a distribution p(x,y,a) with the property A is a compact set.

proof: Using p(y,a | x) = p(y | x) p(a | y,x), (4.4) and (4.6) we see that for any x ∈ X ,
pya(x) is a composition of functions with vector variables py(x) and pa(x), i.e. pya(x) =
F(py(x), pz(x)). The function F : ∆|YV | ×∆|ZV | → ∆|YV |×|AV | is continuous on a compact

set {py(x) ∈ ∆|YV | | p(y | x) ≥ ρ} × {pz(x) ∈ ∆|ZV | | p(z | x) ≥ ρ}. Thus, Px , {pya(x) =
F(py(x), pz(x)) | p(y | x) ≥ ρ, p(z | x) ≥ ρ,py(x) ∈ ∆|YV |,pz(x) ∈ ∆|ZV |} is a compact set.

Lemma 3. Functions min
t′∈T V

p>a `
p
t′ and min

t′∈T V
p>y `t′ are continuous functions w.r.t. pya ∈

∆|YV |×|AV |.

proof: Since p(y | x) =
∑
a p(y,a | x) and p(a | x) =

∑
y p(y,a | x) the functions py and

pa are continuous functions of pya. Hence, both functions mint′∈T V p
>
a `

p
t′ and mint′∈T V p

>
y `t′

are continuous since each of them is a composition of minimum over set of continuous func-
tions.

Now we are going to give a proof of positive of function Hp(ε) for any positive ε.

Lemma 4. Let Hp(ε,pya) : R×∆|YV |×|AV | → R be a function defined as follows

minimize
t∈T V

pa
>`pt − min

t′∈T V
pa
>`pt′

subject to py
>`t − min

t′∈T V
py
>`t′ ≥ ε.

where loss functions `(y, t) and `p(a, t) are defined by (4.1), (4.2). Then for any compact
subset P ⊆ ∆|YV |×|AV | and for any ε > 0 there exists δ > 0 such that ∀pya ∈ P holds
Hp(ε,pya) > δ, i.e. Hp(ε) = infpya∈P H

p(ε,pya) > δ.

proof: We prove the lemma by contradiction. Assume that (8) does not hold, then ∃ε > 0,
and a sequence (tm,pmya) with tm ∈ T V and pmya ∈ P such that pm T

y `tm − min
t′∈T V

pm T
y `t′ ≥ ε

and lim
m→∞

pma `
p
tm− min

t′∈T V
pma `

p
t′ = 0. Since P is compact, we can choose sub-sequence (which we

still denoted as a whole sequence for simplicity) such that lim
m→∞

pmya = p∗ya ∈ P. Hence, from

lemma (3) it follows that lim
m→∞

pma `
p
tm − min

t′∈T V
p∗a`

p
t′ = 0 and lim

m→∞
pmy `tm − min

t′∈T V
p∗y`t′ ≥ ε.

Sequence (tm) consists of elements from the exponentially large but a finite set. Therefore
there exists element of sequence t∗ ∈ T V such that the sequence contains infinite number of
copies of t∗. Let us choose this subsequence (which we again denoted as a whole sequence) such
that lim

m→∞
tm = t∗. Note that lim

m→∞
pmya = p∗ya stays same. It follows that p∗a`

p
t∗− min

t′∈T V
p∗a`

p
t′ =

0 and p∗y`t∗ − min
t′∈T V

p∗y`t′ ≥ ε, ε > 0. We have thus obtained the contradiction, i.e. we have

found a model p∗ ∈ P for which lemma (1) does not hold.

Lemma 5. If ∀ε > 0, Hp(ε) , inf
pay∈Px

Hp(ε,pay) > 0 for the loss functions `(y, t) and

`p(a, t) defined by (4.1), (4.2) then there exists a nonnegative concave function ξ : R → R+,
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right continuous at 0 with ξ(0) = 0, such that ∀ h : X → T V and for all distributions with
property A it holds that

Ep(x)py(x)>`h(x) − Ep(x) min
t′∈T V

py(x)>`t′ ≤

ξ

(
Ep(x)pa(x)>`ph(x) − Ep(x) min

t′∈T V
pa(x)>`pt′

)
.

The main idea of Lemma 5 proof is analogical to the proof of Corollary 26 in [Zhang, 2004a].
Thus, we provide proof only for Lemma 5 together with two auxiliary lemmas needed for its
proof and proof of “flipped” version of this lemma we leave to the reader.

Lemma 6. Let µ(ε) : R → R+ be a convex function such that µ(ε) ≤ Hp(ε). Then for any
classifier h(x) : X → T we have

µ(Ep(x)py(x)>`h(x) − Ep(x) min
t′∈T V

py(x)>`t′) ≤

Ep(x)pa(x)>`ph(x) − Ep(x) min
t′∈T V

pa(x)>`pt′

proof: Using Jensen’s inequality together with inequality

Hp(p>y `t − min
t′∈T V

p>y `t′) ≤ p>a `pt − min
t′∈T V

p>a `
p
t′

we have

µ(Ep(x)py(x)>`h(x) − Ep(x) min
t′∈T V

py(x)>`t′) ≤

Ep(x)µ(py(x)>`h(x) − min
t′∈T V

py(x)>`t′) ≤

Ep(x)H
p(py(x)>`h(x) − min

t′∈T V
py(x)>`t′) ≤

Ep(x)(pa(x)>`ph(x) − min
t′∈T V

pa(x)>`pt′) .

Lemma 7. Let ζ∗(ε) = sup
a≥0,b
{aε+ b | ∀z ≥ 0, az + b ≤ Hp(z)}, then ζ∗ is a convex function.

It has the following properties:
• ζ∗(ε) ≤ Hp(ε),
• ζ∗(ε) is non-decreasing,
• for all convex functions ζ(·) such that ζ(ε) ≤ Hp(ε), ζ(ε) ≤ ζ∗(ε).
• Assume that ∃a > 0 and b ∈ R such that aε + b ≤ Hp(ε) and ∀ε > 0, Hp(ε) > 0. Then
∀ε > 0, ζ∗(ε) > 0.

Lemma 7 is a proposition 25 from [Zhang, 2004a] for the function Hp(ε) Thus, we omit its
proof here. Now we are ready to prove Lemma 5.
proof: Consider ζ∗(ε) in Lemma 7, Let ξ(δ) = sup{ε : ε ≥ 0, ζ∗(ε) ≤ δ}. Then ζ∗(ε) ≤ δ
implies ε ≤ ξ(δ). Therefore desired inequality comes from Lemma 6.

Given δ1, δ2 ≥ 0 : from ζ∗(
ξ(δ1)+ξ(δ2)

2 ) ≤ δ1+δ2
2 we know that ξ(δ1)+ξ(δ2)

2 ≤ ξ( δ1+δ2
2 ). Thus,

ξ(ε) is concave function.
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We now only need to show that ξ(ε) is continuous at 0. From the boundedness of `(y, t),
we know that Hp(z) = +∞ when z > max

y∈YV ,t∈T V
`(y, t). Therefore ∃a > 0 and b ∈ R such

that aε+ b ≤ Hp(ε). Now we pick up any ε′ > 0, and let δ′ = ζ∗(ε′)
2 . We know from Lemma 7

that δ′ > 0. This implies that ξ(δ) < ε′ when δ′ < δ.

Here we just give formulation of “flipped” version of Lemma 5 and its auxiliary Lemma 8.
To prove Lemma 9, we need modified Lemma 6 and 7 for the function from Lemma 8 which
is straightforward to do, thus we leave it for the reader.

Lemma 8. Let H(ε,pya) : R×∆|YV |×|AV | → R be a function defined as follows

minimize
t∈T V

py
>`t − min

t′∈T V
py
>`t′

subject to pa
>`pt − min

t′∈T V
pa
>`pt′ ≥ ε.

where loss functions `(y, t) and `p(a, t) are defined by (4.1), (4.2). Then for any compact
subset P ⊆ ∆|YV |×|AV | and for any ε > 0 there exists δ > 0 such that ∀pya ∈ P holds
H(ε,pya) > δ, i.e. H(ε) = inf

pya∈P
H(ε,pya) > δ.

proof: The proof is analogous to the proof of Lemma 4.

Lemma 9. If ∀ε > 0, H(ε) , inf
pay∈Px

H(ε,pay) > 0 for the loss functions `(y, t) and `p(a, t)

defined by (4.1), (4.2) then there exists a nonnegative concave function ζ : R → R+, right
continuous at 0 with ζ(0) = 0, such that ∀ h : X → T V and for all distributions with property
A it holds that

Ep(x)pa(x)>`ph(x) − Ep(x) min
t′∈T V

pa(x)>`pt′ ≤

ζ

(
Ep(x)py(x)>`h(x) − Ep(x) min

t′∈T V
py(x)>`t′

)
.

Proof of Lemma 9 is similar to proof of Lemma 5.
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