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Abstract 
The goal of this work is to create an overview of principles of human depth perception and 
their exploitation by various “3D” display technologies and to develop a computer software 
or compile a set of applications that would allow to correctly display images on a multi-view 
autostereoescopic display without the need for any third party hardware solution. 

In order to be able to display multiview images properly, images of individual views have 
to be interleaved using an interlacing pattern, which depends on parameters of the lenticular 
lens sheet covering the display surface. As these parameters are not disclosed by the 
manufacturer of the display, an empirical approach is used in order to obtain the needed 
interlacing pattern. 

An application is then created using the information obtained. The software allows the use 
of some of the most common stereoscopic image formats and allows the user to set basic 
parameters of the output image, which is then generated and fed to the display directly, 
instead of to a hardware rendering box supplied with the autostereoscopic screen. Image 
processing done by the application is thoroughly described and a simple user manual is 
provided. 

Output images generated by the application are then compared to images processed by the 
hardware rendering core. Visible differences between the two displaying methods and their 
possible causes are then discussed. 
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Abstrakt 
Cílem této práce je vytvořit přehled principů lidského vnímání hloubky prostoru a jejich 
využití v technologiích pro stereoskopické “3D” zobrazování. Dalším cílem je vyvinutí 
softwaru, nebo vytvoření sady aplikací, které umožní korektní zobrazení obrazu na 
autostereoskopické obrazovce podporující větší množství pozorovacích úhlů bez 
dodatečného zpracování obrazu za pomoci specializovaného hardwaru. 

Aby bylo možné zobrazit multiview obrazy správným způsobem, je zapotřebí použít 
prokládací vzor ke zkombinování vstupních obrazů obsahujících jednotlivé pohledy na 
reprodukovanou scénu. Tento prokládací vzor je závislý na parametrech vrstvy 
lentikulárních čoček umístěné před samotnou obrazovkou. Protože výrobce obrazovky tyto 
parametry v dostupných materiálech neuvádí, je potřeba získat prokládací vzor empirickou 
metodou. Postup získání prokládacího vzoru je v práci zevrubně popsán. 

Za použití získaných dat je poté vytvořena počítačová aplikace, která umožňuje použití 
běžně používaných formátů pro uložení stereoskopického obrazu. Aplikace dovoluje 
uživateli nastavit základní parametry pro generování výstupního obrazu, který je zaveden do 
autostereoskopické obrazovky přímo, namísto hardwarového renderovacího jádra 
dodávaného spolu s obrazovkou. Zpracování obrazu, které aplikace provádí, je detailně 
popsáno a k práci je přiložen jednoduchý návod k použití aplikace. 

Příklady obrazu vytvořeného za pomoci aplikace jsou porovnány s výstupem z původního 
hardwarového renderovacího jádra. Pozorované rozdíly a jejich možné příčiny jsou popsány 
v závěru práce. 
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Introduction 
Stereoscopic displays have seen a rise in popularity in recent years. While standard 
stereoscopic screens requiring the viewers to wear specialized glasses are commercially 
available, autosteroscopic screens that do not require any headgear are rare to come by, as 
their parameters are not yet fit for consumer use. 

This thesis describes working principles of autosteroscopic display technologies, along with 
brief overview of common techniques used by commercial stereoscopic 3DTVs and 
principles of human depth perception. 

The following chapters describe the process of determination of parameters of a Phillips 
autosteroscopic display with lenticular lens sheet, that are required in order to pre-process 
images for correct reproduction on the specialized screen. These parameters are not disclosed 
by the manufacturer of the display, so an empirical approach is employed. The used 
experimental methods are focused on finding usable image interlacing pattern by closely 
observing the displayed image and its behavior under various viewing conditions. 

The subsequent chapters are focused on detailing the creation of a computer application that 
uses the obtained display parameters in order to generate multiscopic images viewable on 
the autosteroscopic screen. Inner workings of the application are described as well as the 
thinking behind the used workflows. 

An overview of the applications user interface is then provided with description of individual 
elements and their effect on the results of the image generation. Some unexpected problems 
and their solutions are also described. 

Advantages and downsides of the developed application in comparison with a commercial 
hardware solution are listed and their possible causes are discused. 

Finally, a list of possible enhancements that would further expand the capabilities and 
reliability of the developed application is provided.  
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1. 3D perception and display technologies 
This chapter serves as a theoretical introduction to some of the main topics of this thesis – 
depth perception, stereoscopic displays and stereoscopic image formats. 

Information the human brain uses in order to create the impression of depth are described. 

Later in the chapter, an overview of technologies commonly used to display stereoscopic 3D 
images on commercially available displays is presented, with emphasis on technologies that 
do not require the viewer to wear any additional headgear. 

Several common stereoscopic 3D image formats are also shortly described and their 
advantages and disadvantages are listed. 

1.1. Human 3D perception 

The human visual system uses many depth cues to determine relative position of an object 
in 3D space. These depth cues can be divided into two categories: physiological, based on 
our visual system anatomy, and psychological, which is based on our understanding of the 
world [1]. Both are discussed in following sections. 

1.2. Physiological depth cues 

Usually the distance between eyes for an adult is between 60 and 70 mm [2]. This is called 
interocular or interpupillary distance. As one eye is only capable of perceiving a planar 
image, in order to perceive a 3D scene, cooperation of both eyes is required.  

This binocular viewing provides the perception of depth and is used as basis of function of 
most stereoscopic displays. 

1.2.1. Binocular Disparity 

Binocular disparity is the difference in the images projected on the left and right eye retinas 
in the viewing of a 3D scene. The images that the eyes receive from the same object are 
different according to the different locations of the eyes [1].  

 
Fig. 1  Binocular disparity. [3] 
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The two images, along with other information discussed later, are then fused in the brain into 
a three-dimensional image. A process which is not yet fully understood [1]. 

Binocular disparity is the most important depth cue used by the visual system to produce the 
sensation of depth, or stereopsis. [4]  

 
1.2.2. Vergence 

Vergence is a type of simultaneous eye movement in opposite directions done by extrinsic 
muscles, which helps to obtain or maintain single binocular vision. 

Convergence is the simultaneous inward rotation of the eyes towards each other, usually in 
an effort to maintain single binocular vision when viewing an object as it moves closer to 
the observer. Exaggerated convergence is called cross eyed viewing. 

 
Divergence is the exact opposite of convergence - outward rotation of the eyes away from 
each other. When an observed object is moving further away from the observer, the eyes 
diverge until they are parallel, basically fixating at the same point at infinity. [5] 

Both convergence and divergence have certain limits which, when exceeded, can cause 
discomfort or even pain to the observer. Especially higher-than-parallel divergence is crucial 
to avoid in production of stereoscopic footage. 

 
1.2.3. Accomodation 

Accommodation is the change in optical power of the eye as it focuses on different distances 
in a 3D scene. The lens changes thickness (and effectively its focal length) due to a change 
in tension from the ciliary muscle.  

This depth cue is normally used by the visual system in tandem with convergence. [4] 

Fig. 2  Convergence on close and distant object. 
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1.2.4. Accommodation and convergence mismatch 

In stereoscopic and autostereoscopic displays the two different views of an object are 
presented next to each other on a planar surface of a display. That causes a problem, as the 
eyes accommodate on the plane of the display surface while the projected disparity 
stimulates a different depth perception.  

This is called accommodation-convergence mismatch (or simply AC mismatch), since the 
eyes converge at the apparent point of fixation in the image but focus on the screen. [3] 

As both disparity and accommodation convey depth information which might be 
contradictory, viewers may feel discomfort, manifested by eyestrain, blurred vision, or 
headache. [1] Small percentage of population is not even capable of fusing the images in one 
3D scene. 

1.2.5. Pseudoscopy 

An undesirable effect called pseudoscopic viewing is another topic related to binocular 
viewing and stereoscopic displays. This effect occurs when images intended for individual 
eyes are swapped and perceived depth is thus inverted (far objects appear as close and vice 
versa). In combination with conflict with psychological depth cues mentioned in the 
following section, pseudoscopic viewing induces viewer confusion and discomfort. 

 
1.3. Psychological depth cues 

These monocular information about relative depth are based on our experience with the 
outside world gained as part of growing up. They usually work in tandem with physiological 
depth cues, but are also used to give the illusion of depth where none is present (printed 
pictures, 2D displays etc.). 

Misalignment of physiological and psychological depth cues can induce confusion and 
discomfort of the viewer and is highly undesirable in stereoscopy. 

 
1.3.1. Perceived size / Linear perspective 

Linear perspective refers to the change in image size of an object on the retina in inverse 
proportion to the object’s change in distance. As an object moves further away, its image 
becomes smaller. This effect is called perspective foreshortening. [4]  
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For example, we know from experience that an elephant is larger than human, so when we 
see a picture of an elephant smaller than a human figure, we assume that the animal is further 
in the distance. 

 

A 3D perspective can also be created by two parallel lines, intersecting at infinity (i.e. rails 
of a train track). [1] 

1.3.2. Interposition 

One of the strongest depth cues. One object overlapping, hiding or occluding another gives 
us information about their relative position (hidden object is further away). Can cause serious 
confusion when violated, especially when viewing stereoscopic footage, where depth is 
mainly conveyed by disparity. 

In the previous example, the human would naturally occlude the small elephant in the 
distance. In case it is the other way around, we tend to assume there is a tiny elephant 
hovering in front of the human. 

1.3.3. Atmospheric occlusion 

Distant objects tend to show less contrast and slight blue tint due to light traveling through 
thicker layer of atmosphere which is not 100% transparent. Blue, having a shorter 
wavelength, penetrates the atmosphere more easily than other colors. [4] 

Some weather conditions also affect appearance of distant object e.g. rain or fog. 

Fig. 3  Example of perceived size. 

Fig. 4  Right and wrong occlusion of objects in an image. 
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1.3.4. Motion parallax 

Motion parallax is similar to binocular disparity in that it provides different views of a scene 
from multiple angles. The different views are achieved by side to side movement of either 
the viewer’s head (or camera) or the scene itself. The relative position of object in a scene is 
then determined by their relative movement - the closer the object the more it appears to 
move when changing the viewer’s position. 

If a viewer is moving to the right with eyes fixed on the stationary point F, then the stationary 
objects behind F are perceived as moving in the same direction to the right as the viewer, 
while those in front of F are perceived as moving to the left. This motion parallax is part of 
the intuitive experience of the viewer and provides the locomotive viewer with depth 
information relative to F  [1]. 

 
1.4. Stereoscopic displays 

Any kind of display technology capable of delivering different images to each eye of the 
viewer can be considered stereoscopic display. Most commercially available direct-view 
stereoscopic devices (3DTV) make use of special glasses worn by the viewer to allow  
pass-through of only the correct image to each eye and thus creating a 3D sensation. 
Wavelength-multiplexed, polarization-multiplexed and time-multiplexed methods are the 
most used methods in the entertainment industry. 

Other devices, such as head mounted displays (HMDs) are capable of delivering stereoscopic 
images with greater immersion due to various head movement tracking techniques used to 
control the projected image. 

Autostereoscopic displays can be considered a subset of stereoscopic devices, but since the 
main topic of this work is autostereoscopy, these displays will be introduced in more detail 
in section 1.5. 

 
  

Fig. 5  Motion parallax. [1] 
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1.4.1. Wavelength multiplexed methods 

The anaglyph method can be considered the most popular low-cost solution of displaying 
3D stereoscopic images. It uses cheap (often paper) glasses with complimentary color filters 
(usually red for the left eye and cyan for the right eye [6]) and does not require any special 
hardware, as any common color video equipment is sufficient. The main disadvantages of 
this method are the loss of color information and the high level of crosstalk (bleeding of left 
image into right eye and vice versa).  

A wavelength multiplex solution with high color accuracy is called Infitec, which stands for 
Interference filter technology and is owned by German company Infitec GmbH. Similarly to 
the anaglyph method, it uses color filters to direct left and right images to left and right eye 
accordingly. However where anaglyph filters can be seen as high-pass and low-pass filters, 
in the case of Infitec, selective narrowband filters at wavelengths representing R,G and B 
primary colors are used with slight difference in transmitted wavelengths for each eye as 
shown in Figure 6b . 

 
Infitec technology is currently widely used in projection displays, such as cinemas and 
projectors for personal use as it requires two light sources with differently filtered spectrum. 
Direct-view LCD display using Infitec filter glasses and time-multiplexed, filtered LCD 
backlight was demonstrated in [7]. The downside of this solution is low brightness of the 
image due to inefficient utilization of source light spectrum by the interference filters. 

 
1.4.2. Polarization-multiplexed displays 

Polarization-multiplexing has its roots in cinema projection where companies such as IMAX 
employed two aligned film projectors (or, in recent years, digital cinema projectors) each 
with linear polarization filter perpendicular to the other. The viewer would use eyewear with 
appropriate polarizers to block the image not intended for that eye.  

  

         Fig. 6a)  Transmission spectra of anaglyph glasses.              Fig. 6b)  Transmission spectra of Infitec filters. 
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Another method is using only one projector with electrically controllable polarization rotator 
synchronized to displayed frames [6] similar to color wheel in DLP projectors. This 
technology does not require any alignment of images and is used in cinema projectors from 
MasterImage or RealD, both using circular polarization instead of linear, which allows the 
viewer to tilt head without any negative effect to the image (crosstalk). 

Common to both of these methods is the requirement of special non-depolarizing screen 
(with silver coating), which can prove to be too expensive for smaller cinemas (Infitec 
technology is then preferred). 

For the direct-view flat panel displays, available technologies are micropolarizer based, 
patterned retarder based, and dual-panel type. In the case of micropolarizer and patterned 
retarders alternate horizontal pixel rows are orthogonally (circularly) polarized by the line-
interleaved micropolarizers or patterned retarders attached to the display [6]. Odd horizontal 
lines are reserved for one eye, while even lines are used by the other eye, effectively 
sacrificing half of the vertical resolution in order to stimulate depth perception. Stereo pair 
images are then displayed in a horizontally interleaved format and low-cost passive polarizer 
glasses (same as RealD and MasterImage ones) worn by the viewer separate the two images. 
Because of the two images are interleaved instead of overlapped, this method is also called 
spatial or area-multiplexing.  

 
Fig. 8  The structure of patterned-retarder type display. [6] 

Fig. 7  Two projector setup for linearly polarized stereoscopic projection. [8] 
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Dual-panel based displays (or dual layer 3D LCD) use each pixel twofold by simultaneously 
transmitting the luminance and color for the right eye and the left eye view while preserving 
full display resolution for both eyes. This is achieved by placing two LCDs on top of each 
other, where the rear one, backlighted by unpolarized light, displays both stereo pair images 
combined as an ordinary non-stereoscopic LCD would. The second LCD, placed directly on 
top of the first one then changes polarization of the underlying polarized image on a per pixel 
(sub-pixel) basis. The change of polarization is dependent on the brightness ratio in left and 
right image and is controlled by precise pixel voltages. Polarization glasses, same as in the 
methods above with orthogonal polarization (both linearly and circularly polarized can be 
used), then transmit the right amount of incoming light based on relation of the polarization 
filter to polarization of the light. [1] 

 
1.4.3. Time-Mutliplexed (active) displays 

As opposed to time-parallel stereoscopic displays (i.e. polarization multiplexed), screens 
using time-multiplexed method rely on the persistence of vision of the human visual system. 
Left and right-eye-images in their full resolution are flashed on the screen in an alternating 
fashion at high frame rates, while viewer-worn shutter glasses synchronized with the screen 
refresh rate block light for the eye the current frame is not intended for. 

A value of 120 Hz is often cited as the lowest frequency required to successfully display 
time-multiplexed stereoscopic images with no flickering visible to the user. According to 
Ferry-Porter law, the critical flicker frequency (cff) for a typical 200 cd/m2 screen is around 
60 Hz [9] which is just below the recommended frequency of 60 Hz (per one eye). However, 
as human peripheral vision has higher cff, some visible flicker of ambient light might be 
observed in a brightly lit room. Hence, higher frequencies are recommended. 

  

Fig. 9  Dual layer stereoscopic LCD principle. [1] 
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Any high-frequency screen (or projector) is capable of delivering time-multiplexed 
stereoscopic image when equipped with a unit providing synchronization signal (in most 
cases infrared) for the shutter glasses. This synchronization unit can be either built right into 
the screen, or exist as a separate device that is connected to the display. Viewing angles are 
limited by reception of the synchronization signal. 

The active glasses use fast liquid-crystal based shutters that block the left-eye images from 
reaching the right eye of the viewer and vice versa. One obvious disadvantage compared to 
passive polarization glasses is the need for a battery providing power for electronics that take 
care of receiving the signal and controlling the shutters. Active glasses are therefore bulkier, 
heavier and more expensive than their passive counterpart. 

Cross-talk might occur with imperfect synchronization or slower pixel response. Older LCD 
screens do not change the brightness of a pixel fast enough to show the correct 
color/brightness in the subsequent frame, retaining some portion of the current. Other 
technologies are better in that respect. Black frame insertions in higher refresh rate screens 
are also used to reduce crosstalk by allowing the shutters to switch states without any image 
bleeding. 

 

 
 

Fig. 10  Time sequential viewing of the two images with shutter glasses. [1] 

 
1.5. Autostereoscopic displays 

Autostereoscopic displays are special subset of stereoscopic devices which don’t require any 
glasses or other user-mounted-devices in order to produce the required disparity and 
stereoscopic 3D sensation. 

Direction of light from the screen is controlled by special optical element, usually placed in 
front the screen surface, establishing multiple viewing zones with different images in front 
of the display. Large Fresnel lenses, lenticular arrays, parallax barriers, or other components 
such as mirrors, micropolarizers, and prisms [6] can be used as such light directors, with 
parallax barriers and lenticular lenses being the most common. 

Autostereoscopic displays can be further divided based on number of views of the displayed 
scene to either two-view or multiview display.  
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Two-view systems produce a single pair of parallax views formed at a single location in 
space or repeated in multiple zones in front of the display, allowing for simultaneous use by 
multiple viewers. The viewer has to be in the correct location (distance and angle) to perceive 
a stereoscopic image. 

In multiview systems, multiple different stereo pairs are presented across the viewing field 
enabling the viewer to move his or her head and look at the scene from multiple angles. The 
number of views in multiview displays is normally insufficient for smooth motion parallax, 
and with increasing number of views, resolution of the image is usually decreased. 
Supermultiview systems with high amount of displayed images are researched, however 
current display technologies do not allow mass production of such device (low resolution) 
[6]. 

Fig. 11  Multiple viewing zones in front of two-view autostereoscopic screen, depicting correct and 
incorrect (pseudoscopic) positioning of the viewer. [10] 

Fig. 12  Smaller number of wider viewing zones in front of multiview autostereoscopic screen. [10] 
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Head or eye tracking is another technique used to provide continuous motion parallax and 
suppress pseudoscopic viewing. A two-view system with adaptive optical element (physical 
movement of e.g. parallax barrier or lenticular lens array) and head-tracking system is 
capable of shifting the viewing zone according to viewer’s movement in front of the screen. 
Such system requires special format of image data for generating smooth change of viewing 
angle e.g. high amount of discrete views or real-time rendered computer 3D models. 

Head-tracking can also be used to eradicate pseudoscopic images in two-view 
autostereoscopic displays with multiple fixed viewing zones by switching left and right eye 
images according to position of viewers eyes in the viewing field. 

 
 
1.5.1. Parallax barrier displays 

Autostereoscopic displays employing parallax barriers use spatially multiplexed left and 
right eye images in different columns of the flat panel display (FPD - an LCD, OLED or 
PDP), meaning the horizontal resolution is halved for each eye. A sequence of light blocking 
barriers and light transmitting slits sits in front of the FPD, guiding light from the left and 
right eye images to the corresponding eyes of the viewer. As depicted in Figure 14, light 
emitted by the left eye image is transmitted by the slits and is narrowed to a point at the 
position of the viewer’s left eye, while light from the right eye image heading in that 
direction is blocked by the barrier. This leads to a loss of brightness, as half of the emitted 
light is blocked. Unlike for lenticular-based approach, the distribution of luminance is 
uniform [1]. 

Fig. 13  Uses of head-tracking for pseudoscopic viewing suppression  
employing a) shifting of viewing zones b) image swapping. [10] 
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Viewing distance z of the parallax barrier based autostereoscopic display depends on the 
width L of columns on the FPD, the distance r of the barrier from the FPD and on interocular 
distance b (distance from the center of one eye to the other, as a rule 65 mm), as described 
by equation (1). 

𝑧~ #∙%
&

         (1) 
 
As L is given for any particular display, the viewing distance (image plane) can be controlled 
by the distance of the barrier from the FPD plane. Difference in interocular distance (i.e. 
small kids) also affects the distance of the image plane. 

The barrier itself can be either physical (made of plastic or other material) or realized by 
liquid crystal technology, as is the case with most modern parallax barrier based screens. An 
LC based approach has the advantage that the barrier can be turned off and the screen can 
be used as regular 2D display. Voltage controlled LC shutter also allows to change the 
orientation of the screen, as the barrier can be oriented either vertically or horizontally. The 
only downside of liquid crystal approach is the addition of two glass layers which makes the 
display both thicker and heavier. 

A time-multiplexed, LC based parallax barrier display is a potential solution to the loss of 
resolution common with autostereoscopic displays. In this solution, both the FPD images 
and the barrier are synchronously switched. In one timeframe, the left and right images and 
barrier are in the same state as in Figure 14. In the next time slot, columns with left eye 
images are replaced with columns with right eye images and vice versa, while the parallax 
barrier is inverted so that previously opaque barriers become transparent and transparent slits 
become opaque. This way, both eyes see the full resolution of the display, but as with the 
active-glass based time-multiplexed stereoscopic screen, a higher refresh rate display is 
required [1]. 

Fig. 14  The parallax barrier on an FPD with the right eye and left eye images.  
Based on [1]. 
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1.5.2. Lenticular lens array displays 

Instead of light-blocking barriers, displays with lenticular lenses (or simply lenticulars) make 
use of cylindrical lenses that project images from the FPD screen into repeating viewing 
zones on an image plane. A left and right eye image is located behind each lens, consisting 
of only one pixel or of a few pixels, depending on the size of the lens. In case of multiview 
display more than two images are located behind each lens. In that case, the views are divided 
into several viewing sectors as depicted in Figure 12. 

  

  

Fig. 15  Time-multiplexed switchable parallax barriers and slits (a) the transparent slits (barriers A) for the first 
half of the image for the left and right eye; (b) the transparent slits (barriers B) for the second half of the image 

for the left and right eye. [1] 

Fig. 16  Working principle of a lenticular screen. The left and right 
eye images are repeated along the image plane. [6] 
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In the previous image, the L and R image columns are in an order that would give a 
pseudoscopic image. Based on geometric optics and depicted by rays in Figure 17, the left 
and right eye images on the FPD have to be swapped to obtain the desired stereoscopic image 
in the image plane.  

  

 
With help of Figures 17 and 18, design rules for lenticulars can be derived. Focal length f of 
a lens in the lens array, the distance g of the lens from the screen, the refractive index n and 
the image plane distance z are shown. From these parameters, the lens equation can be 
assembled 

'
(
)
+ '

+
= '

-
            (2) 

Fig. 18  Projection and magnification of the pixel pitch p into the image pitch b, the 
interocular distance in the image plane P. [1] 

Fig. 17 Projection of a single image pair by a lenticular lens onto an image plane. [1] 

Fig. 18 Projection and magnification of the pixel pitch p into the image pitch b, the 
interocular distance in the image plane P. [1] 
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and equations for focal length and viewing distance can be derived 

f = /∙0 1
/20 1

           (3) 

𝑧 = -∙( )
(
)3-

          (4) 

Figure 18 also clearly depicts magnification of the pixel pitch p into a larger image pitch b 
on the image plane, corresponding with the interocular distance, which, on average, is 65 
mm as mentioned earlier. This magnification is given by equation (5). 

𝑚 =%
5
= +
(
)
           (5) 

Based on these equations, the given pixel pitch of each of the two images and given 
interocular distance (65 mm), the magnification m is found. g/n is given by the FDP design, 
so that leaves focal length f and viewing distance z to be determined. As both parameters 
depend on each other, viewing distance z is defined and according f is found [1]. 

Black matrix depicted in Figure 18 presents a problem, as it is also magnified by m at the 
viewing distance and is very disturbing for the viewer. This effect can be suppressed by the 
use of smaller pixel pitch p1 as depicted in Fig. 18. However, sideward movement of the 
viewer in the image plane causes the diminished black matrix to become noticeable. A 
possible solution is the use of slanted pixels in combination with vertically arranged 
lenticulars, which ensures there are no black lines parallel with the lenticulars. More 
frequently used is vertical pixels with slanted lenticulars, which has the same effect and is 
shown in Figure 19. 

Fig. 19  Vertically aligned pixels covered by a slanted lenticular 
array in a seven-view display. [6] 
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An arrangement such as shown in Figure 19 has several other advantages over simple 
pixel/lens parallel arrangement. The loss of resolution is distributed to both horizontal and 
vertical direction as opposed to full resolution in vertical direction and more severe loss in 
horizontal direction when traditional arrangement is used. This leads to the ability to project 
more views of the scene with roughly the same loss of resolution - Figure 19 depicts a 7 
view arrangement with lens width of roughly 3.5 pixels. 

Transition between two neighboring views is made smoother with slanted pixels or slanted 
lenticulars. Instead of flipping into a new image, the „old“ pixel(s) fade away while the 
„new“ one simultaneously fades in, resulting in perception of an increased resolution and 
more pleasing viewing experience overall [1]. Slanting also helps to eliminate moiré pattern. 

The main disadvantage of slanted design is more complicated arrangement of the image 
matrix displayed on the FPD, evident from Figures 19 and 20. 

 
 

  
Fig. 20  Arrangement of the RGB pixel triplets for a 30-view display with a slanted lenticular lens array. [1] 
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In 1999, multi view pixel mapping algorithm was put forward for different LCD panels with 
respective slanted angle, lenticular pitch and offset [11]. 

 

Fig. 21 Multiview pixel mapping and its parameters [11]. 

The refraction angle is related to 𝑥7--  , if 𝑥7--  is the same, the light will be refracted to the 
same direction. So the aim of sub-pixel mapping is to ensure that the light refracted to a 
certain angle comes from sub-pixels which have the same view number. We can easily 
acquire the relations between the parameters of autostereoscopic 3D system [11].  

𝑁
𝑁979

=
𝑥7--
𝑃  

𝑥7-- = 𝑥 − 𝑘7-- − 𝑦 tan𝛼 𝑚𝑜𝑑𝑃D 

𝑃D =
E

FGHI
                                                            (6) 

Where N denotes the view number of a certain viewpoint, 𝑁979 denotes the number of 
viewpoints, x denotes the distance from the point to the left edge of the grating line above, 
P denotes the width of a single line of grating, 𝑃D denotes the width of a single grating in 
the horizontal direction [11]. 	
	
With (6), each sub-pixel on the LCD can be mapped to a certain viewpoint. If x and y denote 
the horizontal and vertical coordinates for each sub-pixel, then we get:  

𝑁 = D3JKLL3M NO1I 	Q7RES
ES

𝑁979                                           (7) 
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Without loss of generality, assume the grating slants to the right. Set the top left corner of 
the TV screen as the origin, horizontal right as the positive direction of the x-axis, straight 
down as the positive direction of the y-axis to establish a coordinate. Each sub-pixel is 
represented by its view number in the coordinate. 

𝑁 = DT3JT3UMT NO1I 	Q7RV
V

𝑁979             (8) 

Where 𝑥W , 𝑘W and 𝑦W respectively denotes sub-pixel’s horizontal, vertical and offset length, 
X denotes the length of sub-pixels covered by a single line of grating [11].  

A slanting angle is commonly defined by a straight line from the upper left corner of a pixel 
to the lower left corner of the pixel just bellow and to the right as illustrated by dotted line 
X in Figure 19. This leads to a slant angle 

𝛼 = arctan '
Z
      (9) 

with 𝛼 = 9.46°, when assuming the length of the pixels is three times their width [1]. 

Since the lenticulars do not block light as parallax barrier does, but focus it to the viewing 
zones, all the light emitted by the FPD is transmitted by the lens array to the viewer. The 
overall brightness of the screen is therefore twice as high as with the use of parallax barrier. 

As with LC-based parallax barrier, use of special lenticular lens array allows to switch the 
screen between 2D and 3D modes. Switchable lenses are, again, realized by LCs where the 
molecules, when rotated, change their optical properties. The lenticulars are filled with liquid 
crystal molecules which change their refractive index when voltage is applied. The new 
refractive index then matches the one of the replica (shown in Figure 22) which effectively 
makes the two layers appear as a single, flat, non-refractive layer, allowing light to pass 
without any change in direction. This is the common optical setup for 2D presentation.  

 

 

Fig. 22 Switchable lenticular lens (a) working in the 3D mode 
(b) working in the 2D mode. (ITO- Indium-Tin-Oxide) [1] 
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1.6. Stereoscopic 3D image formats 

Stereoscopic “3D” images can be represented in a few different formats, each with its 
advantages and flaws. This chapter will briefly describe some of the main formats used by 
modern stereoscopic displays (excluding color multiplexing etc.). 

1.6.1 Stereo pair images 

As the name suggests, the most basic stereoscopic image format consists of two images – 
one destined for the left eye and one for the right eye. It is the most widely used stereoscopic 
format used, as all “3D” movies use it, be it in cinemas, on Blu-Rays and in other 
distributions (VOD).  

The two images are either saved as separate 2D files (using twice the data) or can be 
multiplexed into one file with some compression added, getting as low as 1.5x the size of 
2D image/video.  

For motion pictures a time-sequential multiplexing is often used, alternating L and R images 
with each frame (same principle as described in chapter 1.4.3.).  

For still images a spatial multiplexing approach is the only possibility, although it can be 
used in video as well. The most used arrangements are side-by-side (SBS) and over-under 
(OU), where the two images are placed next to each other in one file in a horizontal or vertical 
manner, respectively. In cases where bandwidth is limited (television broadcast, internet 
streaming), these two arrangements are resized so they occupy the same image area as a 2D 
image – these arrangements are sometimes referred to as half-side-by-side (H-SBS) and half-
over-under (H-OU) as their horizontal/vertical resolution is effectively halved. Other, less 
used, spatial multiplexing method is interleaving the two images. 

Stereo image pair is the easiest to create, as it only requires two cameras (or one camera used 
in 2 positions sequentially) for image acquisition. The same applies for CG production where 
a virtual “stereo rig” can be created with minimum effort. 

The stereo image pair format has good image reproduction quality as it only consists of real 
images captured by the camera. It does not have problems with occlusions, light refraction 
etc. The main disadvantage of stereo pair is its inability to provide motion parallax. 

 

Fig. 23 a) H-SBS stereo image multiplexing, b) H-OU stereo image multiplexing. 
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1.6.2. Multi-view images 

An extension of stereo pair with more images from different angles. It is the ideal format for 
mutliview displays as it has most of the positive properties of stereo pair but allows for 
motion parallax by switching between multiple pairs. 

The image set can either allow for horizontal motion parallax, created a camera array with 
cameras offset in one axis, or both horizontal and vertical motion parallax in case of image 
acquisition by a two dimensional matrix of cameras. For the second option an even more 
specialized lens array is needed so in this work, only the horizontally offset images will be 
used. 

The main downside of sets of multiview images is that they are quite demanding on storage 
space in order to be saved in full resolution. Spatial multiplexing is possible where severe 
resolution loss is acceptable – generally, the more views in a multiplexed image, the lower 
the resolution of each of the individual images. 

 

Fig. 24 A spatially multiplexed 8-view image in a 3x3 matrix. Image downloaded as part of [12] 

 
1.6.3. 2D-plus-depth format 

2D-plus-depth or 2D+Z as the format is also called is a stereoscopic video coding format 
that uses a grayscale depth map that supplements each 2D image. Each pixel of the 2D image 
has corresponding pixel on the depth map that carries information about its position on the 
Z axis.  Lighter shades of gray usually represent objects closer to the viewer and darker parts 
of image represent objects more in the distance, however in some cases the grayscale map is 
inverted. 256 depth planes can be encoded in 8-bit grayscale image, which is usually 
sufficient to create smooth gradient of depth within the image. 
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Fig. 25 An example of 2D-plus-depth image with the actual image on the left and its grayscale depthmap on the 
right. 

This format is often used in postproduction of digitally created images – depth of field, 
atmospheric occlusion and other effects which would take long time to render directly are 
easily achievable with depth map.  

2D to 3D conversion is another possible use case for the format as it is possible to render a 
stereo pair or multiview image set with arbitrary number of views using a depth image based 
rendering (DIBR) algorithm [13]. 

Most 3D graphics software suites (3DS Max, Maya, Cinema 4D etc.) are capable of saving 
the depth map along with the base RGB image. Creation of depth map for non-computer 
generated images is fairly complicated and sometimes does not give good enough results. 
Algorithms for automatic and semi-automatic computation the depth map from two or more 
images are heavily researched [14]. For cases where only one image is available, manual 
creation of depth map is a viable option. 

The main disadvantage of the 2D-plus-depth format is its inability to contain information 
about objects occluded by foreground elements. Texture for occluded objects is usually 
computed from neighboring pixels by the DIBR algorithm, resulting in smeared edges 
around foreground objects. Another disadvantage of the format is with its handling of 
transparent refractive materials and reflections, which do not work properly and are only 
approximated by a static texture on the supposedly refractive/reflective object. 

Advantages of the format include its ability to supply virtually infinite number of views and 
small file size of the depth map as only 8-bit image is required. 2D+Z is also compatible 
with 2D screens as they can easily ignore the depth map and display only the 2D image. 
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2.  Determination of correct interlacing pattern 
In order to successfully display multiview images on the available autostereoscopic screen, 
it is necessary to find out how to interlace the images so that each of them is refracted by the 
lens array to a corresponding viewing zone. The interlacing pattern (or sub-pixel mapping 
scheme) can be obtained using several different methods, both analytical and empirical, 
some of which are discussed and used in this chapter.  

 
2.1. Used screen parameters 

The subject of study of this work is an autostereoscopic 3D screen with slanted lenticular 
lens array. The screen is made by Dutch technology company, Philips, and the model is 
BDL4251VS. Some of the most important parameters of the display given by the 
manufacturer are listed in Table 1 [15]. 

The screen is equipped with a rendering core manufactured by Dimenco (a company founded 
by former Philips engineers). It takes care of real-time image processing and rendering of 
the required multiview image matrix. The native image format for the rendering core is 2D 
+ depth. The supplied software for MS Windows computers is able to convert other stereo 
formats into 2D+depth for the core to work with. 

 

 
 
 
 
 
 
 
 
 
 
 
 
One parameter missing from Table 1 is the slanting angle of the lens array. As the angle 
affects many of the parameters in the image creation pipeline, it will be determined in the 
process of finding the proper image matrix for the display.  

According to [11], the non-disclosed parameters of the display are as follows. The slanted 
angle of lenticular sheet is 𝛼 = arctan '

Z
, the pitch value is 𝑃D =

'[
U

, and 𝑘7-- = 0. As the 

origin of these numbers is unknown, they will have to be verified later.  

Table 1. Parameters of the used screen 

Diagonal screen size 42“ (107 cm) 

Panel resolution 1920x1080 

Pixel pitch 0.485 x 0.485 

LCD panel type TFT-LCD 

Brightness 700 cd/m2 

Viewing angle (V / H) 150° / 150° 

Lenticulars fixed, slanted 

Number of views 28 
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2.2. Originally proposed solution 

The very first thing that will have to be solved is determining the assignment of sub-pixels 
on the FPD to the individual viewing angles of the screen. Besides the slanting angle, this 
distribution of (sub)pixels depends on the pitch of the lenticulars, so it could be theoretically 
possible to determine it analytically. But since neither of these parameters is given by the 
manufacturer and might prove to be difficult to measure, either optically or mechanically, 
another method might be preferred.  

This method would take advantage of the preexisting rendering core, by feeding it with set 
of artificial stereoscopic side-by-side images with varying color and disparity. By capturing 
the output of the rendering core by an image capture device such as a DVR or a device 
specialized for that purpose, it should then be possible to analyze these images (that 
otherwise directly drive the FPD behind the lens array) and determine the correct relationship 
between sub-pixel position and its viewing angle. 

2.3. Actual solution used 

Capturing the images from the output of the rendering core proved to be difficult. The signal 
is not encoded in any way and can be displayed on a regular screen, allowing the observation 
of the interleaved image. However, the output format is 1920x1080 pixels at 60 frames per 
second which is not supported by capture cards available at the time of this work as they 
only accept frame rates up to 30 fps or higher frame rates on lower resolutions. 

Another approach had to be chosen in order to get the results needed. An experimental 
approach of observing the behavior of the screen by an operator or a camera was decided 
upon. The analysis of the screen itself instead of the rendering core does not require any 
specialized equipment and provides deeper understanding of the forming of the final image 
observed by the user. The only downside of this approach is that everything has to be made 
from scratch. Even the formation of a single “white” pixel. 

2.3.1 Finding single pixel layout 

Regular television and computer monitor screens use a fairly simple way of creating a white 
pixel by placing three colored rectangular sub-pixels (red, green and blue) next to each other 
horizontally, together forming a square pixel capable of producing millions of colors. That 
is done by controlling the intensity of light emitted or passed through the sub-pixels while 
exploiting the limited spatial resolution of human vision (the sub-pixels close in proximity 
appear as a single light source). Some mobile OLED screens use a more exotic arrangement, 
but the basic principle stays the same. 

In case of autostereoscopic screen with lenticular lens array the formation of a “white” pixel 
is not as easy, since the main purpose of the lenses is refracting light from different horizontal 
locations on the FPD screen to different locations on the image (viewing) plane. That applies 
for the sub-pixels as well so each of the sub-pixels appears at a different position and is not 
visible from other angles. Figure 26 gives a clearer idea of that. 
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Fig. 26 Refraction of sub-pixels of a single pixel to different angles in front of the screen 

It is obvious from the figure above that it is not possible to use vertical lenticulars on such 
screen in order to properly display full color images. Either other (vertical) sub-pixel 
arrangement in a pixel is required or it is necessary to use slanted lenticulars as is the case 
with the screen used in this work.  

With slanted lenticular array the effect above persists as evidenced by Figure 27. One slight 
difference is that the R, G and B sub-pixels do not appear to have the same position vertically 
as shown in Figure 28. The main difference however, is in the possibility to assemble a RGB 
pixel on the lens from several pixels on the FPD that are located above each other. For 
example, the red sub-pixel can be used from one FPD pixel, the green one from the pixel 
directly below it and blue from one below that. Effectively creating a vertical pixel that is 
refracted as a whole in a given direction as the sub-pixels have the same 𝑥7--. 

 

Fig. 27 Single lit FPD pixel under the lens array photographed from three different angles.  
Circle added for better orientation.  

a) actual raster image used (scaled to size), b) image from the leftmost position, 
c) image from middle position, d) image from the rightmost position. 

Images captured at ~10 cm with several mm shifts sideways. 
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Fig. 28 Vertical shift of sub-pixels belonging to a single FPD pixel caused by slanted lens.  
(Note: each sub-pixel is visible from different angle, not all three together as depicted) 

The screen in this work has lenticulars that rise from left to right as seen in Figure 27 or 29 
and is indicated in Fig. 28. That means the green sub-pixel will be located in one of the rows 
above the red-sub pixel and the blue sub-pixel above the green one, depending on the angle 
of the lens array. The layout could look as suggested by Fig. 29. However, while observing 
the behavior of such arrangement (prototyped as a raster image in Adobe Photoshop), the 
color components were not fading in and out simultaneously, but were still offset by some 
degree – better than in Figure 27 but clearly each sub-pixel still belonged to different viewing 
angle. 

  

 

Fig. 29  First proposed sub-pixel arrangement 

 

Fig. 30 Detail of the screen with visible sub-pixels.  
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When a macrophotography of an edge of a white rectangle on black background was closely 
studied, it became clear that skipping one row would be needed. Fig. 30 shows that in some 
instances (depending on the angle of view) the sub-pixels are doubled and in other cases 
every other sub-pixel is fully lit while the ones in-between are halved. The red arrows mark 
the latter case with evident line-skipping. The angle of the columns is also much lower (less 
inclined) than in Figure 29. 

This observation led to proposal of a new layout. One that would not use color components 
of a directly neighboring pixels, but would skip one row between each sub-pixel and thus 
compensate for the lower slanting angle. This arrangement, shown in more detail in Figure 
31, proved to be right as all three color components of the output pixel fade in and out 
simultaneously when continuously changing the viewing angle. 

 

Fig. 31 Final, true layout of sub-pixels in a single output pixel for the autostereoscopic screen. Notice the dashed 
line is also crossing other sub-pixels belonging to output pixels of different views. 

2.3.2. Computing the lens array slanting angle 

The inclination of the dashed line in Figure 31 is the same as the slanting of the lenticular 
lenses and so the slant angle can be calculated from knowledge of the arrangement of sub-
pixels (the sub-pixels have all the same 𝑥7-- so the dashed line is parallel with the lens). 

We see in Fig. 31 that the elementary output picture cell is 1 FPD pixel wide and 6 pixels 
high, forming a triangle with the dashed line as hypotenuse. With the knowledge of 
trigonometric functions, the slant angle 𝛼 can be calculated. Since the dimensions are 
identical to the example in chapter 1.5.2, formula (9) can be used:  

𝛼 = arctan '
Z
	      (9) 

The result of (9) gives us approximately 0.165 or preferably (and more precisely) 9.462°, 
same as in the example mentioned above. However, in this case the lens array is angled in 
an opposite direction. 
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2.3.3. Finding a same-angle pattern 

As it was necessary to find location of sub-pixels that are refracted by the lens at the same 
angle in order to display a single pixel for certain viewing angles, it is necessary to determine 
the pattern of these pixels so that they all are refracted in the same direction. 

Part of the solution lies in the arrangement of the sub-pixels themselves. As hinted on in the 
top right corner of Figure 31, logically, the whole 1x6 cell repeats itself along the dashed 
line so the next sub-pixel in line after the top right blue one is red again. That means the next 
“white” output pixel is located one (display) pixel to the right and six pixels up from the 
previous one. This way a whole line of pixels can be created and it will be refracted by one 
single lens column. Figure 32 gives a good idea of appearance of such line. 

 

 

Fig. 32 Line of pixels parallel to the overlaying lens structure (visible due to reflection).  
All sub-pixels are refracted at the same angle. 

For easy duplication of this effect on neighboring lenses, knowledge of their width would be 
necessary but the datasheet does not provide this information. Moreover, a non-integer width 
of the lens (in number of underlying pixels as a measurement unit) would further complicate 
things so a different approach might be preferred.  

A similar trial-and-error approach as with the single pixel arrangement could be employed. 
Shifting a copy of the whole line until both lines fade simultaneously is one possible 
approach, but better yet, the complete pattern can be determined analytically.  

The manufacturer claims the display is capable of displaying 28 different views (although 
[16] came to conclusion the real number is half of that), so in theory, the pattern should 
repeat every 28 pixels if not more often. A square matrix of 28 by 28 pixels was therefore 
created with the assumption that it would be repeated along both x a y axis of the screen.  

Only one color channel is now considered (red, for example), as the other two would make 
things seem too cluttered and are unnecessary as they can be achieved by simply shifting the 
whole matrix by 2 or 4 pixels up, depending on the color channel needed. 
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Fig. 33 Illustration of the shifting of pixels in the base matrix with wraparound. 

 

Same pixel shifting as mentioned previously is employed (6 up, 1 to the right) starting for 
example in the lower left corner in the matrix (this doesn’t really matter). Since 28 is 
indivisible by 6, the fifth shift would end up out of the matrix as illustrated by Figure 33. 
But because it was stated the whole matrix is repeated, the shift will end up in the matrix 
directly above. This can be interpreted as a simple wraparound and the shifting will continue 
from the bottom of the matrix. Same rule applies when horizontal edge of the matrix is 
reached. When the shifting is repeated enough times, no new pixels are marked as the 
shifting ends up on coordinates already filled (note the blue arrow in Fig. 33). In total, there 
is 28 pixels in the 28x28 matrix that are all refracted identically. That proves the conclusion 
in [16] was incorrect and there are in fact 28 discrete views. 

Figure 33 also shows only a half of the matrix horizontally would suffice as pixel 
arrangement is repeated every 14 pixels on the x axis. In this 14-pixel interval, there are 3 
“lines” of pixels, meaning there will be 3 lenticular lenses covering this area on the screen 
surface. The width (or pitch) of a single lens is then 𝑃D =

'[
U
	[𝑝𝑥], same as was stated in [11]. 

According to Table 1, the pixel pitch is 0.485 mm so that leaves us with: 

𝑃D =
'[
U
∙ 0.485 = 2,263	[𝑚𝑚]            (10) 
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With knowledge of 𝑃D and 𝛼, P can be calculated using (6): 

𝑃D =
E

FGHI
               (6) 

𝑃 = 𝑃D ∙ cos 𝛼 ≐ 2,233	[𝑚𝑚] 

The matrix is now complete and can be duplicated along the whole surface of the screen. For 
simplification, let’s assume the square matrix as a base. With its dimensions being 28 by 28 
pixels and resolution of the screen being 1920 by 1080, it is necessary to duplicate the base 
matrix so that the resulting large matrix is slightly larger than the screen resolution and then 
crop it accordingly. This step is required because neither vertical nor horizontal resolution 
of the screen is divisible by 28. 

 
2.3.4. Testing the same-angle matrix 

Having the full screen matrix of points that are refracted at the same angle, it is now time to 
test its functionality. Initial theory was that the whole lit matrix should be visible from one 
position in front of the screen while invisible from other viewing angles. But since the pixels 
are refracted at the SAME ANGLE and not to the SAME POSITION, the light rays are 
effectively parallel to each other and the required viewing distance would be infinite, which 
happens to be highly impractical. 

 

Fig. 34 Stripes produced by the refraction of the same-angle matrix as observed at a) 1 meter, b) 2 meters and c) 3 
meters distance from the screen surface. Images scaled to appear the same size. 

Viewing the displayed pattern from more realistic distances results in a stripe(s) of lit pixels, 
ones that happen to be refracted to the general direction of the viewing position. The number 
and orientation of the stripes changes with distance of the viewer to the screen. Different 
stripe patterns at 1,2 and 3 meters viewing distance are shown in Figure 34. 



Software	tools	for	autostereoscopic	display	
	

33 
 

This phenomenon can be explained rather simply. At such relatively close viewing distances, 
the angle from the left edge of the screen to the viewer is vastly different from the angle at 
the center or the right edge. Visual explanation can be found in Figure 35. 

In order to provide light from all parts of the screen to the viewer, additional refraction angles 
have to be used and therefore according pixel positions have to be found. 

 

Fig. 35a) Same-angle matrix refracted by the lens array at the same angle α. Only some of the rays are visible 
from a given position.  

Fig. 35b) In order to properly display images at a given position in space, rays coming from different angles (and 
thus originating from different matrices) are required. 

 
2.3.5. Determining relative position of pixels from neighboring views 

The only image matrix known at this time was shown in Figure 33. For simplicity this matrix 
will be referred to as matrix belonging to Angle 1. In order to find the matrices for other 
angles, the knowledge of arrangement of this matrix and its “stripe” appearance on the screen 
will be used. 

Note in Figure 33 that the pixels refracted at the same angle are repeated every 14 pix 
horizontally and every 28 pix vertically. Every other row does not contain any pixels 
belonging to Angle 1. With this in mind, it can be assumed every column will contain pixels 
belonging to all the angles while neighboring rows will consist of totally different sets of 
angles. For this reason, the main operation used to find the relation between neighboring 
angles will be vertical shifting. Horizontal shifting alone would lead to unchecked positions 
in the odd rows. 

As stated in 2.3.4. the output image of such matrix appears to the viewer as a lit stripe on the 
screen that continuously changes its position with the change of viewing angle. The same 
position-changing also happens the other way around, when the viewer is stationary and the 
underlying image matrix is changed.  

When observed from approximately 2 meters, only 1 stripe is visible with 28 possible 
vertical positions on the screen – same as the number of possible image matrices.  
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The position of the stripe is sequential, approximating the continuous change of its position 
with the change of viewing angle – the stripe displayed by matrix of Angle 1 is directly next 
to (above or below) stripe from Angle 2, which is next to Angle number 3 and so on. By 
observing the effect of the shift of the base image matrix on the stripes, it is possible to 
determine the angle number of each of the base matrices.  

A Matlab script was made that shifted the Angle 1 matrix in vertical direction in increased 
amounts with each iteration starting with shift by 1 pixel and ending with 28 pixels. As 
expected the maximum shift of 28 px resulted in no change of position of the stripe 
whatsoever. The smallest change of position manifested when the matrix was shifted by 9 
or 19 pixels in either direction (up or down) - with wraparound 9 pixels down is equal to 19 
pixels up and vice versa. Depending on the orientation of numbering the angles, 9 pixels 
shift down of Angle 1 matrix can be either Angle 2 or Angle 28 matrix (28 neighbors with 
1 as the angles were numbered artificially). 

The following Figure shows the complete base image matrix with location of pixels 
belonging to all the possible angles (for a single color channel) when Angle N+1 is shifted 
by 9 pixels down from the position of Angle N.  

 

Fig. 36 Complete 28x28 image matrix with pixels bellonging to different viewing angles (one color channel only).  
Color coded for easier location of pixels from neigboring angles. 
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2.3.6. Creating same-position matrix 

With the knowledge of the matrix above, it is now possible to display pixels – and therefore 
images - from any part of the screen to any viewing angle. In accordance with the results 
from chapter 2.3.4. the pixels with the same Angle number still produce a stripe pattern. 
When attempted to replace the pixel values with values from actual multiview source images 
(with each pixel being replaced only by values from image with the same number), the screen 
displays a skewed image as each view is displayed in its own stripe and all of them are visible 
from the same position.  

It is clear that the matrix (or the source images) has to be modified so that one image is 
displayed by pixels belonging to multiple different Angles depending on the position on 
screen. The required change is illustrated by Figure 37. 

Let’s only use pixels belonging to one angle (Angle 1 for example) for the next experiment 
– all the other pixels remain black. We know that when all pixels numbered 1 are white 
(meaning there are R, G and B FPD pixels forming the 1x6 “white” output pixel) we can 
only see the one stripe changing its position across the screen (a horizontal stripe visible 
from 2 meter distance is assumed). A white stripe similar to the one displayed by the screen, 
only thinner, can be used as an input image, essentially masking the image matrix so that it 
only appears lit on certain part of the screen.  

This stripe is only visible from a certain angle (from certain position) at which the stripe 
produced by the screen is positioned the same as the stripe in the source image. The screen 
remains completely black from other angles (some minimal crosstalk is present). Visual 
approximation of this experiment is depicted in Figure 38. 

 

Fig. 37 a) Result of direct mapping of images to numbered pixels in the matrix - all the images  
(or parts of them – stripes) are visible from any position in front of the screen  

(each color in the image represents one source image displayed), 
b) the desired result – only one image is visible from each position. 
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Fig. 38 Appearance of the stripe image at desired position (top) and at other positions (bottom). 

 

As the stripe created by the lenticulars has different position for each pixel number it is 
possible to create similar “masks” for each of them, resulting in fully lit screen visible from 
one viewing position and black screen from other positions. 

In order to find the ideal height of the white stripe “mask” used as an input, some simple 
calculation is needed. Since there are 28 possible vertical positions of the stripe, the 
difference in their position can be calculated by as '

kl
 of the screen height: 

𝛿 = '
kl
∙ 1080 = 38,57	[𝑝𝑥]      (11) 

When rounded to the nearest ten for simplification (the 1.5-pixel difference should not make 
any visible difference), it can be assumed each stripe is vertically offset by 40 pixels from 
the next one, meaning the height of each of them should be 40 pixels (except for the one at 
the bottom of the screen which is cropped due to rounding).  

All 28 same-angle matrices (SAMs) masked by 40 pixels high horizontal stripes can be 
summed into single matrix that is displayed only in one position, essentially creating a same-
position matrix for one position.  

In order to assemble same-position matrices for other positions in front of the screen, shifting 
the masks by 40 pixels and then multiplying them with the same-angle matrices is required. 
Since shifting the mask by 40 pixels is equal to using the mask intended for the neighboring 
SAM, it is sufficient to shift the order in which the masks and matrices are multiplied. The 
complete overview of the same-position matrices creation shown in Table 2. 
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Table 2. Creation of same-position matrices. 

 

The same-position matrices obtained can be used to display multi-view images on screen 
properly (only one image is displayed at given position) but create some visible artifacts 
caused by hard edges of the masks. As illustrated by Figure 39, pixels located near the edges 
of the masks might be missing or doubled as a result of differences in position of pixels in 
each of the stripes. 

 

 

Fig. 39 The cause of artefacts in displayed images. 
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In order to eliminate this unwanted effect, the used masks need to allow for smooth transition 
from one stripe to another. A set of slightly wider stripe masks with gradient falloff at the 
edges was created. The artifact was successfully suppressed but a tradeoff in form of a small, 
almost imperceptible artificial crosstalk had to be introduced into the image (the pixels in 
the gradient sections of the masks are computed as a weighted average from neighboring 
views – can also be visually explained with Fig. 40b). 

 

Fig. 40 a) Example of the smoothed mask, b) principle of its summing with neighboring masks. 

 

Part of one of the 28 final same-position matrices is depicted in Figure 41. Note there are no 
visible artifacts as in Figure 39. The apparent difference in brightness is later compensated 
by summing with other matrices. 

 

 

Fig. 41 A close-up of part of the final same-position matrix. 
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The result of multiplying each of the SPMs with an image taken from slightly different angle 
is a set of 28 partial images that is each refracted to its according viewing zone (basically it 
is a set of SPMs with mapped pixel brightness values). By summing these images into one, 
the final interlaced image that can be displayed on the screen is created.  

A cropped part of such image is pictured in Figure 42. Notice there is no visible trace of the 
use of the stripe masks and only a little, near imperceptible trace of the difference in pixel 
brightness depicted in Fig. 41. 

 

 

Fig. 42 Detail of the interlaced output image. Source image pictured in Figure 25 has been used. 

 

2.4. View mapping 

With the ability to display different images to actual positions (or zones) in front of the 
screen, the next step is to decide which source multi-view image is displayed in which 
viewing zone. This process is called view mapping (or sub-view mapping). 

 
2.4.1. Direct mapping 

The simplest and most logical view mapping scheme is directly displaying image number 1 
to viewing zone number 1 (trough same-position matrix number 1), image number 2 to zone 
number 2 and so on. Figure 42 shows an example of such mapping scheme. 

This view mapping scheme provides the smoothest possible motion parallax as the full range 
of source images is used. On the other hand, the downside of directly mapping images to 
views with according number is the largest possible cross-talk (although that can be taken 
advantage of in simulating sort of a depth-of-field effect where foreground elements remain 
relatively sharp as their position does not change too much from view to view whereas 
background and foreground objects with large parallax get blurred by the cross-talk).  
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The other problem with direct mapping scheme is hard transition from view number 28 back 
to view number 1 that lies right next to it (all 28 viewing zones are repeated several times in 
front of the screen as shown back in Chapter 1.5., Figure 12) – the well-known “flip” that 
appears with lenticular prints. The hard jump from the rightmost image back to the leftmost 
image causes the viewer to observe pseudoscopic image with large parallax (made even 
worse due to cross-talk).  

This mapping scheme, called “Smooth” and represented by blue line in Figure 43, is best 
used with multiview images with relatively small parallax (to reduce cross-talk) and in cases 
where the viewer(s) is not expected to move too much (in order to avoid the uncomfortable 
pseudoscopic image in certain viewing zones). 

 

2.4.2. Direct view mapping with mirroring 

In order to suppress at least one of the flaws of the direct mapping scheme – the “flip” from 
image 28 back to image 1, it is possible to smooth the transition by reusing some of the 
images in between. The easiest way to do this, a way that is also implemented in the resulting 
software of this work, is to only use half of the source images available and “mirror” them 
in order to get all 28 images required. The allocation of the images is then like:  
1, 2, 3…, 13, 14, 15, 14, 13, …, 3, 2.  

Such mapping scheme results in smooth transition between viewing zone 1 and 28 as they 
display images 1 and 2 respectively. As a tradeoff, the second half of viewing zones (15-28) 
display pseudoscopic images (as the source images are in incorrect order) - that is still 
uncomfortable for the viewer but much better than the “flip”. 

In order to observe the correct stereoscopic image, the viewer is limited to only first half of 
the viewing zones which might be quite limiting for static viewing (e.g. presentation to a 
group of people that need to position themselves correctly). For moving audience (e.g. 
customers in a shop where the screen is used as an ad kiosk), the motion parallax with no 
“flipping”, only some “squashing and stretching” provides much better experience than the 
simple direct mapping scheme – the pseudoscopic image is subjectively not that evident 
when the viewer is moving. 

Other properties of this mapping scheme – both cross-talk and smooth motion parallax - are 
identical with the simple direct mapping.  

In Figure 43, this mapping scheme is represented by red line and is called Smooth + Cyclic 
(“Cyclic View” is term used by Dimenco in their mobile application [17] for controlling 
some newer versions of their rendering core).  
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2.4.3. Original Philips mapping scheme 

According to [11], Philips (or more likely Dimenco) uses a different view mapping scheme 
that partially suppresses the high amount of cross-talk and offers similar “flip” reduction as 
“Smooth + Cyclic” does. 

The allocation of the 28 views can be described by the following number sequence: 

1, 1, 1, 4, 4, 4, 7, 7, 7, 10, 10, 10, 13, 13, 13, 16, 16, 16, 19, 19, 17, 15, 13, 11, 9, 7, 5, 3. 

The ascending part of the Philips scheme (1, 1, 1, … , 19, 19) indicates that the audience can 
get correct 3D perception. The usage of the same view for three viewing zones can help 
reduce most of the cross-talk.  

In the descending part (17, 15, 13, 11, 9, 7, 5, 3), audience receives pseudoscopic 3D 
perception. As the difference between neighboring viewpoints is gradually reduced rather 
than skipping to 1 directly from 28, as with the conventional scheme, the transition is smooth 
and almost imperceptible when compared to direct mapping [11]. 

By using each of the 15 views three times (in the ascending part), this mapping scheme not 
only reduces cross-talk (no cross-talk is created using identical images) and thus make 
images appear sharper, but unfortunately limits the smoothness of motion parallax. By 
skipping two views with each change of the (now three times wider) viewing zone, the switch 
between the images becomes more apparent. Moreover, some amount of cross-talk is still 
present and no longer produces the relatively smooth blur as with direct view mapping 
scheme, but appears with more sharp, “jagged” edges. 

The difference between all described mapping schemes can be quite nicely visualized in a 
line graph such as the one in Figure 43. With its help, some general rules for creating  
view-mapping schemes can be defined: 

• straight diagonal line means smoother motion parallax but more cross-talk 
• “stairs” with multiple points on the same horizontal line mean less cross-talk but 

worse motion parallax 
• ascending parts produce correct stereoscopic images 
• descending parts produce pseudoscopic images 
• leveled parts means repetition of the same image in multiple viewing zones 
• large difference between viewing zone 1 and 28 means “flipping” effect 
• small difference means smooth transition from one instance of the viewing zones to 

another 
• the number of levels used is equal to source images required 
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Fig. 43 Different view-mapping schemes. 

 
2.4.4. Other mapping schemes 

Many more view-mapping schemes can be designed (as evidenced by the blank space in the 
graph above) with different properties and for different use cases. 

For example, [11] proposes an 8-view mapping scheme: 

The proposed scheme makes the allocation like 

1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,6,5,4,3,2,  

which uses only 8 different views. If the original disparity is small, 

1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,6,5,4,3  

is an even better scheme. If the original disparity is quite big,  

1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,4,4,4,3,3,3,2,2  

is used instead and get almost the same effect [11].  
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3. Matlab implementation 
All operations described in previous chapters were realized as a set of scripts in Matlab 
version R2014a with use of Image Processing and Computer Vision System toolboxes.  

 
3.1. Same-angle matrix creation and display 

First, a set of scripts enabling creation and display of same-angle matrices was written along 
with additional functions that enable user-friendly switching between different matrices via 
a graphic interface. With help of these scripts, effects of different same-angle matrices 
displayed on the screen (in form of stripes) can be studied. 

Hierarchy of the used scripts is laid out in the following figure. 

 

Fig. 44 Generation, duplication and displaying of same angle matrices using custom Matlab scripts and GUI. 

main.m - Serves as a launcher for the set of scripts. It contains declaration of some initial 
variables and calls other functions (initial_array.m, duplicate_to_fs.m and ctrl.m). 

initial_array.m – Declares global variables and creates a 28 by 28 base matrix in accordance 
with steps described in chapter 2.3.3, mainly using circshift() function. The output is a 
28x28x3 matrix, where the third dimension represents color channels. 

duplicate_to_fs.m – Uses repmat() function to copy the base matrix enough times that it 
covers the area of the whole screen, then crops the image (as explained at the end of 2.3.3.). 
Inputs for the function are the base matrix and information if any shifting was triggered by 
the user. There is no direct output from the function, it only changes values of global 
variables. This function directly calls display_array.m. 

display_array.m – Creates a new figure window with all menu bars hidden and positions it 
so that its contents appear on the second screen (autosterescopic display) as a full screen 
image. Input for the function is information about shifting – if shifting has been done, the 
window is already created and some lines of the script are not needed (resulting in faster 
response). Otherwise the code works with global variables.  

main.m

ctrl.m channel_picker.m

shift_base.m

initial_array.m duplicate_to_fs.m display_array.m

output	to	screen

program launcher 

color channel selectiongraphic user interface 

base matrix generation 

base SAM selection 

base matrix duplication fullscreen image display 

(imshow(full)) 
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ctrl.m – A control GUI enabling the user to select which same-angle matrix and what color 
channel (R G, B or all) to display. The look of the user interface is pictured in Figure 45. A 
change in the selected “View number” calls shift_base.m with the selected number passed 
on as an input value. View selection can be made either by mouse cursor or by using the 
arrow keys. Pressing the “Cycle Channels” pushbutton calls the channel_picker.m function. 

 

Fig. 45 User interface for experimenting with same-angle patterns. 

shift_base.m – Shifts the base matrix (passed on as a global variable) in order to move active 
pixels to positions belonging to an angle number selected in ctrl.m. Then calls 
duplicate_to_fs.m, passing the shifted matrix as its input. 

channel_picker.m – Changes value of global variable “color” used to determine which color 
channel (R, G, B or all of them) to display. Calls display_to_fs.m in order to make the 
change visible on the screen. 

Note: the currently displayed same-angle matrix can be saved to a file using a 
imwrite(full,’filename.png’) command. 

3.2. Creation of same-position matrices 

With same-angle matrices created by the previous scripts it is possible to convert them into 
same-position matrices as described in chapter 2.3.6. The following scripts create the 
necessary masks, multiply them with same-angle matrices and save the results as PNG files 
for further use. 

Relations between each of the scripts used in the process are described by Figure 46.   

mask_success.m – A main part of the script that takes care of all the computation and calls 
all other functions. It creates a 28-element cell object with all the same-angle matrices, 
multiplies each cell with the according mask and sums the results into one same-position 
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matrix. This process is then repeated for each of the remaining 27 positions and the resulting 
matrices are saved as PNG image files. 

 

Fig. 46 Same-angle to same-position matrix conversion. 

mask_create.m – A function that creates the gradient mask as a single pixel wide element 
that is then stretched to the width of the screen and added to 1920x1080 black background. 
Using a circshift() function in a cycle, all other masks are created by shifting the mask by 40 
pixels with each iteration of the cycle. The output of the function is a 4-D (1920x1080x3x28) 
matrix containing all 28 masks. 

shift_base2.m – An almost identical function to shift_base.m described on the previous 
page with lines from duplicate_to_fs.m added so that the output is already duplicated along 
the screen area – a 1920x1080 same-angle matrix. 

Saving the computed same-position matrices as image files is used to save time when 
displaying actual multiview images on the screen. As computation of the SPMs requires 
considerable amount of processing (which may be caused by imperfect implementation), it 
is more time-efficient to have them saved with the image displaying scripts as a set of files. 
Loading of the SPMs from files is significantly faster than their generation which results in 
better user experience. By having the matrices saved, there is no need for some of the 
previously described scripts when only on screen image displaying is required. 

 

3.3. Generating new views from 2D+depth source 

Having the SPMs available, it is possible to display a set of individual images on the screen, 
forming an interlaced multiview image. In order to be able to display images in 2D+Z format, 
28 individual source images have to be generated from the 2D “middle” view and the depth 
map. 

The method for this new view generation is called Depth Image Based Rendering (DIBR). 
The basic idea behind the method is that pixels of the middle view (Fig. 47a) are shifted left 
or right by an amount derived from the depth map (Fig. 47b) - same shade of gray means 
same depth plane - shift by the same amount). Blank, previously occluded parts of the new 

mask_success.m

mask_create.m

shift_base2.m

display_array.m output	SPM	#1	to	screen	
(for	testing	purposes)

save	all	28	SPMs	
as	PNG	files

main “do all” script 

stripe mask generation 

input SAM change 

fullscreen image display 
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image (holes, Fig. 47c) are then filled with textures synthetized from neighboring areas (Fig. 
47d).  

A Matlab implementation of this method by Mr. Varuna De Silva was found on Mathworks 
File Exchange website [18]. His implementation, however, was designed only to generate a 
stereo pair (left and right image) from 2D+depth video in YUV color space. To suit the needs 
of this work, some heavy modifications of the code were necessary. 

 

Fig. 47 DIBR generation of new view of the scene. a) Original 2D "middle view" image, b) its depth map,  
c) newly generated image with black holes, d) with hole-filling. 

First up, change of the input from YUV video to RGB image files was made. A for cycle 
switching the video frames was removed as well as any color space conversion functions. 
The script solved shifting of luminance and chrominance components separately, so the 
chrominance part of the code was removed and the luminance part was modified so it works 
with all three color components of the RGB image simultaneously. A few lines of code 
enabling the use of both 8-bit grayscale and 24-bit RGB depth map files have been added. 

The next modification made to the code was to add the ability to render more than two new 
images. Each of the left and right images has its own code computing the shift to the left and 
right respectively. In order to create 28 images total, each part of the code have to provide 
14 images (14 to the left of the middle view and 14 to the right) so a for cycle with 14 
iterations was introduced to both parts of the code. In each iteration of the cycle, the 
maximum amount of shift is divided by 14 and immediately multiplied by the number of 
currently running cycle, which results in different (gradually increasing) amount of shift in 
each iteration of the cycle.  
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Each newly rendered view is then added to a cell array (separately for left and right halves 
of the views). The last step is to unify the two arrays containing the 14 different “left” and 
14 different “right” images which results in a single cell array with all 28 rendered views 
sorted from left to right.  

As some of the shifted pixels happen to end up outside of the actual image boundaries, an 
intermediate step has been used in form of adding “safe zones” to the sides of the source 
image. After the new image is rendered, these safe zones are cropped from the image. Only 
the cropped result is saved in the cell array. 

The modified algorithm is saved as dibr.m function file. Its inputs are the 2D “middle view 
image, the depth map, vertical and horizontal resolution of the input images and the number 
of required new views (usually 28). The output of the function is the cell array containing 
the newly rendered images. 

Note: The algorithm is fairly time consuming. It is recommended to use lower resolution 
images for testing purposes as the render time is directly related to input image resolution (it 
is also possible to set lower resolution as the input variable of the function – the images will 
be resized accordingly).  

Tip: In order to view the rendered images, it is possible to create a simple “look around” 
animation (sometimes referred to as wigglegram) by displaying the individual cells of the 
array in fast succession. Use the following code to do so: 

for n=1:28 
 imshow(uint8(array_name{n})) 

pause(.1) 
end 

 

3.4. Deriving depth map from stereo pair 

Stereo pair source images are not capable of providing full motion parallax by themselves. 
In order to enable the creation of other views of the same scene, the stereo pair has to be 
converted to 2D+Z format and generate new images as described above. 

The basic idea behind the conversion is that the two images are compared on a pixel (or 
block of pixels) level and horizontal distance (disparity) of the same (ideally, or more likely 
similar) pixels or blocks is measured and saved in a new image matrix – the disparity map. 
As described in chapter 1.2.1, binocular disparity is one of the strongest depth cues, so the 
disparity map can be considered as a depth map. 

In practice, many different algorithms can be used to calculate the disparity map with varying 
complexity and quality of results. Bachelor thesis by Martin Krupička [19] compared some 
of the possible algorithms and showed that the results can differ quite significantly. Some of 
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the scripts used or mentioned in [19] were tested together with the DIBR algorithm in order 
to find the best solution for the resulting application created as a part of this thesis. 

Several stereo pair images were used for testing the algorithms, with each of the scripts 
giving varying results – generating good depth map estimations in some cases and failing in 
others. None of the tested scripts stood out above the others so significantly that it could be 
definitively chosen as the best one to use. The implementations also varied in their 
computation speed, some taking as long as a minute to generate the disparity map, others 
only taking several seconds. Also, quality of the generated maps usually was not proportional 
to the time taken.  

As the tested algorithms were not satisfying enough, a new script has been created. A 
disparity() function found in the Matlab Computer Vision System Toolbox has been used as 
a basis for the new script, with image filtering applied to smooth out the generated rough 
disparity map. This new script generates the disparity map with roughly the same results as 
the other tested scripts, providing usable map for some stereo image sources and failing to 
do so with others. The main difference is with its speed which is much better than the other 
scripts, taking only fraction of the time. 

The newly created code is implemented in the final application but as it does not generate 
usable depth maps in all cases (hence the “Experimental” label in the displaying application), 
other way of creating the depth map might be preferred.  

Both freeware and commercial application specialized in depth map generation are available. 
These applications allow for greater control over the results by giving the user the ability to 
set various parameters used in the computation process.  

Commercial applications are most notably represented by software and plugins by YUVSoft 
Corp. [20], whose products were used in stereo 3D conversion of both theatrical and TV 
movies. 

Several freely available applications using different algorithms, also tested by [19] are 
available from [21]. DMAG5 application has been tested with quite good results, making it 
probably the preferred way to pre-process a stereo pair image before using the created 
application for displaying images on the autostereoscopic screen. 
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3.5. Problem with no support for fullscreen figures in Matlab 

By default, Matlab is not able do display figures in true fullscreen, without window borders, 
header, menubar etc. so a workaround has to be used.  

Because figure properties are well adjustable, it is possible to turn off any unnecessary 
window elements such as toolbar and menubar, leaving only a bare window. When 
maximized, this window still behaves a regular window in the OS and its header and borders 
are visible. In cases where Windows taskbar or OS X Dock and/or menubar are set visible 
on the connected screen, these are visible as well so it is necessary to set them to only display 
on the main monitor.  

In order to mimic real fullscreen look of the figure, the window has to be left as floating  
(i.e. not maximized). By resizing the window an positioning it in a way that the borders are  
off-screen, only the actual image area is visible (at least on some Windows systems that 
allow resizing the window beyond the screen resolution, OS X does not allow moving the 
window header above the screen area).  

To set the window this way, it is necessary to know the resolution of both the main display 
and the autosteroscopic screen, which is obtainable by get(0,'ScreenSize') function. The 
width of the main screen can then be used to offset the window to appear at the left side of 
the autostereoscopic screen. Resolution of the autostereoscopic screen then can be used to 
set the dimensions of the window (as this resolution is always the same, it can be set to 
1920x1080 directly). In order for these settings to work it is necessary to use the 
autostereoscopic screen as secondary monitor and have it positioned (virtually) to the right 
of the primary monitor, as shown in Figure 52. 

 

Fig. 48 Arrangement of monitors to be used with the software. Monitor 2 represents the autostereoscopic screen. 

These figure settings are used in display_array.m function, along with some additional 
settings like black figure background (instead of default gray). When the figure is created 
with the function a simple imshow() is sufficient for proper fullscreen image display as it 
uses the last figure created. 
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4. Application overview 
With the use of previously described scripts and generated same-position matrices, an 
application allowing the display of correctly interlaced output images has been created. This 
application uses a simple GUI (created using Matlabs GUIDE tool) allowing the user to 
select preferred source image format and view-mapping scheme, lets him choose the source 
images from files saved on the computer and makes all the necessary calculations required 
to generate the correctly interlaced multiview image which is then displayed on the 
autostereoscopic screen. 

A screenshot of the main program window in its default state is shown in Figure 49. 

 

Fig. 49 User interface of the created application. 

The main window of the application is divided into four sections. The “Input method” 
section, “Image mapping” section, a status information section and a program-launching 
button. 

The input method section contains four radio buttons that let the user switch between four 
image format inputs – multiveiw image files dubbed “Multiple images”, a 2D image and its 
depth map, dubbed “2D+Z (Convert)” (informing 2D+Z to 28 images conversion using 
DIBR will be applied), Left and Right image files converted to multiview, dubbed “Stereo 
(Experimental)” (informing the user that the algorithm is not 100% reliable and might 
produce bad results) and direct use of stereo pair images. 

The image mapping section allows the user to switch between all three view mapping 
schemes described in chapter 2.4. – the original scheme used by the render core (Original 
Philips) and the direct “Smooth” mapping scheme. The latter can be further modified with 
the “Cyclic view” checkbox enabling the suppression of the image “flipping”. 

The status part of the window informs the user about the currently selected combination of 
input method and image mapping (when changed from default settings) and also displays 
progress information about currently running task such as the percentage of DIBR 
calculations already done. 
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The “Go!” button launches the actual image processing, beginning with the opening of 
dialog windows allowing the user to select source files. The subsequent processing of these 
files differs according to the selected “Input method”. These differences are described by 
Figures 50, 51 and 52. 

4.1. Processing multiple image files 

  

Fig. 50 Scripts used when displaying multiview image files. 

GUI.m – The main script of the application containing the user interface described earlier. 
It calls other functions after the “Go!” button is pressed, passes on settings selected by the 
user and receives the status messages displayed in the “Status” section of the GUI. 

LoadMasks.m – This script is called immediately after the application is launched and after 
every change of selected image mapping scheme. It loads the SPM image files saved by the 
SPMs-creating script described in chapter 3.2. and passes them to GUI.m as a 4D matrix. 

MultiOpenImages.m – Creates a new “Open” window which allows the user to select 
multiple image files containing individual “views”, then loads the images into a cell array 
which is passed back to GUI.m. 

Mux2Screen.m – This script does all the actual computation of the final interlaced image. 
It multiplies (per pixel and per channel) the SPMs with images selected by the user, resulting 
in 28 image matrices, each containing only pixels refracted to the same viewing zone. These 
matrices are then summed into one, final image matrix – the output picture. 

The function also contains simple logic that decides which images will be used multiple 
times or which will be discarded, in case different amount than 28 images are selected by 
the user. (Example: If 17 images are selected, only first 14 images are used, each of them is 
used twice. If 12 images are selected, the 13th and 14th image is created by duplicating the 
12th and 11th image respectively and each of the 14 images is again used twice.)  

If the user selects less than 6 image files, the script returns an error, informing the user (via 
Status panel in the main program window) that at least 6 images are required for “Multiple 
Images” method. 

As a last step, the function calls display_array.m script described in chapter 3.1. in order to 
display the interlaced image on the autostereoscopic screen. 

GUI.m Mux2Screen.m display_array.m output	multiview	
image	to	screen

MultiOpenImages.m

LoadMasks.m

main control panel 

let user select multiview 
image files and loads them 

load SPM matrices 

multiply source images 
with SPM matrices 

fullscreen image display 
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4.2. Processing a 2D+Z source 

When a 2D+Z is selected as an input method, the workflow is slightly modified, mainly to 
incorporate the script generating the actual views. However, most of the used scripts remain 
the same. 

  

Fig. 51 Scripts used when displaying 2D+Depth image files. 

rgbzProcess.m – An intermediate script used in the process of new-view generation. Loads 
the selected image files, calls both DepthOpenImages.m and dibr.m and returns the 
generated images to GUI.m in form of a cell array. 

DepthOpenImages.m – similarly to MultiOpenImages.m, creates two “Open” dialog 
windows allowing the user to select a 2D image and depth map image files. The files are not 
loaded directly, only filename and path are passed to rgbzProcess.m. 

dibr.m – Does the actual new image (new view) generation. Detailed description can be 
found in chapter 3.3. 

4.3. Processing a stereo pair source 

A “Stereo” input method uses near identical workflow as with 2D+Z. 

  

Fig. 52 Scripts used when displaying stereo pair image files. 

DisparityMap.m – Similar to rgbzProcess.m, only adding depth map creation (see ch. 3.4.) 

StereoOpenImages.m – Same as DepthOpenImages.m only with different text in dialog 
window headers. 

GUI.m rgbzProcess.m Mux2Screen.m display_array.m output	multiview	
image	to	screen

dibr.m

DepthOpenImages.m

LoadMasks.m

GUI.m DisparityMap.m Mux2Screen.m display_array.m output	multiview	
image	to	screen

dibr.m

StereoOpenImages.m

LoadMasks.m

main control panel 

let user select 2D and depth 
image files and load them 

main 2D+Z script 

generate new views 

main control panel 

let user select stereo pair 
image files and load them 

main stereo pair script 
generation of depth map 

generate new views 
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4.4. Direct displaying of stereo pair source 

A different option with stereo pair is to display it directly to the screen without any additional 
image generation, in much the same way multiple multiview images are displayed. The only 
difference is that each image (left and right) is copied several times in order to get the 28 
required images, resulting in a cell array with the first 14 cells containing left image and 
cells 15-28 containing right image. With this displaying option, the screen essentially serves 
as a two-view autostereoscopic screen. 

In theory, it should then be possible for the viewer to position himself in a way that he sees 
the stereoscopic image correctly. In other positions a single 2D view, or an incorrect 
pseudoscopic image would be visible. Similar viewing zone arrangement was illustrated in 
Figure 11, although in this case viewing zones are much wider. 

Unfortunately, the practical use of this display method is complicated by the presence of 
considerable amount of cross-talk that blurs the theoretical sharp transition between the two 
views. The viewer, while positioned correctly, still sees some amount of the right image by 
his left eye and vice versa, causing some confusion and discomfort. As the viewing zones 
are wide enough (14 elementary viewing zones wide), using the screen as a 2D display is 
possible to some degree. 

Two different images could be theoretically displayed in this way so that two viewers can 
see totally different images on the same screen from different viewing positions. 

 

5.1. Problem with YCbCr output in OS X 

When a switch was made from Windows to Mac as a lead development platform, suddenly 
the previously flawlessly working scripts started producing incorrectly looking images, as if 
there was something wrong with color displacement of each channel. 

After double checking the results of Matlab scripts it became clear the results are in order, 
and the problem lies elsewhere. Comparison of screenshots of the same matlab figure 
displaying the base image matrix for one angle shown that on display of the Macbook, the 
image looked correctly but on the autostereoscopic screen, it produced blurred dots instead 
of crisp single-pixel points. 

After some research, it became clear that OS X detects (trough HDMI) the autostereoscopic 
display as a TV set and sets output color space as YCbCr with some chroma subsampling 
applied. Since the autostereoscopic screen requires input image with sub-pixel level 
precision, only direct RGB signal is acceptable. OS X only outputs RGB when a computer 
monitor is detected. Tested Windows machines did not show this problem, but it is possible 
it might appear in the operating system as well. 
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In order to fix this problem, the operating system had to be forced to use RGB mode with 
the autostereoscopic screen using EDID (Extended Display Identification Data) settings 
override. The steps required to do that, along with all necessary scripts can be found at [22]. 

After the settings are successfully changed and the computer outputs RGB signal, the image 
looks correctly again. 
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5. Comparison with Dimenco render core 
To assess the practical usability of the developed application, its output was compared with 
the output of the original Dimenco render core, which, being a commercial product, can be 
assumed as a reference of the highest achievable quality. 

The developed application was set as closely as possible to the way the render core works 
by using 2D+Z source image format (as that is the native input format for the Dimenco 
solution) and using “Original Philips” view mapping method. In order to make the 
comparison as relevant as possible, identical image sources for both display tools were used. 

Because of reasons detailed in chapter 2.2. of this thesis, it was not possible to directly 
capture the images supplied to the screen and make detailed analysis of the differences 
between the two solutions for example by using an image editing software. Instead, a 
subjective comparison of the produced images has been made. This subjective comparison 
was not conducted in accordance to any standard test methods, but only as an observation 
by the author. 

5.1. Image quality 

Even though the developed application produces usable images, the quality of the image is 
in some ways inferior to the output of the render core.  

Probably the main difference is in the amount of cross-talk, which is handled quite well by 
the Dimenco render core but is very prominent in the images produced by the application. 
The other difference is the visibility of the interlacing structure of the image. Images 
rendered by the Dimenco solution have well defined, though slightly blurred edges resulting 
in a pleasing (smooth) look, whereas the output from the application is quite rough with 
sharp, blocky edges and visible interlacing structure, especially where objects in the image 
have large parallax. This effect is visible in Figure 53 on the objects right below the large 
central triangle (the enlarged area). 

Both of these effects can be explained by the use of slightly different pixel mapping schemes. 
Dimenco probably uses more sophisticated interlacing patterns that are able to minimize 
cross-talk and optimize the overall appearance of the output image. 

The other probable cause of the differences is the use of different DIBR algorithms. It seems 
that the Dimenco hardware produces images with less parallax, making the individual 
images more similar to each other and therefore leaving less room for cross-talk to occur. 
Unlike the created software solution, the render cores DIBR is also able to produce images 
with negative parallax, positioning some object seemingly in front of the screen surface. 
Otherwise the generated images have roughly the same quality in terms of hole filling 
precision and general impression of depth. 

The only observed advantage of the new implementation is that it produces slightly sharper 
images than the render core. The main reason probably being the fact that the application is 
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able to process images with larger resolutions (up to 1920x1080, larger images are 
downscaled) whereas Dimenco uses 960x540 as the default source image resolution and 
applying upscaling in order to display the image as fullscreen [23]. 

The performance of both solutions is very similar when suppression of the transition from 
the rightmost to left leftmost image is compared with the Dimenco core having a slight 
advantage due to the aforementioned better overall image quality. 

Artifacts caused by incorrect viewing distance are practically identical with both solutions, 
leading to conclusion that Dimenco might use similar stripe-based masking solution. 

 

Fig. 53 Photographed screen with the same source image displayed by Dimenco render core (left) and the 
developed solution (right). 

 

 

Fig. 54 Comparison of the source 2D image (left) and the interlaced image generated by the application (right). 
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5.2. Options available 

Besides image quality, the developed application differs from the Dimenco solution in 
different parameters the user is able to control. 

As stated earlier, the application was designed to allow the use of some source file formats 
that are not supported by the Dimenco hardware, namely the direct use of multiple images 
and of stereo pair. It also has the ability to use different view mapping schemes, while the 
render box has its mapping scheme hardwired. 

While the render core lacks these options, the accompanying Dimenco software allows 
setting some parameters of the displayed image such as a viewing angle and the intended 
viewing distance. The former seems to be a simple shift of the numbering of the SPMs, that 
could be implemented in Matlab quite easily. The latter is discussed in the next chapter. 

 
5.3. Other differences 

While the developed Autostereoscopic Display Tool application is able to process images in 
several common image file formats, the Dimenco Player software used for communicating 
with the render core requires specialized file formats (*.b3d, *.sbs etc.). While these 
proprietary file formats can be quite easily created using any bitmap editor, it is an 
unnecessary step in the preparation of the image. 

The second main difference that is not connected to the image quality or user-controllability 
is the speed of both solutions. While the Dimenco method, being a dedicated hardware 
solution whose only purpose is to generate the interlaced image, is capable of processing 
video files in real time and displaying images almost immediately, the developed software 
solution (depending only on general-purpose CPU with no parallelization) generates the 
output image for several seconds or even several minutes depending on the source. 
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6. Suggestions for possible improvements 
Although the created application and all the accompanying scripts produce perfectly usable 
results, there is still a lot of space for improvement. In order to make the application better, 
improvements in the following areas would be recommended. 

6.1. Speed 

While the native hardware render core from Dimenco is capable of displaying 2D+Z video 
in real time, the current implementation of the application in Matlab requires several seconds 
in order to compute a single frame from multiview image source and up to several minutes 
to generate new images from 2D+depth source. 

Code optimization could at least partially improve the speed calculations. Removal of some 
potentially redundant for cycles or streamlining some of the image manipulation operations 
could theoretically result in some speed improvements. 

Parallel computing seems like an obvious choice for this sort of image manipulation. 
Unfortunately, Matlabs Parallel Computing Toolbox is only compatible with CUDA 
(Compute Unified Device Architecture) capable nVidia graphics cards, meaning only users 
with the supported hardware would benefit from the speed improvements. Such GPU was 
not available during the development of the application. In order to make the GPU 
computing available on more machines a switch from CUDA to OpenCL would have to be 
made by developers of Matlab. 

6.2. Optimized memory usage 

When tested on an older Windows laptop, the application failed to build the final output 
image, because it ran out of available system memory. The application generally uses a lot 
of memory as it stores several high resolution images concurrently. Some optimization in 
this area would perhaps speed up the computations as well. 

Currently the system requirements of the application are at least 4 GB of RAM. A single 
core processor is sufficient and no graphics card is required. 

6.3. Adjustable viewing distance 

As described in chapter 2.3.6. the current implementation of the application is optimized for 
viewing distance of approximately 2 meters. In order to make the application more 
universally usable, it would be possible to allow the user to set the preferred viewing distance 
manually. 

As the creation of masks used in SPM generation is derived from the stripe-like appearance 
of SAMs on the screen from a set viewing distance, closer analysis of the stripes would be 
needed. An equation describing both the angle and frequency of the stripes depending on the 
viewing distance would have to be created from more detailed measurements. With this 
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equation it would be possible to generate new masks containing accordingly angled stripes 
and thus create SPMs for use with arbitrary viewing distances. 

Addition of this capability would require generating new SPMs every time a user sets new 
viewing distance, resulting in additional time required to compute the output image. In order 
to at least retain current processing time of each image some of the previously mentioned 
speed improvements would be needed. 

6.4. Better algorithm for disparity map estimation  

Currently the application uses a basic depth map estimation algorithm that produces results 
heavily dependent on the source image used. For this reason, the use of a third-party software 
for the creation of the depth maps is recommended in chapter 3.4. 

A new, more robust algorithm for depth map estimation could be used but as stated in chapter 
3.4., the time required would be probably significantly higher (again, calling for speed 
improvements elsewhere in the code). 

6.5. More capable DIBR algorithm 

The current algorithm used for generation of new views of the displayed scene from 2D+Z 
sources only creates stereoscopic images with fairly large positive parallax (images appear 
behind the screen). The code could be altered in away so that it would produce images with 
both positive and negative parallax and the observable amount of depth could be set by the 
user.  

6.6. More input formats 

Only sources saved as individual image files are currently supported. It would be possible to 
expand the capabilities of the application by adding the option to use side-by-side and  
over-under images as a source file. Modification of the user interface and dialog  
window-creating scripts would be required to allow the user to select the used multiplexing 
method and open only one file. Additional scripts splitting and resizing the multiplexed 
images would have to be created. 

6.7. Standardized subjective assessment of image quality 

While the images produced by the application have been compared to the output of Dimenco 
rendering core by the author, no image quality assessment has been conducted using a 
standardized method. In order to evaluate the overall usability of the developed application, 
a standardized assessment of image quality could be used similarly to the one in [19]. 
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7. Conclusion 
The aim of this thesis was to create a software solution that would allow the analysis of 
properties of autostereoscopic displays and of the images they require in order to properly 
display stereoscopic 3D content. The application would generate such interlaced images and 
supply them directly to the autostereoscopic screen.  

In order to obtain the parameters necessary for correct interlacing, properties of the 
autosteroscopic display had to be found by experimental analysis of the way the lenticular 
lenses refract the displayed images. All empirical methods used in the analysis process that 
led to the discovery of the required interlacing pattern were thoroughly described in this text. 

A computer application, named Autosteroscopic Display Tool by the author, has been 
developed with the use of the obtained interlacing pattern. The application, developed in 
Matlab, allows its users to process images stored in various formats and display them 
properly on the autosteroscopic screen. 

When compared with the hardware box the application is supposed to replace, some image 
quality differences were observed. While the developed application produces inferior results 
than the original hardware-based solution, it is very well usable for casual image viewing as 
well as for demonstrating the displaying properties of the autostereoscopic screen for 
education purposes.  

The application, being a software solution, also offers some options not possible with the 
hardware rendering box and with the source code and detailed description of the application 
provided as a part of this thesis, it can be further developed to offer more options and even 
produce results of better quality. Some ways in which the application can be enhanced are 
suggested as a part of this work. 
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Appendix A 

Contents of the enclosed CD 
• ADT_Mac – A folder containing an installer of the compiled application for use with 

OS X systems. 
• ADT_Win – Folder with an installer of the compiled application for use with 

Windows systems. 
• Autostereoscopy.docx – Text file with this document in MS Word file format. 
• Autostereoscopy.pdf – Text file with this document in PDF file format. 
• Converted_images – A Folder containing examples of interlaced images saved from 

the application. 
• Lab.pdf - Appendix C – Laboratory task in a separate document 
• Manual.pdf - Appendix B – Autostereoscopic Display Tool – User Manual in a 

separate document 
• matlab – Folder containing all Matlab scripts used in this thesis 

• MASKS – A subfolder with 28 basic SPMs saved as PNG files 
• MASKS2 – A folder with SPMs used for Philips view mapping 

• Pictures – Folder with all images created for use in this document 
• References – Folder containing electronic documents used as a reference (see 8.  

References) 
• readme.txt – A file describing the contents of the CD in more detail 
• Test_images – Folder containing sets of multiview and 2D+Z images 

• 2D_Z_images – A folder with four sets of 2D+depth images (4 2D + 4 depth) 
• NUM_test – a folder containing 28 artificialy created images of white nubers 

on dark gray background. These images are best suited for demonstrations of 
crosstalk presence and of effects of different image mapping schemes. 

• photo_test – A folder containing 28 multiview images photographed to test 
the used algorithms 

• photo_test2 – A folder containing 15 photos for use as a multiview source, 
these photos are better aligned than the ones above 

• photo_test3 – A folder containing 27 video frames saved as image files for 
use as a multiview source. Images from this folder are also the most suitable 
to use as a stereo input. 

• XLS – Folder with all Excel tables used in this document 
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Appendix B 

Autosteroscopic Display Tool - User Manual 
The Autostereoscopic Display Tool (hereinafter application) is designed to create and 
display interlaced multiview images on Philips BDL4251VS autostereoscopic screen.  

Display Setup 

In order for the application to work properly, the autostereoscopic screen has to be connected 
directly to the computer (via HDMI) and set as a secondary monitor positioned to the left of 
the main one with top edges aligned. Check the picture below for reference.  

The desktop has to be set to extended mode, not to screen mirroring or only to display on 
the second (autostereoscopic) display.  

 

Also make sure the screen format (aspect ratio) is set to “full” instead of other “zoom” 
setting. In that way the screen displays true 1:1 pixel reproduction of the source signal with 
no overscan. 

If the output images look incorrectly with too much crosstalk, check that the signal delivered 
to the screen is in YCbCr format and if that is the case, try to set the output format on the 
computer to RGB. 

Instalation 

Both Windows and OS X versions of the software have been compiled into an executable 
applications independent on Matlab installation but as the application is written in Matlab 
language, it still requires a correct version of Matlab Runtime in order to work properly. 

The runtime is installed with the application itself, downloaded from the internet during the 
installation process. The installation is pretty straightforward and does not require any 
unusual steps. It may, however, take some time, depending on your internet connection.  

The default installation path on Windows is /Program Files/Autsteroscopic_Display_Tool/ 
and on OS X, the application is installed directly to /Applications/ . 
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Using the application 

The main window of the application is divided into four sections. The “Input method” 
section, “Image mapping” section, status information area and a program-launching button. 

 

Input method selection allows the user to set the format used as an image source: 

Multiple images  

Multiview images format used for 6-28 individual image files, each representing a different 
viewing angle of the displayed scene. 

2D+Z (Convert)  

2D plus depth image format consisting of two separate image files, one containing RGB 
“middle” view of the displayed scene and the other its grayscale depth map. This format is 
converted into a set of 28 artificial multiview images. 

Stereo (Experimental)  

A standard stereo pair format using two image files, “left” and “right”. This format is 
converted first to 2D+Z format and trough that into 28 multiview images, effectively creating 
28 new views of the displayed scene. 

Stereo (Direct)  

Uses the same input format as the experimental method but displays it into two wide viewing 
zones, creating a two-view autosctereoscopic image. This displaying method is not suitable 
for regular image viewing as it produces several artifacts. 

 

The Image mapping section selects the interlacing method used for the creation of the final 
output image: 

Original Philips  

A view-mapping method using only 15 source images to reduce the cross-talk effect and 
other unpleasant artifacts. 
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Smooth  

A direct view-mapping method using the full range of 28 source images resulting in 
smoother motion parallax at the cost of additional undesirable effects (grater cross-talk, 
right-to-left image transition …). The “Cyclic View” checkbox modifies the method, using 
only 14 images to suppress the image “flipping” effect. 

With the parameters set, launch the process of creating the interlaced output image with the 
press of the “Go!” button. A new dialog window opens prompting the you to select the source 
image files (either all at once in case of “Multiple Images” format or one by one in the other 
two cases).  

The application supports files in .jpg, .png, .tif and .bmp formats. 

 

After the source files are selected, press the Open button and the creation of the output image 
starts. The current progress information is displayed in the main window “Status” area. 

(Note: The computation may take some time, percentage information in the status area is 
only approximate.) 

After the creation of the interlaced image is done, it is displayed in a fullscreen-sized window 
and a dialog box opens, giving the option to save the generated image into a .png file. 

 

After the image is saved or the dialog box is closed either by selecting “No” or by closing 
its window, the application is ready to process new images. 
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Troubleshooting 

Problem: The application cannot be launched, returning a runtime error.  

Solution: Try reinstalling the runtime. If that does not solve the problem, try running the 
application straight from Matlab using the GUI command. 

 

Problem: The application takes long time to launch and to deliver images. 

Solution: Wait. For reasons most likely connected to the Matlab runtime, the application is 
quit quite slow (especially under Windows OS). Using the GUI command straight 
in the main Matlab software might result in slightly faster response. 

 

Problem: The application reports “Finishing up” but nothing is happening. 

Solution: The finishing part of computation takes a long time on Windows machines. Look 
at memory usage of the application and if it uses several thousands of MB of 
RAM, the computation is still running. If the memory usage is lower, and it is 
possible to change the settings in the main application window, an error occurred. 
If problems persist, launch the application from Matlab and check the command 
window if it returns the error report. 

 

Problem: The image is generated but appears blocky. 

Solution: The image is probably scaled to the size of its window, which is smaller than 
required. Check that all OS elements (taskbar, dock, menubar etc.) are hidden on 
the secondary display and the image window covers the full area of the screen. If 
not, try to maximize it. 

 

Problem: The program returns error when generating depth map from stereo pair. 

Solution: If you are running the application straight from Matlab environment and it reports 
unknown function, you might be missing some of the required toolboxes. Try 
running the standalone application as the necessary code should be available as 
part of the Matlab Runtime. Another workaround is to generate depth map using 
a third party software such as DMAG51 and then use it as 2D+Z input. This 
solution should also give better results as more advanced algorithm is used.  

                                                
1 http://3dstereophoto.blogspot.cz/p/software.html 
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Appendix C 

Laboratory task 
Introduction 

Autosteroscopic screens are able to display stereoscopic “3D” images without the need for 
any specialized headgear and can even provide motion parallax (change of image with 
change of viewing position). These screens, however, suffer from higher amount of cross-
talk and significant loss of perceived resolution. 

 

Tasks 

1. Measure visible crosstalk of different image mapping methods 
2. Observe effects of different image mapping methods on the displayed image 
3. Observe and describe artifacts caused by incorrect viewing distance 

 

Tools used 

• Computer with installation of Autosteroscopic Display Tool 
• Philips BDL4251VS lenticular based autosteroscopic display 

 

Theoretical analysis 

The used autosteroscopic multiview display is a type employing slanted lenticular lens 
technology that use refraction to focus light rays emitted by the screen itself. Displays with 
lenticular lenses (or simply lenticulars) make use of cylindrical lenses that project images 
from the FPD screen into repeating viewing zones on an image plane (at a viewing distance). 
In case of multiview display, a higher number of images (28 in this case) is located behind 
each lens and the visible views are divided into several repeated viewing zones. 
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Geometry of a screen with lenticular lenses is depicted in the following figure: 

 

Notice there is some magnification of the pixel pitch p into a larger image pitch b on the 
image plane, that should be ideally corresponding with the interocular distance, which is 65 
mm on average. This magnification is given by: 

𝑚 =%
5
= +
(
)
, 

where b is the image pitch (interocular distance), p is the pixel pitch, z is the viewing 
distance and g/n is the optical distance, given by the design of the lenticulars.  

The black matrix depicted in the figure above presents a problem, as it is also magnified by 
m at the viewing distance and is very disturbing for the viewer. This effect can be suppressed 
by the use of smaller pixel pitch p1. However, sideward movement of the viewer in the image 
plane causes the diminished black matrix to become noticeable. A possible solution is the 
use of slanted pixels in combination with vertically arranged lenticulars, which ensures there 
are no black lines parallel with the lenticulars. More frequently used is vertical pixels with 
slanted lenticulars, which has the same effect.  
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An arrangement such as shown this has several other advantages over simple pixel/lens 
parallel arrangement. The loss of resolution is distributed to both horizontal and vertical 
direction as opposed to full resolution in vertical direction and more severe loss in horizontal 
direction when vertical arrangement is used. This leads to the ability to project more views 
of the scene with roughly the same loss of resolution – for example a 7 view arrangement 
with lens width of roughly 3.5 pixels. 

Transition between two neighboring views is made smoother with slanted pixels or slanted 
lenticulars. Instead of flipping into a new image, the „old“ pixels fade away while the „new“ 
ones simultaneously fades in, resulting in perception of an increased resolution and more 
pleasing viewing experience overall. Slanting also helps to eliminate moiré pattern. 

The main disadvantage of slanted design is more complicated arrangement of the displayed 
image, so a specialized hardware or software, such as the Autostereoscopic Display Tool has 
to be used to interlace the individual images. 

 

Measurement 

Task 1 – Cross-talk 

1. Use the enclosed user manual to familiarize yourself with the used software 
2. Launch the Autosteroscopic Display Tool on your computer 
3. Set the input method to Multiple Images and image mapping to Smooth 
4. Load all 28 test images found in the ‘test_images/NUM_test’ folder 
5. Position yourself at roughly 2m distance from the screen and observe the image 

displayed from different angles.  
6. Fill the number of concurrently visible 

values displayed on the screen in the table 
bellow. (Example: in the image on the right 
there are 9 values visible). 

7. Repeat steps 3-5 with the other two image 
mapping options (with the Cyclic view 
option enabled and the Original Philips 
option).  

Image 
mapping 

Original Philips Smooth (Cyclic view off) Smooth (Cyclic view on) 

Visible 
values 

   

 

The filled values represent the number of views that are shown to a position in front of the 
screen. Ideally, only one value should be visible from a given position (always the one in the 
middle, the brightest), visibility of the others is caused by cross-talk. 
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Task 2 – Effects of different image mapping methods 

1. Use the same setup as in Task 1 
2. Gradually change your viewing position (move form left to right, right to left) and 

observe the behavior of the displayed image 
3. Instead of concurrently visible values, focus on which values are visible and which 

do not show at all.  
4. Use your own words to describe the difference between all three image mapping 

methods (number of values displayed, difference in brightness displayed values, 
effects of movement of viewing position etc.): 

 

5. Use different set of images (either provided in ‘test_images’ folder or your own) to 
observe the effects of image mapping methods on real multiscopic images. 

6. Which method gives the best results? What artifacts does each method suffer from? 

 

 

Task 3 – Viewing distance 

1. Load an image source of your choice. You can try other input methods as well. 
2. When the image is displayed, position yourself at roughly 2 meters from the screen. 

You should see the desired image without any distortions. 
3. Move closer to the screen and observe the effect of the change of distance on the 

visible images. 
4. Move further from the screen than 2 meters and observe the effect on the displayed 

image. 
5. Describe the effects of incorrect viewing distance. How is the image distorted? What 

are the differences between closer/further viewing positions? 
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