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Abstrakt

Ćılem této práce je nastudovat algoritmy umožňuj́ıćı rychlé vykreslováńı
scén pomoćı metody sledováńı paprsku a algoritmy pro rychlou stavbu
akceleračńıch datových struktur, které by umožnily vykreslováńı dyna-
mických scén v reálném čase na moderńım mobilńım zař́ızeńı s operačńım
systémem Android. Nejprve je proveden výzkum existuj́ıćıch Android
aplikaćı, které vykresluj́ı scény pomoćı metody vrháńı paprsku. Dále
jsou zkoumány metody pro efektivńı vykreslováńı pomoćı vrháńı pa-
prsku a stavbu akceleračńıch datových struktur, které se pro toto vy-
kreslováńı použ́ıvaj́ı. V daľśıch kapitolách práce je předveden imple-
mentovaný vykreslovaćı systém, který je schopen vykreslovat scény v
reálném čase, čehož je dosaženo využit́ım v́ıcevláknového programováńı
a ńızkoúrovňových optimalizaćı kódu. Součást́ı tohoto systému je také
algoritmus pro rychlou stavbu akceleračńı datové struktury, u kterého je
rovněž kladen d̊uraz na optimalizaci, aby bylo možné datovou strukturu
přestavovat v reálném čase. Výsledný software je otestován na sadě sta-
tických i dynamických scén na výkonném mobilńım zař́ızeńı se systémem
Android.



Abstract

The aim of this thesis is to examine ray tracing methods and methods of
fast building of acceleration data structures for ray tracing which would
allow for rendering of dynamic three-dimensional scenes in real time on
a contemporary mobile device with the Android operating system. First,
research of existing ray tracing applicatons for Android is made, along
with algorithms focused on high performance rendering using ray tracing
and fast construction of acceleration data structures used in ray tracing.
An implementation of a rendering system which can render scenes in
real time, which is achieved by using multithreading and low-level code
optimizations, is presented in the next chapters. A part of this system is
also an acceleration data structure builder. The implementation of this
builder also uses low-level optimizations in order to be able to rebuild the
needed data structures in real time. The resulting software is tested on
both static and dynamic scenes on a high-end device with the Android
operating system.
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1 Introduction

In most of today’s interactive computer or mobile applications where performance is
key, rasterization is the method of choice for fast rendering of three-dimensional scenes.
In rasterization, objects from the scene are projected onto a two-dimensional projection
plane which represents the view area of a camera. In ray tracing, the process is inverse.
Rays are shot from the viewpoint through the projection plane into the scene and objects
intersected by these rays are then drawn onto the projection plane, pixel by pixel. Unlike
rasterization, this method results in a natural occurence of phenomena such as shadows
and reflections, which have to be simulated in rasterization, often with rough approximati-
ons. This comes at a great cost, which is an orders of magnitude higher computational cost.

The main problem of the higher computational cost of ray tracing is the fact that for
each ray, the scene needs to be searched for the closest object the ray intersects. Using a
näıve approach, this is very expensive. A lot of research is therefore focused on acceleration
data structures that store the scene objects in a way that allows for efficient traversal of
the ray through the scene while skipping most of the uninteresting objects. When used
with dynamic scenes, these structures often need to be rebuilt quickly in order to main-
tain interactivity of the application. Various algorithms have thus been proposed and are
still sought that aim to construct the data structure with a trade-off between construction
speed and the quality of the structure with respect to ray tracing performance.

With mobile devices such as smart phones or tablets gaining performance rapidly year
by year, it is no longer necessary to restrain ray tracing use to high-end desktop or laptop
computers. These devices today have 4 or 8 core processors, a few gigabytes of RAM and
dedicated graphics processors. The newest high-end devices even support using their gra-
phics processors for general-purpose computing (GPGPU).

The goal of this thesis is to examine the computing capabilities of a high-end mobile de-
vice with the Android operating system and implement a ray tracing system that would be
able to render dynamic (moving) scenes at interactive frame rates. That inherently includes
being able to construct acceleration data structures over the scene data at very high speeds.

1.1 Thesis structure

The first chapters of the thesis are an introduction to ray tracing, acceleration data
structures used in ray tracing, the problematics of dynamic scenes and the Android system.

The next part focuses on the research of the device’s hardware and software capabilites,
existing ray tracing applications on the Android platform, and mainly on various data
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1.1 Thesis structure

structures suitable for ray tracing and algorithms for their fast construction. Last but not
least, the chapter examines tricks and optimizations to make the process of ray tracing
faster (apart from using acceleration structures).

The next chapter describes the rendering system and acceleration structure building
algorithms implemented for the Android platform as part of this thesis.

In the last chapter, the implemented system is tested on a set of various scenes and
configurations, and performance is measured.
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1.2 Ray tracing

1.2 Ray tracing

1.2.1 Basics

Ray tracing is a method of image synthesis (rendering) based on tracing the path of
light from light sources in a 3D scene to the camera. A great advantage of this method
is that phenomena such as reflection, refraction and shadows occur naturally during the
rendering process, unlike in rasterization, where they have to be simulated and are never
100% accurate.

For each pixel of the projection plane, a primary ray is cast from the viewpoint (camera)
through the projection plane positioned in the scene. If an intersection of this ray with an
object in the scene is found, rays from all light sources are traced towards the intersection
of the primary ray with the object. If any of these light sources are not occluded and rays
from them arrive at the intersection point, the color of the pixel is calculated using the
material properties of the object and properties of the light source. Additionally, if the
material of the object is reflective or transparent, a reflected and/or refracted ray is cast
from the intersection point in the direction of the reflection (refraction). The same process
as for the primary ray is repeated for this ray. Any color this secondary ray ’collects’ is
then added to the final pixel color. An illustration of the process is depicted in figure 1
and algorithm 1.

Figure 1: Illustration of the process of rendering an image of a scene using ray tracing

3/48



1.2 Ray tracing

w ← projection plane width in pixels;
h ← projection plane height in pixels;
~Cp ← camera position;

for int i=0; i<w; i++ do
for int j=0; j<w; j++ do

~Cpixel ← (0, 0, 0);
~V ← ray from viewpoint through pixel [i,j];

closestObjectEye ← null;
min t ← ∞;
~I ← null;
foreach object O in scene.objects do

t ← intersect ~V with O;
if t < min t then

min t ← t;
closestObjectEye ← O;
~I ← t * ~V + ~Cp;

Compute ambient lighting;

if closestObjectEye is not null then
foreach point light P in scene.pointLights do

~L ← ray from P’s position towards ~I;

closestObjectLight ← null;
min tLight ← ∞;
foreach object O in scene.objects do

tLight ← intersect ~L with O;
if tLight < min tLight then

min tLight ← tLight;
closestObjectLight ← O;

if closestObjectEye = closestObjectLight then
~Ccur ← Compute diffuse and specular lighting;

Add ~Ccur to ~Cpixel;

else
~Ccur ← Background color;

Add ~Ccur to ~Cpixel;

Algorithm 1: Näıve ray tracing algorithm
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1.2 Ray tracing

1.2.2 Lighting model

After obtaining the nearest object the primary ray intersects and a set of lights that
illuminate the object at the point of intersection, a set of rules is needed for calculating the
color that is returned back to the pixel. These rules are provided by a lighting model. One
of the most commonly used lighting models is the Phong lighting model, which is also used
in the rendering part of the implementation in this thesis. The Phong model calculates the
pixel color based on three components:

• Ambient component, which simulates global illumination caused by light scatte-
ring and reflecting throughout the entire scene.

• Diffuse component, which takes into account the color the object emits when
illuminated by a light source.

• Specular component, which simulates the direct reflection of a light source on the
object’s surface (so called specular highlight)

The ambient component depends on the color of the object’s material (the color that
it reflects) and the selected color of ambient lighting. This color is not calculated from the
light sources present in the scene and is only a rough approximation that doesn’t correctly
represent light distribution in the scene and varying amounts of light coming at the object
from each direction. The component is calculated using the following formula:

~Ca = ka ~CA

where ~C is a three-component vector describing a color in the RGB format with values
ranging from 0 to 1. ~CA is the color of the ambient light in the scene and kd represents the
fraction of the ambient light that the object reflects.

The diffuse component depends on the color of the object’s material and the angle be-
tween the surface normal at the point of intersection and the direction of the shadow ray.
The diffuse component of the final color is calculated using the following formula:

~Cd = kd
~N · ~L
|~L|

~CL

where ~Cd is the color of the object’s material, ~CL is the color of the light emitted by
a light source, ~N is the normal vector on the object’s surface at the point of intersection
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1.2 Ray tracing

with the view ray and ~L is the shadow ray (in the direction towards the light source). As
can be seen from the formula, the diffuse color seen by the camera or viewer is independent
of its position relative to the object. The configuration can be seen in figure 2.

Figure 2: Diffuse lighting in the Phong model

The specular component simulates light rays completely reflected off the object’s sur-
face. It depends on the color of the light emitted by the light source and the angle between
the view ray and the reflected light ray. The value of the specular component is calculated
using this formula:

~Cs = ks

(
~V · ~R
|~V ||~R|

)α

~CL

~R = (2 ~N · ~L) ~N − ~L

where ~R is the reflected light ray, ~V is the vector from the object intersection point
to the viewpoint (camera), ~N is the normal vector on the object’s surface at the point of

intersection, ~L is the shadow ray, ~CL is the color of the light source, α is the shininess
coefficient (defines the sharpness of the reflection) and ks represents the fraction of the
light that the object reflects. The configuration can be seen in figure 3.
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1.2 Ray tracing

Figure 3: Specular lighting in the Phong model

The coefficients ka, kd and ks need to be in the range < 0, 1 >, where 0 means none of
the light travels towards the viewpoint and 1 means that all the light travels towards the
viewpoint.

It is important to note that further in this thesis, ray tracing of objects made only of
triangles will be considered. So any larger models and scenes will always be made up of
triangles. It is important to note this, because a ray tracer may also support rendering
spheres, implicit surfaces (surfaces created using some mathematical function) etc.

1.2.3 Performance

When looking at algorithm 1, it is obvious that for every pixel of the image plane, all
the objects in the scene need to be tested for intersection with the view ray in order to find
the nearest one (if there is any). Additionally, for every secondary ray (reflection, refraction
or shadow ray), all these tests must be performed again. The number of intersection tests
that need to be performed increases quickly with larger amounts of objects in the scene,
as opposed to the rasterization process, where every triangle is processed at most once and
all the pixels it covers are colored in sequence. The amount of necessary intersection tests
has a large impact on performance.

In order to achieve a reasonable rendering performance, it is necessary to dramatically
decrease the number of ray-object intersection tests that need to be done for each ray. This
can be achieved by storing the objects in an acceleration data structure. It is then possible
to cull away large regions of space or large amounts of objects before actually starting to
test intersections of rays with objects.

7/48



1.3 Acceleration data structures for ray tracing

1.3 Acceleration data structures for ray tracing

As mentioned in the previous chapter, a significant boost in rendering speed can be
obtained by storing the scene objects in an acceleration data structure. This structure is
usually represented by a tree where the objects are distributed among its leaves.

In regular data structures, the space of the scene is divided into a regular structure of
cells and objects are placed into the cells they overlap. When trying to find an intersection
of a ray with an object, only the cells that the ray overlaps are checked. In hierarchical
data structures, the scene geometry or space is recursively subdivided into parts. The ray
is first checked for intersection with the root node of the hierarchy, which bounds the entire
scene. If an intersection is confirmed, the child nodes of the root node are checked, and so
on. Until eventually the ray gets to triangles stored in leaf nodes.

1.3.1 Construction schemes

Data structures for ray tracing can be constructed in various ways. Those that employ
space partitioning divide the scene’s space into regions (and these regions into subregions,
in some cases) which always cover the entire space (or the space of their parent region).
The objects stored in these structures can be referenced in more than one cell. These data
structures can be further divided into regular and hierarchical.

A different scheme for creating an acceleration data structure for ray tracing is object
partitioning. Data structures using this scheme recursively divide the objects in the scene,
not space, until either a small amount of objects remains or some termination criterion is
met. The most commonly used object partitioning data structure is the Bounding Volume
Hierarchy (BVH).

1.3.2 Uniform grid

A uniform grid is a regular data structure and a simple form of space partitioning. The
idea is to divide the space occupied by the objects into a regular grid of cuboids of the
same size and distribute the objects into these cells. When a ray is traced, only the cells
the ray intersects are checked and the objects inside them are tested for intersection with
the ray.

The advantage of this method is the computational complexity of its build, the creation
of the structure is linear with respect to the number of objects in the scene. A major
disadvantage is that rendering performance when using uniform grids drops when objects
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1.3 Acceleration data structures for ray tracing

in the scene are not distributed uniformly. For some areas of the scene, the ray has to
intersect a lot of empty cells, and in other areas, there may be too many objects in one
cell. The traversal of a uniform grid with a ray can be seen in figure 4. Only the light gray
cells are intersected and therefore only objects C and D are tested for intersection with the
ray.

Figure 4: Ray traversal of a uniform grid

1.3.3 k-d tree

Unlike uniform grids, a k-d tree is a hierarchical space partitioning data structure. It
is a form of binary space partitioning. At the root level of the hierarchy, all the scene
objects are contained in an enclosing axis-aligned bounding box (AABB). The box is then
divided into two parts by a dividing plane parallel to one of the three coordinate axes. The
resulting cells are further recursively subdivided in this fashion until some criterion is met.
A visualisation of three steps of building a k-d tree for 2D objects can be seen in figure
5. During traversal, the root node is checked for intersection first. When it succeeds, its
children are tested for intersection with the ray and so on, until the ray eventually reaches
the leaf nodes with triangles in them, or doesn’t.

There are three important things that need to be repeatedly decided during the con-
struction of a k-d tree:

• Along which coordinate axis to divide the current cell (i.e. which coordinate axis will
the dividing plane be parallel to).

• The exact position of the dividing plane along that coordinate axis.

• Whether to further subdivide or stop and declare the current cell as a leaf node.

In order to decide correctly, some measure of the quality of a cell split is needed. Expe-
riments have proven that a so called Surface Area Heuristic (SAH) gives correct values of
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1.3 Acceleration data structures for ray tracing

Figure 5: Three phases of a k-d tree construction

quality of tree cells when used for ray tracing. The SAH is based on geometric probability
of a ray hitting an axis-aligned bounding box, given a uniform distribution of rays repre-
sented as infinite lines. It is calculated from the surface areas of the parent cell and the two
new cells created by the split and the costs of the subtrees. The formula for calculating the
cost of a k-d tree node using the Surface Area Heuristic is:

C(P ) =

{
SA(VL)
SA(VP )

(CI + C(L)) + SA(VR)
SA(VP )

(CI + C(R)), if node is inner

CTNT , if node is a leaf

where C(P ) is the cost of the current node, C(L) and C(R) are the costs of the child
nodes, SA(VP ) is the surface area of the current node’s cell, SA(VL) and SA(VR) are the
surface areas of the cells of the child nodes, CI is the cost of intersecting an axis-aligned
bounding box with a ray, CT is the cost of intersecting a triangle with a ray and NT is the
number of triangles in a leaf node. It is not important how large the values of CI and CT
are, as long as their ratio is correct.

When building the tree from the root and subdividing cells (top-down construction),
the aim is to minimize this cost when looking for the position of the dividing plane. Since
the true cost of a node’s children is not known when building the tree from the root node
and subdividing nodes, an estimate must be made. The estimate has the following formula:
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1.3 Acceleration data structures for ray tracing

C(P ) =

{
SA(VL)
SA(VP )

(CI + CTNL) + SA(VR)
SA(VP )

(CI + CTNR), if node is inner

CTNT , if node is a leaf

where the only difference is that the true cost of the child nodes is replaced by their
cost as if they were leaf nodes.

When trying to find the minimal cost of a node split, there are 6N options for N
triangles in the node, two for each triangle in 3 dimensions (The triangles must be culled
to the volume of the current cell, as they can extend past its boundaries into other cells.
Placing the dividing plane in other places than the edges of the triangles’ bounding boxes is
pointless, as the cost between these positions increases or decreases linearly, and therefore
doesn’t contain a local minimum. The selection of the axis in which to divide the node can
be done in several ways:

• Selecting the axis in a round robin fashion (i.e. x, y, z, x, y, z ).

• Selecting the axis along which the node’s bounding box is widest.

• Performing the splitting plane search along all three axes and selecting the axis where
the split creates the best node cost.

The splitting plane is obviously the most costly operation in the tree building process.
There are a number of algorithms that aim to reduce the cost at the expense of accuracy,
for example by selecting only a subset of possible dividing plane positions.

1.3.4 Octree

Octree is another type of hierarchical space partitioning data structure. As the name
suggests, each inner node of the tree is divided into eight identical child nodes by splitting
the node exactly in the middle in each coordinate axis. Nodes are further subdivided while
using the similar criteria as in k-d trees, with the cost of the nodes also being computed
with the SAH.

1.3.5 Bounding Volume Hierarchy

A bounding volume hierarchy is a hierarchical object partitioning data structure that
encloses objects in bounding volumes. These bounding volumes can be of various shapes
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1.3 Acceleration data structures for ray tracing

and complexity, but the most common type used for ray tracing is the axis-aligned boun-
ding box (AABB). Only AABBs will be considered when talking about bounding volume
hierarchies further.

At the root level, all objects (triangles) are enclosed in a bounding box. The set of
triangles is then divided into two groups. These groups of triangles are enclosed in their
respective bounding boxes and the process continues recursively. The number of child nodes
does not necessarily need to be two. A so called Quad-BVH can also be constructed, with
a node having four child nodes instead of two. This scheme can be utilized with the use
of vector instructions to compute the intersection of one ray with four bounding boxes at
once. A bounding volume hierarchy can be built in several ways:

• In a top-down fashion, starting by enclosing the objects in a bounding boxe and
recursively dividing the groups of objects until a termination criterion is met.

• In a bottom-up fashion, starting with every object contained in its own AABB and
by combining these so called clusters in pairs of two into new clusters, until only a
single cluster remains, which represents the root node of the hierarchy.

• By incremental insertion of objects, for example when the scene data are not available
all at once.

Top-down construction

In a top-down construction of a BVH, the selection methods of the axis in which to
divide the objects and where to position the imaginary dividing plane are similar to those
in k-d trees (chapter 1.3.3), with the exception that there are only N − 1 possibilities in
each axis for N objects. The surface area heuristic is used in bounding volume hierarchies
as well. Three steps of a bounding volume hierarchy construction can be seen in figure 6.
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1.3 Acceleration data structures for ray tracing

Figure 6: Three phases of a top-down BVH construction

Bottom-up construction

When constructing the BVH from the bottom, all objects are initally contained in their
bounding boxes and create leaf nodes. Then, pairs of nodes are combined until only the
root node remains. Nodes are combined based on a distance function which will be descri-
bed later in chapter 2.3. The problem is that there are a lot of possibilities when choosing
pairs of nodes to combine. Algorithms using this scheme try to limit the number of possi-
ble combinations by separating the nodes into groups and avoiding testing combinations
of nodes that would result in new nodes with high costs.

Incremental construction

In an incremental construction of a bounding volume hierarchy, the hierarchy is con-
structed by inserting triangles one by one, for example when the entire data set is not
available at the beginning of the build. Triangles are inserted one by one into the structure
and the best place is found for each one.
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1.4 Dynamic scenes and interactive ray tracing

Dynamic scenes are a type of 3D scenes in which the geometry or topology changes
over time. The changes can be caused by moving or rotating objects, objects changing
their shape, objects breaking into smaller objects etc. When acceleration data structures
are used in ray tracing, this may pose a problem. When a scene is static, it is possible to
build a data structure of its triangles once at the beginning and use this structure during
ray tracing, possibly real time. The quality of the data structure can be prioritized at the
expense of longer construction time.

For non-static scenes, however, the data structure constructed for the scene at one
moment is no longer valid at a different moment, after the scene has changed. This may
require that a part of the data structure or the whole data structure be rebuilt.

1.4.1 Dynamic scene composition

Dynamic scenes can be created in one or more of these ways:

• Using rigid objects and applying transformations to them. Rigid objects are repre-
sented by a set of triangles that doesn’t changes over time. Using transformations
represented by matrices, they can be translated, resized and rotated within the co-
ordinate system of the scene. An example of a rigid object could be for example a
non-deformable car chassis.

• Using soft objects and applying transformations to them. Soft objects are represented
by a set of triangles whose geometry might change over time. Additionally, the objects
can be transformed the same way as rigid objects. An example could be a piece of
deformable cloth controlled by a cloth simulation engine.

• Using keyframe animations, which means having a moving object or scene captured
in several time moments, and for each of these moments, having the whole state of
the object’s geometry saved as a rigid model. By animating these models in quick
succession, an illusion of a moving or deforming object can be achieved.

When considering how to manage an acceleration structure of the scene geometry for
ray tracing, a number of options are available. One option is to take all triangles of all the
objects (both static and dynamic) and build the data structure again each frame (or every
time some change in the scene occurs). Another option is to separate static and dynamic
geometry and only rebuild the dynamic geometry.

Keyframe animation objects require an acceleration data structure for each of their
keyframes. They can be all built at the beginning without the need to rebuild them again,
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at the expense of severely higher memory consumption. Or they can share the same me-
mory space for the data structure and after each keyframe change, the data structure for
the particular keyframe must be built again.

For soft objects which change their shape over time, there is no way to circumvent the
need to rebuild (or at least refit) the data structure after the object’s shape is modified.

For the cases when rebuilding the data structure of a set of triangles often and fast
is unavoidable, a slightly different approach of building data structures is needed. Algo-
rithms suited for this need often sacrifice data structure quality in favor of performance
and use approximations and heuristics to get as close to a high-quality solution as possible.

1.4.2 Object BVH

For rigid objects, an interesting approach is possible. For the triangles of each object, an
acceleration data structure is built only once in the object’s model space. Then, for each
movement, rotation or size change, a new transformation matrix is available. Using this
transformation matrix, only the bounding box of the root node of the data structure is
transformed into world coordinates, not all the geometry. This transformed bounding box
is then wrapped in another bounding box aligned with the coordinate axes of the world co-
ordinate system. When this is done for all the rigid moving objects, a data structure is built
above the new bounding boxes. When a ray is traced through the scene, it first traverses
this data structure of objects. When it hits an object’s bounding box, it is transformed by
an inverse of the object’s transformation matrix. It is then traced in the coordinate space
of the triangle mesh. The data structure of the object’s triangles therefore never needs to
be rebuilt and the object can still freely move within the scene. This approach is used in
the implementation part of the thesis and is further described in chapter 3.2.1.

15/48



1.5 Android operating system

1.5 Android operating system

Android is an operating system used mainly in handheld mobile devices such as smart-
phones and tablets. The system is based on Linux. Originally created by Android, Inc., it
is now owned and developed by Google. The first version of the system was released in 2007.

1.5.1 Android application development

Applications for Android devices are developed using the Android Software Develo-
pment Kit. An application can either be run on a real device or in an Android device
emulator. The main language Android applications are written in is Java, but using native
code written in C or C++ is also possible with the use of Java Native Interface (JNI) and
the Android Native Development Kit (NDK) supplied by Google.

1.5.2 Android devices

Android devices range from smart phones and tablets to smart watches and televisions.
The focus of this thesis are devices which are often used as a desktop computer where
mobility is key, therefore phones and tablets. These devices are today already powerful
enough to run 3D games and application with advanced graphics. As Android gaming is
a large market, it is the aim of this thesis to examine if these applications can be further
enhanced by using ray tracing and still be run on contemporary devices.
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2.1 Android application development

2.1.1 Android device

The device with the Android operating system used in the implementation and testing
parts of this thesis is the Samsung Galaxy S4 (model i9505), a high-end smart phone from
Samsung released in 2013. The device uses the Snapdragon 600 SoC (System on Chip) with
the ARM CPU architecture (ARMv7 instruction set). The system uses 2 GB of 600 MHz
dual-channel LPDDR3 random access memory. It also has a separate graphics processor -
the Qualcomm Adreno 320, which shares memory with the CPU.

The CPU and GPU specifications of the Snapdragon 600 SoC are shown in the tables
that follow (data taken from [1] and [2]).

CPU (Krait 300)
Parameter Value Units
# of cores 4 -
Core frequency 1900 MHz
Level 0 instruction cache per core 4 KB
Level 0 data cache per core 4 KB
Level 1 instruction cache per core 16 KB
Level 1 data cache per core 16 KB
Level 2 instruction cache per core 2048 KB
Level 2 data cache per core 2048 KB

Table 1: Krait 300 CPU specifications

GPU (Adreno 320)
Parameter Value Units
Core frequency 400 MHz
# of rendering pipelines 16 -

Table 2: Adreno 320 GPU specifications

2.1.2 Programming languages and tools

Java
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2.1 Android application development

The default language used when programming applications for Android devices is Java.
The Android Java API contains everything that is needed to create an application inclu-
ding its structure, user interface, communication with various sensors the device has, etc.
Because both ray tracing and building of data structures for ray tracing are performance-
hungry tasks, a lot of effort must be put into optimizing the code. Since Java doesn’t offer
a lot of options of low-level optimizations and custom memory management, other means
of programming applications for Android were sought.

Native code development

After making further investigations, it turned out that it is possible to write native code
for Android in C or C++. Using the Android NDK (Native Development Kit), which is
an official toolset for developing native code for Android, it is possible to write parts of
applications (or even entire applications without the use of Java) in C or C++.

This means that parts of an application that are computation-expensive can be written
in native code and the computed result can be used in the Java part of the application. It
is, however, not reocmmended to use native code extensively for all tasks or write an entire
application in native code, as it has to be compiled for each Android device architecture
separately, whereas Java applications run across all devices in a Java Virtual Machine.
Also, the complexity of the application would be greater, since the Java API contains lots
of classes and tools that allow for simple application state management, rendering etc.

The Android NDK contains several C and C++ libraries, including for example helper
libraries for debug logging, manipulating Bitmap objects from Java, and a port of the
C++ standard library. The native code has to be separately compiled before packaging
and launching the application from the IDE.

Java Native Interface

The bridge between the Java part of an application and the native code is provided
by JNI (Java Native Interface), which is a standard interface used on other platforms as
well. This interface provides means of communication and data transfer from Java code to
C/C++ code and vice-versa. In order to perform native code, a method declaration must
be written in the Java part of the application. This method must have the keyword native.
The method is then mirrored in the native code and its body is implemented there. An
example of a Java native method and its native code counterpart follows:
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2.1 Android application development

Java: private native int doSomething(int number)

C++: JNIEXPORT jint JNICALL Java path to class ClassName doSomething

(JNIEnv* env, jobject thiz, jint number)
{ return 0; }

The JNIEnv object contains all functions necessary for the Java-native communication,
for example conversion from Java to native arrays. The thiz object is a reference to the
object the method was called on. If the method is static, this reference is of type jclass

and refers to the class this method belongs to. Other arguments mirror the arguments of
the Java declaration of the function.

2.1.3 Parallel computation

Since both ray tracing and construction of hierarchical data structures of objects for ray
tracing can benefit from parallelization of tasks, options of parallelization on the described
Android device were studied thouroughly.

OpenCL

The Adreno 320 GPU on the Snapdragon 600 System on Chip is one of the first Adreno
graphics processors to support OpenCL (in version 1.1). OpenCL (Open Computing Lan-
guage) is a framework for parallel computation on various devices, including CPUs, GPUs,
DSP (Digital Signal Processor) etc. The functions to be run in parallel on the devices are
written in a C99-like programming languages, and their running and data management
and transfer is done through the OpenCL API.

OpenCL is not officially supported by Google on Android devices, and on the Galaxy
S4, is therefore only unofficially supported by Qualcomm. It took some time to set it up
on the device and run it, as there wasn’t much information and documentation during the
time of working on this thesis. It was actually necessary to pull the OpenCL library *.so
file from the device in order to compile the application.

A simple ray tracer was written in OpenCL and run on the Adreno 320 successfully, but
after trying to implement a BVH traversal on the GPU, serious problems were run into.
The performance drop was catastrophic, sometimes even freezing or restarting the device.
The source of the problems may have been non-coalesced access to the global memory of
the device (where each processing unit accessed different areas of the memory). After no
solution was found for these problems, computation on the GPU was abandoned and left
for future investigation.
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RenderScript

RenderScript is an Android framework for parallel computation. It is similar in nature
to OpenCL, with the exception that the running of parallel tasks and data management
is done in the Java language. Also, the framework decides on its own which computation
device (CPU or GPU) to use and this choice cannot be altered. This option was not tested
in any way.

POSIX threads

It was found that the NDK supports POSIX threads through the use of the pthreads.h
header file. It is therefore possible to utilize the four processor cores of the Krait 300 CPU.
This is also the means of parallelization that is used later in chapter 3 for both rendering
and data structure building.

ARM NEON instruction set

It was found out that the device’s CPU also supports the ARM NEON instruction set.
It is a set of vector instructions of the ARM architecture similar to the SSE instructions
for Windows systems. These are also used in chapter 3 and provide a large boost in per-
formance of the rendering system.

2.2 Ray tracing on Android

When searching for articles discussing the use of ray tracing in Android applications,
only a few applications with little to no documentation were found on the web and Google
Play Store.

The first application for the Android platform is ”Raytracer Demo”by Nic Dahlquist
[3]. The application displays several spheres with reflections and an environment map. The
user can interact with the spheres using the device’s touch screen (move them in a plane
parallel to the projection plane). There are also options to turn off the environment map
and reflections. The source code is available for free. The application is implemented using
a single Android Activity Java class. The rendering is implemented in C++ for multiple
threads run on the CPU. There are just spheres present in the demo, no triangles, and a
bounding volume hierarchy is built using the sphere data each frame. The communication
between the user interface written in Java and the rendering code written in C++ is done
using Java Native Interface. That includes passing the Bitmap object to the native side
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of the application, which then accesses the raw pixel data associated with this Bitmap
object and writes the correct colors to it. The rendering parameter changes done by the
user are also transferred using the Java Native Interface. The application runs at about 6
frames per second on the device mentioned in chapter 2.1.1 with all the features on. The
resolution of the rendered image cannot be selected and seems to be equal to the native
resolution of the devices’s display, which in this case is 1920 x 1080. Framerates of 6-10
frames per second are reported by other users with various other high-end devices.

The second application is ”Multi-core CPU Raytracing”by Wizapply Project [4]. The
application lets the user select the resolution factor (4, 2, 1.5 and 1) which divides the
resolution, resulting in smoother animation for lower resolutions. The user can also specify
the number of threads the application is allowed to use (assuming a multi-core processing
unit is present on the device). A number of spheres and a floor are then rendered, while
each of the spheres follows a predefined trajectory. The framerate highly depends on the
selected resolution factor and number of threads, but also each added/removed sphere. The
source code for this project is available for purchase from the creators. The application is
also available for Mac OS X and Windows.

A similar application by the same author is ”Real-Time GPU Raytracing” [5]. It is very
similar except it allegedly runs on the graphics processor of the device. There is no source
code available and thus no way to confirm that.

2.2.1 Ray tracing dedicated hardware

Several articles can also be found on proposals of ray tracing oriented mobile hardware.
One of them is [6], in which Lee et al. propose a hardware unit with two ray-AABB
intersection testing units. They then compare the system with existing hardware-based
approaches at real time ray tracing.

2.3 Fast construction of acceleration data structures

With computer hardware already fast enough for real time ray tracing, focus is being set
on ray tracing dynamic scenes. That requires algorithms for fast rebuilding or updating of
acceleration data structures containing the scenes’ changing geometry. Multiple different
types of data structures are suited for ray tracing and for particular scene types. K-d trees
have shown the best performance in ray tracing so far, but their construction is not as
simple as in bounding volume hierarchies because of the high number of potential dividing
plane position at each level of the hierarchy during a top-down build. Bounding volume
hierarchies can simply be refitted from the bottom up for minor changes in scene geometry.
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Larger changes however result in degradation of the hierarchy’s quality and a full rebuild
is necessary.

Because of the failure to successfully use the device’s GPU for parallel computation
described in chapter 2.1.3, a decision was made to utilize the full potential of the CPU
instead, possibly using multiple threads and vector instructions, where applicable. Further
research in this and the next chapter is therefore focused on algorithms devised for a CPU.

In [7], two bounding volume hierarchy construction algorithms are proposed. They are
both based on the process of agglomerative clustering. The idea of agglomerative clustering
is to start with an array of elements (clusters) and make pairs of these elements into new
clusters. A new cluster replaces the two old clusters it is made of and the process continues
until only one cluster remains. A näıve version of the process is shown in algorithm 2. The
problem of the näıve approach is its O(N3) computational complexity.

C ← singleton clusters made from triangles;
A ← null;
B ← null;
while size(C) > 1 do

bestValue ← ∞;
foreach cluster Ca in C do

foreach cluster Cb in C do
if Ca 6= Cb and d(Ca, Cb) then

bestValue ← d(Ca, Cb;
A ← Ca;
B ← Cb;

D ← new cluster(A, B);
C ← C − {A} − {B} + {D};

return C;
Algorithm 2: Näıve version of agglomerative clustering

where d(Ci, Cj) is a symmetrical distance function which denotes how close to each other
the clusters are. The function can have different meanings in different contexts. In this case
(ray tracing), the authors follow the research in [8] by making this function equal to the
surface area of the bounding box that contains the bounding boxes of the two clusters Ci
and Cj.

The first algorithm aims to reduce the computational complexity of finding the best pair
of clusters to combine by using a simple low quality k-d tree to store the active clusters
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and a heap to store computed distance function values for cluster pairs.

When searching for the best pair of clusters to combine, the k-d tree is traversed. An
inner node contain information to calculate the lower bound on the distance value function
for the elements in its subtree. This allows for culling of subtrees whose traversal would
not yield a better cluster combination candidate. The k-d tree itself is built using a simple
top-down construction scheme where each node is split in its spatial median along the axis
in which the node has the longest extent.

The heap stores the best match for each cluster along with the value of the distance
function for the pair of clusters. They report an improvement of performance from the
näıve quadratic to almost linear.

The second proposed algorithm does not use the heap. A random cluster A is selected
at the beginning and a best match B is found for this cluster. If the best match of B is A,
a new cluster is formed, otherwise there is a better match for B (C), and the same process
continues with B and C.

Another algorithm for bounding volume hierarchy construction for ray tracing based
on agglomerative clustering is proposed in [9] by Gu et al. The article addresses the
agglomerative clustering algorithms proposed by Walter et al. in [7] described before. It
is noted that the build times of the proposed algorithms are still higher than those of
top-down bounding volume hierarchy builders based on binning.

Gu et al. therefore propose a different approach of reducing the number of possible
cluster combinations during build. They first take all the scene triangles and enclose them
in their bounding boxes, creating so called singleton clusters. For each of the clusters, a
morton code of its bounding box center is calculated. This places each cluster at a position
on a Z-order curve (or space-filling curve) that covers the whole scene space. The clusters
are then sorted by the morton code assigned to them.

The algorithm then has two phases, a top-down division phase and a bottom-up clus-
tering phase. During the division phase, the set of singleton clusters is recursively divided
into two parts using the next digit of the morton code. In case of running out of digits, the
singleton cluster subsets are further halved. Once a predefined number of clusters remains
in one of the branches, the second phase begins. The clusters are clustered until only a
predefined number of clusters remains. The resulting clusters are merged with resulting
clusters from the sibling branch, and the process continues up, until only one cluster rema-
ins. The number of clusters that is created at each level is controlled by a so called cluster
count reduction function.
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The results presented in [9] show similar or better performance and tree quality when
compared to a binning top-down builder.

A fast top-down building algorithm based on binning is presented in [10]. The idea
of splitting an inner node is to first obtain the bounding box enclosing the centers of the
bounding boxes of triangles contained in the node. This bounding box is then split into
several bins along the axis of its longest extent. Triangles are then distributed based on
the coordinates of their bounding box centers into these bins. For each of these bins, a
bounding box is kept containing all triangles in that bin. The bins are then iterated over
and the surface area heuristic is evaluated for planes between the bins, counting the bins
on the left and right from the plane into the left, resp. right subtree.

The next step after locating the best split is to reorder triangles into two subarrays for
the subtrees. This is done by a linear sweep over the triangles in the current node and
organizing them either at the beginning or end of the new ordered subarray.

The subdivision is terminated when either a low number triangles in a subtree has been
reached, when the bounding box of centers is too small or when the estimated cost of a
subdivision is larger than the cost of a leaf.

Parallelization of this algorithm is also proposed, with two phases described: a hori-
zontal and vertical phase. During the horizontal phase, the tree subdivision process runs
in one thread and the binning process for finding the best node split is parallelized. In
the vertical phase, enough subtrees for further subdivision have been created to allow for
parallelization of subtree builds.

This algorithm is implemented as part of this thesis and the implementaton is further
described in chapter 3.4.

2.4 Fast ray tracing

Rendering dynamic scenes would not be possible without optimizing the rendering al-
gorithm itself. Research of performance tweaking techniques was therefore made. In [11],
tracing large packets of rays is discussed and implemented for primary and shadow rays.
During the implementation part of this thesis, an effort was made to trace packets of rays,
but led to no performance gains, strangely. In the article, performance is compared to
tracing 2x2 SIMD rays using vector instructions, and is shown to be better. Using vector
floating point instructions and modifying the rendering algorithm to process four rays at
once (2x2 SIMD ray) can also improve performance. This approach is used in the imple-
mented ray tracer and actually brought a huge rendering performance improvement over
tracing single rays.
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In this chapter, the application and algorithms implemented as part of this thesis are
described. In the first part, the created rendering system is described, including tested,
used and unused optimizations researched in chapter 2. In the second part, the selected
BVH building algorithm is described, including implementation and optimization details.

3.1 Used technologies

As mentioned in chapter 2, efforts to utilize the Adreno 320 GPU of the available
Android device were abandoned after encountering a problem with performance probably
caused by random global memory accesses. Focus was thereafter set on the CPU and ma-
ximal utilization of its resources. Using the Native Development Kit along with utilizing
POSIX threads and ARM NEON vector instructions mentioned in chapter 2.1.3 was a
clear choice.

3.2 Ray tracing library

The core part of the project, a rendering system, is designed as an Android library
module that can be integrated into any Android Java application and used for rendering.
It takes a reference to a Bitmap object (from the Android API) as input, accesses its raw
pixel data as an array of unsigned integer values, and renders into it whatever scene the
user has set up. The library also offers a number of methods for the loading of geometry,
lighting, camera parameters and object data.

The library contains one Java class, RayTracerLibrary. This class serves as an interface
to the native part of the library and provides the above mentioned access to the rendering
resources. It does not need to be instantiated, access is static.

The rest of the library is native C++ code. The raytracer.cpp file contains the ne-
cessary JNI counterparts of the library’s native functions. These serve for the communi-
cation of the Java part of the library with the native code. Scene and camera data are all
encapsulated in an instance of the RayTracerContext class. This gives the possibility to
have several different independent rendering environments.
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3.2.1 Object BVH

Before explaining the scene management functions, it is necessary to mention the way
scenes are managed in the library. It is important to know the difference between these
two things:

• A mesh, represented by the RigidMeshTemplate class, is a set of geometry and
topology information, i.e. triangle data including vertex coordinates. It manages its
own hierarchical data structure.

• An object, represented by the RigidObject class, which can be thought of as an
instance of a mesh. It references a RigidMeshTemplate object and a Material object,
which gives information about the object’s material properties. It further contains
information about the rigid transformation currently applied to the object in the
form of a 4x4 matrix.

Using this mechanism, it is not necessary to have multiple copies of the same mesh in
memory for cases when there is to be more than one of the objects that the mesh represents
in the scene (for example multiple cars of the same type on a road). These mesh copies
would also have to be transformed in space after each movement of the object represented
by the mesh. Instead, there are only multiple objects referencing the same mesh and each
has its own transformation matrix.

For each of these instances of the RigidObject class, the bounding box of the mesh
they reference is transformed from its model space to the world space using the object’s
rigid transformation and contained in a bounding box that is aligned with the world’s
coordinate axes.

After all the objects’ bounding boxes in the world space are constructed, a bounding
volume hierarchy is constructed above them. When tracing rays through the scene, the
rays are first tested against this object bounding volume hierarchy. When an intersection is
found, the ray is transformed using the inverse of the particular object’s transformation and
is traced in the coordinate space of the mesh that the object references. The acceleration
structure for the mesh can therefore only be built once for each mesh and doesn’t require
any rebuilding. Figure 7 shows the described process.

3.2.2 Dynamic objects

Objects can reference more than one mesh. This allows for animated objects with so
called keyframes. Each keyframe represents a model or scene in some state, and when these
keyframes are rendered in quick succession one after each other, they give the illusion of a
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Figure 7: Tracing a ray through the object bounding volume hierarchy

moving or animated model.

In the current version of the library, each mesh has its own acceleration data structure,
so it is not possible to save memory by having only one data structure for an animated ob-
ject and rebuild the data structure for every keyframe during animation. This functionality
could, however, be easily added. For the purposes of performance testing, it is possible to
rebuild the data structure of a mesh before each rendering takes place.

3.2.3 Scene management

Apart from meshes and objects, the RayTracerContext class also manages materials
and point lights. Materials are assigned to objects, not meshes. It is therefore possible to
instantiate a mesh using different materials. Point lights are the only type of light suppor-
ted at the moment, and have the position and light color parameters.

For dynamic scenes, the RayTracerContext also has a transform queue for objects.
When an object transformation is requested from the outside, it is put on this queue and
the queue is processed before the next rendering occurs. This way, transforming all objects
before each render is avoided when their transformation matrix has not changed from the
last rendering pass.

The class also manages an instance of the Camera class. This class contains necessary
information the ray tracing function needs to render the scene. That includes the position
of the camera in the world space, the direction the camera is pointed in, the horizontal field
of view (FOV) of the camera, the projection plane resolution, and some other parameters
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further described in section 3.2.5.

3.2.4 Library interface

The RayTracerLibrary Java class provides a number of methods to communicate with
the above described RayTracerContext C++ class. The methods for scene management
are described below:

• changeBitmap accepts a Java Android Bitmap object as a parameter and changes
the Bitmap object the ray tracer will render to. In case this function is never called,
the library creates its own Bitmap with the resolution of 1024 x 512 pixels during
the initialization of the Java library class.

• addMaterial adds a new material to the library. The properties of the material are
given as parameters to the function. They include the color of the material, diffuse
and specular constants, shininess coefficient, transparency and index of refraction (in
case the material is transparent)

• addPointLight accepts as parameters the position and color of the light and adds
this light to the library’s array of point lights.

• createMeshTemplate takes the number of triangles this mesh will have as a para-
meter and allocates the needed memory for it.

• addTriangle takes as parameters the ID of the mesh the triangle should be added
to, three vertex coordinates and three normal vectors. In case a mesh with the given
ID is not present in the library yet, the triangle is not added.

• createObject accepts two parameters: number of meshes the object will reference
(more than one for animated meshes) and material ID. In case the material with the
given ID is not present in the library yet, the object is not created.

• addMeshToObject takes and ID of an object and an ID of a mesh as parameters
and adds the mesh to the object, if both the mesh and the object are present in the
library already.

• selectObjectMesh takes an object ID and a mesh index as parameters. This function
is for animated objects that reference multiple meshes and is used to select which of
the several meshes the object will currently use.

Next, there is function transformObject that accepts an object ID and a transformation
matrix as parameters. If the object exists, its transformation is put on the above mentioned
transformation queue in the RayTracerContext object along with the new transformation
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matrix and is then transformed before the next rendering of the scene. The interface also
contains functions to move and rotate the camera.

Finally, the class contains a rayTraceScene method that renders the scene with the
current camera parameters and object and light transformations into the supplied Bitmap
object.

3.2.5 Rendering

The core function of the library is to render the scene configuration using ray tracing
and the constructed acceleration data structures. This is the part where POSIX threads
and NEON vertex instructions are utilized. The arm neon.h header provides several new
data types, of which these are further used:

• float32x4 t, a vector of four floating point numbers conforming to the IEEE 754
standard

• uint32x4 t, a vector of four unsigned integer numbers

• int32x4 t, a vector of four signed integer numbers

These vector data types store the four primitive data type variables in consecutive
memory. This fact is exploited and an auxiliary C++ union is defined:

typedef union {

float32x4_t flt4;

float fltx4[4];

uint32x4_t uint4;

int32x4_t int4;

int32_t intx4[4];

uint32_t uintx4[4];

} float_uint32x4_t;

This union allows to access the floating point data as integers and perform bitwise ope-
rations on it (bit clearing etc.).

There are several ways to use vector instructions in ray tracing. A single ray can be
traced and tested for intersections against four bounding boxes or triangles at the same
time. Or, four rays can be traced at the same time intersecting only one bunding box or
triangle at a time. The latter is what was chosen for the rendering in this library. For that
purpose, two new structures were created:
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3.2 Ray tracing library

• A SIMD Vector structure, which, instead of one three-dimensional vector, contains
four. There are a total of three float32x4 t variables, one for each dimension. Each
of them holds the coordinates of four different vectors in that particular dimension.

• A SIMD Ray structure that holds three SIMD Vector structures inside: a ray origin,
direction and inverse direction (a vector with components calculated as inverse com-
ponents of the direction vector). Of course, all three structures hold data for four
independent rays.

where SIMD stands for ’Single Instruction, Multiple Data’. Instead of tracing single rays
from the camera, these SIMD rays are traced, which for coherent rays means tracing four
rays is a little more or equally expensive as tracing a single ray. The same is applied to
shadow rays (rays traced from light sources towards objects intersected by view rays).

Since the rendering can be run in multiple threads, the image is divided vertically into
narrow strips. The threads’ work on these strips is interlaced to allow for better work dis-
tribution among the threads, otherwise their load might become unbalanced.

In the first step of the rendering process, the projection plane is set up in the world space
and the first ray packet is computed. During the rendering process, the packet is then moved
across the projection plane by adding pixel step x, pixel skip y and row step back

vectors to it. The whole setup is shown in figure 8.

Figure 8: Projection plane sampling using a SIMD ray and multiple threads
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3.2 Ray tracing library

For each position of the SIMD view ray, the color of the four pixels is set to (0, 0, 0)
(black). The object bounding volume hierarchy (described in chapter 3.2.1) is then tra-
versed with the SIMD ray. If an object is hit by at least one of the four rays, the SIMD
ray is transformed using the inverse of the object’s transformation matrix and is further
traced through the bounding volume hierarchy of the object’s mesh. For each of the four
rays, ID of the nearest intersected triangle and the object it belongs to is stored, as well
as the distance to the respective object, if there is any.

Then, if at least one of the rays is valid (hit a triangle), the intersected triangles are
loaded from memory, along with normal vectors at the intersection points, which are cal-
culated using linear interpolation. For the invalid rays (did not hit any triangles), dummy
triangles are loaded, as the computation still performs on all four rays simultaneously and
triangle data need to be present. Materials of the triangles are loaded as well from the
intersected object data.

After the data is loaded, all point lights are iterated over. For each point light, a SIMD
ray is constructed that contains the rays from the point light to the four intersection points.
The object bounding volume hierarchy is then traversed with this SIMD light ray. If the
light illuminates at least one of the objects the original view SIMD ray intersected, the di-
ffuse and specular color components are calculated (with invalid rays using dummy values
again).

After each point light is processed, the computed colors of the four pixels are cleared
using the bit mask of the valid rays (the rays that intersected a triangle). The cleared
pixels’ color is set to the color of the background.

If secondary rays are enabled (reflections and/or refractions), then, based on the object’s
material, a reflected or refracted ray is fired, and the whole process is repeated, adding
color to the four pixels. Secondary rays are not fired by calling a recursive function, but
are put on a stack instead. Each stack item contains information about the ray, recursion
depth and the coefficient by which the color collected by this ray should be multiplied when
adding it to the final pixel color. For example, if an object reflects 50 % of light and a ray
is reflected off this object, the resulting color is multiplied by 0.5. This way, unnecessary
function calls are avoided. When the maximum allowed recursion depth is reached, no more
secondary rays are fired. When the stack is empty, the algorithm proceeds to the final step,
coloring the pixel in the bitmap.

Finally, the Bitmap object’s pixel array is accessed and the corresponding pixels are
colored. The SIMD view ray is then translated to the next position on the projection plane
and the process is repeated.

31/48



3.3 Testing Java Android application

3.2.6 BVH traversal

As SIMD rays are used for the acceleration of rendering, the algorithm for the traversal
of rays through the bounding volume hierarchy needs to be modified accordingly.

For both primary and shadow rays, the traversal is implemented using a stack. When
at least one ray of the four rays in the SIMD packet intersects a bounding box, one of its
child nodes is put on this stack (only if at least one of the rays intersects its bounding box)
and one is selected as the current node (again, only if at least one of the rays intersects
its bounding box). If none of the two child nodes are intersected by any of the four rays,
the traversal stack is popped. If the ray enters a leaf node, triangles are intersected and
intersections noted. When the traversal stack is empty, the traversal is over. Traversal of a
tree branch can be ended prematurely when none of the rays intersects a node’s bounding
box or when the intersections of the rays with the bounding box are further away than the
nearest found triangle intersections.

Unlike for primary rays, shadow ray traversal can end prematurely in a different way.
Throughout the traversal, a value is stored for each of the four rays indicating whether
they are occluded and do not light up the given triangles intersected by the primary rays.
When all four rays have this value false, the traversal can be ended prematurely.

3.3 Testing Java Android application

To test the implemented ray tracing library, a simple Android application was written
in Java. The application consists of the MainActivity class that extends the Activity

class, which is a basis for and application’s ’window’ on Android. Into this window, a View

object is embedded. A View allows the manipulation of the Bitmap object that is drawn to
the screen. The View gets refreshed in regular intervals fast enough, so its onDraw method
is used to call the library’s rendering method. That results in a fluent experience, provided
the library is fast enough with the rendering and data structure rebuilding.

There are also 10 buttons added, six for the movement of the camera and 4 for its ro-
tation. Animated objects (objects with more than one mesh assigned) are encapsulated by
the AnimatedObject Java class, which changes the selected mesh of the object in intervals
of selected length. This allows for the animation of the objects.

The View class also contains methods containing scene definition and updates (hard-
coded for the purposes of testing in chapter 4).
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3.4 BVH construction

3.3.1 OBJ file parser

A necessary part of the testing application is a parser of meshes in the OBJ format. The
files are packaged with the application and then access using a resource locator. A simple
parser was implemented for the purposes of this thesis. It accepts a file stream and parses
the files line by line. At this point, vertex coordinates, normal coordinates, triangles and
quads are supported. The parser directly calls the library’s functions for adding meshes
and triangles.

3.4 BVH construction

The BVH building algorithm based on the surface area heuristic which uses binning
during the node splitting phase described in [10] is implemented within the ray tracing
system.

Since the upper bound of the number of nodes of a bounding volume hierarchy is known
(2n− 1 for n triangles), it is possible to allocate the space beforehand and avoid dynamic
memory allocation throughout the building process. An array of node objects is therefore
allocated before the build to serve as an object pool. A single BVH node has the following
structure:

struct BVH_node {

AABB box;

union {

int firstPrim;

int leftChild;

};

union {

// bits 0 - 30: count/index, bit 31: 0 - inner node, 1 - leaf

int numPrim;

int rightChild;

};

};

The leftChild and rightChild variables are used for inner nodes and are indices poin-
ting into the node array to the left, resp. right child node of a node, firstPrim and numPrim

are used for leaf nodes, where prim is short for a geometric primitive (triangle in this case).
The firstPrim variable denotes the first triangle from the triangle array that the leaf node
addresses, numPrim denotes the number of triangles in that leaf node. To differentiate inner
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3.4 BVH construction

nodes from leaf nodes without additional memory consumption, the most significant bit of
numPrim/rightChild is 0 for inner nodes and 1 for leaves. Before operating with a leaf, the
bit has to be cleared using the 0x80000000 bit mask. The presence of the union constructs
is not necessary, it only serves for better orientation in construction and traversal code.
AABB represents a bounding box by six floating point values, and therefore takes 24 bytes
of memory. The whole BVH node consumes 32 bytes of memory.

As mentioned in the previous paragraph, triangles are stored and supplied to the bul-
ding algorithm in an array. However, they are not accessed directly, but via an auxiliary
array of triangle indices (triangle reference array). This allows for minimal data movement
when for example sorting or otherwise manipulating the triangle array.

The construction algorithm implemented is a top down builder based on binning descri-
bed in chapter 2.3. It is a top-down builder which aims to reduce the number of possible
options of dividing an inner node of a bounding volume hierarchy by projecting triangles
into bins and only testing several split options using these bins.

The algorithm terminates dividing nodes when the number of triangles drops below a
certain threshold. The process is shown in pseudocode in algorithm 3.

The bitwise operations needed to distinguish inner and leaf nodes are left out of algori-
thm 3 for the sake of readability. The algorithm is not recursive and uses a stack instead.
As can be seen, data movement is minimized by directly continuing the build with one of
the child nodes instead of storing them both on the stack and then popping the stack right
after.

All the expensive computations happen in the getDividingTri function, which returns
the index of the first triangle that should go into the right child from a subarray of triangle
indices. The selection is done using the surface area heuristic and binning to estimate the
best way to divide the current node. The function accepts a part of the triangle reference
array as parameter (index of the first triangle and number of triangles), along with the
area of the current node’s bounding box, and references to both the left and right child’s
bounding box, which are filled in this function during the process of finding the best split.

The idea is to divide the bounding box of triangle centers of the current node into se-
veral bins of equal size. The division happens along the widest axis of the bounding box
enclosing the centers of the triangles’ bounding boxes, not their vertices. Then, triangles
are distributed into these bins based on the coordinates of their bounding box centers. For
each bin, two bounding boxes are kept, leftBox and rightBox. Initially, they are both si-
zed to enclose the triangles in the particular bin. After all the triangles are distributed, the
array of bins is iterated over in both directions. When going in one direction, the leftBox
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of each bin is resized to accomodate all leftBoxes of the bins before it. In the other di-
rection, the same is done with the rightBox of each bin. This way, bounding boxes of each
potential left and right child are obtaind for several splitting plane positions. During the
iteration, the triangle counts leftCount and rightCount are updated along with the boxes.

After evaluating the bounding boxes of bins, the array of bins is iterated over once
more and the best split is selected based on the surface area heuristic, which can now be
calculated because both the bounding box areas and numbers of triangles in the left and
right children for each particular configuration are known.

The last step is to sort the triangles in the subarray based on which child node they
belong to, left or right. This is done by one iteration over the triangle reference array. A
copy of the subarray of triangle indices is made and triangle indices are stored either at
the beginning or at the end of the original subarray, based on which child they belong to.
During this process, the index of the first triangle that belongs to the right child is found
and returned to the main building function. The resulting left and right triangle index
subarrays then undergo the subdivision process again.

The getDividingTri function is implemented both with and without the use of NEON
vector instructions. Performance testing in chapter 4 shows that using the vector instructi-
ons leads to large performance gains in the build process. Pseudocode of the binning process
can be seen in algorithm 4.

The specific parts where NEON instructions are used is the calculation of the boun-
ding box enclosing the triangle centers and the triangle distribution among bins. For the
triangle center bounding box calculation, triangle centers are processed in packs of four
and contained in four different bounding boxes. When all centers are processed, the four
bounding boxes are merged into one. In the triangle distribution phase, four indices of bins
in which triangles belong are calculated at once. The triangles are then distributed using
standard non-vector instructions.

This algorithm can also be parallelized using multiple threads. Since the tested Android
device has a 4-core CPU, this fact is also utilized. From the proposed approach described
in [10], only the parallelization of the subtrees was implemented (called vertical phase).
The parallelization in the upper part of the BVH when subtrees are being generated was
also tested, but only yielded performance drops, probably due to the high cost of starting
and joining threads. Using a thread pool might be the solution in this case, but was not
further tested.

In the first phase of the multi-threaded version of the algorithm, a number of nodes to
further subdivide is created. These nodes are then supplied to several threads as jobs. The
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generation of subtrees created in the first phase by one thread is controlled by a constant,
nS, which indicates the threshold number of triangles in a node. If the number of triangles
in a node drops below this value, the node (future subtree) is not further subdivided, but is
put on a stack instead. When all nodes are processed in the first phase using this rule, a list
of nodes for further splitting is ready for the second phase. Multiple threads are started,
each taking nodes from the subtree array, until the subtree array is empty.

Access to the subtree array is implemented using an atomic integer variable. Each thread
is able to atomically fetch and increment its value without interfering with the work of other
threads. This way, threads which process smaller subtrees can fetch new subtrees to process
dynamically and no manual distribution of subtrees among threads is necessary.

It is also important to note that during the implementation, ShinyProfiler ( [12]) was
used to find the most computationally expensive parts of code and remove bottlenecks.
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foreach triangle T in bvh.triangleArray do
bvh.rootNode.AABB.contain(T );

if size(bvh.triangleArray) < numTriInLeaf then
bvh.rootNode.firstPrim ← 0;
bvh.rootNode.numPrim ← size(bvh.triangleArray);

else
bvh.triRefArray ← new int[size(bvh.triangleArray)];
for int i=0; i<size(bvh.triangleArray); i++ do

bvh.triRefArray[i] ← i;

nodeList ← new BVH node[2 * size(bvh.triangleArray)];
curNode ← nodeList[0];
toSubdivideStack ← new int[64]; numToSubdivide ← 0;
while true do

leftChild ← nodeList[numBvhNodes++];
rightChild ← nodeList[numBvhNodes++];

firstTri ← curNode.firstTri;
numTri ← curNode.numTri;

dividingTri ←
getDividingTri(firstTri, numTri, area(curNode.box), leftChild.box, rightChild.box);

leftChild.firstTri ← firstTri;
leftChild.numTri ← dividingTri;
rightChild.firstTri ← firstTri + dividingTri;
rightChild.numTri ← (numTri - dividingTri);

curNode.leftChild ← numBvhNodes - 2;
curNode.rightChild ← numBvhNodes - 1;
if (leftChild.numTri) > numTriInLeaf then

if (rightChild.numTri) > numTriInLeaf then
toSubdivideStack[numToSubDivide++] ← curNode.rightChild;

curNode ← leftChild;

else if (rightChild.numTri) > numTriInLeaf then
curNode ← rightChild;

else if numToSubdivide > 0 then
curNode ← nodeList[toSubdivideStack[−−numToSubdivide];

else
break;

Algorithm 3: Algorithm of the BVH builder based on binning
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centersBox ← new AABB;
for int i=firstTri; i<firstTri + numTri; i++ do

centersBox.contain(triArray[triRefArray[i]].center);

axis ← centersBox.widestAxis;

for int i=firstTri; i<firstTri + numTri; i++ do
binIndex ← numBins * (triArray[triRefArray[i]].center[axis] -
centersBox.min[axis]) / (centersBox.max[axis] - centersBox.min[axis]);

triArray[triRefArray[i]].binIndex ← binIndex;
binList[binIndex].leftBox.contain(triArray[triRefArray[i]);
binList[binIndex].rightBox.contain(triArray[triRefArray[i]);
binList[binIndex].numTri++;

for int i=1; i<numBins; i++ do
binList[i].leftBox.contain(binList[i-1].leftBox);
binList[i].leftTriNum ← binList[i].numTri + binList[i-1].leftTriNum;

for int i=numBins-2; i>=0; i−− do
binList[i].rightBox.contain(binList[i+1].rightBox);
binList[i].rightTriNum ← binList[i].numTri + binList[i+1].rightTriNum;

bestSAHvalue ← ∞;
divBinIndex ← 0;

for int i=0; i<numBins-1; i++ do
SAHvalue ← (binList[i].leftBox.area * binList[i].leftTriNum +
binList[i+1].rightBox.area * binList[i+1].rightTriNum);

if SAHvalue < bestSAHvalue then
bestSAHvalue ← SAHvalue;
divBinIndex ← i;

triRefArrayCopy ← copy of triRefArray;
leftIndex ← firstTri;
rightIndex ← firstTri + numTri - 1;
for int i=0; i<numTri; i++ do

if triArray[triRefArrayCopy[i]].binIndex > divBinIndex then
triRefArray[rightIndex−−] ← triRefArrayCopy[i];

else
triRefArray[leftIndex++] ← triRefArrayCopy[i];

return (leftIndex - firstTri);
Algorithm 4: BVH node splitting based on binning
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4 Performance testing and evaluation

In this chapter, performance of both the implemented BVH building algorithm and the
rendering system is tested and usability for real-time applications is evaluated. Tests are
performed on 15 scenes using meshes with varying triangle count and distribution. All tests
are done under these conditions and settings:

• Rendering is done using the multithreaded algorithm with the use of NEON instructi-
ons, as described in section 3.2.5, using 4 threads.

• Primary and shadow SIMD rays are fired. Diffuse and specular color components are
calculated for each pixel.

• One point light is added to each scene.

• Rendering performance is measured as the duration of one frame rendering in milli-
seconds.

• Quality of the constructed BVH is evaluated using the surface area heuristic. Also,
the average number of intersections of a ray with a bounding box and with a triangle
are measured for each BVH. It is important to note that these values are measured
for SIMD rays, which are packets of four single rays.

• Resolution of the rendered image is set to 1024x576, which follows from the 16:9
aspect ratio of the device’s screen.

• Rendering performance is measured for the camera position, angle and field of view
which can be seen in figures 9 and 10.

As mentioned in chapter 3.4, the algorithm for node splitting was implemented both
with and without the use of NEON instructions. Additionally, the whole build process was
implemented with the utilization of both one and several threads. Three build configurati-
ons are therefore tested and evaluated in the following sections.

4.1 Keyframe animation scenes

In the first set of scenes, each scene contains one rigid object which references 10 me-
shes. Each of these meshes contains the same geometry, but the topology is different. The
rigid object loops through the meshes creating an animation. In these scenes, the measu-
red values are averaged across all 10 meshes. Rendering performace that is measured does
not include rebuilding of the BVH for each mesh before rendering each frame. This can
easily be calculated by summing the frame time in milliseconds with the BVH build time
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in milliseconds. The selected keyframe animation scenes can be seen in figure 9 including
their triangle counts.

(a) Mannequin (5378 triangles) (b) Toasters (11141 triangles) (c) Marbles (8800 triangles)

(d) Hand (15855 triangles) (e) Ben (78029 triangles)

Figure 9: Keyframe animation scenes used for performance tests

4.2 Static scenes

In the second set of scenes, each scene contains one rigid object which references one
triangle mesh. As with the dynamic scenes, rendering performance is again measured wi-
thout the BVH being rebuilt before each frame. The selected scenes including their triangle
counts can be seen in figure 10.

40/48



4.3 BVH construction - setup 1

(a) Sponza (66450
triangles)

(b) Fairy Forest
(174117 triangles)

(c) Armadillo (345944
triangles)

(d) Spaghetti Monster
(71160 triangles)

(e) Bicycle (42390
triangles)

(f) Graphics Card
(70166 triangles)

(g) Cottage (39004
triangles)

(h) Narrow Gauge
(62960 triangles)

(i) Pillows (109324
triangles)

(j) Well (161208
triangles)

Figure 10: Static scenes used for performance tests

4.3 BVH construction - setup 1

In the first BVH algorithm testing setup, the single-threaded version is used. For the
node split search, the algorithm without SIMD NEON instructions is used. The builder is
configured as follows:

• The cost of a ray-bounding box intersection (Ct) and ray-triangle intersection (Ci)
are set to 1.0 and 2.0, respectively.

• The threshold value for the number of triangles in a leaf node is set to 10.

• The number of bins for the node splitting phase is set to 16.

The results of BVH construction times can be seen in table 3. For the keyframe ani-
mation scenes, the build time is averaged across 10 triangle meshes.
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4.4 BVH construction - setup 2

Scene triangles Build time [ms]

Mannequin 5378 11.17
Toasters 11141 23.04
Marbles 8800 14.95
Hand 15855 32.61
Ben 78029 216.95
Sponza 66450 175.32
Fairy Forest 174117 575.65
Armadillo 345944 2326.57
Spaghetti Monster 71160 200.74
Bicycle 42390 118.71
Graphics Card 70166 237.88
Cottage 39004 107.33
Narrow Gauge 62960 335.85
Pillows 109324 486.76
Well 161208 493.74

Table 3: BVH build performance - BVH built with a single thread

4.4 BVH construction - setup 2

In the second BVH algorithm setup, the single-threaded version is used as well. For
the node split search, however, the algorithm which utilizes SIMD NEON instructions is
selected. The builder is configured the same way as in setup 1:

• The cost of a ray-bounding box intersection (Ct) and ray-triangle intersection (Ci)
are set to 1.0 and 2.0, respectively.

• The threshold value for the number of triangles in a leaf node is set to 10.

• The number of bins for the node splitting phase is set to 16.

The results of BVH construction times can be seen in table 4. For the keyframe ani-
mation scenes, the build time is averaged across 10 triangle meshes. In the fourth column,
the relative improvement in build times over setup 1 is shown.
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4.5 BVH construction - setup 3

Scene triangles Build time [ms]
Improvement

(vs. setup 1) [%]

Mannequin 5378 6.48 41.99
Toasters 11141 16.46 28.56
Marbles 8800 11.26 24.68
Hand 15855 28.53 12.51
Ben 78029 155.33 28.40
Sponza 66450 129.15 26.33
Fairy Forest 174117 409.09 28.93
Armadillo 345944 1122.8 51.74
Spaghetti Monster 71160 137.82 31.34
Bicycle 42390 71.84 39.48
Graphics Card 70166 138.95 41.59
Cottage 39004 69.97 34.81
Narrow Gauge 62960 121.43 63.84
Pillows 109324 209.81 56.90
Well 161208 363.31 26.42

Table 4: BVH build performance - BVH built with a single thread, NEON instructions

4.5 BVH construction - setup 3

The third setup uses the multi-threaded two-phase algorithm. For the node split search,
the algorithm which utilizes NEON instructions is used. The builder is configured as follows:

• The cost of a ray-bounding box intersection (Ct) and ray-triangle intersection (Ci)
are set to 1.0 and 2.0, respectively.

• The threshold value for the number of triangles in a leaf node is set to 10.

• The number of bins for the node splitting phase is set to 16.

• The constant which determines the threshold value for the number of primitives in
a subtree which is processed by a thread (described in chapter 3.4) is set to 8. That
means that subtrees for the second phase of the build contain anywhere between 1/8
and 1/16 of the total number of triangles in the mesh.

The results of BVH construction times can be seen in table 5. For the keyframe ani-
mation scenes, the build time is averaged across 10 triangle meshes. In the fourth column,
the relative improvement in build times over setup 2 is shown, in the fifth column, the
build times are compared to build times in the first setup.
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4.6 Rendering performance and BVH quality

Scene triangles Build time [ms]
Improvement

(vs. setup 2) [%]
Improvement

(vs. setup 1) [%]

Mannequin 5378 6.02 7.10 46.11
Toasters 11141 18.48 -12.27 19.79
Marbles 8800 9.95 11.63 33.44
Hand 15855 21.5 24.64 34.07
Ben 78029 128.52 17.26 40.76
Sponza 66450 113.74 11.93 35.12
Fairy Forest 174117 309.57 24.33 46.22
Armadillo 345944 639.43 43.05 72.52
Spaghetti Monster 71160 105.74 23.28 47.32
Bicycle 42390 60.49 15.80 49.04
Graphics Card 70166 142.67 -2.68 40.02
Cottage 39004 56.15 19.75 47.68
Narrow Gauge 62960 105.25 13.32 68.66
Pillows 109324 137.85 34.30 71.68
Well 161208 276.89 23.79 43.92

Table 5: BVH build performance - BVH built with multiple threads, NEON instructions

The build times for the Toasters and Graphics Card scenes are actually worse than in
setup 2. Experiments have shown that setting the number of primitives in a subtree which
is processed by a thread to 4 instead of 8 (leaving more work for the second, parallel phase
of the build) for these scenes improved the result, which was then better than in setup 2.
For other scenes, this change resulted in worse build times.

4.6 Rendering performance and BVH quality

Rendering performance is measured for all listed scenes using the camera setup visible
in figures 9 and 10 and resolution 1024x576. Using different viewpoints and resolutions
influences the rendering performance significantly. The cost of the built data structures is
evaluated using the surface area heuristic. The average number of intersections of a SIMD
ray with a bounding box and a triangle during one traversal of the BVH is also measured.
The results can be seen in table 6.
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4.7 Discussion

Scene triangles BVH cost Avg. ray-box tests Avg. ray-tri tests Render time [ms]

Mannequin 5378 34.99 8.83 4.79 76.78
Toasters 11141 76.28 28.69 14.03 221.11
Marbles 8800 61.98 20.67 12.11 82.98
Hand 15855 48.39 21.46 11.09 165.33
Ben 78029 46.39 18.14 8.8 121.58
Sponza 66450 136.74 58.08 22.15 677.28
Fairy Forest 174117 53.06 30.28 10.05 355.66
Armadillo 345944 48.56 20.13 6.48 191.22
Spaghetti M. 71160 42.72 21.08 7.74 222.08
Bicycle 42390 51.62 16.96 9.54 207.67
Graphics C. 70166 225.17 49.77 24.44 229.73
Cottage 39004 81.23 28.35 13.64 181.35
Narrow G. 62960 49.47 23.85 9.49 238.09
Pillows 109324 103.41 34.65 17.38 243.97
Well 161208 70.2 22.56 9.95 255.6

Table 6: Scene rendering performance for 1024x576 resolution

4.7 Discussion

The results show that for an interactive application that aims to maintain 30 frames
per second, the implemented BVH builder is able to do a per-frame-rebuild of a BVH for a
triangle mesh of roughly 20000 - 30000 triangles, although the build time highly depends
on the triangle distribution within the mesh and the selected algorithm constants, and can
vary significantly from mesh to mesh.

Results of the testing with setup 2 show that using the NEON instruction set in the
node splitting phase has a huge impact on build performance. Evaluation of the tests with
setup 3 shows that splitting the whole build into two parts and building subtrees in pa-
rallel using multiple threads yields lower or higher performance boosts, depending on the
selected mesh and how work is divided between the two build phases. For the Toasters
scene, the improvement over the basic, single-threaded, non-SIMD algorithm is only 19%,
while for the Armadillo model, the improvement is over 72%.
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5 Conclusion

The research done in this thesis has shown that interactive applications using ray tra-
cing are already very possible and efforts have already shifted from efficient ray tracing to
efficient acceleration data structure building, allowing to move from interactive rendering
of static scenes to interactive rendering of dynamic ones, which is the ultimate goal.

The results of the evaluation in chapter 4 show that a contemporary high-end mobile
device with the Android operating system is certainly capable of rendering 3D scenes using
ray tracing, and is even able to do it in real time, depending on the quality of the imple-
mentation, scene complexity and the hardware specifications of the device.

The implemented ray tracing system and BVH builder are able to render a dynamic
scene at an interactive framerate. Since the screen of a mobile device is small, the reso-
lution can be lowered without a significant impact on user experience, allowing for even
higher framerates than those measured in chapter 4. The implemented BVH builder is
able to rebuild the data structure of one or several meshes before the rendering of each
frame takes place, depending on the complexity and number of the meshes.

5.1 Future development

An advantage for partly dynamic and partly static scenes, or scenes which use rigid body
motion and do not require fast rebuilding of acceleration data structures, using k-d trees
for certain models could speed up the rendering phase significantly, since, k-d trees are
currently the most efficient acceleration data structures for ray tracing. Combining meshes
with bounding volume hierarchies and meshes with k-d trees would be possible using the
object bounding volume hierarchy described in chapter 3.2.1.

Another possible path of examination and development is using the dedicated graphics
processor on the device, which requires differently designed algorithms for both rendering
and data structure construction.
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6 Appendix

6.1 CD Contents

Directory name Description
NativeRayTracer The implemented application (three eclipse IDE pro-

jects) without scene data
Documentation Source code documentation for the NativeRayTracer-

Library
Screenshots Screenshots of the tested scenes
dp langrjan.pdf The master thesis text

Table 7: CD contents
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