
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Master's Thesis

Salzella - A Declarative Language for Music Generation

�t¥pán Volf

Supervisor: doc. Ing. Karel Richta, CSc.

Study Programme: Open Informatics, Master's Program

Field of Study: Software Engineering

June 9, 2016



iv



v

Aknowledgements

I would like to express my gratitude to doc. Ing. Karel Richta, CSc. for the time he invested
in supervising my thesis. Thanks to my family for supporting me throughout my studies.



vi



vii

Declaration

I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic �nal thesis.

In Prague on May 26, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



viii



Abstract

Salzella is a domain speci�c declarative language. Its primary focus lies in the �eld of
music generation. The key principle upon which the language is built can be summarized
as follows: For any existing piece of music it should be possible to create a Salzella program
which will describe it in a way that running this program will output a piece of music similar
to the original. Salzella programs are presumed to be generated rather then written by hand.
The sole purpose of Salzella is to make creation of music generating tools easier. Bundling
Salzella interpreter with music generating software and using it as an engine can provide a
signi�cant level of abstraction and thus make the development of such software a lot easier.
Tools built on top of Salzella can generate Salzella programs and let the interpreter worry
about the actual music generation. The key structural property of Salzella is extensibility.
The algorithms responsible for the actual music generation are distributed in a from of
plugins. This allows the creators of the aforesaid music generating software to modify Salzella
capabilities to their own liking. To prove that Salzella interpreter can indeed be used as
internal engine of music generating tools, a prototype of an algorithm for converting musical
pieces into Salzella programs was created. As a side e�ect of creation of this algorithm, three
Salzella extensions were created. These extensions are responsible for: generating a melody,
generating a simple harmony and generating a percussive complement. An algorithm for
harmony analysis was also created as part of this thesis. This algorithm is used by the
conversion algorithm. A development environment which allows its users to easily create
and execute Salzella programs was also created as part of this thesis.

Abstrakt

Salzella je doménov¥ speci�cký deklarativní jazyk, jehoº vyuºití lze nalézt p°edev²ím v oblasti
generování hudby. Klí£ový princip, na kterém je jazyk postaven, lze shrnout následovn¥:
Pro jakékoli existující hudební dílo by m¥lo být moºné vytvo°it program v jazyku Salzella,
který toto dílo popí²e tak, ºe spu²t¥ním tohoto programu dojde k vygenerování hudební díla
podobného hudebnímu dílu originálnímu. Hlavním cílem jazyka Salzella je usnadnit vývoj
nástroj· pro generování hudby. Nástroje postavené nad platformou Salzella mohou místo
hudby generovat programy v jazyku Salzella a samotné generování hudby ponechat na in-
terpretovi tohoto jazyka. Hlavním strukturálním rysem vytvo°eného jazyka je roz²i°itelnost.

ix



x

Algoritmy odpov¥dné za samotné generování hudby jsou distribuované formou plugin·, coº
tv·rc·m vý²e zmín¥ných nástroj· umoº¬uje roz²í°it schopnosti jazyka podle pot°eby. Pro
ilustraci moºnosti tvorby hudbu generujících nástroj· nad platformou Salzella byl vytvo°en
prototyp algoritmu, který dokáºe vytvá°et programy v jazyku Salzella na základ¥ existujících
hudebních d¥l. V souvislosti s tvorbou tohoto algoritmu byla vytvo°ena t°i roz²í°ení jazyka
Salzella. Tato roz²í°ení slouºí k: vygenerování melodie, vygenerování jednoduché harmonie a
vygenerování perkusivního podkladu. Jakoºto sou£ást algoritmu pro p°evád¥ní hudebních d¥l
do program· Salzella byl vytvo°en algoritmus pro analýzu harmonie. Samoz°ejmou sou£ástí
diplomové práce byla rovn¥º tvorba vývojového prost°edí, ve kterém je moºné vytvá°et a
spou²t¥t programy ve vytvo°eném jazyku.



Contents

Structure of this document i

1 Introduction 1

1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Musical piece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Playback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Similarity criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goal declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Development environment . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Open source music libraries . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 MIDI speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Early attempts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Name of the language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Similarity criterion 11

2.1 Overall strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Harmony analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Problem categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Problem solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Time/space complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Melody generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Problem categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Problem solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.5 Time/space complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Percussion generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Problem solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Time/space complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xi



xii CONTENTS

2.5 Speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Extended similarity criterion 33

3.1 Auxiliary de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.4 Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.5 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.6 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Realization 49

4.1 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Salzella object model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.3 Lightweight MIDI entities . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.4 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.5 Execution control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.6 Custom exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.7 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.8 Plugin interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.9 Implementation notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Development environment 59

5.1 User guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Manual program creation . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Automated program creation . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.3 Playback of musical pieces . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.4 MIDI export/import . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.5 Performing undo/redo . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Implementation notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Conclusion 67

6.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.3 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Verse and chorus support . . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS xiii

6.2.2 Surface matrix convention . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.3 Manual creation of surface matrices . . . . . . . . . . . . . . . . . . . . 69

A Lengthy de�nitions 73
A.1 Instrument mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Percussion mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.3 Playback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.4 Integer literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.5 Literal mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B Example programs 83
B.1 Program 1 - Rock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.2 Program 2 - Blues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.3 Program 3 - Jazz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
B.4 Program 4 - Folk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.5 Program 5 - Classical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C UML diagrams 91
C.1 Salzella object model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C.2 Lightweight MIDI entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

D Contents of the enclosed CD 93



xiv CONTENTS



Structure of this document

The �rst three chapters of this thesis deal with formal description of both the problem and its
solution. These chapters are addressed primarily to academic audience and are written using
strictly formal language. Chapters four and �ve describe technical realization of the proposed
solution. These chapters focus on architectural properties of the developed software and
contain important implementation notes. The last chapter evaluates the proposed solution
and contemplates on possibilities of future improvements.

Chapter 1: Introduction

In the �rst chapter, the goal of this thesis will be formally declared. Methodology to
achieve the given task will be formulated and related works will be examined. Also, the
following three terms will be de�ned: musical piece, similarity criterion and extended
similarity criterion.

Chapter 2: Similarity criterion

The second chapter deals with designing an algorithm which given a musical piece will
produce another musical piece similar to the original. This task will be divided into
three subtasks: harmony analysis, melody generation and percussion generation. For-
mally, the task solved in this chapter is creation of an instance of similarity criterion.

Chapter 3: Extended similarity criterion

The third chapter transforms the similarity criterion from the previous chapter into
an instance of extended similarity criterion. As a side e�ect of this transformation a
declarative language called Salzella will be created and its formal speci�cation given.
The solution proposed in this chapter is extensible in a way which allows it to absorb
functionality of arbitrary number of similarity criterions.

Chapter 4: Realization

In the fourth chapter, the implementation of Salzella interpreter will be documented.
This includes introducing concepts such as Salzella object model or lightweight MIDI

i



CHAPTER 0. STRUCTURE OF THIS DOCUMENT

entities. Contents of this chapter are crucial to anyone who would like to use Salzella
interpreter as internal component of music generating tools or create extensions.

Chapter 5: Development environment

In the �fth chapter, Salzella development environment will be described from the
software engineering point of view. This chapter provides an overview of architectural
properties of the application and contains important implementation notes. A user
guide showing how to use the development environment is also part of this chapter.

Chapter 6: Conclusion

The sixth chapter evaluates the proposed solution. Both the advantages and disadvan-
tages of the created language will be discussed. Possibilities of future improvements
will be contemplated on.

Appendix A: Lengthy de�nitions

This appendix contains primarily de�nitions which require enumerative approach such
as functions realizing mapping of integer numbers to types of musical instruments.
Instead of unnecessarily prolonging the main body of this document, these de�nitions
were moved to appendix and are referenced from relevant chapters.

Appendix B: Example programs

This appendix contains several example programs written in the created language.
Each program addresses a di�erent music genre. The main purpose of these example
programs is to illustrate genre independence of the created language.

Appendix C: UML diagrams

This appendix contains UML diagrams which provide a brief overview of structural
properties of key components of Salzella platform. UML diagrams for Salzella object
model and Salzella lightweight MIDI entities can be found in this appendix.

Appendix D: Contents of the enclosed CD

This appendix contains a graphical overview of contents of the enclosed CD. Both the
source codes and executables for all components of Salzella platform can be found on
the enclosed CD.

ii



Chapter 1

Introduction

1.1 Terminology

1.1.1 Musical piece

Since this thesis deals with the �eld of music generation, it will inevitably involve develop-
ment of music generating algorithms. Regardless of its length or musical quality, the output
of a music generating algorithm will be always referred to as a musical piece. In this section
a formal de�nition of what a musical piece is will be provided.

Before the formal de�nition of musical piece will be provided, two auxiliary de�nitions
will be given. These de�nitions will introduce concept of events and tracks. Events are
formal representations of elementary musical actions such as playing a tone on a piano or
hitting a percussive instrument. The concept of tracks allows events to be grouped together
based on types of instruments which should be used to realize these events. In most cases,
tracks can be thought of as representations of musicians and events as actions performed
by these musicians. In addition to a multiset of events and a multiset of tracks, a function
which will assign a track to each event will be part of the formal de�nition of musical piece.
Note that this structural concept was borrowed from conventional de�nitions used in graph
theory to assign a pair of vertices to each edge. This structural similarity is emphasized
by the notation. Being a usual choice when denoting the incidence function of a graph, ρ
will be used to denote the event-to-track assignment function. Note that in order to make
the de�nitions compatible with industry standards, both the lower and upper bounds of
integer valued properties were chosen with respect to MIDI speci�cation [1]. There will,
however, be some exceptions to this. For example, the range of integer values representing
musical instruments will be extended to include value 128 which will be later used to denote
percussive instruments.

1.1.1.1 Event

Event is an ordered quadruple of non-negative integers <start, end, pitch, velocity>
for which the following constraint holds: 0 ≤ start < end < 231 ∧ 0 ≤ pitch < 128 ∧
0 ≤ velocity < 128.

1



CHAPTER 1. INTRODUCTION

1.1.1.2 Track

Track is an ordered pair of non-negative integers <instrument, volume> for which
the following constraint holds: 0 ≤ instrument ≤ 128 ∧ 0 ≤ volume < 128.

1.1.1.3 Musical piece

Musical piece is an ordered quintuple<Events, Tracks, ρ, tempo, resolution>. Events
is a multiset of events. Tracks is a multiset of tracks. ρ : Events → Tracks is a
function which assigns a track to each event. tempo and resolution are positive in-
teger numbers for which the following constraint must hold: 0 < tempo < 231 ∧ 0 <
resolution < 231.

1.1.2 Playback

Anyone familiar with MIDI speci�cation should �nd transformation of musical pieces into
actual physical sound quite intuitive. Formal description of this transformation will be pro-
vided nevertheless. Note, however, that since de�nitions of functions which assign types of
musical instruments and percussive sounds to integer numbers must be handled in enumer-
ative fashion, formal de�nition of playback is a bit lengthy. And since this de�nition is not
essential, it was moved to appendix A.3.

1.1.3 Similarity criterion

The strategy which will be taken to solve the music generation problem is based on notion of
two musical pieces being similar to each other. Providing a mechanism for deciding whether
one musical piece is similar to another is therefore necessary. This will be achieved by de�ning
a function which given any musical piece would return a non-empty set of musical pieces.
A musical piece m1 will then be said to be similar to musical piece m2 if and only if it is
contained in a set produced by applying the similarity function on m2. Note that the binary
relation implied by this function will not be required to be symmetric. In other words, a
situation where m1 is similar to m2 and m2 is not similar to m1 will be allowed to occur.
Similarly, this relation will not be required to be transitive, ie. if a musical piecem1 is similar
to musical piece m2 and m2 is similar to musical piece m3, m1 doesn't necessarily have to
be similar to m3. This concept of similarity is obviously awkward. But as discussed later,
enforcing these properties could result in great increase in both time and space complexity
of the actual implementations of algorithms which would realize this relation. In fact, even
the requirement of re�exivity (if attempted to be handled in a non-trivial way) could result
in unnecessary increase in complexity and therefore will not be enforced.

When creating an instance of the similarity function, it would be most bene�cial to allow
its users to in�uence its behavior by means of parameterizing it with additional data. For
example, should some particular implementation of similarity function contain a subroutine
which would solve some optimization problem, it could be parametrized with a set of scoring
matrices which - depending on their impact on the output - could contain a de facto de�nition
of what makes two musical pieces similar. For sake of simplicity of the formal de�nition of

2



1.1. TERMINOLOGY

similarity function, parameters will be presumed to be provided in a form of a single binary
word.

1.1.3.1 Similarity criterion

LetM be a set of all musical pieces. Similarity criterion is an ordered pair<Parameter,
converter>. Parameter is a subset of all binary words, ie. Parameter ⊆ {0, 1}∗.
converter : M ×Parameter → P(M) is a function which for any given musical piece
returns a non-empty set of musical pieces.

Every time two musical pieces will be said to be similar, it will be necessary to state
what instance of similarity criterion was used when determining the similarity. Similarly,
the instance of similarity criterion parameter used to produce the similarity set will be also
required to be stated. This is because using a di�erent parameter would most likely result
in producing a di�erent similarity set. Also, note that the de�nition of similarity below is
sensitive on order in which the musical pieces are presented. Since the similarity relation
is not required to be symmetric, the fact that musical piece m1 is similar to m2 doesn't
necessarily have to mean that m2 is similar to m1.

1.1.3.2 γ-similarity

Let m1 and m2 be two musical pieces. Let γ be an instance of similarity criterion.
Let p be a parameter of γ, ie. p ∈ γ.Parameter. m1 is said to be γ(p)-similar to m2

if and only if m1 ∈ γ.converter(m2, p).

In case the goal of this thesis was to create an algorithm for generating musical pieces
similar to musical piece at the input, it could be now said that the goal of thesis is to
create and implement an instance of similarity criterion. However, goal of this thesis is to
create a language capable of encapsulating essence of musical pieces. Programs written in
such language could be either automatically generated based on existing musical pieces or
manually written from scratch. This language could be thought of as an 'assembly' language
for music generating software creators. Instead of dealing with low-level details of manually
creating individual notes, creators of such tools could simply describe the desired contents in
higher-level language and let the interpreter of this language worry about the actual music
generation. Below is a slightly modi�ed version of similarity criterion which describes this
concept formally.

1.1.3.3 Extended similarity criterion

Let M be a set of all musical pieces. Extended similarity criterion is an ordered quin-
tuple <Σ, L, Parameter, converter, interpreter>. Σ is a non-empty set of alphabet
symbols. L is a language over alphabet Σ, ie. L ⊆ Σ∗. Parameter is a subset of all bi-
nary words, ie. Parameter ⊆ {0, 1}∗. converter : M ×Parameter → L is a function
which for any given musical piece produces a word from L. interpreter : L→ P(M)
is a function which given a word from L returns a non-empty set of musical pieces.

3



CHAPTER 1. INTRODUCTION

1.1.3.4 Γ-similarity

Let m1 and m2 be two musical pieces. Let Γ be an instance of extended similarity
criterion. Let p be a parameter of Γ, ie. p ∈ Γ.Parameter. m1 is said to be Γ(p)-
similar to m2 if and only if m1 ∈ Γ.interpreter(Γ.converter(m2, p)).

Note that an extended similarity criterion can be created by means of decomposing a
similarity criterion. The actual steps taken to achieve this conversion may vary based on
particular instances of similarity criterions. The de�nition below only outlines the general
structure of the conversion.

1.1.3.5 Decomposing a similarity criterion

Let γ be a similarity criterion. To decompose γ means to create an extended similarity
criterion Γ by reusing γ.Parameter and leveraging γ.converter to create Γ.Σ, Γ.L,
Γ.converter and Γ.interpreter.

As mentioned earlier, neither γ-similarity nor Γ-similarity is required to be transitive.
This is because computational feasibility has to be taken into account. Sets produced by
γ.converter and Γ.interpreter can be huge and their creation computationally very expen-
sive. To overcome this limitation, implementations of these functions will not be required to
compute the whole sets. Instead, they will return one random representative of similar mu-
sical pieces per execution. Re�ecting on this limitation, transitive behavior can be simulated
by repeated application of similarity function on such randomly selected musical piece. Note
that the following concept of transitive similarity only de�nes direct, one-step transitivity.
Full transitive closure could be also de�ned. But the de�nitions below are simpler and more
than su�cient for later use.

1.1.3.6 Transitive γ-similarity

Let m1 and m2 be two musical pieces. Let γ be an instance of similarity criterion. Let
p be a parameter of γ, ie. p ∈ γ.Parameter. m1 is said to be transitively γ(p)-similar
to m2 if and only if there exists musical piece m3 such that m1 ∈ γ.converter(m3, p)∧
m3 ∈ γ.converter(m2, p).

1.1.3.7 Transitive Γ-similarity

Let m1 and m2 be two musical pieces. Let Γ be an instance of extended similar-
ity criterion. Let p be a parameter of Γ, ie. p ∈ Γ.Parameter. m1 is said to be
transitively Γ(p)-similar to m2 if and only if there exists musical piece m3 such that
m1 ∈ Γ.interpreter(Γ.converter(m3, p)) ∧m3 ∈ Γ.interpreter(Γ.converter(m2, p)).

4



1.2. GOAL DECLARATION

1.2 Goal declaration

1.2.1 Problem statement

The goal of this thesis is to create a declarative language for music generation. The strategy
I decided to choose is based on informal observation that whenever a musician comes up
with a musical idea, then - assuming this musical idea is conventional enough - it is highly
probable that someone else already had the same or at least very similar idea. The idea
behind this thesis is to solve the music generation problem by reversing the process of music
creation and use already existing musical pieces to create new ones. This will be attempted
to achieve by means of creating a language which would allow its users to encapsulate essence
of already existing musical pieces in form of programs. If done correctly, execution of such
programs should result in generating musical pieces similar to the originals. Note that even
though these programs are presumed to be automatically generated based on already existing
musical pieces, they can also be written by hand.

To create this language, de�nition of what makes two musical pieces similar must be
created. If only a formal framework for de�ning what musical similarity is existed. But
wait, it does. Creating an instance of extended similarity criterion as de�ned in 1.1.3.3. will
not only provide de�nition of what makes two musical pieces similar, but as a side e�ect will
also create a language.

1.2.1.1 Problem statement

Create an instance of extended similarity criterion esc = <Σ, L, Parameter, converter,
interpreter>. Provide formal speci�cation for both esc.Σ and esc.L. De�ne contents
of esc.Parameter and implement esc.converter. Implement esc.interpreter. Aim to
design esc to be versatile in terms of musical genres.

1.2.2 Methodology

Taking advantage of the fact that extended similarity criterions can be created by decom-
posing similarity criterions, I divided the main task into two subtask. In the �rst subtask,
a similarity criterion will be created. In the second subtask, the similarity criterion from
the �rst subtask will be used as basis for creating an extended similarity criterion. Keeping
in mind that there was more than one way to create the similarity criterion from the �rst
subtask, I will aim to make the resulting extended similarity criterion easily adaptable, ie.
able to absorb functionality of other possible instances of similarity criterions.

1.2.2.1 Subtask 1

Create an instance of similarity criterion sc = <Parameter, converter>. Realize this
criterion in a form of prototype, ie. a certain amount of limitations is allowed. For
example, this prototype doesn't necessarily have to satisfy the genre independence
requirement and can only work with a limited subset of musical genres.

5



CHAPTER 1. INTRODUCTION

1.2.2.2 Subtask 2

Decompose the similarity criterion from the �rst subtask and create and implement an
extended similarity criterion esc = <Σ, L, Parameter, converter, interpreter>. Keep
in mind that there was more than one way to create the similarity criterion. Aim to
make the extended similarity criterion easily adaptable, ie. able to absorb another
instances of similarity criterions as well.

In order to satisfy the genre independence requirement, I have decided to aim to design the
extended similarity criterion without explicit support of high level structures such as chords,
keys and scales and make these possible to de�ne manually within individual programs. As
a result, program creators should be fully in charge of what types of chords and scales can
be used within their programs and not be forced to choose from a prede�ned list of options.

1.2.3 Development environment

The secondary goal of this thesis was to create a development environment in which programs
written in the created language could be created and executed. A complete list of both
functional and non-functional requirements can be found below.

1.2.3.1 Functional requirements

The development environment will allow the user to:

r1 - Create Salzella programs

a - Manually edit code of a Salzella program

b - Use code completion to paste prede�ned blocks of code

c - Request automatic code formatting for better readability

r2 - Convert musical pieces into Salzella programs

a - Select a �le containing the musical piece to be converted

b - Generate a Salzella program by running the conversion algorithm

r3 - Validate Salzella programs
r4 - Execute Salzella programs
r5 - Listen to musical pieces

a - Select instruments for individual tracks

b - Adjust volume of individual tracks

c - Select subset of tracks to be muted

d - Select subset of tracks to be played back

e - Adjust tempo of musical piece

f - Start/stop playback of a musical piece

r6 - Load programs from built-in database
r7 - Save musical pieces to �les

6



1.3. RELATED WORKS

r8 - Load musical pieces from �les
r9 - Perform undo/redo operations over r1, r4 and r5a-r5e

When deciding what technology should be used to implement the development environ-
ment, I �rst considered HTML/Javascript. But due to the limited support of sound synthesis
and restrictions regarding �le system access, I have decided to implement the development
environment using the Java programming language instead and thus aim primarily at major
desktop platforms.

1.2.3.2 Non-functional requirements

nr1 - Use standard MIDI �les to store musical pieces
nr2 - Implement the development environment using Java SE 8

1.3 Related works

There are dozens of music generating programs and algorithms. Some solutions are robust
and aim to generate whole compositions [2], some are designed to perform speci�c tasks such
as generating jazz guitar solos [3]. To some extent, all of them leverage existing principles
described in music theory. This often includes outlining the bounds in which a certain level
of randomness is introduced. But there are also more exotic approaches like deriving music
from cellular automaton patterns [4]. Salzella platform will be designed in a way which will
make it possible to integrate existing music generating algorithms in a form of plugins. In
other words, Salzella will not compete with other solutions, it will be able to absorb them.
No attempts to make such framework seem to have taken place in the past. In order to
make the process of absorption of these algorithms as painless as possible, possibilities of
adopting some standardized computer representation of musical content were researched.
These solutions will be discussed in the rest of this section.

Note Speci�c subproblems such as harmony analysis or melody generation will be dealt
with in this thesis. Related works regarding these topics will be examined in relevant chapters
later on. The initial research discussed in this section focused strictly on similar existing
solutions and standardized ways of computer representation of musical content.

1.3.1 Open source music libraries

Open source libraries such as [5] or [6] provide their own data types not only for elementary
entities such as notes, but also for more complex structures like chords and scales. These
libraries could be useful when creating actual music generating algorithms. But there would
be little to no bene�t from building Salzella on top of any of them. As mentioned above,
Salzella will not provide explicit support for high level structures such as chords, scales
and keys. This means that the only relevant content of open source music libraries would
include several data types and enumerations related to representing a note. Developing these
structures from scratch is not a challenging task and the added bene�t of being in control
over the APIs of these structures is indisputable.

7



CHAPTER 1. INTRODUCTION

1.3.2 MIDI speci�cation

MIDI speci�cation [1] is primarily a communication protocol designed to deal with real time
communication between synthesizers. Several years after its original release in 1983, storage
of this communication by means of time stamping individual messages was standardized.
Using MIDI speci�cation as basis for structural representation of music seems to be most
bene�cial. Its popularity and platform independence increases the likelihood of compati-
bility with musical content representations used by the already existing music generating
algorithms. Furthermore, possibility of storing the generated musical contents in MIDI com-
patible format would allow Salzella users to import the generated snippets of music into
external software such as music notation editors or digital audio workstations. Below is an
informal description of how conversion of musical pieces into standard MIDI �les works.

1.3.2.1 Musical piece → MIDI

Let m be an instance of musical piece. When converting m to a standard MIDI �le,
start by creating a MIDI sequence and set its tempo and resolution to m.tempo and
m.resolution, respectively. Next, create a MIDI track for each track in m.Tracks. Fi-
nally, create a pair of note-on and note-o� MIDI messages for each event in m.Events
and encapsulate these messages in a MIDI event. Add the event to appropriate track
based on m.ρ.

1.4 Early attempts

Before diving into speci�cation of the language, let me shortly explain the motivation behind
the topic of this thesis. When working on my bachelor thesis, I created a music generating
tool called M-Architect [7]. M-Architect was a full featured music editor with additional
capabilities such as generating harmonies and bass lines under existing melodies. Shortly
after submitting the bachelor thesis, a series of usability tests was performed. In attempt
to �x the discovered usability issues, various modi�cations were made. These included
adding support for copy/paste functionality, allowing the user to store/load settings of music
generating algorithms or implementing more responsive editor controls. Perhaps the most
important improvement, however, was introduction of concept of scenarios. Scenarios allowed
the user to prede�ne complex sequences of actions and store them as macros. The existence
of scenarios allowed the application's functionality to be wrapped up and presented in a form
of a list of prede�ned macros and a single generate button.

The aforesaid modi�cations solved the most critical usability issue: the overall com-
plexity. Unfortunately, where one problem disappeared, another arose. Once advantageous
de�nition of music as triplet <melody, harmony, bass> was suddenly a cause of unnecessary
limitations in terms of variety of outputted music. Instead of redesigning the very basis
of this particular music generating tool, I decided to create a platform upon which music
generating tools could be built. For now, M-Architect is in a dormant state. But in the
future, it could be made less restrictive and rebuilt to use Salzella internally.

8



1.5. NAME OF THE LANGUAGE

1.5 Name of the language

The language is named after Mr. Salzella, a character from Terry Pratchett's novel Masker-
ade [8]. As a reference to the book, an arbitrary number of exclamation marks can be inserted
anywhere in a Salzella program without a�ecting its functionality. Note that this feature
is not a part of formal speci�cation of the language. It is an easter egg which only exists
in implementation of the language and only applies when invalid programs are passed to
the interpreter. If an invalid program is given to the interpreter, it will remove all exclama-
tion marks and attempt to run the program again. Allowing exclamation marks to appear
anywhere in Salzella programs at level of formal speci�cation would result in an increase
of complexity of the speci�cation. This increase would be surely unjusti�able because this
reference to the book is not even that funny.

1.5.0.2 Quote from Terry Pratchett's novel Maskerade

'What sort of person,' said Salzella patiently, 'sits down and writes a maniacal laugh?
And all those exclamation marks, you notice? Five? A sure sign of someone who
wears his underpants on his head. Opera can do that to a man.'

9



CHAPTER 1. INTRODUCTION

10



Chapter 2

Similarity criterion

2.1 Overall strategy

In this section, a prototype of an algorithm for generating musical pieces based on existing
ones will be created. This algorithm will be formally described as similarity criterion sc =
<Parameter, converter> and will represent one of many possible de�nitions of what makes
two musical pieces to be similar. Functionality of this algorithm will be divided into three
steps. In the �rst step, harmony of the original musical piece will be determined. In the
second step, a melody will be generated based on contents of one of the melodies of the
original musical piece. This melody will be selected by the user. The algorithm presumes
that a melody with signi�cance such as main vocal line will be chosen. In the third step, a
percussive track will be created. The third track will be created based on a constraint which
will be passed to the algorithm in a form of an optional parameter. The reasons for this will
be explained in appropriate time.

Note that this algorithm will have many limitations. For example, the outputted musical
piece will always consist of at most three tracks. One will contain a melody, second will
contain a harmony complement. The optional third track will contain a percussions. The
created algorithm aims to capture the essence of the original piece. The presented structural
concept of the outputted musical piece seems to do the trick. Arguably, a fourth track
containing a bass line should be added. But since this algorithm is meant to be a prototype,
generation of the bass line was omitted. Another limitation of the algorithm is that it will
only work when dealing with musical genres which presume existence of harmony. But since
majority of popular musical styles can be viewed as harmony based, this limitation doesn't
seem to be that crucial.

2.1.0.3 Problem decomposition

Let sc = <Parameter, converter> be an instance of similarity criterion which will
be described in this section. Functionality of sc.converter will consist of the following
three steps:

(1) Analyze harmony of the original musical piece and use the result of this anal-
ysis to generate a track which will contain a simple chordal complement. The

11



CHAPTER 2. SIMILARITY CRITERION

algorithm used to generate harmony is described in 2.2.

(2) Generate a melody based on contents of one of the tracks from the original
musical piece. The track is chosen by the user and harmony detected in the
previous step is taken into account. The algorithm used to generate melody is
described in 2.3.

(3) Generate a percussive complement which will satisfy the percussion constraint
parameter. Both the algorithm used to generate the percussive complement and
the percussion constraint are described in 2.4.

2.2 Harmony analysis

2.2.1 Problem statement

Before formally de�ning the melody harmonization problem, several additional terms will
have to be de�ned. Namely chord, melody and harmony. To make the actual meaning of
the following formal de�nitions easier to grasp, here are few informal notes. Melody is set
of events which do not overlap each other in terms of their start/end properties. The same
limitation applies on chords which will form a harmony. For the purposes of this thesis two
or more di�erent tones sounding at the same time will be considered to be a chord. Also, all
tones within a single chord will be required to start and end at the same time and no time
gaps will be allowed between chords in chord progressions. Some of the harmony related
requirements are quite restrictive and will necessarily result in certain amount of limitation
in terms of variety of outputted chord progressions. But again, this algorithm is a part of a
prototype of a similarity criterion. The goal at hand is to prove the concept, not to provide
a full featured implementation.

2.2.1.1 Melody

Let M be a non-empty set of events. M will be said to be a melody if and only if the
following constraint will hold: ∀a, b ∈M : a 6= b⇒ ¬(a.start ≤ b.start < a.end).

2.2.1.2 Chord

Let C be a set of events containing at least two elements. Let root be a non-negative
integer number. An ordered pair <C, root> will be said to be a chord if and only if
the following constraint will hold:

(1) ∀a, b ∈ C : a 6= b⇒ (a.pitch mod 12) 6= (b.pitch mod 12)

(2) ∀a, b ∈ C : a.start = b.start ∧ a.end = b.end

(3) ∃e ∈ C : e.pitch = root

12



2.2. HARMONY ANALYSIS

2.2.1.3 Harmony

Let H be a non-empty set of chords. H will be said to be a harmony if and only if
the following list of constraints will hold. Note that to make the list of constraints
easier to read, the following notation was established: Let c be a chord. c.start will
be used to denote start value of arbitrary event from c.C. Similarly, c.end will be
used to denote end value of arbitrary event from c.C. Since all events in c.C begin
and end at the same time, c.start and c.end will e�ectively denote the time at which
c beings and ends, respectively.

(1) ∀a, b ∈ H : a 6= b⇒ ¬(a.start ≤ b.start < a.end)

(2) Let x ∈ H be a chord with minimum value of x.start. ∀a ∈ H \{x} : ∃b ∈ H :

a.start = b.end

The actual creation of the harmony analysis algorithm will be divided into two steps. In
the �rst step, an algorithm for melody harmonization will be created. This algorithm will
be given a melody and produce a harmony suitable to complement the original melody. In
the second step, the melody harmonization algorithm will be generalized in a way which will
make it possible to pass a whole musical piece at the input instead of a single melody. The
main reason behind this decomposition is ease of explanation of the algorithm's functionality.
The principle upon which the algorithm is built is much easier to grasp when dealing with
single melody line at the input.

2.2.1.4 Problem statement

Create an algorithm which given a melody M will produce a harmony H suitable to
complement the melody. Use this algorithm to solve harmony analysis problem, ie.
given a musical piece m, create a harmony Hm which would match (or at least closely
resemble) the original chordal complement of m.

2.2.2 Problem categorization

Since the task is to �nd the best of all possible chord progressions, melody harmonization
can be thought of as an optimization problem. Music theory o�ers a number guidelines
when it comes to determining the quality of a harmony. However, no universal de�nition
of what optimal harmony is exists. The solution could be also based on enforcing some
set of properties which would guarantee a minimal level of musical acceptability. In that
case, melody harmonization problem could be viewed as a constraint satisfaction problem. As
discussed later, the algorithm created as part of this thesis will solve the task as optimization
problem. The absence of existence of the universal de�nition of optimal solution will be dealt
with by delegating the responsibility of providing such de�nition to the user of the algorithm.

2.2.3 Related works

There are dozens of di�erent solutions of melody harmonization problem. Some of them
aim to mimic human composer behavior. For example [9] divides the process of harmony

13



CHAPTER 2. SIMILARITY CRITERION

generation into four parts (segmenting the melody into phrases, assigning harmonic functions
to each note, determining a set of possible chords for each note, �nding the most agreeable
voicing through the chords) and thus aims to emulate human composer cognitive process.
There are also solutions which attempt to solve melody harmonization problem by means of
genetic algorithms. However, experimental comparison [10] suggests that genetic algorithms
can not outperform information-rich strategies.

The most common approach seems to be to view melody harmonization as a constraint
satisfaction problem. A good example of this approach is [11]. All possible chords for each
tone of the melody are determined. The optimal path is then traced by means of special
object representations of constraints which allow the optimal path to be computed e�ciently.

2.2.4 Problem solution

What most of the existing solutions seem to have in common is what can be called a functional
harmony approach. With respect to the insights of those who formulated the already existing
functional harmony based solutions, I have decided to attempt to solve the problem without
explicitly referring to functional harmony at all. This means that the algorithm itself will
be oblivious of any musical theory guidelines. However, it will be parametrized with a set
of scoring matrices capable of encapsulating the essence of functional harmony relations.
The quality of results will then be calibratable by means of experimental modi�cations of
the input scoring matrices. The advantage of this approach is that the necessity of expert
knowledge required for the algorithm to function properly is delegated to the user of the
algorithm. Even though this may seem to be an inconvenience for the user, this approach
has its bene�ts. The users are granted the opportunity to create several di�erent sets of
scoring matrices, each one addressing a di�erent musical genre or even compositional style
of a particular composer.

This structural concept is inspired by sequence alignment problem. Sequence alignment
(one of the basic problems in the �eld of bioinformatics) is a problem in which two or more
sequences of letters are presented. The task is to align these sequences by means of inserting
gaps between individual letters. The optimal alignment is then determined with regards to a
scoring matrix which is a part of the input and which de�nes a score for each pair of letters.
The optimal solution is one with the highest sum of scores of pairs of letters occupying
the same positions within the aligned sequences. While the actual algorithm has nothing
to do with melody harmonization, the structural concept is very similar. The algorithm
is completely oblivious of the fact that it solves a biological problem. This is because the
expert knowledge is abstracted away and moved to the input (creating a scoring matrix) and
output (interpreting the results). Also, note that several instances of scoring matrices used
in sequence alignment problem were created over the years, each one suitable to be used in
di�erent context. The analogy with creating a scoring matrices based on musical genres is
hopefully clear and does not require more detailed explanation.

Designing a scoring matrix which could encapsulate the tone/chord/key/progression/...
relations is a bit harder than de�ning relations between pairs of letters. The resulting data
structure will be more complex than a single two-dimensional matrix. In the next part of this
section, four types of matrices will be presented. First, formal de�nitions of these matrices

14



2.2. HARMONY ANALYSIS

will be given. After the formal de�nitions will be presented, purpose of each matrix will be
explained using an example instance.

2.2.4.1 Key matrix

Let k be a two dimensional matrix. k will be referred to as a key matrix if and only
if it satis�es the following list properties:

(1) k has at least one row and exactly twelve columns,

(2) elements of k are integer numbers.

2.2.4.2 Chord matrix

Let c be a two dimensional matrix. c will be referred to as a chord matrix if and only
if it satis�es the following list properties:

(1) c has at least one row and exactly twelve columns,

(2) elements of c are either 0 or 1.

2.2.4.3 Segment matrix

Let s be a two dimensional matrix. s will be referred to as a segment matrix if and
only if it satis�es the following list properties:

(1) s has exactly one row and at least one column,

(2) elements of s are non-negative integer numbers,

(3) elements of s are ordered in ascending fashion, ie.

∀i, j ∈ {0, 1, ..., s.numberOfColumns− 1} : i < j ⇒ s[i] < s[j].

2.2.4.4 Relation matrix

Let k be a key matrix. Let c be a chord matrix. Let r be a two dimensional matrix.
r will be referred to as a kc-relation matrix if and only if it satis�es the following list
properties:

(1) number of rows of r is same as number of rows of c,

(2) number of columns of r is same as number of rows of k,

(3) elements of r are sequences of ordered pairs <root, scoreV ector> where

- root is an integer number ranging from 0 to 11,

- scoreV ector is a sequence of twelve integer numbers.

Before proceeding to formal de�nition of how the algorithm works, an example of each
type of matrix will be given and used to informally explain what individual types of matrices
will be used for when the algorithm is ran. Let's begin with the key matrix. An instance of
the key matrix will be used to determine a key in which the melody is written. As shown

15



CHAPTER 2. SIMILARITY CRITERION

in the example below, each row of this type of matrix represents one type of a musical key.
At the very beginning of the melody harmonization algorithm, twelve passes will be made
over the melody for each possible type of key. In each pass, the melody will be transposed
accordingly and each tone will be given a score. Key with the highest sum of scores will be
selected. Transposition at which the best score was detected will be also stored. Because of
its structure, this matrix is capable of detecting subtle variations on standard scales such as
usage of harmonic/melodic variations of natural form of major/minor scale. Also, note that
it is possible to add support of arbitrary key by simply inserting a new row into the matrix.

2.2.4.5 Example of a key matrix

0 1 2 3 4 5 6 7 8 9 10 11
major | 5 | -2 | 2 | -9 | 8 | 2 | -2 | 0 | 2 | 7 | 1 | 7 |
minor | 5 | -2 | 2 | 8 |-9 | 2 | -2 | 0 | 4 | 1 | 6 | 2 |

Next, an instance of the chord matrix will be examined. Each row of this type of matrix
represents one type of a chord. Columns containing value 1 mark structure of chords in
relation to chromatic scale. Note that when actually implementing this data structure,
possibility of creating non-rectangular two dimensional arrays could be leveraged to minimize
storage requirements. In this optimized version, rows would be allowed to di�er in length
and would only contain indexes at which number 1 was present in the unoptimized version.
Finally, like with the previous type of matrix, it is possible to add support of arbitrary chord
type by simply inserting a new row into the matrix.

2.2.4.6 Example of a chord matrix

0 1 2 3 4 5 6 7 8 9 10 11
maj | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
min | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
aug | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
dim | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

Segment matrix is by far the simplest type of matrix there is. This type of matrix carries
information about times at which changes in harmony should happen. When the melody
harmonization algorithm is ran, each time window implied by the segment matrix will be
substituted with a chord. In full featured version of the melody harmonization algorithm,
information about when chords in harmony will start and end should be automatically de-
tected. Since this algorithm is a prototype, the rhythmical structure of the harmony must
for now be determined manually by the user. However, an algorithm for generating segment
matrices could be created and used prior to running the melody harmonization algorithm.
This enhancement could be realized without requiring any modi�cations of the original im-
plementation of the melody harmonization algorithm.

16



2.2. HARMONY ANALYSIS

2.2.4.7 Example of a segment matrix

0 1 2 3
time | 0 | 384 | 576 | 768 |

The last type of matrix, the relation matrix, de�nes relations between keys, chords, and
tones of the melody. The meaning of contents of this type of matrix is best explained by
an example. The ordered pair a1 from the example below says that if the melody is in a
major key, the tonic chord of this key is given 5 points for any appearance of the �rst tone
of chromatic scale starting at tonic of the key. Appearance of the second tone of this scale
would give the tonic chord a penalization of -1. Which makes sense, this tone is not present
in any variation of major scale. Appearance of the third tone would yield a score of 2. This
tone is in the scale, but is not contained in the tonic chord. That's why it gives a lower score
than the �rst tone which was the root of the tonic chord.

Similarly, the ordered pair a2 says that if the melody is in a major key, the subdominant
chord of this key is given 4 points for any appearance of the �rst tone of chromatic scale
starting at tonic of the key. This also makes sense, this tone is contained within the sub-
dominant chord. Note, however, that this tone plays a role of the perfect �fth within this
chord and would receive higher score when considered over the tonic chord where it plays a
role of the root.

2.2.4.8 Example of a relation matrix

Auxiliary de�nitions of ordered pairs <root, scoreV ector>:

a1 = (0, [5, -1, 1, -4, 4, 1, -4, 4, -2, 1, 0, 2])
a2 = (4, [4, -1, 1, -4, 4, 0, -3, 0, 5, 1, 0, 2])
a3 = (5, [4, -2, 1, -4, 1, 5, -1, 1, -4, 7, 2, 0])
a4 = (7, [2, 1, 6, -4, 0, 2, 1, 5, -1, 1, 1, 4])
a5 = (2, [1, 0, 5, -4, 4, 4, -1, 1, -2, 7, 1, 1])
a6 = (4, [0, -4, 1, -1, 2, 0, 0, 1, -3, 1, -1, 2])
a7 = (9, [4, -4, 1, -1, 4, 1, -1, 1, -1, 5, -1, 2])
a8 = (11, [0, -2, 2, -1, 1, 2, -1, 1, -2, 0, -1, 2])

b1 = (3, [1, 0, 2, 2, -1, 1, -4, 4, 1, -4, 4, -2])
b2 = (5, [7, -1, 1, 3, -1, 3, -3, 1, 0, 4, 0, -4])
b3 = (7, [0, -1, 5, 0, -4, 4, -3, 4, 0, 0, -4, 3])
b4 = (8, [4, 2, 0, 4, -2, 1, -4, 1, 5, -1, 1, -4])
b5 = (10, [1, 1, 4, 2, 1, 7, -4, 0, 2, 1, 5, -1])
b6 = (0, [5, -1, 2, 4, -4, 1, -1, 5, 1, -1, 1, -1])
b7 = (5, [4, 1, 1, 3, 0, 5, -4, 0, 4, -1, 1, -2])
b8 = (7, [1, -1, 4, 0, -4, 1, -1, 5, 0, 0, 4, -3])

major minor
maj | a1, a2, a3, a4 | b1, b2, b3, b4, b5 |
min | a5, a6, a7 | b6, b7, b8 |

17



CHAPTER 2. SIMILARITY CRITERION

aug | empty sequence | empty sequence |
dim | a8 | empty sequence |

In order to make the formal description of melody harmonization algorithm easier to
grasp, two auxiliary terms will be de�ned. First of them will be pitch class. For purposes
of harmony analysis, it would make little to no di�erence if pitches of random subset of
input events were transposed by random number of octaves up or down. In most situations,
event with pitch e8 would have the same impact on harmony properties of the musical
piece as e5 would have if it substituted the original e8. To abstract away di�erences among
pitches which - from harmony point of view - are the same, concept of pitch class will be
introduced.

2.2.4.9 Pitch class

Let p be an integer number for which the following constraint holds: 0 ≤ p < 128.
Integer number c will be said to be the class of p if and only if c = p % 12.

The second auxiliary de�nition deals with concept of transposition. In musical termi-
nology, transposition refers to shifting pitches several semitones higher or lower. For the
purposes of this thesis, only upward transpositions limited to one octave shifts will be al-
lowed. Also, note that the formal de�nition must deal with the fact that a concept of
maximum allowed pitch exists. Should the transposition result in creating an invalid pitch,
the over�own pitches will be transposed down one octave. The advantage of this solution,
as opposed to simply setting the over�own pitch to the maximum allowed value, is that
information about class of the over�own pitch will not be lost.

2.2.4.10 Transposition

Let E be a set of events. Let n be an integer number for which the following constraint
holds: 0 ≤ n < 12. To transpose E by n semitones means to do the following for each
event e ∈ E:

(1) set e.pitch to e.pitch+ n

(2) if e.pitch > 127, set e.pitch to e.pitch− 12

Now that all the auxiliary de�nitions were established, it's time to look at how the
melody harmonization algorithm actually works. Due to extensive usage of multi-dimensional
matrices, not even usage of pseudo-code would prevent the description of the algorithm
from being far to detailed and in terms of semantic meaning human unreadable. I have
decided to take more narrative approach in the de�nitions below. Translating the textual
description into pseudo-code should be intuitive. For example, 'considering all combinations
of all possible transpositions and musical keys' should be translated as two nested for each
loops. The outer loop would iterate over integer numbers ranging from 0 to 11, the inner
loop would iterate over rows of a key matrix.

Note Should you �nd the textual descriptions of algorithms presented in this thesis too
vague, refer directly to implementation of the algorithms which can be found on the enclosed

18



2.2. HARMONY ANALYSIS

CD. When dealing with algorithms which - at some occasions - require usage of four nested
for loops, there seems to be no sensible middle ground in terms of balance between accuracy
of description and emphasis of semantic context.

2.2.4.11 Melody harmonization algorithm

Let M be a melody. Let keyMatrix be a key matrix. Let chordMatrix be a chord
matrix. Let segmentMatrix be a segment matrix. Let relationMatrix be a relation
matrix. To create harmony H suitable to complement melody M do the following:

(1) Initialize H to be an empty set of chords.

(2) Consider all combinations of all twelve possible transpositions ofM and all keys
de�ned in keyMatrix. Compute a score for each such combination by summing
up scores of events of the transposed M . Score for event e and i-th key is
equal to value located at i-th row and (e.pitch % 12)-th column of keyMatrix.
Find a transposition-key pair which yields the highest score. Store the optimal
transposition to transposition. Store index of the optimal key to key.

(3) For each segment s implied by segmentMatrix, create a set Q ⊆M which will
contain only those events from M which overlap s. An event e overlaps i-th
segment if and only if E ∩ S 6= ∅ where E and S are sets built using e and i as
de�ned below.

E = {e.start, e.start+ 1, ..., e.end− 1}
S = {segmentMatrix[i], segmentMatrix[i] + 1, ..., segmentMatrix[i+ 1]− 1}.

Note that when creating set S for the very last segment, accessing the (i+ 1)-th
element would fail because no such column exists. This can be easily �xed by
using ∞ instead of segmentMatrix[i+ 1] in this particular situation.

(4) Use the <transposition, key> pair obtained in step (2) to identify relevant
portion of relationMatrix, ie. consider only contents of key-th column of
relationMatrix. For each set Q created in step (3) iterate over contents of key-
th column of relationMatrix. Compute a score for each pair<root, scoreV ector>
by summing up scores of each event from Q. Score for event e is equal to
scoreV ector[(e.pitch+ transposition) % 12].

Let pi denote a <root, scoreV ector> pair with maximum score as computed
based on contents of i-th set Q. Store index of row of relationMatrix at which
pi was found to chordTypei. Store result of (pi.root + transposition) % 12 to
chordRooti.

(5) Create a chord ci for each <chordTypei, chordRooti> pair from step (4). Set
ci.root to chordRooti. Initialize ci.C to be empty set of events. Let S denote a
set of indexes of columns of chordTypei-th row of chordMatrix which contain
number 1. For each i ∈ S create an event e and set e.pitch to chordRooti + i.
Set e.start and e.end to match start/end of segment related to ci. Set e.velocity

19



CHAPTER 2. SIMILARITY CRITERION

to 127. Add e to ci.C. Optionally transpose contents of ci.C several octaves
higher. By default, all events of chords in H will be in zeroth or �rst octave.
Add ci to H.

Note that several interesting modi�cations could be made to this algorithm. For example,
instead of choosing the best scoring key-transposition pair as basis for consequent creation
of a chord progression, random key from k best matching keys could be selected. Selecting
the key randomly from k best adepts would result in more variety in outputs. Similar trick
could be done when choosing the actual chords to �ll time windows implied by the segment
matrix. Instead of selecting the best chords, random chord could be selected from k best
options.

The algorithm for harmonizing melody was created. The task at hand, however, was
to create an algorithm which is able to determine harmony of a musical piece. Luckily,
the melody harmonization algorithm can be used to analyze harmony of a whole musical
piece. The key structural property of set of events which makes it a melody is prohibition
of overlapping events. Good news is, that permitting the overlapping of events would not
prevent the melody harmonization algorithm from working properly. The melody harmo-
nization algorithm can be therefore turn into harmony analysis algorithm by simply relaxing
structural properties which were originally required from the input set of events. The input
set of events passed to the harmony analysis algorithm will be created by merging all events
from all non-percussive tracks into a single track.

2.2.4.12 Harmony analysis algorithm

Let m be a musical piece. Let keyMatrix be a key matrix. Let chordMatrix be a
chord matrix. Let segmentMatrix be a segment matrix. Let relationMatrix be a
relation matrix. To determine underlying harmony of m do the following:

(1) Initialize empty set of events S. Add all events fromm.Events which are mapped
to non-percussive tracks into S. Event e is not mapped to a percussive track if
and only if m.ρ(e).instrument 6= 128.

(2) Run the melody harmonization algorithm on S, keyMatrix, chordMatrix,
segmentMatrix, relationMatrix. Present the harmony returned by the melody
harmonization algorithm as the result of harmony analysis.

2.2.5 Time/space complexity

Let m denote the number of non-percussive events in the input set. Let h denote the number
of chords in harmony. Let k denote the number of possible keys and c the number of possible
chord types. Note that h will be always equal to number of segments de�ned in segment
matrix and therefore known prior to running the algorithm. The number of all possible
solutions of harmony analysis task is (12 ·c)h. Since the number of chords in harmony can be
quite big, evaluating all possible solutions is not feasible. The solution space is reduced by
analyzing the key in which the musical piece is written �rst. This operation takes O(m · k).
After that, individual segments are processed. The time requiring to process a single segment

20



2.3. MELODY GENERATION

depends on number of events which overlap it. The upper bound of processing a single event
is O(m ·c). Processing all the segments will therefore require O(h ·m ·c). By simply summing
up the complexities of individual steps, the resulting time complexity is O(m · k+ h ·m · c).
Note that the number of key types and chord types is presumed not to vary too much
and a reasonable upper bound for these can be found. This upper bound could be used to
substitute k and c, turning them into constants. This substitution results in time complexity
of O(m · h).

Calculating storage requirements is quite simple and should not require an explanation.
The algorithm doesn't require allocation of any extra space which would have asymptotic
signi�cance. However, it is important to keep in mind that the input matrices must be stored
in the memory throughout the whole execution of the algorithm. Space complexity of the
algorithm for harmony analysis is therefore O(m+ h+ k · c).

2.2.5.1 Time/space complexity

Let m denote the number of non-percussive events in the input set. Let h denote the
number of chords in harmony. Let k denote the number of possible keys and c the
number of possible chord types.

Time complexity: O(m · h)

Space complexity: O(m+ h+ k · c)

2.3 Melody generation

2.3.1 Problem statement

The next algorithm which will be internally used by the similarity criterion deals with prob-
lem of melody generation. In particular, the task at hand will be creation of an algorithm
which will be able to generate a melody based on contents of another, already existing
melody. The formal description below requires the created melody to resemble the original
one. Since this algorithm will be part of a similarity criterion, ie. a de�nition of what makes
two musical pieces similar. The notion of resemblance refers to general concept of making
the listener to notice the similarity and does not refer to any formally de�ned concept of
similarity. The created algorithm will be part of one of such possible de�nitions. Note that
the following description of melody generation problem builds on top of formal de�nition of
melody provided in 2.2.1.1.

2.3.1.1 Problem statement

Create an algorithm which given a melody M and its underlying harmony H will
produce a melodyM ′ which will resembleM and respect the harmony surface implied
by H. Allow the user to specify the amount of resemblance by means of adjusting
parameters of the algorithm.

21



CHAPTER 2. SIMILARITY CRITERION

2.3.2 Problem categorization

While this problem could be solved as optimization problem, for the purposes of this thesis,
the problem will be classi�ed as constraint satisfaction problem. The original melody, its
underlying harmony and the additional parameters provided by the user will provide more
than enough information to form a set of constraints to be used to outline structural features
of the resulting melody.

2.3.3 Related works

The problem of melody generation is one of the fundamental problems in the �eld of music
generation. As such, it has great many solution. Only those solution capable of generating
variations on existing melodies were researched. Perhaps the most common approach to
generate a variation on an existing melody is to slightly modify its structures by for example
adding, removing or randomly shu�ing tones and modifying their duration. The more
sophisticated solutions employ usage of formal models such as Markov models to introduce
the element of randomness. Such models can be built automatically using standard data
mining techniques. Good example of this approach is [12].

The similarity criterion created in this chapter will be later decomposed to form an
instance of extended similarity criterion. This means that it will be necessary to somehow
contain the essence of the original melody in a form of a word over an alphabet. Sure, the
exact contents of the original melody could be simply stored in such word and than used
as input for the aforesaid algorithms. This would, however, go against the idea of making
the created language capable of encapsulating the essence of musical pieces. Stating that
the words of the created language would simply contain the original musical pieces would
mean that the created language would be merely a �le format for storing musical contents.
Instead of straightforwardly modifying the original melody, a set of self-contained structural
constraints will be created and later made expressible in the created language. Furthermore,
the solution proposed in this thesis will leverage the fact, that the algorithm will be given
not only the melody, but contextual information in a form of harmony as well.

2.3.4 Problem solution

Receiving a harmony can be useful in determining which tones of the original melody were
contained in the underlying chords. The overall consonance of the melody in relation to the
harmony can be determined by, for example, simply summing up how many pitches have
the same class as at least one pitch contained in the underlying chord. This value could
be used as one the constraints to which the generated melody must adhere. Note, however,
that it would be also useful to be given information about what scale was used to create the
original melody. The harmony analysis algorithm solved this problem using the key matrix,
see 2.2.4.11. Since these two algorithms will be merged together, the information obtained
by the harmony analysis algorithm can be easily made available to the melody generation
algorithm as well. The proposed algorithm will assume it has information about what row of
key matrix was selected during analysis of the harmony and what transposition yielded the
best score. This information can be used to de�ne set of tones which should be contained
in the scale. To express this connection with the harmony analysis algorithm formally, a

22



2.3. MELODY GENERATION

parameter containing a set of integer numbers ranging from 0 to 11 will be presumed to
be a parameter of the algorithm. This set will be presumed to contain exactly those pitch
classes which should be contained in the scale. This set will, however, not be required to be
provided by the user. As mentioned earlier, it will be automatically passed to the algorithm
from the harmony analysis algorithm.

Note The de�nition below could be easily modi�ed to allow the generated melodies to
use di�erent scales in di�erent time windows. This limitation will be later dealt with by
executing the algorithm multiple times over di�erent sections of the original melody.

2.3.4.1 Scale parameter

Let S be a non-empty set of integer numbers such that S ⊆ {0, 1, 2, ..., 11}. S will be
said to be a scale parameter of the melody generation algorithm.

The key idea of the proposed algorithm is to divide the original melody into shorter
segments and solve the problem on these segments. Even though this idea is similar to the
divide and conquer technique, the problem will not be solved recursively as it usually is the
case with algorithms which use this technique. The division will happen only once at the
beginning of the algorithm. Individual segments will then be handled by the melody genera-
tion algorithm separately, creating multiple shorter melodies which will be later concatenated
into one long melody. The actual melody generating algorithm which will be executed on
individual segments of the original melody will perform fairly simple statistical analysis and
generate a melody which will satisfy the properties of the original segment. Note that by
adjusting the length of the segments, the similarity can be increased or decreased. Shorter
the segments will be, more similar the melody. Note that the length of segment could vary.
But for sake of simplicity, segments of equal length will be presumed. The size of segment
will be determined by the user and passed to the algorithm in a form of an integer number
as de�ned below.

2.3.4.2 Segment parameter

Segment parameter is a non-negative integer number.

The statistical analysis will provide a so called structural constraint which will be used
to generate the �nal melody. The structural constraint will provide information about eight
properties of the original melody. These include information about duration of an event with
the minimal di�erence between its start and end properties, information about highest/lowest
pitch and highest/lowest di�erence between pitches of consecutive events. They also include
information about percentage of tones which were consonant with the underlaying harmony
of the original melody. Overall structural properties such as overall direction and rhythmical
density of events are part of the structural constraint as well. The following two de�nitions
deal with formally de�ning what a structural constraint is and what it takes for a melody
to satisfy the structural constraint, respectively.

23



CHAPTER 2. SIMILARITY CRITERION

2.3.4.3 Structural constraint

Structural constraint of a melody is an ordered octuple<grid,min,max, low, high, chord,
relax, structure>.

- grid, min, max, low and high are integer numbers for which the following
constraint holds: 1 ≤ grid < 231 ∧ 0 ≤ min ≤ max < 128 ∧ 0 ≤ low ≤ high <
128.

- chord and relax are non-negative real numbers for which the following constraint
holds: 0 ≤ chord ≤ 1 ∧ 0 ≤ relax ≤ 1.

- structure is an order pair <density, direction>. density is a sequence of real
numbers from the interval [0, 1]. direction is a sequence of integer numbers.
direction only contains integer numbers from {−1, 0, 1}. The length of density
is equal to length of direction.

2.3.4.4 Structural constraint satisfaction

Let M be a melody. M will be said to satisfy structural constraint c if and only if the
following list of conditions is satis�ed:

(1) ∀e ∈M : e.end− e.start ≥ c.grid ∧ e.end− e.start % grid = 0.

(2) For each pair of consecutive events e and e′: c.min ≤ |e.pitch−e′.pitch| ≤ c.max.

(3) ∀e ∈M : c.low ≤ e.pitch ≤ c.high.

(4) Let segment equal to c.structure.directionlength. Let e be an event from M
which overlaps the i-th segment from equally sized subsegments created by di-
viding total duration of M by segment. If e has a preceding event e′, the fol-
lowing constraints must hold. If i-th value from c.structure.direction is equal
to −1, then e.pitch < e′.pitch. If i-th value from c.structure.direction is equal
to 1, then e.pitch > e′.pitch. If i-th value from c.structure.direction is equal to
0, then the the relation between e.pitch and e′.pitch can be arbitrary.

Note that neither structure.density, relax nor chord properties play a part in determin-
ing whether a melody satis�es the structural constraint. These properties are intended to
be used as probabilities of certain randomized events. When a melody is being generated,
it simply uses real numbers as probabilities of inserting a row at a particular grid slot with
structure.density and prolonging duration of an event with relax probability. Not only this
version is easier to implement, it also adds more variety to resulting melodies. The melody
generation algorithm should be quite intuitive and the formal de�nition below should not
require more detailed explanation. Note, however, that in order to make the description
as succinct as possible, some details such as handling of event with pitches which exceed
the allowed bounds or handling of special cases in which events have no predecessors were

24



2.3. MELODY GENERATION

omitted. To �nd out how these situations are handled, refer directly to the implementation
of the algorithm which can be found on the enclosed CD.

2.3.4.5 Melody generation algorithm

Let M be a melody. Let H be a harmony. Let S be a scale parameter. Let
segmentSize be a segment parameter. To generate melody M ′ do the following:

(1) Let e be an event fromM . SplitM into {M1,M2, ...,Mn} based on segmentSize.
Trim start and end properties of events which over�ow the segment size. Create
constraint c for each of {M1,M2, ...,Mn} and generate a melody which satis�es
this constraint. Creation of the constraint is described in step (2) of this algo-
rithm. Generating a melody based on the constraint is described in step (3) of
this algorithm.

(2) LetMi denote the currently processed segment. Perform statistical analysis over
the melody and create the structural constraint ci. To calculate ci.grid �nd the
smallest di�erence between start properties over all pairs of events from Mi. To
calculate ci.min and ci.max �nd the minimal and maximal di�erence between
pitches over all consecutive pairs of events from Mi, respectively. To calculate
ci.low and ci.high �nd the minimal and maximal pitch of all events from Mi,
respectively. To calculate ci.chord, calculate the percentage of how many classes
of pitches from all events are equal to at least one pitch class from the underlaying
chord. To calculate ci.relax, calculate the percentage of events with duration
higher than ci.grid.

To create structure, divide Mi into three segments of equal length and perform
statistical analysis of density and direction. Density can be calculated by divid-
ing the number of events by ci.grid/3. If pitch of the �rst event is lower than
pitch of the last event, direction should be equal to 1. If pitch of the �rst event
is higher than pitch of the last event, direction should be equal to −1. If pitch
of the �rst event is the same as pitch of the last event, direction should be equal
to 0.

(3) Generate a melody which satis�es constraint ci from the previous step. Use prob-
abilities de�ned in ci.structure.density to decide whether an event should be cre-
ated when processing grid marks. If the event is created, use ci.structure.direction
to decide whether the pitch of this event should be higher or lower than pitch of
its predecessor. Make sure the di�erences between pitches of consecutive events
do not exceed ci.min and ci.max bounds and that individual pitches do not
exceed ci.low and ci.high. If the generated pitch is not in chordal consonance
with the underlaying harmony, shift it to the closest consonant pitch with the
probability of ci.chord. By default, set duration of event to be equal to ci.grid.
Prolong the duration of each event with probability of ci.relax. To prolong an
event means to set its end property to match the start property of the consecu-
tive event if such event exists.

25



CHAPTER 2. SIMILARITY CRITERION

(4) Concatenate the melodies created in step (3) to form the resulting melody.

2.3.5 Time/space complexity

Let m denote the number of events in the original melody. Let segments denote the number
of segments into which the original melody was split. Splitting the original melody into
shorter melody segments will take at most O(m · segments). Since both the statistical
analysis of individual melody segments and generation of the resulting melody can be done
in linear time in relation to m, splitting the melody is asymptotically the most signi�cant
operation. Time complexity of the whole algorithm is therefore O(m · segments).

The current implementation of the algorithm requires O(m · segments) of space because
it works in two steps. In the �rst step, it creates copies of events for each segment. In extreme
case of a melody consisting of a single long event, this event will be copied segments-times
and stored for later processing. However, if the generation of contents of the resulting melody
was done upon detection of segments and not postponed to second part of the algorithm,
the algorithm would require only O(m) of space.

2.3.5.1 Time/space complexity

Let m denote the number of events in the original melody. Let segments denote the
number of segments into which the original melody was split.

Time complexity: O(m · segments)
Space complexity: O(m · segments) - postponed processing of segments

Space complexity: O(m) - immediate processing of segments

2.4 Percussion generation

2.4.1 Problem statement

The problem of generating a percussive content is seemingly one of the simplest tasks with
which the �eld of music generation deals. Unlike the previous two problems, ie. harmony
analysis and melody generation, this task will only have to deal with rhythmical structure
of percussive content and not with concepts like scales, keys and chords. The pitch property
of events will be used to identify types of percussive hits. For complete overview of mapping
of integers values to types of percussive sounds, see A.2. Even though concept of pitches is
not relevant when it comes to percussive complement, di�erent types of percussive hits such
as snare or kick drum exist. Mutual substitution of these types of percussive sounds could
change the musical meaning of the percussive complement dramatically. In order to make
the algorithm as simple as possible, percussive complement will be limited to a so called
simple drum kit. As shown in the list below, this drum kit will be stripped down to the
following four percussive sounds: kick, snare, closed hi-hat and open hi-hat.

26



2.4. PERCUSSION GENERATION

2.4.1.1 Simple drum kit

35 - kick drum

40 - snare drum

42 - closed hi-hat

44 - open hi-hat

2.4.1.2 Rhythm

Let R be a non-empty set of events. R will be said to be a rhythm if and only if
the following constraint will hold: ∀e ∈ R : e.pitch = 35 ∨ e.pitch = 40 ∨ e.pitch =
42 ∨ e.pitch = 44.

The problem of percussion generation could be formulated in the same way the melody
generation problem was. Given some existing rhythm, the task would be to generate a rhythm
which would resemble the original. The analysis of the original rhythm was, however, not
realized as part of this thesis. The reasons for this will be obvious later on when it will be
shown that for the purposes of the created declarative language, it is more than enough to
formulate a rhythm constraint and a mechanism to generate rhythms which will satisfy this
constraint. For now, this constraint will be assumed to be passed to the algorithm at the
input as a parameter.

2.4.1.3 Problem statement

Create an algorithm which will produce a rhythm R. Allow the user to specify the
structure of this rhythm by means of adjusting parameters of the algorithm.

2.4.2 Problem solution

The algorithm used to generate the percussive complement is very simple. The rhythm
constraint is designed to make sure that a rhythm contains equally distributed hi-hat hits
over the whole the rhythm and snare hits on the explicitly de�ned places. The remaining
properties of the rhythm constraints are used to introduce certain amount of randomness to
the resulting rhythm as discussed later on.

2.4.2.1 Rhythm constraint

Rhythm constraint is an ordered sextuple <loop, hihat, snare, kick, crash, variety>.

- loop and hihat are integer numbers for which the following constraint holds:
1 ≤ hihat ≤ loop < 231.

- snare is a sequence of integer numbers. The following constraint must hold for
each number k in snare: 1 ≤ k ≤ loop.

- kick, crash and variety are non-negative real numbers for which the following

27



CHAPTER 2. SIMILARITY CRITERION

constraint holds: 0 ≤ kick ≤ 1 ∧ 0 ≤ crash ≤ 1 ∧ 0 ≤ variety ≤ 1.

2.4.2.2 Rhythm constraint satisfaction

Let R be a rhythm. R will be said to satisfy rhythm constraint c if and only if the
following list of conditions is satis�ed:

(1) ∀e ∈ R : e.pitch = 42→ e.end− e.start ≥ c.hihat∧ e.end− e.start % hihat = 0.

(2) ∀i ∈ 0..c.loop/c.hihat : ∃e ∈ R : e.start = i · c.hihat ∧ e.pitch = 42.

(3) ∀a ∈ snare : ∃e ∈ R : e.pitch = 40 ∧ (e.start = a ∨ e.start = a + hihat/2 ∨
e.start = a− hihat/2).

Note that neither kick, crash nor variety properties play no part in determining whether
a rhythm satis�es the rhythm constraint. Just like with the structure constraint which was
used in the melody generating algorithm, the properties which are not directly mentioned in
the de�nition of the constraint are intended to be used as probabilities of certain randomized
events. When a rhythm is being generated, a kick hit is added at each position where hi-hat
hit already exists with probability of kick. Similarly, crash hit is added at each position
where hi-hat hit already exists with probability of crash. After the kicks and crashes are
added, start and end properties of some events are modi�ed according to the rules de�ned
below. The start and end properties of these events will be modi�ed with probability of
variety. The rhythm created by the percussion generation algorithm is presumed to be a
short beat which is intended to be repeated to create longer percussive complements.

2.4.2.3 Rhythm generation algorithm

Let c be a rhythm constraint. To generate rhythm R do the following:

(1) ∀i ∈ 0..c.loop/c.hihat create an event with pitch property equal to 42. Use i as
its start and i+ c.hihat as its end property. Use 127 as velocity. Add the event
into R.

(2) ∀a ∈ snare create an event with pitch property equal to 40. Use a as its start
and a+ c.hihat as its end property. Use 127 as velocity. Add the event into R.

(3) Iterate over all hihat events from step (1). For each such event e, generate a
kick event with probability of c.kick. Use e.start, e.end and e.velocity as its
start, end, and velocity properties, respectively. Use 35 as its pitch property.
Add the event into R.

(4) Do the exact same thing as in step (3) but use c.crash as probability of gener-
ating an event and 46 as pitch of the generated event.

(5) For each event e in R such that e.pitch = 40 do the following (with probability
of c.variety): Subtract or add either hihat or hihat/2 from e.start. Toss a coin

28



2.5. SPECIFICATION

(ie. use probability of 0.5) to decide whether subtraction or addition should take
place. Use the same technique to decide whether hihat or hihat/2 should be
subtracted/added.

(6) For each event e in R such that e.pitch = 42 do the following (with probability
of c.variety): Remove e from R with probability of 0.5. For each e which will
not be removed during this process, add hihat/2 to both e.start and e.end. If
e will be neither removed nor updated, create event e′ with exactly the same
properties as e only with both e.start and e.end increased by hihat/2 and add
e′ to R.

2.4.3 Time/space complexity

In each step of the algorithm, all events of R are iterated over. The time spent at each event
is constant. Asymptotically speaking, the number of events in R is equal to the number of
hi-hat hits created in the �rst step of the algorithm. This means that time complexity of
the percussion generating algorithm is O(c.loop/c.hihat).

The algorithm doesn't require any extra memory usage. The space complexity is equal
to the upper bound on number of events which is O(c.loop/c.hihat).

2.4.3.1 Time/space complexity

Let c be a rhythm criterion passed to the percussion generation algorithm.

Time complexity: O(c.loop/c.hihat)

Space complexity: O(c.loop/c.hihat)

2.5 Speci�cation

The goal of this chapter is to create a similarity criterion, ie. an ordered pair sc =
<Parameter, converter>. In this section, formal de�nition of individual components of
sc will be given. Parameter is a set of binary words, each one representing a valid parame-
ter of the conversion algorithm. The conversion algorithm is formally de�ned as a function
which for any given musical piece returns a non-empty set of musical pieces. This function
is named converter and it is a key component of sc.

2.5.1 Parameter

Any data which will be passed to converter as parameters (such as scoring matrices of the
melody harmonization algorithm) must be encodable into a binary word. This requirement
is implied by the very paradigm of binary system based computers. Leveraging this implicit
requirement, the de�nition of similarity criterion states that Parameter is a set of binary
words. Obvious advantage of this de�nition is its simplicity. Unfortunately, de�ning a set of
all possible parameters in a form of binary words would require de�ning a whole system for
encoding and decoding binary information. This would be extremely tiresome task and the

29



CHAPTER 2. SIMILARITY CRITERION

resulting de�nition would have no practical use. Instead of de�ning the actual binary form
of parameters, a high level and semantically more sensible approach will be taken and the
actual conversion to binary words will be stated to be trivial.

2.5.1.1 Parameter (Parameter)

Let k be an instance of key matrix de�ned in 2.2.4.1. Let c be an instance of chord
matrix de�ned in 2.2.4.2. Let s be an instance of segment matrix de�ned in 2.2.4.3.
Let r be an instance of relation matrix de�ned in 2.2.4.4. Let rc be a rhythm constraint
as de�ned in 2.4.2.1. Let t be a non-negative integer number. Parameter contains
exactly those binary words which represent sextuples <k, c, s, r, rc, t>. Creation of
the actual algorithm used to encode/decode the sextuples into/from binary words is
trivial and will not be described in this thesis.

2.5.2 Converter

The functionality of converter is built upon the three algorithms described in the �rst part of
this section. The description below is therefore quite straight forward and should not require
more detailed explanation. By the de�nition, the conversion algorithm is supposed to create
a set of musical pieces which will be said to be similar to the original musical piece which the
algorithm received at the input. But since this set can be huge, its creation may not always
be computationally feasible. As mentioned earlier, implementations of this function will not
be required to compute the whole sets. Instead, they will return one random representative of
similar musical pieces per execution. Note however, that in theory, the whole set of all similar
musical pieces could be constructed by executing converter repeatedly while systematically
ensuring that all possible sequences of random decisions were considered.

Note that in order to generate a percussive track, a rhythm constraint has to be manually
passed to the converter. The percussion generation algorithm was created primarily to be
absorbed by the extended similarity criterion which will be described in the next chapter. An
algorithm for percussive tracks analysis could be created and used to generate the rhythm
criterion automatically. Such algorithm, however, was not created as part of this thesis.

2.5.2.1 Converter (converter)

Let m be a musical piece. Let p ∈ Parameter. Musical pieces returned by the follow-
ing randomized algorithm will be said to be similar to m. The algorithm generates
one musical piece per execution. To generate a set of all musical pieces similar to m,
run the algorithm repeatedly over all possible combinations of outcomes of random
events.

(1) Create a musical piecem′. Set values ofm′.tempo andm′.resolution tom.tempo
and m.resolution, respectively. Initialize m′.T racks to contain three tracks,
each one having volume set to 127. Set instrument of the �rst two tracks to 0,
set instrument of the third track to 128.

(2) Decode contents of p and analyze harmony of m by executing the harmony

30



2.5. SPECIFICATION

analysis algorithm described in 2.2. Add all events from the resulting harmony
to m′.Events and update m′.ρ to map the events to the �rst track.

(3) Use the algorithm described in 2.3 to generate a melody similar to the melody
selected by the user. Use p.t to determine which track contains this melody.
Add all events from the resulting melody to m′.Events and update m′.ρ to map
the events to the second track.

(4) Pass rc to the percussion generation algorithm described in 2.4 and generate a
percussive loop. Concatenate the loop enough times so that the end property
of event with the highest end property from the rhythm is equal or greater than
the end property of the event with the highest end property from the harmony
created in the step (2) of this algorithm. Add all events from the resulting
rhythm to m′.Events and update m′.ρ to map the events to the third track.

31



CHAPTER 2. SIMILARITY CRITERION

32



Chapter 3

Extended similarity criterion

3.1 Auxiliary de�nitions

So far, the text of this thesis used purely mathematical notation. Since the language created
as part of the extended similarity criterion will be a programming language, in this section
the purely mathematical description will be gradually abandoned. For example, alphabet
Σ will be de�ned as subset of all characters de�ned by the ASCII standard [13]. Since the
alphabet will contain whitespace characters such as horizontal tabs and line feeds, notation
for these symbols must be established. Mostly, whitespace characters will be denoted by
escape codes used in C-like programming languages. In order to avoid ambiguity relating to
regular space character, an additional escape code \space will be de�ned.

3.1.0.2 Whitespace character escape codes

\t ASCII(9) horizontal tab

\n ASCII(10) line feed

\f ASCII(12) form feed

\r ASCII(13) carriage return

\space ASCII(32) space

There are many ways to formally de�ne a language. Which one is the best, of course,
depends on classi�cation of the language in terms of Chomsky hierarchy. As discussed later,
the language L which will be a part of the extended similarity criterion is not regular.
However, modern derivatives of regular expressions with support of named back referencing
such as [14] could be used to specify the language. Due to lack of standardized forms of
such regular expressions, this technique will not be used in the documentation of this thesis.
But as also discussed later, it will be used in the actual implementation of the validation
algorithm which determines whether a word lies in L.

Since the language L is not regular, the next logical step is to move one level up in
Chomsky hierarchy and ask: Is the language context-free? Unfortunately, it is not. The
reason why the language is not context-free is that a concept similar to named variables is
present in the language. This feature allows tracks of a musical piece to be named and use

33



CHAPTER 3. EXTENDED SIMILARITY CRITERION

these names to refer to the tracks later on. Since there is no need to change names of tracks
during execution of a program, this concept is limited to '�nal' variables only. Meaning that
once a named variable references some entity, it can never change to reference another entity.
This concept of variables can be easily formulated in a way which is not standard, but very
easy to comprehend.

The bottom line is that even though the language is not one hundred percent context-free,
it will be treated as such and a derivative of Backus-Naur Form (BNF) [15] will be used to
formally de�ne the grammar. As discussed later, the formal speci�cation of the language will
be created for documentation purposes only and will not be used to generate the actual parser
of the language. Therefore, human readability of the speci�cation is a priority. To make the
de�nitions more readable, [] and {} notation for optional occurrence and repetition will be
borrowed from Extended Backus-Naur form [16]. Note that the following list of symbols is
not a complete de�nition of the notation technique. It serves merely as a reminder for those
who are already familiar with both BNF and Extended-BNF. Given the intuitive nature of
these notation techniques, anyone who is not familiar with either of them should �nd this
overview su�cient to interpret the meaning of the speci�cation which will be given later on
in this chapter.

3.1.0.3 Overview of BNF symbols

::= de�nition

| alternation

"" terminal

'' terminal

{} zero or more occurrences (borrowed from Extended-BNF)

[] optional occurrence (borrowed from Extended-BNF)

3.2 Speci�cation

The goal of this thesis is to create and implement an extended similarity criterion, ie. an
ordered quintuple esc = <Σ, L, Parameter, converter, interpreter>. In this section, formal
de�nition of individual components of esc will be given. Alphabet sigma will be de�ned in
an enumerative fashion. Language L will de�ned using a derivative of Backus-Naur form
described at the beginning of this chapter. Functionality of interpreter will be de�ned
by describing the process of converting word from L to a musical piece. converter and
Parameter were already de�ned in the previous chapter as part of similarity criterion. Only
modi�cations required to �t these into the extended similarity criterion will be described.

3.2.1 Alphabet

De�ning an alphabet is a simple matter of providing an enumerative de�nition of set of
symbols. Alphabet Σ contains 99 symbols all of which can be encoded using ASCII standard.
The remaining 29 characters of ASCII encoding which are not contained in Σ are control

34



3.2. SPECIFICATION

characters which have no signi�cance for the purpose of the designed language and were
therefore omitted.

3.2.1.1 Alphabet (Σ)

Σ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i,
j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B,
C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
V, W, X, Y, Z, !, ", #, $, %, &, ', (, ), *, +, ,, -, .,
/, <, =, >, ?, @, [, \, ], ^, _, `, {, |, }, ~, :, ;,
\t, \n, \f, \r, \space }

3.2.2 Language

In this section, the language L will be speci�ed. This will be achieved by de�ning a set of
words over alphabet Σ. Note that these words will also have a semantic meaning which will
be described as part of speci�cation of converter, ie. a function which given a word from L
produces a set of musical piece. From a programmer's point of view, this section deals with
syntax only. But the formal de�nitions will not be thrown at the reader heartlessly and some
informal comments about semantic meaning of the declared non-terminals will be made.

As mentioned earlier, a derivative of Backus-Naur form will be used to de�ne the language
L. To make the grammar de�nition easier to understand, it will be presented in sections and
each section will be complemented by an informal explanation of its contents. For example,
the �rst part deals with de�ning a terminal string for each symbol from alphabet Σ. In order
to make the further de�nitions more readable, terminal strings were divided into �ve groups:
digits, letters, special characters, whitespace characters and reserved characters.

3.2.2.1 Grammar (1/12)

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |
"7" | "8" | "9"

<letter> ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" |
"h" | "i" | "j" | "k" | "l" | "m" | "n" |
"o" | "p" | "q" | "r" | "s" | "t" | "u" |
"v" | "w" | "x" | "y" | "z" | "A" | "B" |
"C" | "D" | "E" | "F" | "G" | "H" | "I" |
"J" | "K" | "L" | "M" | "N" | "O" | "P" |
"Q" | "R" | "S" | "T" | "U" | "V" | "W" |
"X" | "Y" | "Z"

<special> ::= "!" | '"' | "#" | "$" | "%" | "&" | "'" |
"(" | ")" | "*" | "+" | "," | "-" | "." |
"/" | "<" | "=" | ">" | "?" | "@" | "[" |
"\" | "]" | "^" | "_" | "`" | "{" | "|" |
"}" | "~"

<whitespace> ::= "\t" | "\n" | "\f" | "\r" | "\space"
<reserved> ::= ":" | ";"

35



CHAPTER 3. EXTENDED SIMILARITY CRITERION

<character> ::= <digit> | <letter> | <special> | <whitespace>

The next section of the grammar deals with de�nitions for general purpose literals such as
integer numbers, boolean values and strings will be given. Note that the <integer> literal
could be de�ned simply as ["-"] <digit> {<digit>}. However, such de�nition would
imply in�nite range of integer numbers. And since integer representations of, for example,
musical instruments accept only values from very speci�c ranges, additional integer literals
addressing concrete ranges were created. But because these de�nitions are a bit lengthy and
gloriously ugly, they were moved to A.4.

3.2.2.2 Grammar (2/12)

<integer:0-127> ::= see A.4
<integer:0-128> ::= see A.4
<integer:0-INF> ::= see A.4
<integer:1-INF> ::= see A.4

<boolean> ::= "true" | "false"
<string> ::= <character> {<character>}

<word> ::= <letter> {<letter>}

Next, de�nitions of music related literals will be given. Pitch literals represent frequencies
of tones. With the total of 128 pitch literals, pitches ranging from C0 to G10 can be
addressed. As discussed later, an integer number is associated with each pitch literal. This
value can be used as pitch property of events when creating musical pieces. For complete
mapping of pitch literals to integer numbers see A.5.

3.2.2.3 Grammar (3/12)

<pitch-class> ::= "c" | "c#" | "d" | "d#" | "e" | "f" |
"f#" | "g" | "g#" | "a" | "a#" | "b"

<pitch-literal> ::= <pitch-class> <digit> | "c10" | "c#10" |
"d10" | "d#10" | "e10" |"f10" | "f#10" |
"g10"

Duration literals represent relative durations of tones. Each duration literal consists of
two parts: duration base and duration multiplicity. Duration bases represent standard dura-
tion symbols used in musical scores. For example, "4" refers to quarter note, "16t" refers
to eighteenth triplet, "2d" refers to dotted half note. An integer number is associated with
each duration base. For complete mapping of duration bases to integer numbers see A.5.
To create a duration literal, duration base must be pre�xed with a duration multiplicity.
Duration multiplicity is a non-negative integer number followed by symbol 'x'. The actual
duration represented by a duration literal will be computed by multiplying the integer repre-
sentation of the duration base by the duration multiplicity. Values obtained in this manner
can be used, for example, as start and end properties of events when creating musical pieces.

36



3.2. SPECIFICATION

3.2.2.4 Grammar (4/12)

<duration-base> ::= "1" | "1t" | "1d" |
"2" | "2t" | "2d" |
"4" | "4t" | "4d" |
"8" | "8t" | "8d" |

"16" | "16t" | "16d" |
"32" | "32t" | "32d" |
"64" | "64t" | "64d"

<duration-literal> ::= <integer:0-INF> "x" <duration-base>

Note that multiple duration literals can represent the same duration. For example,
duration literal 1x2 represents a half note. The duration implied by this literal is exactly
the same as duration implied by duration literal 2x4 which represent two quarter notes. Note
that duration literal can be also used to identify time at which some event should occur. In
this case, duration implied by the duration literal would be interpreted as time elapsed from
the beginning of the musical piece. To allow addressing the very beginning of the musical
piece, zero length duration literals were introduced. To create a zero length duration literal,
simply pre�x any duration base with zero multiplicity. Below are a few examples of duration
literals.

3.2.2.5 Examples of duration literals

2x1 - two whole notes
1x2 - one half note
4x8 - four eighth notes

1x64 - one sixty-fourth note
1x2t - one half triplet
3x1d - three dotted whole notes
0x4 - zero length duration literal

The �fth section of the grammar de�nition introduces several types of delimiters which
will be used to separate semantically di�erent portions of programs. As should be obvious
from the de�nition below, the created language will be quite benevolent when it comes to
whitespace characters. This will allow programmers to format code of their programs to
their liking. ":" and ";" separators will be used to mark key-value pairs as is so often done
in declarative languages. "," will be used as a line separator in de�nitions of matrices.

3.2.2.6 Grammar (5/12)

<opt-whitespace> ::= "" | <whitespace> {<whitespace>}
<space-delimiter> ::= <whitespace> {<whitespace>}

<segment-delimiter> ::= <opt-whitespace> "---" <opt-whitespace>
<record-delimiter> ::= <opt-whitespace> ";" <opt-whitespace>

<key-delimiter> ::= <opt-whitespace> ":" <opt-whitespace>

37



CHAPTER 3. EXTENDED SIMILARITY CRITERION

<line-delimiter> ::= <opt-whitespace> "," <opt-whitespace>

Moving on from the general purpose non-terminals and literals to more complex data
structures, three types of matrices will be de�ned in the next three sections of the grammar.
These matrices are used to describe the general structure of the produced musical piece. The
overall rhythmic structure to which the generated musical piece will be bound to adhere can
be described by creating a signature matrix. Each line of a signature matrix consists of two
integer numbers followed by a duration literal. The second integer and the duration literal
denote the top and bottom part of a time signature, respectively. The �rst number denotes
how many times should be this time signature applied in the sequence of measures.

3.2.2.7 Grammar (6/12)

<signature-line> ::= <integer:1-INF> <space-delimiter>
<integer:1-INF> <space-delimiter>
<duration-literal>

<signature-matrix> ::= {<signature-line> <line-delimiter>}
<signature-line>

The signature matrix shown below says the following: There are 3 measures of 4/4 time
signature, then a single measure of 7/8, and then 4 measures of 4/4 time signature.

3.2.2.8 Example of a signature matrix

3 4 1x4,
1 7 1x8,
4 4 1x4

The next type of matrix de�ned in the language is called surface matrix. This type of
matrix allows the user to specify the tonal surface upon which the musical piece will be
built. A surface matrix divides the musical piece into one or more snippets. Each line of
this type of matrix consists of a duration literal followed by at least one non-negative integer
number. The duration literal de�nes how long the snippet is. The actual meaning of the
integer numbers may vary among individual programs and is in no way predetermined by
the speci�cation.

Convention In all example programs created in this thesis, surface matrix is used to
determine which scale/chord should be used within individual snippets. To achieve this, the
following convention was established: The duration literal in each row is followed by exactly
twelve integer numbers. These numbers label individual pitch classes. Pitch classes labeled
with 0 are not contained in the scale. Pitch classes labeled with 1 are contained in the scale.
Pitch classes labeled with 2 are contained in the scale and are also contained in the chord.
Pitch class labeled with 3 is the root of the chord and is also contained in the scale.

38



3.2. SPECIFICATION

3.2.2.9 Grammar (7/12)

<surface-line> ::= <duration-literal> <space-delimiter>
<integer:0-INF> {<space-delimiter>
<integer:0-INF>}

<surface-matrix> ::= {<surface-line> <line-delimiter>}
<surface-line>

Surface matrix shown below divides the musical piece into four snippets. All of them
are one whole note long and all of them are built on top of the e minor scale. The chord
progression de�ned by this particular surface matrix is: Emi, Dmaj, Cmaj, Bmaj.

3.2.2.10 Example of a surface matrix

1x1 1 0 1 0 3 0 1 2 0 1 0 2,
1x1 1 0 3 0 1 0 2 1 0 2 0 1,
1x1 3 0 1 0 2 0 1 2 0 1 0 1,
1x1 1 0 0 2 1 0 2 1 0 1 0 3

The last type of matrix de�ned in the language is called track matrix. This type of
matrix de�nes a list of tracks of which the generated musical piece will be made. Each track
is described in a form of a quintuple de�ning a unique identi�er of the track, instrument,
volume and mute and solo �ags. Instrument and volume are integer numbers, solo and
mute are boolean values. Note that the <word> non-terminal is used in place where the
track identi�er should be, meaning that only alphabetical characters can be used in track
identi�ers.

3.2.2.11 Grammar (8/12)

<track-line> ::= <word> <space-delimiter> <integer:0-128>
<space-delimiter> <integer:0-127>
<space-delimiter> <boolean>
<space-delimiter> <boolean>

<track-matrix> ::= {<track-line> <line-delimiter>}
<track-line>

Track matrix shown below de�nes three tracks. All of them are set to be as loud as
possible and their solo/mute �ags are switched o�. The �rst track uses instrument 73
(�ute) and its identi�er is vocal. Second track uses instrument 0 (piano) and its identi�er
is piano. The last track uses instrument 128 (percussion) and its identi�er is drums.

3.2.2.12 Example of a track matrix

vocal 73 127 false false,
piano 0 127 false false,
drums 128 127 false false

39



CHAPTER 3. EXTENDED SIMILARITY CRITERION

Now that the basic data types and data structures are de�ned, the overall structure of
a program can be de�ned. Each program is dived into segments. There are two types of
segments: header segments and �lter segments. Each program must contain exactly one
header segment and zero or more �lter segments. Every program must begin with a header
segment. Within this segment, the general structural properties to which the generated
musical piece should adhere must be de�ned. Signature, surface and track matrices must be
speci�ed within this segment. Also, a positive integer number must be provided to determine
the tempo of the resulting musical piece.

3.2.2.13 Grammar (9/12)

<header-segment> ::=
"tempo" <key-delimiter> <integer:1-INF> <record-delimiter>

"surface" <key-delimiter> <surface-matrix> <record-delimiter>
"signature" <key-delimiter> <signature-matrix> <record-delimiter>

"tracks" <key-delimiter> <track-matrix> <record-delimiter>

3.2.2.14 Example of a header segment

tempo: 120;
surface: 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

2x1 1 0 3 0 1 0 2 1 0 2 0 1,
1x1 0 2 1 0 2 0 1 1 0 3 0 1,
1x1 2 0 1 0 2 0 1 1 0 3 0 1,
2x1 1 0 1 0 3 0 1 2 0 1 0 2,
3x4 1 0 3 0 1 0 2 1 0 2 0 1,
1x1 1 0 1 0 3 0 1 2 0 1 0 2,
1x1 1 0 3 0 1 0 2 1 0 2 0 1,
1x1 0 2 1 0 2 0 1 1 0 3 0 1,
1x1 2 0 1 0 2 0 1 1 0 3 0 1,
7x8 1 0 1 0 3 0 1 2 0 1 0 2,
7x8 1 0 3 0 1 0 2 1 0 2 0 1;

signature: 7 4 1x4,
1 3 1x4,
4 4 1x4,
2 7 1x8;

tracks: vocal 73 127 false false,
guitar 25 127 false false,
drums 128 127 false false;

Each �lter segment has exactly four mandatory properties. The source property decides
which plugin should be used when execution of this �lter is requested. The input property
contains a list of track identi�ers determining which tracks will be passed at the input of the
�lter. Start and duration properties contain duration literals de�ning a time window at which
the �lter should be applied. Note that each �lter may also de�ne a set of custom properties.

40



3.2. SPECIFICATION

Since parsing of custom properties is handled by �lters themselves, there are almost no
limitations as to what can be passed to the value part of a custom key-value pair. However,
creators of �lters are encouraged to use standard pitch and duration literals whenever possible
and adhere to the established delimiter convention, ie. use <space-delimiter> as a
primary delimiter and <line-delimiter> as a secondary delimiter.

3.2.2.15 Grammar (10/12)

<track-list> ::= <word> {<space-delimiter> <word>}
<filter-segment> ::=

"source" <key-delimiter> <string> <record-delimiter>
"input" <key-delimiter> <track-list> <record-delimiter>
"start" <key-delimiter> <duration-literal> <record-delimiter>

"duration" <key-delimiter> <duration-literal> <record-delimiter>
{<word> <key-delimiter> <string> <record-delimiter>}

3.2.2.16 Example of a �lter segment

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: guitar;
start: 4x1;

duration: 4x1;
grid: 1x8;

structure: 0.3 0.5 0.6,
UP DOWN STEADY STEADY UP;

chord: 0.7;
relax: 0.8;

min: 0;
max: 2;
low: e3;

high: e6;

All that remains to do is formally declare the already mentioned fact that a program
consists of a single header segment followed by zero or more �lter segments. This �nal step
is trivial and should not require a more detailed commentary. Note, however, that every
program can both begin and end by optional amount of whitespace characters. It would be
highly impractical to classify programs as invalid just because of a few empty lines trailing
at their end.

3.2.2.17 Grammar (11/12)

<program> ::=
<opt-whitespace>
<header-segment> {<segment-delimiter> <filter-segment>}
<opt-whitespace>

41



CHAPTER 3. EXTENDED SIMILARITY CRITERION

Note The example program below uses three types of Salzella �lters. All of these �lters
are external plugins and the underlaying algorithms are not part of the speci�cation of the
language. These three algorithms are derived from the algorithms which where created as
part of the similarity criterion in Chapter 2. Mapping of these properties to algorithms
should be quite intuitive. The three extensions are only simple prototypes. Capabilities of
the language are to be extended by creating more sophisticated extensions in the future.

3.2.2.18 Example of a program

tempo: 120;
surface: 1x1 0 0 1 0 3 0 0 1 0 1 0 2,

1x1 0 0 3 0 1 0 0 1 0 2 0 1,
1x1 3 0 1 0 1 0 0 2 0 1 0 1,
1x1 1 0 1 0 1 0 2 1 0 1 0 3,
1x1 0 0 1 0 3 0 0 1 0 1 0 2,
1x1 0 0 3 0 1 0 0 1 0 2 0 1,
1x1 3 0 1 0 1 0 0 2 0 1 0 1,
1x1 1 0 1 0 1 0 2 1 0 1 0 3;

signature: 8 4 1x4;
tracks: guitar 30 105 false false,

organ 18 95 false false,
muted 28 70 false false,
drums 128 120 false false;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: guitar;
start: 2x1;

duration: 2x1;
grid: 1x8;

structure: 0.3 0.8,
UP DOWN UP UP;

chord: 0.5;
relax: 0.2;
min: 0;
max: 1;
low: e4;

high: e5;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: guitar;
start: 4x1;

duration: 4x1;
grid: 1x8;

structure: 0.3 0.5 0.6,
UP DOWN STEADY STEADY UP;

chord: 0.7;

42



3.2. SPECIFICATION

relax: 0.8;
min: 0;
max: 2;
low: e3;

high: e6;
---

source: cz.stepanvolf.salzella.plugin.SimpleDrums;
input: drums;
start: 0x1;

duration: 8x1;
loop: 1x1;
hihat: 1x8;
snare: 1x4 3x4;
kick: 0.3;
crash: 0.2;

variety: 0.1;
---

source: cz.stepanvolf.salzella.plugin.RhythmGuitar;
input: organ drums;
start: 0x1;

duration: 8x1;
mode: RHYTHM;
grid: 1x8;

---
source: cz.stepanvolf.salzella.plugin.RhythmGuitar;
input: muted drums;
start: 0x1;

duration: 8x1;
mode: RHYTHM;
grid: 1x8;

The language L could now be said to contain exactly those words which can be derived
from <program> non-terminal de�ned above. However, as mentioned earlier, the language is
not one hundred percent context-free because input property of �lter segments must contain
a list of track names which are declared as a part of the track matrix in the header segment.
To create this trivial relation, one additional rule must be declared to ensure that programs
referencing non-existent track names will not be contained in L.

3.2.2.19 Grammar (12/12)

For every <word> non-terminal w contained in <track-list>, a <word> non-
terminal w′ must exist within <track-matrix> such that w translates to exactly
the same sequence of letters as w′.

43



CHAPTER 3. EXTENDED SIMILARITY CRITERION

3.2.2.20 Language (L)

The set L contains all words over alphabet Σ which can be derived from <program>
non-terminal de�ned in 3.2.2.17 and which adhere to rule de�ned in 3.2.2.19.

3.2.3 Parameter

Since the extended similarity criterion will be created by decomposing the similarity criterion
which was created in the second chapter, de�nition of Parameter is very easy. As mentioned
in the de�nition of the similarity criterion decomposition process, de�ning Parameter is a
simple matter of reusing Parameter of the original similarity criterion. Creation of no special
de�nition is therefore required. Parameter is a set of binary words as de�ned in 2.5.1.1.

3.2.4 Converter

An algorithm which given a musical piece produces a word from L will be de�ned in this
section. To create this algorithm, functionality of the conversion algorithm created in 2.5.2.1
will be decomposed. This will include converting output of the harmony analysis algorithm
to surface matrix and creating three types of �lter segments which will handle the actual
generation of musical content.

3.2.4.1 Converter (converter)

Let m be a musical piece. Let p ∈ Parameter. To create a word from L based on
contents of m and p, do the following. Begin by creating a <header-segment> by
following the instructions enclosed in angle brackets in the template below.

tempo: <Use tempo of the original musical piece, ie. m.tempo> ;
surface: <Run the harmony analysis algorithm from 2.2.4.12 and create

a surface matrix based on results of the analysis using the follow-
ing strategy: Create a string containing a <duration-literal>
followed by twelve zeros for each chord c in the produced harmony.
When concatenating the duration literal and the twelve zeros, use
\space as delimiter. For each event e in c.C, substitute (e.pitch
% 12)-th zero with 2. Set value of the c.root-th number to 3. Let
<key, transposition> be the optimal pair calculated during the key
analysis. Do one �nal iteration over the twelve integer numbers and
do the following: If the i-th number from the twelve integer num-
bers is equal to 0 and p.keyMatrix has a positive integer number
at ((i + transposition)%12)-th column at key-th row, substitute
the 0 with 1. Concatenate all the created strings. Use comma as
delimiter.> ;

44



3.2. SPECIFICATION

signature: <Let e be an event from m.Events with maximum value of end
property. Use integer division when evaluating the following arith-
metic expressions. Evaluate e.end/(3 ·m.resolution) and store the
result to x. Check whether e.end % (3 ·m.resolution) is equal to
zero. If not, increase x by one. The value of x determines how
many three-quarter measures should be in the generated musical
piece. Note that the conversion algorithm is a prototype which
presumes that the overall rhythmical structure is based on three-
quarter measures. Full version of this algorithm would of course
include automatic detection of rhythmical structure. Even though
such algorithm was not created as a part of this thesis, the lan-
guage takes the possibility of its existence into account. Descriptive
capabilities of signature matrices are not limited to three-quarter
measure based structures.> 3 1x4;

tracks: melody 0 127 false false,
harmony 0 127 false false,
drums 128 127 false false;
---

source: cz.stepanvolf.salzella.plugin.RhythmGuitar;
input: harmony;
start: 0x1;

duration: <Determine total duration of the musical piece and create a dura-
tion literal which expresses this duration.>;

mode: STRUM;
grid: 1x4;

For each i from 0 to maximum end property in m.Events expressed in whole dotted
notes (rounded up), run the melody generation plugin from 2.3.4.5. In the follow-
ing segment, c will denote structural constraint created in step (2) of the melody
generating algorithm.

---
source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: melody;
start: 0x1;

duration: 24x16;
grid: <Express c.grid as a duration literal.>;

structure: <Express c.structuredensity as a sequence as comma separated
numbers>,
<Express c.structuredirection as a sequence as comma separated
values. Substitute −1 with DOWN, 0 with STEADY and 1 with
UP.> ;

45



CHAPTER 3. EXTENDED SIMILARITY CRITERION

chord: <Use c.chord.>;
relax: <Use c.relax.>;

min: <Use c.min.>;
max: <Use c.max.>;
low: <Express c.low in a form of pitch literal.>;
high: <Express c.high in a form of pitch literal.>;

3.2.5 Interpreter

Before describing semantic meaning of words from language L, one additional term regarding
structure of words from L will be de�ned. The words from L can thought of as lists of key-
value pairs. For example, every word from L must begin with word tempo followed by
delimiter symbol ":" followed by an integer number, followed by delimiter symbol ";".
This structure is often seen in declarative languages. Because the notion of key-value pairs
will be used in describing functionality of interpreter, formal de�nition of key value pair
will be provided.

Note You may notice that the de�nition of key-value pair doesn't mention the ";" de-
limiter. Since ":" is reserved, it can not exist in neither key nor value part of a key value
pair. As a result, it can be used to unambiguously identify all key-value pairs, ie. existence
of ";" delimiter is not necessary and could be safely removed from the speci�cation of the
language. Its presence is, however, a feature which makes Salzella programs more readable.
And a bit easier to parse.

3.2.5.1 Key-value pair

Non-terminal value will be said to be paired with terminal key if and only if key
is immediately followed by a <key-delimiter> and this <key-delimiter> is
immediately followed by value. value will be referred to as a value of property key.

Interpreter is a function which given a word from L returns a non-empty set of musical
pieces. Since computation feasibility must be taken into account, implementation of this
function will not return whole set of musical pieces. It will return only one, randomly chosen
musical piece from this set. Note the same trick was used when de�ning the conversion
algorithm of the similarity criterion, see 2.5.2.1. Note that the description of this algorithm
will not deal with technical aspects. For example, external algorithms will often be loaded
and executed during the execution of the program. The technical solution used to achieve
this ability is something which will not be dealt with in the speci�cation of the interpreter.
It will be left to decide for creators of the its actual implementation. As mentioned earlier,
the interpreter will be implemented using the Java programming language. The external
algorithms (later referred to as plugins) will be loaded using re�exive capabilities of the
language.

46



3.2. SPECIFICATION

3.2.5.2 Interpreter (interpreter)

interpreter is a randomized function which given a word from L produces a musical
piece. To create a musical piece m from word w ⊂ L, follow the instructions below.
Note that this algorithm generates one musical piece per execution. To generate a
set of all musical pieces implied by w, run the algorithm repeatedly over all possible
combinations of outcomes of random events.

(1) Create a musical piece m and set value of m.tempo to value of "tempo"
from <header-segment>. Set and m.resolution to 96. Create a track for
each <track-line> of <track-matrix> as de�ned in "tracks" in the
<header-segment> and set its instrument and volume to <integer:0-128>
and <integer:0-127> from the <track-line>, respectively.

(2) For each <filter-segment>, execute functionality of plugin de�ned in its
"source" property. Before executing the plugin, create a musical piece m′

which will be a copy of m but will only contain tracks which were declared in
"input" property of the <filter-segment>. Pass the following data as
parameters to the plugin: m′, <surface-matrix>, <signature-matrix>,
"start", "end" and "input" properties as well as all custom properties
declared in the <filter-segment>. The plugin will produce a musical piece
m′′. Update m so that the portion implied by "start", "end" and "input"
properties matches contents of m′′.

3.2.6 Extension

As mentioned earlier, three Salzella extensions were created as part of this thesis. These
three extension are not part of the speci�cation. The overview of their custom properties
can be found either in the older version of documentation of this thesis which can found on
the enclosed CD, or by invoking the code completion in the development environment.

3.2.6.1 Extensions

cz.stepanvolf.salzella.plugin.GeneralMelody
- Generates a simple melody.

cz.stepanvolf.salzella.plugin.RhythmGuitar
- Generates a harmony complement.

cz.stepanvolf.salzella.plugin.SimpleDrums
- Generates a percussive complement.

47



CHAPTER 3. EXTENDED SIMILARITY CRITERION

48



Chapter 4

Realization

4.1 Interpreter

4.1.1 Architecture overview

Salzella interpreter consists of seven parts as shown in the overview below. This is how
individual components work together: Program execution begins by invoking the parser
which creates an instance of Salzella object model. Once the parsing is complete and the
Salzella object model created, execution of the program is a fairly straight forward process.
The execution begins by creating a lightweight object representation of a MIDI sequence.
The overall structure of this sequence is derived from the track matrix. After the sequence
is created, �lters are applied to it one by one. Given the external nature of these �lters, the
algorithm responsible for execution is very careful to make defensive copies of the original
sequence and checks for unexpected runtime exceptions. In case an error occurs during
execution of the program, appropriate exception is thrown. Salzella de�nes its own exceptions
which hold information not only about the kind of error, but also about what segment of
program caused it.

4.1.1.1 Salzella interpreter

Salzella interpreter consists of the following seven components:

Salzella object model - A set of classes used to represent Salzella programs.
These classes o�er convenience methods which allow easy manipulation and
derivation of semantic data. More detailed description of Salzella object model
will be given in 4.1.2.

Lightweight MIDI entities - A set of classes used to represent musical pieces.
Convenience methods for converting the lightweight MIDI sequences into stan-
dard MIDI sequences and vice versa are also a part of Salzella platform. More
detailed description of lightweight MIDI entities will be given in 4.1.3.

Parser - Implementation of an algorithm which can convert a Salzella program
into an instance of Salzella object model. More detailed description of the parser

49



CHAPTER 4. REALIZATION

will be given in 4.1.4.

Execution control - Implementation of an algorithm which can convert an
instance of Salzella object model to a musical piece. The musical piece is rep-
resented using the lightweight MIDI entities. More detailed description of the
interpreter will be given in 4.1.5.

Custom exceptions - Checked exceptions which are thrown in speci�c situa-
tions such as parsing or execution error. More detailed description of custom
exceptions will be given in 4.1.6.

Utilities - Useful methods such as validation of Salzella programs or the conver-
sion between Salzella lightweight MIDI sequences and standard MIDI sequences.
More detailed description of utilities will be given in 4.1.7.

Plugin interface - An interface to be implemented whenever Salezella plugins
are created. More detailed description of the plugin interface will be given in
4.1.8.

4.1.2 Salzella object model

Prior to execution, each program is converted into Salzella object model. The structure of
this model closely copies the program structure presented in the previous chapter. Note
however, that some of the classes provide convenience methods which can be used when
implementing the actual music generating algorithms. For example, the Segment class
provides a method which can determine whether the given beat is o�-beat, on-beat or down-
beat In this section, a complete list of all classes will be given. Should you prefer in form a
UML digram, see C.1.

4.1.2.1 Salzella object model

Salzella object model consists of the following seven classes, all of which are located
in cz.stepanvolf.salzella.parser package.

Program - Represents a Salzella program. It is an equivalent of the <program>
non-terminal. It also encapsulates data of the program's <header-segment>.
Namely it stores information about tempo of the musical piece and references
object representations of signature, surface and track matrices.

Signature - Represents a surface matrix. It is an equivalent of the <signature-matrix>
non-terminal. Apart from referencing a list of segments, ie. object representa-
tions of <signature-line> non-terminals, it o�ers a convenience method for
assigning these segments to integer representations of time.

Surface - Represents a surface matrix. It is an equivalent of the <surface-matrix>
non-terminal. Apart from referencing a list of snippets, ie. object representa-
tions of <surface-line> non-terminals, it o�ers a convenience method for
assigning these snippets to integer representations of time.

50



4.1. INTERPRETER

Container - Carries information about a musical track. It is an equivalent
of the <track-matrix> non-terminal. It stores information about identi�er,
instrument, volume and mute/solo �ags of a track.

Snippet - Carries arbitrary information related to a particular time window
of a musical piece. It is an equivalent of the <surface-line> non-terminal.
Typically, it stores information about what chord/scale should be used in the
particular time window.

Segment - Represents a sequence of measures. It is an equivalent of the
<signature-line> non-terminal. It stores information about the top/bot-
tom part of the time signature and the number of its repetitions.

Filter - Represents a �lter segment. It is an equivalent of the <filter-segment>
non-terminal. It stores information about the plugin identi�er, the time window
at which it should be applied and the list of tracks which should be a�ected. It
also stores all custom properties in a form of a HashMap.

4.1.3 Lightweight MIDI entities

Salzella provides its own lightweight implementation of elementary MIDI entities. Note that
the lightweight MIDI entities can be useful even in software which is not strictly related
to music generation. For example, the development environment created as part of this
thesis uses the lightweight implementation of MIDI entities to represent musical contents.
Convenience methods for converting Salzella lightweight MIDI entities to standard MIDI
format and vice versa can be found in the Converter class which is a part of Salzella
utilities, see 4.1.7. Should you prefer UML diagram over the textual description below, refer
to C.2.

4.1.3.1 Lightweight MIDI entities

Lightweight MIDI entities consists of the following three classes, all of which are
located in cz.stepanvolf.salzella.entity package.

Sequence - Represents a musical piece. It is an equivalent of the standard MIDI
sequence. It stores information about tempo of musical piece and references a
list of tracks of which this musical piece is made.

Track - Represents a track. It is an equivalent of the standard MIDI track.
Apart from storing information about instrument and volume, it also stores
mute/solo boolean �ags.

Event - Represents an event. It is an equivalent of the standard MIDI event.
The information about the encapsulated note-on and note-o� MIDI messages
are stored directly in instances of the Event class. Therefore, event objects
store not only the information about the time (start and end) but pitch and
velocity as well.

51



CHAPTER 4. REALIZATION

4.1.4 Parser

As mentioned above, the formal grammar of the language de�ned in 3.2.2 was not used to
generate the parser. The parser was written manually. The advantage of this approach was
having the control over the APIs of the parser and the Salzella object model. This is crucial
because both the Salzella object model and the parser will be used by creators of Salzella
plugins when modifying the contents of relevant tracks and when parsing custom properties.
Since the overall structure of a Salzella program can be viewed as a list of key-value pair,
parsing a Salzella program is a simple matter of creating a hash map and �lling it with
key-value pairs.

4.1.4.1 Parser

The functionality of the parser is implemented in a single class. The name of this
class is Parser and it is located in cz.stepanvolf.salzella.parser package.
The following static methods are publicly available on this class:

public static Program parseProgram(String code)
- Converts the given program into an instance of Salzella object model.

public static int parseDuration(String code)
- Returns integer representation of the given duration literal.

public static int parsePitch(String code)
- Returns integer representation of the given pitch literal.

The parseProgram() method parses structures such as surface or track matrices.
The methods which are used to handle these subtasks have private access in the parser
because they are used internally.

private static Surface parseSurface(String code)
- Converts the given code into an object representation of a surface matrix.

private static Snippet parseSnippet(String code)
- Converts the given code into an object representation of a surface matrix line.

private static Signature parseSignature(String code)
- Converts the given code into an object representation of a signature matrix.

private static Segment parseSegment(String code)
- Converts the given code into an object representation of a signature matrix line.

private static Container[] parseTracks(String code)
- Converts the given code into an object representation of a track matrix.

private static Container parseTrack(String code)
- Converts the given code into an object representation of a track matrix line.

52



4.1. INTERPRETER

4.1.5 Execution control

The key responsibility of the execution control is execution of Salzella programs. The al-
gorithm used to execute a Salzella program was described in 3.2.5. The implementation
of the execution control receives an instance of Salzella object model at the input. It �rst
creates and instance of the lightweight MIDI sequence and then applies individual �lters on
the sequence one by one in order in which they were declared.

4.1.5.1 Execution control

The functionality of the execution control is implemented in a single class. The name
of this class is Salzella and it is located in cz.stepanvolf.salzella package.
The following static method is publicly available on this class:

public static Sequence run(String code)
- Executes the given Salzella program and returns the resulting musical piece.

The execution control can be also invoked indirectly using the main() method. This
feature makes it possible to execute Salzella interpreter from the command line. The
main() method is declared in cz.stepanvolf.salzella.Main class.

public static void main(String[] parameters)
- Uses the �rst string in parameters as path to a �le containing a Salzella
program. Executes the interpreter and stores the resulting musical piece in a
�le speci�ed in the second string in parameters. The musical piece is stored
as a standard MIDI �le.

4.1.6 Custom exceptions

Whenever parsing or execution of a Salzella program fails, appropriate exception is thrown.
There are three types of exception created in Salzella platform. Each one of them can be
thrown when the interpreter is invoked. And since all of these exception are declared as
checked, they must be either handled or thrown when the interpreter is executed.

4.1.6.1 Custom exceptions

There are three types of exceptions which can be thrown when the Salzella interpreter
is invoked. These exceptions are located in cz.stepanvolf.salzella.exception
package.

ParseExcetion - Thrown whenever parsing of a Salzella program fails.
Example scenario: Some �lter segment is missing the source property.

ExecuteExcetion - Thrown whenever execution of a Salzella program fails.
Example scenario: Runtime exception is thrown when a plugin is executed.

SequenceExcetion - Thrown whenever exectution of a Sazella program pro-

53



CHAPTER 4. REALIZATION

duces an invalid musical piece. Example scenario: The track matrix assigns an
invalid instrument value to some track.

4.1.7 Utilities

Salzella utilities is a collection of algorithms and constants which can come handy when
either creating a Salzella plugins or when creating music generating tools built on top of
Salzella platform. The most notable capabilities of this library are validation of Salzella
programs and conversion between Salzella MIDI sequences and standard MIDI sequences.

4.1.7.1 Utilities

The following set of classes will be referred to as Salzella utilities. All of these classes
are located in cz.stepanvolf.salzella.util package.

Boundary - Contains constants for lower and upper bounds of integer properties
such as pitches and instruments. These constants are used primarily to validate
parameters passed to setters and constructors of the lightweight MIDI entities.
A few examples of boundary constants: MIN_PITCH, MAX_PITCH.

Duration - Constants in this class are integer representations of duration bases.
These constants are used during conversion of duration literals into integer repre-
sentations of time. A few examples of duration constants: QUARTER_REGULAR,
EIGHTH_TRIPLET.

Root - Constants in this class are integer representations of pitch classes. These
constants are used during conversion of pitch literals into integer representations
of pitch. A few examples of root constants: C_NATURAL, C_SHARP.

Volume - Contains constants for notable volume values. These constants are
not used by the Salzella interpreter. They were introduced only to provide some
reference values of loudness of events which can be used by creators of plugins.
A few examples of volume constants: F which stands for forte, FF which stands
for fortissimo.

Beat - Constants in this class represent types of beats. Unlike with the other
types of Salzella constants, there is no reason to associate an integer value with
a type of a beat. Thats why the types of beats are represented using the built-in
support for enumeration pattern. A few example of instances of this enumera-
tion: ON_BEAT, OFF_BEAT

Generator - This class o�ers convenience methods for generating random val-
ues. For example, a static method randomInteger() generates random inte-
ger numbers from a given range.

Converter - Use this class to convert Salzella MIDI sequences to standard
MIDI sequences and vice versa. Also, this class o�ers convenience methods for
converting integer value representations of duration and pitch to duration literals

54



4.1. INTERPRETER

and pitch literals, respectively. These methods are useful when implementing
the conversion algorithm.

Sculptor - Use this class to perform high level modi�cations of Salzella se-
quences such as clearing/trimming all events which overlap a given time window.
These methods are used primarily by the execution control of the interpreter.
However, they can be useful when creating plugins. For example, the conversion
algorithm uses these methods when cutting a melody into segments.

Validator - Use this class to validate Salzella programs. Note that for pur-
poses of creating the validation algorithm, the grammar from the formal speci�-
cation of the language was rewritten using the Java regular expressions. Thanks
to usage of back referencing the resulting regular expression can ensure that
even the context-sensitive rule which states that the input property of a �lter
must contain a list of existing track identi�ers.

4.1.8 Plugin interface

When dealing with plugins, Salzella interpreter leverages re�exive capabilities of the Java
programming language and instead of requiring the source codes of plugins to be available
at the compile time, it loads the already compiled plugins on the �y. To make the further
manipulation with the plugins easier, each plugin is required to implement the Plugin in-
terface which the interpreter uses as a polymorphic wrapper. The Plugin interface requires
its subclasses to implement a single method named run(). Note that the term interface is
used here in general sense. Plugin is not a Java interface. It is a class with a non-empty
constructor which requires its subclasses to ensure that values for instance �elds containing
information about the plugin such as name of the author are provided when constructing
the actual instances.

4.1.8.1 Plugin interface

The Plugin class requires its subclasses to implement a single abstract method
run(). The Plugin interface is located in cz.stepanvolf.salzella.plugin
package. The run() method returns a Sequence and accepts the following param-
eters:

Sequence sequence - a copy of the original sequence

Surface surface - the surface matrix from the header segment

Signature signature - the signature matrix from the header segment

int[] input - indexes of tracks which should be a�ected by the �lter

int start - time at which the time window starts

int duration - duration of the time window

Map<String, String> settings - custom properties of the �lter

55



CHAPTER 4. REALIZATION

4.1.9 Implementation notes

Salzella interpreter was implemented using the Java programming language. Source codes
were version controlled using Git. Both the source code and javadoc documentation can be
found on the enclosed CD, see Appendix D.

4.2 Converter

The conversion algorithm was implemented as a separate project. Since this algorithm is
a prototype, its implementation doesn't always abides the good practices a proper software
engineer should adhere to. For example, instead of being loaded from an external �le,
the scoring matrices used by the harmony analysis algorithm are hard coded in the actual
implementation. The conversion algorithm was implemented using the Java programming
language and version controlled using Git. Both the source code and javadoc documentation
can be found on the enclosed CD. For complete overview of contents of the enclosed CD see
Appendix D.

4.2.0.1 Converter

The functionality of the conversion algorithm is spread across two classes, both of
which are located in cz.stepanvolf.binky package.

Binky - Implementation of the actual conversion algorithm. The only public
method in this class is named run(). It accepts a MIDI �le at the input and
produces a string representation of a Salzella program. ConvertException
is thrown in case the conversion fails.

Matrix - Static �elds of this class contain scoring matrices used by the harmony
analysis algorithm. In full version of the algorithm, these matrices should be
loaded from a �le instead of being hard coded in this class.

4.3 Plugins

Three plugins were created as part of this thesis. These plugins were implemented using
the Java programming language and version controlled using Git. Both the source code and
javadoc documentation can be found on the enclosed CD. For complete overview of contents
of the enclosed CD see Appendix D.

4.3.0.2 Plugins

Three plugins were created as part of this thesis. All of these classes are located in
cz.stepanvolf.salzella.plugin package.

GeneralMelody - Implementation of the melody generating �lter.

56



4.3. PLUGINS

RhythmGuitar - Implementation of the rhythm guitar generating �lter.

SimpleDrums - Implementation of the percussion generating �lter.

57



CHAPTER 4. REALIZATION

58



Chapter 5

Development environment

5.1 User guide

A development environment for creating Salzella programs was created as part of this thesis.
The user interface of Salzella development environment consists of a source code editor,
playback controls and three Salzella control buttons. These buttons allow the user to run a
Salzella program, load an existing Salzella program from a built-in database and generate a
program based on contents of a MIDI �le. Usage of the development environment is quite
intuitive. The key use case scenarios will be described in greater detail nonetheless. It
will be shown that combined together, the individual use case scenarios cover all functional
requirements de�ned in 1.2.3. Figure 5.1 shows and overview of the user interface.

Figure 5.1: Salzella development environment

59



CHAPTER 5. DEVELOPMENT ENVIRONMENT

5.1.1 Manual program creation

Figure 5.2 uses labels c1-c7 to mark controls relevant to manual creation of Salzella programs.
To manually create a Salzella program, use the keyboard to edit contents of text area c1.
When editing the source code of a Salzella program, use buttons c2/c3 to undo/redo changes,
click button c4 to automatically format the code for better readability, click c5 to validate
the program. Use c6 to request code completion. When done editing the source code, the
program can be executed by clicking button c7. The execution of the program will result in
creation of a musical piece.

5.1.1.1 Functional requirements coverage (1/5)

Controls c1-c7 are related to the following functional requirements:

r1a - Manually edit code of a Salzella program

r1b - Use code completion to paste prede�ned blocks of code

r1c - Request automatic code formatting for better readability

r3 - Validate Salzella programs

r4 - Execute Salzella programs

r9 - Perform undo/redo operations over r1, r4 and r5a-r5e

Figure 5.2: Manual program creation

60



5.1. USER GUIDE

5.1.2 Automated program creation

Figure 5.3 uses labels c8-c9 to mark controls relevant to automated creation of Salzella
programs. To run the conversion algorithm click on button c8 and use the dialog window
to locate a MIDI �le. After selecting a �le, the algorithm will be executed and the resulting
Salzella program automatically loaded into the code editor. To load a Salzella program from
built-in database, click on button c9 and select a program from the presented list.

5.1.2.1 Functional requirements coverage (2/5)

Controls c8-c9 are related to the following functional requirements:

r2a - Select a �le containing the musical piece to be converted

r2b - Generate a Salzella program by running the conversion algorithm

r6 - Load programs from built-in database

Figure 5.3: Automated program creation

61



CHAPTER 5. DEVELOPMENT ENVIRONMENT

5.1.3 Playback of musical pieces

Figure 5.4 uses labels c10-c18 to mark controls relevant to playback of musical pieces. When-
ever a musical piece is generated, it can be played back by clicking button c10. The playback
can be stopped by clicking button c11. To change tempo of the musical piece, use the key-
board to edit contents of text area c12. To change instrument of a track, use button c13.
To adjust volume of a track, use slider c14. To change mute/solo �ags, use buttons c15/c16.
To expand vertical space allocated for musical piece visualization, hide the code editor by
clicking button c18.

5.1.3.1 Functional requirements coverage (3/5)

Controls c10-c18 are related to the following functional requirements:

r5a - Select instruments for individual tracks

r5b - Adjust volume of individual tracks

r5c - Select subset of tracks to be muted

r5d - Select subset of tracks to be played back

r5e - Adjust tempo of musical piece

r5f - Start/stop playback of a musical piece

Figure 5.4: Playback of musical pieces

62



5.1. USER GUIDE

5.1.4 MIDI export/import

Figure 5.5 uses labels c19-c20 to mark controls relevant to exporting/importing musical
pieces to/from MIDI �les. To import a MIDI �le, click on button c19 and use the dialog
window to locate the MIDI �le to be imported. To export contents of the currently loaded
musical piece to a MIDI �le, click on button c20 and use the dialog window to specify the
output �le.

5.1.4.1 Functional requirements coverage (4/5)

Controls c19-c20 are related to the following functional requirements:

r7 - Save musical pieces to �les

r8 - Load musical pieces from �les

Figure 5.5: MIDI export/import

5.1.5 Performing undo/redo

Figure 5.6 uses labels c21-c22 to mark controls relevant to undoing/redoing changes made
to musical pieces. Any changes made to properties of the currently loaded musical piece can
be undone using c21 and redone using c22.

5.1.5.1 Functional requirements coverage (5/5)

Controls c21-c22 are related to the following functional requirements:

r9 - Perform undo/redo operations over r1, r4 and r5a-r5e

Figure 5.6: Performing undo/redo

63



CHAPTER 5. DEVELOPMENT ENVIRONMENT

5.2 Realization

5.2.1 Architecture

Salzella development environment is built on top of the MVC architecture [17]. Communi-
cation between layers is handled by standard GoF design patterns [18]. Undoable changes
in Model are performed using the command pattern and Model-View synchronization is
achieved by means of the observer pattern. The implementation is organized in seven pack-
ages as described below.

5.2.1.1 Package overviews

Salzella development environment is built on top of the MVC architecture. The actual
implementation is organized as follows:

cz.stepanvolf.salzie
- Initialization of the application.

cz.stepanvolf.salzie.model
- Model of the application. Instances of classes which reside in this package
represent the application state. For example, instance of the Project class
stores information about the currently loaded musical piece and o�ers methods
such as setTempo() which can be used to change its properties. Instance
of the Executor class stores undo/redo lists and is responsible for the actual
execution of these commands. Note that this package also contains XML �les
which store information about presets and list of available plugins. For complete
overview of classes and con�guration �les which reside in this package, refer to
javadoc documentation which can be found on the enclosed CD, see Appendix
D.

cz.stepanvolf.commands
- Commands used to perform undoable changes on model.

cz.stepanvolf.controller
- Controller of the application. Upon receiving information about some user ac-
tion, it either modi�es model by means of creating and executing a command or
requests some service such as playback of a musical piece. Controller of the appli-
cation is implemented in a single class called Controller. The instance of this
class is available to classes from the View layer by means of the singleton pattern.
For each possible user action, a method exits in Controller which is bound to
be invoked upon occurrence of the action. The names of these methods should
be self explanatory. Here are a few examples: tempoChanged(int tempo),
instrumentChanged(int track, int instrument), undoPressed().

cz.stepanvolf.observers
- Interfaces to be implemented by observers of the application state.

64



5.2. REALIZATION

cz.stepanvolf.view
- Implementation of the user interface.

cz.stepanvolf.images
- Images of icons used in the user interface.

5.2.2 Implementation notes

The development environment was implemented using the Java programming language.
Source codes were version controlled using Git. Both the source code and javadoc docu-
mentation can be found on the enclosed CD, see Appendix D. Note that the development
environment uses a BSD licensed [19] open source implementation of rich text area developed
by Thomas Munsel [20]. The compiled versions of external libraries as well as executable
version of the development environment can be found on the enclosed CD.

65



CHAPTER 5. DEVELOPMENT ENVIRONMENT

66



Chapter 6

Conclusion

6.1 Evaluation

The evaluation of the results of this thesis will be divided into three separate parts. First,
the chosen methodology will be evaluated. Next, the algorithms responsible for the actual
music generation will be evaluated. And �nally, advantages and disadvantages of the created
language will be discussed.

6.1.1 Methodology

The goal of this thesis was to create a declarative language for music generation which would
allow its users to encapsulate the essence of an already existing musical piece in form of a
program. Executing this program should result in producing a musical piece similar to the
original. To formally de�ne whether one musical piece is similar to another, a binary relation
over all musical pieces had to be de�ned. This was achieved by creating a simple function
which realizes this relation. This function was formally presented as an instance of a so called
similarity criterion and its creation was described in 2.5. The formal de�nition of similarity
criterion didn't require the implied similarity relation to be neither symmetric nor transitive
which helped in terms of computational feasibility. Since the function is in practice used
to produce one similar musical piece at the time, the user of this function has no chance of
detecting the relation is not transitive.

As mentioned many times, there is no universally correct de�nition of what makes two
musical pieces similar. The created similarity criterion is therefore not the only possible
de�nition of the similarity relation. It is a prototype with very limited capabilities. How-
ever, it proved to be useful when designing the actual language which was created as part
of a so called extended similarity criterion as de�ned in 1.1.3.3. Re�ecting on the fact that
there may be many de�nitions of what makes two musical pieces similar, the created lan-
guage was designed to be capable of absorbing functionality of various similarity criterions.
This resulted in the most important structural feature of the proposed language which is
extensibility.

67



CHAPTER 6. CONCLUSION

6.1.2 Algorithms

Three algorithms which deal with the actual music generation were created as part of the
similarity criterion. The most sophisticated of these algorithms was algorithm for melody
harmonization described in 2.2. This algorithm uses a set of scoring matrices to encapsulate
relations among tones, chords and musical keys to �nd optimal solution in exponentially
big solution space. Existence of several di�erent sets of these scoring matrices is presumed.
These sets can be designed to address di�erent musical genres, or even compositional styles
of particular composers. Automated creation of these matrices based on data sets of already
existing musical pieces was not solved as part of this thesis but it would de�nitely be the next
logical step. A modi�ed version of this algorithm capable of performing harmony analysis of
an existing musical piece was used in the created similarity criterion.

The melody generating algorithm described 2.3 is based on idea of generating sequences
of shorter melody segments which satisfy a simple local constraint. This technique proved
to be useful when generating variations on existing melodies. However, used as a general
purpose melody generating algorithm, this algorithm would have many limitations. For
example, it doesn't allow its users to say anything about structure of the generated melody
in terms of repetitions and variations.

The algorithm responsible for percussion generation which was described in 2.4 was
created mainly to illustrate the genre independence capabilities of the created language.
The algorithm is capable of generating simple rhythm loops. The explicit positioning of
snare hits within the rhythm and randomized positioning of kick and open hi-hat hits on
top of semi-regular grid of closed hi-hat hits seem to provide more than enough control to
create genre speci�c rhythms.

6.1.3 Language

Intended users of the created language are creators of music generating software. Evaluation
of the language will be therefore done through answering the following question: Why should
developers of music generating software use Salzella as internal engine?

First of all, it has to be said that the capabilities of Salzella are directly proportional
to quality of its extensions. The three extensions which were created as part of this thesis
are very simple prototypes. The creators of music generating tools who will decide to use
Salzella are, however, free to create their own extensions and thus modify the functionality
of Salzella. In fact, they can even completely bypass the built-in support for describing the
overall structure of musical pieces.

Creating a Salzella extension is a simple matter of implementing an interface with a
single method. This method will be responsible for modifying contents of a musical piece.
Salzella de�nes its own data types to represent the musical contents and provides methods
which can handle conversion between these data types and standard MIDI sequences. This
means that even already existing implementations of algorithms which use standard MIDI
sequences can be integrated into Salzella.

Taking advantage of the fact that Salzella programs are presumed to be generated rather
than written by hand, the language does not provide explicit support for abstract structures

68



6.2. FUTURE WORK

like chords, scales and keys. Instead, these structures can be manually de�ned within in-
dividual programs. This low level approach was the most important decision made during
creation of the language. In retrospect, this approach had the following advantages and
disadvantages:

Advantages The most obvious advantage of adopting the low level approach was overall
simpli�cation of the language. Possibility of manual de�nition of arbitrary scales/chords was
achieved by providing speci�cation of a single type of matrix, the surface matrix. Note that
the concept of surface matrices plays the key role in satisfying the music genre independence
requirement. By even the slightest modi�cation of program's surface matrix, contents of the
outputted musical piece can change dramatically. For example, program for generating rock
music, see B.1, uses the surface matrix to de�ne a chord progression made of power chords
and declares usage of pentatonic scale. Program for generating folk music, see B.4, uses the
same data structure to de�ne harmony based on major/minor triads and declares usage of
diatonic scale.

Disadvantages The biggest disadvantage of the low level approach is, of course, delegating
the responsibility of de�ning the high level structures to the user. Adopting the low level
approach also implies growth of Salzella programs in terms of numbers of lines. Salzella
programs can be as long as tens of thousands of lines. But since ease of manual creation of
Salzella programs was not a priority, neither of these disadvantages presented a problem.

6.2 Future work

6.2.1 Verse and chorus support

The current version of Salzella works best when dealing with musical ideas few bars long.
Even though it would be possible to create an extension which would allow Salzella users
to work with concepts like verses and choruses, adding explicit support for de�ning custom
meaning of manually selected time windows should be considered.

6.2.2 Surface matrix convention

The twelve-integer surface matrix convention doesn't seem to be su�cient when dealing with
more complex music. One possible course of action could be using twenty four integers per
row. This would allow users to store information about scales and chords separately. Going
even further and using thirty six integers per row would make it possible to use di�erent
scales based on direction of melodies. This would be particularly useful when dealing with
melodic minor scales. No matter what approach will be chosen, limiting the size of surface
matrix rows is unnecessary and should be de�nitely removed from Salzella speci�cation.

6.2.3 Manual creation of surface matrices

Even though Salzella programs are presumed to be generated rather than written by hand,
developers of Salzella extension will often want to create surface matrices manually to test

69



CHAPTER 6. CONCLUSION

their algorithms. Manual creation of surface matrices is a tedious and error prone task. Once
surface matrix convention is stable enough, a surface matrix generation tool should be added
to the development environment to make manual creation of surface matrices easier.

70



Bibliography

[1] "MIDI Speci�cation." MIDI Manufacturers Association. Accessed December 23, 2015.
http://midi.org/.

[2] Biedrzycki, Maciej. "Can Computers Create Music?" CgMusic. May 19, 2008. Accessed
December 23, 2015. http://codeminion.com/blogs/maciek/2008/05/cgmusic-computers-
create-music/.

[3] "User-Customized Jazz Improvisation Generation." Jazzerbot. Accessed December 23,
2015. https://code.google.com/p/jazzerbot/.

[4] "An Experiment in a New Kind of Music." WolframTones. Accessed December 23, 2015.
http://tones.wolfram.com/.

[5] "Music Programming for Java� and JVM Languages." JFugue. Accessed December 23,
2015. http://www.jfugue.org/.

[6] "Computer Music Composition in Java." JMusic. Accessed December 23, 2015.
http://explodingart.com/jmusic/.

[7] Volf, Stepan. Music Generator (M-Architect). Bachelor's thesis, Czech Technical Univer-
sity in Prague, 2012.

[8] Pratchett, Terry. Maskerade: A Novel of Discworld Series. New York: HarperPrism,
1997.

[9] Yogev, Noam, and Alexander Lerch. "A System for Automatic Audio Harmonization."
Proceedings of the VdT International Convention (25. Tonmeistertagung), 2008.

[10] Phon-Amnuaisuk, Somnuk, and Geraint A. Wiggins. "The Four-part Harmonisation
Problem: A Comparison between Genetic Algorithms and a Rule-Based System." Pro-
ceedings of the AISB '99 Symposium on Musical Creativity, 1999, 28-34.

[11] Pachet, François, and Pierre Roy. "Mixing Constraints and Objects: A Case Study in
Automatic Harmonization." Prentice-Hall, TOOLS Europe, 1995, 119-26.

[12] Kathiresan, Thayabaran. Automatic Melody Generation. Master's thesis, KTH Royal
Institute of Technology, 2015.

[13] "American National Standard for Information Systems � Coded Character Sets � 7-
Bit American National Standard Code for Information Interchange (7-Bit ASCII), ANSI
X3.4-1986". American National Standards Institute, March 26, 1986.

71



BIBLIOGRAPHY

[14] "Documentation of java.util.regex.Pattern." Java Platform SE 8. Accessed May 15, 2016.
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

[15] Backus, John Warner. "The Syntax and Semantics of the Proposed International Alge-
braic Language of the Zurich ACM-GAMMConference." Proceedings of the International
Conference on Information Processing, 1959, 125-32.

[16] "ISO/IEC 14977: Information Technology - Syntactic Metalanguage - Extended BNF."
International Organization for Standardization, December 15, 1996.

[17] Fowler, Martin. "GUI Architectures." July 18, 2006. Accessed May 15, 2016.
http://martinfowler.com/eaaDev/uiArchs.html.

[18] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

[19] "The BSD 2-Clause License." Open Source Initiative. Accessed May 15, 2016.
https://opensource.org/licenses/BSD-2-Clause.

[20] Mikula, Tomas. "RichTextFX: Rich-text area for JavaFX." GitHub. Accessed May 15,
2016. https://github.com/TomasMikula/RichTextFX.

72



Appendix A

Lengthy de�nitions

A.1 Instrument mapping

A.1.1 Instrument mapping

Let Identifier = {0, 1, 2, ..., 128}. Let Instrument be a set of string representations
of types of musical instruments. Instrument mapping is a function ι : Identifier →
Instrument which assigns a type of musical instrument to each integer identi�er.
Below is a full enumerative de�nition of instrument mapping.

0→ Acoustic Grand Piano
1→ Bright Acoustic Piano
2→ Electric Grand Piano
3→ Honky-tonk Piano
4→ Rhodes Piano
5→ Chorused Piano
6→ Harpsichord
7→ Clavinet
8→ Celesta
9→ Glockenspiel
10→ Music Box
11→ Vibraphone
12→ Marimba
13→ Xylophone
14→ Tubular Bells
15→ Dulcimer
16→ Drawbar Organ
17→ Percussive Organ
18→ Rock Organ
19→ Church Organ
20→ Reed Organ
21→ Accordion
22→ Harmonica

73



APPENDIX A. LENGTHY DEFINITIONS

23→ Tango Accordion
24→ Acoustic Guitar (nylon)
25→ Acoustic Guitar (steel)
26→ Electric Guitar (jazz)
27→ Electric Guitar (clean)
28→ Electric Guitar (muted)
29→ Overdriven Guitar
30→ Distortion Guitar
31→ Guitar Harmonics
32→ Acoustic Bass
33→ Electric Bass (�nger)
34→ Electric Bass (pick)
35→ Fretless Bass
36→ Slap Bass 1
37→ Slap Bass 2
38→ Synth Bass 1
39→ Synth Bass 2
40→ Violin
41→ Viola
42→ Cello
43→ Contrabass
44→ Tremolo Strings
45→ Pizzicato Strings
46→ Orchestral Harp
47→ Timpani
48→ Strings
49→ Slow Strings
50→ Synth Strings 1
51→ Synth Strings 2
52→ Choir Aahs
53→ Voice Oohs
54→ Synth Choir
55→ Orchestra Hit
56→ Trumpet
57→ Trombone
58→ Tuba
59→ Muted Trumpet
60→ French Horn
61→ Brass Section
62→ Synth Brass 1
63→ Synth Brass 2
64→ Soprano Sax
65→ Alto Sax
66→ Tenor Sax
67→ Baritone Sax

74



A.1. INSTRUMENT MAPPING

68→ Oboe
69→ English Horn
70→ Bassoon
71→ Clarinet
72→ Piccolo
73→ Flute
74→ Recorder
75→ Pan Flute
76→ Blown bottle
77→ Shakuhachi
78→ Whistle
79→ Ocarina
80→ Square Wave
81→ Saw Wave
82→ Synth Calliope
83→ Chi�er Lead
84→ Charang
85→ Solo Vox
86→ 5th Saw Wave
87→ Bass & Lead
88→ Fantasia
89→ Warm Pad
90→ Polysynth
91→ Space Voice
92→ Bowed Glass
93→ Metal Pad
94→ Halo Pad
95→ Sweep Pad
96→ Ice Rain
97→ Soundtrack
98→ Crystal
99→ Atmosphere
100→ Brightness
101→ Goblin
102→ Echo Drops
103→ Star Theme
104→ Sitar
105→ Banjo
106→ Shamisen
107→ Koto
108→ Kalimba
109→ Bagpipe
110→ Fiddle
111→ Shanai
112→ Tinkle Bell

75



APPENDIX A. LENGTHY DEFINITIONS

113→ Agogo
114→ Steel Drums
115→ Woodblock
116→ Taiko
117→ Melodic Tom
118→ Synth Drum
119→ Reverse Cymbal
120→ Guitar Fret Noise
121→ Breath Noise
122→ Seashore
123→ Bird Tweet
124→ Telephone Ring
125→ Helicopter
126→ Applause
127→ Gun Shot
128→ Percussion

A.2 Percussion mapping

A.2.1 Percussion mapping

Let Identifier = {35, 36, 37, ..., 81}. Let Percussion be a set of string representations
of types of percussive sounds. Percussion mapping is a function π : Identifier →
Percussion which assigns a type of percussive sound to each integer identi�er. Below
is a full enumerative de�nition of percussion mapping.

35→ Acoustic Bass Drum
36→ Bass Drum
37→ Side Stick
38→ Acoustic Snare
39→ Hand Clap
40→ Electric Snare
41→ Low Floor Tom
42→ Closed Hi Hat
43→ High Floor Tom
44→ Pedal Hi-Hat
45→ Low Tom
46→ Open Hi-Hat
47→ Low-Mid Tom
48→ Hi Mid Tom
49→ Crash Cymbal 1
50→ High Tom
51→ Ride Cymbal 1
52→ Chinese Cymbal
53→ Ride Bell

76



A.3. PLAYBACK

54→ Tambourine
55→ Splash Cymbal
56→ Cowbell
57→ Crash Cymbal 2
58→ Vibraslap
59→ Ride Cymbal 2
60→ Hi Bongo
61→ Low Bongo
62→ Mute Hi Conga
63→ Open Hi Conga
64→ Low Conga
65→ High Timbale
66→ Low Timbale
67→ High Agogo
68→ Low Agogo
69→ Cabasa
70→ Maracas
71→ Short Whistle
72→ Long Whistle
73→ Short Guiro
74→ Long Guiro
75→ Claves
76→ Hi Wood Block
77→ Low Wood Block
78→ Mute Cuica
79→ Open Cuica
80→ Mute Triangle
81→ Open Triangle

A.3 Playback

A.3.1 Playback

Let m be an instance of musical piece. To play back m means to produce a sound for
each e ∈ m.Events. Time at which the production of this sound should start can be
obtained by calculating by (e.start/m.resolution)(60/m.tempo). Time at which the
production of this sound should terminate can be calculated using the same formula
with e.start substituted with e.end. Value obtained by the time formula should be
interpreted as number of seconds from initiation of playback ofm. The relative volume
of the produced sound can be calculated by (e.velocity/127). Value obtained by the
volume formula should be interpreted as relative volume where 0 means silent and
1 means as loud as possible. If m.ρ(e).instrument < 128, then the produced sound
should be a tone with frequency implied by e.pitch and instrument used to produce
this tone should be ι(m.ρ(e).instrument). If m.ρ(e).instrument = 128 the produced

77



APPENDIX A. LENGTHY DEFINITIONS

sound should be a percussion hit π(m.ρ(e).instrument).

A.4 Integer literals

A.4.1 Integer literals

<d0> ::= "0"
<d1> ::= "0" | "1"
<d2> ::= "0" | "1" | "2"
<d3> ::= "0" | "1" | "2" | "3"
<d4> ::= "0" | "1" | "2" | "3" | "4"
<d5> ::= "0" | "1" | "2" | "3" | "4" | "5"
<d6> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6"
<d7> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7"
<d8> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"
<d9> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
<positive> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

<integer:1-INF> ::=
<positive> [<d9>] [<d9>] [<d9>] [<d9>] [<d9>] [<d9>] [<d9>] [<d9>] |

"1" <d9> <d9> <d9> <d9> <d9> <d9> <d9> <d9> <d9> |
"2" <d0> <d9> <d9> <d9> <d9> <d9> <d9> <d9> <d9> |
"2" "1" <d3> <d9> <d9> <d9> <d9> <d9> <d9> <d9> |
"2" "1" "4" <d6> <d9> <d9> <d9> <d9> <d9> <d9> |
"2" "1" "4" "7" <d3> <d9> <d9> <d9> <d9> <d9> |
"2" "1" "4" "7" "4" <d7> <d9> <d9> <d9> <d9> |
"2" "1" "4" "7" "4" "8" <d2> <d9> <d9> <d9> |
"2" "1" "4" "7" "4" "8" "3" <d5> <d9> <d9> |
"2" "1" "4" "7" "4" "8" "3" "6" <d3> <d9> |
"2" "1" "4" "7" "4" "8" "3" "6" "4" <d7>

<integer:0-127> ::= <d9> | <positive> <d9> | "1" <d1> <d9> | "1" "2" <d7>
<integer:0-128> ::= <integer:0-127> | "128"
<integer:0-INF> ::= <integer:1-INF> | "0"

A.5 Literal mappings

A.5.1 Pitch literal mapping

c0 → 0
c#0 → 1
d0 → 2
d#0 → 3

78



A.5. LITERAL MAPPINGS

e0 → 4
f0 → 5
f#0 → 6
g0 → 7
g#0 → 8
a0 → 9
a#0 → 10
b0 → 11
c1 → 12
c#1 → 13
d1 → 14
d#1 → 15
e1 → 16
f1 → 17
f#1 → 18
g1 → 19
g#1 → 20
a1 → 21
a#1 → 22
b1 → 23
c2 → 24
c#2 → 25
d2 → 26
d#2 → 27
e2 → 28
f2 → 29
f#2 → 30
g2 → 31
g#2 → 32
a2 → 33
a#2 → 34
b2 → 35
c3 → 36
c#3 → 37
d3 → 38
d#3 → 39
e3 → 40
f3 → 41
f#3 → 42
g3 → 43
g#3 → 44
a3 → 45
a#3 → 46
b3 → 47
c4 → 48

79



APPENDIX A. LENGTHY DEFINITIONS

c#4 → 49
d4 → 50
d#4 → 51
e4 → 52
f4 → 53
f#4 → 54
g4 → 55
g#4 → 56
a4 → 57
a#4 → 58
b4 → 59
c5 → 60
c#5 → 61
d5 → 62
d#5 → 63
e5 → 64
f5 → 65
f#5 → 66
g5 → 67
g#5 → 68
a5 → 69
a#5 → 70
b5 → 71
c6 → 72
c#6 → 73
d6 → 74
d#6 → 75
e6 → 76
f6 → 77
f#6 → 78
g6 → 79
g#6 → 80
a6 → 81
a#6 → 82
b6 → 83
c7 → 84
c#7 → 85
d7 → 86
d#7 → 87
e7 → 88
f7 → 89
f#7 → 90
g7 → 91
g#7 → 92
a7 → 93

80



A.5. LITERAL MAPPINGS

a#7 → 94
b7 → 95
c8 → 96
c#8 → 97
d8 → 98
d#8 → 99
e8 → 100
f8 → 101
f#8 → 102
g8 → 103
g#8 → 104
a8 → 105
a#8 → 106
b8 → 107
c9 → 108
c#9 → 109
d9 → 110
d#9 → 111
e9 → 112
f9 → 113
f#9 → 114
g9 → 115
g#9 → 116
a9 → 117
a#9 → 118
b9 → 119
c10 → 120
c#10 → 121
d10 → 122
d#10 → 123
e10 → 124
f10 → 125
f#10 → 126
g10 → 127

A.5.2 Duration base mapping

1 → 384
2 → 192
4 → 96
8 → 48
16 → 24
32 → 12
64 → 6

81



APPENDIX A. LENGTHY DEFINITIONS

1t → 256
2t → 128
4t → 64
8t → 32
16t → 16
32t → 8
64t → 4

1d → 576
2d → 288
4d → 144
8d → 72
16d → 36
32d → 18
64d → 9

82



Appendix B

Example programs

B.1 Program 1 - Rock

B.1.0.1 Program 1 - Rock

tempo: 120;
surface: 1x1 0 0 1 0 3 0 0 1 0 1 0 2,

1x1 0 0 3 0 1 0 0 1 0 2 0 1,
1x1 3 0 1 0 1 0 0 2 0 1 0 1,
1x1 1 0 1 0 1 0 2 1 0 1 0 3,
1x1 0 0 1 0 3 0 0 1 0 1 0 2,
1x1 0 0 3 0 1 0 0 1 0 2 0 1,
1x1 3 0 1 0 1 0 0 2 0 1 0 1,
1x1 1 0 1 0 1 0 2 1 0 1 0 3;

signature: 8 4 1x4;
tracks: guitar 30 105 false false,

organ 18 95 false false,
muted 28 70 false false,
drums 128 120 false false;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: guitar;
start: 2x1;

duration: 2x1;
grid: 1x8;

structure: 0.3 0.8,
UP DOWN UP UP;

chord: 0.5;
relax: 0.2;

min: 0;
max: 1;
low: e4;

83



APPENDIX B. EXAMPLE PROGRAMS

high: e5;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: guitar;
start: 4x1;

duration: 4x1;
grid: 1x8;

structure: 0.3 0.5 0.6,
UP DOWN STEADY STEADY UP;

chord: 0.7;
relax: 0.8;
min: 0;
max: 2;
low: e3;

high: e6;
---

source: cz.stepanvolf.salzella.plugin.SimpleDrums;
input: drums;
start: 0x1;

duration: 8x1;
loop: 1x1;
hihat: 1x8;
snare: 1x4 3x4;
kick: 0.3;
crash: 0.2;

variety: 0.1;
---

source: cz.stepanvolf.salzella.plugin.RhythmGuitar;
input: organ drums;
start: 0x1;

duration: 8x1;
mode: RHYTHM;
grid: 1x8;

---
source: cz.stepanvolf.salzella.plugin.RhythmGuitar;
input: muted drums;
start: 0x1;

duration: 8x1;
mode: RHYTHM;
grid: 1x8;

84



B.2. PROGRAM 2 - BLUES

B.2 Program 2 - Blues

B.2.0.2 Program 2 - Blues

tempo: 80;
surface: 4x1 0 0 2 0 3 0 0 1 2 1 0 2,

2x1 0 2 1 0 2 0 0 2 0 3 0 1,
2x1 0 0 2 0 3 0 0 1 2 1 0 2,
1x1 0 0 1 2 1 0 2 1 0 2 0 3,
1x1 0 2 1 0 2 0 0 2 0 3 0 1,
1x1 0 0 2 0 3 0 0 1 2 1 0 2,
1x1 0 0 1 2 1 0 2 1 0 2 0 3;

signature: 12 4 1x4;
tracks: sax 65 120 false false,

piano 4 90 false false,
drums 128 120 false false;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: sax;
start: 0x1;

duration: 12x1;
grid: 1x8t;

structure: 0.3 0.5 0.5 0.7,
UP DOWN DOWN UP STEADY STEADY STEADY UP UP;

chord: 0.4;
relax: 0.2;

min: 0;
max: 3;
low: e4;

high: b5;
---

source: cz.stepanvolf.salzella.plugin.SimpleDrums;
input: drums;
start: 0x1;

duration: 12x1;
loop: 1x1;
hihat: 1x8t;
snare: 1x4 3x4;
kick: 0.3;
crash: 0.0;

variety: 0.0;
---

source: cz.stepanvolf.salzella.plugin.RhythmGuitar;
input: piano;
start: 0x1;

85



APPENDIX B. EXAMPLE PROGRAMS

duration: 12x1;
mode: RHYTHM;
grid: 1x8t;

B.3 Program 3 - Jazz

B.3.0.3 Program 3 - Jazz

tempo: 60;
surface: 1x1 0 0 2 0 0 0 2 3 0 0 0 2,

1x1 3 0 0 0 2 0 0 2 0 0 0 2,
1x1 2 0 0 0 2 0 0 2 0 3 0 0,
1x1 0 0 0 2 0 0 2 0 3 0 0 2;

signature: 4 4 1x4;
tracks: guitar 26 100 false false,

piano 26 90 false false,
bass 32 100 false false,
drums 128 120 false false;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: guitar;
start: 0x1;

duration: 2x1;
grid: 1x8t;

structure: 0.3 0.5,
UP DOWN STEADY;

chord: 0.2;
relax: 0.3;
min: 0;
max: 3;
low: c4;

high: e6;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: guitar;
start: 2x1;

duration: 2x1;
grid: 1x4;

structure: 0.8 0.5,
DOWN UP UP;

chord: 0.5;
relax: 0.8;
min: 0;
max: 2;
low: c4;

86



B.4. PROGRAM 4 - FOLK

high: e6;
---

source: cz.stepanvolf.salzella.plugin.SimpleDrums;
input: drums;
start: 0x1;

duration: 4x1;
loop: 1x1;
hihat: 1x16;
snare: 1x4 1x2 3x4;
kick: 0.3;
crash: 0.2;

variety: 0.8;
---

source: cz.stepanvolf.salzella.plugin.RhythmGuitar;
input: piano;
start: 0x1;

duration: 12x1;
mode: STRUM;
grid: 1x4t;

---
source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: bass;
start: 0x1;

duration: 4x1;
grid: 1x4;

structure: 0.3,
STEADY;

chord: 1.0;
relax: 1.0;

min: 0;
max: 12;
low: e2;

high: e3;

B.4 Program 4 - Folk

B.4.0.4 Program 4 - Folk

tempo: 120;
surface: 1x1 1 0 2 0 1 0 1 3 0 1 0 2,

1x1 1 0 1 0 3 0 1 2 0 1 0 2,
1x1 3 0 1 0 2 0 1 2 0 1 0 1,
1x1 1 0 2 0 1 0 1 3 0 1 0 2,
1x1 1 0 2 0 1 0 1 3 0 1 0 2,
1x1 1 0 1 0 3 0 1 2 0 1 0 2,

87



APPENDIX B. EXAMPLE PROGRAMS

2x1 1 0 3 0 1 0 2 1 0 2 0 1;
signature: 8 4 1x4;

tracks: harmonica 22 100 false false,
guitar 25 100 false false;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: harmonica;
start: 0x1;

duration: 4x1;
grid: 1x8;

structure: 0.7 0.5,
UP DOWN UP STEADY;

chord: 1.0;
relax: 0.5;
min: 0;
max: 2;
low: g3;

high: g5;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: harmonica;
start: 4x1;

duration: 4x1;
grid: 1x4;

structure: 0.9 0.3 0.5 0.9,
DOWN DOWN UP UP;

chord: 1.0;
relax: 0.5;
min: 0;
max: 3;
low: g4;

high: g6;
---

source: cz.stepanvolf.salzella.plugin.RhythmGuitar;
input: guitar;
start: 0x1;

duration: 8x1;
mode: RHYTHM;
grid: 1x16;

88



B.5. PROGRAM 5 - CLASSICAL

B.5 Program 5 - Classical

B.5.0.5 Program 5 - Classical

tempo: 120;
surface: 1x1 1 0 1 0 3 0 1 2 0 1 0 2,

1x1 1 0 2 0 1 0 2 1 0 1 0 3,
1x1 1 0 1 0 3 0 1 2 0 1 0 2,
1x1 1 0 2 0 1 0 2 1 0 1 0 3,
1x1 3 0 1 0 2 0 1 2 0 1 0 1,
1x1 1 0 3 0 1 0 2 1 0 2 0 1,
2x1 1 0 1 0 3 0 1 2 0 1 0 2;

signature: 8 4 1x4;
tracks: violin 40 105 false false,

cello 42 95 false false,
contrabass 43 95 false false;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: violin;
start: 2x1;

duration: 6x1;
grid: 1x8;

structure: 0.2,
STEADY;

chord: 0.9;
relax: 1.0;

min: 0;
max: 3;
low: e5;

high: e6;
---

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: cello;
start: 1x1;

duration: 7x1;
grid: 1x4;

structure: 0.3,
STEADY;

chord: 0.2;
relax: 1.0;

min: 0;
max: 12;
low: e3;

high: e4;
---

89



APPENDIX B. EXAMPLE PROGRAMS

source: cz.stepanvolf.salzella.plugin.GeneralMelody;
input: contrabass;
start: 0x1;

duration: 8x1;
grid: 1x2;

structure: 1.0,
STEADY;

chord: 1.0;
relax: 1.0;
min: 0;
max: 12;
low: e2;

high: e3;

90



Appendix C

UML diagrams

C.1 Salzella object model

.

Figure C.1: Salzella object model

91



APPENDIX C. UML DIAGRAMS

C.2 Lightweight MIDI entities

.

Figure C.2: Lightweight MIDI entities

92



Appendix D

Contents of the enclosed CD

javadoc
converter-javadoc.zip
ide-javadoc.zip
plugins-javadoc.zip
salzella-javadoc.zip

misc
older-documentation.pdf

samples
greensleeves.mid
jethro.mid
scarborough.mid

source
converter-source.zip
ide-dependencies.zip
ide-source.zip
plugins-source.zip
salzella-source.zip

ide.jar

93


	Structure of this document
	Introduction
	Terminology
	Musical piece
	Playback
	Similarity criterion

	Goal declaration
	Problem statement
	Methodology
	Development environment

	Related works
	Open source music libraries
	MIDI specification

	Early attempts
	Name of the language

	Similarity criterion
	Overall strategy
	Harmony analysis
	Problem statement
	Problem categorization
	Related works
	Problem solution
	Time/space complexity

	Melody generation
	Problem statement
	Problem categorization
	Related works
	Problem solution
	Time/space complexity

	Percussion generation
	Problem statement
	Problem solution
	Time/space complexity

	Specification
	Parameter
	Converter


	Extended similarity criterion
	Auxiliary definitions
	Specification
	Alphabet
	Language
	Parameter
	Converter
	Interpreter
	Extension


	Realization
	Interpreter
	Architecture overview
	Salzella object model
	Lightweight MIDI entities
	Parser
	Execution control
	Custom exceptions
	Utilities
	Plugin interface
	Implementation notes

	Converter
	Plugins

	Development environment
	User guide
	Manual program creation
	Automated program creation
	Playback of musical pieces
	MIDI export/import
	Performing undo/redo

	Realization
	Architecture
	Implementation notes


	Conclusion
	Evaluation
	Methodology
	Algorithms
	Language

	Future work
	Verse and chorus support
	Surface matrix convention
	Manual creation of surface matrices


	Lengthy definitions
	Instrument mapping
	Percussion mapping
	Playback
	Integer literals
	Literal mappings

	Example programs
	Program 1 - Rock
	Program 2 - Blues
	Program 3 - Jazz
	Program 4 - Folk
	Program 5 - Classical

	UML diagrams
	Salzella object model
	Lightweight MIDI entities

	Contents of the enclosed CD

