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Abstrakt

Tato práce popisuje algoritmus pro detekci artefakt̊u v mikro EEG signálech
(MER), které se použ́ıvaj́ı pro lokalizaci jader v mozku už́ıvanou při hluboké
mozkové stimulaci (DBS) pro pacienty s Parkinsonovou chorobou.
Představujeme metodu pro detekci artefakt̊u, která použ́ıvá rozhodovaćı
strom. Pravidla pro rozhodovaćı strom byla vytvořena na př́ıznaćıch
založených na časovém pr̊uběhu a frekvenčńım spektru MER signál̊u. Náš
klasifikátor jsme porovnali s metodami pro detekci artefakt̊u, které exis-
tuj́ı v dostupné literatuře. Přesnost rozhodovaćıho stromu byla 90,38% na
trénovaćı databázi a 86,33% na testovaćı databázi. Na validačńıch dat-
ech byla rovna 86,33%. Ostatńı metody dosáhly přesnosti kolem 77% na
trénovaćı databázi a 80% na testovaćı databázi.

Abstract

This thesis proposes an algorithm for artifact detection in microelectrode
recordings (MER) which are used for the localization of nuclei in Deep
Brain Stimulation (DBS) for Parkinson’s disease patients. We present a
method for artifact detection which uses decision tree. Rules of the deci-
sion tree were based on features based on observed temporal and spectral
properties of MER artifacts. We have compared our classifier with meth-
ods for artifact detection which already exist in the available literature.
The accuracy of the decision tree was 90,38% on the training dataset and
86,33% on the testing dataset. On the validation dataset it was equal to
86,33%. Other methods achieved accuracy of about 77% on the training
dataset and 80% on the testing dataset.
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1 INTRODUCTION

1 Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders.
There does not exist any cure for PD yet, but drugs containing dopamine can be used
as a treatment for PD patients. However, when the PD advance, this treatment be-
comes less effective.

The deep brain stimulation procedure (DBS) of the subthalamic nucleus (STN) is
used as a treatment of advanced PD. One of the most important stages of implantation
of the DBS aparatus is the localization of nuclei, which will be used as a target of
the stimulation. During the implantation the surgeon records brain activity of the pa-
tient using microelectrodes. These records are called micro-electrode recordings (MER).
More information about the PD and the structure of the MER is provided in Chapters
2 and 3 of this Thesis. Apart from localization during the surgery, MER signals are
often used for a variety of research purposes - it is after all a very rare occasion to record
signals directly from the human brain and study its activity at a high level of detail.

One of the problems of the MER processing is dealing with the noise and artifacts,
which cause devaluation of the MER signal. They are caused for example by electro-
magnetic interference from the mains and electrical devices in the operating theatre.
Some of the noise can be already removed during the recording using a high-pass filter
(for frequencies, which are above 500 Hz) and a low-pass filter (for frequencies below
5kHz). However, some of the noise could still remain in the MER and could affect
the nuclei positioning accuracy and also the results of subsequent signal analyses in re-
search studies. For example the spike sorting algorithm, which is used for the detection
of individual neurons contributing to the signal could become inaccurate when noise
peaks are present in the signal. Detailed description of the noise and the tests of the
filtration of this noise is given in the Chapter 4.

The detection of the artifacts in the MER is commonly performed manually, but
it can be used for smaller databases only. Also, the manual detection of artifacts may
become inaccurate due to inconsistency between detection carried out manually by dif-
ferent people.

Several methods of automated detection of the artifacts already exist in available
literature. Some of the methods use statistical tests as a detector of discrepancies in
the MER signal. An example of automatic detection is given in [1], where authors
split MER into smaller windows, calculated Root Mean Square Value (RMS) and then
use analysis of variance algorithm (ANOVA) to compare RMS values and determine
whether the MER contains an artifact or not.

Another method is based on finding the longest stationary segment in the processed
signal. In this approach, the MER is divided into non-overlaping segments for which
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1 INTRODUCTION

a variance is calculated to a ratio. After that, the ratio is compared between neigh-
boring segments and if the value of the ratio exceeds a threshold, then the segment
is annotated. An example of stationary segmentation is given in [2, 3] and [4]. The
only difference between cited approaches is the method used for the calculation of the
variance. An extension of cited methods is presented in [5], where author is comparing
all segments between each other (segments may not be neighboring). Exact steps of
these methods can be found in Chapter 5.

This thesis describes another method of the detection of the artifacts in the MER.
We decided to create a decision tree, which can be used to determine whether an ar-
tifact is present in the MER or not. Decision tree is a very common classifier in data
processing. The process of learning is described in Chapter 6.

For the decision tree we had to extract features from the raw MER signals. The
features were then used as rules in the decision tree. These features were focused on the
characteristic behavior of the artifacts in the MER. Features were divided into three
groups - 1) Features extracted from the original input, 2) Features extracted from the
signal power spectrum and 3) Features extracted from the signal after gaussian filtra-
tion. Detailed description of these features can be found in Chapter 8.

We also needed data from which the decision tree could be learned and evaluated.
We have used signals which were recorded during the microelectrode exploration phase
of DBS surgery. In a group of several researchers we performed initial manual annota-
tion of these recorded signals. The final annotation was based on the majority voting.
The steps of the annotation are described in Chapter 7. We have prepared 5739 anno-
tated signals, which can be used for learning the decision tree. The learning data were
separated into three datasets - 1) Training dataset (60% of data), 2) Testing dataset
(30%) and 3) Validation dataset (10%) which was used as the final validation of decision
tree classification accuracy.

In Chapter 9 we present the results of our tests performed on the generated decision
tree. We also present a comparsion with the methods that use stationary segmentation.
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2 PARKINSON’S DISEASE AND DEEP BRAIN STIMULATION

2 Parkinson’s disease and Deep brain stimulation

2.1 Parkinson’s Disease

Parkinson’s disease (PD) [6, 7] is a neurodegenerative disorder of the central nervous sys-
tem. It affects the motoric system of the body. In short, PD is caused by death of cells
in the substantia nigra (SNr) which are producing neurotransmitter called dopamine.
With less dopamine, person has a lower ability to control his movements, body or
emotions.

The main symptoms in the early course of PD are related to the motoric system
of the body. Most common symptoms include ”tremor” (shaking movement) and with
later stages of the disease, psychical problems, like thinking or behavioral problems,
may arise. Other symptoms are related to sleep, sensoric or emotional problems. The
parkinson’s disease is more prevalent among older people (>50 years) but it may also
occur with adults (21-40). Then it is called Young onset parkinson’s disease.

Nowadays, there is no cure for PD, there are just treatment options such as medica-
tion or surgery to manage the symptoms described above. Treatments for this disease
can be efective especially for the motoric symptoms of the disease. Treatments for the
early state of the disease usually consists of consuming dopamine agonists. In later
phases of PD the medication treatments may become ineffective. In that case, the deep
brain stimulation (DBS) can be used for further treatment of PD.

2.2 Deep Brain Stimulation

Deep brain stimulation (DBS)[8, 9, 10, 11] is a neurosurgical therapy for intractable
movement disorders and is being explored in a growing number of neurological and
behavioral disorders. The DBS procedure consists of the implantation of a brain pace-
maker and electrodes. RTG image of a DBS system is shown in Figure 1. The brain
pacemaker sends electrical impulses through the electrodes and using that, it stimulates
specific area of the brain. The development of DBS has rapidly grown over the last years.

Understanding of the electrical circuitry in the brain is very important for DBS.
Using this knowledge we are able to localize specific nodes of the brain which are
responsible for neurosurgical disorders. These nodes can be used as targets for DBS.
Nowadays, the common targets for DBS are the subthalamic nucleus (STN) for PD,
the globus palidus internus (GPi) for dystonia and PD, and the ventralis inermedius
nucleus of the thalamus (VIM) for essential tremor. Appropriate candidate for the DBS
surgery is a person with later stage of PD. The expected benefit of DBS must outweight
the potential risk associated with the surgical implantation of DBS.

The DBS surgery itself consists of two stages - planning (preoperative) stage and
intraoperative stage. In the planning stage of the surgery an anatomical point of the
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2 PARKINSON’S DISEASE AND DEEP BRAIN STIMULATION

Figure 1: Example of an implantation of a DBS device [8]

brain is defined in 3-D space. The targeting of this point is based on a Cartesian co-
ordinate system, which defines specific point in 3-D space. This involves visualization
of deep nuclei using high definition magnetic resonance imaging (MRI). It is important
to plan the surgery to minimize damage caused to the brain during the implantation
itself. In the second stage, the DBS lead is placed in the defined nuclei using stereotac-
tic apparatus as shown in Figure 2.

Figure 2: Stereotactic surgery head device [12]

To confirm the correct location of the target structure, a set of microelectrodes is
used to record neuronal activity in the neighborhood of the assumed target. These
recordings represents brain activity around the electrodes. The correct placement of
the leads is confirmed when the microelectrode records display characteristic patterns
of targeted nuclei.
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3 Micro-EEG Signal

In this chapter, we would like to describe Microelectrode recordings (MER) in more
detail. MER signals [13, 14], sometimes called extracellular recordings, are used for
medical and scientific purposes. In medicine, MER are used for targeting nucleis (espe-
cially the STN) during DBS implantation (as we described in previous chapter) or for
epilepsy treatment. In neuroscience, MER signals are used to study brain activity on
the level of individual neurons.

In our case, the MER signals used for our work come from real patients during
implantation of DBS devices. The signals were measured using five electrodes during
the surgery and recorded using sampling rate of 24 kHz. These signals were commonly
10s long.

3.1 Neuron activity

For further description of extracellular recordings, we need to define electrical activity
of a neuron. A neuron is a cell which is the core component of the nervous system. This
cell is electrically excitable and it processes information through electrical and chemical
signals. These signals are carried by synapses between neurons. Neurons are connected
to each other to form neural networks. Standard neuron consists of dendrites which
propagates the electrochemical signal from another neurons, soma which is the body
of a neuron, nucleus and axon which transmits the electrical information to different
neurons. There are several models of electrical activity of a neuron. The most widely
known are Hodgkin–Huxley’s [15], which is conductance based model used to simulate
a single neuron activity, or Izhikevich’s spiking neuron model [16] ilustrated in Figure
3, which is used to simulate spiking of a neuron.

The electrical activity of a neuron differs through the nuclei of the brain mostly
by the firing patterns, which can be characterized for example by firing frequency or
occurence of bursts (very fast sequence of spikes) - see Figure 3 for examples of firing.

3.2 MER structure

The MER signals represent the brain activity around the electrode. All neurons in the
close vicinity of the electrode contribute to the extracellular recordings. Based on the
amplitudes in the signal, the extracellular recordings can be separated into individual
components. These components are the spiking activity, the background noise and the
external noise.

The spiking activity represents the fires of single neurons, which we have described
above. There can be none to several close neurons depending on the situation around
the electrode. The distance and the orientation of the neurons affects the recorded
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Figure 3: Izhikevich’s model of spiking neurons
The examples of the known types of neurons are presented in this picture from [16]. These neurons
can be easily simulated using four parameters (a,b,c and d). By using these parameters the shape and
the frequency of spikes can be managed.

spike shape which can then be used for spike sorting algorithm, which classify spikes
of neurons with similar behavior or shape. Based on these similarities we are able to
define which brain nuclei is presented by the extracellular recording. The structure of
MER signal can be viewed in Figure 4.

The backround noise can be defined as static neural background activity in the
brain (long-distance neighborhood). Apart from the background noise, the MER signal
may contain also non-physiological noise, caused by mechanical electrode shifts or elec-
tromagnetic interference. We refer to this phenomenon as external noise or artifacts
further in the text. It is also important to mention that the external noise has nothing
in common with the neuronal background of the brain.

3.3 Preprocessing and Analysis Methods

In here we would like to specify preprocessing and analysis steps undertaken before the
start of the external noise analysis. As mentioned above, signals were recorded from
real patients using parallel insertion of five microelectrodes. These recordings were
filtered using band-pass filter which was set to let frequencies between 500 Hz and 5
khz through. These recordings were then sampled at 24 kHz. Next step of the signal
preprocessing procedure is to separate single units from the background noise. Spike
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3 MICRO-EEG SIGNAL

Figure 4: Structure of extracellular recording
This figure represents a model of brain activity in [14]. In our concept of the brain activity we have
merged multi-unit and background activities into bigger group called spiking (neural) activity. The
background noise represents noise activity in areas further away from the electrode. In our model, we
added one more group called external noise which represents noise which is not caused by activity in
the brain.
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detection algorithm [17] is used for this separation. This algorithm simply detects spikes
of individual neurons. In most cases, it is done by using an amplitude threshold which
is calculated as a multiplicity of standard deviation of the raw signal samples. After
the spikes of individual neurons are detected, the spike sorting algorithm is used (eg.
WaveClust algorithm [18]). Spike sorting algorithm divides spikes into groups based
on their shape. Spikes in different groups then represent action potentials of different
neurons. Spike sorting is commonly used for evaluation of single neuron activity, mainly
for research purposes (for example evaluation of changes of firing patterns in different
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areas of the brain or before/after stimulus). In the case of DBS targetting, spike sorting
procedure is typically not required. Instead, a trained neurosurgeon evaluates the signal
subjectively to identify positions where the electrodes enter or exit the target structure.
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4 External noise in MER signals

This chapter is focused on external noise in extracellular recordings. As mentioned
in previous chapter, these recordings consist of neural activity in the brain (in exam-
ple single unit activity of nearby neurons and background noise) and external noise
from the environment. In here, we would like to specify external noise behavior and
characteristics.

4.1 Noise sources

The main source of external noise in MER signals is the electromagnetic interference
from the mains and electrical devices in the operating theatre. These devices are also
emiting electromagnetic waves which cause interference with MER signals. This effect
can cause massive damage on MER signals during the implantation, and it occurs as
high frequency component in the signal. This type of noise can be seen as a clear peak
in the frequency spectrum of the signal. However, 50Hz signal can be notch filtered
during the DBS operation. Another type of the noise are low frequency signals - for
example small vibrations caused by the moving of the DBS electrodes. This type of
external noise is demonstrated by peaks in lower frequencies of the power spectrum
of the signal. Another example of low frequency noise is the talking of the doctor or
other backround sound - in this case the noise is probably mechanically transmitted
(the electrodes are shaking). The next source of the noise is the DBS apparatus itself.
Especially the DBS electrodes can irritate the area around them and because of that,
the neurons in the neighborhood area start to fire more rapidly. This type of noise is
not so common but it is very hard to distinguish from physiological activity. Therefore,
we did not focus on it during our research.

4.2 Description of MER artifacts

For further processing of the extracellular recordings we decided to separate types of
noise into smaller groups with similar features. In following text we will call noise types
artifacts. The main reason for the division was a better understanding of the individual
artifacts. Groups were created based on similar behavior of artifacts in the extracellular
recordings and were based on possible filtration of individual artifact types. Another
reason was the frequency of appereance of the individual artifacts. We have created
following artifact groups - power artifact, frequency artifact and baseline artifact. For
the unspecified noise we created additional artifact group called other. We present each
artifact group in the following paragraphs and provide detailed description, their specific
behavior in signal and filtration tests aimed at their removal. For better understanding
of the presented pictures, we recommend to compare the signals containing artifacts
with the clean extracellular recordings described in previous chapter .
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4 EXTERNAL NOISE IN MER SIGNALS

4.2.1 Power Artifact

The first group we have defined is the power artifact. This group consists of three
similar noise types - 1) mechanical noise in the backround of the DBS procedure, 2)
short-term electromagnetic artifact caused by electrical devices and 3) another specific
types such as sounds - for example talking of the doctor. Features of these types of
noise are very similar to each other, therefore we have merged them into one bigger
group. The main feature of this artifact is high energy of the signal (artifact is usually
represented as high signal gain). Thanks to this property, the power artifacts can be
easily detected by visual inspection of the signal. Second approach for the detection
of this artifact is to inspect the signal power spectrum. In the most cases, the power
artifact consists of several strong frequency components, which can be easily detected
by visual inspection of the signal power spectrum. An example of signal containing
power artifact and its power spectrum is given in Figure 7.
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Figure 7: Signal with the power artifact waveform and power spectrum

As seen in the picture above, the power artifact is mostly short-term.

4.2.2 Frequency Artifact

Another artifact group we specified are the technical artifacts at stable frequency, which
will be abbreviated to FREQ in the rest of this text. Source of the FREQ noise are
the devices used during the operation. These devices can emit electromagnetic waves
which cause appereance of high frequency signals in MER signal - for example 450Hz
or 500Hz signals are very common. It is very hard to detect FREQ artifacts by visual
inspection of the original MER signal. Better detection can be made in the signal power
spectrum where the artifact is dominated by narrow peaks of high power, superimposed
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4 EXTERNAL NOISE IN MER SIGNALS

on the typical MER spectrum. Another common approach of detection is to listen to
the original signal - FREQ artifact should be hearable. Example of artifact in the signal
and the power spectrum is given in Figure 8.
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Figure 8: Signal with the FREQ artifact waveform and power spectrum

After deeper investigation, there were found few similar types of this artifact. One
of the features which differs among the frequency artifacts is the number of narrow
peaks in the power spectrum. The MER signals can contain several FREQ artifacts.
Due to the similarity with the power artifact, this artifact caused problems in the initial
annotation.

4.2.3 Baseline Artifact

The last group of artifacts are the baseline artifacts. The main source of the baseline
artifact is the mechanical floating of the DBS electrodes. baseline artifacts are described
as low frequency signals. The frequency of these signals is between 0 and 200 Hz (based
on the preprocessing methods described above). Characteristic behavior of this type of
artifact can be seen in Picture 9.

The peaks in the power spectrum of the signal with baseline artifact has similar
shapes as the signals with frequency or power artifacts. Peaks are present in lower
frequencies. This is the main difference from the other artifacts. During the initial
processing of the data, we discovered that the occurence of the baseline artifact is often
accompanied by other artifacts. For example strong frequency artifacts could invoke
baseline artifacts.

4.2.4 Other Artifacts in MER signals

We would like to mention a few events in the signal which were not clearly classified in
any one of previous groups. In most cases, the artifacts in this group are presented as a
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Figure 9: Signal with baseline artifact waveform and power spectrum

combination of the artifacts described above. In additional special case of other events
are the neurons which are irritated by the DBS electrodes. It behaves as a fast change
of frequency of neuron spikes in the waveform. Irritated neurons are very uncommon
and so it is very hard to detect these types of events in the signal and it can be very
often mistaken for clean signals. Therefore, we have not focused on these events while
designing the automatic artifact detector.

4.3 Filtration of MER Artifacts

As mentioned above, one of the reasons of the artifact separation was to check the
possibility of filtration. The main part of the filtering tests was focused on the frequency
spectrum.

4.3.1 Filtration of Power artifact

The power artifact is represented by high signal gain, often outstretched over the wide
band. We determined that the power artifacts are unfilterable, because it is localized
in the time domain rather than in the signal power spectrum.

4.3.2 Filtration of Frequency artifact

The main symptom of FREQ are the sharp peaks in signal power spectrum on specific
frequencies. The frequencies of these artifacts are usually between 100Hz and 1kHz.
Peaks under 100Hz are considered as a symptom of baseline artifacts. Often, we en-
counter steady noise at varying frequencies around 400 Hz, which can not be easily
filtered using a fixed filter. The problem is that the energy of these artifacts is very
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big and this method could damage and cause devaluation of the original signal. Theo-
retically the frequency artifacts could be removed by a comb filter (for example set on
50Hz windows), but similarly to the previously described approach, this method could
cause devaluation of the original MER signal.

4.3.3 Filtration of Baseline artifact

As mentioned in previous sections, the baseline artifact is defined as a low frequency
signal which is present in MER signal. This feature was the first to suggest that it
would be possible to filter the baseline artifact from the original signal. We prepared
two options of filtration for this type of artifact. The first one is to cut low frequen-
cies from the signal using filtration in the frequency spectrum. This method consists
of performing fast fourier transform, removing low frequencies from the spectrum (re-
spectively setting the values of spectral bins corresponding to these frequencies) and
performing inverse fourier transform. Second proposed method is to design a standard
high-pass filter in time domain. This solution could potentially be much faster than
the previous method. After initial tests, we discovered that this method could cause
more devaluation to the original signal. The main problem was the initial ”filling” of
the filter, which may cause artifacts at both ends of the signal.

We have tested both of these methods on artifically created baseline artifact. At
first we selected a signal which did not contain any artifact and summed it with artifi-
cally generated baseline artifact. The baseline artifact was simulated by the following
function:

y = 4 sin(2Fnπt) (1)

Fn = 6/T [Hz] (2)

T = 24000 [s] (3)

where Fn is the frequency of sinus signal, T is the duration of the signal (same as the
original signal). The waveform of signal prepared by the sum of the baseline artifact
and MER signal can be seen in Figure 10.

For better understanding of the created baseline artifact behavior in power spectrum
we also present the spectrum of the created signal in Figure 11.

Now, since we have prepared signal with artifical baseline artifact, we started to test
our methods. For the first method of filtration we have calculated the power spectrum
of the signal (by fast fourier transformation) and when we had the power spectrum, we
set the values of the spectrum to zero for frequencies from 0 to 80Hz. After that, we
performed inverse fourier transform. The results of this method are given in Figure 12.
As we discovered, this method was very effective. There was no considerable damage
caused to the original signal meaning the loss of information. For the second method we
prepared a high-pass filter. For the design of this filter we have used fdatool function
implemented in matlab. In the fdatool GUI, the user is able to enter filter variables
and instantly display the filter response. We have set the values as follows:

Fs = 24000, FStop = 10, FStart = 80, AStop = 80, APass = 0.4. (4)
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Figure 10: Manual generation of Baseline artifact
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Figure 11: Manual generation of Baseline artifact (Fourier Transform)

The magnitude response for this filter can be seen in Figure 13. By exporting this
filter into our code we were able to test the response on artifically created signal with
baseline artifact. The results can be viewed in Figure 14.

The problem of this method was the amount of damage dealt to the signal while
filling up the filter. This behavior can be seen at the start of the signal where the
values were set to zero. At the end, we have compared results of filtration between
both methods and the original clear signal. We visualized the signal in the power
spectrum where the differencies between methods and the original signal are presented
in Figure 15.

The results for both methods were similar. The fourier transform cut is slower than
the high-pass filter but thanks to the filter filling, the second method caused more de-
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Figure 12: Filtration: First Method - Fourier Transform cut

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

 

 

Highpass Equiripple

Figure 13: Filtration: Second Method - Filter response

valuation to the original signal. Considering properties of both methods (and especially
the fact that temporal filtering is much faster in the case of long signals), we would pre-
fer the high-pass filter, which can be added behind the system measuring MER signals
during the DBS operation.
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5 EXISTING METHODS FOR AUTOMATIC DETECTION

5 Existing Methods for automatic detection

Several methods for artifact detection already exist in available literature. The simplest
way of artifact classification is manual detailed inspection of the signal. This method
can detect the strongest appearances of the artifacts. Weaker artifacts can be easily
overlooked and are identified only with high effort. Even though this method is widely
adopted in the literature, this approach was unsuitable due to the high number of
recordings in our database (more than 16000 10-second recordings). For that reason we
have focused on the automatic classification.

In this chapter we would like to present existing methods of automatic noise detec-
tion in the extracellular recordings. These methods can be divided into two groups -
simple statistical test and signal segmentation.

5.1 Statistics Method

The first method which we want to present is noise detection using the Root Mean
Square (RMS) measure [1]. It is a simple statistical test which uses RMS value to
detect discrepancies in the signal. The RMS value is calculated as follows:

RMS(X̂) =

√√√√ n∑
i=1

X2
i

n
. (5)

Where X̂ is sampled analog signal (to 24kHz, same as in our case), X2
i is squared value

of each sample and n is the total number of samples. Authors sampled signal to one
hundred non-overlapping windows of the signal, each one with 20 miliseconds duration.

The signal is processed by two-step signal stability test. At first, the sessions with
amplitudes exceeding a threshold are considered as signals containing an artifact and
are rejected. In the second, step the ANOVA (analysis of variance algorithm) is used to
compare RMS values of the 20 miliseconds non-overlaping windows from the first and
the last two seconds of the signal. If there are significant differencies then the signal is
rejected. This algorithm is very simple, but because of comparation of the first and the
last seconds of the signal, it is also not very precise.

5.2 Stationary segmentation

Another approach of automatic artifact detection is based on finding the longest sta-
tionary segment in the processed signal. At first, the input signal is segmented into
smaller non-overlaping segments. Then for each of the segments, the variance is calcu-
lated to form a ratio. Then the ratio for all neighboring segments is checked and if it
exceeds given threshold, the border of these segments is marked as a transition. In the
last step, the algorithm returns the longest signal segment with no marked transitions.
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The first method which uses stationary segmentation is [2] presented by Falkenberg
and Aboy. Their approach is based on the variance of the autocovariance approach.

First, MER signal (denoted as x) is normalized and sampled into S non-overlapping
segments.

xn =
x− µx
σx

. (6)

Where µx is signal mean and σx is the standard deviation of the signal. The non-
overlapping frames {Zl}Sl−=1 have equal time duration t specified by the user. The set
of segments is defined as follows.

{Zl}Sl−=1 = {Z1, Z2, ..., ZS}. (7)

Next step is the calculation of the autovariance. For all of the frames {Zk}Sl−=1, the
autocorelation sequence rx(l) is estimated using the biased estimator of autocorelation
r̂x(l).
For each of the segments, the variance of the covariance γ̂x(0) is estimated.

var{γ̂x(0)} =
2

L

∞∑
l=−∞

γ̂2x(l) =
2σ4

L

∞∑
l=−∞

r̂2x(l). (8)

The result of the variance calculation is a vector with the variances of the autoco-
variances v for each of the segments from {Zk}Sl−=1.

v = [var{γ̂Z1(0)}, var{γ̂Z2(0)}, ..., var{γ̂ZP (0)}]T = (v1, v2, ..., vp)
T . (9)

After that, the algorithm uses statistics F-test to compare variances of all of the
neighboring segments.

F = (
vN1

vD1

, ...,
vNk
vDk

, ...,
vNP−1

vDP−1

)T = (F1, F2, ..., Fk, ..., FP−1)
T . (10)

vNk = max(vk, vk+1)
P−1
k=1 . (11)

vDk = min(vk, vk+1)
P−1
k=1 . (12)

When the F value for neighboring segments is bigger than the threshold value FC , the
algorithm records a transition for neighboring segments which it represents. The last
step of the algorithm is the selection of the longest segment with no transitions. The
output signal can be used for further processing.

Similar approach was used by Guarnizo [4]. The only difference between this ap-
proach and the method described above is the calculation of the variance for the seg-
ment. Here, the variance is not calculated from autocorelation function but from the
stationary wavelet transform (SWT) of the signal. Guarnizo used Haar’s wavelet (see
Figure 16) for the transformation. After the transformation of the signal, the approach
is same as in [2]. Variances for each neighboring segments are calculated and the longest

18/55



5 EXISTING METHODS FOR AUTOMATIC DETECTION

Figure 16: Haar’s wavelet

signal segment with no transitions is found.

An extension of described algorithms is presented in [5]. In the previous meth-
ods only neighboring segments were compared. Here, all possible segment pairs are
compared with each other to form a distance matrix D.

D =


0 d12 · · · d1,m−1

d21 0 · · · ...
...

...
. . .

...
dm−1,1 dm−1,2 · · · 0

 (13)

Values which exceed given threshold are then replaced by ones, the rest by zeros. Then,
by using a greedy algorithm, the longest signal segment is found in the distance matrix
(the longest sequence of zeros).

The comparison of results of the method presented by Falkenberg, the method
presented by Guarnizo and our classification algorithm can be found in Chapter 9.
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6 Automatic detection using Decision tree

In this chapter we would like to describe our classification method for detecting arti-
facts in MER signals. For classification we have used well-known and popular clasifier
called Decision tree. Decision tree is a common method used for data classification
due to its simplicity and wide support across data processing and statistical software
packages. Another reason why are decision trees popular is that they do not behave as
a black-box method. Thanks to that, the decision tree is very comprehensible.

Decision tree [19, 20, 21, 22] is a logic tree structure which combines a sequence
of simple tests. Each branch represents logical outcome of a feature test, and each
leaf represents class label predictions. Logical rules in decision tree are very simple for
example in comparsion with the weights calculation in neural networks. An example of
decision tree is given in Figure 17.

Figure 17: An example of simple decision tree
This is an example of simple decision tree taken from [22]. On the left side we have data set with
measured parameters X1 and X2. We would like to classify this dataset into three groups ( red, blue,
green). Using decision tree data can be classified into these groups by simple logical rules.

To make our classifier simpler, we focused on the binary classification - whether the
signal contains or does not contain any artifacts. In future implementation we would
like to create a classifier, which will also determine the type of detected artifact in the
signal as described in previous chapters based on generated logical rules.

The input into the descision tree structure is a set of parameters calculated for a
signal. The output is the estimation whether the signal contains or does not contain
artifacts.
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6.1 Methods used for Decision tree learning

One of the main problems of the decission tree creation is the over-fitting - generated
tree will classify data into groups with low error rate for given training database, but
with high error for testing database. Several methods exist to avoid the over-fitting
problem. Method which we have used is the tree pruning. Tree pruning is an algorithm,
which determines which leaf nodes of the tree decrease the classification accuracy of the
dataset. There exists two pruning methods - pre-pruning and post-pruning.

Pre-pruning is a method which determines whether some of the branches should not
be terminated. This happens during the generation of the decision tree. A termination
rule is required for this method. Post-pruning is a method which removes branches to
increase the classification after the build phase of the decision tree.

We have used post-prunning method in our algorithm, because it does not need any
termination rule. We determined the optimal prune level of the tree T by using the
10-fold cross-validation [23] for determining the minimum cost subtree [24], which will
be used as the final classifier. In the cross-validation method, the data are split into k
sets S = S0, ..., Sk each named as fold. These sets have same size. The decision tree
learning algorithm is performed k times - data set j = 1, ..., k is taken and used as the
testing set, the other sets are merged and used as the training set for the tree.

For the finding of the minimum cost subtree all subtrees are defined as T < Tmax.
The number of leafs of T is defined as |T̃ |. Let α ≥ 0 be the real number called the
complexity parameter. The minimum-cost subtree T (α) is found by minimizing the
cost complexity measure Rα(T ):

Rα(T (α)) = minT<TmaxRα(T ). (14)

Where Rα(T ) represents the cost complexity measure and is calculated as follows:

Rα(T ) = R(T ) + α|T̃ |. (15)

With more leafs, the complexity of the tree becomes higher. The complexity parameter
α is used for setting the importance which will be put on the size of the tree. The cost
complexity is then penalized by the error rate. This error rate needs to be minimized
when prunning the tree. If there are only finitely many subtrees, the minimum cost
subtree exists for any α.

The pre-processing of the input data is also an option to increase decision tree
accuracy. For example, finding the optimal number of the paramateres used for decision
tree learning. Another option is to split the training dataset into two parts. Normally,
the training set is used for both initial tree generation, and for the minimum cost subtree
finding. For the split training data, the first part is used to build an initial decision
tree and the second part is then used for finding the minimum cost subtree. We have
compared results for both of these methods in the Chapter 9.
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6.2 Learning of the Decision tree

The tree learning consists of selection of parameters used for the feature tests and
actual spliting conditions - in our case threshold values. Selection of the parameters is
the most important part of the decision tree generation. In our case, the parameters
were based on actual features of the MER signals and artifacts. It is important to
select parameters which are the most informed for given set of data. With parameters
which are less informed, the decision tree will become less acurate in the classification.
Selected parameters are described in Chapter 8. At first, we need to calculate values of
the parameters for the training set of the decision tree. In short, two matrices P and
A are required for decision tree learning. P can be described as:

P =


p11 p12 . . . p1m
p21 p22 . . . p2m
...

...
. . .

...
pn1 pn2 . . . pnm

 . (16)

P is a matrix which contains calculated values of m parameters p for n MER signals.
Second matrix A describes the anotations a for all of the training signals:

A =


a11
a21
...
an1

 . (17)

a ∈ {0, 1}, where 0 stands for clean signal and 1 for signal which contains artifact.
The spliting conditions are generated during the building phase of the decision tree.

They are calculated from given training set to classify it the most precisely. The most
informed parameters are selected by building algorithm for the upper parts of the tree,
less informed parameters are used for the bottom parts. The cross-validation method,
described in the previous section, is used during the generation to avoid over-fitting on
this training set. Based on that, the actual values of the spliting conditions are recal-
culated or replaced by another feature test of different parameters. In the end of the
tree generation, we perform post-pruning to make the logical classification more precise.
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7 Data

In this chapter, we would like to describe the process of database preparation for
the automatic classificator. This process consists of three steps - the data acquisition
from patients, the manual annotation of measured data and training and testing data
selection. These three steps are described in following sections in more detail.

7.1 Data Description

Signals were taken from Parkinson’s disease patients during the microelectrode explo-
ration phase of DBS surgery. The phases of DBS were already described in Chapter 2.
Patients were awake and resting during the implantation of the electrodes and mean-
while, the surgeon recorded signals from the basal ganglia. The source nucleus of each
signal was identified and labeled. The measured nuclei were: STN (subthalamic nu-
cleus), SNr (substantia nigra), Th (thalamus) and ”unknown”. The ”unknown” nucleus
stands for other undiferentiated parts of the basal ganglia. In total, the initial dataset
consisted of 18384 signals. These signals were available for further processing. Most
of them (12672) were taken from the ”unknown” nucleus, and 4319 of the signals were
taken from the TN nucleus (STN). The recording length of most signals was 10s (some
of the signals were shorter) and the sampling frequency was 24 kHz.

7.2 Database Annotation

At this point, we would like to describe the annotation (manual labelling of artifacts)
of the initial dataset. A group of 8 people investigated a selected sample of MER
data in detail. Based on the observations, initial artifact groups were created. These
groups were already described in Chapter 4. Artifact groups were based on similar
characteristics of microelectrode recordings and on the posibility of their filtration.
Initial artfact groups were: power, baseline, frequency and undefined, which stood for
unclear artifacts such as combinations of others.

With all of the artifacts described, we were prepared for the annotation of the
signals. The problem was that the manual investigation of all of the microelectrode
signals could be very slow - it was necessary to investigate the signals one by one and
inspect each signal separately. For faster investigation of the microelectrode recordings
an unique Matlab GUI tool was created as seen in Figure 18.

In this GUI, the user was able to select a database of the signals, which he would
like to annotate. Each member of the annotation group had his own database which
partially overlapped with other users’ databases. Where multiple annotations were
available (overlapping data), the final annotation was based on the majority voting of
all users.
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Figure 18: DBS Artifact Annotator User Interface

Each user was able to select each of the microelectrode recordings from his database
based on the specific id (id of the patient and electrode position). When a recording
was selected, signals for all of the electrodes used for DBS of selected patient and po-
sition were displayed in the GUI. Below the signals from the electrodes a spectrogram
was displayed. Spectrum was very useful for visual artifact detection. For example the
frequency noise (from electrical devices) could be easily detected. By using check marks
on the right side of the electrodes signals, the user could select ones which he wanted to
be displayed in the spectrum. The user could annotate the selected electrodes signals’
seconds by clicking the buttons with appropriate name of the found artifact. Also, by
using these buttons, the user was able to deannotate these signals. The user can also
play the signal back as audio, which is a common method used by neurophysiologists
during MER investigation. Keyboard shortcuts were included in the GUI to make the
annotation even faster. The current annotation of selected database could be saved
into a mat file and then restored from it.

Now to the annotation itself. 5739 signals were given to the annotation group. That
gives 57390 signals seconds which were processed and annotated. Each member of the
group got a part of these data together with a control set (950-1240 seconds of MER) for
the better control of the annotation. After the annotation, seconds from the control set
were checked across the group and annotated using the majority voting. That means
that the final artifact annotated to the signal must have been found by more users (five
in our case). Seconds which were not a part of the joint database were classified as the
user annotation.
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Here, we would like to present the annotation results of the group. As was already
mentioned, the annotation group consisted of eight people which were trained on the
visual and audio features of all of the artifacts. Each member of this group had his
own dataset, which he had to annotate. 950 seconds of distributed data were the same
for all of the users. On this dataset we have measured specificity (true negative rate),
sensitivity (true positive rate) and total accuracy of the individual users against the
majority voting. These values for the classification group can be viewed in Table 1.

Member of the group 1 2 3 4 5 6 7 8

Specificity 0,99 0,96 0,94 1,00 0,90 0,91 0,86 0,90
Sensitivity 0,08 0,92 0,97 0,64 0,98 0,96 0,75 0,97
Accuracy 0,78 0,95 0,95 0,97 0,92 0,92 0,84 0,92

Table 1: Annotation results (8 members against the majority voting)

Member 1 had a very low sensitivity on the majority voting set, which caused
poor accuracy. Member 4 had also a very low sensitivity, but his accuracy was good.
Member 7 had a poor accuracy and it seemed that the artifact annotation was consistent
(member annotated same number of artifacts). The values of specificity, sensitivity and
accuracy were good for the rest of the users. Because of that we decided to exclude
members 1,4 and 7 from the annotation group. Their signals were distributed between
the rest of the group. Values for the new classification group can be viewed in Table 2.
In Figure 19 we present the member agreement on the individual artifacts. In Figure
20 we present the distribution of the annotation for each of the member.

Member of the group 2 3 5 6 8

Specificity 97.7% 93.4% 95.8% 96.3% 90.9%
Sensitivity 83.9% 90.6% 96.1% 82.4% 96.1%
Accuracy 94.0% 92.6% 95.9% 92.5% 92.3%

Table 2: Annotation results (5 members against the majority voting)

As can be seen in Figure 20 the most common artifact in the signals was the FREQ.
The total number of baseline and power artifacts was very similar. The least common
group of artifacts was the irritated neuron group. The irititated neuron was very rarely
found in the data. Also it was very difficult to detect this kind of artifact in the
signals due to its hight similarity to physiological neuronal activity. There were several
discussions on this artifact type and it was decided not to focus on it. As a result, the
automatic artifact detector was not able to detect the irritated neuron artifact.

The number of the other artifacts was also very low - members usually annotated
the other artifact as the major artifact which was present in the signal (for exam-
ple FREQ). Another problem were the weak occurences of some artifacts which were
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Figure 19: Member agreement over majority voting set
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Figure 20: Member annotation of majority voting set

26/55



7 DATA

annotated as clean by some of the users and as artifacts by others. Based on the ma-
jority voting, the signal could remain clean even though there was a obvious presence
of the artifact. All of these discrepancies can negatively affect the decision tree learning.

Closer analysis of the results of the annotation showed, that there were heavy dis-
crepancies in annotation of the power artifact. The main problem was its similarity to
the frequency artifact. In many cases, the power artifact was annotated as FREQ which
lead to discrepancies in the database. Also, some of the clean signals were annotated
as power artifacts because there was a peak in the signal, which was later identified as
standard MER signal behavior - sparse neuron firing (in extreme cases just one in 10s
recording).

In Figure 21 we present the total number of annotated seconds for all of the members
of the annotation group.
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Figure 21: Member total annotation
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7.3 Data Summary

In total, we have annotated 57390 channel seconds. In Table 3 we present the total
number of annotated artifact groups.

Artifact Type Count of annotated channel seconds
Total 57390

Clean signals 41849
Power 3619

Baseline 4095
Frequency 10649

Iritated Neuron 201
Uknown 39

Table 3: Annotation summary

As we have already mentioned, the most common artifact found by the annotation
group was the FREQ artifact. The amount of power and baseline artifact was very
similar. In Table 4 we also present the nuclei from which the annotated signals were
taken.

Nucleus Number of signals
STN 2321
SNr 111
Th 145

Unknown 3162

Table 4: Annotated signals nuclei

With the prepared data we were able to start searching for features of artifacts for
the use in the automatic classifier.
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8 Features of the MER artifacts

As we described in Chapter 6, the most important part of decision tree building is the
preparation of the features which will be used as the rules. In this chapter, we would
like to present features extracted from MER signals and artifacts, which we described
in Chapter 4.

8.1 Features for noise detection

All of the basic properties can be evaluated by visual inspection or by sound inspection,
which is a usual method during DBS implantation. Our goal was to convert these visual
features into simple rules which will be then used for decision tree learning. The features
should be as simple as possible - they should specify the characteristic artifact behavior.
We focused on basic signal processing.

Features of artifacts were found in a small database of example signals, taken from
the large database based on their annotation labels. Due to the detailed inspection,
we have rechecked the annotation of selected signals to confirm the presence of an
artifact. Features were based on the characteristic properties and behavior of signals
with artifacts.

We divided our features into three categories - 1) features based on original MER
signal, 2) features based on the signal power spectrum, and 3) features which were
based on Gaussian filtration. All of the features have its own shortcut which was used
in the code and in the visualisation of the decision tree.

8.2 Features extracted from the MER signal

The first category describes features prepared from the original MER signal. Standard
behavior of the artifacts in MER signal was already described in Chapter 4.

8.2.1 Power of the signal

First feature which we have prepared as a rule for the decision tree was power of the
signal. The power is defined as square of the Root mean square level (RMS) [25] which
is calculated as follows:

XRMS =

√√√√ 1

N

N∑
n=1

|xn|2. (18)

XPower = X2
RMS. (19)

The total power of the signal is represented by the TPOWSIG feature. This value can

29/55



8 FEATURES OF THE MER ARTIFACTS

highly differ across the one-second segment of clean signal. Because of that, we decided
to calculate the power value for 24 segments of a smaller size. We have selected 24
segments, because one second has 24000 samples. Each segment then had 1000 samples.
For each of these segments we have calculated the power and then the difference between
the power of each of the segment and the power of the complete signal. The value of
POWSIG feature was equal to the maximum from this set of calculated values.

We have also measured the difference in the power between all of the segments.
Feature DPOWSIG is defined as the maximum difference across all of the segments.
The features POWSIG and DPOWSIG helped us with the detection of strong artifacts
such as power artifact, where the values of power could highly differ across the signal.

An example of the calculation of these values is given in Figure 22. In this Figure
we present a comparsion of power features calculation between clean signal and signal
containing power artifact. The values for this example can be seen in Table 5.
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Figure 22: Calculation of power features. Segment with the highest difference from the
total power

Artifact/Feature POWSIG DPOWSIG TPOWSIG
Clean signal 1.19 9.05 29.73

Power artifact 12.08 2537,37 211,09

Table 5: Values of features based on the power of the signal

The biggest difference in power was in segments 4 and 5 in the clean signal, and in
segments 5 and 24 in the signal with the power artifact. The value of POWSIG should
be close to 1 for the signals with no artifacts (the power of the segment is equal with the
power of the signal). Differences in the values of power features between clean signal
and signal with power artifact were obvious.
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The power features were the only ones which were used to measure properties of the
original MER signals. We have tried to generate another feature such as the maximum
of the signal, but the results were not as good as for the power features.

8.3 Features in the Signal Power Spectrum

Another category of features was focused on the signal power spectrum [25]. Mainly,
these features were focused on the peaks in the spectrum, which are one of the symptoms
of an artifact. All of the defined artifacts have some characteristic behaviour in the
signal power spectrum. For example baseline artifact can reach high peaks in lower
frequencies (0-300Hz) and power or frequency artifact can reach high power in the
spectrum.

For further description of the features, we denoted the input signal as x. The fast
fourier transform (FFT) X is then calculated as follows:

X(k) =
N−1∑
t=0

x(t)e−j(
2π
N

)tk. (20)

Where N is the FFT size, which was in our case equal to 8192, t is sample. The
spectrum of the signal S is defined as

S = abs(X). (21)

Due to the symmetric properties of the spectrum, we used only the first half of the
spectrum for feature finding and also for calculation of the values of these features.

We further preprocessed S to get better results of the classification with our fea-
tures. We subtracted the standard shape of MER signal power spectrum. This step for
example helped with the baseline artifact detection. Peaks which are characteristic for
baseline artifact are always present in lower frequencies (between 0 and 300Hz). How-
ever, those peaks can reach lower values than the power spectrum between 500Hz and
5kHz. Due to that, we deducted a polynomial curve from the original power spectrum.
This polynomial curve is calculated by fitting a polynomial function of degree five on
the spectrum [25, 26]. Steps of this process can be viewed in Figures 23 and 24. The
final spectrum was calculated as:

Spk = S − Spoly5. (22)

Where Spk are spectral peaks, S is the original spectrum and Spoly5 is a polynomial
curve fitted on the S.
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Figure 23: Power spectrum of MER signal with no artifacts together with generated
polynomial curve
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Figure 24: Preprocessed spectrum for feature finding
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In the following sections we will describe our features which were created from the
investigation of the preprocessed power spectrum of MER signals.

8.3.1 Maximum peak in spectrum

The first feature of the preprocessed power spectrum was the value of the maximal peak
(MAXSPC). As we described in previous chapters, some of the artifacts are character-
istic with their peaks in the signal power spectrum. For example power artifacts or
FREQ artifacts can reach multifold high peaks in comparison with the signal without
any artifacts. An example is given in Figure 25.
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Figure 25: Maximum in the preprocessed signal spectrum

The value of this feature can be described as:

MAXSPC = max(Spk). (23)

The main reason of creating the MAXSPC feature was to detect strong FREQ
artifacts, but this feature had good results for the detection of power artifacts, which
had similar behavior as FREQ artifacts. However, the maximum peaks in the spectrum
of the power artifact were not as high as peaks in the spectrum of the FREQ artifacts
so this feature was not so good for the detection of the baseline artifacts. The height
of peaks in the signal power spectrum is not characteristic for the baseline artifacts.
Some of the baseline artifacts could reach peaks high as the power signals but this is
not common for this type of artifact. We have also tried to measure the sharpness of
peaks in the spectrum using the diferential of the spectrum, but we have removed it
after several tests on the dataset because the results of that feature were basically the
same (worse, respectively) as the results of MAXSPC.

Another feature, which was related to the maximum peak was LOCSPC which
compared values of the spectrum with the close neighborhood.
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8.3.2 Power of the spectrum

Similarly as with the original MER signal, we decided to measure the power (TPOWSPC)
of the preprocessed spectrum. For the same reasons as for the original MER signal, we
decided to calculate the power for segments of a smaller size (POWSPC) - for the spec-
trum we selected segments of length of 100 Hz. For all of these segments we calculated
the values of these parameters as the difference of the value of each of the segments
and the total value of the spectrum. The value of this feature is equal to the maximum
from this set of values. Basically, these features helped us to determine if the spectrum
contained an unusual character such as high peak. The visualization of these features
can be seen in Figure 26.
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Figure 26: Power in the preprocessed spectrum
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8.3.3 Peak detection in the power spectrum

For the following features we needed to describe a peak of the spectrum. Peak is defined
as a value in the spectrum which is higher than the multiplication of a constant and
the maximum value of the spectrum. We performed several tests and after that, we set
the value of this constant to 0.8:

P = Spk(Spk >= 0.8 · max(Spk)). (24)

Where P is the set of all peaks in the spectrum. One of the features that is based on
this description of peak is the CNTSPC, which stands for the total number of peaks.
It is calculated as the length of the vector P :

CNTSPC = length(P ). (25)

This feature was created to reflect characteristic behavior of clear signal in FFT. This
clean signal should have a lot of similar peaks and also there should not be any high
peaks. On the other hand, signals with artifacts should have bigger differencies between
maximal peak and the rest of the signal. CNTSPC feature was very good for the
detection of the FREQ and power artifacts, where peaks can reach extreme values.
Good results were also measured for the baseline artifact.

We have also created several features which were based on the peaks of the pre-
processed spectrum and which were focused mainly on the baseline artifact - most
previously described features gave best results for the detection of the power or the
FREQ artifact. As we discussed in the section of noise description, the baseline artifact
was characterized by peaks in lower frequencies, mostly from 0 to 200Hz.

One of the features which is related to the peaks position in the spectrum is the
mean position of peaks P in the spectrum S (MEANSPC). For the baseline artifact,
this feature should return number under the 200Hz. Very similar features, which we
prepared, were the position of the first peak in the spectrum (FIRSTSPC) and the
position of the maximum of the spectrum (MAXPOSSPC). FIRSTSPC is calculated as
the position of the peak at the first index of P . We discovered that the MAXPOSSPC
and FIRSTSPC was not as good as, for example, the mean position of peaks. This
happened because of the heights of peaks in the spectrum of the signal with no artifacts.
These peaks can reach higher values than the peaks in lower frequencies of the signal
with baseline artifact. An example of calculation of the features, which are based on
the position of the peaks in the preprocessed spectrum is given in Figure 27.
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Figure 27: The limit for peak detection in preprocessed spectrum: for signal with no
artifacts and signal with baseline artifact

The measured values of the features can be seen in Table 6.

Artifact/Feature CNTSPC MEANSPC FIRSTSPC MAXPOSSPC
No artifact 6 1637,87 958,11 1652,52

Baseline 2 216,82 20,51 20,51

Table 6: Values of features based on peak detection in preprocessed spectrum

The baseline artifact can be easily detected by using these features. The MEANSPC
and FIRSTSPC features were the best for the detection of baseline artifacts.
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8.4 Features from Gaussian filtration

Another method, which we have used for searching of features, was the convolution
of MER signal. For the convolution we need to create gaussian function v. We have
calculated the gaussian window using gaussWin function implemented in Matlab. The
gaussian function was defined as:

v(t) = 4 ∗ 10−3e−
(t−250)2

2∗0.012 . (26)

After that we performed the convolution (w) as follows:

w(τ) =
∑
t

x(t)− v(τ − t+ 1). (27)

In fact, the convolution represented low-pass filter. Most features which were created
on this method, were focused on baseline artifact detection which, as we mentioned in
previous chapters, is artifact with low frequency components in the signal. An example
of this process is given in Figure 28, which displays described process for clean signal
and signal with the baseline artifact.

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100
Original signal (clean signal)

T (s)

Y
(T

)

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100
Signal after gaussian convolution (clean signal)

T (s)

Y
(T

)

(a) Clean signal

0 0.2 0.4 0.6 0.8 1
−50

0

50
Original signal (baseline artifact)

T (s)

Y
(T

)

0 0.2 0.4 0.6 0.8 1
−50

0

50
Signal after gaussian convolution (baseline artifact)

T (s)

Y
(T

)

(b) Signal with baseline artifact

Figure 28: Convolution on the signal
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8.4.1 Features after Gaussian filtration

Based on the sequence w, we calculated similar features as on the spectrum. First one
was the maximum of the filtered signal (MAXGSS):

MAXGSS = max(w). (28)

We have chosen this feature because of the characteristic behavior of the baseline arti-
fact. Due to the convolution, only low frequencies remained in the signal.

Another feature based on this approach, was the count of the peaks after convolution
(CNTGSS). Similarly to the count in the power spectrum, we set a threshold, which
was calculated from the maximum. By using it, we determined the number of peaks
in the signal. Similarly to the maximum of the convoluted signal, we have used this
feature mainly for the classification of the baseline artifact.

The last feature which was created on the filtered signal, was the total power
(TPOWGSS). This feature was created mainly for the detection of the baseline ar-
tifact.

8.5 Metrics for the quality of the features

To measure the quality of the features we have calculated receiver operator character-
istics curves (ROC)[27]. ROC is a graphical approach for analysis of the performance
of a classification. It is determined by the value of true positive rate (TPR) and false
positive rate (FPR). When the classifier is applied, the following outcomes can arise
out from the classificaton: true positive (TP) - data which were positive and were clas-
sified correctly, true negative (TN) - data which were positive and were misclassified,
false positive (FN) - data which were negative and were classified correctly, and false
negative (FN) - data which were negative and were misclassified. These outcomes were
then stored in the confusion matrix. From this matrix we can calculate TPR and FPR
by following equations:

TPR =
TP

TP + FN
(29)

FPR =
FP

FP + TN
(30)

In order to extract a single number, summarising discrimination capability of the given
feature, we calculated the area under curve value (AUC) [28]. AUC is calculated by the
integration of ROC. The value of AUC is between 0,5 and 1. 0,5 stands for the random
guess classification. We have calculated AUC for all of the features described above.
The AUC can be used as an estimate of the quality of the given features. AUC of our
features can be viewed in Table 7.

As can be seen in the table above, the efficiency of our features were not as good as
we expected. Features focused on the original signal gave us good results for the power
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Feature/Artifact FREQ Power Baseline All artifacts
Original signal features

DPOWSIG 0.5702 0.7899 0.6348 0.5664
TPOWSIG 0.5345 0.5915 0.7693 0.5630
POWSIG 0.6967 0.8938 0.6196 0.7172

Preprocessed spectrum features
MAXSPC 0.6707 0.6894 0.5164 0.6396
LOCSPC 0.6285 0.6537 0.6644 0.5676
POWSPC 0.8350 0.8482 0.7646 0.8217

TPOWSPC 0.5006 0.5867 0.7348 0.5364
CNTSPC 0.5984 0.5665 0.6239 0.5980

MEANSPC 0.7636 0.7244 0.8443 0.7742
FIRSTSPC 0.6922 0.6356 0.8546 0.7178

MAXPOSSPC 0.7428 0.6965 0.8367 0.7550
Features after gaussian convolution

MAXGSS 0.6067 0.6972 0.9552 0.7023
CNTGSS 0.6393 0.6290 0.8029 0.6740

TPOWGSS 0.5945 0.6689 0.9522 0.6890

Table 7: AUC values for the training database

artifact detection. The features calculating count of amplitudes (CNTSPC and CNT-
GSS) gave us the worst results, but the CNTGSS could be used for the baseline artifact
detection with good results. All the other features gave us at least one good result for
one of the artifacts - for example the POWSPC feature had good results for detection
of FREQ and power artifacts, and the MAXGSS feature had very good results for the
baseline detection. With prepared features we were able to generate and test our deci-
sion tree. The results of the decision tree making are given in the next part of this thesis.
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9 Experimental results

In this chapter we would like to present the results of our method of artifact detection
in MER signals in comparison with the existing methods described in Chapter 5 - with
the Stationary segmentation of MER signal presented by Falkenberg [2] and Stationary
wavelet transform segmentation presented by Guarnizo [4].

9.1 Experimental procedure

At first, we had to prepare the testing and training datasets which could be used for
the learning and testing of our classifier. For our method of classification we decided to
divide the whole dataset into three datasets - training dataset (60% of data), testing
dataset (30% of data) which was used for the calibration of the decision tree rules, and
validation dataset (10% of data) which was used as the final result of our classification.
We wanted to preserve the real world proportion of artifacts which are present in MER
signals. In total, we have used fourteen features, as described in Chapter 8, as the rules
for the decision tree. Decision tree was generated in three steps. In the first step we
have calculated the values for all of the features for the datasets. Next step was the
initial generation of the decision tree. The last step was the pruning of the decision
tree. As described in Chapter 6, two approaches were performed to build the decision
tree. The first approach was to build an initial tree using the entire training dataset
and then perform prunning of it by using the same dataset. The comparison of the cost
of the subtrees with the number of leafs is given in Figure 29. In this Figure we also
present the dependence of the number of the leafs on the standard error of the cost.
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Figure 29: Cost and standard error of the cost depending on the number of the leafs of
the subtree

The prune level was equal to 106 which generated minimum cost tree with 34 leafs.
We denoted the generated tree as TREE A. The structure of TREE A is presented in
Figure 30.
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The second approach was to divide training dataset into two parts. The first part
was used for the generation of the initial tree. Then, using the second part of the
training dataset, we searched for the optimal prune level. We performed this approach
too. The number of the leafs for generated decision tree was equal to 9. We denoted
this tree as TREE B. The structure of TREE B can be seen in Figure 31. This approach
helped us to generate less complex tree.
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Figure 30: Generated decision tree - TREE A

42/55



9 EXPERIMENTAL RESULTS

1

0
1

1
0

1

1

0
1

P
O

W
S

P
C

 <
 5

.5
00

8 
  

M
A

X
G

S
S

 <
 1

.9
22

28
   

P
O

W
S

IG
 <

 2
.9

69
49

   
T

P
O

W
S

P
C

 <
 4

58
14

4 
  

T
P

O
W

G
S

S
 <

 0
.6

59
98

   
P

O
W

S
IG

 <
 3

.3
36

32
   

T
P

O
W

S
P

C
 <

 1
69

03
1 

  D
P

O
W

S
IG

 <
 9

1.
24

85
   

  P
O

W
S

P
C

 >
=

 5
.5

00
8

  M
A

X
G

S
S

 >
=

 1
.9

22
28

  P
O

W
S

IG
 >

=
 2

.9
69

49
  T

P
O

W
S

P
C

 >
=

 4
58

14
4

  T
P

O
W

G
S

S
 >

=
 0

.6
59

98
  P

O
W

S
IG

 >
=

 3
.3

36
32

  T
P

O
W

S
P

C
 >

=
 1

69
03

1   D
P

O
W

S
IG

 >
=

 9
1.

24
85

Figure 31: Generated decision tree - TREE B
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Preliminary classification results using these decision trees were evaluated and used
for the design of additional features. However, the results of the artifact detection
were not as precise as expected. Because of that, we decided to perform Random
undersampling technique.

9.1.1 Random undersampling

Random undersampling (RUS) [29] is a method where a random subset of the majority
class samples is excluded from the training dataset to achieve balance between classes.
Before using RUS the training dataset consisted of 24774 clean signal seconds and 10908
signals with artifacts. After RUS the number of clean signal seconds was equal to the
number of artifacts (10908). Using the undersampled training dataset we performed
both of the approaches of the decision tree generation again. Number of leafs for the
tree generated using the first approach was equal to 57. Tree generated using the second
approach had 31 leafs. Generated trees can be seen in Figures 32 and 33.
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Figure 32: TREE A after RUS
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Figure 33: TREE B after RUS
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9.2 Optimization of other methods

In this section, we would like to describe the process of optimization of the other
methods, presented by Falkenberg [2] and Guarnizo [4]. Detailed description of these
methods were presented in Chapter 5. These methods are very similar. The only
difference between these methods is the calculation of the variance for the segments. The
first method calculates the variance from the autocorelation function (COV) and the
second method calculates the variance from the stationary wavelet transform (SWT).
Both of these methods needed entire ten-second MER signals as an input.

Two parameters need to be defined for these methods. The first one is the length
of the segments. We wanted to compare these methods with our algorithm, which uses
one second of the MER as an input, so the length of the segments was set to one second.

The second parameter were the thresholds which were used to check the variance.
Because of that, we have performed several runs with these methods to find the best
threshold. As the training set, we have used the 60% of annotated signals (34430
seconds). The comparison of accuracies for different values of thresholds are given in
Figures 34 and 35.
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9.3 Results

In here we would like to present the results of the artifact detection using the generated
decision trees (before and after RUS) and compare it with the existing methods which
use stationary segmentation. We have calculated the accuracy, sensitivity (true positive
rate) and specificity (true negative rate) for all of these methods. Tests were performed
using the training and testing datasets. Results can be viewed in Tables 8 and 9.

Method Sensitivity Specificity Train Accuracy
TREE A 0.7646 0.9493 89,28%

TREE A after RUS 0.8420 0.9247 88,33%
TREE B 0.7358 0.9428 87,95%

TREE B after RUS 0.8159 0.9250 87,05%
COV 0,3552 0,9479 77,48%
SWT 0,2876 0,9616 76,47%

Table 8: Comparsion of accuracy of all methods on training dataset

Method Sensitivity Specificity Test Accuracy
TREE A 0.7618 0.9664 90,38%

TREE A after RUS 0.8263 0.8704 85,69%
TREE B 0.7640 0.9556 89,70%

TREE B after RUS 0.8162 0.8867 86,52%
COV 0,2778 0,9619 80,56%
SWT 0,2442 0,9733 80,68%

Table 9: Comparsion of accuracy of all methods on testing dataset

The accuracy of the decision tree built using the first approach (same training
dataset for inicial tree build and for tree prunning) before RUS gave us the best results
from all tested methods. The tree built by using the second approach had worse ac-
curacy. Trees generated after RUS had better sensitivity which had big impact on the
accuracy of the artifact detection. We selected TREE A for the validation test, because
it had the best accuracy from all of the generated decision trees. It had about 10%
better accuracy on the testing dataset than the methods using the stationary segmen-
tation. The sensitivity of these methods was extremely low. Results of TREE A on the
validation test are given in Table 10.

The total accuracy of the classifier on the validation dataset was good. However,
the sensitivity had slightly decreased.
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Method Sensitivity Specificity Test Accuracy
TREE A 0,6770 0,9458 86,33%

Table 10: Accuracy of classifier on validation dataset

9.4 Discussion

The classifier TREE A had the best accuracy from all of the methods - 90,38% for
the testing dataset and 86,33% for the validation dataset. The sensitivity of TREE
A descreased on the validation set. However, the sensitivity on the validation set is
still much better than sensitivities of methods which use stationary segmentation. Low
sensitivity could be caused by selecting less accurate features of the artifacts or by
the prunning of the decision tree, but it is necessary to perform prunning to avoid the
overlearning on the training dataset. Also, the manual annotation of the datasets might
be inaccurate and it could have negative impact on the results.

The results of the stationary segmentation methods were very inaccurate in artifact
detection. The sensitivity of these methods was extremely low, owing probably to
the high simplicity of the features used: the method was trained on artificial signals
with properties changing in discrete steps. On the contrary, real-life signals contain
various types of artifacts, including long-term FREQ artifacts, present throughout the
whole signal. Such an artifact can not be detected by the stationary methods from the
principle. However, this result might have been affected by the fact that we did not
optimize the length of the segment.

The results of our classifier might be improved by creating additional features, which
could specify standard behaviour of the artifacts more accurately (for example have
better AUC values than the current features). Another improvement could be made
by the checking of annotated data - for example perform additional annotation of data
and comparing it with the previous annotation.
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10 CONCLUSION

10 Conclusion

In this thesis, we have described the steps to create a classifier for the detection of
artifacts in MER signal. The artifacts were separated into three groups - FREQ, power
artifacts and baseline artifacts. Detailed characteristic behaviour of the artifacts was
analysed in Chapter 4. We found out that some of the artifacts can be filtered before
further processing of MER signal. For example the baseline artifact can be removed
using a high-pass filter.

As a classifier we have decided to use the decision tree. The decision tree should test
features of an input signal and using simple rules determine whether it contains artifact
or not. For the preparation of our classifier we needed data, where were these artifacts
present. Because of that, we have performed manual annotation of MER signals. In
total, we annotated over 57390 seconds of MER signals. Most common artifact, which
was present in annotated data, was the FREQ artifact (10649 seconds). The baseline
and the power artifacts had similar distribution over the data (4095 and 3619). Using
these data we have prepared initial features of the artifacts, which then were used for
the preparation of rules of the decision tree. Features were prepared in three groups - 1)
features prepared from the original signal, 2) features prepared from the preprocessed
spectrum of the signal, and 3) features prepared from the signal after gaussian filtration.

We performed two approaches of decision tree generation. The first one used same
training dataset for the generation of initial decision tree and then for the tree prunning.
The second approach divided the training dataset into two parts. The first part was
used for initial tree generation and the second part for the prunning. Based on the initial
results, we decided to use random undersampling method to achieve a balance between
the number of clean signals and artifacts. In total we have generated four different
trees. The generated trees and results of them can be viewed in Chapter 9. As a final
classifier we decided to use the decision tree built using the first method without random
undersampling. The results of our classifier were good. The accuracy was 90,38% for
the testing dataset and 86,33% for the validation dataset. We have compared our
classifier with the other methods which were available in the literature. These methods
used stationary segmentation of the signal to determine the longest segment with no
artifacts. We have described these methods in Chapter 5. The accuracies for the
testing dataset were 80,56% for COV method (variance is calculated from autocorelation
function) and 80,68% for SWT method (variance is calculated from stationary wavelet
transform). Also, our classifier had better sensitivity than these methods. The results
of the classifier might be improved by preparing additional parameters, which will be
used in the build phase of decision tree. Another option is to check the annotation of
our datasets. In our future work, we would like to focus on the improvement of our
decision tree. For example, we would like to detect each artifact types separately.
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CD content

Included CD contains text of this thesis in PDF format and the source code of our
implementation in Matlab.

Directory Description

text.pdf the text of this thesis
code contains the source code
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