
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Symbolic regression as a surrogate
model in evolutionary algorithms

Bc. Vladimir Perić

May 2016
Supervisor: Ing. Petr Pošík, Ph.D.

Acknowledgement / Declaration
I would like to thank my mentor, Ing.

Petr Pošík, Ph.D., whose wholehearted
aid made this work possible, and all of
my friends, who made slacking off so en-
joyable.

Access to computing and storage
facilities owned by parties and projects
contributing to the National Grid In-
frastructure MetaCentrum provided
under the programme ”Projects of
Projects of Large Research, Develop-
ment, and Innovations Infrastructures”
(CESNET LM2015042), is greatly ap-
preciated.

I declare that I worked out the pre-
sented thesis independently and I quot-
ed all used sources of information in ac-
cord with Methodical instructions about
ethical principles for writing academic
thesis.

In Prague, 27th May 2016

v

Abstrakt / Abstract
Evoluční algoritmy jsou často ome-

zeny počtem funkčních ohodnocení
které jsou dostupné během řešení pro-
blémů optimalizace černé skříňky. Tato
práce popisuje jeden z přístupu k
zlepšení diferenciální evoluce pomocí
náhradních modelů generovaných sym-
bolickou regresi. Tři algoritmy pro
symbolickou regresi — kvadratické
modely, genetické programování a rozší-
řená rychlá těžba funkcí (extended fast
function extraction) — jsou porovnány
s učicí metodou náhodného lesa a s
diferenciální evoluci bez použití ná-
hradných modelů. Empirické výsledky
ukázují, že použití náhradních modelů
generovaných symbolickou regresi vede
k zlepšení výkonu ve všech otestová-
ných příkladech a během každé fáze
vyhledávání.

Klíčová slova: optimalizace černé
skříňky, symbolická regrese, náhradní
model, diferenciální evoluce

Překlad titulu: Symbolická regrese
jako náhradní model v evolučních algo-
ritmech

Evolutionary algorithms are often
limited by the number of function
evaluations available in black-box op-
timization problems. One possible
approach to enhance a representative
evolutionary algorithm, differential evo-
lution, with surrogate models built
using symbolic regression is presented
in this thesis. Three symbolic regres-
sion algorithms — quadratic models,
genetic programming and extended fast
function extraction — were compared
against random forest surrogate models
and regular differential evolution. Em-
pirical results have shown that symbolic
regression surrogate models improve
performance in all tested problems and
during each stage of the search process.

Keywords: black-box optimization,
differential evolution, surrogate model,
symbolic regression

vi

Contents /
1 Introduction .1
2 Evolutionary algorithms3
2.1 Differential evolution3

3 Surrogate models5
3.1 Managing a single surrogate

model .5
3.2 Managing multiple surrogate

models .6
3.3 Other properties7
3.4 k-Nearest Neighbors7
3.5 Random forest7

4 Symbolic regression9
4.1 Polynomial regression.9
4.2 Genetic programming. 10
4.3 Fast Function Extraction 11

5 Testing suite . 13
5.1 Function definitions 13

5.1.1 Separable functions 13
5.1.2 Functions with low or

moderate conditioning . . . 14
5.1.3 Functions with high

conditioning and uni-
modal . 14

5.1.4 Multi-modal functions
with adequate global
structure 14

5.1.5 Multi-modal functions
with weak global struc-
ture . 14

5.2 Noisy function testbed 15
5.3 Experimental setup 16

6 Implementation. 17
6.1 Differential evolution 17
6.2 Model management 18
6.3 Surrogate models 19

6.3.1 Quadratic model 19
6.3.2 Genetic programming. . . . 19
6.3.3 Fast Function Extrac-

tion . 20
6.3.4 k-Nearest Neighbors 21
6.3.5 Random forest 22

7 Results . 23
7.1 Baseline algorithms 24
7.2 Symbolic regression 25
7.3 Noisy functions. 28
7.4 Discussion . 30

8 Conclusion . 33
References . 34

A CD contents . 37
B Experimental results 38

vii

Tables / Figures
6.1. Approaches used in EFFX. 21 7.1. Comparison of baseline algo-

rithms. 24
7.2. Comparison of baseline algo-

rithms on f21 and f22 24
7.3. Comparison of symbolic re-

gression surrogate models 25
7.4. Comparison of symbolic re-

gression surrogate models in
10 dimensions 26

7.5. Comparison of symbolic re-
gression algorithms on multi-
modal functions 27

7.6. Comparison of symbolic re-
gression surrogate models on
noisy functions 28

7.7. Comparison of symbolic re-
gression surrogate models
on noisy highly multi-modal
functions . 29

viii

Chapter 1
Introduction

An optimization problem is the computational problem of finding the optimal solution
among the set of all feasible solutions, as defined by an objective function. In black-
box optimization problems, no information is available on the nature of the objective
function; instead, the box can only be queried for the function value at a specific point.
Such problems often occur in practice, with an additional constraint on the total number
of function evaluations available.

Evolutionary algorithms [1] are a set of metaheuristics which have been successfully
used in solving optimization problems [2]. As these algorithms make no assumptions
about the function they are optimizing, they are a good fit for black-box optimiza-
tion problems. However, evolutionary algorithms require many function evaluations to
produce a good solution.

One possible approach to mitigating this disadvantage is the use of surrogate models
[3–4]: approximate models which attempt to match the behavior of the real simula-
tion model while being computationally cheaper to evaluate. Surrogate models are
constructed using data already evaluated using the real model. By occasionally using
the surrogate model instead of the real model, the available budged is effectively in-
creased. The exact method of combining the usage of the models is governed by model
management strategies.

The construction of surrogate models is solved by regression analysis, which is a sta-
tistical process for estimating the relationship between the independent (input) vari-
ables and the dependent (output) variable. Symbolic regression [5] is one such process,
which attempts to find a mathematical expression which best fits the given data set.

The goal of this thesis is to determine if symbolic regression models are able to bet-
ter approximate the hidden objective function than classical regression models. Three
algorithms are examined: quadratic models [6], genetic programming [7] and fast func-
tion extraction [5]. Each algorithm constructs the model differently and the goal is to
evaluate if they can accurately model complex objective functions.

Tests will be run on the COCO benchmarking platform [8–9], which includes the
choice and implementation of a well-motivated testbed, as well as tools for the post-
processing and presentation of results. Differential evolution [10–11] is used as a rep-
resentative evolutionary algorithm. Its surrogate-free baseline implementation is com-
pared against four surrogate-assisted variants: the three symbolic regression algorithms
and the random forest [12] algorithm.

The theoretical background and the characteristics of the algorithms used are de-
scribed in chapters 2–4. More detailed description of the benchmarking functions used
in experiments is given in chapter 5. The next chapter details the rationale behind
the choice of algorithm control parameters, while empirical results are presented and
discussed in chapter 7.

1

Chapter 2
Evolutionary algorithms

In the field of artificial intelligence, evolutionary algorithms represent a broad class of
algorithms used for search, optimization and machine learning [1]. These algorithms
are loosely inspired by Darwinian evolutionary processes in nature, and use operators
such as selection, mutation, recombination and reproduction to generate solutions to a
given problem. The terminology used is also inspired by biology: candidate solutions are
termed individuals and a set of individuals is called a population; subsequent populations
are generations. Each individual is evaluated using a fitness function. In general, an
evolutionary algorithm contains the following steps:.Generate an initial population.Evaluate each individual using the fitness function.Repeat until some stopping criteria is reached (number of generations, time, average

fitness...):. select some individuals (the parents).apply recombination and mutation operators on them produce new individuals
(the offspring). calculate the fitness of the offspring. combine the parents and the offspring to produce a new generation

Since there are a myriad of ways to implement these operators, many algorithms
have been proposed since the field was developed in the 1960’s. Historically, there
have been two main paradigms: genetic algorithms and evolution strategies. Genetic
algorithms represent individuals using simple data structures such as strings or integers,
and emphasize recombination of individuals. Evolution strategies represent individuals
as real-valued vectors and emphasize mutation over recombination. In practice, modern
evolutionary algorithms are influenced by both fields and cannot be easily classified into
either [1].

Evolutionary algorithms are used in solving numerical, real-valued ”black-box” op-
timization problems [2]. In a black-box setup, the goal is to optimize (minimize or
maximize) an unknown objective function which exposes only one interface: the black-
box can be queried to evaluate the value of the function at a vector x. The goal is to
find the best possible value within given limits, such as the total number of function
evaluations available. Since evolutionary algorithms do not assume anything about the
evaluated function, they are a good fit for solving this class of problems.

2.1 Differential evolution
The differential evolution algorithm was introduced by Storn and Price in 1995. Dif-
ferential evolution is used for optimizing multidimensional real-valued functions, but
does not use the gradient of the function being optimized, which makes it well suited
to black-box optimization problems [10].

3

2. Evolutionary algorithms .
The algorithm follows the same general steps as other evolutionary algorithms: the

initial population of solutions is generated randomly using a uniform probability dis-
tribution within the search space.1 Then, for each individual in the population, a new
parameter vector is generated by adding the weighted difference of two randomly cho-
sen population members to a third. If this new trial parameter vector has a higher
fitness than the initially chosen mutant vector, it replaces it in the next generation.
This perturbation process is repeated until the given termination criterion is reached.

To increase the diversity of the perturbed parameter vectors, crossover (recombina-
tion) is introduced. The trial vector is combined with the mutant vector in a randomly
chosen number of parameters, while ensuring at least one parameter is used from the
mutant vector. This increased diversity helps the algorithm avoid local optima [11]. The
algorithm is conceptually relatively simple, as illustrated by the following pseudocode:

randomly generate the initial population
while generation < n_generations:

for each vector x in the population:
mutation
randomly choose vectors t1, t2, t3, such that t1 != t2 != t3 != x
set v = t1 + F * (t2 - t3)

crossover
set u, such that:

for each parameter i, generate a random number ri:
if ri < C:

u[i] = v[i]
else:

u[i] = x[i]
at least one parameter from the mutant vector
choose random index j
set u[j] = v[j]

selection
if fitness(u) > fitness(x):

replace x with u in the population

The algorithm itself requires only three control parameters to be chosen: the size of
the population NP ≥ 4, the differential weight F ∈ [0, 2] and the crossover probability
C ∈ [0, 1]. The size of the population cannot be less than four due to how the mutated
vector is generated. Storn and Price initially recommended values for NP between 5∗D
and 10 ∗D, where D is the number of dimensions (parameters); the suggested value for
F is 0.5 and for C, 0.1. Further research on selecting appropriate parameters was done
by Zaharie in 2002 [13].

Vesterstrøm and Thomsen [2] have concluded that differential evolution generally
outperform other evolutionary algorithms and particle swarm optimization algorithms.
When ran on a test suite of 34 widely used black-box optimization benchmarks, differ-
ential evolution had found the best fitness values for most functions. The authors did
note that the algorithm had difficulties with noisy functions.

1 Therefore, the bounds of the search space need to be known.

4

Chapter 3
Surrogate models

When optimizing practical problems, the outcome of interest usually cannot be easily
measured or it is prohibitively expensive to do so. A commonly used motivational
example is aerodynamic wing design, where a full 3D simulation takes considerable
computing resources, while less complete simulations achieve better performance at the
expense of accuracy. In such cases, it is possible to construct surrogate models (also
known as metamodels) which attempt to simulate the behavior of the real model as
closely as possible. They are constructed using data already evaluated with the real
fitness function, making no assumptions on the inner working of the simulation. When
used for optimization, evolutionary algorithms rely on performing many evaluations
of the fitness function. If these evaluations are computationally expensive, surrogate
models can be used to improve algorithm performance [3–4].

Surrogate models alone cannot be used to solve an optimization task; per definition,
they can only make use of existing data to provide an approximate model. As such,
when used in evolutionary algorithms, they should be combined with evaluations of the
real fitness function [4]. For example, surrogate models which introduce false optima
can unfavorably impact the convergence properties of the algorithm [14]. How real
fitness evaluations are combined with surrogate model evaluations is defined by model
management strategies.

According to [4], there are many different model management strategies. They can be
divided into individual-based, generation-based and population-based. In individual-
based strategies, the real fitness function is used for some of the individuals in each
generation. Conversely, in generation-based strategies, whole generations are evaluated
by either the real or surrogate fitness function exclusively. Population-based strategies
co-evolve multiple populations, each with their own surrogate model, while allowing
migration between populations. A related method is the pre-selection strategy [15]:
assuming the population size is λ, λ1 > λ individuals are first evaluated using the
surrogate fitness and the best λ individuals are then evaluated with the real fitness
function. In the best strategy method, λ∗ < λ best individuals are evaluated using
the real fitness function; therefore, it is possible that the fitness of some of the chosen
parents is based on just the surrogate fitness function.

3.1 Managing a single surrogate model
In individual-based model management strategies, the key question is how to choose
which individuals should be re-evaluated using the real fitness function [4]. With the
assumption that these evaluations are computationally expensive, they should be used
as rarely as possible, while still allowing the algorithm to find the global optimum. One
approach is to re-evaluate those individuals with the highest surrogate fitness values;
alternatively, the population can be clustered, with the best (or mean) individual of
each cluster being re-evaluated.

5

3. Surrogate models .
Another possibility is to re-evaluate individuals with the most uncertainty. This

is motivated by two arguments: a large degree of uncertainty implies that the fitness
function landscape around the given value is not well explored; the re-evaluation of these
points may be the most efficient way to improve the quality of the surrogate model.
However, this uncertainty also needs to be estimated. This is most often done using
Gaussian process regression [4] (also known as Kriging), which provide an estimate of
the fitness as well as its variance. This additional information comes at the expense of
higher computational costs.

A further aspect to consider is how often the surrogate model should be used. To
accomplish this, surrogate model quality needs to be measured. The most straightfor-
ward metric is calculating the approximation error after re-evaluation, however, large
approximation errors do not mean the quality of the surrogate model is low. For exam-
ple, if the real fitness function is y = sin(x) and the surrogate model ŷ = sin(x) + 5,
the error is large even though an evolutionary algorithm searching using the surrogate
model only would find the correct solution. Given a set of input values, it is sufficient
for the surrogate model to correctly identify the value closest to the optimum; the
surrogate models’ prediction of the outcome is not important if this estimate is to be
re-evaluated using the real fitness function.

Therefore, a more informed measure of model quality might be to the correlation
between the surrogate fitness estimations and the real function evaluations. This can
be done using well-known methods such as the Pearson’s r, Spearman’s rho or Kendall’s
tau correlation coefficients. As Pearson’s r is a linear correlation coefficient, the other
two metrics, which calculate rank correlation, might be a closer fit to the requirements
placed on surrogate model quality. More complex metrics have also been proposed, for
example in [16]. By using one of these metrics, it is possible to adapt surrogate model
usage frequency based on model quality, thereby increasing the overall efficiency of the
evolutionary algorithm.

Although approximation error is not a key metric of model quality, improving it
should also be considered. One of the main obstacles to do so is the high dimension-
ality of the design space.1 This issue can be mitigated by only using local surrogate
models constructed with data in the vicinity of the point of interest [3] or by employing
regularized learning to prevent overfitting2 [14].

3.2 Managing multiple surrogate models
Generation-based and especially population-based model management strategies can
benefit from using multiple surrogate models. There are two main approaches to do
so: homogenous and heterogeneous surrogate models. Homogenous surrogate models
are of the same type and fidelity. Constructing an ensemble of such models confers two
main advantages: estimation quality is improved compared to each individual model,
and the variance of the predicted values can be used to identify large prediction errors
which helps avoid false optima [4].

Heterogeneous models are models with differences in fidelity and potentially type. For
example, models might perform better at a certain region of the search space. Further-
more, such approaches can be used in conserving computing resources by constructing
coarser models at the start of the search and improving fidelity as search progresses
and more data is available; low-fidelity models can also be constructed from incomplete
1 Also known as the curse of dimensionality.
2 Overfitting means that the model describes noise instead of the underlying relationship.

6

. 3.3 Other properties

data. Population-based strategies can employ different models in each sub-population.
In [17], the authors identify that uncertainty in surrogate models can have both positive
and negative consequences; they named these effects the bless and curse of uncertainty,
respectively. As such, the proposed algorithm includes both lower and higher fidelity
models. Empirically, the algorithm even outperformed a version using the real fitness
function as a surrogate model.

Using multiple surrogate models is also more easily parallelizable, which can confer
further benefits in computing resource utilization and efficiency.

3.3 Other properties
There are other desirable properties of surrogate models. When used in evolutionary
algorithms, new data is gradually made available and re-learning the model can be
time-consuming. It can also be assumed that the newer data will be more accurate or
closer to the sought optimum, so it might be prudent to weight these newer samples
more when generating surrogate models. These issues might be mitigated by using
some form of incremental (online) learning techniques [18]. Such properties would
also allow surrogate models to be used in dynamic optimization problems, where the
goal is to optimize a moving optimum, or in robust optimization, where the secondary
optimization goal is to minimize sensitivity to small changes in the objective function.

3.4 k-Nearest Neighbors
One of the simplest machine learning algorithms is the k-Nearest Neighbor algorithm
[19]. Given a set of training vectors, the algorithm estimates a feature of the input
vector by finding k of its ”nearest neighbors” and deciding based on their properties.
When used for classification, the outcome is the class membership of the input vector,
decided by a majority vote amongst the neighbors; if used for regression, the output is
a property value, calculated as the mean of the nearest neighbors. This variant of the
algorithm can be used as a surrogate model during optimization tasks.

Other than choosing the parameter k, the choice of the distance metric used can
have a major effect on algorithm performance. Commonly used metrics are the L2
(Euclidean distance) and the L1 norms (Manhattan distance); however, adapting the
distance norm to the particular problem being solved, for example by utilizing any
statistical regularities in the training data, can significantly improve performance [20].
When used for regression tasks, it can also prove beneficial to weight the contribution
of the neighbors based on the computed distance, so that nearer neighbors contribute
more to the estimated value. One method is to weight the vectors by the inverse of
their distance, although any arbitrary kernel function1 [19] can be used.

3.5 Random forest
Decision tree learning is another commonly used method in data mining and machine
learning. The algorithm creates models which predict the value of the dependent vari-
able based on the independent variables. The model is represented as a decision tree,
where each inner node represents one of the independent variables and has outgoing
1 Kernel functions K() of the distance d are functions which monotonically decrease with the growing
absolute value of d and have a global maximum at d = 0.

7

3. Surrogate models .
edges for each possible variable value. The leaf nodes contain the predicted dependent
variable value, represented by independent variable values found on the path from the
root node to the given leaf node. Trees are constructed by recursively splitting the
training vector set into subsets based on an attribute value test. This greedy algorithm
was named top-down induction of decision trees by Quinlan in 1986 [21]. Decision trees
can be used for both classification problems, where the terminal nodes take a finite set
of values (classes), and regression problems, where the dependent variable takes real
values. As such, it is possible to use regression decision trees as a surrogate model in
optimization problems.

Decision trees can easily overfit to the given input set. However, combining multiple
decision trees usually produces a model with higher accuracy than each individual
decision tree [22]. In the machine learning community, such algorithms are called
ensemble learning algorithms. The ensemble variant of decision trees, random forests,
were first proposed by Breiman [12]. Random forests use bootstrap aggregating (also
known as bagging) to generate training sets for each tree. The bagging algorithm, when
given a training set D of size n, generates new training sets Di of size n′ by sampling
from D uniformly with replacement. This method leads to better model performance
as it decreases the variance and does not increase the bias of the final model. Random
forests also utilize ”attribute bagging” — a random subset of all independent variables
is used at each candidate split, instead of all of them. In this way, the potential impact
of one or a few strongly correlated variables is diminished, ensuring that the individual
trees in the forest do not become correlated.

Another advantage of random forests is that they do not need many parameters to be
set [23]: essentially, only the number of trees in the forest and the number of variables
to consider at each node. The algorithm is also somewhat insensitive to the parameter
values and results of many random forests will generally converge if enough trees are
generated. As such, random forests are suitable for use in black-box optimization
problems.

8

Chapter 4
Symbolic regression

Symbolic regression is a process used to find the mathematical expression which best
fits the given dataset. It is a type of regression analysis, which is a statistical process
used to estimate the relationship between variables. In regression analysis, the focus is
on finding the relationship between a dependent variable and one or more independent
variables; specifically, how the value of the dependent variable changes when varying
any of the independent variables. In symbolic regression, the goal is to construct a
mathematical expression containing the independent variables which best describes the
dependent variable. Symbolic regression is usually implemented using evolutionary
algorithms, most commonly genetic programming.

Formally, given X and y, a set of {xi, yi}, i = 1..N data samples where xi is the i-th
n-dimensional point and yi the corresponding output value, determine the symbolic
model m mapping the n-dimensional input points to an output value ŷ: ŷ = m(x),
which minimizes a given error metric err() [5].

Theoretically, there is an infinite number of models perfectly describing the given
data as the search space of all possible mathematical expressions is infinite. To make
search feasible, the set of mathematical functions used in constructing potential models
must be finite and reasonably small — this requires at least some knowledge about the
underlying data. Commonly used functions include power, exponential, logarithmic
and hyperbolic functions, with specific algorithms using their own rules on the allowed
degree of interaction between them.

The large search space can be considered an advantage in the context of evolutionary
algorithms, since they can leverage the higher diversity of the produced models to
generate better results. For many practical applications, it is also important for the
predicted model to be ”understandable” from a human perspective.

Therefore, the symbolic regression problem is usually expanded to include a trade-
off between model complexity and accuracy. Various complexity metrics have been
explored, such as the number of base functions [5] or the order of non-linearity [24].
The formal definition of symbolic regression can therefore be expanded: the goal is to
determine the set of symbolic models M = m1,m2, ... that provide the Pareto-optimal
trade-off minimizing both model complexity and error, using some chosen metrics.

In general, symbolic regression requires no a priori information about the relation-
ships between the inputs and outputs; it discovers both the model structure and its
parameters. This feature is further accentuated by returning the Pareto frontier, which
avoids having to a priori specify the desired trade-off between complexity and accuracy.

4.1 Polynomial regression
Linear regression is one of the most well known forms of regression analysis. The
relationship between the independent and dependent variables is modeled using a linear
combination of the predictor functions. In classical linear regression, the predictor
variables are the independent variables themselves. However, it is also possible to

9

4. Symbolic regression .
arbitrarily transform each predictor variable or groups of them and use the results as
the linear predictor function. One way to accomplish this is to use all polynomial
functions (up to a given rank) of independent variables as predictor variables. This
form of linear regression is called polynomial regression and was first examined in 1815
[6].

Given a sufficiently high rank, a polynomial function of the independent variables
will always perfectly fit the given data. This is undesirable, since such a fit will almost
certainly result in overfitting the model to the training data. Additionally, estimated
polynomials, especially higher-order ones, may display suboptimal non-local properties
[25]; where the fit at a certain value depends strongly on data points far from the chosen
value. Therefore, it is advantageous to limit the polynomial rank to two.

In this case, the set of predictor values contains the pairwise product of each inde-
pendent variable and the variables themselves. Let the model fitted by linear regression
using the least squares method be called a quadratic model. The quadratic model can
be considered a simple symbolic model: it maps an n-dimensional input to an output
value while minimizing the sum of the squares of the errors. As only one model can be
generated for the given data, there is no need to examine its complexity.1

Although conceptually simple, these models have several advantages: the algorithm
is deterministic, the same data will always produce the same model; the computational
demands of linear regression are not high, so models can be constructed quickly; there
are no parameters to tune, other than the polynomial rank which is set to two. However,
such models could also easily overfit the data, might still exhibit undesirable non-local
properties, may be susceptible to noisy data and cannot accurately model even some
simple function classes, for example, trigonometric functions.

4.2 Genetic programming
Genetic programming is an evolutionary algorithm which, instead of evolving solu-
tions to the given problem, tries to find a computer program which can compute the
requested solution [7]. Individuals are computer programs, whose output can be com-
pared to some ideal, and the numerical representation of the difference takes the role of
a fitness function. In this context, recombination represents the random combining of
parent programs to create offspring and mutation randomly changes a selected part of
a program. To make these operations easier, these programs are typically represented
as tree structures. Genetic programming can also be considered as an application of
evolutionary algorithms on computer programs themselves.

These features make genetic programming suitable for symbolic regression. The
”computer programs” to be optimized are mathematical formulas, which are very suit-
able for representation in tree structures. Tree nodes contain mathematical functions
and leaf nodes contain either one of the independent variables or a constant. Recombi-
nation can be performed by exchanging random subtrees of the parents, and mutation
can change random nodes (while maintaining arity if changing tree nodes). Various
other mutation operations have been proposed, some of which are shown in, for exam-
ple, [26–27]. Evaluating a formula produces the predicted value, which can be compared
to the expected value using a variety of metrics, which allows for efficient selection.

A major disadvantage of genetic programming is the presence of many tunable pa-
rameters. Not only do appropriate recombination and mutation operators need to be
chosen, but also the probabilities of each of them occurring. Populations may suffer
1 Alternatively, complexity may be considered constant.

10

. 4.3 Fast Function Extraction

from bloat — the increase of program size without any corresponding increase in fitness
[7]. This can be mitigated by some mutation operators or by penalizing the program
size using the parsimony pressure [28], another tunable parameter. There are also sev-
eral initialization methods. Care needs to be taken when choosing the set of allowed
functions, so division by zero and other numerical errors do not occur.1 Population
size, selection criteria and the termination condition must also be defined. Attempting
to control these parameters or other features of the generated solutions usually results
in the need for more parameters. Finally, it is impossible to determine how changing
any particular parameter will change the final solution, so the final choice usually boils
down to trial-and-error, intuition or adopting proposed default values.

Nevertheless, genetic programming remains a good tool for symbolic regression. As
many potential models are generated, there is a high diversity of solutions. Many
complexity measures can be calculated, such as the order of nonlinearity [24], the length
or depth of the model tree and others. Therefore, a high quality Pareto frontier can be
returned.

4.3 Fast Function Extraction
Fast Function Extraction (FFX) [5] is a non-evolutionary, deterministic algorithm for
symbolic regression. FFX generates a large set of linear and nonlinear basis function and
then uses pathwise regularized learning to find coefficient values for the basis functions
in mapping to the dependent variable. Regularized learning is an answer to the tendency
of least squares learning to overfit the data by introducing minimization terms that
depend on the L1 or L2 norms of the coefficients. In FFX, the elastic net [29] formulation
of regularized learning is used:

a∗ = minimize||y− X ∗ a||2 + λ2||a||2 + λ1||a||1

where y is the dependent variable, X are the independent variables and λ1 and λ2
are parameters. The above equation is calculated across a set of possible λ values. Due
to the L1 part of regularization, the coefficients ai take nonzero values one at a time.
Finally, a non-dominated Pareto frontier of the found results is returned, trading off
the number of bases with the normalized mean square error.

Like in genetic programming, the set of used basis functions defines the expressivity
of the resulting models. FFX generates the set of basis functions as the union of three
sets: the first set contains each independent variable raised to each allowed exponent;
the second applies one of the allowed unary mathematical operators to each of the
function from the first set; and the third set contains ”interacting-variable” bases —
the pairwise product of each basis function from the first two sets. The third set does
not include products of two basis functions form the second set,2 as these basis functions
are deemed too complex. By default, the set of allowed exponents is {−0.5,−1, 0.5, 1}
and allowed operators are log10(x), abs(x),max(0, x− thr),max(0, thr − x), where thr
is a constant; by default, five such constants are generated for each variable.3 Basis
function whose evaluation results in numerical errors are not allowed.
1 This can be solved by using ”protected” functions; for example, the protected square root psqrt(x) =√
|x| is defined for all real numbers.

2 Expressions of the form op() ∗ op().
3 The last two classes of operators are called hinge functions. They are used to ”turn off” a region of the
input space.

11

4. Symbolic regression .
Other than choosing the set of allowed exponents and operators, there are no param-

eters to be tuned. Implementations of FFX introduce various stopping criteria (such
as stopping regularized learning early if the error metric is not improving), but none
of these are essential and only serve to reduce running time. The maximum number of
basis functions can also be set, which can drastically improve running time and assure
only less complex, ”human-understandable” models are produced.

The FFX algorithm has two main advantages: it is fast, as the learning speed of
regularized learning is comparable to the least squares method, and it is deterministic.
Due to the use of regularized learning, it can learn a model even with few data samples
given and can learn thousands or more coefficients. The generated models have pro-
gressively increasing complexity, making the resulting Pareto frontier very fine-grained.
The crucial disadvantage is that given the same set of allowed functions, FFX produces
less complex models than genetic programming and other methods, due to the artifi-
cially limited maximal complexity of each predictor function. Additionally, FFX cannot
learn the inner parameters of a function — functions like log10(2x) or log10(x+ 2) can
never be generated. While the first limitation could be trivially removed at the expense
of running time, modifying inner function parameters would require further research.

12

Chapter 5
Testing suite

Quantifying and comparing the performance of optimization algorithms on black-box
optimization problems is an important aspect of research. However, accomplishing this
task in a statistically rigorous and sound way can be difficult and tedious. To aid
in this process, the COCO (COmparing Continuous Optimisers) platform was created
for the Black-Box-Optimization-Benchmarking workshop at the GECCO conference in
2009 [8]. This platform has been used continuously since its creation, with an up-
dated version scheduled for release in 2016. The COCO platform includes the choice
and implementation of a well-motivated benchmark function testbed, the design of an
experimental setup and routines for post-processing and presentation of results. The
platform is compatible with Python, C, Java, MATLAB and R.

5.1 Function definitions
According to the authors of COCO [8], the intention behind the selection of benchmark
problems was to represent typical difficulties occurring in continuous domain search.
They have attempted to use comprehensible functions, so that algorithm behavior is
understood in the topological context. They hope this will allow easier analysis of
algorithm deficiencies and eventually lead to the improvement of algorithms.

All defined benchmark functions are scalable with dimension and have an artificially
chosen optimal function value. Most functions are shifted in x-space — they have
no specific value for their optimal solution. It is thus possible to generate different
instances for each function; benchmarking is done across a set of uniquely selected
instances. The global optimum for all functions is in [−5, 5]D; the goal is to minimize
the given functions. The following sections will list the 24 used noiseless benchmark
functions in order, along with their interesting properties. Full function definitions are
available in [8], while figures are available in [30].

5.1.1 Separable functions
The sphere function is unimodal, highly symmetric and rotationally invariant. It is
presumed to be the easiest continuous domain search problem.

The ellipsoid function is a globally quadratic, ill-conditioned function with smooth
local regularities. It is unimodal with a condition number of about 106.

The Rastrigin function is a multimodal function with relatively regularly spaced
optima commonly used in benchmarking. In COCO it is further transformed to alleviate
the symmetry and regularity of the original function. It has roughly 10D local optima
and a condition number of about 10.

The Buche-Rastrigin function is highly multimodal with a structured, but highly
asymmetric, placement of optima. It was constructed as a deceptive function for sym-
metrically distributed search operators and has about 10D local optima with a condition
number of around 10.

13

5. Testing suite .
Linear slope is a purely linear function testing whether the search can go outside

the initial convex hull of solutions right into the domain boundary, which contains the
optimal x value.

5.1.2 Functions with low or moderate conditioning
The attractive sector function is highly asymmetric, where only a ”hypercone” with a
volume of roughly 1/2D yields low function values. The function is unimodal — the tip
of the cone contains the optimum.

The step ellipsoidal function consists of many plateaus of different sizes. The gradient
is zero everywhere apart from a small area close to the global optimum. The condition
number is about 100.

The original Rosenbrock function is another commonly used benchmarking function.
It features a local optimum with an attraction volume of roughly a quarter of the search
space, while the global optimum can only be reached by ”following” long, narrow valley.

The rotated Rosenbrock function is a rotated version of the original Rosenbrock func-
tion.

5.1.3 Functions with high conditioning and unimodal
The ellipsoidal function is globally quadratic, ill-conditioned, with smooth local irregu-
larities. It is the non-separable counterpart to the ellipsoid function and has a condition
number of about 106.

The discus function is globally quadratic with local irregularities. It has a single
direction in the search space which is a thousand times more sensitive than all others.
Its condition number is about 106.

The bent cigar function has a smooth, but very narrow ridge which needs to be
”followed”. The overall shape differs remarkably from being quadratic; the condition
number is about 106.

The sharp ridge function has a gradient which is independent of the distance to the
ridge. The ridge needs to be ”followed” to the optimum and approaching it is initially
effective, but becomes ineffective close to the ridge. The necessary change in search
behavior is predicted to be difficult to diagnose.

The different powers function has continuously worsening sensitivity relations of the
variables when approaching the optimum.

5.1.4 Multi-modal functions with adequate global structure
The Rastrigin function is a non-separable, less regular counterpart to the already de-
fined Rastrigin function.

The Weierstrass function is highly rugged with a moderately repetitive landscape
and a non-unique global optimum.

Schaffer’s F7 function is highly multimodal with varying frequency and amplitude
of the modulation and a low condition number.

The ’moderately ill-conditioned’ Schaffers F7 function is a counterpart to the above
function with a condition number of about 1000.

The composite Griewank-Rosenbrock function F8F2 is a highly multimodal counter-
part to the Rosenbrock function.

5.1.5 Multi-modal functions with weak global structure
The Schwefel function has a penalized search area, with the most prominent optima
located comparatively close to its corners.

14

. 5.2 Noisy function testbed

Gallagher’s Gaussian 101-me peaks function consists of 101 optima with randomly
chosen and unrelated positions and heights. The condition number around the global
optimum is about 30.

Gallagher’s Gaussian 21-hi peaks function consists of 21 optima with randomly cho-
sen and unrelated positions and heights. Compared to the previous function, it has a
much higher condition number at about 1000.

The Katsuura function is highly rugged and highly repetitive with more than 10D
global optima.

The Lunacek bi-Rastrigin function is a highly multimodal function with two ”funnels”
and a highly multimodal function within them. This function was constructed to be
deceptive for evolutionary algorithms with a large population size.

5.2 Noisy function testbed
The COCO platform also provides a benchmarking suite of noisy function [9]. Such
functions are often more challenging to optimize, while simultaneously more closely ap-
proximating real-world experiments, where noise can be added as a result of measuring
errors. Three different noise models are used: Gaussian, uniform and Cauchy. The
rest of this section will note the important properties of benchmark functions and noise
models. Full definitions are available in [9] and a graphical presentation is given in [31].

The Gaussian noise model is defined as:

fGN (f, β) = f × exp(βN(0, 1))

This model is scale invariant, with the noise strength being controlled by β. As the
distribution of the noise is log-normal, no negative values can be sampled.

The uniform noise model is more severe and is defined as:

fUN (f, α, β) = f × U(0, 1)βmax
(

1,
(

109

f + ε

)αU(0,1)
)

This model is not scale invariant. The noise strength increases with decreasing value
of f , making the noise more severe when approaching the optimum.

The third model is the Cauchy noise model, which is defined as:

fCN (f, α, p) = f + αmax

(
0, 1000 + I{U(0,1)<p}

N(0, 1)
|N(0, 1)|+ ε

)
In the Cauchy noise model, only a comparatively small percentage of function values

is affected by noise. Among these values large outliers can occur, which cannot be easily
detected as they stem from a continuous distribution.

The testbed is then divided into three groups of functions based on the severity of
noise added. Each function is sampled using all three noise models, with appropriately
chosen constants. The sphere and Rosenbrock functions are tested with moderate noise.
The second group adds severe noise to the sphere, Rosenbrock, step-ellipsoid, ellipsoid
and different powers functions. The third group has three highly multi-modal functions
with severe noise: Schaffer’s F7, the composite Griewant-Rosenbrock and the globally
rotated Gallagher’s Gaussian 101-me peaks functions.

15

5. Testing suite .
5.3 Experimental setup

The algorithm under consideration is run on the defined testbed of functions [32]. Each
function is ran for 15 specified instances for each search space dimension: 2, 3, 5, 10,
20.1 In each run, the algorithm should reach a target function value ftarget = fopt+∆f ,
where fopt is the optimal function value and ∆f the precision to reach. The final,
smallest precision to reach is ∆f = 10−8, although larger values are also considered.

The algorithm is given some information at initialization: the dimensionality D of
the search space, the search domain [−5, 5]D, whether the testbed has noisy or noise-
free functions, the final target precision ∆f = 10−8 and the final target function value.
This value is only provided for conclusive termination of trials and should not be used
otherwise. The authors discourage the use of any additional information, such as the
function characteristics, as algorithm input, assuming that such information would not
be available in a true black-box optimization problem. Therefore, the algorithm setting
should be identical for all functions in a testbed (differences are permitted between the
noisy and noise-free testbeds).

The COCO platform uses the expected running time (ERT) performance measure of
algorithms. ERT was chosen because it is quantitative, with a ratio scale and a wide
variation, well-interpretable, practically relevant and relatively simple [32]. Assuming
minimization, the ERT is defined as:

ERT (ftarget) = #FEs(fbest ≥ ftarget)
#succ

where #succ is the number of successful trial runs and #FEs(fbest ≥ ftarget) the
number of function evaluations across all trials reaching the given ftarget.

1 Dimensionality 40 is also available but is considered optional.

16

Chapter 6
Implementation

The examined algorithms were implemented in the Python programming language [33],
using the NumPy extension [34] for numerical computing. Python is widely-used high-
level, general-purpose programming language with a free and open-source reference
implementation commonly used in scientific computing [33]. Many libraries for use in
scientific computing have been developed for Python, some of which [35–37] are used
in this thesis.

This chapter discusses the implemented algorithms, the chosen parameter values and
the rationale behind those choices. The crucial algorithm design aspect proposed in
this thesis is the incorporation of surrogate models in the basic differential evolution
algorithm.

6.1 Differential evolution
There are three major choices to be made when implementing differential evolution
the algorithm control parameters, NP , F and C, the exact algorithm variant to use,
and how to incorporate surrogate models in the algorithm. The population NP value
suggested in [11] is between 5 ∗ D and 10 ∗ D, where D is the dimensionality of the
problem. In the implementation used in this thesis, population size was set to be NP =
10∗D — this ensures the algorithm will have enough mutually different vectors to work
with. The suggested value for the differential weight parameter F is F = 0.5, which was
kept as such in this thesis. The crossover probability parameter C has a large impact
on convergence speed; the initial suggested value is C = 0.1, while settings as high as
C = 0.9 or C = 1.0 can be used if a quick solution is possible. Preliminary testing have
shown that a compromise between the two extremes, i.e. C = 0.5, performed the best
across the whole testbed. Higher values of the parameter C performed better in linear
function at the expense of other functions, and vice versa for lower values.

There are several subtly different versions of differential evolution. In order to dis-
tinguish between them, the authors of [11] introduce the notation DE/x/y/y, where:.x defines the selection of the vector to be mutated; allowed values are ”rand”, a

randomly chosen vector, or ”best”, the vector with the best fitness value..y is the number of difference vectors used..z defines the crossover scheme used; the first variant proposed in ”bin”, where
crossover vectors are chosen using independent binomial experiments.

Using this notation, the basic DE strategy can be described as DE/rand/1/bin. The
authors described another variant as ”highly promising”, namely DE/best/2/bin. In
this variant, the best vector is always mutated using the weighted differences between
two randomly chosen vectors. In this paper, theDE/rand/1/bin variant is implemented
to provide a baseline result, as it is the most commonly tested variant.

17

6. Implementation .
6.2 Model management

The proposed model management strategy is individual-based and inspired by the pre-
selection strategy. Since each individual reproduces (and potentially improves itself)
every generation, the idea is to generate several candidates for each trial vector, which
would be evaluated using a surrogate model. The number of generated candidates is
named kmax. The best of these candidate vectors, as quantified by the surrogate fitness
function, is then evaluated using the real fitness function. In the standard pre-selection
strategy, kmax candidates would be generated from each individual, and then the best
NP vectors in this candidate set would be chosen for re-evaluation by the real fitness
function. That way, a single individual could theoretically populate the whole next
generation, which is not inline with the basic differential evolution algorithm, and is
especially troublesome if the surrogate model introduces false optima. The approach
proposed in this thesis avoids both of these issues, since each individual is represented
exactly once in the subsequent generation, either by itself or its offspring, even though
several candidate offspring individuals are generated.

Choosing an appropriate kmax value is another issue to consider. Initial tests were
performed with kmax1 = 2 and kmax2 = 10. These settings provided inconsistent
results: kmax1 performed better on most functions than the baseline algorithm, but
was occasionally vastly outperformed by kmax2, presumably on functions which were
accurately identified using the surrogate model. Conversely, the kmax2 setting often
performed statistically worse than even the baseline algorithm, especially on lower di-
mensions, presumably due to low surrogate model quality. However, one of the two
approaches always performed better than the baseline algorithm. Therefore, an adap-
tive strategy was proposed: kmax would start at 2 and be raised by 1 every generation,
provided the model was of sufficient quality; if the model was deemed to be low quality,
kmax would be decreased. Irregardless of model quality, kmax would never be lower
than 2 nor higher than 10.

The model quality measures explored were Pearson’s r and Kendall’s tau correlation
coefficients. Pearson’s r performed well only on linear functions and poorly otherwise,
which was somewhat expected due to the linear nature of the correlation coefficient.
Since only rank correlation between the real and surrogate fitness function is needed for
the surrogate model to provide useful solutions, Kendall’s tau is a better choice. During
preliminary experiments, it was discovered that the correlation coefficients stays rela-
tively high during the initial phases of the search and eventually drops, without ever
recovering. Such behavior was surprising, as the initial expectation was that the corre-
lation coefficient would periodically oscillate between high and low values. Considering
this experimental observation, the adaptive approach was deemed inadequate: when
correlation is high, the kmax parameter needs too many generations to adapt, losing
on the benefits of using surrogate models; once the coefficients falls, the kmax value is
too high for several more generations, potentially misleading the search algorithm with
false optima introduced by the surrogate model. Therefore, the final proposed setting
is to directly set kmax based on the correlation coefficient, according to the following
empirical formula:

kmax = max(b10 ∗ correlation(y, ŷ)c − 1, 2)

where y are the real fitness values and ŷ the fitness values predicted by the surrogate
model. Using this formula, the value of kmax will always be between 2 and 9. By
directly setting this value, the algorithm can quickly adapt to model quality, reaping

18

. 6.3 Surrogate models

the benefits of both a high and low setting, depending on the ability of the surrogate
model to accurately model the underlying function.

However, it is still possible for the model to completely misinterpret the underlying
function being optimized. This is considered to have happened when the calculated
correlation coefficient is negative, meaning that between any two data points, the sur-
rogate model is more likely to predict a higher fitness for the less fit individual; such
behavior can vastly impact algorithm convergence. In this case, the use of surrogate
models is disabled. As it was earlier noted that convergence never seems to improve
after the initial pronounced fall, this disabling is never reverted and the algorithm will
not use any surrogates for the rest of its run.

The last important question is which data should be used to train the surrogate
model. Although it is possible to use all available data, this might not be advanta-
geous, as the evolutionary algorithm will by itself find fitter individuals as the search
progresses. The initial population in particular can be very far from the optimal so-
lution. Including these data points in the training set of the model can lead to a fit
displaying suboptimal non-local properties. Under the proposed model management
strategy, the surrogate model is used to predict the most fit individual from a given
set. The actual predicted fitness value is not important; this is the same reasoning used
for choosing a rank correlation coefficient. Therefore, the behavior of the model near
the optima is more important than its behavior far from it. As such, surrogate models
are trained using the data with fitness higher than the median1 fitness of all available
data, i.e. the better half of all data. The model is generated once every generation —
doing it more often would increase the computational costs significantly while providing
mostly the same models in each generation. Finally, model quality is measured on the
NP new data points generated while evaluating the current generation, as those are
the only points available which had not been used to train the model.

6.3 Surrogate models
Several surrogate models were used to assist the differential evolution algorithm. They
are listed and described in the following subsections.

6.3.1 Quadratic model
The simplest surrogate model implemented, the quadratic model, has no parameters
to set. It is implemented using the scikit-learn [35] package. Ordinary linear squares
regression is used to generate the coefficients once the used bases are generated.

6.3.2 Genetic programming
The gplearn [36] package provides a genetic programming implementation of a symbolic
regression algorithm. This code is available under the open-source BSD 3 clause and was
used in this thesis as a representative genetic programming solution. The implemented
algorithm has many parameters to set, nearly all of which were left at default values..population size = 1000, the number of individuals in each generation, raised from

the default 500..generations = 20, the number of generations to evolve, raised from the default 10.. tournament size = 20, the number of competing programs.

1 Using the mean value would result in using a higher percentage of all data as the search progresses.

19

6. Implementation .
.stopping criteria = 0, the required metric value for premature algorithm termina-

tion.. const range = (−1, 1), the range of constant which could be included in formulas.. init depth = (2, 6), when generating the initial population, individuals will randomly
choose a maximal depth from this range..metric defines the raw fitness metric used. It is set to mean square error..p crossover = 0.9, the probability of replacing a random subtree of the tournament
winner; the subtree inserted is chosen randomly from a second tournament winner..parsimony coefficient = 0.001, the penalization applied to large programs so that
they are less likely to be used in selection. This parameter controls program bloat.

The initial population is generated using the ”ramped half and half” initialization
method. Half the trees are grown by choosing random nodes from both functions and
terminals, while the second half is grown by randomly selecting functions until the
init depth is reached and only then adding terminals. The first half could be of smaller
depth than init depth allows, allowing for a mix of tree shapes in the initial population.

The function set contains the protected square root, protected logarithm, absolute
value, negative, inverse, maximum and minimum functions. Tournament selection is
used to select the most fit individual from a randomly chosen set to enter the next
generation. Three mutation operators are included, each with a probability 0.01 of
being performed on the tournament winner. The subtree mutation replaces a randomly
selected subtree with a randomly generated one; the hoist mutation selects a random
subtree and replaces it with one of its own subtrees in an effort to control bloat; point
mutation selects random nodes to be replaced by a node of the same type. In this
case, the probability of changing each particular node is 0.05. In case no mutation is
performed, the tournament winner passes into the next generation unchanged.

6.3.3 Fast Function Extraction
This thesis includes a completely new implementation of the FFX algorithm based on
the definition in [5] and the initial implementation available at [38].1 The reimplemen-
tation relies on the scikit-learn and SymPy [37] libraries. It has been named Extended
Fast Function Extraction (EFFX), as it supports several additional features and is more
extensible in general. Both SymPy and scikit-learn are available under the BSD license,
making them suitable for use in scientific projects. EFFX will also be open-sourced at
a later date.

EFFX relies on SymPy to represent mathematical expressions. SymPy is a computer
algebra system which can be used as a Python library or standalone application. As
such, EFFX supports all functions offered by SymPy whilst making it easy to implement
additional functions. SymPy can also be used to simplify the resulting mathematical
expressions. Internally, each basis function is represented by a SymPy expression encap-
sulated in the class Base. This class is constructed with a function and its arguments,
either independent variables or other Base objects. The arity of the function is in no way
restricted. In this way, the class can be built using arbitrarily complex sub-expressions.

All other functionality is provided by the ModelFactory class. The class is structured
according to the algorithm steps: the generate_bases function generates bases from
the set of allowed exponents and operators; the pathwise_learn function performs
pathwise regularized regression and the nondominated_filter function returns the
non-dominated set that trades off complexity and error.2 EFFX supports three methods
1 There are several subtle differences between the two.
2 Several helper function are also used to improve code readability.

20

. 6.3 Surrogate models

for regularized regression: the method used in the FFX implementation and elastic net
and lasso regression implementations available in the scikit-learn package. The original
FFX paper [5] also suggests the use of a ”trick” in order to support rational functions
without a large increase in computing costs; this feature is not currently implemented
in EFFX. The normalized mean square error is used as an error metric.

Instead of using all allowed exponents and operators to generate a single large set of
possible basis functions, the author of FFX suggests using their subsets and running
the core algorithm several times, with the final output being the non-dominated Pareto
frontier of the results across all runs. These individual runs are termed ”approaches”.
EFFX uses the same approaches as in FFX, except those which use the rational func-
tions ”trick”.1 Some of the approaches construct univariate bases only — bases of only
one variable. If only the first power is allowed and no operators, then that approach
degenerates to ordinary linear regression. The approaches used are summarized in
table 6.1.

exponents operators note
{1} ∅ univariate bases only

{0.5, 1,−0.5,−1} ∅
{0.5, 1,−0.5,−1} {abs(), log10(), hinge()} univariate bases only

{1} {hinge()}
{0.5, 1,−0.5,−1} {abs(), log10()}

{1} {abs(), log10()}
{1} {abs(), log10(), hinge()}

Table 6.1. The approaches used in EFFX. In each approach, the allowed set of exponents
and operators is listed, and whether only univariate bases are constructed.

When hinge() functions are enabled, 10 basis functions are added per variable, five
each of the forms max(0, x − thr) and max(0, thr − x), where x is the variable and
thr is a constant. The five threshold values thr used are uniformly distributed between
min(x)+0.2∗ (max(x)−min(x)) and min(x)+0.8∗ (max(x)−min(x)), where min(x)
and max(x) are the minimum and maximum values seen among the training samples
for the given variable. Basis functions whose evaluation results in numerical errors are
disregarded.

Once a function set is generated, regularized learning is performed on it many times
with decreasing values for the constant α which multiplies the penalty terms. With
decreasing penalties, more basis functions are used in the resulting expression; this
feature allows the creation of a set of expressions of increasing complexity. To improve
computational efficiency, several stopping criteria are introduced. If the normalized
mean square error has not changed in 15 iterations to 4 significant places or if the
error is under 1% or if the number of bases is higher than 250, then the algorithm is
terminated. In practice, the first condition is encountered in most cases — this happens
when the penalization constant α is low, so that all bases are used.

6.3.4 k-Nearest Neighbors
The scikit-learn package provides the implementation of the k-Nearest Neighbors al-
gorithm which was used in this thesis. The number of neighbors, k, is set to five. It
was estimated that higher values would decrease the quality of the model, particularly
1 In EFFX, it is also easy to define additional approaches if needed.

21

6. Implementation .
during the start of the search, when few data points (neighbors) are available. Due to
the model management strategy used, this could mean that the model would not be
used at all. All points were weighted uniformly and the Euclidean distance metric was
used to compute the nearest neighbors.

6.3.5 Random forest
The implementation provided in the scikit-learn package was also used for the Random
forest algorithm. All parameters were left at their default values. Ten trees were used
in the forest and all features were considered when looking for the best split. The
criterion for the quality of the split in each tree was the mean square error. There is
no limit for the maximum depth of the trees — nodes were expanded until none of the
leaf nodes could be split further. Bootstrap aggregating was used to choose slightly
different training data for each tree.

22

Chapter 7
Results

All experiments were run with the budget of 1000 function evaluations per dimension.
The graphs shown in this chapter have all been automatically generated by COCO.
There are two graph types used when comparing multiple optimizers, which provide
different viewpoints on the results, as explained in the rest of this section.

In the first graph type (for instance, figure 7.2), the expected running time (ERT)
in the log10 value of the number of function evaluations divided by the dimension is
plotted against the dimension of the problem. Each algorithm is plotted with a different
color; light symbols give the maximum number of function evaluations available divided
by the dimension. If the algorithm ERT is above the maximum number of evaluations
given, this means that the target result was not reached in all tested instances and the
final value is an estimate; such values are therefore less reliable. The target function
value is chosen such that the bestGECCO2009 artificial algorithm just failed to achieve
an ERT of 10×dim [32].1 If a label is denoted with a black star, the algorithm performed
statistically better than all other algorithms with p-value p < 0.01.

These graphs clearly show algorithm behavior in each dimension. This makes it
easy to spot if the given algorithm performs poorly at higher dimensions and at which
dimension this change occurs; conversely, algorithms occasionally perform relatively
better at higher dimensions. Given a dimension, it is also possible to quickly compare
the number of function evaluations needed to reach the given target. Since each function
is shown separately, it is possible to identify the exact functions where the algorithm
performs well or poorly.

The second graph type (for instance, figure 7.1 shows the bootstrapped empirical
cumulative distribution of the number of target function evaluations divided by di-
mension for all examined functions or their subset; functions are grouped into subsets
according to their class as defined in section 5.1. The targets are chosen from 10[−8..2]

such that the bestGECCO2009 artificial algorithm had just not reached them within a
given budget of k× dim, with k ∈ {0.5, 1.2, 3, 10, 50}. The performance of the artificial
algorithm is marked with ”best 2009”.

These graphs can show how performance of each algorithm improves with additional
function evaluations, for a given dimension. As such, it is easy to see how the algo-
rithms would perform given fewer evaluations. Algorithm behavior can be analyzed
with respect to the function evaluation budget — a given algorithm could perform rel-
atively better at lower numbers of evaluations, or perform poorly before reaching the
same final value as another algorithm. Since many functions are presented at a single
graph, it is possible to evaluate the overall algorithm performance or the performance
on a class of functions.

Only noteworthy graphs are shown in the rest of this chapter. Full results are avail-
able in appendix B.

1 The target algorithm is artificial in the sense that it does not represent any particular algorithm, but
the theoretical best performance among all the algorithms presented at the GECCO 2009 conference.

23

7. Results .
7.1 Baseline algorithms

The baseline algorithm used for all comparisons is a differential evolution algorithm
without surrogate models. Two algorithms, the k-nearest neighbor and the random
forest, were used to provide a baseline example with surrogate models. Figure 7.1
shows the cumulative distribution graphs for all functions at dimensions 5 and 20. It
can be seen that both algorithms perform similarly, with the random forest performing
slightly better at higher dimensions.

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE kNN

DE RForest

best 2009f1-24,5-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE kNN

DE RForest

best 2009f1-24,20-D

Figure 7.1. Comparison of all noise-free functions in 5D and 20D of surrogate-free differ-
ential evolution (blue), with k-Nearest neighbors (pink) and random forest (light yellow)

as surrogate models.
When examining behavior across function groups, the two algorithms performed

similarly in most cases, with two exceptions: the random forest algorithm performed
better with separable functions, especially at higher dimensions, and the k-nearest
neighbor algorithm was slightly better with weakly structured multi-modal functions,
especially the two Gallagher’s gaussian peaks functions. Both of these functions contain
randomly chosen optima; it is thus conceivable that the ”less informed” algorithm, as
the k-nearest neighbor algorithm seems to be, would perform better. This effect only
occurs at dimensions 10 and 20, as can be seen in figure 7.2.

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

22 Gallagher 21 peaks

Figure 7.2. Comparison of the Gallagher’s Gaussian peaks functions of surrogate-free dif-
ferential evolution (blue) with k-Nearest neighbors (pink) and random forest (yellow) as

surrogate models.

Since both algorithms perform similarly, the k-nearest neighbor algorithm will not
considered in later comparisons, in an effort to make the results more readable.

24

. 7.2 Symbolic regression

7.2 Symbolic regression
Figure 7.3 shows the empirical cumulative distribution graphs for all algorithms on
dimensions 3, 5, 10 and 20. It can be seen that all surrogate models improved overall
performance, since the surrogate-free differential evolution performed worse in all di-
mensions; it is clearly dominated in dimensions 10 and 20 and only performed negligibly
better than some algorithms in dimensions 3 and 5. This can be considered a success
of the model management strategy used, since its main purpose is to ensure the model
is used only when it is favorable to do so. Results for dimension 2 are not shown as all
algorithms performed roughly the same, presumably as there were not enough function
evaluations available to allow surrogate models to have a larger effect. Additionally,
the lower dimension cases are not particularly useful for practical usages.

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE RForest

DE

DE GP

DE EFFX

DE QM

best 2009f1-24,3-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE GP

DE EFFX

DE

DE RForest

DE QM

best 2009f1-24,5-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE GP

DE EFFX

DE QM

DE RForest

best 2009f1-24,10-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE EFFX

DE GP

DE RForest

DE QM

best 2009f1-24,20-D

Figure 7.3. Comparison of all noise-free functions in 3, 5, 10 and 20 dimensions of
surrogate-free differential evolution (blue) with random forest (pink), quadratic model

(yellow), genetic programming (light blue) and EFFX (red) as surrogate models.

The algorithms shown can be divided into two groups, the quadratic model and
random forest forming the first one with higher performance and the other algorithms
the one with lower performance; this separation is more clearly seen at higher dimen-
sions. This effect can again be somewhat attributed to the model management strategy:
the EFFX and genetic programming models are not able to correctly model the func-
tion with given input data, and they are quickly disabled, after which search proceeds
without surrogate models. Nevertheless, both algorithms improved the search process
before converging to the same result as baseline differential evolution; the improvement
is most noticeable between budgets of approximately 30 to 500 function evaluations per
dimension.

25

7. Results .
All algorithms only provide an improvement after about 30 function evaluations per

dimension, which is to be expected. Considering that the population size is ten times
the dimension, each generation uses ten function evaluations per dimension. The first
generation is generated randomly and the second generation has a fixed kmax = 2
parameter. Only in the third generation and further is the correlation coefficient con-
sidered and the kmax parameter potentially raised. In other words, surrogate models
are always used soon after the start of the search process and seem to be helpful re-
gardless of the specific algorithm used. At some later point, the quality of the surrogate
models (as measured by the rank correlation coefficient) seems to decrease and they are
therefore disabled. Nevertheless, the differential evolution algorithm is able to leverage
the better individuals generated at the start to continue producing better results than
the baseline algorithm. Even if the final target value converged with the given budget,
it is clear that surrogate models help with at least some budgets.

Between the two better performing algorithms, the quadratic model dominates the
random forest model in most cases and both outperform the other symbolic regression
algorithms. Although it might be expected that the quadratic model will overfit to
the training data, this does not seem to be the case; in fact, it must fit the data quite
well as it manages to substantially help the differential evolution algorithm find better
solutions faster.

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE GP

DE

DE EFFX

DE RForest

DE QM

best 2009f1-5,10-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE EFFX

DE GP

DE RForest

DE QM

best 2009f6-9,10-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE EFFX

DE GP

DE QM

DE RForest

best 2009f10-14,10-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE QM

DE RForest

DE GP

DE EFFX

best 2009f20-24,10-D

Figure 7.4. Comparison of separable, moderate, ill-conditioned and weakly structured
multi-modal functions in 10 dimensions of surrogate-free differential evolution (blue) with
random forest (pink), quadratic model (yellow), genetic programming (light blue) and

EFFX (red) as surrogate models.

Interestingly, in dimension 10 the random forest and quadratic model algorithms
are more closely matching than in any other dimension tested. The random forest

26

. 7.2 Symbolic regression

surrogate model produces relatively better results in later evaluations, overcoming the
earlier ”lead” of the quadratic model. Comparison across the function groups is shown
in figures 7.4 and 7.5, while the aggregate performance across all functions is shown in
figure 7.3.

In 10 dimensions, the random forest algorithm performs better on separable functions
than the quadratic algorithm. This is especially surprising, because it is expected
that the quadratic model will be able to construct the exact symbolic model of the
target functions, and seems to do so in all other dimensions. On moderate and weakly
structured multi-modal functions, the quadratic model offers only somewhat better
performance, without producing a better optimum by the end of optimization. On ill-
conditioned functions it performs better for most of the given budget, before ultimately
being outperformed by the random forest model. All of this behavior, except the
behavior on adequately structured multi-modal functions which will be discussed later,
is not seen in any other dimension.

When compared across all dimensions, the random forest model performs relatively
better on multi-modal functions. Figure 7.5 shows the empirical cumulative distribu-
tion graphs for functions f15−f19. In the 10 dimensional case, both algorithms perform
similarly at first, but the random forest model is clearly better at higher function eval-
uation budgets. With 20 dimensions, the quadratic model is better at times although it
still produces a worse final target value. In other function groups, the quadratic model
performs consistently better, with larger differences occurring at higher dimensions,
except dimension 10 as noted above.

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE EFFX

DE GP

DE QM

DE RForest

best 2009f15-19,10-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE GP

DE EFFX

DE QM

DE RForest

best 2009f15-19,20-D

Figure 7.5. Comparison of performance on multi-modal functions with adequate structure
at dimensions 10 and 20 of surrogate-free differential evolution (blue) with random forest
(pink), quadratic model (yellow), genetic programming (light blue) and EFFX (red) as

surrogate models.

Comparing results for each function separately, with the data points at 0.5, 1.2, 3, 10
and 50 function evaluations per dimension, the quadratic algorithm performs the best
in most cases (as seen in figure 7.3). However, other algorithms also occasionally
had the best results on particular functions (and often only at one dimension). The
random forest algorithm performed better on at least one data point in functions
f1 − f5, f9, f17, f18, f21, f22, f24 in dimension 5, but only in functions f17 and f18 in
the 20-dimensional case. The EFFX and genetic programming models were also the
most performant in a few specific cases, mostly early during the search process and
more often at lower dimensions.

27

7. Results .
When considering only the final target value reached, the quadratic model found a

statistically better result in at least one dimension for functions f1, f2, f4, f7− f9, f12−
f15. No other algorithm produces a statistically better result in any of the functions.

7.3 Noisy functions
Although a higher variety of noise-free functions is tested, the noisy functions testbed
is arguably more important, as it more closely resembles practical applications of op-
timization problems, where measurement error cannot really be avoided. Figure 7.6
shows the empirical cumulative distribution graphs for all algorithms on dimensions
3, 5, 10 and 20,1 on the noisy testbed. A parallel can be drawn with the results on
the noise-free functions: none of the surrogate models performed worse than the base-
line differential evolution, and the random forest and quadratic model algorithms were
noticeably better than the other algorithms. However, there are various differences.

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE EFFX

DE GP

DE

DE RForest

DE QM

best 2009f101-130,3-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE EFFX

DE GP

DE RForest

DE QM

best 2009f101-130,5-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE GP

DE EFFX

DE RForest

DE QM

best 2009f101-130,10-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE

DE GP

DE EFFX

DE RForest

DE QM

best 2009f101-130,20-D

Figure 7.6. Comparison of all noisy functions in 3, 5, 10 and 20 dimensions of surrogate-free
differential evolution (blue) with random forest (pink), quadratic model (yellow), genetic

programming (light blue) and EFFX (red) as surrogate models.

The EFFX and genetic programming algorithms performed rather poorly. Other than
the three dimensional case, where a small performance improvement can be noticed, it
seems that these algorithms are not able to produce models which are accepted by the
model management strategy. Therefore, they are simply disabled and perform roughly
the same as the baseline algorithm. As already noted, the random forest and quadratic
1 Results for dimension 2 are again omitted, due to their dubious practical relevance and in order to
improve readability.

28

. 7.3 Noisy functions

model algorithms performed the best; however, the performance differences between
them are much smaller with noisy functions. In dimensions 3 and 5, the quadratic model
is slightly better; dimension 10 is again somewhat of an exception, with the random
forest models being slightly better by the end of the search. In the 20 dimension case,
the quadratic model clearly performs better. It is also interesting that all the algorithms
perform identically for a larger part of the initial search in dimension 20 compared to
other dimensions, before ”taking off” and improving the search. Generally, this initial
search seems to require more function evaluations than on noise-free functions. This
means the models produced are not highly correlated to the data, but the correlation
coefficient is still positive and they can still be used later.

The most interesting algorithm behavior can be seen in the group of highly multi-
modal functions with severe noise, as shown in figure 7.7. In the 10 dimensional case,
algorithm performance is similar, with the EFFX model generally performing better at
the start of the search. The final best value reached is produced by the baseline differ-
ential evolution algorithm, although the difference is negligible. The random forest and
quadratic model algorithms perform similarly and are not noticeably more performant
as they are overall. Genetic programming behaves worse than the baseline algorithm at
the start of the search. In 20 dimensions, the random forest algorithm performs slightly
better than all other algorithms and all other algorithms are worse than the baseline
model during at least part of the search process. These noisy multi-modal functions
can be considered the most difficult to optimize out of all presented functions.

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE QM

DE GP

DE EFFX

DE RForest

DE

best 2009f122-130,10-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DE GP

DE

DE EFFX

DE QM

DE RForest

best 2009f122-130,20-D

Figure 7.7. Comparison of performance on highly multi-modal functions with severe noise
in 10 and 20 dimensions of surrogate-free differential evolution (blue) with random forest
(pink), quadratic model (yellow), genetic programming (light blue) and EFFX (red) as

surrogate models.

On the two functions with moderate noise, the quadratic model algorithm performs
the best in all cases, closely followed by random forests. On functions with severe
noise, the difference between the two is only clearly visible in 20 dimensions, with the
quadratic model generally performing better.

Quadratic models seem to perform well on functions with Cauchy noise, producing
statistically better final target values in 6/10 functions, in at least one dimension; this
is also the case on all functions with moderate noise. No other algorithm produced
statistically better results.

29

7. Results .
7.4 Discussion

The performance of symbolic regression as a surrogate model strongly depends on the
models the specific algorithm can construct. Each algorithm presented in this thesis has
certain limits: the genetic programming models are limited by the tree structure used
and the functions available in building them; EFFX models do not contain interacting
functions, cannot tune inner function parameters and are also limited by the set of
allowed functions. All quadratic models are very similar between themselves, as only
the coefficients can differ. Therefore, it is expected that these algorithms will perform
well on simple linear functions, as they can easily be represented symbolically. However,
both genetic programming and EFFX are outperformed by the simpler quadratic models
in these cases.

The EFFX algorithm can and does generate quadratic models; it also generates more
complex models and these are ultimately chosen as they better describe the given data.
While the problem of overfitting can possibly be improved by using cross-validation,
this implies the further division of the already limited data available, which might leave
too few data points left to provide any meaningful model. Nevertheless, further thought
should be given to this problem, as results show that the simpler, quadratic models are
very effective as surrogates. EFFX is also limited in that it does not produce very com-
plex individual expressions. Allowing more levels of function interaction considerably
increases computation costs, which are already the highest among tested algorithms.
This can possibly be mitigated by only constructing more complex expressions out of
”promising” basis functions, which is then another parameter to tune.

Genetic programming can also generate quadratic models, but probably will not.
Models area built using a tree-like structure, and a quadratic model represented as
such would require a very deep, asymmetric tree to be constructed. Due to the many
measures present to combat bloat, and the nature of the crossover and mutation op-
erators used, this is exceedingly unlikely. Many of the functions used in the COCO
platform are calculated by summing over all dimensions and such expressions are also
unlikely to be constructed by genetic programming. Indeed, the only times where ge-
netic programming outperformed other algorithms during at least a part of the search,
was in low (2 and 3) dimensional cases. This limitation could potentially be overcome
by allowing functions of higher arity when constructing the model. With such a modifi-
cation, generating a quadratic model becomes significantly more likely. This model can
then be potentially modified with usual genetic programming tools to provide a better,
quadratic-like model.

Although the simplest, quadratic models performed the best out of all tested algo-
rithms in most cases. One possible explanation is that these models have the best local
properties, specifically around the optimum. While all symbolic regression models are
by definition global, this property is not required when they are used as a surrogate
model; surrogate models only need to identify the point with the best fitness, not the
fitness value itself. Quadratic models can be used to provide a baseline algorithm for
further research into symbolic regression as a surrogate model.

None of the proposed algorithms performs particularly well in comparison with the
the bestGECCO2009 artificial algorithm. This is expected, since the artificial algorithm
is an amalgamation of several algorithms, most of which are more sophisticated than
differential evolution. Presumably, integrating surrogate models with more state of the
art evolutionary algorithms will also lead to performance gains. Comparatively better

30

. 7.4 Discussion

results were achieved on the noisy function testbed. On several functions,1 results were
close to the artificial algorithm on at least some of the dimensions for several of the
algorithms. On the step-ellipsoidal function with severe noise f114 all tested algorithms
found a final value better than the bestGECCO2009 algorithm in the 20 dimension case
— the only better result across all tests ran.

Such results were anticipated, as symbolic regression methods should be able to ”see
through” the noise and identify the underlying function. The functions in the noisy
testbed are also relatively less complex, meaning they can be represented by simpler
symbolic expressions. The quadratic model performed especially well on functions with
Cauchy noise. Since the Cauchy adds few (but potentially large) outliers, these might
have only a negligible influence on the model near the optima. Nevertheless, this result
is significant since the Cauchy noise model is designed as the most complex model of
the three used. However, the noisy function testbed was also given less attention at
GECCO workshops, especially in 2009 when the artificial algorithm was constructed.
As such, it is possible that the results are comparatively better simply because noisy
functions were not tested as extensively as noise-free functions.

Although the quadratic model clearly offered the best performance, followed by ran-
dom forest models, neither of these models dominated the whole search process in all
cases. This could be considered a testament to the quality of the COCO platform, as it
covers a wide array of functions with differing properties. Results show that each model
performed the best in some cases, and few blanket statements about behavior of a spe-
cific algorithm on a specific function group can be made. Dimension 10 is especially
interesting; as shown in figures 7.3 and 7.4, performance of quadratic model and ran-
dom forest algorithms was roughly similar, which did not happen in other dimensions.
A similar effect is seen on the noisy function testbed, as illustrated in figures 7.6 and
7.7. EFFX also performed relatively better than expected on the group of multi-modal
functions with severe noise, but only in the 10 dimensions case. No explanation for this
phenomenon has been identified.

Due to the chosen model management strategy, the effect of surrogate models is
first seen after the third generation of the differential evolution algorithm, i.e. after 30
function evaluations per dimension. At the start of the search, all algorithms provide
an improvement, since the demands placed on model quality are not very high, thus
differential evolution is able to approach the optima faster. At some point, especially
noticeable with multi-modal functions, symbolic regression algorithms can no longer
accurately model the area around the optima, and the surrogate models are no longer
used. If the algorithm used cannot produce models with the required expressivity, this
happens sooner. In these cases, the baseline algorithm is able to converge towards the
same solution within the given budget, since surrogate models only help the evolutionary
algorithm find the optima faster; given enough function evaluations, any algorithm
should be able to reach the same results. In the results shown, this can be usually seen
on the genetic programming and EFFX algorithms, since the usefulness of the other
two models was not exhausted within the given budget.

The model management strategy used can be characterized as conservative, as it will
disable surrogate models as soon as a negative correlation is observed. This is done in
an effort to assure that differential evolution with surrogate models will never perform
worse than the baseline, surrogate-free algorithm. This goal was mostly accomplished,
with few exceptions. However, it seems that this choice has had a profound influence
on overall behavior during the search, as all symbolic regression models follow the same

1 Specifically, on functions f108, f111, f113 − f117, f119, f120 − f122, f128 − f130

31

7. Results .
basic ”shape” described in the previous paragraph.1 By setting a constant parameter
kmax, denoting the degree of model usage, the differential evolution algorithm might
always be given ”bad” points to evaluate if the model is inaccurate and kmax is high,
or will underutilize the model if it is accurate and kmax is low. Thus, the parameter
should be varied based on model quality.

In the strategy used, quality is only measured after the model has been used in the
current generation, on the newly generated data points — the only points it was not
trained on. However, with the addition of these data points, the model generated in the
next generation can be very different. This is particularly likely in genetic programming
and EFFX, less so for quadratic models. Therefore, the kmax parameter used might not
be appropriate for the generated model. Dividing the available data between a training
and testing set is one possibility of mitigating this issue. Alternatively, the current
strategy might be modified as the search progresses. Currently, all points with fitness
better than the median value are used in constructing the model; however, this can be
misleading later during the search when many points, but less than half, are very close
to the optimum (as in, for example, the Rosenbrock function). As symbolic regression
constructs global models, these additional points can have a large negative effect on
overall algorithm behavior. Other measures of model quality can also be considered.

Irregardless of possible improvements to the model management strategy or the in-
dividual algorithms, the results clearly show that using surrogate models noticeably
improved overall algorithm performance during the entire search process.

1 The random forest algorithm is the occasional exception.

32

Chapter 8
Conclusion

Differential evolution, a representative evolutionary algorithm, was implemented in
the Python programming language. A model management strategy for integrating
surrogate models with differential evolution was designed. This strategy uses the rank
correlation coefficient between evaluations of the real and surrogate models to tune how
often the surrogate model will be used; surrogate model are disabled completely if the
correlation coefficient is negative. Surrogate model quality is further improved by using
only a part of the available data in its construction.

Three symbolic regression algorithms were implemented and tested against two base-
line regression models — random forests and k-nearest neighbors — using the proposed
model management strategy. Polynomial regression of rank two was used to construct
quadratic models, the simplest symbolic regression models considered. Extended fast
function extraction is a recently proposed, non-evolutionary, deterministic method for
symbolic regression which uses regularized learning on a massive set of generated ba-
sis functions. An existing implementation of genetic programming was used as the
third tested algorithm. Tests were ran using the COCO platform, which includes a
well-designed set of representative noiseless and noisy functions.

Results show that the model management strategy is well designed, as all surrogate
models speed up the optimization during at least parts of the search process. Overall,
quadratic models have the best performance in almost all functions considered, followed
by random forest models. The other two symbolic regression methods performed worse,
being the best only rarely and only during some parts of the search process.

Based on the results, I consider the use of symbolic regression as a surrogate model
in evolutionary algorithms a promising topic for further research. I have identified
two main areas for further research and algorithm refinement. First, the proposed
solutions should be tested on a state of the art evolutionary algorithm. Quadratic
models performed well and can be used as a baseline. The other two algorithms can also
be improved, for example by introducing cross-validation or modifying the algorithms
to generate a wider array of possible models. Alternatively, another symbolic regression
algorithm can be used.

Second, an appropriate measure of model quality needs to be devised in order to
design an efficient model management strategy. The model management strategy chosen
seems to have a large effect on search performance: badly chosen strategies can overuse
the model even if it is bad or underutilize a good model, which both lead to less
effective search. The measure used in this thesis, the rank correlation coefficient, can
be considered a good start.

In conclusion, black-box optimization problems regularly appear in practice and are
often limited by the number of available evaluations of the black-box model. Surrogate
models help reduce the number of evaluations needed during the optimization process,
allowing higher effective budgets and thereby improving the final results reached. This
thesis shows that symbolic regression is a promising regression analysis technique for
use as a surrogate model.

33

References
[1] Darrell Whitley. An overview of evolutionary algorithms: practical issues and com-

mon pitfalls. Information and software technology. 2001, 43 (14), 817–831.
[2] Jakob Vesterstrøm, and Rene Thomsen. A comparative study of differential evo-

lution, particle swarm optimization, and evolutionary algorithms on numerical
benchmark problems. In: Evolutionary Computation, 2004. CEC2004. Congress
on. 2004. 1980–1987.

[3] Yew S Ong, Prasanth B Nair, and Andrew J Keane. Evolutionary optimization of
computationally expensive problems via surrogate modeling. AIAA journal. 2003,
41 (4), 687–696.

[4] Yaochu Jin. Surrogate-assisted evolutionary computation: Recent advances and
future challenges. Swarm and Evolutionary Computation. 2011, 1 (2), 61–70.

[5] Trent McConaghy. FFX: Fast, scalable, deterministic symbolic regression technol-
ogy. In: Genetic Programming Theory and Practice IX. Springer, 2011. 235–260.

[6] JD Gergonne. The application of the method of least squares to the interpolation
of sequences. Historia Mathematica. 1974, 1 (4), 439–447.

[7] Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. A field
guide to genetic programming. Lulu. com, 2008.

[8] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-parameter
black-box optimization benchmarking 2009: Noiseless functions definitions. 2009,

[9] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-parameter
black-box optimization benchmarking 2009: Noisy functions definitions.

[10] Rainer Storn, and Kenneth Price. Differential evolution-a simple and efficient
adaptive scheme for global optimization over continuous spaces. ICSI Berkeley,
1995.

[11] Rainer Storn, and Kenneth Price. Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. Journal of global opti-
mization. 1997, 11 (4), 341–359.

[12] Leo Breiman. Random forests. Machine learning. 2001, 45 (1), 5–32.
[13] Daniela Zaharie. Critical values for the control parameters of differential evolution

algorithms. In: Proceedings of MENDEL. 2002.
[14] Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. On Evolutionary Optimiza-

tion with Approximate Fitness Functions.. In: GECCO. 2000. 786–793.
[15] Michael Emmerich, Alexios Giotis, Mutlu Özdemir, Thomas Bäck, and Kyriakos

Giannakoglou. Metamodel—assisted evolution strategies. In: Parallel Problem Solv-
ing from Nature—PPSN VII. Springer, 2002. 361–370.

[16] Yaochu Jin, Michael Hüsken, and Bernhard Sendhoff. Quality measures for ap-
proximate models in evolutionary computation. In: GECCO. 2003. 170–173.

34

. .
[17] Dudy Lim, Yaochu Jin, Yew-Soon Ong, and Bernhard Sendhoff. Generalizing

surrogate-assisted evolutionary computation. Evolutionary Computation, IEEE
Transactions on. 2010, 14 (3), 329–355.

[18] Piyabute Fuangkhon, and Thitipong Tanprasert. An incremental learning algo-
rithm for supervised neural network with contour preserving classification. In: Elec-
trical Engineering/Electronics, Computer, Telecommunications and Information
Technology, 2009. ECTI-CON 2009. 6th International Conference on. 2009. 740–
743.

[19] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician. 1992, 46 (3), 175–185.

[20] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric learning
for large margin nearest neighbor classification. In: Advances in neural information
processing systems. 2005. 1473–1480.

[21] J. Ross Quinlan. Induction of decision trees. Machine learning. 1986, 1 (1), 81–106.
[22] David Opitz, and Richard Maclin. Popular ensemble methods: An empirical study.

Journal of Artificial Intelligence Research. 1999, 169–198.
[23] Andy Liaw, and Matthew Wiener. Classification and regression by randomForest.

R news. 2002, 2 (3), 18–22.
[24] Ekaterina J Vladislavleva, Guido F Smits, and Dick Den Hertog. Order of non-

linearity as a complexity measure for models generated by symbolic regression via
pareto genetic programming. Evolutionary Computation, IEEE Transactions on.
2009, 13 (2), 333–349.

[25] Lonnie Magee. Nonlocal behavior in polynomial regressions. The American Statis-
tician. 1998, 52 (1), 20–22.

[26] Lawrence Beadle, and Colin G Johnson. Semantically driven mutation in genetic
programming.. In: IEEE Congress on Evolutionary Computation. 2009. 1336–1342.

[27] Sean Luke, and Lee Spector. A revised comparison of crossover and mutation in
genetic programming. Genetic Programming. 1998, 98 (208-213), 55.

[28] Terence Soule, and James A Foster. Effects of code growth and parsimony pressure
on populations in genetic programming. Evolutionary Computation. 1998, 6 (4),
293–309.

[29] Hui Zou, and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology).
2005, 67 (2), 301–320.

[30] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter
black-box optimization benchmarking 2009: Presentation of the noiseless functions.

[31] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter
black-box optimization benchmarking 2009: Presentation of the noisy functions.

[32] Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter
black-box optimization benchmarking 2010: Experimental setup.

[33] Travis E Oliphant. Python for scientific computing. Computing in Science & En-
gineering. 2007, 9 (3), 10–20.

[34] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy array: a
structure for efficient numerical computation. Computing in Science & Engineer-
ing. 2011, 13 (2), 22–30.

35

References .
[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research. 2011, 12 2825–2830.

[36] gplearn [software]. Documentation.
http://gplearn.readthedocs.io/en/stable/, URL accessed on 2016-05-15.

[37] SymPy Development Team. SymPy: Python library for symbolic mathematics.
2016.
http://www.sympy.org, URL accessed on 2016-5-12.

[38] FFX [software]. GitHub homepage.
https://github.com/natekupp/ffx, URL accessed on 2016-5-15.

36

http://gplearn.readthedocs.io/en/stable/
http://www.sympy.org
https://github.com/natekupp/ffx

Appendix A
CD contents

The attached CD contains:.COCO platform v15.03 source code.Python implementation of all used algorithms.Raw experimental data.Processed experimental data.Thesis in PDF

37

Appendix B
Experimental results

38

. .

39

B Experimental results .

40

. .

41

B Experimental results .

42

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Evolutionary algorithms
	Differential evolution

	Surrogate models
	Managing a single surrogate model
	Managing multiple surrogate models
	Other properties
	k-Nearest Neighbors
	Random forest

	Symbolic regression
	Polynomial regression
	Genetic programming
	Fast Function Extraction

	Testing suite
	Function definitions
	Separable functions
	Functions with low or moderate conditioning
	Functions with high conditioning and unimodal
	Multi-modal functions with adequate global structure
	Multi-modal functions with weak global structure

	Noisy function testbed
	Experimental setup

	Implementation
	Differential evolution
	Model management
	Surrogate models
	Quadratic model
	Genetic programming
	Fast Function Extraction
	k-Nearest Neighbors
	Random forest

	Results
	Baseline algorithms
	Symbolic regression
	Noisy functions
	Discussion

	Conclusion
	References
	CD contents
	Experimental results

