
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

M
A
S
T
E
R
’S

T
H
E
S
IS

Parallelization of Minimal Problem
Solver Generator

Vojtěch Cvrček

cvrcekv@gmail.com

May 27, 2016

Thesis Advisor: Tomáš Pajdla

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Vojtěch C v r č e k

Study programme: Open Informatics

Specialisation: Computer Vision and Image Processing

Title of Diploma Thesis: Parallelization of Minimal Problem Solver Generator

Guidelines:
1. Review methods for constructing minimal solver generators [2,3,4], necessary basic
 theories [1,5] and possibility of parallel implementations of minimal solvers.
2. Suggest a parallel implementation of a generator or solvers and implement it in GPU.
3. Demonstrate the functionality of the implementation on selected examples and compare
 the running times between the standard and parallel GPU implementations.

Bibliography/Sources:
[1] David Cox, John Little, and Donald O’Shea. Ideals, Varieties, and Algorithms. An Introduction
 to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
 Mathematics. Springer, New York, USA, 2nd edition, 1997.
[2] P. Trutman. Minimal Problem Solver Generator. Bachelor thesis. CTU in Prague, 2015.
[3] Zuzana Kukelova. Algebraic Methods in Computer Vision. PhD thesis, Department of Cybernetics,
 Faculty of Electrical Engineering, Czech Technical University in Prague, February 2013.
[4] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Automatic generator of minimal problem
 solvers. In Proceedings of The 10th European Conference on Computer Vision, ECCV 2008,
 October 12–18, 2008.
[5] D.A. Cox, J. Little, and D.O’Shea. Ideals, Varieties, and Algorithms: An Introduction to
 Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
 Mathematics. Springer, 2010.

Diploma Thesis Supervisor: Ing. Tomáš Pajdla, Ph.D.

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, February 18, 2016

Author statement for undergraduate thesis:

I declare that the presented work was developed independently and that I have
listed all sources of information used with it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university
theses.

Prague, date May 27, 2016 Vojtěch Cvrček

iv

Abstract

We proposed a parallelization of the minimal solvers intended for the RANSAC
scheme. To utilize the GPU fully, we are solving several instances at once. We op-
timize the computation of the eigenvectors because it is the most time-consuming
part of the solver.

We also examined the other parts of RANSAC and found that the verification
process has much greater potential for parallelization.

We implemented both improvements in CUDA C/C++ and compared the
results with serial implementation. The selected minimal problem was the five-
point relative pose problem.

The minimal solver is often more than two times faster in a hybrid system
(GPU + single-core CPU) than on a single-core CPU. The verification process is
about 90 times faster on GPU than on a single-core CPU for the selected data
set.

Keywords: CUDA, GPU, automatic solver, eigenvectors, RANSAC, rela-
tive pose problem

vi

Abstrakt

Navrhli jsme paralelizaci minimalńıho solveru pro RANSAC. Optimálńı využit́ı
GPU je dosaženo řešeńım několika problémů zároveň. Hlavńı pozornost věnujeme
výpočtu vlastńıch č́ısel, nebot’ je to časově nejnáročněǰśı část solveru.

Zkoumáńım RANSACU jsme zjistili, že verifikace představuje potenciálńı
zdroj zrychleńı paralelizaćı.

Porovnali jsme implementaci v CUDA C/C++ se seriovym řešeńım. Pracovali
jsme s pěti bodovým problémem relativńı polohy.

Minimálńı solver je až dvakrát rychleǰśı na hybridńım systému (GPU + jedno
jádro CPU) než na jednom jádru CPU. Proces verifikace je pro zvolená data až
devadesátkrát rychleǰśı na GPU než na jednom jádru CPU.

Kĺıčová slova: CUDA ,GPU,automatický solver, vlastńı vektory, RANSAC,
relativńı poloha

viii

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Goal . 3
1.3 Thesis structure . 3

2 CUDA 5
2.1 Programming Model . 5

2.1.1 Host and device . 5
2.1.2 Kernels . 6
2.1.3 Thread hierarchy . 7
2.1.4 Memory Hierarchy . 7

2.2 Compute Capability . 8
2.3 Hardware implementation of the GPU 10

2.3.1 Streaming Multiprocessor 10
2.3.2 SIMT architecture . 10
2.3.3 Execution model . 11

2.4 Compilation . 12
2.4.1 Overview . 12
2.4.2 PTX . 12
2.4.3 Just-in-Time compilation 13
2.4.4 options . 14

3 Automatic generator 15
3.1 Online solver . 15
3.2 Multiplication Matrix . 15
3.3 RANSAC . 16

4 The Unsymmetric Eigenvalue Problem 17
4.1 Eigenvalue problem . 17

4.1.1 The real Schur decomposition 17
4.2 The QR iteration . 18
4.3 Spectral shift . 19
4.4 Decoupling . 19
4.5 Deflation . 19
4.6 Givens rotation . 20
4.7 Householder reflectors . 20
4.8 Hessenberg form . 21
4.9 The single shift QR algorithm . 21
4.10 The double shift QR algorithm 21

ix

4.11 The double implicit shift QR algorithm 22
4.12 Eigenvectors . 24

5 State of the art 25
5.1 QR algorithm . 25

5.1.1 Software resources . 25
5.2 RANSAC . 26

6 Contribution 27
6.1 Parallelization of the model testing 27
6.2 Generall approach . 27
6.3 Case study: Relative pose problem 28

6.3.1 Model testing . 28
6.3.2 Inliers computation . 29

6.4 Simplification of eigenvectors search in the online solver 30
6.5 QR algorithm parallelization . 30
6.6 Data and thread structure . 30

6.6.1 Hessenberg form . 31
6.6.2 Real eigenvalues . 31
6.6.3 real eigenvectors . 32

6.7 Latency hiding . 32

7 Results 35
7.1 Hardware . 35
7.2 The Unsymmetric Eigenvalue Problem 35

7.2.1 Input Data . 35
7.3 Hybrid solver . 35
7.4 case study:Relative pose problem 35
7.5 Selected profiler results . 36

7.5.1 The eigenvalue kernel . 36
7.5.2 The triangulation kernel 37
7.5.3 The sampson kernel . 37

8 Discussion 45
8.1 The QR algorithm . 45
8.2 The hybrid solver . 45
8.3 The RANSAC . 46
8.4 Future work . 46

9 Conclusion 47

x

List of Figures

2.1 Theoretical GFLOP/s (figure taken from [28]) 6

2.2 Theoretical GB/s (figure taken from [28]) 6

2.3 Automatic scalability (figure taken from [28]) 8

2.4 Memory model (figure taken from [36]) 9

2.5 Divergence in a warp (figure taken from [32]) 11

2.6 CUDA whole program compilation trajectory (figure taken from
[29]) . 13

2.7 Two-Staged compilation with virtual and real architectures (figure
taken from [29]) . 14

6.1 Data model, p1,...,pn are input point pairs, t1,...,tn are threads
(one thread per one pair). GPU broadcast data common to all
threads (rotation matrix R, translation vector t and fundamental
matrix F) . 28

6.2 Simplified process model . 29

6.3 the structure of data and threads, each thread is associated
with one column/row of one matrix. Threads are denoted as t in
the figure. Matrices are saved in linear array. Elements of matrices
are denoted as a. 30

6.4 QR algorithm parallelization, the algorithm performs the QR
iterations only with the matrix H11. This would normaly mean
creating a loop. We instead activate/deactivate appropriate threads. 32

6.5 Asynchrounous execution, H2D and D2H are functions per-
forming data transfer between a host and a device. ”Work” has
different meaning for host and device. ”Work” in the top recta-
cle means computation of multiplication matrix for the host and
computation of solutions for the device. ”Work” in the bottom
rectangle means appling the results of the solution. 33

7.1 . 36

7.2 . 36

7.3 . 37

7.4 . 37

7.5 . 38

7.6 SS - RANSAC: serial implementation; SP - RANSAC: parallel ver-
ification; PP - RANSAC: parallel verification and solver 38

7.7 SS - RANSAC: serial implementation; SP - RANSAC: parallel ver-
ification; PP - RANSAC: parallel verification and solver 39

7.8 . 39

xi

7.9 . 40
7.10 . 41
7.11 . 42
7.12 . 43
7.13 . 43

xii

List of Tables

2.1 Different memory types [40] . 8
2.2 CUDA type qualifiers, performance penalty (source: [40]) 9

1

2

Chapter 1

Introduction

1.1 Motivation

The automatic solver is an impressive tool for solving many minimal problems
in computer vision and many other areas. We observed that in practice, the
minimal problem is solved for a larger number of instances. A typical application
of the solutions of minimal problems is RANSAC, and we kept this in mind during
construction of our contribution.

We know that the most time-consuming part of the automatic solver (the
online phase) is the computation of eigenvectors. This claim is part of [20], and
we reconfirmed that during the initial stage. We studied the problem [9], and
came to the conclusion that if solving many instances at once, there is a good
chance of dropping the runtime considerably by using parallelization. Moreover,
the eigenspaces of our problems have specific properties. The properties are
not used by general methods for solving the eigenvalue problem and open an
opportunity to develop a more specialized eigenvalue problem solver.

We also observed that finding a consensus set during the execution of RANSAC
is usually more time demanding than finding the model parameters and realized
that the process could be speed up by parallelization.

1.2 Goal

The main goal is to speed up the automatic solver. The current approach com-
putes all eigenvectors and all eigenvalues using the Matlab, the Maple [35] or the
library Eigen [14]. We will develop problem-specific fast routines to solve this
problem.

We will also show on a case study that we can considerably speed up the
RANSAC by parallelization.

1.3 Thesis structure

Chapter 2 serves as an introduction to parallelization on GPU using CUDA.
Chapter 3 is a short chapter in which we expose some properties of automatic
online solvers which guided the development of methods in this thesis. Next,
we summarize the necessary theory for the problem we solve in Chapter 4. The

3

brief Chapter 5 describes selected work concerning the eigenvalue problem and
the RANSAC parallelization. Chapter 6 shows how we approach the two basic
problems and explains the details.

The chapter results show performed experiments. We test the standalone
routines and the automatic solver which uses these routines, and we compare the
results with the previous version. We also show the properties of parallelized
RANSAC with a GPU-accelerated automatic solver.

4

Chapter 2

CUDA

CUDA is a general purpose parallel computing platform and programming model
[28]. The name CUDA originally stood for an acronym Compute Unified De-
vice Architecture, but NVIDIA no longer uses CUDA as an acronym [2].

Many-core GPUs offer (far) greater raw computation power and memory
bandwidth than multicore CPUs with similar power consumption (and cost) -
Figure 2.1 and Figure 2.2. Moreover, the parallelization is an important branch
of GPU and CPU development [31].

When programming a CPU, a programmer needs to know only the rudiments
of the CPU architecture to write reasonable code. The reason is that many
programming languages offer a high level of abstraction, and the compiler is often
capable of shielding the user (of the programming language) from deep hardware
knowledge. CUDA C API, on the other hand, offers some level of abstraction,
but an understanding of the underlying hardware is a necessity for writing code
which fully utilizes the given device.

Not all GPUs are supported; CUDA requires a GPU with the SIMT (Single-
Instruction Multiple Data) architecture, which effectively means GPUs from
NVIDIA.

This chapter presents chosen CUDA C API related topics relevant to this
thesis and a brief description of NVIDIA GPU hardware.

The text and the terminology are based on the CUDA toolkit [26].

2.1 Programming Model

This section describes the programming model of CUDA. The programming
model is designed to simplify the workflow by abstracting the underlying GPU
hardware implementation while exposing the parallel structure of GPU to a pro-
grammer. The following subsections summarize the basics of CUDA C API from
a developer’s point of view, omitting the hardware implementation.

2.1.1 Host and device

A CPU controls the execution of a program, managing the data allocation, trans-
fer to and from a GPU, commencing the GPU’s kernel, and other issues. The
CPU is hosting a GPU. Hence, a CPU is called a host in the CUDA context.A
GPU is a separate device controlled by a host and is therefore called a device.

5

Figure 2.1: Theoretical GFLOP/s (figure taken from [28])

Figure 2.2: Theoretical GB/s (figure taken from [28])

2.1.2 Kernels

A kernel is a special function, an extension of C/C++, which allows a programmer
to access a device from a host. Therefore, a kernel acts as a gateway between
a host and a device. Unlike a standard C/C++ code, a kernel function runs on

6

many threads in parallel. A programmer has to define a kernel function with a
declaration specifier global , and when calling the function, a programmer is
required to provide the number of threads on which the function will run using
the C extended syntax ”〈〈〈...〉〉〉”. Each thread has a specific ID assigned. Many
thousands of kernels can reside on a device during a single kernel call. Examples
can be found in the official documentation [28].

2.1.3 Thread hierarchy

Threads are grouped into blocks. The position of a thread in a block is given
by its ID, which is a three-dimensional vector. The size of a block is limited,
based on the Compute Capability of a device (section 2.2). Blocks can be further
organized into grids. The block position is also determined by its ID, which is
a three-dimensional vector as well, and its size limits are given by the Compute
Capability of a device as well. There is one common general rule for all CUDA
supporting devices. A block can hold at most 1024 threads.

The three-dimensional vector is denoted by x,y,z, and its primary purpose
is to simplify work with multidimensional data. A programmer is required to
provide block and grid dimensions when calling a kernel.

The reason for the two layer grouping of threads is the synchronization at
blocks level (threads inside a block can be synchronized). Threads in a block can
also access a shared memory (subsection 2.1.4), but the shared memory can’t be
accessed by a thread from another block.

The size of a grid is usually determined by the amount of data. A programmer
is free to choose the size of a block (only upholding limits imposed by Compute
Capability) as he wishes. We have to consider the possibilities of the shared
memory; an in-depth description of different compute capabilities (section 2.2)
is in the appendix of [28]. For the optimal choice, knowledge of the underlying
GPU is necessary.

Kernel has to by written such that thread blocks can be executed in any order
(either in parallel or series). This requirement is attributed to scalability. The
device usually doesn’t run all blocks on the grid at once, but rather in groups;
an example of such situation is shown in Figure 2.3.

2.1.4 Memory Hierarchy

There are three basic types of memory. A global memory is accessible both by
the host and device. A shared memory is shared among threads in a thread block.
Registers belong to a thread and cannot be shared among threads. Examples of
various variables declaration and their scope and lifetime are given in Table 2.1.

The table depicts the type of memory in which a variable usually resides.
Notably, if there are not enough registers, even a simple variable is placed into
the local memory. And similarly, if we declare a small static array, the compiler
might put it in registers. The only way to be sure is to inspect SASS; more
information can be found in subsection 2.4.2.

Different memory types offer different access speeds. Registers are the fastest.
The shared memory resides in a cache and offers much quicker access than the
global memory. The local memory is essentially the global memory with a reduced

7

Figure 2.3: Automatic scalability (figure taken from [28])

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread

int LocalArray[10]; local thread thread
[device] shared int SharedVar; shared block block

device int GlobalVar; global grid application
[device] constant int ConstantVar; constant grid application

Table 2.1: Different memory types [40]

scope and lifetime, so the access speed is the same as global memory. The constant
memory is cached global memory. Access speed decreases with the number of
requests and can be as slow as the global memory. Table 2.2 offers raw insight
into CUDA memory management, and we will return to it in more detail later.

We summarize this brief introduction to the CUDA memory hierarchy with
Figure 2.4.

2.2 Compute Capability

The compute capability (CC) of a device identifies features supported by GPU
hardware. It’s accessible during runtime and allows an application to know which
features/instructions are at our disposal. The name itself comes from [28].

The CC consist of two numbers, X.Y, where X is a major revision number,
and Y is a minor revision number. The major revision number indicates core
device architecture. Between devices with different major revision numbers is a
notable difference. Devices with the same major revision numbers but different
minor revision numbers differ less; improvements may consist of added CUDA

8

Variable declaration Memory Performance penalty
int LocalVar; register 1x

int LocalArray[10]; local 100x
[device] shared int SharedVar; shared 1x

device int GlobalVar; global 100x
[device] constant int ConstantVar; constant 1x

Table 2.2: CUDA type qualifiers, performance penalty (source: [40])

Figure 2.4: Memory model (figure taken from [36])

cores, better warp schedulers, or slightly different cache. This makes the minor
revision number still quite important.

What makes the difference is a discontinuity in a binary compatibility. A
binary code is generated for a specific device with a compute capability X.Y. The
binary compatibility isn’t guaranteed between different major revision numbers.
The binary compatibility is guaranteed for the next minor revisions (higher, i.e.
Z 〉 Y) with the same major revision number.

There are currently four major revision numbers. Number 1 is outdated Tesla
architecture (don’t confuse with Tesla series, intended for high-performance com-
puting), number 2 is Fermi architecture, number 3 is Kepler, and number 5 is

9

Maxwell. The Tesla architecture is no longer supported (starting with CUDA
7.0). A CUDA version shouldn’t be confused with the compute capability. The
CUDA version specifies the version of used CUDA platform.

2.3 Hardware implementation of the GPU

We present this section as an introduction to an architecture of devices.

2.3.1 Streaming Multiprocessor

Each GPU consists of several Streaming Multiprocessors (SMs). When a kernel
function is called, groups of blocks of a grid are assigned to multiprocessors of a
device. Each SM is capable of hosting several thread blocks and execute them
(and threads inside blocks) concurrently. CUDA monitors finished blocks and
assign new blocks to SMs as illustrated in Figure 2.3.

2.3.2 SIMT architecture

Single-Instruction, Multiple-Thread (SIMT) is a unique architecture associated
with NVIDIA devices. It refers to the basic grouping of threads to a warp. The
warp is a group of 32 threads (common across all CUDA devices). Each thread
in warp starts at the same program address, but branching is possible at the cost
of the speed.

Each block is partitioned into groups of warps and executed by the SM’s warp
scheduler. There might be many warps, but the warp scheduler usually executes
a fraction of them at once.

The terminology is a little confusing. A device can reside thousands of threads,
but most of them don’t run concurrently. The number of simultaneously running
threads is determined by the warp scheduler, numbers of SM and branching.
With the optimal branching (i.e. no branching at all) and fully occupied device,
the number of concurrently running threads is given by Equation 2.1.

Concurrent threads =

(number of warps warp scheduler is capable of running) x

(number of SMs) x

(size of warp, usually 32)

(2.1)

A warp can only execute one instruction at a time, although the instruction
can be shared among warp threads. The optimal situation is when each thread
executes the same set of instructions. If however, there is some data dependent
on a conditional branch, the warp diverges.

A divergence means that some threads in a warp execute a different instruction
from the rest. The warp executes one branch at a time until different execution
paths converge.

The divergence occurs only on warp level; blocks or grids can’t diverge. A
typical example is in Figure 2.5. The peak performance is related to no branching
versus full branching, but the performed instruction matters a lot. Each SM can

10

perform a limited number of native arithmetic instructions per clock. 32-bit
floating-point add, multiply, multiply-add instruction capabilities are related to
the name CUDA cores. Single precision units are numerous on basic GPU.
There are far less double precision units per SM unless we are using the Tesla
series (GPUs from Tesla series are in Figure 2.1), which is designed for precise
computation. We can find out the precise numbers in [28].

Figure 2.5: Divergence in a warp (figure taken from [32])

We’ll address this problem in the next chapter.

SIMT can be perceived as an enriched vectorization. We can either work with
independent threads (warps for optimal performance) with independent data or
solve problems typical for vectorization. Both cases can gain from the paralleliza-
tion.

Threads in a block whose instructions are executed by the current warp are
called active threads. If divergence occurs, or the size of the threads block isn’t
aligned to a multiple of the warp size, there are inactive threads. These threads
wait until the end of the kernel (if they finished early or if the block wasn’t
properly aligned) or for other branch(es) to finish. It should be noted that a
programming model doesn’t know warps. A programmer who chooses to ignore
their existence may or may not experience the divergence.

2.3.3 Execution model

When the host calls a kernel with given partitioning into grid and blocks, CUDA
assigns blocks to SMs. CUDA runtime checks if the assignment is correct (i.e.
the size of a block is according to the CC of the device and the memory request
of shared memory can be satisfied). If more than one block can run on the SM,
CUDA will assign more blocks to the SM, up to the limits imposed by CC of the
device.

11

In the case when not even one block can be supported by any SM, the kernel
launch will fail. The number of warps per block is given by Equation 2.2 from
[26].

(warps per block) = ceil

(
size of a block

size of the warp

)
(2.2)

From Equation 2.2 it is clear why the optimal size of a block is multiple of a
size of the warp. This computation among others is part of CUDA occupancy
calculator.

2.4 Compilation

The next issue is a compilation of the source code. It’s clear that the extension of
C/C++ can’t be compiled by a standard C/C++ compiler. We have to handle the
host and the device code merged into one source file with another tool. NVIDIA
distributes a CUDA compiler driver as part of CUDA. This compiler is called
nvcc.

A programmer of a CUDA device should have a good understanding what the
nvcc compiler offers for the best performance of her code.

2.4.1 Overview

A source code intended for a heterogeneous (host+device) runtime is expected to
have suffix .cu, which indicates a combination of host and device code. If there
are no device functions in the source, nvcc will still comply with the .cu suffix
(by just calling the host compiler). If, however, there are some device functions,
then the host compiler will quite expectedly fail.

The nvcc compilation trajectory is a complicated process that consists of sev-
eral steps. A source is split (on device and host code), compiled (host functions
are compiled with native compiler for C++, and device functions are compiled
with CUDA compiler) and merged. Figure 2.6 illustrates the full process. We en-
countered some simplified figures, but since we ran into problems that require the
knowledge of the full compilation trajectory, we decided to present an unaltered
depiction.

2.4.2 PTX

The parallel thread execution (PTX) instruction set is not directly executed. It
can be viewed as an assembly for virtual GPU. The generation of PTX is an
intermediate step during compilation and serves for the final step, which is the
creation of a CUDA execution binaries (cubin files).

A programmer can use the PTX assembly directly and similarly to the CUDA
C. We also don’t have to bother with the target device specification too much.
If we want to see details about execution binaries in a human readable form, we
can use SASS.

The instruction set for PTX is determined by a virtual architecture (-arch
option), which decides for which lowest CC of a device is the code applicable. The
generation of binaries can be carried later on (subsection 2.4.3) (-code option).

12

Figure 2.6: CUDA whole program compilation trajectory (figure taken from [29])

PTX is necessary for a Just-in-Time compilation (subsection 2.4.3) and is
required for use of kernels by the MATLAB parallelization toolbox.

2.4.3 Just-in-Time compilation

During the compilation the PTX code is generated. The PTX can be immediately
used for the generation of executable binaries (.cubin file), specific for an intended
target device. If however we use another device or device driver is updated, and we
don’t have valid binaries. CUDA offers a feature called Just-in-Time compilation.

Just-in-Time compilation is a compilation during the runtime. The CUDA
runtime generates binaries from PTX and caches (a compute cache) them for later
use. The compute cache is invalidated when a driver is updated and new binaries
are generated and cached in the compute cache during the next execution.

The just-in-Time compilation prolongs the execution (when binaries aren’t
cached). It’s a tradeoff for using the most recent instruction set.

The general rule is to use the lowest possible virtual architecture for PTX and
highest possible architecture for GPU. Such compilation maximizes devices span,
and just-in-time compilation produces optimal binaries for the newest devices
(non-existent during code development).

13

Figure 2.7: Two-Staged compilation with virtual and real architectures (figure
taken from [29])

2.4.4 options

We will name two options: the -arch option for the virtual architecture and the
-code option for the target gpu. To our knowledge, the official documentation
[29] offers the best source to learn all the options and their impact on the product
of the compilation.

If a programmer uses nvcc in some IDE (the VS with the nsight plugin,
the Nsight Eclipse), options are usually reasonably preset. The best practice
is to consult the official documentation with any modifications to preset options.
The Visual Studio profiling tool offers a good guide which provides inspection of
Source/PTX/SASS and their cross-comparison as well as memory management
inspection.

14

Chapter 3

Automatic generator

The automatic generator is a tool for solving selected minimal problems. The
problem is stated as a system of polynomial equations. The system describes a
general instance of the problem. The result is a generic online template that can
solve concrete instances. Details are in [20].

The theoretical background can be obtained in [8], [9]. [20] explains the
automatic generator, including selection of proper minimal problems.

This chapter summarizes selected facts about the online phase and forms the
base for the optimization in Chapter 6. Since the solvers of minimal problems
are good generators of hypotheses for the RANSAC paradigm, we incorporated
the RANSAC into this chapter.

3.1 Online solver

The online solver is a special case of the online phase. The problems for which
we can find the online solver are specified in [20].

The input is a system of polynomial equations f1 = f2 = · · · = fn = 0 with
concrete coefficients. Online solvers comprise three steps:

• The solver first generates necessary polynomials qi for the construction of
a multiplication matrix.

• The next step is the construction of the multiplication matrix from coeffi-
cients of polynomials qi.

• The final step is the extraction of the solutions of the input system from
the eigenvectors of the multiplication matrix.

Details are in [20]. We would like to emphasize, according to [20]: ”Eigenvalue
computation is usually the most time-consuming part of final solvers.”

3.2 Multiplication Matrix

The multiplication matrix has several properties that can greatly simplify find-
ing eigenvalues/eigenvectors. First, we can assume the multiplication matrix is
nonderogatory (i.e., all eigenspaces have dimension one).

15

The next observation is that the multiplication matrix represents multiplica-
tion by some function f :

f = c1x1 + · · ·+ cnxn (3.1)

where xi is a variable and ci is a randomly chosen integer (such that f will have
a distinct value for distinct solutions of the input system). [9] shows eigenvalues
of the multiplication matrix generated by f are equal to values of the function f
for xi which solves the input system. [9] further shows how to obtain xi directly
from eigenvectors of such multiplication matrix.

3.3 RANSAC

The random sample consensus (RANSAC) is a paradigm for model fitting [10].
Its basic form can be summarized in following steps:

• Select a sample of m points (assume these m points are inliers).

• Calculate model parameters from the sample points.

• Test the whole set of points against the calculated model and collect points
within some predetermined threshold (these points are called a consensus
set or inliers). This step is sometimes called the verification.

• Compare the current model with the best model encountered so far(compare
the number of inliers). Choose the model with more inliers as the next best
model.

[10] also includes an optimization step (using only the consensus set). The stop-
ping criterion is a part of [10].

Since we assume that a selected sample of m points is a subset of inliers, it’s
a good idea to have the size of the sample as small as possible [20] and it is the
reason for using minimal problems.

16

Chapter 4

The Unsymmetric Eigenvalue
Problem

Searching real eigenvectors is the most time-consuming part of the automatic
solver online template. This chapter will present the theoretical background,
necessary for computing real eigenvectors. We also present some algorithms which
we will parallelize later.

4.1 Eigenvalue problem

[12] defines the eigenvalues and the spectrum as follow:

Definition 1. Let there be a square matrix A ∈ Cn×n, the eigenvalues of the
matrix A are the n roots of its characteristic polynomial p(z) = det(zI - A). The
set of these roots is called spectrum and is denoted by λ(A).

The definition of the eigenvectors [12]:

Definition 2. If λ ∈ λ(A), then the nonzero vectors x ∈ Cn that satisfy

Ax = λx

are referred to as eigenvectors.

Pair (λ,x) is often called an eigenpair of A [3]. Our goal is to find the real
subset of the spectrum and its eigenvectors.

4.1.1 The real Schur decomposition

Real matrices can have complex eigenvalues. But since the characteristic poly-
nomial has real coefficients, the complex eigenvalues are always in pairs [12].
Computations with complex numbers are costly, following theorem from [3] is
the key to avoid complex computation:

Theorem 1. The Real Schur decomposition If A ∈ Rn×n, then there is an
orthogonal matrix Q ∈ Rn×n such that

QTAQ =


R1,1 R1,2 · · · R1,m

R2,2 · · · R2,m

. . .
...

Rm,m

 (4.1)

17

is an upper quasi triangular. The upper quasi triangular matrix is a matrix which
has blocks on diagonal and zeros below diagonal. In this case, the blocks Ri,i are
of size 1× 1(a real eigenvalue) or 2× 2(a pair of complex conjugate eigenvalues).

The proof can be found in [3].

4.2 The QR iteration

We first introduce a following algorithm 1 from [12]. The Input is a matrix
A ∈ Cn×n and an unitary matrix U0 ∈ Cn×n. It’s easy to show that Tk is

Algorithm 1 QR iteration

T0 = UT
0 AU0

for k = 1, 2, . . . do
Tk−1 = UkRk . QR decomposition
Tk−1 = RkUk

end for

unitarily similar to A.

Tk = RkUk = UT
k (UkRk)Uk = UT

k Tk−1Uk (4.2)

And by induction [12].

Tk = RkUk = (U0U1 · · ·Uk)TA(U0U1 · · ·Uk) (4.3)

A nice summarization of the convergence property is in [30]:

Property 1. Convergence of QR iteration Let A ∈ Cn×n be a matrix with
following magnitudes of eigenvalues:

|λ1| > |λ2| > · · · > |λn|

then

lim
k→∞

T (k) =


λ1 t1,2 · · · t1,n
0 λ2 t2,3 · · ·
...

...
. . .

...
0 0 · · · λn

 (4.4)

Convergence rate is:

|t(k)i,i−1| = O

(∣∣∣∣ λiλi−1

∣∣∣∣k
)
, i = 2, . . . , n, for k → +∞. (4.5)

The property 1 assumes the complex representation. In the case of the real
representation, as mentioned in subsection 4.1.1, matrix Tk converge to upper
quasitriangular. The proof can be found in [39].

18

4.3 Spectral shift

Shifting eigenvalues of a matrix A means subtracting a matrix µI. If the original
matrix had magnitudes of eigenvalues:

|λ1|, |λ2|, . . . , |λn|

After the spectral shift:

|λ1 − µ|, |λ2 − µ|, . . . , |λn − µ|

This changes the order of magnitudes of eigenvalues and the convergence rate of
QR iterations. New convergence rate is:

|t(k)i,i−1| = O

(∣∣∣∣ λi − µλi−1 − µ

∣∣∣∣k
)

(4.6)

In the extreme example when we know the eigenvalue exactly, we need to do only
one QR iteration [3],[12].

4.4 Decoupling

Decoupling is the key to divide the problem of finding eigenvalues to subproblems
[12]:

Theorem 2. If T ∈ Cn×n is partitioned as follows:

T =

[
T11 T12
0 T22

]
(4.7)

then λ(T) = λ(T11) ∪ λ(T22).

Hence, we can solve two smaller matrices T11, T22 and ignore the matrix T12.
Notice that this is only possible if we are interested only in eigenvalues. Otherwise,
the T12 can not be ignored.

4.5 Deflation

The deflation is a part of QR algorithm. It’s a direct application of theorem 2.
We apply the deflation when an element on the subdiagonal is sufficiently small.
There are many different strategies. Details of the standard deflation are in
[12],[3] and [11]. The modern approach is to use the aggressive early deflation [6].

19

4.6 Givens rotation

The Givens rotation is an orthogonal matrix G(i, j, θ) in the form [12]:

G(i, j, θ) =

i j



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0 i
...

...
. . .

...
...

0 · · · −s · · · c · · · 0 j
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

(4.8)

where c = cos(θ) and s = sin(θ).
For x ∈ Rn and y = G(i, j, θ)Tx:

yk =


cxi − sxj, k = i

sxi + cxj, k = j

xk, k 6= i, j

(4.9)

The Givens rotations are usually used to zero a particular element. We can set
the yj to be zero by setting:

c =
xi√

|xi|2 + |xj|2
, s =

−xj√
|xi|2 + |xj|2

. (4.10)

4.7 Householder reflectors

Householder reflectors are unitary matrices which allow reflecting/mirroring vec-
tors.

Definition 3. (Householder reflectors). Let q ∈ Rn and ||q|| = 1. A matrix

H(q) = I − 2qqT ∈ Rn×n

is called a Householder reflector [33].

Householder reflectors can zero many elements of a vector at once. An impor-
tant observation is, that we only require 4n flops [3] to performHx = x−q(2uTx).

For vector x ∈ Rn, we search a Householder reflector H which transforms
vector x to ±||x||e1 (e1 has usual meaning, i.e. e1 = [1, 0, ..., 0]T).

The numericaly stable solution is [33]:

q =
x + sign(x1)||x||e1

||x + sign(x1)||x||e1||
(4.11)

We use them to obtain the Hessenberg form (section 4.8).

20

4.8 Hessenberg form

The Hessenberg form is defined in the following way [3]:

Definition 4. A matrix H is a Hessenberg matrix if its elements below the lower
off-diagonal are zero,

hij = 0, i > j + 1.

The Hessenberg form’s attractivity comes from its properties, namely more
effective QR decomposition.

The QR decomposition time complexity is O(n3) [3] in the general case. The
precise number of arithmetic operations for different methods can be found in
[33]. It’s easy to see that with a matrix in the Hessenberg form we have to zero
far less elements.

The overall time complexity would remain the same if we had to compute the
Hessenberg form repeatedly since its complexity is also O(n3) [3]. Fortunately,
theorem 3 shows why it’s sufficient to compute the Hessenberg form just once.

Theorem 3. The Hessenberg form is preserved by the QR algorithms.

The constructive proof is in [3] and a trivial corollary is a reduction of time
complexity of QR decomposition for a matrix in Hessenberg form to O(n2).

4.9 The single shift QR algorithm

The spectral shift from section 4.3 allows us to speed up the convergence rate.
The following algorithm from [12] shows how. This variation of the algorithm

Algorithm 2 QR single shift

for k = 1, 2, . . . do
µ = Hn,n

H − µI = UR . QR decomposition
H = RU + µI

end for

algorithm 1 is likely to have the quadratic convergence rate (proof in [12]).

4.10 The double shift QR algorithm

In the section 4.9, we presented a modification of the algorithm algorithm 1 with
better convergence rate. Unfortunately, if the lower diagonal 2x2 submatrix of
the matrix H is:

G =

[
hmm hmn

hnm hnn

]
, m = n− 1 (4.12)

and the algorithm algorithm 2 converges to a pair of complex eigenvalues λ1, λ2.
Then hnn approximates only the real part of the eigenvalue.

[11] firstly approaches the problem with a complex representation. [11] later
came up with a more elegant solution which is explained in the following section.

21

But we first examine a similar method which helps us to understand the next
section [12].

The idea is to perform two single-shift QR steps at once:

H − λ1I = U1R1 (4.13)

H1 = R1U1 + λ1I (4.14)

H1 − λ2I = U2R2 (4.15)

H2 = R2U2 + λ2I (4.16)

U1, U2, R1, R2 are complex if λ1, λ2 are complex.
We can show that [12]:

(U1U2)(R2R1) = (H − λ1I)(H − λ2I) = M (4.17)

where M is a real matrix (even if λ1, λ2 are complex) in the following form:

M = H2 − sH + tI (4.18)

where
s = trace(G) = λ1 + λ2, t = det(G) = λ1λ2. (4.19)

We may choose U1 and U2 such that Z = U1, U2 is a real orthogonal matrix
[12]:

H2 = UH
2 H1U2 = UH

2 (UH
1 HU1)U2 = (U1U2)

HH(U1U2) = ZTHZ. (4.20)

where AH is a Hermitian transpose. Due to the roundoff error the matrix H2 will
almost always be in the complex field [12]. According to [12], obtaining the real
matrix at this point is too computationally demanding (O(n3)).

4.11 The double implicit shift QR algorithm

There is a much better approach, which does not require complex computations.
But first we introduce an essential theorem from [12]:

Theorem 4. (Implicit Q Theorem) Let Q = [q1, . . . , qn] and V = [v1, . . . , vn]
be orthogonal matrices with the property that both QTAQ = H and V TAV = G
are upper Hessenberg where A ∈ Rn×n. Let k denote the smallest positive integer
for which hk+1,k = 0, with the convention that k = n if H is unreduced. If q1 = v1,
then qi = ±vi and |hi,i−1| = |gi,i−1| for i = 2 : k. Moreover, if k < n, then
gk+1,k = 0.

The proof is in [12].
Now, we can significantly simplify the double shift. For any transformation

matrix Z1 such that:

• Z1 transforms H1 to an upper Hessenberg matrix

• the first column of Z1 is the same as the first column of Z

22

• both ZTHZ and ZT
1 HZ1 are unreduced upper Hessenberg matrices

We can conclude from theorem 4 that ZTHZ and ZT
1 HZ1 are essentially equal

[12].
The task of finding the Z is therefore much simplified [12]:

• find the first column of the M

• determine the Householder reflector P0, which transforms the first column
of the M to a multiple of e1

• Apply P0 to H and compute Householder reflectors P1, . . . , Pn−2, such that
Z1 = P0 · · ·Pn−2 and ZT

1 HZ1 is an upper Hessenberg.

An algorithm executing one step of the Francis double shift QR algorithm is the
algorithm algorithm 3. This algorithm is also used in [3]. The overall process

Algorithm 3 The Francis QR step (from [12])

Require: An unreduced upper Hessenberg matrix H
Ensure: An upper Hessenberg matric H2 (double shifted)
m = n− 1;
s = H(m,m) +H(n, n);
t = H(m,m)H(n, n)−H(m,n)H(n,m);
x = H(1, 1)H(1, 1) +H(1, 2)H(2, 1)− sH(1, 1) + t;
y = H(2, 1)(H(1, 1) +H(2, 2)− s);
z = H(2, 1)H(3, 2);
for k = 0 : n− 3 do

[v, β] = house([x, y, z]T)
q = max{1, k}
H(k + 1 : k + 3, q : n) = (I − βvvT)H(k + 1 : k + 3, q : n)
r = min{k + 4, n}
H(1 : r, k + 1 : k + 3) = H(1 : r, k + 1 : k + 3)(I − βvvT)
x = H(k + 2, k + 1)
y = H(k + 3, k + 1)
if

thenz = H(k + 4, k + 1)
end if

end for
[v, β] = house([x, y]T)
H(n− 1 : n, n− 2 : n) = (I − βvvT)H(n− 1 : n, n− 2 : n)
H(1 : n, n− 1 : n) = H(1 : n, n− 1 : n)(I − βvvT)

can differ. [3] assumes that we deflate the matrix from the bottom right corner
(continualy shrinking the matrix), [12] on the other hand assumes we split the
matrix in three parts (one of undetermined properties, one upper quasi triangular
matrix and one unreduced upper Hessenberg matrix) and work with only one part
(the unreduced upper Hessenberg matrix).

23

4.12 Eigenvectors

The QR algorithm can be modified to produce the real Schur form. Not only the
quasi upper triangular matrix. The necessary modifications are described in [3].

The QR algorithm can, therefore, be used to find eigenvectors [38]. One pos-
sibility is to run the QR algorithm without accumulating transformation matrix
and then perform the second pass with exact shifts and the accumulation of the
transformation matrix. We’ll use another method, which is described both in [38]
and [12].

A method called inverse iteration (with an exact shift) can be employed to
find specific eigenvector (algorithm algorithm 4). The stopping criterion and error

Algorithm 4 Inverse Iteration

q0 = random unit 2-norm vector
for k = 1, 2, . . . do

Solve (A− λI)z(k) = q(k − 1)

q(k) = z(k)

|z(k)|2
end for

analyze can be found in [38]. [38] also describes why it is not important whether
A− λI is ill conditioned or not.

[12] notes that the upper Hessenberg form can be used to perform the inverse
iteration in O(n2). Details for solving Hessenberg systems are in [21]. This is
particularly interesting, since the upper Hessenberg form is the input of the QR
algorithm. [12] summarizes the approach in following steps:

• compute the Hessenberg decomposition UT
0 AU0 = H

• apply the double implicit shift Francis iteration to H without accumulating
transformation

• for each computed eigenvalue λ whose corresponding eigenvector x is sought,
apply algorithm 4 with A = H to produce a vector z such that Hz ≈ λz

• set x = U0z

[12] further claims that: ”A widely followed rule of thumb for deciding upon a
suitable eigenvector method is to use inverse iteration whenever fewer than 25 %
of the eigenvectors are desired.”

24

Chapter 5

State of the art

We examined several articles and dozens of other resources. We did not find any
paper solving the same problem. This chapter summarizes the state of the art of
the unsymmetric eigenvalue problem, its parallelization, software tools and the
RANSAC parallelization.

5.1 QR algorithm

The parallelization of the QR algorithm is a well-studied problem. It is often used
in practice when many eigenvalues/eigenvectors are needed, or when we have no
prior knowledge about eigenvalues (most iteration methods require some guess
about the searched eigenvalue). Unfortunately, all the research we found is either
concerned with large dense unsymmetric matrices or small symmetric/Hermitian
matrices.

The state of the art represents LAPACK for serial implementation and ScaLA-
PACK for parallel implementation [19], [13]. The three common strategies for
speeding up the QR algorithm are chains of bulges [19], aggressive early deflation
[6] and bigger bulges (multishift) [4]. There are also some more robust deflation
criterions [1].

The state of the art, implemented in libraries, is aimed at large problems,
usually with different computation architecture in mind.

Closer to our problem is [7], author search eigenvalues and eigenvectors of a
large number of small Hermitian matrices on a GPU. Small matrices are, in the
context of this article, matrices of sizes 128, 256, 512 or 1024.

Our problem is rather specific. We are interested only in real eigenvectors.
Our matrices are smaller than 128, unsymmetric and nonderogatory.

5.1.1 Software resources

Serial implementations use the library Eigen. Eigen is a very popular [14] C++
library, which offers linear algebra routines. It is fast [15], reliable and easy to
use.

We are familiar with the library cuBLAS, which offers several batched func-
tions. Unfortunately, none of them are appropriate (the Hessenberg form allows
us to create our own more effective batched function).

25

There are some GPU-accelerated libraries which solve eigenvalue problem for
dense unsymmetric matrices. We are aware of the library CULA [18], which
is built upon the cuBLAS [23]. The next library is MAGMA [5], which is the
successor of LAPACK/ScaLAPACK.

We are currently unaware of any software which would solve the dense eigen-
value problem for the small matrix in batches. Creating the solution from CU-
LA/MAGMA routines is likely to be underperforming. MAGMA is abstracting
the device, so we do not work with device memory directly. Since [27] encourages
the minimizing of data transfers between the host and the device, the MAGMA
is probably not the right choice.

CULA offers an interface that follows the standards from NVIDIA cuBLAS
[23]. Moreover, CULA could be a reasonable choice for larger matrices because we
have direct access to CUDA streams and could pipeline our kernels with CULA
functions. We did not pursue this idea since we would have been forced to use
the CULA memory model and CULA is non-free.

The library cuSOLVER [24] documentation has a chapter entitled ”Dense
Eigenvalue Solver”, but the chapter contains only functions for bidiagonalization
and SVD.

We conclude that none of the freely available libraries provides tools ideal for
our goal.

5.2 RANSAC

We searched articles concerning GPUs and RANSAC. [34] describes paralleliza-
tion of MC-RANSAC by testing several hypotheses at once. Other materials
mentioned the computation of homography using CUDA, but without much de-
tails.

The closes work we managed to locate is [17]. The article compares CUDA,
OpenMP and POSIX threads on the problem of fitting a plane to a set of observa-
tions in 3D space. We choose to concentrate on different problem and comparision
is therefore impossible. Moreover, the authors did not published the implemen-
tation and the data (or we were unable to locate them) and the describtion is
very vague.

26

Chapter 6

Contribution

’

6.1 Parallelization of the model testing

Minimal problems are mostly part of the RANSAC scheme. We worked with
the relative pose estimation in the RANSAC scheme. Preliminary results showed
that most of the time is spent with model testing (approximatly 94.8%).

The solver, while relatively complex, works with a small subset of input data.
The model testing, on the other hand, works with full dataset and performs
simpler operations independently. This simple observation explains preliminary
results from the preceding paragraph and leads to the conclusion that speeding
up the solver is meaningless without significantly improving the runtime of the
model testing. We realized that model testing can often be parallelized. This
chapter describes the method we arrived to and its limitations.

6.2 Generall approach

The model testing might be performed by numerous error functions. For an ef-
fective CUDA implementation, an error function should have the following prop-
erties.

• An error computation should be expressible using CUDA C (i.e. most of the
C++ standard library and other libraries without CUDA support cannot
be used)

• Computations should be memory and time independent (e.g. computation
of different errors should not require each other’s results)

The following points are relevant for the optimal performance.

• follow the efficient memory alignment as described in [28] or better yet [27],

• design a branch free code,

27

• split the code into blocks which size is a multiple of the warp size,

• prefer floating point computations with single precision.

6.3 Case study: Relative pose problem

The five-point relative pose problem is described in [37]. We used a template gen-
erated by the automatic solver in the RANSAC scheme. The following subsection
describes the implementation of the model testing.

6.3.1 Model testing

The process of model testing is described in [16]. Here we show how we proceeded
with the parallelization. We keep the process of the essential matrix decompo-
sition [37] on a CPU, remaining substeps (i.e. triangulation, Sampson error,
thresholding inliers) were carried on a GPU. Each substep has its kernel and the
communication is done through the global memory.

Each thread is responsible for one pair of points. The implementation uses
registers extensively. We do not use the constant memory for the data distributed
between all threads (a rotation matrix, a translation vector, a fundamental ma-
trix) and rely on compiler and cache. The Figure 6.1 shows the flow of the input
data in the model testing.

p
1

p
2

p
nR,t,F

t
1

t
2

t
i

t
n

Figure 6.1: Data model, p1,...,pn are input point pairs, t1,...,tn are threads (one
thread per one pair). GPU broadcast data common to all threads (rotation matrix
R, translation vector t and fundamental matrix F)

An output for different kernels differs. The triangulation and the Sampson
error are passed to the kernel which checks if triangulated points lay in front of
the camera and the Sampson errors are below the threshold. The kernel then
increases the counter of inliers by one if the pair of points passes the tests. A
scheme of the process is in Figure 6.2

28

DATA

Sampson error kernel

Xe

Triangulation kernel

CPU

GPU

Determine inliers kernel

Sum of inliers

GPU

CPU

Figure 6.2: Simplified process model

Triangulation

Triangulation is as much simplified as possible. Algorithm excepts the projection
matrix P1 to be a canonical projection matrix, and the P2 is described only by a
rotation and a translation. The simplification means smaller data transfer and a
reduction of the computation. The solution of small linear 3x3 systems is done
by the Cramer’s rule. All arrays are linear.

Sampson error

The input data are in a linear array, besides that, the implementation doesn’t
differ.

6.3.2 Inliers computation

Each thread determines if the point pair is inliers. Now we need a sum of inliers.
We can either use an atomic function and let the device take care about syn-
chrounous access to one variable by multiple threads or we can use the reduction
(the reduction is standard algorithm and can be found in [25].

29

6.4 Simplification of eigenvectors search in the

online solver

In Chapter 3 we have showed special properties of the eigenspaces of the multi-
plication matrix in section 3.2. Therefore, we are certain that each eigenvalue is
asocieted with exactly one eigenvector, hence the situation is much simpler then
in the general case.

Moreover, we are interested only in real solutions. That implies that the only
eigenvectors we are interested in are the real one.

6.5 QR algorithm parallelization

We parallelized the standard for dense eigenvalue problem. Since the main source
of parallelization is the batched form, our main objective was to optimize the data
transfer and the control logic.

The resulting implementation is based on the serial code from Chapter 4, and
as such, they inhereted they properties (including accuracy).

We created several kernels. Each of them performing one part of the QR
algorithm:

• transform a real unsymmetric matrix A to the Hessenberg form H

• extract real eigenvalues from the Schur form of the H

• find all real eigenpairs associated with the Hessenberg form

• transform eigenvectors to eigenvectors associated with the input matrix A

first matrix

t 0 t 1 ⋯ t n−1 t jn t jn+1 t jn+n−1⋯ ⋯ t(m−1)n t(m−1)n+1 t(m−1)n+n−1⋯ ⋯

j-th matrix

⋯

m-th matrix

Figure 6.3: the structure of data and threads, each thread is associated with
one column/row of one matrix. Threads are denoted as t in the figure. Matrices
are saved in linear array. Elements of matrices are denoted as a.

6.6 Data and thread structure

The input data are stored in a linear array. The position of each matrix in the
linear array is depicted in Figure 6.3. This representation is used in the global
memory and the shared memory. We can use a macro for accessing elements in
a 2D fashion.

30

It’s a common practise to use one thread per one element of a matrix (e.g.
matrix multiplication [28]). We choose a different organization of threads. The
Figure 6.3 shows that each thread works with one column (or row).

It’s clear from Chapter 4 that the algorithms use increasingly smaller portion
of matrix. This mean that less and less threads will participate in computation.
But since threads are not associated with elements of matrix but columns, the
remaining threads have less work to do.

6.6.1 Hessenberg form

Obtaining the Hessenberg form is an essential preprocessing step. We used house-
holders reflectors as described in Chapter 4. We also collected the transformation
matrix U, which is necessary for obtaining eigenvectors.

We based our implementation on the one in [3]. We store the transformation
vectors in zero elements of constructed Hessenberg matrix and one extra vector.
And we use the thread structure to work at the vector level, we modify whole
vectors at once, rather than per element.

The Euclidean norm of vectors is computed using the reduction [25].

block size

Optimal decomposition is dependent on the thread and data structure. We pre-
fer threads to be aligned on warps. The thread’s block size is computed using
Equation 6.1.

T = min(lcm(Wsize, n),MAX(device)) (6.1)

where T is number of threads in one block, Wsize is the size of the warp and n is the
size of a square input matrix. MAX is a function of a device and represents either
limitations by shared memory (for larger matrix) or device limits for threads per
block .

The minimization is desirable since synchronization is done on the block level.
With more blocks per SM, we have lower penalization from synchronization (as
mentioned in Chapter 2 there are many threads but only few warps work simul-
taneously).

The usage of lcm is given by properties of warps, the idea is to have all threads
working. Additional details are in the section 2.3.

6.6.2 Real eigenvalues

As mentioned in subsection 4.1.1 the real Schur decomposition allows us to extract
eigenvalues. The used algorithm to obtain the upper quasi triangular matrix is
Francis double shift qr algorithm [12].

The algorithm had to be modified in order to allow the synchronization. We
add a counter of finished instances and stop the block once every instance has
finished. This step is necessary but might harm the overall performance, since all
instances in a block are limited by the slowest one. We can control this behaviour
by creating smaller blocks.

The data structure and thread structure are identical with those in .
The control of threads is sketched in Figure 6.4.

31

H 00 H 01 H 02

0 H 11 H 12

0 0 H 22

t p ,…, t n− p−q−1t 0 ,…, t p−1 t n− p−q ,…, t n−1

INACTIVE
THREADS

ACTIVE
THREADS

FINISHED
THREADS

Figure 6.4: QR algorithm parallelization, the algorithm performs the QR
iterations only with the matrix H11. This would normaly mean creating a loop.
We instead activate/deactivate appropriate threads.

We observed that matrix produced by the algorithm is indeed a quasi upper
triangular with a block 1x1 and 2x2 on the diagonal. Unfortunately, due to the
convergence property and the deflation strategy, some blocks of 2x2 elements
represent pair of real eigenvalues.

Because of decoupling (section 4.4). We can simply determine if the eigenval-
ues are real or complex from the 2x2 blocks.

6.6.3 real eigenvectors

We have shown how to use inverse iteration with exact shift to find eigenvec-
tors section 4.12. And once again, we didn’t need to change data and threads
structure.

6.7 Latency hiding

One problem with the GPU is the costly transfer of data from a host to a device
and vice versa. We address this problem by using a page-locked memory (details
in [28]). The Page-locked memory prevent the allocated host memory from swap-
ing. Hence the transfer is faster and asynchronous. The asynchrounous transfer
allows us to use streams and perform computations both on the device and the
host simultaneously. The hybrid computation model is in Figure 6.5.

32

HOST
Stream 1
Stream 2

Stream N

work work

DEVICE

H2D
H2D

work

H2D

work
work

work

HOST
Stream 1
Stream 2

Stream N

work

DEVICE

D2H
D2H

D2H

work work

Figure 6.5: Asynchrounous execution, H2D and D2H are functions performing
data transfer between a host and a device. ”Work” has different meaning for
host and device. ”Work” in the top rectacle means computation of multiplication
matrix for the host and computation of solutions for the device. ”Work” in the
bottom rectangle means appling the results of the solution.

33

34

Chapter 7

Results

We will show performance of implemented algorithms based on the input data
and in-depth analysis of selected kernels.

7.1 Hardware

All test were performed on the GPU NVIDIA GeForce GTX 750 Ti and a single-
core of the Processor Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz.

7.2 The Unsymmetric Eigenvalue Problem

The results are shown for several sizes of matrices. The input matrices are random
nonderogatory matrices. Output are real eigenvectors. Notice periodicity of
results in Figure 7.1 and Figure 7.3. We will address this phenomen in next
chapter. Figure 7.2 shows the impact of memory allocation and memory transfer.

7.2.1 Input Data

Input are random nonderogatory matrices. We generated random diagonal ma-
trices with unique eigenvalues and multiply it by random orthogonal matrix.

The random orthogonal matrix is the orthogonal matrix Q from the QR de-
composition of random matrix. There exist more solid way of finding random
orthogonal matrix [22], but the convergence properties are given by eigenvalues
and we can therefore relax on the distribution of our orthogonal matrices.

7.3 Hybrid solver

The results of hybrid solver are in Figure 7.4, Figure 7.5.

7.4 case study:Relative pose problem

The five-point relative pose problem was tested on two datasets(Figure 7.6,Figure 7.7).
The relative speed up is in Figure 7.8.

35

25 75 125 175 225 275 325 375 425 475
number of instances[-]

10 -3

10 -2

10 -1

10 0

10 1

tim
e[

s]

comparasion between CPU/GPU for different sizes of the input matrix

CPU, n = 10
CPU, n = 31
CPU, n = 57
GPU, n = 10
GPU, n = 31
GPU, n = 57

Figure 7.1:

25 75 125 175 225 275 325 375 425 475
number of instances[-]

10 -4

10 -3

10 -2

10 -1

10 0

tim
e[

s]

GPU overhead, n = 32

CPU
GPU - memory allocation
GPU - memory copy
GPU - kernels

Figure 7.2:

7.5 Selected profiler results

7.5.1 The eigenvalue kernel

We used matrix of size 10 and run the kernel 500 times. Selected results are in
Figure 7.9 and Figure 7.10.

36

25 75 125 175 225 275 325 375 425 475
number of instances[-]

10 -2

10 -1

10 0

tim
e[

s]

The impact of alignment

CPU, n = 31
CPU, n = 32
GPU, n = 31
GPU, n = 32

Figure 7.3:

16 144 272 400 528 656 784 912 1040 1168 1296 1424 1552
number of instances[-]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

tim
e[

s]

Comparasion between serial and hybrid solver

CPU solver
GPU+CPU solver

Figure 7.4:

7.5.2 The triangulation kernel

The number of tested hypotheses is 160, the number of points is 2000. Selected
results are in Figure 7.11 and Figure 7.12.

7.5.3 The sampson kernel

The number of tested hypotheses is 160, the number of points is 2000. Selected
results are in Figure 7.13.

37

16 144 272 400 528 656 784 912 1040 1168 1296 1424 1552
number of instances[-]

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

ru
nt

im
e

ra
tio

[-
]

relative speed up

ratio CPU/GPU runtimes

Figure 7.5:

100 300 500 700 900 1100 1300 1500 1700 1900
number of points[-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tim
e[

s]

RANSAC - performance based on number of points

SS - RANSAC
SP - RANSAC
PP - RANSAC

Figure 7.6: SS - RANSAC: serial implementation; SP - RANSAC: parallel verifi-
cation; PP - RANSAC: parallel verification and solver

38

1 2 3 4 5 6 7 8 9 10
number of points[-] #104

0

5

10

15

20

25

30

35

tim
e[

s]

RANSAC - performance based on number of points

SS - RANSAC
SP - RANSAC
PP - RANSAC

Figure 7.7: SS - RANSAC: serial implementation; SP - RANSAC: parallel verifi-
cation; PP - RANSAC: parallel verification and solver

1 2 3 4 5 6 7 8 9 10
number of points[-] #104

40

50

60

70

80

90

100

ru
nt

im
e

ra
tio

[-
]

RANSAC - relative speed up

ratio CPU/GPU runtimes

Figure 7.8:

39

Figure 7.9:

40

Figure 7.10:

41

Figure 7.11:

42

Figure 7.12:

Figure 7.13:

43

44

Chapter 8

Discussion

In this chapter, we will point at interesting observations and discuss the merits
of proposed methods.

8.1 The QR algorithm

The direct comparison between the GPU and CPU implementation requires cau-
tion. The library function for solving the eigenvalue problem is computing re-
dundant complex eigenvectors. Moreover, there is an associated overhead with
repeatedly calling the serial function inside the loop. The reader should bear this
in mind when reading Chapter 7.

The GPU has the overhead connected with memory allocation(which can be
removed) and memory transactions(which cannot be removed). Both overheads
are shown in Figure 7.2.

Figure 7.1 shows that the speed up is achieved in groups. The group size is
determined by device limits (i.e., if k instances can run simultaneously on the
device the groups have size k).

The results show that a single-core CPU is usually outperformed by the GPU.
However, the difference is not big (usually twice as fast) and the GPU implemen-
tation would be slower than the implementation using multiple CPU threads. It
is because the GPU limits are relatively soon exhausted due to low occupancy
(about 20 %).

8.2 The hybrid solver

The solver speed up in Figure 7.4, even for smaller instances, originate in the
latency hiding. We are not comparing CPU with GPU, but rather a combination
of CPU+GPU with CPU. One advantage is that we can keep the data on GPU
for the following step(the verification).

We have seen in Figure 7.5 that the achieved speed up is, therefore, actually
higher than that for the unsymmetric eigenvalue problem alone.

45

8.3 The RANSAC

The RANSAC mainly profits from the parallelized verification. The excellent
scaling properties in Figure 7.6 make this method truly interesting. Note that
the speed up of the solver is insignificant for selected batch sizes and the number
of points seemingly does not matter.

We have seen the extent of the speed up in Figure 7.8.

8.4 Future work

The verification is currently running on default stream (overlapping with CPU is
disabled). The results in Figure 7.4 and Figure 7.7 suggest that overlapping the
generation of hypotheses with verification might be even more efficient.

An open question remains on whether the QR algorithm is the best option.
Perhaps some simpler algorithm (power iteration, inverse iteration) would achieve
better results. Moreover, the testing of other problems and various RANSAC
modifications should be the next priority.

46

Chapter 9

Conclusion

In this work, we have examined how to speed up the solver provided by the
automatic generator [35].

First, we have shown that since the solver is usually used inside RANSAC
[20] a more pressing matter is the effective verification of the hypotheses. We
suggested and successfully parallelized the verification of the 5-point relative pose
problem hypotheses. The implementation is branchless and considerably faster
(including overhead) for larger data sets. We noticed that the size of the test
set is much less significant, and the runtime is often dictated by overhead and
number of generated hypotheses. We conclude that the resulting method has
excellent scalability.

Next, we concentrate on the automatically generated solvers. We have seen
[20] that the eigenvalue problem is the most time-consuming part. Hence, we
designed a specialized solver of the eigenvalue problem. We used the special prop-
erties of the matrices and modified the known algorithm [12]. We parallelized the
algorithm [12], and we have shown its speed and correctness on random data. The
scalability properties were satisfactory, with open possibilities of improvement.

The predetermined goals were fulfilled to our expectations. The suggested
methods can significantly speed up hybrid systems.

47

48

Bibliography

[1] Mario Ahues and Francoise Tisseur. A new deflation criterion for the QR
algorithm. Technical Report 122, LAPACK Working Note, March 1997.

[2] Derek Wilson Anand Lal Shimpi. Nvidia’s geforce 8800 (g80): Gpus re-
architected for directx 10, 2006. Accessed: 2016-05-24.

[3] Peter Arbenz. The QR algorithm (lecture notes), March 2016.

[4] Zhaojun Bai and James W. Demmel. On a block implementation of hessen-
berg multishift QR iteration. Technical Report 8, LAPACK Working Note,
January 1989.

[5] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.
Computational algebra and number theory (London, 1993).

[6] Karen Braman, Ralph Byers, and Roy Mathias. The multishift qr algorithm.
part ii: Aggressive early deflation, 2002.

[7] Alain Cosnuau. Computation on GPU of eigenvalues and eigenvectors of
a large number of small hermitian matrices. In Proceedings of the Interna-
tional Conference on Computational Science, ICCS 2014, Cairns, Queens-
land, Australia, 10-12 June, 2014, pages 800–810, 2014.

[8] John Little David Cox and Donal O’Shea. Ideals, Varieties, and Algorithms.
Undergraduate Texts in Mathematics. Wiley, 2nd edition, 1997.

[9] John Little David Cox and Donal O’Shea. Using Algebraic Geometry. Grad-
uate Texts in Mathematics. Springer New York, 2005.

[10] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and auto-
mated cartography. Commun. ACM, 24(6):381–395, June 1981.

[11] J. G. F. Francis. The QR Transformation A Unitary Analogue to the LR
Transformation (Part 1 and 2). The Computer Journal, 4:265–271, 332–45,
1961.

[12] Gene Howard Golub and Charles F. Van Loan. Matrix computations. Johns
Hopkins studies in the mathematical sciences. The Johns Hopkins University
Press, Baltimore, London, 1996.

49

[13] Robert Granat, Bo Kagstrom, and Daniel Kressner. A novel parallel qr
algorithm for hybrid distributed memory hpc systems. Technical Report
216, LAPACK Working Note, April 2009.

[14] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[15] Gaël Guennebaud, Benôıt Jacob, et al. Eigen benchmark.
http://eigen.tuxfamily.org/index.php?title=Benchmark, 2011.

[16] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, New York, NY, USA, 2 edition,
2003.

[17] Alejandro Hidalgo-Paniagua, Miguel A. Vega-Rodŕıguez, Nieves Pavón, and
Joaqúın Ferruz. A comparative study of parallel ransac implementations in
3d space. Int. J. Parallel Program., 43(5):703–720, October 2015.

[18] K. E. Spagnoli A. L. Paolini E. J. Kelmelis J. R. Humphrey, D. K. Price.
Cula: Hybrid gpu accelerated linear algebra routines,. SPIE Defense and
Security Symposium (DSS), April 2010.

[19] Lars Karlsson and Daniel Kressner. Optimally packed chains of bulges in
multishift qr algorithms. Technical Report 271, LAPACK Working Note,
August 2012.

[20] Zuzana Kúkelová. Algebraic Methods in Computer Vision. PhD thesis, De-
partment of Cybernetics, Faculty of Electrical Engineering, Czech Technical
University in Prague, February 2013.

[21] Charles F. Van Loan. Introduction to Scientific Computing. The MAT-
LAB Curriculum Series. Prentice-Hall, 2nd edition, 2000. A Matrix-Vector
Approach Using MATLAB.

[22] Francesco Mezzadri. How to generate random matrices from the classical
compact groups. Notices of the American Mathematical Society, 54(5):592 –
604, 5 2007.

[23] NVIDIA. CUBLAS Library User Guide. NVIDIA, v7.5 edition, September
2015.

[24] NVIDIA. cuSOLVER Library. nVidia, v7.5 edition, September 2015.

[25] NVIDIA Corporation. CUDA Samples, 2015. Version 7.5.

[26] NVIDIA Corporation. CUDA toolkit documentation, 2015. Version 7.5.

[27] NVIDIA Corporation. NVIDIA CUDA C best practices guide, 2015. Version
7.5.

[28] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2015. Version
7.5.

50

[29] NVIDIA Corporation. NVIDIA CUDA Compiler Driver NVCC, 2015. Ver-
sion 7.5.

[30] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Texts in
applied mathematics. Springer, 2000.

[31] Philip E. Ross. Why cpu frequency stalled, 2008. Accessed: 2016-05-24.

[32] FooManchu sfackler, jcmacdon and Arnie. How cuda’s abstractions map to
a gpu implementation, 2013. Accessed: 2016-05-24.

[33] E.J.D. Tebbens and Univerzita Karlova. Matematicko fyzikálńı fakulta.
Analýza metod pro maticové výpočty: základńı metody. Matfyzpress, 2012.

[34] P. Trivedi, T. Agarwal, and K. Muthunagai. Mc-ransac: A pre-processing
model for ransac using monte carlo method implemented on a gpu. pages
1380–1383, Aug 2013.

[35] Pavel Trutman. Minimal Problem Solver Generator, Bachelor thesis, 2015.

[36] van Oosten J. Cuda memory model, 2014. Accessed: 2016-05-24.

[37] Radim Šára. 3d computer vision, October 2015.

[38] D.S. Watkins. Fundamentals of Matrix Computations. Pure and Applied
Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2004.

[39] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Monographs on numer-
ical analysis. Oxford: Clarendon Press, 1965.

[40] Ruigang Yang. Cuda memory architecture, 2011. Accessed: 2016-05-24.

51

	Introduction
	Motivation
	Goal
	Thesis structure

	CUDA
	Programming Model
	Host and device
	Kernels
	Thread hierarchy
	Memory Hierarchy

	Compute Capability
	Hardware implementation of the GPU
	Streaming Multiprocessor
	SIMT architecture
	Execution model

	Compilation
	Overview
	PTX
	Just-in-Time compilation
	options

	Automatic generator
	Online solver
	Multiplication Matrix
	RANSAC

	The Unsymmetric Eigenvalue Problem
	Eigenvalue problem
	The real Schur decomposition

	The QR iteration
	Spectral shift
	Decoupling
	Deflation
	Givens rotation
	Householder reflectors
	Hessenberg form
	The single shift QR algorithm
	The double shift QR algorithm
	The double implicit shift QR algorithm
	Eigenvectors

	State of the art
	QR algorithm
	Software resources

	RANSAC

	Contribution
	Parallelization of the model testing
	Generall approach
	Case study: Relative pose problem
	Model testing
	Inliers computation

	Simplification of eigenvectors search in the online solver
	QR algorithm parallelization
	Data and thread structure
	Hessenberg form
	Real eigenvalues
	real eigenvectors

	Latency hiding

	Results
	Hardware
	The Unsymmetric Eigenvalue Problem
	Input Data

	Hybrid solver
	case study:Relative pose problem
	Selected profiler results
	The eigenvalue kernel
	The triangulation kernel
	The sampson kernel

	Discussion
	The QR algorithm
	The hybrid solver
	The RANSAC
	Future work

	Conclusion

