
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

Department of Computer Science

System for analysis of Java
language

Bc. Markéta Badalíková

May 2016

Supervisor: Ing. Martin Filipský

Acknowledgement / Declaration
Nejprve bych ráda poděkovala svému
vedoucímu Ing. Martinovi Filipskému
za jeho neocenitelné rady, podporu
a nezměrnou trpělivost. Mé díky patří
také mé rodině a přátelům, kteří mi
při psaní práce drželi palce a byli tu
pro mě, i když jsem na ně neměla tolik
času, kolik by si zasloužili. V neposled-
ní řadě musím poděkovat také své
kočce, která na mě při psaní této práce
dohlížela svým bystrým okem, pokud
tedy zrovna nepodřimovala.

Prohlašuji, že jsem předloženou práci
vypracovala samostatně a že jsem uved-
la veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 25. května 2016

v

Abstrakt / Abstract
Cílem této práce je vytvořit systém
pro lexikální a syntaktickou analýzu
zdrojového kódu v jazyce Java a práci
s jeho abstraktním syntaktickým stro-
mem (AST). Práce obsahuje přehled
existujících projektů podobného za-
měření, z nichž byl pro tvorbu AST
vybrán nástroj JavaParser, na nějž
práce navazuje. Výsledný systém je
napsaný v jazyce Java, poskytuje gra-
fické uživatelské rozhraní vytvořené
v JavaFX a umožňuje vizualizaci AST,
jeho úpravy, filtraci podle typu uzlů
a vyhledávání podle vzoru.

The goal of the thesis is to implement
a system for lexical and syntax analysis
of source code in Java language and
manipulation with its abstract syntax
tree (AST). The thesis contains a sum-
mary of existing projects with similar
functions, from which JavaParser tool
was chosen to provide generation of
AST and to be used as a foundation of
the application. The resulting system is
written in Java, offers JavaFX graphic
user interface and enables visualization
of AST, modifications of it, filtration by
node type and searching by patterns.

vi

Contents /
1 Introduction .1
2 Problem statement2
2.1 Assignment .2
2.2 Goals .2

2.2.1 Test automation2
2.3 Content of the thesis.3

3 Parsing theory .4
3.1 Purpose of parsing4
3.2 Compilers and interpreters4

3.2.1 Phases of a compiler4
3.3 Lexical analysis6
3.4 Syntax analysis6

4 Existing solutions 11
4.1 Selection criteria 11
4.2 Selected projects 12

4.2.1 Compiler Tree API 12
4.2.2 Eclipse JDT AST 12
4.2.3 ANTLR 13
4.2.4 Spoon. 14
4.2.5 JavaParser. 14

4.3 ANTLR and JavaParser
comparison . 14

4.4 Summary . 17
5 Design . 18
5.1 Requirements. 18

5.1.1 Functional require-
ments . 18

5.1.2 Non-functional re-
quirements 19

5.2 Use cases . 20
5.2.1 AST viewing 20
5.2.2 Node operations 21
5.2.3 Tree editing 21
5.2.4 File operations 22
5.2.5 Searching 22

5.3 Structure of the application . . . 23
5.3.1 Layers and used li-

braries . 23
5.3.2 Core application 25
5.3.3 Graphic user interface . . . 26
5.3.4 Connection between

components 27
6 Implementation. 28
6.1 JavaParser features 28

6.1.1 Types of nodes 28
6.1.2 Visitors 29

6.1.3 Tree traversal 29
6.1.4 Node removal 30
6.1.5 Summary of issues 31

6.2 Data structure dictionary 32
6.3 Main data structures and

function providers. 32
6.3.1 TreeNodes 32
6.3.2 Roles . 33
6.3.3 Visitors 34
6.3.4 Printers. 35
6.3.5 Modes and settings 37

6.4 Core application 37
6.4.1 Analyzer 37
6.4.2 Settings management 37
6.4.3 Parsing 38
6.4.4 Tree building 38
6.4.5 History 39
6.4.6 Node deleting 39
6.4.7 Searching 40
6.4.8 Pattern management 40
6.4.9 Searching by patterns . . . 40

6.5 GUI elements 41
6.5.1 Stages . 42
6.5.2 Tree views and Mes-

sage pane 42
6.5.3 Code areas 42
6.5.4 Graphs 43
6.5.5 Managers 43

7 Testing . 44
7.1 Test configuration. 44
7.2 Test strategy 44

7.2.1 Static code analysis 44
7.2.2 Unit, integration and

system testing 45
7.2.3 Manual testing 46
7.2.4 Negative testing. 48

7.3 Test results . 49
8 Conclusion . 50
8.1 Future work . 51
References . 52

A CD content . 53
B User manual . 54
C Productions used in syntax

analysis example. 56
D List of JavaParser node types . . . 58
E Class diagrams by packages 60

vii

Tables / Figures
4.1. Available parsers overview 11
5.1. Results of pattern search ex-

ample . 19
6.1. Printer tree traversal steps 36
7.1. Parameters of negative test-

ing of file inputs 48

3.1. Phases of a compiler5
3.2. Natural language parse tree7
3.3. Java code parse tree9
3.4. Expression parse tree 10
4.1. Example of ANTLR visual-

ization . 13
4.2. AST parsed by ANTLR 15
4.3. AST parsed by JavaParser. 16
5.1. Example of pattern search

function . 19
5.2. Main use cases diagram 20
5.3. Layers of the application and

the employed libraries. 24
5.4. Data structures of the appli-

cation . 26
5.5. GUI elements 26
5.6. Connections between core

and GUI . 27
6.1. JavaParser ast package 28
6.2. JavaParser visitors 29
6.3. Indistinguishable nodes ex-

ample . 31
6.4. TreeNode hierarchy 33
6.5. Printer example 35
6.6. Application layout 41
B.1. Test window . 54
B.2. Pattern menu. 55
E.3. Core package 60
E.4. File package . 61
E.5. Pattern package 61
E.6. Treebuilder package 61
E.7. Visitor package 62
E.8. Gui package . 62
E.9. Codearea package 63

E.10. Graph package 63
E.11. Stage package 63
E.12. Treeview package. 63
E.13. Node package. 64
E.14. Printer package 64
E.15. Settings package 64

viii

Chapter 1
Introduction

Lexical and syntax analysis are processes essential to comprehension of any given lan-
guage, programming or natural. Both the code used to give commands to a computer
and the human speech exchanged between people have to follow certain rules, making it
possible to transform ideas into words in a way the other party will understand, unless
they want their communication to end up in misunderstanding and confusion.

In the context of natural languages, lexical analysis refers to identification of the parts
of speech, as in which words are nouns, verbs, prepositions and so on. Similarly, pro-
gramming languages need to determine keywords, variable names or literals. Syntax
analysis then checks whether the words are arranged correctly in accordance with the
grammar rules, ensuring there will be a verb in a sentence, or that a variable declaration
will certainly not end up without the variable name. This process is often referred to
as parsing.

Grammar rules are applied by finding plausible relationships between words in the text.
These relationships are arranged in a hierarchical structure called parse tree or abstract
syntax tree (AST). As a curiosity, it may be worth mentioning that Czech children learn
to perform syntax analysis of sentences in their native language by drawing a parse tree
in elementary school.

The goal of the thesis is to implement a tool performing lexical and syntax analysis of
code in Java programming language, providing a visualization of the AST and means
to modify it. To reach this objective, we will explore the parsing process in more
depth firstly, following with a summary of existing projects offering similar functions.
Eventually, we will choose one of them as basis to be extended by the tool. Next part
will cover intended use cases and design of the structure of the application. After that
will follow implementation description and finally the result will be subjected to testing.

1

Chapter 2
Problem statement

Before we delve into the world of parsing and parse trees, we should revise tasks defined
by the thesis assignment, discuss its goals and summarize which topics it should cover.

2.1 Assignment
As stated in the assignment, the goal of the thesis is to implement an application for
lexical and syntax analysis of Java source code.

The thesis should explore existing tools and libraries conducting lexical and syntax
analysis of Java source code. If there are any found, we will evaluate them to determine
whether any of them can be used and extended by the intended tool. In the case of no
project being convenient enough, the tool will have to cover this functionality itself.

The tool should satisfy the following requirements: enable visualization of the AST,
accept source code from the JUnit framework and, as the output, aside from the AST,
provide a separate list of test methods in the given class and their statements. The tool
should be tested by Selenium WebDriver and JUnit tests.

2.2 Goals
The purpose of the resulting tool is to help testers and software quality engineers during
the process of functional test automation with conducting:. linear test script analysis. faster test modification based on patterns.filtering of parameters affecting possibilities of searching for common functions

We will now explain the concept of test automation briefly.

2.2.1 Test automation
Automated testing is a strategy with the goal of replacing manual testing, lowering the
costs of test execution. In contrast to manual tests, automated tests can be executed as
many times and on many platforms as possible, without the need to employ a human
tester. Furthermore, lacking the human factor, they can run for instance at night,
making use of non-productive time slots.

However, these advantages come at a price: as expected, automation is not as flexible
as a human being and tends to shatter with any change of the system under test. This
adds costly maintenance to the already high preparation effort.

Especially challenging task in this domain is simulation of communication between
the user and front-end of the tested system. It is usually solved by recording actions

2

. 2.3 Content of the thesis

performed by the test designer and then extending them by code, which, for example,
asserts the expected results. This adds stability to the otherwise quickly obtained but
not too steady product of recording. However, these improvements bring further high
effort. In conclusion, we can say that test automation is about constantly seeking
balance between those two approaches [1].

2.3 Content of the thesis
Firstly, in chapter 3, the task will be to gain a deeper understanding of lexical and
syntax analysis, to become familiar with the terminology concerning the topic and take
a closer look at how these are conducted by Java language.

Next step, described in chapter 4, would be to formulate criteria of selection of the
existing tools and then conduct the research with the goal of selecting one of them. We
will evaluate results of the selection according to the criteria, and eventually, we will
choose the best candidate.

After that, chapter 5 will outline suggested design of the application. We will analyse the
requirements to produce a list of use cases and a proposal of structure of the application
components. This will be followed by a description of implementation details in chapter
6. The final part, chapter 7, will describe testing of the tool.

As we have mentioned, we will now continue to the next chapter explaining the the-
ory regarding the lexical and syntax analysis and demonstrating the procedures on
examples.

3

Chapter 3
Parsing theory

This chapter will discuss theoretical background regarding the lexical and syntax anal-
ysis, otherwise known as parsing. Initially, we will explain reasons and usage of parsing
in compilers and interpreters, and then we will describe the individual steps of the
processes, demonstrating their course on examples in natural language and Java.

3.1 Purpose of parsing
Parsing is a process determining whether a sequence of symbols abides to the rules of
the corresponding language, and building a parse or syntax tree describing hierarchical
structure of relationships between the symbols in the input text. In other words, parsing
checks whether words arranged in a certain way make sense in the context of the given
language.

Generally, we can consider two types of parsing: of natural languages and of program-
ming languages. In both cases, the goal is to ensure that the source text is eventually
understood either by other human being or a computer that executes the code.

Majority of programming languages used today produce so-called high-level languages.
These are designed more to be understood by people than by computers and it is
necessary to translate them into low-level machine language before the computer can
use them. A bridge connecting these languages is a representation understood by a
computer, usually a parse tree. Programs used to execute this translation are called
compilers and interpreters [2].

3.2 Compilers and interpreters
Compilers and interpreters are language processors used to run computer code. Both
have parsing as an essential part of their routine.

While a compiler uses this representation to generate low-level machine code, interpreter
executes statements from the tree directly without generating any additional code. Due
to this, interpreters are easier to implement and are a good choice for debugging, as they
are able to run the program more quickly and with less effort, whereas their execution
speed is slower than that of a machine language program [3].

3.2.1 Phases of a compiler
Figure 3.1 illustrates stages of a compiler and output of each stage. The first three
phases are called the front-end, last three the back-end, with intermediate code genera-
tion in the middle. The front-end part is the same for the interpreter, stopping at the
middle part and executing the code [2].

4

. 3.2 Compilers and interpreters

Figure 3.1. Phases of a compiler. Courtesy of [4].

We will now briefly describe the front-end stages, as they are related to our area of
interest.

Lexical analyzer. Otherwise called lexer, scanner or tokenizer, the lexical analyzer reads
text of the program letter by letter and converts the sequence of characters into tokens,
symbols corresponding to the symbols of the language, filtering out white space and
comments. Lexical analysis is often performed as a part of syntax analysis, however,
it is actually better to keep them separate, as not to mix two different aspects of the
language. Specifications of lexical grammar are usually formed by regular expressions
[2].

Syntax analyzer. Alternatively called parser, this program performs the parsing pro-
cess. Its purpose is to arrange the tokens to form a syntax tree, according to the
grammar of the language in which the code is written.

Semantic analyzer. Semantic analysis may be called contextual analysis too. It looks
for undeclared variable identifiers and performs type checking, for example examining
whether the variables are used accordingly to their type. To store information about
variables, a symbol table is employed [5]. We will not focus on semantic analysis any
further.

We will now talk about lexical and syntactic analysis in the following sections.

5

3. Parsing theory .
3.3 Lexical analysis

This section will demonstrate lexical analysis using a natural language example, which
will be compared against an example in Java. The natural language example was
inspired by examples from [6].

As we already mentioned in the previous sections, lexical analysis reads the source text
and transforms it into a sequence of tokens. In the context of natural languages, it is
necessary to determine the parts of speech, which serve as tokens in this case. It might
be worth mentioning that the name of the process refers to the fact the words are
compared against the vocabulary, in other words, lexicon of the language, knowledge
of which helps us to recognize the parts of speech.

Firstly, we will try to determine tokens in this simple sentence:

The cat sat on a mat.

.nouns - cat, mat.verbs - sat.prepositions - on.articles - the, a

Now, we will apply the same process to analysis of a short Java code. Before we start,
we should list token types used by the language, used instead of parts of speech, and
examples of them:. identifiers - names of variables, classes.keywords - if, public, instanceof. literals - numbers, strings. separators - commas, brackets.operators - less than, ampersand

Using this knowledge, we can easily determine tokens in this code snippet:

public class Example {

public void example(int a) {}
}

. identifiers - Example, example, a.keywords - public, class, void, int. separators - {}, ()

The identified tokens will now serve as an input of the next stage, the syntax analysis.

3.4 Syntax analysis
In this step, the task is to arrange the tokens obtained by lexical analysis into a parse
tree according to a grammar, illustrating the hierarchy of relationships between them.
Only tokens arranged in a syntactically correct way should make sense in the context
of the language.

6

. 3.4 Syntax analysis

The grammar consists of production rules in the form
N → X1...Xn

where N is an abstract symbol called a nonterminal and X1...Xn is a set of nonterminals
and terminals. Terminals are the tokens. This way, the rules specify possible sequences
of terminal symbols resulting from recursively replacing nonterminals by other symbols
[2].
The process of rewriting nonterminals is called derivation. Beginning from the start
(goal) symbol used as a root, by rewriting every nonterminal with corresponding right-
hand sides of the productions and adding them as children of the nonterminal node
until all of the leaves contain terminals, a syntax tree is built. Reading the leaves from
right to left should result in obtaining the original string.
The rules must work in a way to make it possible for any valid text in the language to
be representable by a syntax tree.
We will now demonstrate the process using examples from the previous section. We
will begin with analysis of the syntax tree of our sentence in figure 3.2.

Figure 3.2. Natural language parse tree.

The tokens are grouped into phrases: noun phrase (NP) contains tokens specifying
properties of the noun, verb phrase (VP) does the same for verbs and prepositional
phrase (PP) connects other phrases with a preposition.
The main parts of a sentence (S) are subject and predicate, usually represented by nouns
and verbs respectively. In this case, the pair is cat - sat and all remaining words are
dependent on them. The sentence is divided into two parts at the root, where a noun
phrase is related to the subject and verb phrase to the predicate.
By defining the structure, the rules of the language further state that some tokens
should not be paired together, e.g. articles have to appear only before the nouns and
nowhere else.
Following list contains productions used in figure 3.2.

S -> NP VP
PP -> P NP
NP -> Det N
VP -> VP PP
Det -> ’the’ | ’a’
N -> ’cat’ | ’mat’
V -> ’sat’
P -> ’on’

7

3. Parsing theory .
A production is formed by a type of node to the left of the arrow and types of children
the node is allowed to have to the right of the arrow. The first node in the list should
be the start symbol, which always has to be the root of the tree; in this case it is S,
as in sentence. We can see that the words itselves are nonterminals, as there are no
productions further deriving them.

When observing the productions, we can see how the parse tree was built according
to them. As the start symbol is S, it will be the root, which should be followed by
the derivation producing NP and VP and so on, until all of the tokens, or the words of
the sentence, appear in the leaves, connected correctly with the rest of the tree. This
approach reflects a parse tree building method called predictive or top-down parsing.
Opposite approach, bottom-up parsing, does it the other way round, by looking for
right-hand sides of productions and rewriting them using inverse derivation until they
reach the start symbol [2].

Basically, the rules should be able to describe every possible parse tree corresponding to
a grammatically correct sentence in the language. Of course, in reality the possibilities
are much broader than in this example. Parsing of programming languages works very
much the same, however, compared to the often highly ambiguous human speech, is
incomparably more definite and easier to decipher for computers.

Now we can look at the Java example in figure 3.3.

As in the previous example, the tree follows rules given by the grammar. The root
symbol, CompilationUnit, representing Java code placed in a file, is defined in the
official grammar specification [7] like this:

CompilationUnit:
[PackageDeclaration] {ImportDeclaration} {TypeDeclaration}

Square brackets denote zero or one occurrence, curly brackets zero or more. This means
a compilation unit may or may not contain one package declaration and an arbitrary
number of import declarations and type declarations. To be sure what type declaration
means, the specification can be consulted further:

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration
;

Continuing like this leads to covering the whole tree. If the reader is interested in
retracing the whole process, they can see the rather lengthy list of productions used in
this example in appendix C.

We should note that the complete specification contains many seemingly unnecessarily
detailed rules which may be not very intuitive to understand. For example, type of an
expression is determined by consecutively comparing the expression against each of the
expression types:

Expression:
LambdaExpression
AssignmentExpression

AssignmentExpression:

8

. 3.4 Syntax analysis

Figure 3.3. Java code parse tree.

ConditionalExpression
Assignment

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression : ConditionalExpression
ConditionalOrExpression ? Expression : LambdaExpression

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression

ConditionalAndExpression:
InclusiveOrExpression
ConditionalAndExpression && InclusiveOrExpression
...

9

3. Parsing theory .
Each of these decisions adds a level to the parse tree. Due to this, parsing some
expressions might result in a tree similar to the one in figure 3.4 representing this code
snippet:

if(a > 5) {}

Figure 3.4. Expression parse tree.

This concludes the introduction to the lexical and syntax analysis. We will now continue
with the research of existing parsers.

10

Chapter 4
Existing solutions

This chapter will evaluate existing projects dealing with parsing of the Java language
and AST generation. The reason for doing this evaluation is to try to choose a solution
that might be used by our intended application.

Firstly, we will state criteria of the selection and then we will introduce the individual
projects. If there are more feasible solutions found, we will compare them to choose the
more appropriate one.

4.1 Selection criteria
We decided the criteria of choice of parser to use in this project to be the following:.must support latest Java version.must be open-source. should support modification of AST. should be able to generate visualization of AST. should be well documented and provide enough examples of use. should be currently active

Seemingly, this functionality is not much often sought after, as examples of use of those
projects and other resources regarding the matter are rather scarce and in many cases
outdated.

We conducted research of this field of interest largely by exploring observations made
by fellow programmers on blogs and forums. Information about projects that satisfied
the criteria most closely is outlined in table 4.1.
parsers Comp. Tree Eclipse JavaParser Spoon ANTLR
forks (16/5/16) - - 159 47 401
Java version 8 8 8 8 8
open source yes yes yes yes yes
modification no yes yes yes no
visualization no no no yes yes

Table 4.1. Available parsers overview.

All tools are written in Java.

First two parsers are parts of larger projects. Compiler Tree API can be found in the
primary Java compiler and Eclipse JDT AST is a part of toolbox Eclipse JDT.

The remaining examples are standalone projects hosting their code on GitHub. Java-
Parser and Spoon are both Java oriented and both support modifications of the AST.

ANTLR is a very popular parser generator and there is Java grammar available for it,
but it is impossible to use it to modify code.

11

4. Existing solutions .
The parser we eventually chose for this project was JavaParser. Reasons are described
in the following sections.

4.2 Selected projects
This section will comment on the candidates in question. Most importantly, we will list
their advantages and disadvantages.

4.2.1 Compiler Tree API

Compiler Tree API 1) is a part of javac, the primary java compiler found in Java
Development Kit (JDK).

It can be used immediately after importing these packages:.com.sun.source.doctree.com.sun.source.tree.com.sun.source.util

As it is a part of JDK, it is not necessary to download any additional libraries to use
it. Its source code is publicly available, as is the rest of javac. However, the API is not
very well documented and there are no official examples of usage. It is possible to find
a few good unofficial ones 2) 3). But still, it is not well applicable to this project, as
there are no indications of support of AST modification.

Advantages:.not necessary to download further libraries.as a part of an official tool should be reliable

Disadvantages:.does not support modification of AST.not well documented. lack of examples of usage

4.2.2 Eclipse JDT AST

Eclipse JDT AST can be found in Eclipse Java Development Tools (JDT). It is not
necessary to run it in Eclipse IDE. It has better documentation than Compiler Tree
API and there is even an official manual, however, it is deprecated 4). There are more
examples to be found, one of the best ones would be a tutorial series featured in 5).

1) Compiler Tree API documentation. http://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/
2) Jakub Holý: Using Java Compiler Tree API to Extract Generics Types. https://dzone.com/articles/

using-java-compiler-tree-api
3) Andrey Redko: Java Compiler API. https://www.javacodegeeks.com/2015/09/java-compiler-api.

html
4) Eclipse Corner Article: Abstract Syntax Tree. http://www.eclipse.org/articles/article.php?file=

Article-JavaCodeManipulation_AST/index.html
5) Eclipse JDT Tutorials. http://www.programcreek.com/2011/01/best-java-development-tooling-

jdt-and-astparser-tutorials/

12

http://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/
https://dzone.com/articles/using-java-compiler-tree-api
https://dzone.com/articles/using-java-compiler-tree-api
https://www.javacodegeeks.com/2015/09/java-compiler-api.html
https://www.javacodegeeks.com/2015/09/java-compiler-api.html
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.programcreek.com/2011/01/best-java-development-tooling-jdt-and-astparser-tutorials/
http://www.programcreek.com/2011/01/best-java-development-tooling-jdt-and-astparser-tutorials/

. 4.2 Selected projects

Unfortunately, many of the examples are outdated and are not compatible with the
current versions.

Advantages:. supports modification of AST.more tutorials available

Disadvantages:.official resources are deprecated

4.2.3 ANTLR
ANTLR 1) is a popular parser generator, meaning it builds a parser of any language
it receives grammar specification of. There is a large list of available grammars of
many programming languages, including Java. Being able to understand more lan-
guages would make it an ideal candidate, it cannot however modify the AST. It is well
documented and the official homepage contains a number of tutorials, there is even an
official reference book. It supports visualization of the AST both as a tree view and as
a diagram.

Example of a custom grammar and its visualization can be seen in figure 4.1. The
example is taken from ANTLR homepage.

Grammar:

grammar Expr;
prog: (expr NEWLINE)* ;
expr: expr (’*’|’/’) expr

| expr (’+’|’-’) expr
| INT
| ’(’ expr ’)’
;

NEWLINE : [\r\n]+ ;
INT : [0-9]+ ;

Input:

100+2*34
ˆD

Figure 4.1. Example of ANTLR visualization.
1) ANTLR. http://www.antlr.org/

13

http://www.antlr.org/

4. Existing solutions .
Advantages:. large community.well documented, many tutorials. support of multiple languages. supports AST visualization

Disadvantages:.does not support modification of AST

4.2.4 Spoon

Spoon 1) is a library dedicated to the analysis of Java code only, allowing modifications
of the AST. It supports visualization in form of a tree view. Nevertheless, there were a
few issues during the evaluation, such as the official page not updating examples with
new versions or the parser not being able to parse the code without imports of libraries
used by the parsed code. These issues were eventually fixed, but they contributed to
favouring the next parser.

Advantages:. supports modification of AST. supports AST visualization

Disadvantages:. examples tend to be not updated

4.2.5 JavaParser

JavaParser 2) is similar to Spoon, but does not support AST visualization. Aside
from that, it has a few tutorials showing the essential functionality, which cover almost
everything needed to work with it. Out of the evaluated parsers, it was the least
problematic one to use with no major disadvantages.

Advantages:. supports modification of AST. fairly active community.good official examples and documentation

4.3 ANTLR and JavaParser comparison
As JavaParser cannot visualize the AST, there was an idea to use JavaParser to make
changes in the AST and then let the resulting code be parsed by ANTLR to produce
visualization. However, comparison of trees produced by both parsers proved a very

1) Spoon - Source Code Analysis and Transformation for Java. http://spoon.gforge.inria.fr/index.html
2) JavaParser by javaparser. http://javaparser.org/

14

http://spoon.gforge.inria.fr/index.html
http://javaparser.org/

. 4.3 ANTLR and JavaParser comparison

important point: that although parsers are based on the same official Java grammar
specification, the results are not necessarily the same.

Figures 4.2 and 4.3 show visualized AST of the very simple following code parsed by
ANTLR and by JavaParser.

package example;

public class Example {

public static void main(String[] args) {
System.out.println();

}
}

Figure 4.2. AST parsed by ANTLR.

It is evident that the tree provided by ANTLR contains far more information than the
other one and on top of that there are many differences in how the nodes are organized.

15

4. Existing solutions .

Figure 4.3. AST parsed by JavaParser.

This is fault of ANTLR not being a Java parser exclusively. JavaParser is tuned up to
process Java only, and thus omits some information, which ANTLR cannot allow to do.
We can see the evidence by consulting the official Java specification [7], by comparing
for example the structure of MethodDeclaration with the respective part of the tree:

MethodDeclaration:
{MethodModifier} MethodHeader MethodBody

MethodHeader:
Result MethodDeclarator [Throws]
TypeParameters {Annotation} Result MethodDeclarator [Throws]

MethodDeclarator:
Identifier ([FormalParameterList]) [Dims]

ANTLR strictly follows the grammar: it lists under the Method Declaration node
both modifiers of the method, its header and its body in nodes bearing the same
label as their specification counterparts. On the other hand, JavaParser does not
have nodes with modifiers and places return type and parameters directly below the
Method Declaration node and not in Method Header.

16

. 4.4 Summary

4.4 Summary
In this chapter, we have conducted evaluation of the currently most popular open-source
parsers of the Java language. After finding out that most of them do not provide enough
resources explaining how to use them, the best choices ended up to be ANTLR and
JavaParser.

ANTLR provides the most support, however, it cannot be used for modifications of the
AST, which is an essential feature of our intended tool. However, not giving up com-
pletely on it, we considered using it for visualization of AST generated by JavaParser.
This way, we found out that AST provided by ANTLR contains much more details,
rendering the two representations incompatible.

This observation lead to the conclusion that JavaParser will have to be accompanied by
a proper visualization provider. This might actually be a good thing, as the application
will have its own graphic user interface and including foreign elements in it might prove
to be problematic.

Currently, it is not quite possible to determine whether lighter AST provided by Java-
Parser will prove to be a good choice. For now, we can surely confirm that it is far
more transparent, especially for people not familiar with the grammar specification.
However, whether it really is better fitting will be proven by time.

Now that we have chosen our parser, we can advance to designing our application in
the next chapter.

17

Chapter 5
Design

This chapter describes requirements the resulting application should accomplish, defines
possible use cases and suggests structure of the components.

5.1 Requirements
In this section, we will elaborate requirements stated in the assignment and their further
expansions, and suggest how they should be satisfied.

Some of the requirements were already mentioned in chapter 4, where we described
criteria of selection of parsers. Our choice, JavaParser, fulfils the requirement of AST
modification, however, it does not support AST visualization, for which our tool will
have to implement its own means.

5.1.1 Functional requirements
Perform lexical and syntax analysis of the code and create AST.

This functionality will be provided by JavaParser.

Visualize AST.

The AST should be accessible from some kind of visualization, probably an expandable
tree view and a diagram like the ones available in ANTLR (figure 4.1). Representations
will enable selection of nodes and there should be always the same node selected in both
of them, meaning they should be connected.

Present connection between nodes and their representation in code.

The source code should be viewable while working with AST and it should be possible
to select AST nodes by clicking on their location in the code and vice versa.

Filter out nodes by type.

The user should be given an opportunity to choose types of nodes that will not be
visible in the tree.

Render list of tests in the given class.

Tests in JUnit framework are denoted by @Test annotation. This means that the
parser will process annotations, from which the application will choose the ones with
the correct name.

Modify AST: create, edit or delete nodes.

Both create and edit operations will be administered by simply editing the code in
a provided editor, which should be the most intuitive way, as there are many types
of nodes and choosing and placing them in the right context would require decent

18

. 5.1 Requirements

knowledge of the grammar, resulting in unnecessary complexity. Node removal can be
executed by editing the code as well, but at the same time it will be possible to delete
nodes by selecting them from the tree. To avoid mistakes and confusion, before deleting
the nodes will be visibly marked in all of their representations (list, diagram, code).

There is no requirement to check undeclared variables.

Search in AST by criteria.

The application should make it possible to search for nodes meeting given criteria (for
example node name).

Search in AST by patterns.

By being provided a sequence expected to be found, the application will search the
AST for occurrences of the given sequence and visibly mark the results.

The pattern idea is illustrated in figure 5.1 and table 5.1. The required sequence in this
example is BC.

Figure 5.1. Example of pattern search function.

result 1 B1C1
result 2 B1C2
result 3 B1C3
result 4 B2C4

Table 5.1. Results of pattern search example.

5.1.2 Non-functional requirements

Implement in Java.

The tool should be written in Java language.

Provide graphic user interface.

To make working with the tool as comfortable as possible, the application should be
controlled through a graphic user interface (GUI).

Accept JUnit source code.

JUnit framework does not contain any elements uncommon for plain Java. It relies
heavily on annotations, which JavaParser supports.

19

5. Design .

Figure 5.2. Main use cases diagram.

5.2 Use cases
We derived the set of main use cases from the requirements described in the previous
section, appending some additional ideas. They are illustrated in figure 5.2. In the
following sections, we will describe the use cases further and illustrate usage of the
more complicated functions by scenarios.

5.2.1 AST viewing

View AST.

The user will be able to view the AST representation. It should be always visible in
the application, without requiring any additional steps.

View code.

The user may browse the code belonging to the AST, connected to it in a manner that
location in the code matching the currently selected node will be highlighted.

View list of tests.

The tests will be visible in the AST as any other node. On top of that, they may be
viewed separately in a list containing only test methods.

20

. 5.2 Use cases

View class list

The application will provide a list of node types currently present in the code.

Filter out classes.

The application should be able to filter out given types (classes) of nodes. This func-
tionality will be administered by the class list. The user might use it to choose types
of nodes that should not be visible in the AST.

Note: Nodes should be filtered out in a way that their children will be appended to
their parent.

1. The user will choose types of nodes to filter out.
2. The user will confirm their choice.
3. The system will reload the representations of AST to match the selection.

Change display modes.

The application will provide the possibility of altering display of some elements:.whether nodes should be represented by their type, name or both.whether the class list should be ordered simply by the alphabet or by the type
hierarchy

5.2.2 Node operations
Select node.

The user might select a node in either representation of the AST), which will highlight
it in the other ones.

Mark or unmark node.

The nodes may be marked by one of the two types of markers:.delete - marks node to be deleted or a node in the pattern tree that should be marked
to be deleted when found. search - marks either AST nodes that should serve as search roots or node types in
the class list that should be searched for

5.2.3 Tree editing
Edit code.

The source code loaded in the application might be edited in an embedded editor. After
editing, the code will be parsed again, updating the AST.

1. The user will edit the code in the editor.
2. The user will confirm their changes.
3. The system will reparse the code and reload the representations of AST to match

the edited code.

In case the changes made by the user would render the code unparseable, the editor
will announce the problem and will not save the changes.

21

5. Design .
Delete node.

The user might delete any node from the AST. They will first mark the node to be
deleted and then confirm the selection, which will delete the nodes and reparse the
AST.

1. The user will choose node or nodes to be deleted.
2. The user will confirm the selection of nodes to be deleted.
3. The system will delete the nodes and reload the representations of AST.

Undo or redo.

States of the AST between edits are stored and it should be possible to move backwards
or forwards between them.

1. The user will attempt to go back or forward in history.
2. The system will take the desired AST and reload the representations of AST accord-

ing to it.

In case it is not possible to undo or redo, the application will notify the user.

5.2.4 File operations
Open file.

The application should provide a way to open the file to be parsed and give appropriate
feedback in case it is unparseable.

1. The user will choose a file to be opened.
2. The system will parse the code in the file and provide the AST representations.

If the file does not exist or the code in it is not valid Java code, the application will
notify the user.

Save file.

Resulting code can be saved to a file.

1. The user will choose a name for the saved file.
2. The system will print the code representation of the AST root into the file.

5.2.5 Searching
Search.

The application should offer the user searching for nodes in the AST by the following
criteria:.name - identifier of the node. class - node type. root - node from which the search should start

Any of the criteria can have multiple values.

1. The user will enter the criteria in the following ways:

22

. 5.3 Structure of the application

.name will be entered into a text field. class will be marked in the class tree. root will be marked in the AST

2. The system will return a list of nodes satisfying the criteria.

Furthermore, the user might search by patterns.

Create search patterns.

A pattern is a tree denoting a sequence which should be found in the AST. It will be
possible to state whether the found node has to be a direct descendant of the node of
the type stated by the previous pattern node. Node in a pattern can be marked for
deletion, resulting in all found occurrences to be marked the same.

The user should be allowed to edit the pattern trees by adding or deleting nodes in
them.

Add node to the pattern tree.

The user should be able to add a node to the pattern tree. Either a root node of a new
pattern tree or a child of an existing pattern node can be added.

Remove node from the pattern tree.

The user might remove a node from the pattern tree. Children of the removed node
will be connected to its parent.

5.3 Structure of the application

This section will describe the structure of the main parts of the application: the core
application and the the graphic user interface (GUI). The core will be usable inde-
pendently from the GUI, which will use an instance of the core to perform its tasks.

Firstly, we will state layers of the application and external libraries used by them. After
that, we will describe components of the main parts.

5.3.1 Layers and used libraries

Layers of the application with external libraries employed by them are illustrated in
figure 5.3. We will introduce them in the following sections, which also describe how
and why they are used by the application.

23

5. Design .

Figure 5.3. Layers of the application and the employed libraries.

5.3.1.1 Business layer

As JavaParser was already discussed in 4.2.5, we will explain usage of Reflections 1)
It is a Java library providing, for example, collection of subtypes of a given class or
elements annotated by a given annotation.

Its usage looks like this:

Reflections reflections = new Reflections("package");
Collection<? extends Class> set = reflections.getSubTypesOf(C.class);

We need to employ this library to retrieve list of subtypes of Node class from JavaParser,
which will be used, for example, in the class list used to choose node types to be filtered
out.

5.3.1.2 Presentation layer

GUI for the application will be written using JavaFX library, which is bundled with
JDK. Its elements can be found in packages beginning with javafx. It is intended as
a replacement for Swing [8].

To make work with the library more comfortable, it is possible to use FXML files, used
to describe element arrangement in the layout using XML. Furthermore, FXML files

1) Reflections library.. https://github.com/ronmamo/reflections

24

https://github.com/ronmamo/reflections

. 5.3 Structure of the application

can be managed by Scene Builder tool 1), which provides a GUI to design the layout
in the WYSIWYG way.

We chose this platform for the GUI because it is a native Java library, which should
allow for maximum compatibility with our Java application.

Abego Treelayout 2) is a Java library that calculates layout of nodes of an arbitrary
tree from input values like width and height of nodes and horizontal and vertical gaps
between them. It guarantees the edges will not cross each other. Data obtained from
the library can then be used to draw a tree, completely separating the drawing process
from assembling the layout.

ANTLR parser generator mentioned in chapter 4.2.3 uses abego TreeLayout for its AST
visualization. This made us choose this library, for we wanted to achieve a similar look
of the tree. Another important point was that it is independent from the drawing
provider, because other solutions usually relied on Swing.

RichTextFX 3), written in Java, provides a base for rich-text editors and code editors.
The application will use its CodeArea element for displaying and editing source code.
Its configuration will be based on a demo from the GitHub page 4).

As these functions were exactly what we needed, we decided to use the library in our
application.

The editor provides exactly the functions we need in our application, for example:. line number display.undo and redo operations. immediate keyword highlighting. caret position retrieval

5.3.2 Core application
Figure 5.4 lists the main data structures used by the business layer. When a new
source code is loaded into the system, structures depicted in the Core application state
component have to be reset. State of the application in this context will be defined as
objects related directly to the AST currently managed by the application.

An exception are the two remaining structures pictured out of the state component:
List of filtered classes remains the same for each session and the same is true for the
Pattern tree. Both will be stored in a file to persist between the runs of the application.

Compilation unit is the root of the current AST, as provided by JavaParser.

AST is a structure encapsulating nodes of the JavaParser AST. There are two main
reasons not to use the structure provided by JavaParser directly:. it is necessary to store references to the node representations in the GUI (graph

diagram, items in the tree view). tree filtering
1) Scene Builder. http://treelayout.sourceforge.net/
2) abego TreeLayout. http://treelayout.sourceforge.net/
3) RichTextFX. https://github.com/TomasMikula/RichTextFX
4) JavaKeywords.java.: https://github.com/TomasMikula/RichTextFX/blob/master/richtextfx-demos/

src/main/java/org/fxmisc/richtext/demo/JavaKeywords.java

25

http://treelayout.sourceforge.net/
http://treelayout.sourceforge.net/
https://github.com/TomasMikula/RichTextFX
https://github.com/TomasMikula/RichTextFX/blob/master/richtextfx-demos/src/main/java/org/fxmisc/richtext/demo/JavaKeywords.java
https://github.com/TomasMikula/RichTextFX/blob/master/richtextfx-demos/src/main/java/org/fxmisc/richtext/demo/JavaKeywords.java

5. Design .

Figure 5.4. Data structures of the application.

We could theoretically evade the first issue by storing the references by the setData
method the JavaParser nodes offer, however, managing proper structure should be
easier.

The second reason is more insidious: it is necessary to deal with occasional holes in the
tree, which will appear if a node is filtered out. We could solve this simply by skipping
the nodes when a representation is being built, however, in case the filtered tree would
be needed again, the same process would have to be repeated. This way, the filtered
tree can be stored and reused.

Class tree is a tree holding node types appearing in the AST. It will be constructed after
building the filtered AST, as through this process the present classes will be detected.

History is an object storing previous states of the AST.

Search set is a set of nodes that are currently marked to serve as search roots. A node
should not be in the search set and delete set at the same time.

Delete set is a set of nodes that are marked for deletion.

5.3.3 Graphic user interface
Analogous to the case of core application, figure 5.5 depicts elements of the presentation
layer that store information about the state of the loaded AST.

Figure 5.5. GUI elements.

AST tree view is an expandable tree view of the nodes in the tree.

26

. 5.3 Structure of the application

AST graph is the diagram version of the tree view.

Class tree view contains the list of the appearing node types. It shall function as a
checkbox form to filter out redundant classes.

Test list is a separate list containing only method declarations conforming to the JUnit
test definition.

Code editor shows the parsed code and it should be possible to use it to edit the code.

Pattern tree view contains the list of saved patterns.

5.3.4 Connection between components
The core application will be independent from the GUI, whereas the GUI will use an
instance of the core and mirror its structures. We can observe connections between
core and GUI structures in figure 5.6.

Figure 5.6. Connections between core and GUI.

Now that we know what our application should theoretically look like and what func-
tions it should have, we can move onto the implementation process.

27

Chapter 6
Implementation

This chapter will describe implementation details of the final application. Firstly, we
will explore JavaParser to find out about its functions and how we could employ them.
After that, we will explain how our application is implemented, beginning with data
structures and function providers used across the application. Then we will proceed
to describing the core, building a new tree first and continuing with the remaining
functions. Finally, we will explore the GUI and its elements and functions.

Class diagrams of each package can be found in appendix E.

6.1 JavaParser features
JavaParser is the most essential component of the application, as it provides the AST
the rest of applications works with.

We will look into how JavaParser works and how we may incorporate its functionality
in our application.

6.1.1 Types of nodes

Figure 6.1. JavaParser ast package.

Nodes of the AST are represented by instances of the Node class. We can find their
implementations in the ast package, diagram of which we can see in figure 6.1. The
root node in every AST is of type CompilationUnit.

There are a few interfaces to make tasks with nodes having similar attributes easier:
DocumentableNode, NamedNode and TypedNode. This project makes use of NamedNode,
which is implemented by nodes that have NameExpr as their child.

Each node has a reference to its parent and owns a list of its children.

Nodes contain coordinates of the portion of the code belonging to it: begin line, begin
column, end line and end column.

We can assign an Object to the node through setData method.

For reference, complete list of Node types can be found in appendix D.

28

. 6.1 JavaParser features

Figure 6.2. JavaParser visitors.

6.1.2 Visitors
Visitors, as the name suggests, use the Visitor pattern to be able to perform a specific
action for every type of node. The interfaces have visit methods for each of the types
and each type has an accept method to run the visitor with itself.

public <A> void accept(VoidVisitor<A> v, A arg) {
v.visit(this, arg);

}

It is possible to create custom visitors implementing the GenericVisitor or VoidVisitor
interface, or extending one of the Adapter classes if not all visit methods are to be
overriden.

The arg argument can be used for an arbitrary object.

6.1.3 Tree traversal
There are two ways how to perform tree traversal.

The first approach is to use getChildren method of every node. This is employed by
the class TreeVisitor (not included in the visitor package), which simply recursively
calls the visiting method on all children of the node until there no unvisited children.
We may use it when it is not necessary to consider type of the node, thus not being
able to access specific attributes of the node without casting them to a subtype.

public void visitDepthFirst(Node node) {
this.process(node);
Iterator var2 = node.getChildrenNodes().iterator();

while(var2.hasNext()) {
Node child = (Node)var2.next();
this.visitDepthFirst(child);

}
}

The second approach uses visitors. To traverse the tree, they call the accept method
on every type of their attributes separately. This way, we know the type of child in
advance, unlike in the case of getChildren approach.

29

6. Implementation .
Example: visit method from VoidVisitorAdapter for ForeachStmt

@Override
public void visit(final ForeachStmt n, final A arg) {
visitComment(n.getComment(), arg);
n.getVariable().accept(this, arg);
n.getIterable().accept(this, arg);
n.getBody().accept(this, arg);
}

6.1.4 Node removal
The method of removing nodes from the AST suggested in JavaParser manual is to have
the node found by a visitor extending the ModifierVisitorAdapter. Return value of
methods of this visitor is the node on which the method has been called. Node can be
removed by instead returning null.

Example from the official manual 1):

Task is delete a=20 from here:

class D {
public int foo(int e) {

int a = 20;
}

}

class MyVisitor extends ModifierVisitorAdapter {

@Override
public Node visit(VariableDeclarator n, Node arg) {

if (n.getId().getName().equals("a")
&& n.getInit().toString().equals("20")) {
return null;

}
return n;

}
}

In this manner, any type of node should be deleted. The easiest way to do this would
be to make a visitor which deletes node accepting the visitor, equal to the node given as
arg. This is necessary because the visitor has to be accepted by the parent of the node
for the removal to actually happen, meaning that without the comparison the parent
would be removed instead.

@Override
public Node visit(VariableDeclarator n, Node arg) {

if (n.equals(arg)) {
return null;

}
return n;

}

1) JavaParser manual. https://github.com/javaparser/javaparser/wiki/Manual

30

https://github.com/javaparser/javaparser/wiki/Manual

. 6.1 JavaParser features

However, there is an issue: some nodes are tied to their parents in a way that deleting
them disrupts the code and renders it unparseable. Unfortunately, this property is not
defined by the type of the node, but rather by relationship between type of the node
and type of its parent.

Example: Considering example in figure 4.3, there are two nodes of the type NameExpr:
example and System. They appear in these parts of the code:

1) package example;

2) System.out.println();

If we remove example, the declaration will be syntactically incorrect, as package key-
word has to be followed by its identifier. On the other hand, there is nothing wrong
about out.println().

Alternatively, it is possible to delete nodes without using ModifierVisitorAdapter
by using setters of the parents to set the respective attribute to null, or, in case of
attributes that are grouped in lists, by removing them from the collection.

To determine which node types are deletable, it is necessary to consult ModifierVisi-
torAdapter and see which attributes can be set to null by it.

It is impossible to delete nodes by removing them from the collection obtained by
getChildrenNodes.

6.1.5 Summary of issues

6.1.5.1 Lack of universal delete method

As we already discussed in the Node removal section, there is no way to remove nodes
uniformly and at the same time not damage the code. It will be necessary to develop
a solution that will consider context from which the node is being deleted.

6.1.5.2 Indistinguishable nodes

In some cases, there are no means of telling children nodes of the same type apart aside
from their order. For example:

Scope.method(arg1, arg2);

Figure 6.3. Iindistinguishable nodes example.

As seen in figure 6.3, all of the children of the MethodCallExpr are NameExpr nodes.
There is no way to retrieve the information that the first node represents scope and the
other two are arguments; all of them could very well be arguments.

31

6. Implementation .
6.1.5.3 Necessity of double-parsing

JavaParser removes empty lines inside blocks, which is not an issue, however, this
removal happens only when the nodes containing them are printed using toString
method. The numbers of lines and columns stored are from the version with empty
lines not yet removed. To keep up with this difference it is either necessary to use the
original code instead of the printed one, or to parse the CompilationUnit again to
update the numbers.

Similiar problem happens with deleting. When a node is deleted, the numbers will not
update until the CompilationUnit is parsed again.

6.2 Data structure dictionary
To allow the reader to have better orientation in various elements used by the applica-
tion, we will provide a little dictionary. From now on, every element will be referred to
by the name stated here.

.Node - Node instance used by JavaParser.TreeNode - TreeNode instance encapsulating Nodes.CompilationUnit - CompilationUnit instance, which is the root of the AST provided
by JavaParser, formed by Nodes.Filtered AST - AST representation consisting of TreeNodes.Class tree - node type hierarchy consisting of TreeNodes.Pattern tree - node representing the patterns consisting of TreeNodes.Filtered classes - list of filtered out classes.Search set - set of TreeNodes marked as search roots.Delete set - set of TreeNodes marked for deletion.Undeletable set - set of TreeNodes marked as undeletable. Appears in GUI only.

6.3 Main data structures and function providers
In this section, we will describe the data structures and function providers used at
various places in the application. Firstly, we will describe TreeNode, which is the struc-
ture encapsulating Nodes. Then we will mention Roles, continuing with Visitors and
Printers, used to transform TreeNodes into different representations. Finally, Modes
and contents of settings package will be mentioned.

6.3.1 TreeNodes

TreeNodes are found in package analyzer.node, which contains their hierarchy.

Every node used in the application is either a Node or a TreeNode. They are used in
these cases:

.Filtered AST.Class tree.Pattern tree

32

. 6.3 Main data structures and function providers

Each of these trees has a corresponding JavaFX TreeView in the GUI. Because of this,
each TreeNode contains a reference to its TreeItem, which is an object appearing in the
TreeView.

The main usage of the trees is to transmit them from the core, where they are formed,
to the GUI, where they are processed to be displayed.

TreeNodes are connected to their GUI representations via various means, depending on
the type of the TreeNode. We can see these connections in figure 6.4.

Figure 6.4. TreeNode hierarchy.

In GUI, NodeTreeNodes appear with titles in this format: ROLE Class (name)

NodeTreeNode instance encapsulates references to other node representations: Node,
tree item node and graph node, and appears in the Filtered AST representation. These
connections make it possible to highlight the other nodes when one of them is selected.
As Node contains coordinates of the node in the code, the corresponding part can be
highlighted in the code too.

If the Node of the NodeTreeNode has a feasible identifier, it is adopted by the Node-
TreeNode. The identifier is obtained via ToStringVisitor.

They are comparable by their position in the code.

ClassTreeNode differs from NodeTreeNode by hosting a reference of a class instance.
They are used in Class tree and Pattern tree. ClassTreeNodes in the Class tree are not
allowed to have a name. In the Pattern tree, they can have the searched name.

6.3.2 Roles

Some TreeNodes may contain reference to a Role object, hosted in analyzer.node.
Roles are the answer to one of the JavaParser issues described in 6.1.5: the indistin-
guishable nodes. If a node type has more attributes of the same type, the will be
assigned a role, which will make it possible to tell them apart. For example, children
of MethodCallExpr will receive M_SCOPE and M_ARGUMENT roles.

33

6. Implementation .
6.3.3 Visitors

Our visitors extend the JavaParser ones described in 6.1.2. The visitors are grouped
into three packages: analyzer.core.visitor.name, analyzer.core.visitor.role
and analyzer.core.visitor.delete. They provide functions that need to be different
for every type of Node.

Visitors are always used with Nodes and not TreeNodes.

6.3.3.1 Name visitors

AbstractNamedNodeVisitor is a base for visitors used to operate with Node identifiers.
This visitor visits Nodes that are implementing NamedNode interface, making access
to their names uniform, as all of them implement the getName method. The visit
methods are virtually the same:

@Override
public void visit(AnnotationDeclaration n, Node arg) {

if (processNamedNodeAndContinue(n)) {
super.visit(n, arg);

}
}

The result of abstract method processNamedNodeAndContinue can decide whether chil-
dren of the node should be visited by calling super.

ToStringVisitor retrieves name of the Node depending on its type. It extends Abstract-
NamedNodeVisitor and overrides further visit methods of Nodes that have attributes
for which having a name makes sense. For example, a block will not have a name, while
a binary expression can be represented by its operator.

Nodes without a name must have an empty visit method so they would not use the
name of a descendant, called by the original method.

NameSearchVisitor, on the other hand, always has to visit all descendants, as its
purpose is to find all Nodes of the given name or names. Aside from names it checks if
the Node is of one of the given classes if they are provided.

6.3.3.2 Role visitors

CurrentRoleVisitor finds out role of the given node in the context of its parent.

AbstractChildrenNodesVisitor visits nodes which might have nodes with roles as their
children. It is extended by RoleSearchVisitor, which, similarly to NameSearchVisitor
searches for nodes with given roles, names and classes at the same time.

There is a separate search visitor for searching for given roles, as there are less node
types with a role than those with a name, making the search more efficient.

6.3.3.3 Delete visitors

AbstractDeleteVisitor is a base of visitors used to delete nodes. Visit methods do
not use super calls, as the visitor is always accepted by the parent of the node to be
deleted and further propagation is not desired. They contain method calls to process
collections, as these can be processed uniformly, unlike single attributes, which have to
be accessed in the extending classes.

34

. 6.3 Main data structures and function providers

Example:

@Override
public void visit(AnnotationDeclaration n, Node arg) {

processCollection(n.getAnnotations(), arg);
processCollection(n.getMembers(), arg);

}

CheckDeletableVisitor checks whether a node is of a type that can be deleted from its
parent. It does so by trying to find the node among the attributes of its parent and if
it not found, it means that the node is impossible to delete.

DeleteVisitor deletes a node from its parent. Nodes contained in collections are removed
from them, single attributes are set to null.

Example:

@Override
public void visit(AnnotationDeclaration n, Node arg) {

if (n.getJavaDoc() != null && n.getJavaDoc().equals(arg)) {
n.setJavaDoc(null);

}
super.visit(n, arg);

}

Super is called for the collections to be handled by AbstractDeleteVisitor.

6.3.4 Printers

Printers, placed in analyzer.printer, receive a TreeNode, which is a root of a tree,
and build a new representation of it while traversing it.

All printers extend AbstractPrinter class, which performs DFS traversal using stack.
DFS order is essential to keep connection between parents and children.

Unless order of the children of the node added in each loop is not reversed, the resulting
tree will be mirror reversed. However, in majority of cases, the tree, which was build
as a mirror image as well, will be passing through the printer, meaning it will return
to its correct order. Due to this, children are not being reversed in this case.

Steps of the process are demonstrated in table 6.1, showing traversal of the tree in
figure 6.5.

Figure 6.5. AbstractPrinter example.

35

6. Implementation .
expected actual stack

A A B H
B H B
C B C D G
D G C D
E D C E F
F F C E
G E C
H C

Table 6.1. Printer tree traversal steps.

StringPrinter prints text representation of the tree. It is used for writing the pattern
to a file. Tree in figure6.5 would be printed like this:

A
-B
--C
--D
---E
---F
--G
-H

Number of dashes means depth of the node.

GenericItemPrinter produces TreeItems to be placed in a TreeView. The most impor-
tant part of its algorithm determines in what relationship the current and the newly
created node are. We can observe it in this code snippet:

if (depth > curNodeDepth) {
currentItem.getChildren().add(item);

} else if (depth < curNodeDepth) {
TreeItem<T> parent = currentItem.getParent();
for (int i = 0; i < curNodeDepth - depth; i++) {

parent = parent.getParent();
}
parent.getChildren().add(item);

} else {
currentItem.getParent().getChildren().add(item);

}

In the first case, depth of the new node is greater than depth of the other. This means
the new node is a child of the previous.

Second case shows situation where depth of the new node is lower. This means that
its parent appeared earlier in the hierarchy. The difference of depths denotes which
ancestor it is.

Third case, in which the depths are equal, means that the nodes are siblings.

NodeItemPrinter extends the previously described GenericTreePrinter. It fills the
nodesOnLine map, which keeps trace of nodes appearing on each line of code. This
enables to determine which portion of code should be highlighted when we click in the
code editor.

36

. 6.4 Core application

CheckBoxItemPrinter prints the class TreeView. Additionally, it keeps map of classes
pointing to their TreeItems (as it is impossible to place the reference in a Class object)
and manages changes in the list of filtered out classes. Each TreeItem has a checkbox
atached, which serves for managing filtered out classes.

ClassItemPrinter prints plain TreeItems used in pattern TreeView.

GraphPrinter fills the tree to be used by abego TreeLayout, which prepares the layout
for the AST graph.

6.3.5 Modes and settings
Modes hold the current state of the application modes. These are the following:.toString - whether the TreeNodes should be represented by their type, name, or

both.classListHierarchical - whether the class tree should be hierarchical or flat.searchDirect - whether search should look for nodes suiting the criteria only among
children of the search root or not

Package settings contains various constants like file locations, CSS style classes, error
messages and currently applied modes.

Files contains locations where the files with recently opened file, list of filtered classes
and pattern tree should be found.

Gui contains locations of FXML and CSS files and icons, names of CSS style classes
and dimensions used by the tree layout.

Messages consist of strings with messages notifying the user of success or failure of
their actions.

6.4 Core application
In this section, we will describe functions of the core application, which can be found
in analyzer.core package.

6.4.1 Analyzer
Main class of the core application is analyzer.core.Analyzer, serving as a front con-
troller receiving all requests from the GUI and delegating them to responsible services.
Moreover, it holds objects storing the current state of the AST. Their composition is
almost identical to the one proposed in figure 5.4, with the only difference being it
contains list of test methods and both flat and hierarchical class tree at the same time.

6.4.2 Settings management
The application saves the following data into files to make them available between the
runs of the application. Those are:. location of the last loaded file. list of the filtered out classes.Pattern tree

37

6. Implementation .
To write them into a file, FileSaver is used. If they are deleted, they will be created
anew.

SettingsLoader loads the files on a new run of the application. If a non-existent type
name appears in the filtered out classes list, it will be discarded. Similarly, Pattern-
Loader loads the saved patterns in StringPrinter format:

---ROLE Class (name)

Number of dashes means depth of the node. The algorithm to assemble the tree is
similar to the one employed by GenericTreePrinter.

As the node title can have one to three words, it is necessary to determine what the
words mean:.3 words: role, class, name.1 word: class.2 words: either role and class or class and name

6.4.3 Parsing
Parsing is provided by Parser in analyzer.core.file class. It uses JavaParser to parse
a provided file or a string. In case the input is unparseable, it returns null instead of
CompilationUnit.

Aside from initial loading of the code, parsing occurs in these situations too:.after a Node is removed.after the code is edited by the code editor

Reasons to this were elaborated on in 6.1.5.

6.4.4 Tree building
Tree builders can be found in analyzer.core.treebuilder. When CompilationUnit
is ready, a NodeTreeNode filtered AST has to be built by FilteredTreeBuilder.

Similarly to the printers, the Node tree is traversed and rebuilt with NodeTreeNodes,
omitting filtered out nodes. It is built as a mirror image of the original and by passing
through a printer later, it is mirrored again.

During the process of building the filtered AST, a list of node types appearing in the tree
is acquired. Also, the NodeTreeNodes are assigned roles using the CurrentRoleVisitor.

The Node tree traversing algorithm uses these objects:.Filtered classes.a stack. collection of already visited nodes. collection of present nodes.parent NodeTreeNode

It begins with inserting the CompilationUnit into the stack. It follows these steps:

1. Get reference to the last node in the stack.

38

. 6.4 Core application

2. If the node is in the visited collection, remove it from the collection, pop it from the
stack, set parent to its parent and continue to the next loop.

3. Otherwise add the current node to the visited collection, create new NodeTreeNode
(unless it is filtered out), detect its role and append it to the parent node.

4. Add children of the node to the stack.

After the filtered AST is built, it is time to build the class tree with ClassTreeBuilder.
To do this, the ClassMap is needed. It retrieves the Node subtypes using the Reflections
library and stores them in a map connecting their names with their class objects. This
eliminates the need to instantiate the classes from a string, which can be problematic.

To build the flat class tree, we just loop through the classes in the ClassMap and append
them as new ClassTreeNodes to the root, in case they are in the list of present nodes.

When building the hierarchical class tree, we need to first obtain a full hierarchical class
tree, which will be then filtered to contain only appearing nodes. This is conducted by
looping through the list of classes and by retrieving superclass of each node, consec-
utively assembling the tree. After that, we will traverse the tree, removing the nodes
that do not appear in the code.

While the class trees are being built, each of the classes is checked for having roles as
their children. These are appended to the class nodes with a ClassTreeNode containing
the role and Node class. Roles are obtained by RoleDictionary, which returns roles
after receiving name of the parent class, as in this case we cannot use a visitor without
a Node instance.

6.4.5 History

analyzer.core.History stores the current CompilationUnit after there are any
changes in the AST. It manages the states by owning the following objects:

. current CompilationUnit. stack of the previous states. stack of the following states

Ways the class works can be summarized in the following points:

1. When a new state is added to history, the current one goes to the previous states,
making the new state the current one and emptying the following states.

2. Until the undo operation is executed, stack of following states remains empty.
3. When undo happens, current state is placed in the following states and the latest

state from the previous states becomes the current one.

6.4.6 Node deleting

Before deleting, nodes have to be visited by CheckDeletableVisitor, which will determine
whether they can be deleted without causing the code to be unparseable. If the node
is deletable, it will be added to Delete set.

If delete method in Analyzer is called, all nodes in the Delete set are removed by
DeleteVisitor.

39

6. Implementation .
6.4.7 Searching

SearchService in analyzer.core is responsible for retrieving Nodes corresponding to
the criteria given by the user, which can be the following:

. roots.names. roles. classes

Roots are NodeTreeNodes from which the search should start.

One of the search approaches is single class or role search. The result list
is filled with all the nodes of the given class or role. Classes are retrieved by
ASTHelper.getNodesByType from JavaParser, roles by RoleSearchVisitor.

The other approach is search by criteria. If there are no roots set, the search will start
from the AST root, CompilationUnit. There are two variations: one searches among
direct descendants of the roots and the other among all descendants.

Search among children is conducted by simply checking if any of the children Nodes
meets the given criteria. Search among all descendants depends on the filled out criteria,
as according to them the search will be conducted differently:

. If there are any roles, RoleSearchVisitor will be used.. If there are any names and no roles, NameSearchVisitor will be used.. If there are no roles and no names, ASTHelper.getNodesByType will be used, as only
classes will remain.

This sequence is based on the fact that all Nodes have a class, less of them have names,
and even less nodes have roles.

In case a resulting node is currently filtered out, the first not filtered out ancestor will
be provided in the results.

Note: It should be said that search results will contain only the nodes having the marked
class and role at the same time, not both items of the class and of the role (intersection
is used rather than union). This can be confusing as items of both categories appear
in the same list, implying they might be of the same search category.

6.4.8 Pattern management

PatternManager from analyzer.core.pattern adds and removes nodes from the Pat-
tern tree. Each pattern node is allowed to have only one child.

In the case we are adding node to a parent that already has a child, the new node will
become its parent. Similarly, node removal appends its children to its parent.

6.4.9 Searching by patterns

This function is provided by PatternSearchService in analyzer.core.pattern. Ar-
bitrary node in the Pattern tree can be marked for deletion by setting their marked
attribute to true, resulting in found nodes being marked as such too.

40

. 6.5 GUI elements

The algorithm has three parts. The first part conducts a search by criteria for every
node in the Pattern tree, using results of the previous level as roots. Results of each
level are saved to be used in the next part.

Plain Node NodeTreeNode in the pattern tree means that between its parent and its
child might be any number of nodes. Depending on whether such node appears in the
sequence, direct search by criteria will be used or not.

The second part takes the results of the last level. For each Node in it, it looks for
its ancestor in a higher level, until the whole found pattern is reconstructed. This is
performed because results in the last level are already final, while the previous levels
might contain nodes that would not make it to the final round. During this process,
suitable nodes are marked for deletion. Output of this part is a collection of stacks,
each one of them containing a found pattern.

The final part is to add the marked nodes to the Delete set. The result stacks are
scanned through to find the marked nodes and each one of them tries to get into the
Delete set. After this procedure, list of undeletable nodes is returned.

6.5 GUI elements
We can proceed to describing GUI elements and functions. In case of interest in the
complete list of actions possible in the application, the reader should consult appendix
B.

The whole application is run by analyzer.App, which reads FXML file of the main
window, called stage, and opens it. This stage is managed by Controller class, connected
to the FXML file directly. It can access elements from the file by @FXML annotation. It
communicates with the Analyzer class, the core application and contains handlers for
each control in the main window, making it the largest class in the project.

For better orientation, we will refer to elements of the layout by names in figure 6.6.

Figure 6.6. Application layout.

41

6. Implementation .
Controller manages connections of layout elements to their controllers in the initializa-
tion phase and handles refreshes of the AST. Similarly to the Analyzer class, it serves
as a front controller, delegating input from the user to the Analyzer, processing its
responses.

6.5.1 Stages
Aside from the main stage, three additional stages can be opened. Their controllers
can be found in analyzer.gui.stage. They use StageInitializer to set up the common
properties.
GraphStageController is used to display the Graph in a separate window. This can be
useful, as the graph can be very large.
TestStageController contains list of the test method and their statements. They are
connected to their respective NodeTreeNodes.
EditStageController opens a code editor. After the user has finished editing, their
changes are saved and the AST is refreshed.

6.5.2 Tree views and Message pane
Tree views are AST view, Class view, Result list and Pattern list. Each of them has
their own controller located in analyzer.gui.treeview. AST view is filled out by
NodeItemPrinter, Class view by CheckBoxItemPrinter and Pattern list by ClassItem-
Printer.
AST view has AstChangeListener as a handler of item selection, which enables connec-
tion between GraphController, PreviewGraphController, MessageController and Selec-
tionManager. It selects graph nodes and part of the code corresponding to the selected
AST node, writing its title in the Message pane, which is administered by Message-
Controller in analyzer.gui. In certain cases, a message appears there to notify the
user about success or failure of an operation. Failure notifications are red and appear
for example when a Node cannot be deleted.

6.5.3 Code areas
Code is managed by CodeController in analyzer.gui.codearea, which contains uned-
itable RichTextFX CodeArea. It handles recoloring of marked or selected parts of code.
When a different node is selected or any node is unmarked, the whole area has to be
restyled using the Search set, Delete set and Undeletable set.
The most remarkable function here is the one that chooses which part of code should
be highlighted after a click on a line has been registered. It chooses item appearing
on the position located the lowest possible in the AST, which is on the top of stack
containing nodes on a given line, which was constructed by NodeItemPrinter.
To highlight Java keywords, JavaKeywords class from the RichTextFX GitHub page is
used. This is employed by the editor in the separate stage too.
The reason for having two separate code editor is that if we edited the one linked to
the AST, it would cause problems with highlighting, as for instance entire lines would
be missing, disrupting the connection.
Aside from the main code area, there is Original code too. It is however not linked to
the AST and serves only for reference. It is managed by OriginalCodeController.

42

. 6.5 GUI elements

6.5.4 Graphs
Graph controllers are located in analyzer.gui.graph. There are two graphs: Graph
and Preview graph, which serves as a possible shortcut between distant nodes.

They are managed by GraphController and PreviewGraphController, which both ex-
tend AbstractGraphController. The extending classes contain proper data of the two
representations, as dimensions, and customized functions, as references to the graph
nodes are saved as two different attributes of NodeTreeNode.

We should mention that the abstract class makes it possible to scroll to the node when
it is not currently visible in the viewport. This is achieved by obtaining coordinates
of the node in the pane and dividing the x coordinate by width of the pane and the y
coordinate by height.

Rendering of the graphs is provided by GraphDrawer. It receives layout data from
GraphPrinter and uses them to draw the tree, stating from lines, which connect the
nodes represented by buttons.

6.5.5 Managers
SelectionManager from analyzer.gui serves for marking nodes. It uses Marker enu-
meration, which has values SEARCH, DELETE and UNDELETABLE. Undeletable nodes are
stored in a set appearing in GUI only, as it serves to remember which nodes are marked
as such, allowing for unmarking them. There are methods for marking and unmarking
a single node or multiple nodes.

When a TreeNode is marked, it has to do the following:. insert a corresponding icon next to the item in the TreeView.add a style class to the Graph nodes.highlight the code.add it to the right set

Node removal is handled by DeleteManager like this:

1. If a TreeNode is to be marked for deletion, it sends the signal to the Analyzer.
2. Analyzer determines whether the inner Node can be deleted.
3. In case it is not possible, it gives the Node back. A message is produced to let the

user know which node cannot be deleted, which is important especially in case of
deletion of multiple nodes.

4. Otherwise it sends null back and the node is marked successfully.

This concludes the essential functions and implementation details of the application.

43

Chapter 7
Testing

This chapter will describe the testing process. Firstly, we will list the test configuration.
After that, we will state the test strategy and then we will describe the individual testing
methods, commenting on findings and related corrections.

Due to the nature of the tool, only the core application was tested programmatically.
As the tool is a desktop application and not a web application how was originally
intended, but was decided against for better integration with Java environment, it
cannot be tested by Selenium WebDriver. Instead, with moderate application extent
in mind, manual test scenarios were developed to find issues with the GUI.

7.1 Test configuration
Testing of the application, as well as the whole implementation process, were conducted
using IntelliJ IDEA 15.0.5 IDE running inside of Windows 7.

The application uses the following versions of the required software:.JDK 1.8.0_60.JavaParser 2.4.0.org.reflections 0.9.10.RichTextFX 0.6.10.abego TreeLayout 1.0.3.JUnit 4.12

7.2 Test strategy
We placed main emphasis on static code analysis and unit testing, accompanied by
integration and system testing. Tools used in this case were code analysis tools provided
by IntelliJ IDEA IDE and JUnit framework.

As the tested application uses GUI, this part will be checked using manual testing and
negative testing to enhance quality.

We will now present how the testing methods were conducted and what were their
results.

7.2.1 Static code analysis
Static code analysis was used continuously during the development of the tool, as well
as during testing. Code was analysed from the following points of view:

Dependency analysis made it easier to keep track of dependencies between classes,
facilitating the process of minimizing dependencies.

44

. 7.2 Test strategy

Duplicates location was used to encounter code duplicities and remove them.

Code inspection helped with finding imperfections and possible bugs such as:.which declarations can have weaker access.which declarations can be final.dead code.duplicated code.unused imports. ignored method call results. spelling errors

7.2.2 Unit, integration and system testing
Unit testing focuses on the key functionality provided by the core application. The
tests were designed mostly to check whether a valid input is handled in the expected
way. In cases where invalid input may be entered, we checked whether it is ignored or
produces corresponding feedback.

Only public methods were tested, as the private methods cannot be used in different
context than with public methods that call them. If it was possible, we tried to maximize
isolation of methods by providing mock objects instead of those acquired by methods
dedicated to their creation.

We do not test Parser class, as it only retrieves CompilationUnit from JavaParser.
Furthermore, CompilationUnits necessary for our tests will be provided by Parser,
as creating mock ones would be very complicated, and more importantly needless, as
we should not need to test an external library. Similarly, we will not test ClassMap,
which retrieves node types, over which we have no control. It should be noted that
tests relying on AST structure were constructed partially copying the results from the
current state, as it would be hard to simulate it entirely.

Visitors are to be tested through methods utilizing them.

A set of functions to facilitate testing was implemented, providing file and input string
handling, mock objects or comparison of TreeNode trees.

Tests for the following classes were created:.FileSaver - compares string representations produced by it with expected strings..SettingsLoader - compares objects resulting from provided strings with expected
objects. Provided strings contain invalid values, which are to be ignored by the
methods..PatternLoader - is given an input string and the resulting pattern tree is compared
against the expected one..PatternManager - checks creating and removal of pattern nodes. Focuses especially
on the case when we add new node to a node that already has a child and when we
remove a node that has a child, or in other words, when we have to insert or remove
node surrounded from both sides..PatternSearchService - we provide CompilationUnit and result list according to
our expectations and see whether the same patterns are found..FilteredTreeBuilder - to simplify definition of expected AST, a long list of filtered
types is provided, minimizing the number of nodes. However, structure of the result-
ing AST relies heavily on the JavaParser grammar. To make up for this, we used the

45

7. Testing .
actual result from the application, checked whether it makes sense and used it in the
test, with hopes that the current state is correct. As we do not want to create mock
Nodes, mock NodeTreeNodes do not contain Nodes and are compared with the real
ones by name..ClassTreeBuilder - we provide list of present node types and expected class tree.
For the hierarchical tree, we constructed the expected tree consulting the Node hi-
erarchy (available in appendix D)..SearchService - we provide CompilationUnit and expected result list. We focus on
trying all possible combinations applicable to Search by criteria operation: direct
and indirect search, names, roles, classes and root.

Integration tests are used for the same classes, but they test only methods that use
mock objects, to see how the employed classes will interact.

Testing of Analyzer class, which is the main class of the core application, serving as
a front controller, was conducted as system testing, as it is tied to the rest of the
application. History class will be tested through it.

7.2.3 Manual testing
Manual testing scenarios were designed to follow the use cases listed in 5.2. We will be
referring to elements of the layout by names in figure 6.6.

Open file.

1. Run the application and choose a valid file to be opened.
2. Inspect if the source code and AST representations are rendered.

View AST + View code + Select node.

1. Click on an arbitrary node in the AST tree view.
2. Check whether the node is selected in both graphs and the corresponding code portion

is highlighted.
3. Repeat the same procedure for every AST representation: graph, preview graph,

code.

View list of tests.

1. Open a valid file containing JUnit test methods.
2. Click on Tests option in Window menu on the Menu bar.
3. Click on the items and check whether they are selected in every AST representation.

View class list + Filter out classes.

1. Uncheck arbitrary classes in the Class view.
2. Press Filter button in Tool bar.
3. Click on a filtered out class and confirm whether the Result list is empty.
4. In case of shorter code, inspect the AST visually.

Change display modes.

1. Select class option in Node display menu in the Menu bar.
2. Inspect whether the nodes do not have identifiers (there is nothing in brackets).

46

. 7.2 Test strategy

3. Select name option in Node display menu in the Menu bar.
4. Inspect if the nodes do not have node types (all visible titles are in brackets).

Mark or unmark node.

1. Select an arbitrary node and press Delete.
2. Check whether a red or black icon appears next to the node in AST view, corre-

sponding code is red or black and the graph nodes are coloured red or black.
3. Press Delete while having selected the same node.
4. Check whether the node is unmarked.
5. Repeat the same with pressing Q and colour green.

Edit code.

1. Click on Edit option in Window menu on the Menu bar.
2. Change something in the code, keeping it valid.
3. Click on Done.
4. Check whether the changes appear in the code in the main window.

Delete node.

1. Select an arbitrary node.
2. Press Delete.
3. If the node is coloured black, select another one until it is coloured red.
4. Press Backspace.
5. Inspect the code to see whether code corresponding to the deleted node is missing.

Undo or redo.

1. Delete a node like in the previous scenario.
2. Click on Undo button in the Tool bar.
3. Inspect the code and the AST to see whether the deleted node has returned.
4. Click on Redo button in the Tool bar.
5. Inspect the code and the AST to see whether the deleted node was deleted again.

Save file.

1. Click on Save option in the File menu in the Menu bar.
2. Write an arbitrary name and click on Save.
3. Go to the location of file, open it and check if its code is the same as the one opened

in the application.

Search by criteria.

1. Choose a name (in brackets) from the AST view.
2. Write it into input field in Search menu.
3. Click on Search.
4. Click on the results to see if they point to AST nodes with the same name.
5. Select the parent of one of the found nodes.
6. Press Q.
7. Click on Search button in Search menu.
8. Inspect whether only descendants of the marked node are in the Result list, and have

the given name at the same time.

47

7. Testing .
9. Select type of the selected AST node in the Class view.

10. Press Q.
11. Click on Search button in Search menu.
12. Check if the node is in the Result list, accompanied by prospective nodes with the

same name, type and ancestor.

Create search patterns.

1. Select an arbitrary item in Class view.
2. Click on Add pattern in Pattern menu.
3. Observe whether a new item of the selected type appeared in the Pattern list.

Add node to the pattern tree.

1. Select a leaf node in the pattern tree.
2. Select an arbitrary item in Class view.
3. Click on Add child in Pattern menu.
4. Check if a new item was added.
5. Select parent od the new node.
6. Select a different item in Class view.
7. Click on Add child in Pattern menu.
8. Check if the newly added node became parent of the previously added child.

Remove node from the pattern tree.

1. Select a leaf node in the pattern tree.
2. Click on Remove in Pattern menu.
3. Check if the node was removed.
4. Select another node which is not a leaf node or root of a pattern.
5. Click on Remove in Pattern menu.
6. Check if the child of the removed node is now child of its parent.

7.2.4 Negative testing
Negative testing explores what happens, if the tested application receives invalid input.
We performed a series of test to observe behaviour in such cases.

First we checked how the application handled invalid file inputs and files with a large
number of lines. Parameters of the test can be observed in table 7.1. We measured how
long processing and rendering of the AST took.

test number of lines contains Java Java extension
1 0 no no
2 1566 no yes
3 1000 yes yes
4 1500 yes yes
5 2000 yes yes

Table 7.1. Parameters of negative testing of file inputs.

Results of testing file inputs described in table 7.1:

1. Parsed normally (CompilationUnit with no children).

48

. 7.3 Test results

2. Parsing error.
3. Parsed normally after 15 seconds.
4. Parsed normally after 30 seconds.
5. Parsed normally after 60 seconds.

From these results, we can observe that the application does not consider file extension.
As 60 seconds were deemed to be too long for loading, 1500 lines limit was added to
the application.

In the next stage, the application was tested for unexpected mouse inputs by clicking
on every possible spot. An issue found by this was that clicking on empty space in any
TreeView resulted in NullPointerException, as associated methods did not receive
any input. This issue was fixed by checking if there is really any item selected. Another
similar case happened with clicking on Remove button in pattern menu if the pattern
list was empty.

7.3 Test results
We will now summarize test results by presenting their findings. Many issues were
encountered and fixed during the implementation phase, meaning there were not many
critical errors to be found by the testing.

We will now list the most important findings:.Trying to access parent of the root node resulted in NullPointerException in several
places. A condition was added to check whether parent of the node is null.SettingsLoader and FileSaver were changed not to access file locations by a static
field, to allow testing with different files and avoid rewriting data in them..Searching for a role in an AST in which the node with the given role was filtered out
resulted in the result list containing a null TreeNode. This was fixed by removing
null values from the list..When searching by patterns, CompilationUnit would sometimes appear in the set of
search roots. This was caused by the node being inserted into the root set, even if
there were other roots..Saved file was missing .java extension..Larger files might take unbearably long to be processed. A condition was added to
accept only source code with less than 1500 lines..Clicking on empty space in TreeViews resulted in NullPointerException. A condi-
tion was added to check whether selected item is not null.

49

Chapter 8
Conclusion

To conclude our work, we should summarize what we have achieved in each part of the
thesis and revise the goals we have stated in the beginning, evaluating whether and
how we have accomplished them.

We began our journey by studying theory concerning lexical and syntax analysis in
chapter 3. We learned about the purpose of parsing in the world of programming
languages as a tool to translate source code in a human-friendly programming language
into machine code comprehensible by computers. To become more familiar with the
process, we demonstrated similarities between parsing of natural and programming
languages, realizing they are not that much different. We picked up how an abstract
syntax tree (AST) is built.

As we needed to employ AST generation in our tool, our task in chapter 4 was to
explore existing parsers that enable parsing of Java language and evaluate, according
to our criteria, whether they are convenient for our usage. The best candidates were
ANTLR and JavaParser, however, ANTLR does not support AST modification, which
was one of our requirements. This resulted in favouring JavaParser, even though it does
not provide AST visualization. We tried to use ANTLR for generating visualization of
AST parsed by JavaParser, which lead to the discovery that the two programs generate
AST differently. Thus, we had to implement our own visualization function.

Now that we had an AST provider, in chapter 5 we could revise our requirements and
derive a set of use cases we wished our application to have. Then we decided the ap-
plication should be divided into two main components, core and GUI, and listed what
data structures they should contain. We also established external libraries the applica-
tion should employ: the aforementioned JavaParser for the AST generation, Reflections
for retrieval of node types in the AST, JavaFX for the GUI, abego TreeLayout for the
layout of AST visualization and RichTextFX for code editor.

In chapter 6, having decided on how the application should be structured and its func-
tions, it was finally time to start implementing. As the first step, we became familiar
with functions of JavaParser, to determine how we could use it to its maximum poten-
tial. Aside from that, we found out about a few imperfections, which our application
would have to improve. With this knowledge in mind, we started implementing our
tool. At first, we introduced data structures and function providers used across the
application. Then we described the core, starting from the process of building a new
tree and continuing with the remaining functions. Next step was to describe the GUI,
concerning which we described its elements and functions.

When our application was finished, in chapter 7 we proceeded to testing. We mentioned
configuration used when testing the application and elaborated on our test strategy.
Then we presented manual and negative testing scenarios and listed the most important
findings the testing brought.

50

. 8.1 Future work

After this reminiscence, we shall revise how we fulfilled the requirements. Our tool
performs lexical and syntax analysis of an arbitrary Java code and produces AST, which
is then visualized in two representations, allowing for more flexibility while analysing the
nodes. Furthermore, orientation is enhanced by providing links between the nodes and
their respective areas in code. It is possible to filter out unnecessary nodes to make the
viewed AST lighter. In case of JUnit code, we can display list of only the test methods
separately, maintaining connection to the main AST. We can easily remove nodes and
receive immediate feedback if it is not possible, and carry out further modifications
by directly editing the code. Finally, we can search in the AST either by criteria or
patterns, permitting bulk edits of the resulting nodes.

The intended purpose of the resulting tool was to aid testers with code processing,
which should be satisfied, as thanks to the implemented functionality, the tool helps to
achieve faster analysis and modification of code.

Event though the resulting application fulfilled the proposed requirements, the question
whether the tool will meet the expectations placed on it remains unanswered. After
the tool is being used for some time in practice, new proposals might appear, possibly
changing concept of the tool in a certain degree. This is however not a bad thing, as it
is always important to be open to changes.

8.1 Future work
As the final part of the thesis, we will propose a few ideas on how to make our application
more capable in the future.

Offer parsing of more programming languages. We gave up on potential versatility,
which could have been achieved by ANTLR, in favour of AST modification. As the
required language to be processed was Java, it was not an issue. However, for the future
it would be a great improvement and it would make the tool even more beneficial.

Support more complex patterns. Currently, the application allows only patterns in
which each node can only have one child. Allowing addition of siblings would expand
usability of this function. However, it would be better to first think over whether this
function would be really needed.

51

References

[1] FEWSTER, Mark and Dorothy GRAHAM. Software Test Automation: Effective
Use of Test Execution Tools. 1st edition. Addison-Wesley Professional, 1999.
ISBN 978-0201331400.

[2] MOGENSEN, Torben. Introduction to Compiler Design. 1st edition. Springer-
Verlag London, 2011. ISBN 978-0-85729-828-7.

[3] MAK, Ronald. Writing Compilers and Interpreters: A Software Engineering
Approach. 3rd edition. Wiley Publishing, 2009. ISBN 978-0-470-17707-5.

[4] AHO, Alfred. V., Monica S. LAM, Ravi SETHI and Jeffrey D. ULLMAN. Compil-
ers: Principles, Techniques and Tools. 2nd edition. Addison Wesley, 2006. ISBN
0-321-48681-1.

[5] WATT, David A. and D. F. BROWN. Programming Language Processors in Java:
Compilers and Interpreters. 1st edition. Pearson, 2000. ISBN 0-130-25786-9.

[6] BIRD, Steven, Ewan KLEIN and Edward LOPER. Natural Language Processing
with Python.
http://www.nltk.org/book/.

[7] GOSLING, James, Bill JOY, Guy STEELE, Gilad BRACHA and Alex BUCK-
LEY. The Java® Language Specification: Java SE 8 Edition. 2015.
http://docs.oracle.com/javase/specs/jls/se8/html/index.html.

[8] SCHILDT, Herbert. Java: The Complete Reference, Ninth Edition. 9th edition.
McGraw-Hill Education, 2014. ISBN 978-0-071-80855-2.

52

http://www.nltk.org/book/
http://docs.oracle.com/javase/specs/jls/se8/html/index.html

Appendix A
CD content

Note: preferred way of obtaining external libraries is via Maven (pom.xml file is in
analyzer folder). In case of not using Maven, .jar files can be imported instead from
foldee libraries..thesis.pdf - PDF version of the thesis.assignment.jpg - scanned assignment.example.java - Java source code that may be used as input.thesis/ - folder containing source code of the text of the thesis.analyzer/ - project file, contains source files, tests and settings files.libraries/ - external libraries employed by the program

53

Appendix B
User manual

This section provides brief introduction to how to control the application. We will be
referring to elements of the layout by names in figure 6.6.

Open and save file. Menu bar - Open file/Save file. If file selected to be opened is
invalid, a message will appear in Message pane.

Undo and redo. Tool bar - Undo/redo.

Select a node. Click on a node in either AST view, Graph view or Preview graph
view. A node will be selected by clicking on the corresponding place in the code too.
Message pane will display name of the selected node.

Mark selected node. Tool bar - Mark (right) (green for search, red for delete) or press
Q (search) or Delete (delete). Nodes marked for search will be used as search roots. If
a node marked for delete cannot be deleted, a message will appear in Message pane.

Select class of the selected node in the class view. Tool bar - Class

Go to parent of the selected node. Tool bar - Parent

Mark children of the selected node. Tool bar - Children (green for search, red for
delete).

Unmark all marked nodes. Tool bar - Unmark all (right) (green for search, red for
delete, black for undeletable).

Delete nodes marked for delete. Tool bar - DELETE or press Backspace. A message
informing of result of the operation will appear in Message pane.

Change node display mode. Menu bar - Node display.

Change class view mode. Menu bar - Class list mode.

View original code. Open Original code tab.

View graph in separate window. Menu bar - Window - Graph. Nodes will remain
connected.

Figure B.1. Test window.

54

. .
View list of test methods. Menu bar - Window - Tests. List items are connected to
the AST. List of test methods can be seen in figure B.1.

Edit code. Menu bar - Window - Edit. The main window will be disabled during
editing.

Filter out nodes. Uncheck the node types to be filtered in Class view and press Tool
bar - Filter.

Get list of all nodes of a type or role. Click on the type in the Class view, results will
appear in Result list.

Select a node from the result list in AST. Click on the result item.

Search for nodes with a given name. Type the name into Search menu - input field
and press Search. Multiple values are separated by comma.

Search for nodes of a given type or role. Select the type in Class view and press Tool
bar - Mark (left) or press Q, then press Search. Multiple types can be selected.

Change search mode. Menu bar - Search mode.

Unmark all marked node types. Tool bar - Unmark all (left).

Mark all results. Search menu - Mark for search all/Mark for delete all.

Pattern menu and Pattern list can be seen in figure B.2

Figure B.2. Pattern menu.

Add new pattern. Pattern menu - Add pattern.

Add child to a pattern node. Select parent in the Pattern list and press Pattern menu
- Add child. Child of Node type means its child does not have to be direct descendant
of its parent if found in the AST.

Remove pattern node. Select node in the Pattern list and press Pattern menu -
Remove.

Mark pattern node for delete. Select node in the Pattern list and press Pattern menu
- Mark or press Delete.

Set name of pattern node. Type the name into Pattern menu - input field and press
Set.

Search by pattern. Select root of the pattern in Pattern list and press Search.

55

Appendix C
Productions used in syntax analysis example

This appendix contains list of productions used in the example in 3.4.

CompilationUnit:
[PackageDeclaration] {ImportDeclaration} {TypeDeclaration}

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration

ClassDeclaration:
NormalClassDeclaration
EnumDeclaration

NormalClassDeclaration:
{ClassModifier} class Identifier [TypeParameters] [Superclass]

[Superinterfaces] ClassBody

ClassModifier:
(one of)
Annotation public protected private
abstract static final strictfp

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

ClassBody:
{ {ClassBodyDeclaration} }

ClassBodyDeclaration:
ClassMemberDeclaration
InstanceInitializer
StaticInitializer
ConstructorDeclaration

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration
;

MethodDeclaration:
{MethodModifier} MethodHeader MethodBody

56

. .
MethodModifier:
(one of)
Annotation public protected private
abstract static final synchronized native strictfp

MethodHeader:
Result MethodDeclarator [Throws]
TypeParameters {Annotation} Result MethodDeclarator [Throws]

Result:
UnannType
void

MethodDeclarator:
Identifier ([FormalParameterList]) [Dims]

FormalParameterList:
ReceiverParameter
FormalParameters , LastFormalParameter
LastFormalParameter

FormalParameters:
FormalParameter {, FormalParameter}
ReceiverParameter {, FormalParameter}

FormalParameter:
{VariableModifier} UnannType VariableDeclaratorId

UnannType:
UnannPrimitiveType
UnannReferenceType

UnannPrimitiveType:
NumericType
boolean

NumericType:
IntegralType
FloatingPointType

IntegralType:
(one of)
byte short int long char

VariableDeclaratorId:
Identifier [Dims]

MethodBody:
Block
;

Block:
{ [BlockStatements] }

57

Appendix D
List of JavaParser node types

Node
-BaseParameter
--MultiTypeParameter
--Parameter
-BodyDeclaration
--AnnotationMemberDeclaration
--ConstructorDeclaration
--EmptyMemberDeclaration
--EnumConstantDeclaration
--FieldDeclaration
--InitializerDeclaration
--MethodDeclaration
--TypeDeclaration
--TypeDeclaration
---AnnotationDeclaration
---ClassOrInterfaceDeclaration
---EmptyTypeDeclaration
---EnumDeclaration
-Comment
--BlockComment
--JavadocComment
--LineComment
-Expression
--AnnotationExpr
---MarkerAnnotationExpr
---NormalAnnotationExpr
---SingleMemberAnnotationExpr
--ArrayAccessExpr
--ArrayCreationExpr
--ArrayInitializerExpr
--AssignExpr
--BinaryExpr
--CastExpr
--ClassExpr
--ConditionalExpr
--EnclosedExpr
--InstanceOfExpr
--LambdaExpr
--LiteralExpr
---BooleanLiteralExpr
---NullLiteralExpr
---StringLiteralExpr
----DoubleLiteralExpr
----LongLiteralExpr

58

. .
----IntegerLiteralExpr
-----IntegerLiteralMinValueExpr
----CharLiteralExpr
----LongLiteralExpr
-----LongLiteralMinValueExpr
--MethodCallExpr
--MethodReferenceExpr
--NameExpr
---QualifiedNameExpr
--ObjectCreationExpr
--SuperExpr
--ThisExpr
--TypeExpr
--UnaryExpr
--VariableDeclarationExpr
-ImportDeclaration
-MemberValuePair
-PackageDeclaration
-Statement
--AssertStmt
--BlockStmt
--BreakStmt
--ContinueStmt
--DoStmt
--EmptyStmt
--ExplicitConstructorInvocationStmt
--ExpressionStmt
--ForStmt
--ForeachStmt
--IfStmt
--LabeledStmt
--ReturnStmt
--SwitchEntryStmt
--SwitchStmt
--SynchronizedStmt
--ThrowStmt
--TryStmt
--TypeDeclarationStmt
--WhileStmt
-Type
--ClassOrInterfaceType
--PrimitiveType
--ReferenceType
--UnknownType
--VoidType
--WildcardType
-TypeParameter
-VariableDeclarator
-VariableDeclaratorId

59

Appendix E
Class diagrams by packages

All packages are contained in analyzer package, which contains the following hier-
archy. Each package name is accompanied by figure in which its contents and their
dependencies can be seen..core E.3.file E.4.pattern E.5.treebuilder E.6.visitor E.7.delete.name.role.gui E.8.codearea E.9.graph E.10.stage E.11.treeview E.12.node E.13.printer E.14.settings E.15

Now we will show diagrams of each package with dependencies.

Figure E.3. Core package.

60

. .

Figure E.4. File package.

Figure E.5. Pattern package.

Figure E.6. Treebuilder package.

61

E Class diagrams by packages .

Figure E.7. Visitor package.

Figure E.8. Gui package.

62

. .

Figure E.9. Codearea package.

Figure E.10. Graph package.

Figure E.11. Stage package.

Figure E.12. Treeview package.

63

E Class diagrams by packages .

Figure E.13. Node package.

Figure E.14. Printer package.

Figure E.15. Settings package.

64

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Problem statement
	Assignment
	Goals
	Test automation

	Content of the thesis

	Parsing theory
	Purpose of parsing
	Compilers and interpreters
	Phases of a compiler

	Lexical analysis
	Syntax analysis

	Existing solutions
	Selection criteria
	Selected projects
	Compiler Tree API
	Eclipse JDT AST
	ANTLR
	Spoon
	JavaParser

	ANTLR and JavaParser comparison
	Summary

	Design
	Requirements
	Functional requirements
	Non-functional requirements

	Use cases
	AST viewing
	Node operations
	Tree editing
	File operations
	Searching

	Structure of the application
	Layers and used libraries
	Core application
	Graphic user interface
	Connection between components

	Implementation
	JavaParser features
	Types of nodes
	Visitors
	Tree traversal
	Node removal
	Summary of issues

	Data structure dictionary
	Main data structures and function providers
	TreeNodes
	Roles
	Visitors
	Printers
	Modes and settings

	Core application
	Analyzer
	Settings management
	Parsing
	Tree building
	History
	Node deleting
	Searching
	Pattern management
	Searching by patterns

	GUI elements
	Stages
	Tree views and Message pane
	Code areas
	Graphs
	Managers

	Testing
	Test configuration
	Test strategy
	Static code analysis
	Unit, integration and system testing
	Manual testing
	Negative testing

	Test results

	Conclusion
	Future work

	References
	CD content
	User manual
	Productions used in syntax analysis example
	List of JavaParser node types
	Class diagrams by packages

