
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of cybernetics

Analysis Annotations of Epileptic Seizures

Václav Příhoda

Supervisor: Ing. Lenka Vysloužilová, Ph.D.
Field of study: Biomedical Engineering and Informatics
Subfield: Biomedical Engineering
May 2016

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Václav P ř í h o d a

Study programme: Biomedical Engineering and Informatics

Specialisation: Biomedical Engineering

Title of Diploma Thesis: Analysis Annotations of Epileptic Seizures

Guidelines:

1. Study the structure of epileptic seizure annotation database, which will be continuely
 appended.
2. Study the classical and sequential association rules and their creation in language R.
3. Design and implement data transformation from database to proper format to create
 rules in R.
4. Find association rules between symptoms and diagnosis of epileptic seizures with respect
 to minimal senzitivity and minimal specificity.
5. Design sequence pattern search in annotation database.
6. Test the whole process of transformation and analysis.

Bibliography/Sources:
[1] AGRAWAL, Rakesh; IMIELIŃSKI, Tomasz; SWAMI, Arun. Mining association rules
 between sets of items in large databases. In: ACM SIGMOD Record. ACM, 1993.
 p. 207-216.
[2] MOONEY, Carl H.; RODDICK, John F. Sequential pattern mining--approaches and
 algorithms. ACM Computing Surveys (CSUR), 2013, 45.2: 19.
[3] BERKA, Petr. Dobývání znalostí z databází. Academia, 2003.

Diploma Thesis Supervisor: Ing. Lenka Vysloužilová, Ph.D.

Valid until: the end of the summer semester of academic year 2016/2017

L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, December 17, 2015

iv

Acknowledgements
I would like to express my sincere appre-
ciation to Ing. Lenka Vysloužilová, Ph.D.
for her patient support, guidance and ad-
vice. My thanks also belong to my family
and everyone who have supported me.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, date .
Signature

v

Abstract
The aim of this thesis is to create the
epileptic seizure analysis. This analysis
might serve as a technique for finding
the location of the epileptic zone. This
add-on is part of already-made tool
ASTEP, that was developed for purposes
of Na Homolce hospital. Data analysis
uses the technique called association rules
mining.

This paper contains theoretical de-
scription of association rules mining
and sequence pattern mining method.
Theoretical description contains analysis
that enables using values sensitivity
and specificity during process of rules
generating.

The implementation uses database
containing annotation of epileptic
seizures. This database is continuously
growing. ASTEP is developed in Java
programming language and so is the
module enabling the analysis. Analysis is
created in R programming language using
arules and arulesSequences packages.
Connection between Java is created
through JRI library. Within the analysis,
a proposition of sequence pattern mining
was created in R programming language.

The last part of this paper docu-
ments the proof of implementation both
module and data analysis. Results
contain numbers of extracted rules with
various input constraints and evaluate the
possibility of sensitivity and specificity
usage.

Keywords: annotated epileptic seizures,
ictal signs, association rules, sequence
patterns, SPADE, cSPADE

Supervisor: Ing. Lenka Vysloužilová,
Ph.D.

Abstrakt
V rámci práce byl vytvořen modul, který
umožňuje analýzu anotací epileptických
záchvatů. Analýza by mohla sloužit jako
technika na určení umístnění epilepto-
genní zóny. Modul analýzy je součástí již
vyvíjeného nástroje ASTEP, který slouží
pro účely Nemocnice Na Homolce. Pro
analýzu dat se využívá technika dolování
dat zvaná asociační pravidla.

Práce obsahuje teoretický popis způ-
sobu dobývání asociačních pravidel a
sekvenčních vzorů. Součástí teoretického
popisu je i rozbor, který umožní pracovat
při analýze s hodnotami senzitivita a
specificita.

V rámci implementace se pracuje s
databází, která obsahuje anotace epilep-
tických záchvatů. Databáze se průběžně
rozšiřuje. Program ASTEP je vytvořen
v Javě a stejně tak i modul umožňující
analýzu. Analýza je naprogramovaná
v jazyce R s využitím balíčků arules a
arulesSequences. Propojení jazyku Java a
R je dosaženo prostřednictvím knihovny
JRI (Java/R Interface). Součástí práce
je návrh dobývání sekvenčních vzorů v
jazyce R.

Poslední část práce obsahuje ově-
ření implementace modulu i samotné
analýzy dat. Výsledky obsahují počty
získaných pravidel při různých vstupních
podmínkách a hodnotí možnost využití
senzitivity a specificity.

Klíčová slova: anotované epileptické
záchvaty, iktální příznaky, asociační
pravidla, sekvenční vzory, SPADE,
cSPADE

Překlad názvu: Analýza anotací
epileptických záchvatů

vi

Contents
1 Introduction 1
2 Association Rule Mining 3
2.1 Basic Concept 3
2.1.1 Metrics for Association Rules . 4

2.2 Association Rule Discovery 5
2.3 Frequent Itemset Generation 5
2.3.1 Apriori principle 6
2.3.2 Apriori algorithm 7
2.3.3 Time Complexity 8

2.4 Rule Generation 9
2.4.1 Apriori Algorithm 10
2.4.2 Item Constraints 10

2.5 Transformation of Basic Metrics 11
3 Sequential Pattern Mining 15
3.1 Basic Concept 15
3.2 SPADE Algorithm 16
3.2.1 Equivalence classes 17
3.2.2 Enumerate Frequent Sequences 18
3.2.3 Temporal id-list Join 19
3.2.4 Pruning Sequences 19
3.2.5 Rule Generating 19

3.3 cSPADE Algorithm 19
4 Design and Implementation of
Data Analysis 23
4.1 Database and Data Extraction . 24
4.1.1 Data Extraction 25

4.2 Associative Rules in R 27
4.2.1 Function Apriori 27
4.2.2 Description of the R Script . . 28

4.3 Implementation into ASTEP . . . 31
4.3.1 The Dataset 31
4.3.2 Analysis in Java with the use of
R . 31

4.4 The Design of Sequence Pattern
Search . 32
4.4.1 Function cSpade 33
4.4.2 R Implementation 33

5 Experiments 35
5.1 Verification of the Association Rule
Mining . 35
5.1.1 Visualisation of the Association
rules . 37

5.2 Estimation of Support and
Confidence . 39

5.3 Functionality of the analysis in
ASTEP . 41

5.4 Analysis of the Sequence Pattern
Mining . 42

6 Conclusion 45
Bibliography 47
A Description of the Database 49
B Features of the Dataset 51
C CD Content 53

vii

Figures
2.1 An itemset lattice shows all
combinations of itemsets [8]. 5

2.2 A graphic interpretation of Apriori
principle [8]. 6

2.3 Rule generation using
confidence-base pruning principle [8]. 9

3.1 Recursive decomposition of class D
into smaller sub-classes results in
lattice of equivalence classes [13] . . 18

4.1 The interface of Annotation and
Statistical Tool for EPilepsy. 23

4.2 The Scheme of the database. . . . 24
4.3 An example of the hierarchy in the
table TERMSEPILEPTICFIT 25

4.4 ASTEP - the module of data
analysis. 31

5.1 Experiment of the dependency
between support count and number
of rules. 36

5.2 The execution time of the function
apriori with respect to support in
1000 iterations. 36

5.3 En experiment of the dependency
between confidence count and
number of rules. 37

5.4 An illustration of all rules using
scatter plot and basic metrics. 38

5.5 An illustration of the length of
rules using scatter plot. 38

5.6 Grouped matrix for 2082 rules. . 39
5.7 The estimation of support count:
Influence of sensitivity on support
count. 40

5.8 The estimation of confidence count:
Influence of specificity on confidence
count. 40

5.9 An illustration of the analysis in
ASTEP. 41

5.10 ASTEP: No rules have been
found warning. 42

5.11 A demonstration of the
dependency between support count
and number of sequential rules. . . . 42

5.12 The execution time of function
cSPADE according to the size of
parameters maxlen and maxsize in
100 iterations. 43

5.13 A demonstration of the
dependency between confidence count
and number of sequential rules . . . 43

viii

Tables
2.1 Contingency table for a rule [10]. 11

3.1 An input-sequence database [13]. 16
3.2 The vertical database format for
items A, B and C of input-sequence
format of table (3.1). 16

3.3 The vertical-to-horizontal database
format of input-sequence format of
table (3.1). 17

ix

Chapter 1
Introduction

Development in the field of information technology allowed storing data from
nearly any kind of human activity. As a result, large amount of data is stored
in databases, data warehouses or other data storages. Using suitable data
analysis techniques these data can reveal new information.

The aim of this thesis is to develop a tool for data analysis of annota-
tions of Epileptic Seizures. This tool will become the part of the software
named ASTEP (Annotation and Statistical Tool for EPilepsy) which has
been designed and developed for the purposes of Na Homolce Hospital. This
software tool which is developed in Java programming language provides
support to a specialist who annotates the video-EEG recordings.

The integral part of ASTEP is its database. The database contains in-
formation about patients, their diagnosis and detailed description of their
seizures. For the purpose of this thesis, the most important record are anno-
tations of seizures. Annotations fully describe seizures with terms such as
position of a lesion, duration time, sequence number or types and manners of
seizures, which are called ictal signs.

Epilepsy is a common neurological disorder. Epilepsy is defined by following
conditions: having at least two unprovoked (or reflex) seizures occurring
greater than 24 hours apart or having one unprovoked (or reflex) seizure
and probability of further seizures similar to the general recurrence risk (at
least 60%) after two unprovoked seizures, occurring over the next 10 years or
having diagnosis of an epilepsy syndrome.

Epilepsy is considered to be resolved for individuals who had an age-dependent
epilepsy syndrome but are now past the applicable age or those who have
remained seizure-free for the last 10 years, with no seizure medicines for the
last 5 years [1].

Some percentage of patients can be treated by an antiepileptic drugs. Those
patients who cannot be treated by antiepileptic drugs are potential candidates
for an epilepsy surgery. It is crucial to define the location and size of the

1

1. Introduction
epileptic zone. The epileptic zone is a cortical region where seizures arise.
Removing this region is aim of the epileptic surgery.

The data analysis presented in this work should be able to find the links
between ictal signs and location of the epileptic zone, thus expand existing
diagnostic tests. Some relationships between the ictal signs and location were
already described [2]. The goal of the project of hospital Na Homolce is to
find and describe less conspicuous ictal signs.

So far the search for ictal signs has been related to the opinion of a specialist,
solely based on experience. The data analysis tool allows to process not
only some promising ictal sings but the entire database. A specialist will
obtain the list of rules with its sensitivity and specificity and then he can
focus on those which are considered to be significant. The plan of the project
is to annotate at least 600 seizures. Association rules mining is considered
to be the appropriate technique to analyse exactly these data primarily for
expecting the relationship between the ictal sign and location.

Some ictal signs are generated like a consequence of seizure spread. There
is an assumption that the fast spreading of a seizure can lead to coexisting
several ictal signs during the same seizure. Hence, the aim of this thesis is
also to design sequence pattern search in annotation database. Sequences in
the seizures have been already observed [3] but until now there were no large
amount of data describing seizures and no tool to process them. Therefore,
the result of this analysis could bring a new perspective.

The thesis is divided into 6 chapters including introduction and conclusion. In
chapter 2, the theory of the association rules containing basic algorithms, such
as Apriori algorithm. Chapter 3 presents the theory of the sequential pattern
mining and the algorithm cSPADE. Chapter 4 describes the implementation
of the data extraction, data analysis in R and implementing tool into ASTEP.
Chapter 5 presents experiments that should prove the correctness of the
implementation. The last chapter summarizes results and suggests tasks for
the future work.

2

Chapter 2
Association Rule Mining

This chapter presents the theory of association rules mining, basic metrics,
e.g. support or confidence, and procedure of mining association rules.

Association rule mining is one of data mining technique. It is a crucial
method for market basket analysis, which aims at finding behaviour of cus-
tomers in the variety of domains. Besides of marketing, association rule
mining has been applied in distinct domains such as medical diagnosis, census
data or bioinformatics. The technique was introduced in 1993 in the paper by
Rakesh Agrawal. The paper presented an algorithm that generated significant
association rules between items in the database. It also presented the results
of applying the algorithm to data from a large retailing company.

The aim of this technique is to search associations among items (i.e. as-
sociations among items of a market basket). Association rule uses an If-Then
form to express the relation. More notations are used to express the relation,
for example antecedent ⇒ consequent. In some publications the word conse-
quent is replaced by the word succedent [4]. Rule mining method is beneficial
since the interpretation of a rule should be easily understandable, though
association analysis results should be interpreted with caution.

2.1 Basic Concept

Association rule mining was described in the Agrawal’s paper as follows:
I = I1 , I2 , . . . , Im is a set of items (binary attributes) and T is a database
of transactions. Each transaction t is represented as a binary vector, then
t[k] = 1 if transaction t contains item Ik or t[k] = 0 if transaction t does not
contain item Ik. Let X be a set of items in I. It is agreed that a transaction t
satisfies X if for all items Ik in X, t[k] = 1 [5].

Association rule is an implication of the form X ⇒ Y, where the itemsets X,
Y are sets of some items in I, and X and Y do not intersect.

3

2. Association Rule Mining
2.1.1 Metrics for Association Rules

Association rule mining uses several metrics to determine the significance of
discovered rules. The most important are support and confidence, together
with lift as a crucial metrics in this work. Support count and confidence
count have an impact on the process of association rule mining.

Support of an itemset X is the proportion of transactions in the database T
which contain the itemset. It can be defined as

supp(X) = σ(X)
N

, (2.1)

where N is number of all transactions, σ(X) = |{ti|X ⊆ ti, ti ∈ T}| and
symbol | · | denotes the number of elements in a set.

Support of a rule X ⇒ Y is the support of X ∪ Y .

supp(X ⇒ Y) = supp(X ∪ Y) = σ(X ∪ Y)
N

(2.2)

Confidence of a rule X ⇒ Y is the ratio that determines the strength of the
implication. In other words it determines how frequently items in Y appear
in transactions that contain X. This is taken to be conditional probability
P (X|Y) [6].

conf(X ⇒ Y) = P (X|Y) = supp(X ∪ Y)
supp(X) (2.3)

Last metric that will be mentioned is labelled lift. Lift can be computed by
dividing the confidence of the rule by support of the consequent.

lift(X ⇒ Y) = supp(X ∪ Y)
supp(X)supp(Y) = conf(X ⇒ Y)

supp(Y) (2.4)

Lift measures how many times more often X and Y occur together than
expected if they where statistically independent. A lift value of 1 indicates
independence between X and Y. Moreover, lift is susceptible to noise in small
databases. Rare itemsets with low counts (low probability) which per chance
occur a few times (or only once) together can produce enormous lift values
[7]. Lift has range between 0 and infinity. According to the value of the lift,
three results can occur.. lift(X ⇒ Y) > 1, the X and the Y are positively correlated. lift(X ⇒ Y) < 1, the X and the Y are negatively correlated. lift(X ⇒ Y) = 1, the X and the Y are independent

4

.............................. 2.2. Association Rule Discovery

2.2 Association Rule Discovery

Association rule discovery is a process of mining association rules. Let I be a
set of items and X, Y be itemsets that are subset of I, denoted as X,Y ⊆ I.
The implication X ⇒ Y is a rule if X ∩ Y = ∅.

Common strategy used in association rule mining algorithms splits the prob-
lem into two subtasks:..1. This subtask is called frequent itemset generation. The task is to generate

all itemsets that satisfy the minimal support threshold supp(X ∪ Y) ≥
minsupp. Those itemsets that satisfy the minimal threshold are called
frequent itemsets...2. The second subtask is called rule generation. The goal is to extract
all the high-confidence rules from the frequent itemsets found in the
previous step. The rule is valid if if satisfies the minimal confidence
threshold conf(X ⇒ Y) ≥ minconf .

Minimal support and minimal confidence are given by a user.

2.3 Frequent Itemset Generation

Let I be a set of items, where I = {A,B,C,D}. Figure (2.1) shows an item-
set lattice for I. An itemset which has k items can generate 2k − 1 frequent

C DA

ABCD

ø

B

ACD BCDABC ABD

AB AC AD BC BD CD

Figure 2.1: An itemset lattice shows all combinations of itemsets [8].

itemsets. The number of items can be large. That cause the search space
of itemsets that need to be explored to grow exponentially. If the number
of items becomes large, it will result in exponential growth of the search
space. A brute-force algorithm for finding frequent itemsets determines the

5

2. Association Rule Mining
support for each candidate itemset in the lattice structure. Each candidate is
compared against each transaction. In case that the transaction contains the
candidate, support count of the candidate is incremented. Complexity of a
brute-force algorithm can be O(NMw), where N is the number of transac-
tions, M = 2k − 1 represents the number of candidate itemsets, and w is the
maximal number of items present in a transaction (i.e. maximum transaction
width).

One way of how to reduce computational complexity is to reduce the number
of candidate itemsets. An effective way to eliminate some of the candidate
itemsets uses the Apriori principle.

2.3.1 Apriori principle

The Apriori principle states: If an itemset is frequent, then all of its subsets
must also be frequent [8]. Conversely, if an itemset is infrequent then all its
supersets must also be infrequent. Figure (2.2) illustrates the Apriori princi-
ple. Let the itemset {B,C,D} be a frequent itemset. This itemset contains its
subsets, for example {B,C},{B,D},{B} etc. If the itemset {B,C,D} is frequent,
then all its subsets must be also frequent. Conversely, in figure (2.2b) is
shown that all supersets of infrequent itemset {A} are also infrequent.

FREQUENT

ITEMSET

A

ABCD

ACDABC ABD

AB AC AD

(a) : Frequent itemset - If an
itemset is frequent, then all its
subsets must be frequent.

INFREQUENT

ITEMSET

C D

ø

B

BCD

BC BD CD

(b) : Infrequent itemset - If
an itemset is infrequent then all
its supersets must also be infre-
quent.

Figure 2.2: A graphic interpretation of Apriori principle [8].

Once the infrequent itemset is found, the following supersets of this itemset
can be pruned. This strategy is also known as support-based pruning [8].
The strategy is made possible by a property of the support measure. This
property states that the support count for an itemset never exceeds the sup-
port of its subsets. This property of support count is called the anti-monotone.

Definition of monotonicity property: Let I be a set of items, and J = 2I be

6

..............................2.3. Frequent Itemset Generation

the power set of I. A measure f is monotone (or upward closed) if

∀X,Y ∈ J : (X ⊆ Y)→ f(X) ≤ f(Y), (2.5)

that means if X is subset of Y, then f(X) must not exceed f(Y). Conversely,
f is anti-monotone (or downward closed) if

∀X,Y ∈ J : (X ⊆ Y)→ f(Y) ≤ f(X), (2.6)

that means if X is subset of Y, then f(Y) must not exceed f(X) [8].

2.3.2 Apriori algorithm

The name of the algorithm is based on the fact that the algorithm uses prior
knowledge of frequent itemset properties [6]. The Apriori algorithm is a
level-wise algorithm. It means that the algorithm completely searches current
level for itemsets before moving to the next level. The pseudocode for the
frequent itemset mining using Apriori algorithm is shown in algorithm (1).
Set of candidate k-itemsets is Ck and set of frequent k-itemsets is Fk.

Algorithm 1 Apriori algorithm - frequent itemset mining [8]
1: k=1
2: Fk = {i|i ∈ I ∧ σ({i}) ≥ N ·minsup} {Find all frequent 1-itemsets}
3: repeat
4: k=k+1.
5: Ck = apriori-gen(Fk−1) {Generate candidate itemsets}
6: for each transaction t ∈ T do
7: Ct = subset(Ck, t)
8: for each candidate itemset c ∈ Ct do
9: σ(c) = σ(c) + 1 {Increment support count}

10: end for
11: end for
12: Fk = {c|c ∈ Ck ∧ σ(c) ≥ N · minsup}. {Extract the frequent k-

itemsets}
13: until Fk = ∅
14: Result=∪Fk

. In step 1 and 2 the algorithm passes over the data and determines the
support of each item. Subsequently, the set of all frequent 1-itemsets
(F1) is known.. Then the algorithm repeatedly generates candidate k-itemsets Ck using
the frequent itemsets Fk−1 that were found in previous step (iteration).
The function apriori− gen generates candidate itemsets (step 5). The
function performs two operations:. Candidate Generation - generates new candidate k-itemsets.

7

2. Association Rule Mining
. Candidate Pruning - eliminates some of the candidate k-itemsets

using the support-based pruning strategy.

There are more methods that can generate candidate itemsets (for exam-
ple Brute-Force method, Fk−1 × F1 method or Fk−1 × Fk−1 method [8]),
yet all of them should satisfy following requirements. The method should
not generate infrequent candidate itemsets and the candidate itemset
should not be generated more than once. The method must ensure that
all frequent itemsets are included and used in candidate generatation
procedure.. Next (steps 6 - 11) the algorithm counts the support of the candidates.
It is needed to pass over the data once again. If the candidate itemset
Ck is located in the subset Ct of transaction t, then the support count is
updated.. All candidate itemsets whose support is less than minimal support are
eliminated (step 12).. The algorithm terminates when there are no new frequent itemsets
generated (Fk = ∅).

The algorithm needs kmax+1 iterations, where kmax is the maximum size of
the frequent itemsets.

2.3.3 Time Complexity

There are several factors that affect the time complexity of the Apriori
algorithm.. Support Threshold - There are two results of lowering support threshold.

In the first case it increases the number of frequent itemsets. The second
result of lowering threshold can cause the increase of the maximum size
of frequent itemsets. Both cases have an adverse effect on the time
complexity of the algorithm since more candidate itemsets must be
generated and counted and bigger size causes more passes over the data
set.. Number of Items - Increasing number of items results in more space
demand to store the support count of items.. Number of Transactions - Time complexity increases with larger number
of transactions.. Average Transaction Width - The maximum size of frequent itemsets
tends to increase as the average transaction width increases. As a result,
more candidate itemsets must be examined during candidate generation
and support counting.

8

................................... 2.4. Rule Generation

2.4 Rule Generation

Each frequent k-itemset, X, can generate 2k − 2 association rules, excluding
empty sets such as X → ∅ or ∅ → X. If the itemset is partitioned into
two non-empty subsets, then an association rule can be generated. Consider
an itemset Y that can be extracted into subsets X and Y − X, such that
X ⇒ Y −X satisfies the confidence threshold.

For example consider X = {A,B,C} to be a frequent itemset. There are
6 possible association rules that can be generated from X, for instance
{A,B} ⇒ {C}, {A,C} ⇒ {B} etc. Support count of such rules is same for
the support of X. All rules satisfy the support threshold because they were
generated from a frequent itemset which has to meet the support threshold.

The minimal confidence threshold is used to prune rules. Confidence, apart
from support, does not have a monotone property like support. However,
rules that are generated from same frequent itemset Y hold the following
theorem for confidence measure. If a rule X ⇒ Y −X does not satisfy the
confidence threshold, then any rule X ′ ⇒ Y −X ′, where X ′ is a subset of
X, must not satisfy the confidence threshold as well [8]. Let X = {A,B,C}

Low-Con dence

Rule

PRUNNED RULES

ABCD ø

ACD B ABD C ABC D

AD BC AC BD AB CD

A BCD

Figure 2.3: Rule generation using confidence-base pruning principle [8].

be a frequent itemset that generates two candidate rules. The first rule is
{A,B} ⇒ {C} with confidence

conf(A,B ⇒ C) = supp(A,B ∪ C)
supp(A,B) ,

and the second rule is {A} ⇒ {B,C} with confidence

conf(A⇒ B,C) = supp(A ∪B,C)
supp(A) ,

9

2. Association Rule Mining
where A ⊂ {A,B}. The support count sup(A) must be equal or higher than
sup(A,B) due to the anti-monotone property of support count. Therefore,
the confidence count of the rule {A} ⇒ {B,C} is at least equal or smaller
than confidence count of the rule {A,B} ⇒ {C}.

Figure (2.3) shows the confidence-based pruning principle. The itemset
{BCD} → {A} has low confidence. Then all the rules that contain item A in
its consequent e.g. {BC} → {AD} or {B} → {ACD} can be pruned.

2.4.1 Apriori Algorithm

The pseudocode of the apriori algorithm for the rule generation is shown in
(2) and (3). The procedure ap− genrules is similar to the frequent itemset
mining algorithm mentioned in the section (2.3.2). The difference is that,
the procedure does not need to pass over the data again to compute the
confidence of the rule. The confidence is computed using the support counts.

Algorithm 2 Apriori algorithm - rule generation [8]
1: for each frequent k-itemset fk, k ≥ 2 do
2: H1 = {i|i ∈ fk} {1-item consequents of the rule.}
3: call ap-genrules(fk, H1)
4: end for

Algorithm 3 Procedure ap-genrules(fk, Hm) [8]
1: k = |fk| {size of frequent itemset.}
2: m = |Hm| {size of rule consequent}
3: if k > m+ 1 then
4: Hm+1 = apriori− gen(Hm)
5: for each hm+1 ∈ Hm+1 do
6: conf = supp(fk)/supp(fk − hm+1)
7: if conf ≥ minconf then
8: output the rule (fk − hm+1)→ hm+1
9: else

10: delete hm+1 from Hm+1

11: end if
12: end for
13: call ap-genrules(fk, Hm+1)
14: end if

2.4.2 Item Constraints

The item constraints are used when a user is interested only in a subset of
associations. These constraints involve restrictions on items that can appear
in a rule. For example, it allows to search such rules that contain a specific

10

............................ 2.5. Transformation of Basic Metrics

item Ix from an itemset I appearing in the antecedent or that have a specific
item Iy appearing in the consequent. Combinations of the above constraints
are also possible. For example, to request all rules that have items from some
predefined itemset X appearing in the antecedent, and items from some other
itemset Y appearing in the consequent [5]. While such constraints can be
applied as a post processing step, integrating them into the mining algorithm
can dramatically reduce the execution time [9].

2.5 Transformation of Basic Metrics

As shown in section (2.1), the support and confidence count are basic metrics
that describes association rules. However, support and confidence are not
common terms among medical specialists. They are rather associated with
terms such as sensitivity and specificity. These terms indicate quality of a
statistical hypothesis or a statistical test.

The basic metrics of association rules can be illustrated using the contingency
table, see the table (2.1), where a represents the number of transactions
that satisfies the antecedence (X) and the consequence (Y), b represents the
number of transactions that satisfies antecedence and does not satisfy the
consequence etc. Total number of all transactions indicates n. The table is

Y ¬ Y
∑

X a b r=a+b
¬ X c d s=c+d∑

k=a+c l=b+d n = a+b+c+d

Table 2.1: Contingency table for a rule [10].

useful in defining support, confidence and lift, as shown in following equations.

support = a

n
(2.7)

confidence = a

r
(2.8)

lift = a · n
r · k

(2.9)

Sensitivity and specificity can be also derived from the table, see equation
(2.10) and (2.11).

sensitivity = a

a+ c
(2.10)

specificity = d

d+ b
(2.11)

Given task is to enable specialists to work with association rules while using
sensitivity and specificity instead of support and confidence. This task leads
to two subtasks. The first subtask is to determine sensitivity and specificity
of a rule based on its support, confidence and lift count. The second subtask

11

2. Association Rule Mining
is to estimate support and confidence count that is used as the threshold in
the algorithm.

Determining Sensitivity and Specificity of a Rule

In the first case we are given a rule with its support, confidence and lift count
and the task is to compute sensitivity and specificity. Based on the previous
equations (2.7), (2.8) and (2.9) it is now possible determine all values in the
table (2.1).

a = n · support

r = a

confidence

k = a · n
r · lift

l = n− k

b = r − a

d = l − b

Then it is possible to count sensitivity and specificity using support, confidence
and lift.

sensitivity = a

k
= a · support

k
= n · support

confidence·n
lift

= support · lift
confidence

(2.12)

specificity = d

d+ b
= l − b

l
= 1−

(
r − a
n− k

)

= 1−

 n·support
confidence − n · support

n− confidence·n
lift

= 1−

 support
confidence − support

1− confidence
lift

(2.13)

Estimating Support and Confidence Threshold

Second case is the inverse of the previous. In this case, the known variables are
sensitivity, specificity and number of all transactions n and it is to determine
the estimation of support and confidence value with respect to them. This
task represents setting of minimal support and confidence in the association
rules mining. The equation (2.14) expresses the sum of all transactions.

n = a+ b+ c+ d (2.14)

In the next step, the variables b a c are substituted. This substitution is
derived from equations number (2.10) and (2.11). Subsequently, the equation

12

............................ 2.5. Transformation of Basic Metrics

is modified into its final form.

n = a+ d(1− specificity)
specificity

+ a(1− sensitivity)
sensitivity

+ d

= a+ d

specificity
− d+ a

sensitivity
− a+ d

= a

sensitivity
+ d

specificity

(2.15)

In this form the equation have 2 unknown variables a and d. Assuming that
d >> a, since there is more record in the database that do not satisfy the
rule, and thus it allows us to substitute k · a for variable d.

n = a

sensitivity
+ k · a
specificity

(2.16)

One more substitution is needed to derive equation for estimation of support
and confidence. Variable n in the support equation (2.7) is replaced with
equation (2.16). Similarly, the variable b in the confidence equation (2.8)
is replaced. Equations (2.17) and (2.18) represents the final form for the
estimation of support and confidence count.

support = a

n
= 1

1
sensitivity + k

specificity

= sensitivity · specificity
specificity + k · sensitivity

(2.17)

confidence = a

a+ b
= a

a+ k·a(1−specificity)
specificity

= specificity

specificity + k(1− specificity)

(2.18)

Task is to find an estimation of the support and confidence count. The
estimation should be the minimum, therefore the parameter k has to be
maximal. The estimation of the parameter k is derived from equation (2.16),
where sensitivity and specificity are equal to 1.

a+ k · a ≥ n

k ≥ n

a

(2.19)

The task is considered to be an optimization problem. The straightforward
solution is to set support and confidence threshold to a very small value. With
this setting, there is an assurance that all rules will be found, yet this setting
can cause long duration time of the algorithm especially if a big dataset is
used. Therefore, the estimation of the support and confidence threshold could
be an alternative solution.

13

14

Chapter 3
Sequential Pattern Mining

Sequential pattern mining is another approach in mining association rules. It
uses sequences in a transactions to discover subsequences. This approach was
firstly mentioned by Rakesh Agrawal in 1995 [11].

This thesis introduces the apriori-based algorithm called SPADE. However,
there are more apriori-based algorithms, such as Apriori-All, GSP, PSP,
SPAM.

3.1 Basic Concept

Let I = i1, i2, ..., im be a set of m distinct items comprising the alphabet. An
event is a non-empty unordered collection of items. A sequence is an ordered
list of events. An event is denoted as (i1, i2, ..., ik) where ij is an item. A
sequence α is denoted as (α1 → α2 → ...→ αq), where αi is an event. The
length of the sequence α is q and width of the sequence is the maximum size
of any αi for 1 ≤ i ≤ q [12]. A sequence with k items k =

∑
j |αj | is called a

k−sequence. If an event αi is before another event αj it is denoted as αi < αj .

Consider a sequence α and β. The sequence α is subsequence of β if there
exists a function f that maps events in α to events in β and satisfies following
conditions...1. αi ⊆ f(αi)...2. if αi < αj then f(αi) < f(αj). In the other words the order of events

must be preserved [13].

The DatabaseD contains a collection of input-sequences. Each input-sequence
has the following fields: sequence_id (sid), event_id (eid) and items, see
table (3.1). Sequence_id is a unique identifier for each input sequence. The
assumption is that there is no sequence having more than one event with the
same time-stamp. Therefore, this time-stamp can be used as a unique event
identifier.

Support of a sequence, denoted σ(α,D), is defined as the number input-
sequences in the database D that contain α. A sequence is called frequent

15

3. Sequential Pattern Mining
if it satisfies minimal support threshold that is specified by a user. The
task is to find all frequent sequences from database D. The set of frequent
k − sequences is denoted as Fk [14].

Rules are generated using frequent sequences and minimum confidence thresh-
old which is defined by a user.

Sequence ID Event ID Items
1 1 C D
1 2 A B C
1 3 A B F
1 4 A C D F
2 1 A B F
2 2 E
3 1 A B F
4 1 D G H
4 2 B F
4 3 A G H

Table 3.1: An input-sequence database [13].

3.2 SPADE Algorithm

The SPADE (Sequential PAttern Discovery using Equivalence classes) al-
gorithm is used to discover frequent sequences. The algorithm uses lattice
theory [13], especially the observation that the subsequence relation � defines
a partial order on the set of sequences. In other words, if β is a frequent
sequence, then all subsequences α < β are also frequent [12]. The search
space is very large, considering that the total number of all sequences n of
length at most k is O(nk).

A B D F
sid eid sid eid sid eid sid eid
1 2 1 2 1 1 1 3
1 3 1 3 1 4 1 4
1 4 2 2 4 1 2 2
2 2 3 1 3 1
3 1 4 3 4 3
4 4

Table 3.2: The vertical database format for items A, B and C of input-sequence
format of table (3.1).

This algorithm uses vertical database layout that is shown in table (3.2). It is
an alternate manner compared with horizontal layout. In the vertical layout
each item X in the sequence lattice is associated with its list called id− list

16

.................................. 3.2. SPADE Algorithm

and denoted L(X). Each record in the list contains a pair of input-sequence
identifier (sid) and event identifier (eid). The number of rows in the list
corresponds with the number of occurrence of the item in the database. The
list contains pairs of input-sequence identifier and event identifier that contain
the item.

Pseudo code of the SPADE algorithm is shown in algorithm (4). The algorithm
computes the frequent 1-sequences and 2-sequences. Then it decomposes the
frequent 2-sequences into sub-lattices and then enumerates all other frequent
sequences using Breadth-First Search (BFS) or Depth-First Search (DFS). All

Algorithm 4 SPADE (min_sup,D): [13]
1: F1 = {frequent items or 1-sequences};
2: F2 = {frequent 2-sequences};
3: ε = {equivalence classes [X]θ1 };
4: for all [X] ∈ ε do Enumerate-Frequent-Seq([X]);

frequent 1-sequences can be discovered by one scan of the vertical database.
There are two ways how to discover 2-sequences...1. Preprocessing and collecting all 2-sequences above a user specified lower

bound...2. Performing vertical-to-horizontal transformation. The transformation
creates a new list. A pair that consist of item and its event identifier in
the sequence is inserted into each input-sequence (sid), see table (3.3).
Afterwards, it is needed to create a list of all 2-sequences for each input-
sequence, and update counts in a 2-dimensional array indexed by the
frequent items [13].

SID (Item, EID) pair
1 (A,2) (A,3) (A,4) (B,2) (B,3) (C,1) (C,2) (C,4) (D,1) (D,4) (F,3) (F,4)
2 (A,2) (B,2) (E,3) (F,2)
3 (A,1) (B,1) (F,1)
4 (A,4) (B,3) (D,1) (F,3) (G,1) (G,4) (H,1) (H,4)

Table 3.3: The vertical-to-horizontal database format of input-sequence format
of table (3.1).

3.2.1 Equivalence classes

The process continues by decomposing the 2-sequences into prefix-based parent
equivalence classes. The algorithm recursively decomposes the sequences at
each new level into even smaller independent classes due to limited amount
of memory. At level one the suffix classes have length equal to one and they
are called parent classes. To decompose the 2-sequences it is possible to

17

3. Sequential Pattern Mining
use Breadth-First Search or Depth-First Search. In Breadth-First Search,
the space is explored in a bottom-up manner. All child classes at each level
are processed before moving to next level. In Depth-first search all child
equivalence classes for a path are processed before moving to the next path
[14].

ø

D BF A

D B A D F A

D F D A

D

D B

D BF

.
Figure 3.1: Recursive decomposition of class D into smaller sub-classes results
in lattice of equivalence classes [13]

3.2.2 Enumerate Frequent Sequences

Algorithm (5) shows the pseudo-code for breadth-fist and depth-first search.
Input of the procedure Enumerate-Frequent-Seq is suffix class with the id-list

Algorithm 5 Enumerate-Frequent-Seq(S): [13]
1: for all sequences Ai ∈ S do
2: Ti = ∅;
3: for all sequences Aj ∈ S, with j ≥ i do
4: R = Ai ∨Aj ;
5: if (Prune(R) == FALSE) then
6: L(R) = Temporal − Join(L(Ai),L(Aj));
7: if (σ(R) ≥ min_sup) then
8: Ti = Ti ∪R;F|R| = F|R| ∪ {R};
9: end

10: if (Depth-First-Search) then Enumerate-Frequent-Seq(Ti);
11: end
12: if (Breadth-First-Search) then
13: for all Ti 6= ∅ do Enumerate-Frequent-Seq(Ti);
14: delete(S);

for each of its elements. Frequent sequences are generated using joins of
id-lists and verifying the support of a new id-list against the minimal support

18

.................................. 3.3. cSPADE Algorithm

threshold.

The algorithm can contain a pruning step. This step tests whether all
subsequences of the discovered sequence are frequent. Discovered frequent
sequences at the current level are used to discover frequent sequences at the
next level. This process repeats recursively until all frequent sequences are
discovered [12]. The last step of the algorithm is to delete the current level
sequences S if the next level sequences Ti are found.

3.2.3 Temporal id-list Join

Let’s have a sequence S and items A and B. The enumeration of the frequent
sequences is performed by joining the id-lists in one of three ways...1. Itemset and Itemset: joining AS and BS results in a new itemset ABS...2. Itemset and Sequence: joining AS with B → S results in a new sequence

B → AS...3. Sequence and Sequence: joining A→ S with B → S gives three possible
results: a new itemset AB → S, and two new sequences A → B → S
and B → A → S. One special case occurs when A → S is joined with
itself resulting in A→ A→ S

The enumeration process is the union or join of a set of sequences or items
whose counts are then calculated by performing an intersection of the id-lists
of the elements that comprise the newly formed sequence [14].

3.2.4 Pruning Sequences

Let α1 denote the first item of sequence α. Before generating the id-list for a
new k-sequence β, we check whether all its k subsequences of length k-1 are
frequent. If they all are frequent then we perform the id-list join. Otherwise,
β is dropped from consideration [13].

3.2.5 Rule Generating

The pseudo code in algorithm (6) presents rule generating procedure. Input
of this procedure are frequent sequences and the minimal confidence. The
Function fr(α) determine frequency in which the subsequence α occurs in the
input-sequences. The confidence of a rule is computed as a ratio of frequency
β and frequency of α. If the rule satisfies the minimal confidence threshold,
then the procedure returns the rule and its confidence.

3.3 cSPADE Algorithm

The algorithm cSPADE extends the algorithm SPADE. In the algorithm (7)
and (8) the pseudo code is presented. The constraints restriction is imple-
mented in the Enumerate-Frequent procedure.

19

3. Sequential Pattern Mining
Algorithm 6 RuleGen(F,min_conf): [13]

1: for all frequent sequences β ∈ F do
2: for all subsequences α ≺ β do
3: conf = fr(β)/ fr(α);
4: if conf ≥ minconf then
5: output the rule α→ β, and conf

Algorithm 7 cSPADE (min_sup): [12]
1: P = {parent classes Pi};
2: for each parent class Pi ∈ P do Enumerate-Frequent(Pi);

A definition states that a constraint can be class-preserving or not class-
preserving. A constraint is class-preserving if in the presence of the con-
straint a suffix-class retains it’s self-containment property, i.e., support of
any k-sequence can be found by joining the id− lists of its two generating
sub-sequences of length (k - 1) within the same class. [12].

The algorithm considers several constraints such as:. Length and width limitations constraints are useful in tasks which has
to restrict maximum length or width of a pattern to avoid exponential
growth in the number of discovered frequent sequences. The constraint
is implemented using IF clauses in the step 8 in the algorithm (8)..Minimum gap and maximum gap between sequence elements. This
constraint works with the time stamp of the input-sequences. The case
of minimum gap allows to define a gap (a certain amount of time) that at
least has to pass between two sequences. The case of the maximum gap
is analogical, yet the maximum gap constraint is not class-preserving,
therefore it requires a different approach of enumerating the frequent
sequences. If the maximum gap constraint is used, then must be per-
formed a join with set of frequent 2-sequences, instead of self-join [12].
See the step 2 - 6.. The window constraint specifies the area of the interest. Using the
minimum and maximum gap constraint allows only to define a length
between two sequence elements. A window defines a time length of a
whole sequence. This constraint is class-preserving. If a sequence α is
within the time-window, then any subsequence β must also be within
the same window. Implementation of this constraint is throw adding an
extra column to the id− list called diff. The column diff is computed as
a differential between the first and last eid (time stamp) of a sequence.. Item constraint allows either excluding items, including items or creating
a super-item. A user defines which items will be excluded, included
or considered as a super-item. It is possible due to using the vertical

20

.................................. 3.3. cSPADE Algorithm

format database and equivalence classes. In case of excluding constraint
the specified item is removed from the parent class, so that the item
will never appear in any discovered sequences. In case of inclusion, a
new class is generated if a sequence contains the item. The super-item
constraint allows considering a group of items or sequences to be a single
item.. Class constraint is able to use in case of classificated database, in which
each input-sequence has a class label.

Algorithm 8 Enumerate-Frequent (S): [12]
1: for all sequences Ai ∈ S do
2: if (maxgap) then // join with F2
3: p= Prefix-Item(Ai)
4: N= { all 2-sequences Aj in class [p]}
5: else// self-join
6: N = { all sequences Aj in S, with j ≥ i }
7: for all sequences α ∈ N do
8: if (length(R) <= maxl and width(R) <= maxw and

accuracy(R) 6= 100%) then
9: L(R)=Constrained-Temporal-Join(L(Ai),L(α),min_gap,

max_gap,window);
10: if (σ(R,ci) ≥ min_sup(ci)) then
11: T = T∪ R; print R;
12: Enumerate-Frequent(T)
13: delete(S);

21

22

Chapter 4
Design and Implementation of Data
Analysis

This chapter describes developing the data analysing tool and implementing
it into ASTEP. Following text that describes data analysis is split into four
parts:. Data extraction and data format,. Data analysis in R,. Implementation of previous into ASTEP and. Design of Sequence Pattern Search.

The first part of the text describes the database structure, extracting data
from the database and creating the dataset which is used to data analysis.
The second part is introduction into data analysis using association rules
and its implementation into R. The third part of this chapter shows ASTEP
interface for data analysis and implementation of both previous parts into
ASTEP. The last part presents the design of sequence pattern search in R.

Figure 4.1: The interface of Annotation and Statistical Tool for EPilepsy.

23

4. Design and Implementation of Data Analysis
4.1 Database and Data Extraction

The software tool ASTEP contains database of the seizures. The database
has 6 tables:. generator,. patient,. termspatient,. measure,. symptom and. termsepilepticfit.

For the structure of the database, see figure (4.2). The description of all

PA
T
IE
N
T
_I
D

TYP_ID

DIAGNOZA_ID

STRANA_ID

LOKALIZACE_ID

PARENT_ID

MEASURE_ID

BODY_ID

PROPERTY_ID

PARENT_ID

GENERATOR

GEN_KEY

GEN_VALUE

Figure 4.2: The Scheme of the database.

tables is in the appendix (A). Worthy of noticing are tables termspatient
and termsepilepticfit which use recursive association. The recursive
association allows using a hierarchical structure. Types and manners of the
seizures, also called ictal signs, are stored in the table termsepilepticfit.
For example, hierarchy of body ictal sign right eye or right hand shows the
figure (4.3). The maximal level (i.e. depth) of this hierarchy is 4.

24

............................. 4.1. Database and Data Extraction

BODY_ID

Level

1

2

3

4

Hand

RightLeft Both

Head

Eyes

Right

Figure 4.3: An example of the hierarchy in the table TERMSEPILEPTICFIT

4.1.1 Data Extraction

In order to extract data from the database into a dataset, all tables except
generator are needed. The dataset has 15 variables (features). The main
variables that are used for the association rules analysis are localisation, side,
body_i and property_i, where i refers to hierarchical structure with numbers
1, 2, 3, 4. For the full list of variables see appendix (B).

The program ASTEP has implemented API to interact with the database
and objects equivalent to the tables in the database. This API is used to
extract data from the database. For the purpose of creating the dataset, two
methods are used.

Method getDBData

The first method is called getDBData. This method returns type String-
Builder which contains extracted data.

For each single feature, there is created an ArrayList. The first value in
the list is always the name of the feature. The reason for this is to create the
header of the dataset making the dataset understandable.

The API that allows interacting with the database provides class IDatabaseM-
anager. Its instance is called manager providing the list of the patients. The
for loop iterates over the patients list to get the record of the measures and
in like manner the record of each symptom in the table measure is obtained.
pub l i c s t a t i c S t r i n g B u i l d e r getDBData () {

p a t i e n t s L i s t = manager . g e tPat i en t s () ;
f o r (i n t i = 0 ; i < p a t i e n t s L i s t . s i z e () ; i++) {

f o r (i n t j = 0 ; j < p a t i e n t s L i s t . get (i) . getMeasures ()
. s i z e () ; j++) {
IMeasure measure = p a t i e n t s L i s t . get (i) .

getMeasures () . get (j) ;

25

4. Design and Implementation of Data Analysis
f o r (i n t k = 0 ; k < measure . getSymptoms () . s i z e () ;

k++) {
ISymptom symptom = measure . getSymptoms () . get (

k) ;
symptomsList . add (symptom) ;

. . .
}

}
}

}

It is important to note that the object symptom contains variables of the
ictal signs Body and Property.

As previously mentioned the ictal signs use the hierarchical structure in
the database hence it is necessary to reflect it and split the ictal sign into
single levels. The maximal level of the hierarchy is currently considered to
be 4. If an ictal sign doesn’t utilize all levels of the hierarchy, the empty
levels are filled with the tabulate space (horizontal tab). In the code below
is shown how to obtain the hierarchy of the ictal sign for the variable body.
The procedure is same in the case of variable property.

S t r i n g B u i l d e r body = new S t r i n g B u i l d e r () ;
f o r (i n t l = 0 ; l < 4 ; l++) {

i f (l < symptom . getBody () . getHierarchy () .
s i z e ()) {
body . append (symptom . getBody () .

getHierarchy () . get (l) . getTermName
()) ;

} e l s e {
body . append (" ") ;

}
i f (l <3){

body . append (" \ t ") ;
}

}
. . .

In each iteration over the list of the symptoms all extracted values are
appended into corresponding ArrayLists and as result the dataset has the
same number of records (rows) as the table symptom. In the end when all
for loops terminate, the values from Arraylists are appended into the final
StringBuilder called dataExport.

Method writeDataFile

The Second method is called writeDataFile and it writes data into a text file.
The method has a parameter StringBuilder and its data are written into the
file. The Java class called FileWriter (java.io.FileWriter) provides writing
characters to a file. The parameter of the FileWriter sets the path and name
of the file.

pub l i c s t a t i c void wr i t eDataFi l e (S t r i n g B u i l d e r data) throws
IOException {

26

.................................4.2. Associative Rules in R

St r ing f i l e P a t h = System . getProperty (" user . d i r ") + F i l e .
s epa ra to r + " Analyzator " + F i l e . s epa ra to r + " RFi les "
+ F i l e . s epa ra to r + " sequencesData " ;

F i l eWr i t e r w r i t e r = new Fi l eWr i t e r (f i l e P a t h) ;
w r i t e r . wr i t e (data . t o S t r i n g ()) ;
w r i t e r . c l o s e () ;

}

4.2 Associative Rules in R

Package arules provides infrastructure for association rules learning. Function
apriori is part of this package and it implements the Apriori algorithm [15].

4.2.1 Function Apriori

The apriori function is necessary for this work especially in the R script which
is used to rules mining. The arguments of the function are data, parameter,
appearance and control. The output of the function is an object of class rules
or item sets.

The data given to the function must be transactions. The transaction is a
data.frame with vectors of the same length as the number of transactions.
Transactions can be created by coercion from lists containing transactions,
but also from matrix and data.frames. However, it is necessary to have the
data prepared. Association rule mining can only use items and does not work
with continuous variables [16].

The argument parameter holds the information about the behaviour of the
mining algorithm. Using this argument allows setting the value for the mini-
mal support and the minimal confidence of an item set using the parameters
support and confidence. There are more parameters to use, e.g. minlen,
maxlen which define the minimal or the maximal number of items per item
set or the parameter target that defines the type of association mined (e.g.
frequent item sets, maximally frequent item sets, rules etc.).

The argument appearance specifies the restrictions for the associations mined.
The list that specifies the restriction can contain following elements lhs, rhs,
both or none. These elements contain character vectors that give the labels of
the items which can appear in the specified place. The element lhs stands for
left-hand-side and rhs stands for right-hand-side. The place none is special
and it specifies items that cannot appear in the rule. The Parameter default
defines the default appearance for all items which are not mentioned in the
other elements of the list.

The argument control holds the parameters for the used algorithms and
controls the algorithmic performance. This argument enables specifying the

27

4. Design and Implementation of Data Analysis
type of sorting with parameter sort and it allows reporting progress using
parameter verbose. There are more parameters in this argument to use, for
example filter, tree, heap, memopt, load and sparse.

4.2.2 Description of the R Script

The main R script is called epilepticRules. In brief, this script loads data in
R (function readData), then creates vectors which are used for appearance
restriction (function getARvector). At last, the script uses data and these list
to search association rules (function findRules).
data <− readData (" sequencesData ")

rhsFeatures <− c (" l o c a l i s a t i o n " , " s i d e ")
r h s L i s t <− g e t L i s t (data , rhsFeatures)

i f (switch_va l==1){
lh sFea ture s <− c (" body_1 " , " body_2 " , " body_3 " , " body_4 " , " property_1 "

, " property_2 " , " property_3 " , " property_4 ")
l h s L i s t <− g e t L i s t (data , l h sFea ture s)
}

export <− f i ndRu le s (data , l h s L i s t , rh sL i s t , s ens_value , spec_value)

Function readData

Purpose of the function readData is to load and store data in the data frame
form. The function also verifies if the data file exists based on the name of
the file. If the file exists, then data are loaded. The function returns the data
frame called data.
readData <− f unc t i on (f i l e _name) {

f i l e B o o l <− f i l e . e x i s t s (f i l e _name)

i f (f i l e B o o l==TRUE) {

data <− read . csv (f i l e _name , sep=" \ t " , header= TRUE) ;
data [names (data)] <− l app ly (data [names (data)] , f a c t o r)

}

re turn (data)
}

Function getARvector

The function returns vector of labels that is necessary in case of using ap-
pearance restriction (i.e. item constraints) in the Apriori function. Function
getList can be used to create vectors for both sides right and left. The input
of the function is the dataset and vector containing names of the features.

Features in the right-hand-side are localisation and side. Features in left-
hand-side are body_1 - body_4 and property_1 - property_4 or the vector of

28

.................................4.2. Associative Rules in R

labels can be defined directly by a user from the program interface.

Based on the name of the features (columns), corresponding columns are ex-
tracted from the dataset. If there is no record in a column, then such column
is not included. Remaining columns are saved in the variable newData.
columnNames <− f e a t u r e s

columnNumbers <− which (names (data)%in%columnNames)
newData <− l i s t ()
vect <− c ()
k <− 1 ;
f o r (i in columnNumbers) {

i f (l ength (l e v e l s (f a c t o r (data [[i]]))) !=0) {
vect <−c (vect , i) ;
k <− k+1

}
}

newData <− data [vect]

Following step after extracting features is to obtain the unique values of the
variables which is attained by using functions levels and factor.
nameList <− l i s t ()

f o r (i in 1 : l ength (newData)) {
nameList [i] <− l i s t (l e v e l s (f a c t o r (newData [[i]])))

}

Due to the fact that the dataset has empty fields in the columns, one of the
unique value can be an empty character. Therefore, this value has to be
removed.

f o r (i in 1 : l ength (nameList)) {
vect <− do . c a l l (" cbind " , nameList [i])
f o r (j in 1 : l ength (vect)) {

i f ((" " %in% vect)) {
vect <− vect [− j]

}
}
nameList [i] <− l i s t (vect) ;

}

Each entry of the final vector consists of the column name, the unique value
of the column and the symbol of equality "=".

f o r (i in 1 : l ength (nameList)) {
ARvector <− c (l h s L i s t , paste (colnames (newData [i]) , nameList [[i

]] , sep = "="))
}

re turn (ARvector)

Function findRules

Function findRules processes given data and searches for the association
rules. Input of this function is dataset, both appearance restriction vectors,
sensitivity and specificity value. Initially, it is crucial to compute support
and confidence count stated by equations (2.17) and (2.18).

29

4. Design and Implementation of Data Analysis
Then the parameters are matched with the arguments of function Apri-
ori. Parameters such as the minimal length of the rule, the minimal value of
support and confidence, the type of the association mining and appearance
vectors.
r u l e s <− a p r i o r i (mydata , parameter = l i s t (minlen=minlen_value ,

supp = supp_value , conf = conf_value , t a r g e t = " r u l e s ") ,
appearance = l i s t (l h s=lhsVect , rhs=rhsVect , d e f a u l t=" none "))

Besides the association rules the output of the function apriori contains also
value of the support, confidence and lift for each rule. Based on these three
values it is possible to determine the value of sensitivity and specificity using
equations (2.12 and (2.13).
r u l e s <− as (ru l e s , " data . frame ") ;
r u l e s [5] <− l i s t (s e n s i t i v i t y = s e n s i t i v i t y)
r u l e s [6] <− l i s t (s p e c i f i c i t y = s p e c i f i c i t y)

Function Apriori searches rules using values support and confidence threshold.
Therefore, detected rules can have lower sensitivity and specificity than it
is stated by a user. It is necessary to select rules that specifically satisfy
minimal sensitivity and specificity value. All the values, including the rules,
are stored in the variable called export.
export <− r u l e s [which (r u l e s [6] >= spec & r u l e s [5] >= sens) ,]

30

.............................. 4.3. Implementation into ASTEP

4.3 Implementation into ASTEP

Data extraction and the R script, that were described in (4.1.1) and (4.2.2),
are both implemented in ASTEP. The module for data analysis has its own
window. The figure (4.4) shows all graphical objects that are used. There are
two combo boxes called Symptom and Místo (place on the body) to define
ictal signs and two text fields to assign the value for the minimal sensitivity,
the minimal specificity. These values are used to estimate the minimal value
for support and the minimal value for confidence. Results are printed in the
text area in the bottom part of the window. The button hledej starts the
analysis.

Figure 4.4: ASTEP - the module of data analysis.

4.3.1 The Dataset

The text file which contains data is created every time during the launch
of the analysis module. It is provided by method componentOpened. The
method ensures that the dataset is up to date. Methods writeDataFile and
getDBData are described in the section (4.1.1).
pub l i c void componentOpened () {

t ry {
wr i t eDataFi l e (getDBData ()) ;

} catch (IOException ex) {
Except ions . pr intStackTrace (ex) ;

}
}

4.3.2 Analysis in Java with the use of R

The button hledej has an ActionListener which executes the code inside the
method when the button is pressed. The action that is performed clears the

31

4. Design and Implementation of Data Analysis
text area for the results, starts the analysis and prints the results in the text
area.

p r i v a t e void processBTActionPerformed (java . awt . event . ActionEvent
evt) {

outputTA . setText (" ") ;
RList r e s u l t s = runRSript () ;
outputTA . append (p r i n t R e s u l t s (r e s u l t s) . t o S t r i n g ()) ;

}

Method runRScript

The method runRScript executes the R code as well as the analysis. Java
class called Java/R Interface (org.rosuda.JRI) allows running R code in Java.
At first, it is needed to initialize the R engine.
Rengine engine = Rengine . getMainEngine () ;

If a user decides to choose an ictal sign, then an instance of the object String-
Builder is created. This instance contains single levels of the selected ictal
signs.

The function eval evaluates an expression. Therefore, it can be used to
transfer the values into the R environment.

eng ine . eva l (" l h s L i s t <−" + s i g n s) ;
eng ine . eva l (" sens_value<−" + sens_value) ;
eng ine . eva l (" spec_value<−" + spec_value) ;

The function eval launches the whole R script which is described in (4.2.2).
eng ine . eva l (" source (’ e p i l e p t i c R u l e s .R ’) ") ;

After the evaluation of the code, the results are transferred from the R
environment to Java.
r e s u l t s = engine . eva l (" export ") . a s L i s t () ;

The method printResults prints the rules with sensitivity and specificity in
the text area and describes the style and the format of the printed string.

There is one more method to notice and it is called getRulesArray. The
string with the rules contains some symbols that can make reading the rules
unpleasant. This method is used to remove unwanted characters from the
string. As the result, the rules are more clear.

4.4 The Design of Sequence Pattern Search

One of the tasks is to design sequence pattern search. The implementation
described in this section uses R package arulesSequences [17] and its functions.

32

......................... 4.4. The Design of Sequence Pattern Search

4.4.1 Function cSpade

Function cSpade generates frequent sequential patterns. The function has
four arguments data, parameter, control and tmpdir.

The input of argumet data must be an object of class transactions with
temporal information, such as event identifier.

The argument parameter provides the constraint parameters for the algorithm.
The argument allows adjusting the function behaviour. Available options
are support, maxsize, maxlen, mingap, maxgap or maxwin. More information
about constraints in cSPADE, see section (3.3).

The argument control holds controlling parameters for the cSPADE algorithm.
For example, parameter memsize defines the maximum amount of memory to
use. The other options are numpart, bfstype, verbose, summary and tidLists.

Arguments tmpdir stands for temporal directory and defines a name of
the directory where temporary files are written.

4.4.2 R Implementation

Following text explains the implementation of the sequence pattern mining
in R.

Firstly, it is necessary to prepare the data for function read-baskets. This
function requires the data in a proper form. The columns that obtain sequence
or event identifier must occur before columns that contain information about
items. Therefore, several steps, such as replacing empty columns with a string
NA or feature selection, must be fulfilled.
data <− read . csv (" sequencesData " , sep=" \ t " , na . s t r i n g s=c (" " , "NA") ,

header= TRUE) ;
f e a t u r e s <− c (" measure_id " , " sequence " , " body_1 " , " body_2 " , " body_3 " ,

" body_4 " , " property_1 " , " property_2 " , " property_3 " , " property_4 " ,
" l o c a l i s a t i o n " , " s i d e ")

columnNumbers <− which (names (data)%in%f e a t u r e s)
data <− data [, columnNumbers]

Since the implementation of cSPADE algorithm does not support direct item
constraints, values of location and location side has to be renamed. It will be
useful in defining the lhs and rhs vectors of items.
co lNumLocal i sat ion <− which (names (data)%in%" l o c a l i s a t i o n ")
colNumSide <− which (names (data)%in% " s i d e ")

l e v e l s (data [, co lNumLocal i sat ion]) <− c (paste (colnames (data [
co lNumLocal i sat ion]) , l e v e l s (data [, co lNumLocal i sat ion]) , sep=
"="))

l e v e l s (data [, colNumSide]) <− c (paste (colnames (data [colNumSide])
, l e v e l s (data [, colNumSide]) , sep="="))

33

4. Design and Implementation of Data Analysis
LevLoca l i s a t i on <− l e v e l s ((data [, co lNumLocal i sat ion]))
LevSide <− l e v e l s (f a c t o r (data [, colNumSide]))

modified data are written in to a file then the function read-baskets can read
the modified dataset. The function reads the data and creates a new object of
transactions class. The dataset contains values NA and the function cSPADE
considers these values to be an item. Removing NA values from transactions
class is a straightforward process.

The object of class transactions is an extension of class itemMatrix that
allows to store a binary incidence matrix [16]. The procedure is to extract
this matrix from the transactions class, then to find the row that corresponds
to the value NA and to set all values of this row to FALSE and to return this
modified matrix to the original object of transactions class.
sequencesData <− read_basket s (" basketData " , sep=" \ t " , i n f o=c ("

sequenceID " , " eventID "))
BImatrix <− sequencesData@data
BImatrix [match (’NA’ , sequencesData@itemInfo $ l a b e l s) ,] <− FALSE
sequencesData@data <−BImatrix

Parameters of function cSPADE were mentioned in section 4.4.1. Once the
function returns frequent sequences it is possible to extract a subset. In
this case, the extracted subset must have the size of the sequence equal or
higher than 2 and sequences must contain an item from right hand side vector
(rhsVect). It decreases frequent sequences, so it will eventually decrease the
number of rules.
s eqs <− cspade (sequencesData , parameter = l i s t (support=supp)

lhsVect <− subset (seqs@elements@items@itemInfo $ l a b e l s , ! (
seqs@elements@items@itemInfo $ l a b e l s %in% c (LevSide ,
LevLoca l i s a t i on)))

rhsVect <− subset (seqs@elements@items@itemInfo $ l a b e l s , (
seqs@elements@items@itemInfo $ l a b e l s %in% c (LevSide ,
LevLoca l i s a t i on)))

subSeqs <−subset (seqs , s i z e (s eqs) >= 2 & seqs %in% rhsVect)

The function ruleInduction is used to generate sequences rules. A sequence
rule has to satisfy the minimum confidence threshold and contain the last
element of the sequence as the consequent of a rule [17]. The last modification
is to select subset of rules again. The condition is that the items from vector
rhsVect cannot occur in left hand side (antecedent) of a rule and must occur in
right hand side (consequent). The condition is similar for the vector lhsVect.
r u l e s <− r u l e I n d u c t i o n (subSeqs , sequencesData , con f idence = 0 . 1 ,

c o n t r o l = l i s t (verbose = TRUE))

r u l e s <− (subset (ru l e s , (rhs (r u l e s) %in% rhsVect) & ! (rhs (r u l e s)
%in% lhsVect) & ! (l h s (r u l e s) %in% rhsVect) & (l h s (r u l e s) %in
% lhsVect)))

34

Chapter 5
Experiments

This chapter presents results of some experiments that were made to prove
the correctness of the implementation. Main experiments that will be demon-
strated are:. verification of the function apriori and association rule mining,. visualization of the association rules,. verification of the basic metrics transform,. proof of functionality of the analysis module in ASTEP and. analysis of the sequence pattern mining.

The database contains record of 25 patients, 57 annotated seizures and 241
annotated symptoms. The size of the dataset is 241 record, denoted as n.

5.1 Verification of the Association Rule Mining

The aim of this section is to demonstrate results of association rules mining
and to determine the number of discovered rules.

Two approaches have been used to show influence of the support count
on the number of discovered rules, see Figure (5.1). The first approach is to
generate all available association rules without any constraints. The second
approach is to generate association rules with item constraints usage. The
implementation of item constraints was mentioned in section (4.2.1). In both
cases the value of confidence was set to 1/n.

Figure (5.1a) and (5.1b) shows the manner of decreasing number of dis-
covered rules with respect to increasing support count. The maximal count
of discovered rules is 106 343 in case of no constraints and 2 082 rules in
the case of constraints. The value of support is equal to 1/n = 1/241 which
corresponds to the occurrence of a rule at least in one record of the dataset.
Applying constraints in aprirori function leads to dramatic decrease of dis-
covered rules, especially in cases with very low support count.

35

5. Experiments

0

30000

60000

90000

0.000 0.025 0.050 0.075 0.100
Support

N
u

m
b

e
r

o
f

ru
le

s

Constraints

With Constraints
Without Constraints

Number of rules with respect to support

(a) : The number of rules with
respect to support.

0

500

1000

1500

2000

0.000 0.025 0.050 0.075 0.100
Support

N
u

m
b

e
r

o
f

ru
le

s

Constraints

With Constraints

Number of rules with respect to support

(b) : A detailed view of the
number of rules using item con-
straints.

Figure 5.1: Experiment of the dependency between support count and number
of rules.

In Figure (5.2) the execution time is presented. Shown values are the average
of 1000 iterations. The shape of execution time curves approximately corre-
lates with the shape of curves in Figure (5.1a).

0.01

0.02

0.03

0.04

0.05

0.06

0.000 0.025 0.050 0.075 0.100
Support

M
e
a

n
 e

xe
c
u

ti
o
n
 t

im
e
 [

s
]

Constraints

With Constraints
Without Constraints

Execution time in 1000 iterations with respect to suppor

Figure 5.2: The execution time of the function apriori with respect to support
in 1000 iterations.

It is necessary to be aware of the fact that support count is used in the
first phase of association rule mining. The first phase is searching for frequent
item sets. An adjustment of the support threshold affects the number of
frequent itemsets which affects number of rules in the end. Therefore, support
count has more influence on time consumption of apriori algorithm than

36

....................... 5.1. Verification of the Association Rule Mining

confidence count. Figure (5.3) shows how the number of rules is related with
confidence count. The value of support count in this test was set to 1/n.

0

30000

60000

90000

0.00 0.25 0.50 0.75 1.00
Confidence

N
u

m
b

e
r

o
f

ru
le

s

Constraints

With Constraints
Without Constraints

Number of rules with respect to confidence

(a) : The number of rules with
respect to confidence.

1200

1500

1800

2100

0.00 0.25 0.50 0.75 1.00
Confidence

N
u

m
b

e
r

o
f

ru
le

s

Constraints

With Constraints

Number of rules with respect to confidence

(b) : A detailed view of the num-
ber of rules with constraints.

Figure 5.3: En experiment of the dependency between confidence count and
number of rules.

As mentioned above, the dataset consists of 47 seizures (measures). The
estimation is that 600 seizures will be annotated. It is about 12.5 times more
then current dataset has. We can assume that the number of symptoms will
also increase by 12.5 times, thus the number of record in dataset could be 3 076.

Nevertheless, it is difficult to estimate the number of frequent itemsets that
could be generated. As it was mentioned in section (2.3), itemset with k
items can generate 2k− 1 frequent itemsets. There are two extreme situations
that can occur...1. The itemset will grow same range. It means there will be new items

appended into the itemset. It will result in many new frequent itemset
with very low support, because their appearance will be rare. If we
simply multiply current 2082 rules by 12.5 than we get estimation of
26 000 rules...2. In the second situation the number of items in the itemset will stabilize.
Instead of growing the number of items, the support of existing rules
will increase, because new record will contain same symptoms.

5.1.1 Visualisation of the Association rules

To check all 2 082 rules one by one can be difficult. Therefore, it can be
useful to display rules in graphs. R package arulesViz is used to visualize
association rules.
Figure (5.4) shows all discovered rules with respect to support count, confi-
dence count and lift. The most of the rules have support count lower than

37

5. Experiments
Visualisation of rules with respect to basic metrics

2

4

6

8

10

12

14

lift
0 0.05 0.1 0.15 0.2

0.2

0.4

0.6

0.8

1

support

co
nf

id
en

ce

Figure 5.4: An illustration of all rules using scatter plot and basic metrics.

0.1. It indicates that some ictal signs occur rarely in the dataset. Rules
with low support count and confidence count near or equal to 1 are probably
discovered based on one record in the dataset. Similarly, Figure (5.5) shows
the length of rules instead of lift. Discovered rules have length up to 6.

Two−key plot

order 6

order 5

order 4

order 3

order 2

0 0.05 0.1 0.15 0.2

0.2

0.4

0.6

0.8

1

support

co
nf

id
en

ce

Figure 5.5: An illustration of the length of rules using scatter plot.

Group-based visualisation uses k-means clustering to handle a larger number
of rules. Rules are presented as a group (cluster). The colour in Figure (5.6)
represents the aggregate lift count of a group with a certain consequent. The
size of a circle depends on the aggregate support count. The aggregation

38

......................... 5.2. Estimation of Support and Confidence

function is the median value of the group. Columns and rows in the graph
are reordered. The groups with the highest lift are located in the top left
corner. Conversely, the groups with the least lift are located in bottom right
corner.

Figure 5.6: Grouped matrix for 2082 rules.

5.2 Estimation of Support and Confidence

Chapter (2.5) introduced transformation of basic metrics. Presented task was
to estimate support count and confidence count. Following experiments will
test the correctness of equations (2.17) and (2.18). Both equations contain
parameter k and the value of this parameter affects the final estimation. There
are several options of setting the value. Extreme values for the parameter k
is 0 and n.

Firstly the demonstration of support count estimation will be presented.
For purpose of this demonstration the confidence is 1/n and the value of
specificity is 0.01. Results are depicted in Figure (5.7). Constant value of
support 1/n (red line), estimated value, where k = 0 (green line) or k = n
(blue line) and maximal allowed support count (ideal, purple line) are shown
in the figure. The ideal line is the upper bound of support. Values of this
line are determined as the minimal support from all rules which satisfy given
sensitivity.

39

5. Experiments

0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6

Sensitivity

Su
pp

or
t

Support

Constant value
Estimated value, k=0
Estimated value, k=n
Ideal Value

Estimation of the support, confidence=1/n, specificity=0.01

Figure 5.7: The estimation of support count: Influence of sensitivity on support
count.

If the task is to find all rules with given sensitivity and specificity, then
the estimated value must not cross the ideal line. Either the constant or the
estimated value, where k = n does not cross the maximal value of support
count. The estimated value, where k = 0, crosses the limit line and thus it is
not appropriate estimation for the support count.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Specificity

Co
nf

ide
nc

e

Confidence

Estimated value, k=n
Estimated value, k=0
Ideal Value

Estimation of the confidence, support=1/n

Figure 5.8: The estimation of confidence count: Influence of specificity on
confidence count.

40

......................... 5.3. Functionality of the analysis in ASTEP

Estimation of the confidence count compared with the limit (ideal) trend is
shown in figure (5.8). The ideal line is the upper bound of confidence. Its
values are the minimal confidence of rules that satisfy given specificity. As it
is shown, the estimated value, where k = n (red line) seems to be near to the
ideal value in contrast with the estimated value, where k = 0 (green line).

It is not possible to clearly determine the support count with the sensi-
tivity and specificity. The trend of the ideal curve can change in future by
adding new record in the data set. Since there is no direct link among support,
sensitivity and specificity, any rule with low support count can satisfy the
sensitivity and specificity.

5.3 Functionality of the analysis in ASTEP

Previous sections focused on the analysis and generating rules only. This
section presents the functionality of the analysis in ASTEP and can be used
as a user manual. Figure (5.9) shows the part of the analysis module in
ASTEP.

Through combo boxes called symptom and místo are selected some ictal
signs. These ictal signs define seizure symptom and body part. The purpose
is to define which ictal signs will appear in the antecedent (left hand side). A

Figure 5.9: An illustration of the analysis in ASTEP.

user can define the minimal sensitivity and specificity that rule has to satisfy.
The default value for both parameters is 10 %. The range of allowed values
is (0, 100〉. If a user defines a value out of this range then it is not possible to
start the analysis. The analysis is started through the button called hledej!
and it is disabled in the case of values out of the range.

41

5. Experiments
Discovered rules are shown in the text area bellow the text "Výsledek". Only
those rules that satisfy the minimal sensitivity and specificity are written to
the text area. For example, in the text area is a rule pedální ⇒ frontální
lalok with sensitivity 31.8 % and specificity 93.9 %. If no rules have been
found, then the text area displays such information, see Figure (5.10).

Figure 5.10: ASTEP: No rules have been found warning.

5.4 Analysis of the Sequence Pattern Mining

This section presents results of sequence pattern mining. Two approaches of
the adjustment of the function cSpade are demonstrated.

0e+00

1e+05

2e+05

3e+05

0.1 0.2 0.3 0.4 0.5
Support

N
u
m

b
e
r

o
f
ru

le
s

Constraints

With Constraints
Without Constraint

Number of sequential rules with respect to support

(a) : The number of sequen-
tial rules with respect to sup-
port.

0

200

400

0.1 0.2 0.3 0.4 0.5
Support

N
u
m

b
e
r

o
f
ru

le
s

Constraints

With Constraints

Number of sequential rules with respect to support

(b) : A detailed view of the
sequential number of rules us-
ing item constraints.

Figure 5.11: A demonstration of the dependency between support count and
number of sequential rules.

Figure (5.11a) shows the relation between the support and the number of
mined rules. Similarly to previous demonstration in section (5.1), the num-
ber of rules mined without any constraints is enormous. In this case, total
number of rules is 357 888 compared with 567 rules that were mined with
item constraints, see Figure 5.11b. As a result, Figure (5.11) proves two
facts. Support threshold has a significant effect on the number of frequent
sequences. Current database consists of transactions that are rare, therefore
discovered sequences have low support.

For the purpose of this demonstration the confidence value is 1/m, where m
is the number of seizures (input-sequences). The minimal possible value of

42

........................ 5.4. Analysis of the Sequence Pattern Mining

the support is 1/m, yet the initial value of support is 5/m.

0

10

20

2.5 5.0 7.5 10.0
The number of parameter maxlen

E
xe

c
u
ti
o
n
 t
im

e
 [
s
]

parameter

maxlen

Execution time according parameter maxlen

(a) : The execution time
according to parameter
maxlen.

0.1

0.2

0.3

2.5 5.0 7.5 10.0
The number of parameter maxsize

E
xe

c
u
ti
o
n
 t
im

e
 [
s
]

parameter

maxsize

Execution time according parameter maxsize

(b) : The execution time ac-
cording to parameter max-
size.

Figure 5.12: The execution time of function cSPADE according to the size of
parameters maxlen and maxsize in 100 iterations.

Since no constraints have been used, the execution time and memory demand
are high. There are two parameters that affect the execution time, maxsize
and maxlength. Both are adjusted to 10 by default. The result of experiment
with these parameters shows figure (5.12). The value of support is 5/m in
this experiment. In both cases, the execution time increases, however, the
figure shows the effect of parameter maxlen. This is the reason why it was
decided to use higher support value.

0e+00

1e+05

2e+05

3e+05

0.00 0.25 0.50 0.75 1.00
Confidence

N
u
m

b
e
r

o
f
ru

le
s

Constraints

With Constraints
Without Constraint

Number of sequential rules with respect to confidence

(a) : The number of sequen-
tial rules with respect to con-
fidence.

100

200

300

400

500

0.00 0.25 0.50 0.75 1.00
Confidence

N
u
m

b
e
r

o
f
ru

le
s

Constraints

With Constraints

Number of sequential rules with respect to confidence

(b) : The number of sequen-
tial rules with with item con-
straints.

Figure 5.13: A demonstration of the dependency between confidence count and
number of sequential rules

Figure (5.13a) shows number of rules with respect to confidence. In both cases
the number of rules decreases. However, the number of rules mined without
constraints is over 300 000 and the number of rules mined with constraints
decreases under 100.

43

44

Chapter 6
Conclusion

This thesis focuses on the usage of the association rule mining with annotated
record of epileptic seizures. Theoretical part provides an introduction to the
field of association rule mining and sequence pattern mining and presents the
algorithm apriori and SPADE. The primary objective, to create the analysis
module, has been fulfilled. The implementation includes the data extraction,
generating association rules in R and link to graphical user interface in ASTEP.

The analysis generates rules that satisfy the minimal sensitivity and speci-
ficity. However, the first idea of adjusting the support count with respect to
sensitivity and specificity has not been successful. Results presented in section
(5.2) prove that the support cannot be simply estimated with sensitivity and
specificity. On the other hand, the estimation of confidence nearly fits the
ideal line, thus it is considered to be correct.

In accordance to the assignment, the design of sequence pattern search
has been made and tested. Results provide the information about the number
of discovered sequential rules. Experiments illustrate that the execution
time of the function CSPADE is affected by the value of parameters maxlen
and maxsize. However, the parameter maxsize has a bigger influence on
the execution time. Therefore, presented results are limited with support
threshold which is not the minimal.

Since a huge amount of the association rules is mined, it is worthy to take
into account any method that visualizes all the rules. Specialists could decide
faster which rules are interesting and which are not, and then focus on a
specific group of rules. Therefore, a visualization would be useful part of the
analysis module.

It is assumed that the number of record in the database will increase, yet
there is no exact prediction about the execution time. Results showed that
using item constraints in function apriori reduces the execution time in case
of low support threshold. The space for future development seems to be
particularly in an optimization of sequence pattern mining, visualization of
rules and interpretation of rules.

45

46

Bibliography

[1] Robert S. Fisher, Carlos Acevedo, Alexis Arzimanoglou, Alicia Bogacz,
J. Helen Cross, Christian E. Elger, Jerome Engel, Lars Forsgren, Jacque-
line A. French, Mike Glynn, Dale C. Hesdorffer, B.I. Lee, Gary W.
Mathern, Solomon L. Moshé, Emilio Perucca, Ingrid E. Scheffer, Torb-
jörn Tomson, Masako Watanabe, and Samuel Wiebe. Ilae official report:
A practical clinical definition of epilepsy. Epilepsia, 55(4):475–482, 2014.

[2] Soheyl Noachtar and Astrid S. Peters. Semiology of epileptic seizures:
A critical review. Epilepsy & Behavior, 15(1):2 – 9, 2009. Management
of Epilepsy: Hope and HurdlesCritical Reviews and Clinical Guidance.

[3] Hans O. Lüders. Simple motor seizures: localizing and lateralizing value.
In Textbook of epilepsy surgery, pages 450 – 461. Informa Healthcare,
London, 2008.

[4] Petr Berka. Dobývání znalostí z databází. Academia, Praha, vyd. 1.
edition, 2003.

[5] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining associa-
tion rules between sets of items in large databases. Proceedings of the
1993 ACM SIGMOD international conference on Management of data -
SIGMOD ’93, pages 207–216, 1993.

[6] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts
and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 3rd edition, 2011.

[7] Michael Hahsler. Association rules, 2015.

[8] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
data mining. Pearson Addison Wesley, Boston, 1. edition, 2006.

[9] Ramakrishnan Srikant, Quoc Vu, and Rakesh Agrawal. Mining associa-
tion rules with item constraints. In Proceedings of the Third International
Conference of Knowledge Discovery and Data Mining, pages 67–73. AAAI
Press, 1997.

47

Bibliography
[10] Vladimír Mařík, Olga Štěpánková, and Jiří Lažanský. Umělá inteligence.

Academia, Praha, vyd. 1. edition, 2003.

[11] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns.
In Proceedings of the Eleventh International Conference on Data En-
gineering, ICDE ’95, pages 3–14, Washington, DC, USA, 1995. IEEE
Computer Society.

[12] Mohammed J. Zaki. Sequences mining in categorical domains: Incorpo-
rating constraints. In 9th ACM International Conference on Information
and Knowledge Management, Nov 2000.

[13] Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent
sequences. Mach. Learn., 42(1-2):31–60, January 2001.

[14] Carl H. Mooney and John F. Roddick. Sequential pattern mining –
approaches and algorithms. ACM Comput. Surv., 45(2):19:1–19:39,
March 2013.

[15] Michael Hahsler, Bettina Gruen, and Kurt Hornik. arules – A computa-
tional environment for mining association rules and frequent item sets.
Journal of Statistical Software, 14(15):1–25, October 2005.

[16] Michael Hahsler, Christian Buchta, Bettina Gruen, and Kurt Hornik.
arules: Mining Association Rules and Frequent Itemsets, 2015. R package
version 1.3-1.

[17] Christian Buchta, Michael Hahsler, and with contributions from
Daniel Diaz. arulesSequences: Mining Frequent Sequences, 2016. R
package version 0.2-15.

48

Appendix A
Description of the Database

. generator. gen_key. gen_value. patient. id. mri. name. pet. pohlavi. ruka. status. vek. vek_epilepsie. diagnoza_id. lokalizace_id. strana_id. typ_id. termspatient. id. name. shortcut. parent_id. measure. id. delka

49

A. Description of the Database
. konec. name. picture. sequencenumber. status. velikost. pocatek. patient_id. video_zacatek. symptom. id. od. perioda. sequencenumber. start_time. status. trvani. typ. measure_id. body_id. property_id. termsepilepticfit. id. name. shortcut. parent_id

50

Appendix B
Features of the Dataset

. sequence_id. sequence_number. diagnosis. localisation. side. diagnosis_type. symptom_type. body_1. body_2. body_3. body_4. property_1. property_2. property_3. property_4

51

52

Appendix C
CD Content

|-- Java
| ‘-- Analyzator.zip
|-- R
| |-- AssociationRules
| | |-- epilepticRules.R
| | |-- findRules.R
| | |-- getARVector.R
| | |-- readData.R
| | ‘-- sequencesData
| ‘-- SequencePatterns
| |-- basketData
| |-- SequencePatternSearch.R
| ‘-- sequencesData
|-- README
‘-- Text

‘-- MT-Prihoda.pdf

53

	Introduction
	Association Rule Mining
	Basic Concept
	Metrics for Association Rules

	Association Rule Discovery
	Frequent Itemset Generation
	Apriori principle
	Apriori algorithm
	Time Complexity

	Rule Generation
	Apriori Algorithm
	Item Constraints

	Transformation of Basic Metrics

	Sequential Pattern Mining
	Basic Concept
	SPADE Algorithm
	Equivalence classes
	Enumerate Frequent Sequences
	Temporal id-list Join
	Pruning Sequences
	Rule Generating

	cSPADE Algorithm

	Design and Implementation of Data Analysis
	Database and Data Extraction
	Data Extraction

	Associative Rules in R
	Function Apriori
	Description of the R Script

	Implementation into ASTEP
	The Dataset
	Analysis in Java with the use of R

	The Design of Sequence Pattern Search
	Function cSpade
	R Implementation

	Experiments
	Verification of the Association Rule Mining
	Visualisation of the Association rules

	Estimation of Support and Confidence
	Functionality of the analysis in ASTEP
	Analysis of the Sequence Pattern Mining

	Conclusion
	Bibliography
	Description of the Database
	Features of the Dataset
	CD Content

