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Abstract

In this project, we examine one of
desired key skills of mobile robots —
topological exploration in an unstruc-
tured rough environment. We aim
to learn whether the proprioceptive
sensing of terrain as the exploration
subject is applicable. A novel method
for an off-the-shelf six legged robot is
proposed, which exploits the adaptive
motion gait for rough terrain traversal,
the on-line terrain classification, and
autonomous behaviour in the form of
wall-following. The designed method is
extensively validated through series of
indoor experiments.

The proposed overall solution shows
promising outcomes and proves to
be plausible, albeit the results are
not faultless. Moreover, the depen-
dency of the terrain classification
correctness on the robot’s speed
is uncovered. For example it has
been found that the robot crawling
faster classifies ca. 20 % more correctly.

This thesis gains results that pro-
vide new insight into the field of
proprioceptive sensing, terrain dis-
tinguishability and further exhibits
the possibilities of the used robotic
platforms, e.g., reliable autonomous
behaviour in an unknown environment.

Keywords: topological exploration,
online terrain classification,
wall-following, hexapod

vi

Abstrakt

V této préci se zabyvame jednou ze
stézejnich ¢innosti mobilnich robotua
— topologickou exploraci v nestruktu-
rovaném prostiedi. Cilem prace je
zjistit, zda proprioceptivni vnimani
terénu muze slouzit jakozto predmét
topologické explorace. Navrhovana
metoda topologické explorace pro
komerc¢niho Sestinohého kracejiciho
robota vyuziva adaptivni styl chuze,
on-line klasifikaci terénu a autonomni
chovani ve formé sledovani zdi. Vy-
sledné reSeni je ovefeno pomoci série
experimentil v uzavieném prostiedi.
Navrzené teSeni produkuje slibné
vystupy a mutze byt oznaceno za
validni, byt vysledky nejsou bezchybné.
Béhem expriment byla navic pozo-
rovana zavislost spravnosti terénni
klasifikace na rychlosti, se kterou se
robot pohybuje. Robot jdouci rychleji
klasifikuje cca o 20 % presnéji.

Préce prinasi nové poznatky v oblasti
proprioceptivniho vnimani, odlisSnosti
terénti a dale ukazuje na moznosti

pouzitého robota, napi. spolehlivé
autonomni chovdni v nezndmém
prostredi.

Klic¢ova slova: topologicka explorace,
online klasifikace terénu, sledovani zdi,
Sestinohy kracejici robot

Pteklad nazvu: Topologicky
pruzkum prostredi a on-line klasifikace
terénu pro Sestinohy kréacejici robot
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Chapter 1

Introduction

Computers reign the world. In pursuit of different kinds of benefits, for example
to save time and money, to be more efficient and productive,... mankind passes
more and more weekday routines on to the world of robots, agents and automa-
tion in general. These routines include heavy industry manufacturing [I], precise
manipulation [2], traffic control [3], medical surgeries [4], etc. Based on the activity
a human would have to do, appropriate type of “circuitry” is chosen.

. 1.1 Field of Interest

One of the most rapidly growing and also the most challenging branch of the above
mentioned research area is field robotics. Although the definition of the term is
not determined particularly, the Robotics Institute - Carnegie Mellon University
describes it as follows:

The term “field robotics” was created to distinguish an emphasis on robotics
in unconstrained, uncontrived settings, typically outdoors and in the full
range of operational and environmental conditions: robotics in the natural
world. [5]

Another explanatory description of field robotics can be found in [6]. A field robot
can act on its own, or be part of a group; behave autonomously or be controlled
by an operator. Related activities — field robotics participate in — extend over
mining, agriculture, environmental monitoring and patrolling and rescue missions,
beyond the space exploration. Nevertheless, whatever the task is, oftentimes a kind
of environment exploration is required.

Environment exploration mostly concerns learning an unfamiliar area — with re-
spect to some characteristics (metric dimensions, colour of wall, light intensity,
terrain,...). The term can be viewed from two standpoints: straightforward and
hidden. The former considers exploration as a task or subtask itself, i.e., a discipline.
Purposes of carrying out such a task can differ from problem to problem but they
can be divided into two main streams: exploration as a building block within a
greater task (e.g., rescuing victims of earthquake from demolished buildings,. .. ), or

1



1. Introduction

exploration as the main goal (e.g., to create a map of human-inaccessible cave,... ).
On the other hand, the latter takes exploration as a necessary instrument for place
recognition — the crucial quality for any autonomous behaviour.

The quality of place recognition is expressed in the ability of the mobile robot
to recognise an already visited place. A robot with such a feature is able to ori-
ent itself in an unknown environment, interpret it in the right manner and use
the gained knowledge in future. Either metric or topological exploration can be
utilised in a place recognition problem. The latter does not consider exploring based
on metric dimensions, but rather a specific feature/attribute of the given environment.

There are various types of field robots. Taking into account only ground as an
environment, the basic division of robots is into wheeled and legged ones [7]. As
they are, more interest has been given to the area of wheeled robots so far since
they are easier to control and faster in general. However, with growing need for
the deployment of robots in the rough terrain conditions, wheelers happen to reveal
their disadvantages. Conversely, crawlers — e.g., hexapod — prove to be suitable
for challenging terrain applications mainly because of a higher number of degrees of
freedom (DOF).

. 1.2 Goal & Motivation

The highlighted words above determine the content of the following work. The
profound goal is to test whether the terrain as an environment feature (defining the
subject of topological exploration) can be utilised for autonomous place recognition
task using an off-the-shelf low-cost hexapod walking robot in unstructured uneven
environment. In order to obtain results on the presented test, we propose to accom-
plish the following subgoals: online terrain classification, autonomous behaviour of
a certain level (i.e., using wall-following) and an ability of rough terrain traversing
by the considered walking robot. The modularity is to be utilised, where building
blocks contribute to the main task. The next chapters and sections provide with
more details and insight into each of the proposed building blocks. The background
constraint is to keep the final platform cheap, with as little as possible sensory
equipment. Figure 1.1 illustrates the above mentioned.

Whether the approach is successful or not, the procedure of obtaining results can
bring new insight into environment topological exploration using solely propriocep-
tive sensing. Moreover, it can offer a different perspective on benefits of terrain
classification performed by an off-the-shelf hexapod walking robot and reveal new
potentials of such a platform in general. Last but not least, based on the made effort,
an autonomous behaviour of the hexapod can be then further enhanced.

2



1.3. Thesis Structure

. 1.3 Thesis Structure

The rest of the thesis is structured as follows. Chapter [2| provides an overview
of the related work and approaches to the given topic. Chapter [3| specifies the
problem and lists the provided and used resources and equipment. It is followed by
Chapter |4 which presents the adopted results which are further extended by this
thesis. The proposed solution and its overall concept are presented in Chapter [5
focusing mainly on the design standpoint. Chapter |6 takes a closer look at the
implementation of the designed solution. Moreover, practical issues which have been
encountered are addressed in this chapter. Chapter [7]includes experiment description
and results presentation. The discussion of experiments’ results follows in Chapter 8.
The connections between the goals which have been stated by the thesis and the
obtained results are presented. The chapter also presents possible improvements and
development in future work. Chapter |9 summarises and concludes the work.
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(a) : Before

(b) : After

Figure 1.1: Thesis Goal



Chapter 2
Related Work

To give broader perspective, a brief survey of other approaches and works related
to the presented task follows. If possible, our focus lies on works concerning similar
hardware setup and conditions.

B2 Topological Exploration

Topological exploration/mapping is performed to obtain semantic representation of
the examined environment. Such representation comprises information about places,
objects, shapes, etc. Therefore, robots utilising topological mapping are able to
perceive the world with a more human-like perspective.

An extensive list of more than a hundred approaches to topological and topometrical
mapping is presented in article [8]. The approaches are divided into two groups:
methods based on place labelling vs. methods based on semantic labelling. The
former is addressed in, e.g., [9], [10], [I1]. These methods assign semantic labels to
places or regions of the accessible work space of the robot.

In [9], the authors present a framework for topometrical mapping of an indoor
environment. Paper [10] presents an outdoor topological exploration system based on
visual recognition. In their experiments, the mobile robot followed paths in the park
environment mapping intersections and building a topological map which can be later
used for navigation. Similar approach deployed in an abandoned mine exploration
scenario is addressed in [I1].

Methods considering semantics of the examined environment assign semantic labels
to parts or objects of the perceived structure of the examined environment. Regard-
ing the outdoor exploration, these structures comprise, e.g., traversable terrains,
trees or man-made structures. When exploring indoors, robots label walls, ceilings,
doors [12] or significant objects appearing in the given environment. Based on the
set of pre-learned objects, which are present in the environment, a particular room
type can be determined and semantically labeled [13], [14].

However, most of the existing topological exploration techniques utilise extero-
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ceptivd!| sensing (mainly vision and range measurements), our proposed method is
based solely on the proprioceptive information.

B 2.2 Autonomous Behaviour/Wall Following

Wall-following is a well-defined form of autonomous behaviour. Among the frequently
used approaches belongs a deployment of fuzzy controllers (FC) — i.e., a set of rules
to control the robot based on expected behaviour, in this case wall-following task.
This topic is discussed specifically for hexapod walking robots in [15], [16]; and for
mobile robots in general in [I7]. The FCs do not require a mathematical model in
order to be able to control the system. However, they must be learned and tuned
using reinforcement-type learning method such as a differential evolution [I5] or they
can be designed manually [16]. Paper [18] describes the usage of Kalman filter in
addition to the FC for the wall-following procedure. The method enables to avoid
obstacles and deal with erratic environment changes.

Another controller from the field of evolutionary robotics?| which determines robot’s
behaviours is based on neural networks (NN). Work [19] introduces such an approach.
Before NN-based controller can be deployed, its parameters (the number of layers
and nodes in each layer) must be determined in advance. Controller learning is
based on training data from the robot sensory equipment, e.g., 24 ultrasound sensors
(creating circle-shape pattern) are exploited in [19].

More conventional methods — using the classic control theory — are presented
in [20] and [21]. Within these works, ultrasonic-based and sonar sensory equipment
is utilised.

. 2.3 Rough Terrain Traversing

In principle, three approaches to the rough terrain traversal with the legged robots
exists. The simplest one exploits the mechatronic design of the robot as for instance
the RHex?| terrain traversing platform [22].

Secondly, advanced motion planning methods — selecting individual footholds of the
walking robot — as addressed in the work by Dominik Belter et al. [23] and [24] de-
velop complex solutions combining sophisticated multi-sensor (mostly exteroceptive)
systems with subtle algorithms. Such methods create a representation of the robot’s
surrounding environment.

Finally, the solutions lying in between the two above utilise a-priori learned motion
primitives (motion gait) together with the proprioceptive/tactile sensing to detect

Lexteroceptive = relating to stimuli that are external to an organism, proprioceptive = relating to
stimuli that are produced and perceived within an organism, especially those connected with the
position and movement of the body (Oxford Dictionary of English)

2The research area which focuses on creating autonomous behaviours by learning.

3http://www.bostondynamics.com/robot_rhex.html
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the contact point between the leg and the ground. These more low-key solutions
utilise either force/touch at the tips of individual legs [25] or the force/torque values
provided by the servo drives as the adopted adaptive motion gait [26], [27]. Exploiting
the intelligent servo drive feedback offers a solution to avoid increasing DOF by
adding passive actuator.

. 2.4 Terrain Classification

Same as above, the terrain classification procedures for mobile robotics can be divided
based on the sensation type being exploited: exteroceptive and proprioceptive. The
former is also called non-destructive — i.e., there is no contact between the robot
and the terrain being classified. Paper [28] examines the former utilising depth
measurements from a laser range finder. Another approach is to use a vision system.
Such an approach is utilised in [29]. A promising feature of the method is the
variable-length data representation for each terrain type.

The terrain classification methods based on proprioceptive sensing are of our main
interest. Authors in [30] utilise additional sensory equipment in the form of ground
force sensors. Sensors of similar function are exploited in [31]. In order to prevent
mounting extra sensors, intelligent servo drives feedback can be utilised as in [32].
The adopted approach addressed in [33] enhances [32] w.r.t. extending the practica-
bility of the terrain classification procedure to rough uneven environments.

For more advanced applications both types can be combined into one system. De-
ployment of such a system in a planetary exploration task is introduced in [34]. As
an interesting piece of the recent work is mentioned [35], which proposes to use the
acoustic emission during the crawling of the robot to distinguish individual terrain

types.






Chapter 3

Problem Statement

Even though briefly mentioned in Section [1.2] this chapter is dedicated to detailed
description of the given task, assumptions/constraints and resources used in this
project.

. 3.1 Task

The main goal of this work is to allow an off-the-shelf hexapod walking robot to
perform autonomously a topological exploration/place recognition based solely on
terrain classification. In particular the online terrain classification exploits proprio-
ceptive sensing which utilise the robot servo drives feedback only. During the area
exploration, the robot may encounter various rough terrains and, thus it shall be
capable of facing such a challenge successfully. For the robot to be able to act
autonomously without any external control, a wall-following technique based on
infrared (IR) distance/proximity measurement is utilised. When the robot finishes
its task, it has obtained topological information about the examined area related to
terrain and knowledge of finding the terrain which was given to search for.

Following hypotheses (in rather provisional than rigorous form) are stated as a
formulation of motivations and objectives to be reached by this thesis:

H1 For the given hardware setup, the autonomous behaviour in the form
of wall-following enables performing the topological exploration using
the given strategy.

H2 Successful terrain classification is independent on the speed the given
hexapod is moving with.

H3 The given hexapod can classify and distinguish terrains of arbitrary
qualities and similarities with 90 % accuracy.

B 32 Assumptions

There are few assumptions and constraints related to the problem presented above.

9
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90°

Figure 3.1: The 90° assumption shows a possible environment covered by different
terrains A, B, C, D.

1. It is assumed that the robot has already familiarised itself with terrains it is
going to traverse. In other words, the robot is not able to recognise terrain it
has never encountered and therefore must be prepared in advance to accomplish
its task of the topological exploration of the environment based on terrain
classification. The assumption comes from the terrain classification — learning
to be more precise — method.

2. For simplicity and to be more focused on the concept of the topological explo-
ration solely based on proprioceptive sensing, the robot operational environment
is constrained to be orthogonal (see Figure. Besides, the constraint is caused
also by effort to keep expenses on proximity measurement hardware as low as
possible. Even though such an assumption seems to be limiting, there are many
practical scenarios when it is completely valid and does not influence the main
concept of the proposed exploration procedure.

10
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B 33 Used Equipment

In this section, detailed description of the hardware used for the experimental
verification of the stated hypotheses is provided. The section addresses essential
principles, which should be well-understood to give the reader a better perspective
throughout forthcoming chapters.

B 3.3.1 Robotic Platform

(a): (b):
Figure 3.2: (a):PhantomX AX Hexapod Mark IT with (b): Dynamixel AX-12, [36], [37]

A hexapod walking robot presents the main component of hardware. As mentioned
above, the commercial platform — PhantomX AX Hexapod IIE| (depicted in Fig-
ure worth ca. $1,200 — is deployed for the experimental evaluation in this thesis.
The robot consists of a body and six legs. Each leg is composed of three joints and
links called the coxa, the femur and the tibia.

The hexapod crawls using 18 Dynamixel AX-12A intelligent servo drives by Robo-
tig? (Figure placed in individual joints (i.e., three per leg). These actuators
represent the entry-level among others provided by the manufacturer. The servo
drives are connected in a daisy chain and communicate with the control unit via
a 1 Mbps half-duplex UART interface. Each servo is capable of providing various
feedback information such as the current joint position, temperature, load, input
voltage, etc. A control table (EEPROM and RAM memory) containing information

"http://www.trossenrobotics.com/hex-mk2

http://en.robotis.com/index/product.php?cate_code=101010
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about actuator status and operation is used as an interface between control unit/user
and the actuator. By writing to or reading from the control table, the higher-level
controller is able to define the servo behaviour (e.g., torque off, write position, read

position, etc.). [38]

Some of these features have been utilised within a robot motion planning and
behaviour throughout this project and other works [26], [27], [33], [39].

B 3.3.2 On-board Computing

From physical point of view, controlling a robot can be achieved in two ways: on-
board or off-board. Using the former, all computational power is present on the
robot itself. On the other hand, the latter suggests using an external PC connected
to the robot via a cable. If more power-consuming application is expected, the
approaches can be combined. Even though the off-board offers more capabilities
regarding computational power, the on-board provides convenience with respect to
the mobility. Moreover, the on-board design is essential for autonomous behaviour.
Therefore, the on-board approach is utilised in this work.

Figure 3.3: Odroid U3 with mounted IO shield, [40].

The Hardkerne]ﬂ Odroid U3 unit together with the corresponding IO shield (both
shown in Figure have been chosen as the on-board control unit. The U3 board
provides several high performance features such as an 1.7 GHz quad-core processor,
2 GB RAM memory or support of different OS (Android, Linux distributions,... ).
It enables various applications covering multimedia, security and robotics, among
others. The IO shield used for analog interfacing with the distance measurement
hardware has its own micro-controller and is connected to the Odroid unit via UART
and 12C ports.

3|http ://www.hardkernel.com/main/main. php|
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B 3.3.3 IR Sensors

A proximity measurement sensory unit is deployed to make the robot capable of
following a wall. Using proximity sensors based on reflecting IR light proves to be a
low-cost straightforward solution, though may not be as precise and consistent as
more expensive methods (discussed in Section [2.2).

: I A
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75 i
=3 4 -+ =€ - - Gray paper (reflectance ratio - 18 %)
= 5
a 1
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EEREST (b) : Output voltage - distance character-

(a) : IR Sensor, [41]. istics, [42].
Figure 3.4: Sharp IR Sensor GP2Y0A02YKOF, [43].

In particular, the Sharpﬁ GP2Y0A02YKOF units (shown in Figure are utilised
within this work. Using information from the official datasheet [44], the sensor
produces output voltage corresponding to the distance from a source to the target:
ca. 2.5 V for the minimum distance of 20 cm and ca. 0.4 V for the maximum
distance of 150 cm (see characteristics in Figure 3.4b)). The value is updated with
the rate of ca. 26 Hz (i.e., it takes 38.5 ms on average to process a new measurement).

The IR sensor includes two optoelectronic units: position sensitive device (PSD)
and infrared emitting diode (IRED), processing and other support circuitry. As
seen in Figure the performance of the distance measurement is based on the
triangulation principle. IRED emits a focused beam of the IR light. A portion of
it reflects on an object and returns back to the sensor where it is absorbed by the
PSD. This component uses a couple-charged device (CCD) array to determine an
angle of incidence and based on that it outputs an analog voltage value related to
the distance between the sensor and the object being detected.

The above mentioned principle is very immune to varying ambient light condi-
tions and to colour of the object to be detected. On the other hand, the reflection
attribute of the given material plays an essential role when the detection is performed.

Yhttps://www.sharpsde.com/products/optoelectronic-components/sensors/
|distance-measuring- sensor/#productview|
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WALL

IR SENSOR IR SENSOR

Figure 3.5: Triangulation principle used in the Sharp IR sensors to measure distance from
the sensor to an object, e.g., wall. Adopted from [45] and modified for an explanation of
the principle.
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Chapter 4
Background Knowledge

In the following chapter, adopted works and theories for this thesis are presented
and described in further details. The presented background consists of terrain
classification and the classifier behind, the default control of the robot, adaptive
motion for the given hexapod, and the PID controlling principle.

. 4.1 Terrain Classification

An appropriate approach must be chosen so that the hexapod is able to classify
terrains: this approach must be robust enough to provide reliable results but still
sustainable regarding system resources. In particular, the proprioceptive terrain
classification utilising the SVM approach is used.

The terrain classification methodology has been adopted - and then implemented,
from [33] which evolves mainly from [32]. While the approach presented in [32] does
not offer the classification of rough terrains, [33] introduces enhancements such as
adaptive gait and corresponding modifications which successfully tackle the issue.
As a result, the hexapod is supposed to be able to classify correctly while traversing
challenging terrains. If the hexapod’s behaviour depends on the terrain classification,
the ability to classify terrains on-line is required. This extension is introduced in [39]
and utilised in this thesis.

The essential part of the classification is a feature extraction, i.e., the process
of selecting key aspects of measured /available data and relating them to the classifi-
cation procedure. The aspects are supposed to be chosen thoughtfully in the way
that enables a reliable terrain type assessment during the classification.

Since the hexapod possesses no other sensory equipment, only the IR distance
sensors (which do not participate in the classification procedure), all features emerge
only from data provided by the servo drives. In particular, the time course of position
error (i.e., differences between the desired servo position and the current one) of
the two front legs servos is utilised to capture the influence (ground reaction force -
slipperiness, stiffness, etc) of given terrain type.

To obtain sufficient amount of data, the last three consecutive gait cycles are taken
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4. Background Knowledge

into account. As the provided data are too sparse, a mathematical operation of
Hermite spline interpolation is carried out to get a denser and more relevant position
signal. Because of the belief that each terrain effects a leg/servo differently w.r.t.
the phase the leg is currently in, the time domain is transformed into the gait-phase
domain. The resulting position signal for a particular cycle segment is then examined
for significant values such as the maximum, minimum, mean, median and standard
deviation.

Unlike in [32], regular gait assumptions cannot be utilised due to the adaptive
gait principle, i.e., phases are not of the same duration (depends on the terrain being
traversed). Hence the gait-phase domain is divided not uniformly w.r.t. to time but
based rather on the meaning of the phase. Moreover, owing to the fact that the
periodicity aspect is missing within the adaptive gait, features from the frequency
domain cannot be exploited. The ultimate feature vector comprises 240 attributes.
Due to the content of the feature vector, when on-line classification extension is to
be used, a gait cycle must be completed before a labelling can be performed.

B 4.1.1 SVM Overview

The SVM is a classifier with the following properties (assuming a binary problem,
i.e., only two classes involved):

® linear - geometrically speaking, classifier composes a hyperplane (line, plane,. . . );

® discriminative - statistical/probabilistic model neither known nor estimated,
the decision rule based on empirical data;

® supervised learning/training - to be trained classifier requires classified /la-
beled data in advance;

@ structural risk minimisation;
® margin between classes maximisation;

B support vectors - only a portion of training data is utilised during the classifi-
cation.

The approach evolves from- and further enhances the perceptron classifier [46].
Perceptron classifies an input based on the side the data sample is on w.r.t. a
hyperplane. The process of training consists of finding such a hyperplane (its normal
vector, i.e., a set of weights) that separates training data into mutually distinct sets.
The classification is determined computing the following expression:

{Class 1, if sign(Wz + b) (4.1)

o +0) <0
y(7) = D,

class 2, if sign(wz + b) > 0,
where y is an output label, # a measurement, @ a normal vector (aka a vector of
weights) and b is a linear bias. The significant downside of the obtained solution (w0, b)
is that it is not guaranteed to be optimal. On the contrary, the solution computed
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4.1. Terrain Classification

using SVM classifier — which follows similar learning principle — is. In other words,
for perceptron there exists an infinite number of solutions while for SVM only one.
Figure 4.1 demonstrates the above mentioned and offers a graphical comparison
between these two methods.

A Perceptron Classifier A SVM Classifier
X2 X2

Figure 4.1: Perceptron vs. SVM. Comparison for two-class (yellow and green) problem.
Dots represent 2D data samples, purple-coloured lines h, represent planes and red-
coloured arrows w planes’ normal vectors. In the SVM’s part, the data samples with
greater size correspond to support vectors. Such vectors hold the equation WZ + b = +1.
No other data can lie in-between borders (purple dashed lines).

Learning the SVM classifier (finding ) is thus an optimisation problem. Reaching
the optimality is w.r.t. maximising the margin d, i.e., the distance between the
classes. The objective function is mathematically expressed as

2

d=——.
(ol

(4.2)

Such an objective can be transformed into the field of quadratic optimisation as the
minimisation of the expression

1
Sl (43

However, this objective function is accompanied by constraints forcing the data
points to be outside the margin area. A system of inequalities (its size depends on
data set cardinality) must be considered and solved.

As a result, the above mentioned — called the primal problem — is converted
into the dual problem. Even though it introduces an extra set of variables in a form
of Lagrange multipliers, no constraints are present. Thus, in the computational point
of view, the procedure is more convenient. The more detailed theory explaining the
dual problem is out of the scope of this work and could be found in [47].

B Multi-class SVM, One Versus All Principle

If more then two classes are considered for the classification, a slight modification in
the classifying strategy must be introduced. One of the most frequently used method
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4. Background Knowledge

is one vs. all principle - also exploited within this project. During the training
process, the method creates a number (whatever the number of classes is) of binary
SVM classifiers where the first class is a proper one and the second class is the rest of
data points. Each binary classifier has its own set of support vectors which are used
for classification. An output label is determined comparing results of every classifier
for the given measurement.

B a2 Hexapod Control

The hexapod control design from [26] has been exploited throughout this thesis.
Using the design, the hexapod crawls based on a periodic motion strategy and
thus the fundamental building block is one gait cycle. A gait cycle consists of a
well-defined (order of legs, motion parameters) sequence of phases after which the
hexapod finishes in the default position (legs positions relative to robot’s body are
as they started the cycle). A series of cycles comprises the hexapod’s crawling.

f:\turn

v A Vi
X
P

a ~ ~ o
<+ °
y

o \/ °

Figure 4.2: Hexapod Motion Orientation.

An interface between a user and the hexapod must be developed. The interface 1)
defines a way to command the robot and 2) returns feedback information by the
robot to the user. In the solution adopted from [26], a cycle command with a triplet
of motion coefficients is given. The coefficients specifying the robot’s motion for
upcoming cycle are the following (Figure |4.2):

1. x - forward stroke,
2. y - sideways stroke,
3. turn.

These parameters are called primary. There is also a secondary set of parameters
establishing the height of leg’s lifting up above the ground and the depth of leg’s
dropping down beneath the ground level. Such a set is defined prior to the start and
cannot be changed during the hexapod’s crawling.
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4.2. Hexapod Control

The primary coeflicients represent relative values w.r.t. the maximal ones; hence
values between -1 and 1, where the negative sign means a backward direction. The
set of maximal values (limits) is defined prior to invoking robot’s motion. The list of
the limits includes:

® xstroke reach [mm];

® ystroke reach [mm];

® turn angle [-];

® lift-up distance [mm];

® drop-down distance [mm].

As an example, choosing the gait with the limits (50, 50, 0.1, 20, 0)!| and the gait
cycle command triplet (0.5, 0.2, 0) leads to a leg being moved by 25 mm in the
x-axis forward direction and by 10 mm in the y-axis sideways direction without any
turning. During the motion, the leg lifts up 20 mm and when dropping down, the
leg’s target is straight the ground without going beneath.

t

......................

Bioloid

[ Dynamixel ]

_______________________

Figure 4.3: Hexapod’s Controller Design. Dynamixel and Bioloid controllers are pro-
vided from the hexapod’s manufacturer. The green-layer controller is the part adopted
from [26].

The hexapod’s motion controller — defining how the robot moves — is designed into
layers. The diagram in Figure 4.3|illustrates the design. The connections between
blocks and layers represent commands or information/status passing. In the Robot
block, a cycle command with specified motion parameters is invoked. Then, the
evolution steps are as follows:

1. the command divided into phases, for the given phase and leg; trajectory points
are generated;

2. conversion from cartesian spatial coordinates to servo angles;

The tuple ordering follows the order of the item list above.
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4. Background Knowledge

3. low-level command containing angles servo drives are supposed to reach by end
of the phase.

B a3 Adaptive Motion Gait

A specific motion planning strategy must be designed for a crawling robot to be able
to tackle challenging and rough terrains. Different approaches are shortly discussed
in Section Throughout this project, the adaptive motion gait — for the hexapod
a walking robot — developed in [26] and [27] has been utilised.

B 4.3.1 Gait Overview

el =L - 1 MOVE STATE |

STATE

Choose next leg based
on gait pattern

- - - [y .l ...... (R

Move leg up and
forward

....... ---------

Move leg down a bit

A el
1
1

Ground sensed?

YES NO

TACTILE SENSING
(a):

Figure 4.4: Adaptive Gait. Part (a) depicts the gait cycle diagram with the features of
adaptive motion. Part (b) illustrates the gait design utilising the extended version of the
default motion strategy. Such a design enables extensions for specific behaviours. The
extended version contains tactile sensing procedure. Schema adopted from [26].

In Figure 4.4, a simple diagram of the adaptive gait cycle and its design are depicted.
One gait cycle includes three main states:

Stable. All legs are on the ground not moving.

Move. First of all a group of legs based on the particular gait pattern is chosen,
moved up and forward. The the legs are moved down in individual interpolation
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4.3. Adaptive Motion Gait

steps detecting the surface contact point.

Body-level. Once new footholds found, a transformation of body is computed.
Using the obtained transformation, the hexapod is levelled up and next cycle
can proceed.

The essential part of the diagram is the red-dashed box representing tactile sensing.
In addition to the body levelling phase, it enables the robot to traverse rough and
challenging terrains. The grey-dashed extension shows the part of the gait cycle
where potential for detecting and hence avoiding an obstacle in a forward direction
lies.

B 4.3.2 Tripod Gait

CYCLE TIME

Figure 4.5: Tripod Gait Principle. The red/grey circles in the top of the figure represent
cycle parts. The grey-dashed arrows select active legs for the given part of a cycle.

Although several different walking patterns for adaptive gait are possible, in the
remaining part of this thesis, the tripod adaptive gait (see Figure for graphical
description) is considered. A cycle of tripod gait consists of eight phases in total, two
of them totally support (all legs on the ground) — devoted to body-levelling. Legs
are divided into two groups based on zigzag pattern. The first half of a cycle (not
considering the support phase), legs 1, 3, and 5 are moving following the strategy
from the green section in Figure while legs 2, 4, and 6 are resting and supporting.
The second half of the cycle, their roles switch. Once the cycle ends, the next one
proceeds. The pattern offers a good balance between motion speed and stability —
the crucial aspect for traversing rough terrains.

B 4.3.3 Tactile Sensing

The tactile sensing procedure lies at the core of the adaptive motion gait. The
underlying principle is to approximate ground reaction force using only servo position.
Owing to the structure of the leg and its motion, only a femur servo drive is examined.
The approach utilises the ability of the used Dynamixel actuator to provide feedback
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4. Background Knowledge

Figure 4.6: Tactile Sensing. Ground/obstacle detection during leg’s down-motion.
Ground reaction force impacts mainly a femur servo drive - the position error is exam-
ined.

information — the current position in particular. Because of the fact that a servo
has only proportional controller to follow the reference value — the one given by
user/control unit, i.e., the next servo position —, the error between the set point and
the current value is present. When such an error reaches and overpasses a specified
threshold value, it is assumed that the ground reaction force is responsible for the
event and thus, a detection is claimed. To ensure that the described procedure works
well, i.e., detects ground/obstacles fast, the sufficient granularity for interpolating
must be set. On the other hand, the finer the interpolation is, the slower robot’s leg
moves. Moreover, static threshold values for the detection prove to be insufficient.
Values dynamically changing based on the robot’s current position and motion would
be more suitable. The principle of tactile sensing is shown using the hexapod’s real
leg with additional graphics in Figure 4.6

B 4.3.4 Robot Odometry

A user exploiting the hexapod control strategy described in Section is not able
to specify a set of exact coordinates where the robot is supposed to be after the
next gait cycle (such information is hidden in lower levels of the control design).
However, combining the three motion coeflicients in arbitrary form, hexapod’s motion
behaviour is well-defined (although sometimes not precise) and thus, it can be utilised
for higher motion planning.
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4.4. PID Controlling Principle

B 244 PD Controlling Principle

v

S 2 REGULATOR ———  SYSTEM  —4X——

Figure 4.7: Feedback Controlling Scheme.

PID control is one of the most broadly used feedback controlling schemes. It is simple
but still efficient and effective. In Figure [4.7, the simplest feedback control diagram
is shown. Symbols used in the figure have the following meaning:

B w - system current output value;

B r - reference value a regulator tries to match with output value;

B e - error between reference and current output value;

® u - effort/action a regulator generates to fulfil its task of minimising the error.

Using PID controlling principle, the computation of the effort u follows (in continuous
form) the equation

u(t) = Kpe(t) + Ki /O " o(r)dr + Kaé(t), (4.4)

where e(t) = r(t) — w(t) is the error at the given time t. The equation consists
of three terms: proportional, integral and derivative. Each term is responsible for
different behaviour (impact of the particular one is determined by corresponding
multiplier K, where x serves as a term index):

® proportional - K, takes into account only the current values - K, too big
leads to destabilising the system:;

B integral - K, considers all past error up to the time, makes reaching zero error
faster but causes system to oscillate;

® derivative - K, relates to the momentary change of the error, improves and
smoothens the system’s dynamic behaviour.

In the digital domain, Eq |4.4| can be discretised into

k
ulkTy) = KpelkTy] + KTy > e[rTs] + Kde[kTS] — ;UCTS — T , (4.5)

=0 $

where e[t] = r[t] — w[t], k represents discrete sampling indices and Ty is the sampling
period. Operations of integration and derivation are replaced by summation and the
backward difference, respectively.
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Chapter 5

Proposed Solution

The thesis top-most goal in the form of the topological exploration using the off-the-
shelf hexapod and other given resources (hardware and software) is complex and
needs a well-thought solution strategy. The following chapter concerns the overall
concept and individual designs of modules comprising the proposed solution.

B 51 Overall Concept

Topological Exploration

Il

Pre-learned SVM

Classifier On-line Proprioceptive
Servo Drives Terrain Classification

Feedback
Servo Drives
Feedback

Figure 5.1: Solution Overall Concept

The presented topological exploration depends on mastering autonomous behaviour
in a form of being able to follow a wall, adaptive motion gait for rough terrain travers-
ing and on-line proprioceptive-based terrain classification. Figure illustrates the

proposed solution concept with the cornerstones which together comprise the whole
design.

The resulting main application is designed as two-threaded in order to isolate
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5. Proposed Solution

executive part from data preparation part. The executive part includes controlling
the hexapod, i.e., where and how it crawls (wall-following, motion planning); and
classifying terrains. The data preparation part commands the 10 shield (Figure [6.1a),
reads and prepares all the data so they can be utilised by the executive thread.

B 5.2 wall Following

The wall-following technique is based on information about walls being present in
near surroundings. Taking into account the obtained information, the robot decides
where to crawl next. Such a decision is made after taking into account several various
aspects. A few strategies concerning how to follow a wall are mentioned in Section 2.2.
In this work, the following modules for the procedure have been utilised: finite state
machine using IR distance sensors (specification in Section |3.3.3)) and naive/simple
robot odometry; and y-stroke (sideways) control using the PID regulating principle.

Bl 5.2.1 Hexapod Control

[ Wall Follower ]

— EE R

. Gait « Robot «—| Body

Leg 5
| Bioloid §
Dynamixel

Figure 5.2: Extended Hexapod’s Controller Design

Hexapod’s controller must be accordingly modified in order to be able to perform au-
tonomous behaviour in form of wall-following. The controller design evolves from the
one described in Section 4.2/ by adding a new layer on the top and the corresponding
interface. Figure [5.2] contains the diagram illustrating the extended controller.

The top-most Wall Follower layer is related to the wall-following procedure and
to moving on the 90° grid. It passes commands to the Robot layer defining where
the hexapod is supposed to crawl next. The feedback information contains status
and error messages if present.
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5.2. Wall Following

B 5.2.2 Finite State Machine

No wall in front &&
Wall on follow side

GO STRAIGHT

Wall in front && PID ON

Wall on follow side

Openspace
(no walls on either side)

TURN 90° TC ==s && TURN 90°
OPPOSITE OF Wall after turn LAST FOLLOW SIDE
FOLLOW SIDE

PID OFF Wall found PID OFF
GO STRAIGHT
TC++<r LOOK FOR WALLS | TG == s && TCs+<s

No wall after turn

PID OFF

No walls

Figure 5.3: Wall-following FSM

The logic of wall-following is based on the finite state machine (FSM) theory. Such
a principle is broadly used when the behaviour can be clearly divided into cases.
Switching between states is invoked by a well-defined condition or combination
of several ones. In Figure 5.3 the automaton for the wall-following procedure is
depicted. The FSM consists of four states and corresponding interconnections related
to the given conditions. r and s are static values representing how many turn cycles
are needed to perform 90° turning. They have been determined partially based on
the robot odometry, partially empirically. PID ON and PID OFF denote to whether
y-stroke control to keep the same distance is active or idle.

B 5.2.3 IR Sensors

Using IR distance/proximity sensors for the wall-following task is low-cost, straight-
forward to implement, and not demanding of computational power. When such
sensors have to be utilised, their placement and output data processing must be
developed. Both possible usages of IR sensors:

1. distance measurement, i.e., the output value says how far the object is;

2. proximity measurement, i.e., is the object that far hence the output value reaches
certain threshold;

are exploited. The former is used as the input for the y-stroke control procedure
while the latter serves as the indication whether or not the wall is present.
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Figure 5.4: IR Sensor Placement. A green trapezium shows a field of view of a sensor.
The underlaying condition of sensors having no object (e.g., robot’s legs) blocking the
view must be fulfilled.

B Placement

A possible setup of the mounted IR sensor units can be seen in Figure [5.4. Sensors
are placed symmetrically in 4 directions (cardinal directions from now on) to preserve
as much versatility as possible. Such a placement enables a robot to follow wall on
either left or right side; and to crawl either forwards or backwards.

B Data Signal Processing

The IR sensors data processing takes place both in the IO shield (slave) and in the
main computing unit Odroid (master). The two parts runs asynchronously. The
designed procedure of processing the data comprises the following steps:

8 JO shield:

1. choose specified IR sensor;

2. convert the sensor analog output value using analog-digital converter (ADC)
with the resolution of 10 bits (i.e., values between 0 and 1023);

store the digital output;

4. iterate over all IR sensors.
8 Odroid:

1. request IO shield to send the data for all IR sensors

2. store those which are required (e.g., based on which wall is followed) for
upcoming decisions

To provide data only when they are desired, the concept of interrupt service routine
(ISR) for the master-slave communication is utilised. Such a routine is fired immedi-
ately when the master asks for data. No other slave’s instruction can be performed
until the data are sent to the master.
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5.2. Wall Following

B 5.2.4 Moving On Grid
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Figure 5.5: Moving On Grid. The robot starts in the left bottom corner and finishes in
the upper right one. In the upper left corner a 90° turning is required. The red-dashed
line represents reference distance the hexapod tries to keep. On the contrary, red arrows

represent current distance between the wall and robot. To capture a real scenario, a
slight error is present.

B Straight Segments

Control of y-stroke is utilised so that the hexapod is able to reach an acceptable
position after long forward crawling. The precision is required for further performance.
In Figure the function of such a control principle is shown. The controller is
used to preserve the same distance from the wall as long as the hexapod is crawling.
The design of the controller emanates from PID control theory (Section . The
given hexapod represents the system of the PID scheme (Figure . For the given
problem, the interpretation of symbols is as follows:

B the current output value w as the R sensor distance value;

B the reference r as the distance the hexapod is supposed to be from the wall
(same units as the IR sensor value);

® the effort u as motion coefficient in the y direction, aka y-stroke;
® the error e as the difference between the measured and reference distances.

The reference value (aka set point) is static and does not change in time. The y-
stroke control module runs periodically together with the IR sensors data processing
independently on the main thread. Once new gait cycle starts, it provides the last
computed action based on the last set of sensors reading. The module is turned off
and on based on the state the hexapod is within the FSM (Figure .
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5. Proposed Solution

B 90° Turnings

When a wall appears in front of the robot while moving in the grid, the hexapod
proceeds with the 90° turning. The simple robot odometry for such task is exploited.
The hexapod performs the exact number of gait cycles devoted solely to turn motion
in order to achieve precise 90° turning — i.e., both the x-stroke and y-stroke are set
to zero. The turning coefficient together with the number of cycles (constants r and
s depicted in Figure |5.3) must be determined.

B 53 Adaptive Motion Gait
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Figure 5.6: Modified & Extended Gait Design. The tactile sensing procedure is separated
and placed into the sensing layer. Blocks in red-dashed boxes are not utilised.

The strategy for rough terrain traversing is used in almost the same form as de-
scribed in Section [4.3l Only a gait design (the former depicted in Figure 4.4b])
modification/extension is introduced. While the new design illustrated in Figure 5.6
preserves the same functionality, it establishes a new layer within the gait design
devoted to sensing and thus, it broadens the possibilities regarding this matter. Such
a design enables sensing not only via the servo drives placed in femur joints but also
using other servo drives. Nevertheless, only the block with femur sensing from the
extension is utilised throughout this thesis.
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Chapter 6

Implementation & Practical Issues

In pursuit of completing the given task, several challenges must be tackled. Both
software and hardware issues have emerged. This chapter maps these challenges and
issues and discusses corresponding solutions.

B 6.1 Implementation

B 6.1.1 Software

Both the hexapod’s controller and on-line terrain classification are implemented
using object-oriented programming language C+—|—E A few noteworthy third-party
libraries are utilised:

® libdx - the bottom-most layer of the hexapod’s controller provided by servo
drive manufacturer;

] libalglibﬂ - library for linear algebra, interpolation, optimisation, data analysis
and processing;

] libsvmﬁ - library providing SVM algorithm for classification, regression and
distribution estimation.

The program performed by the 10 board is implemented using the ANSI C program-
ming language. The methodology of accessing peripherals and 10 board components
via memory mapped 1O is used.

B 6.1.2 Hardware
B IR Sensors - 10 Shield Interface

The IR sensors are mounted on an elevated aluminium platform (Figure 6.1b]) to
obtain an unblocked view. In Figure the schematic interface between 10 shield
and sensors is shown. The value wires (Vo) are connected to the IO board using
analog pins A0 through A3. The board also provides GND and 5 V power supply
(Vee) electrical potentials.

1http://www.cplusplus.com/info/l

http://wuw.alglib.net
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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6. Implementation & Practical Issues
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Figure 6.1: 10 Shield Interface & Real IR Sensors

. 6.2 Practical Issues

B 6.2.1 Moving On Grid

Moving on the 90° grid must be precise in order to enable accomplishing the given
task. Hence the designed solution must be robust.

B PID tuning

The greatest challenge during implementing PID controller is to determine constants
K,, K;, K;. Especially when a mathematical model is not present — which is the case
with the used hexapod. Therefore, an experimental approach has been utilised. For
this project, one of the most naive but also straightforward method called Ziegler-
Nichols tuning procedure is exploited [48]. Even though the method has not been
rigorously proven, oftentimes it suits the needs. The procedure consists of a couple
of steps:[49]

1. Use only proportional term, increase K, until a system starts oscillating (the
hexapod crosses a reference line after every action). Such K, is called the critical
gain and denoted K,.. Find the corresponding period of the oscillation 7.

2. Decide whichever combination of terms is to be used. Based on that, determine
the constant for each term which participates in the designed controller. For
the hexapod performing the wall-following, only the proportional and derivate
terms are used, the integral one is omitted.

B IR Sensors - Dead Angles

The introduced placement of the IR sensors (Section |5.2.3) together with the narrow
field of view cause dead angles to be present (graphically depicted in Figure [6.2).
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Figure 6.2: IR Sensor Placement - Dead Angles. A red trapezium introduces dead angle
zone, where no sensor for the given placement can se.

Unless a radical change in IR placement is done, dead angles cannot be removed or
suppressed. Such a phenomenon is not an issue for the overall robot’s movement
since the hexapod crawls only on the orthogonal grid. However, it complicates
the orthogonal turning parts (i.e., the corresponding states in the FSM shown in
Figure . Therefore, other methods are exploited.

B IR Sensors - Data Signal Inconsistency

10 Shield / Slave Odroid / Master

analogData

ComputeAverage

|

dataReqgeust

ISR
FindMedian _ GetData

medians

Figure 6.3: IR Sensor Signal Processing

If the data from IR sensors are processed as described in Section [5.2.3| with no
additional operations, the resulting output is inconsistent, i.e., rapid changes, outliers
are present. Therefore, basic filtering methods are utilised. Figure |6.3) contains the
diagram showing the processing procedure with additional information.

The procedure consists of two basic operations: the median out of the last n data
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samples (carried out in the slave); and the average of the last m medians (in the
master). The block FindMedian is fired through ISR, thus it runs asynchronously.
On the contrary, the ADC performs conversion periodically at the frequency of ca.
25 kHz. The master’s Prep Thread asks for data at the frequency of ca. 4 Hz. The
master and the slave communicate over UART at 38,400 bps baud rate.

input :An array of sensor values senVals of size 4 x n, where n % 2 =1
output : Median values

initialise variables;

confirmed < readVal();

if confirmed then

for i+ 0 to 3 do
tmpSenVals < senVals]il;
tmpSenVals + gsort (tmpSenVals);
median « tmpSenVals [%51];
sendVal (median);

© 00 N O Ok W N

end

end

[
o

Figure 6.4: Interrupt Service Routine FindMedian. The routine finds median values
from the last n samples of the sensory input. The interrupt is fired by receiving a
command from the master.

The last n samples of sensor data are stored in the slave’s storage. When the
master requires the current sensor value, an interrupt is fired. An algorithm depicted
in Figure 6.4/ describes the interrupt routine. Choosing median suppresses influence
of data outliers which are present in the signal. Moreover, computing average of
subsequent medians smoothens rapid changes in the data stream.

A solution for moving on the 90° grid using only the IR sensors information has
been developed, i.e., the robot crawls straight until a wall appears in front, then it
turns until a certain IR sensor value is reached, etc. However, the turning states in
the FSM (Figure |5.3) have not been mastered due to the above mentioned issues.
Turning parts are thus hard-coded based on the robot odometry.

B Turning Parameters

As mentioned above, crawling on the 90° grid using only IR sensor data is not precise
enough to successfully accomplish the given task. Thus, abilities of the hexapod’s
high-level motion controller and robot odometry (Section |4.3.4| and Section [5.2.4])
are utilised.

Setting the constants (r and s from Figure 5.3)) representing the number of gait

cycles devoted to turning is found on the fact that the turning coefficient of value 1
causes the hexapod to turn ca. % of a radian during one cycle. Using the turning
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6.2. Practical Issues

coefficient of the value 0.5 then makes the need to perform six turning cycles. The
turning procedure has been experimentally tuned, where subsequent turning (i.e.,
commands with different turning coefficients) has been found.

B 6.2.2 Tactile Sensing

When tactile sensing (Section |4.3.3) is carried out, the detection threshold value plays
essential role. Since not every servo drive performs equivalently from the hardware
standpoint (may not be perfectly calibrated, etc), the value at which the detection is
claimed varies from actuator to actuator. Because of the fact that a wrong ground
detection effects the resulting robot’s motion, all threshold values are experimentally
found using the trial-error approach.
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Chapter 7

Experiments & Evaluation

A set of validating experiments has been conducted, in order to test the hypotheses
queried in Chapter 3l Hence, an appropriate evaluation technique has been introduced.
This chapter describes the experiments and evaluates the corresponding outcomes.
The outcomes are in the form of plots, photographs, and videos. Since an external
visual localisation system is utilised within the experiments, its brief description is
provided.

B 7.1 Arena Setup

4m

(a):

(b):
Figure 7.1: Experiment Arena - (a): Real, (b) Schema

Due to better convenience regarding resources and equipment (power supply, com-
puters, cables,...) and robot’s manipulation, an indoor arena is chosen and built
up for the proposed experimental verification. Figure shows the laboratory
experimental setup while Figure illustrates its schematic structure. Coloured
rectangular areas represent different terrains. Black-dotted line illustrates assumed
trajectory and the red-dashed boxes show challenging areas regarding wall-following
and adaptive motion gait. Red crosses represent placement of the cameras of the
reference localisation system.
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7. Experiments & Evaluation

In total, five different terrains are present in the experimental field. List of them
with description and provisional titles follows:

® S - desk covered with soft leather, softblue;
® A - artificial grass, artgrass;

® R - wooden ramp sloped ca. 15°, ramp;

® P - couch parts, pillow;

® O - linoleum office floor, office;

A segment with the stair-like pattern is included within the arena to further examine
the ability of the wall-following technique with the terrain classification combined.
Moreover, in order to demonstrate the technique together with the adaptive motion
gait, the ramp and the border between pillows and office floor are set up. While
traversing the border, the hexapod descends rapidly (ca. 20 cm vertically in 3 gait
cycles) and thus, it is not well-balanced during that time.

B 7.1.1 WhyCon Localisation System

The external localisation and recording of the robot in the arena is used in order to
inspect robot’s behaviour, i.e., terrain classification and wall-following. Regarding
the former, it allows to compare experiment results with ground truth. In other
words, it is possible to contrast the terrain the robot is actually traversing with the
terrain the robot thinks is stepping on. Speaking of the latter, the system is able to
capture robot’s movement hence the validity of the wall-following strategy can be
examined.

The system utilised within this work emerges from an open source project called
WhyCon'. From hardware point of view, USB web cameras Logitech C920?| are used.
The procedure is based on tracking targets (in a form of the specific visual pattern)
in camera frame and then transforming tracked position into the user coordinate
frame. The principles lying behind are thoroughly described in [50]. The localisation
system setup is achieved with the following steps:

1. calibrate the cameras being used;
2. define the user/arena coordinate system using well-placed targets;
3. adjust contrast, brightness and exposition to enable reliable tracking.

Due to the dimensions of the arena, only one camera is not able to capture the
environment in such manner that relevant position within the user frame (wherever
the robot is crawling) is obtained. Hence two tracking cameras are required in order
to provide more precise localisation.

Thttps://github.com/gestom/whycon-orig
Zhttp://support.logitech.com/en_us/product/hd-pro-webcam-c920

38


https://github.com/gestom/whycon-orig
http://support.logitech.com/en_us/product/hd-pro-webcam-c920

7.2. Evaluation Methodology

B 7.2 Evaluation Methodology

Figure 7.2: Hexapod Moving in Experiment Arena

The basic outline of the experiment is straightforward: while following the arena
walls, the hexapod traverses the given terrains and classifies them. When the initial
terrain is classified for the second time, the experiment terminates. The hexapod’s
proposed performance can be seen in Figure [7.2]

The performance of the designed wall-following strategy is shown by plotting the
hexapod 3D position from the localisation system and comparing such plot with
the scheme of the experiment arena. Besides, the strategy must be successful in
order to proceed with the evaluation of the terrain classification procedure and the
topological exploration.

Since using the visual localisation system, the ground truth labelling is known.
It is obtained after analysing video captured during an experiment run. To thor-
oughly examine the classification method’s abilities and find possible dependencies,
the classification window is varied. In other words, a classification is not approved
until ¢ consecutive terrain predictions are the same. Parameter c is systematically
altered and incidentally determines how many gait cycles from the end impact the
classifier. After comparing the true labelling with the modified classification output,
the value of ¢ with the fewest misclassifications is evaluated as the best.

@——F®

S

Figure 7.3: Ground-truth Topological Map. Each node represents corresponding terrain.
The notation is based on the experiment arena and the list of terrains above. The
hexapod icon indicates the initial position (terrain).

Based on the classification list obtained from the above described process, a topologi-
cal map is created. The created topological map is in a form of directed graph — also
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7. Experiments & Evaluation

expressible in the matrix format. As our map has five nodes (five terrains), 25 unique
edges (crossings) are possible. The map is compared with the one emanating from
the ground truth classification (illustrated in Figure |7.3). The experimental arena is
set up not to have a sequence of two given terrains twice. Thus, the ground-truth
topological map does not contain parallel edges. The map for the complete track is
expressed in the matrix form as follows:

APORS

Al 00100

Pl oo100
Megr=0| 00011 (7.1)

Rl 01000

S| 10000

Both number of vertices and edges can differ. As the fixed number of terrains is
possible to classify, only fewer vertices can be present. On the other hand, there can
be either extra false edges or absent ones. Two key values describing the compari-
son of the created map with the ground-truth one are introduced: hit and false values.

Hit values represent the number of correct node connections. The value is increased
if both the ground-truth and the obtained topological map have

1. exactly one directed edge between two given nodes
OR

2. no directed edge between two given nodes.

On the contrary, the false value is increased with every extra or missing edge. The
natural objective is to create such a map with the highest hit value while minimising
the false value. The number of explored vertices is taken as the background and
primary criterion.

In order to test Hypothesis [H2l, experiments are carried out at two different speeds:
30 % and 50 % of the robot maximal speed. Even though the speeds lie together
in the bottom half of the possible scale, their mutual difference is significant. The
difference can be shown on the experiment (when completed) duration time: ca. 13.1
minutes for 0.3 vs. ca. 8.8 minutes for 0.5. Since a labelling is performed once a gait
cycle, the numbers of classification samples differ for each speed.

. 7.3 Results & Remarks

Six runs of experiments (designated as Run xz, where x is the number of the particular
run) for each speed have been conducted. Due to the challenging parts throughout
the track and the termination condition, not all experiments have been completed.
The three of them (complete and the most explaining) for each speed have been
chosen to be discussed in this section. For both speeds, the tripod gait (Section |4.3.2))
with the following parameters has been utilised:
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7.3. Results & Remarks

xstroke reach 100 mm,

ystroke reach 100 mm,

turn angle 0.25,

lift-up distance 50 mm,

drop-down distance 50 mm.

For each speed, a proper terrain classifier is set up and trained. To prepare the
classifier for conditions concerning the given scenario, the wall-following technique
is active while gathering the training data. Since the data from turning motions
would significantly affect the resulting terrain models and further performance of the
on-line classification, the data-gathering is turned off while turning. The results of
the classifier learning are illustrated using the confusion matrices/tables. In such
a table, sum of the table entries for given column represents the number of feature
vectors (Section 4.1)) of a corresponding terrain participating in learning procedure.

B 7.3.1 Fast Speed

Table 7.1: Confusion Matrix for Fast Speed Trial. For two-fold cross-validation 100%
accuracy is obtained.

Terrain Softblue Artgrass Ramp Pillow Office

Softblue 7 0 0 0 0
Artgrass 0 75 0 0 0
Ramp 0 0 76 0 0
Pillow 0 0 0 73 0
Office 0 0 0 0 75

Bellow are presented the results of experiments for the fast speed. As mentioned
above, when the fast speed for crawling is chosen, the robot moves at the speed of
0.5 of the robot maximum — i.e., for given limits it is 0.05 m/s. The confusion matrix
for the fast speed can be seen in Table [7.1|

B Wwall-Following

The results of the wall-following procedure for Run 2 and Run 3 are shown in
Figure [7.4. When compared with the shape of the reference trajectory depicted in
Figure [7.1b, the mutual resemblance is significant. Notice that the robot is able
to follow the stair-like wall segment without any difficulties. Another fact worth
mentioning is successfully traversing the border between pillow (brown) and office
(grey), while still keeping constant distance from the wall.
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Hexapod's trajectory in arena

Run 2 Run 3
35 35
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25} 25}
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Figure 7.4: Hexapod’s Wall-Following Results for Fast Speed Trial. Coloured rectangles
represent ground truth of terrains being traversed. Black crosses illustrate the initial
and terminal positions.

Ground truth and estimated terrain types

e Artgrass
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Figure 7.5: Classification Results Compared with Ground-truth for Fast Speed Trial
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7.3. Results & Remarks

B Terrain Classification & Topological Exploration

In Figure 7.5 a classification diagram for each experiment (Run 2, Run 3, and Run 6)
is depicted. The diagrams contain comparison of the ground-truth labelling with
the obtained classification. Each row in the diagram represents different size of the
classification window. Numerical representation of the graphical comparison follows

Table 7.2: Relative Errors of Classification for Fast Speed Trial
(a) : Run 2: 131 classification samples

c\Terrain | Softblue Artgrass Ramp Pillow Office | Total

4 0.32 0.64 0.10 0.25 0.34 | 0.32
3 0.27 0.64 0.05 0.19 0.32 [ 0.29
2 0.23 0.64 0.00 0.31 0.31 0.28
1 0.27 0.64 0.10 0.38 0.41 0.36

(b) : Run 3: 129 classification samples
c\Terrain | Softblue Artgrass Ramp Pillow Office | Total

4 0.32 1.00 0.30 0.36 0.00 | 0.26
3 0.27 1.00 0.30 0.43 0.00 [ 0.26
2 0.32 0.50 0.33 0.64 0.16 [ 0.31
1 0.41 0.67 0.40 0.79 0.16 | 0.37

(c) : Run 6: 132 classification samples

c\Terrain | Softblue Artgrass Ramp Pillow Office | Total

4 0.30 0.00 0.00 0.60 0.45 | 0.34
3 0.30 0.00 0.00 0.53 0.45 ( 0.33
2 0.39 0.10 0.00 0.53 0.45 | 0.36
1 0.43 0.20 0.16 0.40 0.45 ( 0.38

in Table [7.2 In the right-most column, the total relative error — i.e., the sum of
misclassifications divided by the total number of classifications — is presented. As
the best size of the classification window proves to be the size of three, albeit the
decrease in the relative error is not significant.

Relative errors for each terrain are given to reveal other possible phenomena. These
errors illustrate the so called false negatives, i.e., the terrain is not classified in the
way it is supposed to be. It gives the perspective how hard the given terrain is to
classify. Even though the errors change from experiment to experiment, it can be
concluded that artgrass is the hardest to classify. On the other hand, ramp tends to
be the most convenient.

In Figure |7.6 the classification for Run 2 is mapped onto the hexapod’s trajec-

tory. All four scenarios (different classification window) are presented. Notice the
problematic stair-pattern segment where the office terrain is classified as artgrass.

43



7. Experiments & Evaluation

Hexapod's trajectory with estimated terrains
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Figure 7.6: Classification Mapped Onto Hexapod’s Trajecotry for Fast Speed Trial

Based on the results presented in Figure |7.5 two out of three experiments show this
issue. Such misclassifying can be caused by crawling sideways while following the
wall. Another trajectory part worthy to mention is the border between artgrass and
office. Such a terrain change is likely to be classified as pillow.

Moving a level up to the topological exploration task, the maps created using
the classification results are evaluated for each experiment. Such an evaluation
reveals whether or not the best classification leads to the best topological map.

All created maps contain five nodes, thus all terrains have been classified. Ta-
ble [7.3| contains key values (introduced in Section [7.2)) describing the comparison
of the created topological maps with the ground-truth one for different sizes of the
classification window. From the presented results, it can be seen that increasing the
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7.3. Results & Remarks

Table 7.3: Topological Map Key Values for Fast Speed Trial. Two consecutive columns
represent results for given ¢ — the classification window size.

c 4 3 2 1
hit false hit false hit false hit false
Run 2 17 9 17 9 14 15 12 32
Run 3 16 9 16 9 15 13 11 26
Run 6 19 7 19 7 14 13 12 32

size of the window leads to rapidly improving both values — for instance considering
Run 2 it is 72 % for hit and 42 % for miss. Notice that for all experiment runs the clas-
sification window of size three and four give the same results w.r.t. hit and miss values.

Concerning the objective, the best topological map for each experiment follows
in Eg[7.2land Eq|7.3. The window size value is three.

01001 01001
00200 00100
Mpo=12 0 0 1 0|, Mgpz=1|1 0 0 1 0], (7.2)
01000 10 0 00
0 01 0O 00100
01101
00110
Mrpe=12 0 0 0 Of. (7.3)
01000
10 000
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B 7.3.2 Slow Speed

Table 7.4: Confusion Matrix for Slow Speed Trial. For two-fold cross-validation 100%
accuracy is obtained.

Terrain |Softblue Artgrass Ramp Pillow Office

Softblue 85 0 0 0 0
Artgrass 0 86 0 0 0
Ramp 0 0 84 0 0
Pillow 0 0 0 88 0
Office 0 0 0 0 89

Results and corresponding commentaries of experiments for the slow speed follow.
The hexapod moves at the speed of 0.3 of its maximum forward speed. The SVM
model used for the terrain classification emanates from the data presented in Table|7.4.
Since some of the results are very similar to the outputs for the fast speed, additional
comments and explanations to the given visualisations are provided only where distinct
results have been obtained. Because of the presence of problematic area between
artgrass and ramp (the red-coloured dashed box on the right in the experiment
arena, Figure |7.1b) regarding the terrain classification, the autonomous termination
condition is suppressed and the experiment is ended by the human operator. Note
that two experiments have not been completed. The ground-truth topological map
for incomplete runs lacks the edge going from O to S, i.e., no crossing from office floor
to softblue is present. However, taking into account that a portion of one particular
terrain (office) is missing, the data still can be analysed.

B Wwall-Following

The graphical outputs of the wall-following task for Run 5 and Run 6 are presented
in Figure[7.7. Run 5 is significantly shorter due to the fact that a mechanical issue
promptly appeared during the experiment. Nonetheless, the ability of the hexapod
to follow a wall using the designed strategy at slower speed is verified.

B Terrain Classification & Topological Exploration

Considering classification diagrams depicted in Figure [7.8| it can be seen that the
office terrain is likely to be misclassified for softblue. Especially the part of the arena
between artgrass and ramp. Other terrains tend to be better predictable even though
the results lack consistency and differ from experiment to experiment, except for
artgrass.

The above mentioned remarks are confirmed by numbers presented in Table |7.5.
Examining ramp for instance, the numbers in Run 5 and Run 6 show good pre-
dictability; however in Run 4, it is complete opposite. A similar phenomenon is
present for pillow. On the other hand, values for artgrass are consistent throughout
the experiments. Comparing the total relative error of misclassifying for each size of
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Hexapod's trajectory in arena
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Figure 7.7: Hexapod’s Wall-Following Results for Slow Speed Trial.
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Figure 7.8: Classification Results Compared with Ground-truth for Slow Speed Trial
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Table 7.5: Relative Errors of Classification for Slow Speed Trial
(a) : Run 4 Incomplete: 145 classification samples

c\Terrain | Softblue Artgrass Ramp Pillow Office | Total

4 0.00 0.33 1.00 0.23 091 | 0.63
3 0.00 0.33 1.00 0.19 0.91 | 0.62
2 0.00 0.33 1.00 0.15 091 | 0.61
1 0.12 0.33 0.90 0.19 0.89 | 0.61

(b) : Run 5 Incomplete: 120 classification samples

c\Terrain | Softblue Artgrass Ramp Pillow Office | Total

4 0.14 0.19 0.14 0.04 1.00 | 0.28
3 0.19 0.12 0.14 0.08 1.00 [ 0.29
2 0.24 0.19 0.14 0.12 1.00 | 0.32
1 0.29 0.19 0.14 0.19 1.00 [ 0.34

(c) : Run 6: 210 classification samples

c\Terrain | Softblue Artgrass Ramp Pillow Office | Total

4 0.62 0.32 0.15 1.00 0.69 | 0.60
3 0.62 0.26 0.15 1.00 0.68 | 0.59
2 0.62 0.26 0.15 0.46 0.65 [ 0.51
1 0.65 0.26 0.12 0.62 0.65 | 0.53

the classification window, the size of two is concluded as the best in the overall view.

Figure |7.5] illustrates how the classification results for Run 6 are mapped onto
hexapod’s trajectory. This particular experiment shows great difficulties with the
classification of the part with pillow — as Table [7.5 suggests. Another challenge is
the corner part with the office ground-truth where misclassifications for softblue and
artgrass appear.

Table 7.6: Topological Map Key Values for Slow Speed Trial

c 4 3 2 1
hit false v hit false v hit false v hit false v
Run4 | 14 12 4 14 12 4 15 13 4 11 37 5
Runb 17 8 4 17 8 4 17 9 4 15 19 4
Run6 14 15 4 14 15 4 11 20 5 10 43 5

Unlike Table |7.3| in the previous part, Table |7.6| contains extra type of value repre-
senting the number of explored nodes, i.e, terrains. As can be seen from the table,
most of scenarios finish with fewer (four) vertices than the ground-truth assumes.
Notice that the classification diagrams in Figure [7.5] suggest it is not necessarily
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Hexapod's trajectory with estimated terrains
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Figure 7.9: Classification Mapped Onto Hexapod’s Trajectory for Slow Speed Trial

caused by the length of the experiment. Besides, the hit and false values improve
when the window size increases. As it can be seen in Table [7.3], the values are the
same whether the size is three or four.

Considering the number of explored vertices as the first criterion when choosing
the best window size, the corresponding topological maps in form of matrices are
expressed in Eq (7.4 and Eq|7.5. For Run 4, Run 5 and Run 6, the window size values
are: 1, 3, and 2. For Run 5, no size leads to explore all five nodes (terrains).

0520 4 00011
300 0 4 1 0001
Mps=13 0 0 0 0|, Mps=1(0 0 0 0 Of, (7.4)
0000 3 01000
6 2 1 3 0 11000
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Chapter 8

Discussion

The aim of this work is to develop a solution for topological exploration/place
recognition problem based merely on the proprioceptive on-line terrain classification
using servo drive feedback only. Such a solution has been supposed to be tested
exploiting autonomous behaviour in the form of wall-following technique using solely
IR distance/proximity sensors. The designed strategy is constrained to be deployed
on an off-the-shelf low-cost hexapod walking robot.

Recapitulation of the achieved results presented in the previous chapter and connect-
ing these results to the thesis goals restated in the last paragraph follow.

Figure 8.1: Topological Maps. (a): The ground-truth map for complete track. (b): The
best map for the fast speed - Run 6. (c¢): The best map for the slow speed - Run 6.
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8. Discussion

B 8.1 Wall-Following

Considering Figure 7.4 and Figure|7.7), the developed wall-following strategy is proved
to be satisfactory. The strategy is able to cope with challenges such as rapid height
changes and rough terrain traversing. Even though inaccuracies — caused mainly by
imprecise turnings — may occur, the procedure allows the main task of topological
exploration to be carried out. Hence Hypothesis |H1|is approved.

Considering the wall-following technique as an independent subtask on other parts of
the designed solution (Figure [5.1), it can be further deployed for other applications
where autonomous behaviour is required.

B Possible Improvements

The hard-coded turning without versatility represents the greatest deficit within the
wall-following strategy. As a solution, the sensory placement should be reconsidered;
so the robot would have better perspective about its location. Moreover, mastering
the signal processing of the distance sensor measurements in a reliable way would
have a significant influence on the robustness of the method.

B 8.2 Terrain Classification & Topological Exploration

Figure 8.1 introduces the ground-truth and the best topological maps'| resulting from
the performed experimental evaluation described in Chapter 7. When compared
with the ground-truth topological map, the obtained maps are distinct w.r.t. the
placement of edges and their occurrences.

The topological map structure is directly based on the classification. In order
to obtain the same topological map as the ground-truth, the 100% correct classifica-
tion is required. However, the obtained classification lists are prone to error — ca.
30 % of misclassifications for the best scenarios. Such an incapability is assumed
to be caused mainly by an insufficient distinguishability among the given terrains.
Hence Hypothesis [H3|is considered to be wrong. Another factor worth mentioning
is that the experiment trajectory contains frequent turns (the robot has to stop
and start again) and the hexapod does not crawl straight for all the time. These
phenomena can effect behaviour of the servo drives and thus, the data provided for
the classification procedure can differ from the one utilised for learning. Note, the
window size ensuring the best classification does not necessarily leads to the best
topological map.

To summarise, the topological exploration task using the developed strategy is
feasible, and with no doubt worth performing — even though the current classification
method is not able to classify flawlessly. When the task is completed, an unknown
unstructured environment has been at least partially learned.

'They emerge from Eq|7.3/and Eq (7.5
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B Possible Improvements

Among enhancements which could improve resulting topological maps is for instance
augmented learning of SVM model. Various motion patterns such as going sideways,
doing slight turns, stops and immediate starts can be included and emphasised.

Regarding the evaluation of the terrain classification, both false negatives (FN)
and false positives (FP)? could be taken into account in order to obtain better
insight w.r.t. terrain characteristics. Mastering the analysis would allow us to better
distinguish among individual terrains. Such a fact could be considered during terrains
learning process — e.g., different amount of data for each terrain.

B s3 Speeds Comparison

From the results introduced and commented in the previous parts, it can be concluded
that.

® The wall-following task is performed equally whether the speed is slow or fast.

® The considered on-line terrain classification procedure is more suitable for the
fast speed, where the relative error of misclassifying is 30 % in average while for
the slow speed it is 60 % in average.

® The topological maps created based on the classification are better w.r.t. the
given objective (vertices, hit and false edges) for the fast speed.

Such remarks suggest Hypothesis H2|to be wrong. Most likely it is caused by the
motion dynamics of the hexapod robot while the faster the robot moves, the more
its joints and drives are effected and loaded, resulting in more distinguishable terrain
type features. Using an analogy from human world, when one walks slowly either
on ice or concrete floor, one feels no difference. However, when a person runs, the
traversed terrain is more likely to be distinguished.

. 8.4 Future Work

Using an off-the-shelf robotic platform, topological exploration and all its components
participating in the designed solution (Figure [5.1) offer many possibilities for the
future research.

First, an enriching feature would be developing a method for an on-line learning of the
terrain classifier. Such a property would lead to the possibility of deploying the hexa-
pod to completely unknown environments. No prior knowledge about terrains would
be required. In order to distinguish and categorise unknown terrains, more rigor-
ous and mathematical description regarding a terrain in general should be introduced.

2FN = given terrain is supposed to be classified but is not, FP = given terrain is classified but is
not supposed to be.
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Second, in order to extend operational areas for topological exploration to all er-
ratically unstructured and uncontrived environments — i.e., different obstacles and
uneven parts are present in the given setup —; a wall-following approach enabling
arbitrary motion should be designed. Such an approach would need to perceive more
information about the hexapod’s surroundings. Hence a more complex sensing system
would need to be deployed. In order to use more powerful controlling principles such
as Kalman filter [18], a thorough mathematical model of the robotic platform should
be derived.

. Note

Since the used localisation system provides the video recording function, all experi-
ments presented in this thesis have been recorded. To provide the reader with the
qualitative results, the videos capturing the experiments have been placed on my
academic youtube channel®l The videos shall present the conducted experiments and
illustrate all of the proposed building blocks of this thesis.

3https://www.youtube.com/channel /UCZ8KkvHuIrUI_1Ko608hIcQ
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Chapter 9

Conclusion

Using the given hardware in the form of an off-the-shelf low-cost hexapod walking
robot with support of as little as possible sensory equipment, the method for topo-
logical exploration has been developed. The unparalleled feature of the proposed
solution is the utilisation of the proprioceptive sensing of the terrain for the topologi-
cal exploration only.

The concept of solution is found on utilising the modularity principle: the essential
cornerstones are the wall-following principle and the on-line terrain classification,
which has been familiarised and adopted from [33]. The wall-following technique
using IR distance sensors and hexapod’s motion controller has been successfully
developed and deployed.

The overall solution has been experimentally validated in a thorough manner. As
the examined environment, an indoor arena — with unstructured and rough features
— has been chosen. Two different robot speeds have been examined to see whether a
correlation between the used terrain classification method and the robot speed exists.
A visual localisation system has been utilised to provide a reliable ground-truth for
evaluation of the designed method. The evaluation methodology has been proposed
in a way that it can reveal new perspective.

The results bring new insight into the field of on-line terrain classification and
mutual terrains’ distinguishability. They directly indicate that the topological map-
ping can be performed using solely the proprioceptive information about the terrain
type. Moreover, a direct relationship between the used terrain classification method
and the robot’s dynamics has been observed. Last but not least, the autonomous
behaviour in the form of wall-following has been mastered.
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Appendix A

Used Nomenclature and Software

B A.1 Abbreviations

DOF
FC
NN

IR
UART
EEPROM
RAM
12C
PSD
IRED
CCD
PID
SVM
ADC
FSM
ISR
GND

w.r.t.

degree of freedom

fuzzy controller

neural networks

infrared

universal asynchronous receiver /transmitter
electrically erasable programmable read-only memory
random access memory

inter-integrated circuit

position sensitive device

infrared emitting diod

charge-coupled device
proportional-integral-derivative

support vector machine

analog-digital converter

finite state machine

interrupt service routine

ground

with respect to

. A.2 Software

MATLAB!
draw.io?
ctuthesis®

computational tool used for the evaluation of the experiment data
online diagram software used for all diagrams and graphics

KTEX template for theses at Czech Technical University in Prague,
developed and administrated by Toméas Hejda

http://wuw.mathworks.com/products/matlab/!

https://www.draw.io

https://github.com/tohecz/ctuthesiﬂ
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Appendix B
CD Content

The list with CD content follows:

® evaluation/ - a directory containing essential data logs and MATLAB scripts
used to process experimental data;

® hexapod/ - a directory with C++ files comprising an application which runs
the robot in the proposed manner, however external libraries are required to
successfully compile and run the code — if interested, contact the ComRob
Laboratory|';

8 hexplore_bp.pdf - an electronic copy of this thesis;
® specification.pdf - a separate electronic copy of the thesis specification;

® svm/ - a directory with training data (datasets) and resulting classifiers.

1|ht'cp ://comrob.fel.cvut.cz
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