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Abstrakt: Tato práce navrhuje rozš́ı̌reńı Minimalistického koherentńıho rojového
algorithmu vyvinutého J. Nembrinim a kolektiv [4] pro roj MAV (Micro Areal
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Abstract: This thesis presents an extension of the Minimalist Coherent Swarm-
ing algoritm presented by Nembrini et al. [4] for using on MAVs (micro aerial
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Chapter 1

Introduction

Swarm robotics attempts to implement a collective behaviour to a group of au-
tonomous robots without explicit central control. This behaviour emerges from lo-
cal interactions between the robots and their environment and between the robots
themselves. This method enables the creation highly scalable, flexible and robust
autonomous swarms. Swarm robotics is a application of swarm intelligence, a
discipline dealing with natural and artificial decentralized, self-organized multi-
agent systems [1]. It has been influenced by studies in biology, many swarming
algorithms are implementations of behaviours observed on animal interactions.
BOID models are influenced by bird flocking [5]. Nesting and foraging habits
of various species of insects also serve as inspiration [6] as well as fish schooling
[7, 3].

Micro aerial vehicles (MAVs) have undergone a big boom in the recent years,
both among the scientific community and the broader public. An MAV is gener-
ally composed of a platform and multiple propellers (Figure 1.2). Studies have
successfully implemented various swarming algorithm on MAV swarms [13, 8].
MAV swarms are well suited to tasks of aerial reconnaissance or surveillance,
especially in difficult terrain. Examples of utilization include terrain mapping or
assistance with the detection of survivor during disasters.

Figure 1.1: Example of an MAV (image taken from [2])

Julien Nembrini, Alan Winfield and Chris Melhuish introduced a minimalist,
scalable and robust method of swarming for autonomous mobile ground-based
robots [4] and in this work, we will modify and implement it for uses on MAVs.
This chapter presents the basic principle of the swarm cohesion mechanism de-
scribed in [4].

3



1.1 Basic Algorithm

The algorithm presented [4] is designed for a homogeneous swarm of ground-
based robots. Every robot is equipped with a sensor enabling it to discern the
presence adjacent robots (called ”neighbors”). The crucial property of this sensor
is a known and constant range of detection of other robots. The basic premise of
the algorithm is fairly simple and is sketched on Figure 1.2.

Figure 1.2: Basic Algorithm (image taken from [4])

We can consider three basic behaviours or states for each robot: Forward
(default), Coherence and Avoidance. A robot in the Forward state (section A on
Figure 1.2) maintains a constant velocity as long as nothing disturbs it. When
connection with a neighbor is lost (B) the robot enters into the Coherence state
and turns around (C) and goes back until it regains its connection. When it
returns within range, it performs a random turn (D) and returns into the Forward
state. The state of Avoidance is entered if two or more robots get too close and
they have to perform an evasive manoeuvre.
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1.2 Alpha Algorithm

The more advanced variant of the basic algorithm, which is used in this thesis,
is the so called Alpha Algorithm. A constant Alpha is introduced indicating the
minimal number of neighbors that have to be connected with the robot to remain
in the Forward state, ignoring any additional neighbor loss. Meaning, the robot
doesn’t go into the Coherence state at least as long as it detects Alpha neighbors.
This enables a wider and better structured swarm where, ideally, each robot has
Alpha neighbors.

1.3 Advantages and application

This approach has several advantages:

• The system is fully distributed. Each robot performs its running on-board
based on outputs of its own sensors. Only local interaction is enabled
between pairs of identical robots. This makes the swarm highly scalable as
the computation complexity increases linearly with the number of robots.

• The system is robust. In extreme environments, due to technical issues
or when the system is poorly parametrised (in Chapter 3, an overview of
parameters influencing stability is presented), individual robots or smaller
sub-swarms might break apart from the main group. But loosing a member
does not prevent the swarm from continuing its task.

• The knowledge of neither absolute or relative position is needed. Cohesion
is maintained with the binary information of the presence of neighbors in
the robot’s proximity.

The designed communication network enables application in exploration, map-
ping and network sensing. The independence of the swarm from external control,
computation and positioning references make it suitable for missions in uncharted,
inaccessible locations. Its high scalability allows the deployment of large swarms
(the number of individuals is theoretically unlimited).
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Chapter 2

Improvement for MAVs

In this chapter, we will introduce the process of building our swarm coherence
algorithm implemented specifically to MAV (Micro Air Vehicle) models.

2.1 V-REP

V-REP, or Virtual Robot Experimentation Platform, is a general purpose
robot simulator with an integrated development environment by Coppelia Robotics.
It offers a large scale of models of mobile and non-mobile robots with all sorts of
sensors. A complex environment can be built with basic three dimensional shapes,
light sources and cameras. Every object has a set of parameters, some of them
are specific to a given object (such as the number of articulation of an industrial
robot or the range of a sensor), some are general (weight, color, visibility). Most
of the prepared models come with a pre-written script in Lua that handles sev-
eral basic functions. Lua is a lightweight multi-paradigm programming language
very similar to C. Its libraries offer a wide array of function designed for robotic
uses. These controllers can be also written in C or C++, Python, Java, Matlab,
Octave and Urbi. V-REP simulations are run with a time step of 50 ms. Graphs
presented in this thesis use this time step as the basic unit on the X axis. This
value can be changed, but one has to be careful since the models may not behave
in the same way after that.
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2.2 Introduction to the MAV

The MAV model provided by V-REP (shown on Figure 2.1) is composed of
a base, four propellers and a virtual object named quadricoper target, called a
“set point”. Most land-based mobile robots control motion by directly setting
the wheel speeds. Motion of MAVs is handled very conveniently, we can set the
position of the set point and a PID controller handles automatically the movement
of the MAV towards this set point. A implementation of a similar principle on
real MAVs has been performed in [2]. The movement algorithm can be divided
into three parts, controlling vertical, horizontal and rotary motion. We will now
give a quick overview of all of them by analysing the response of the MAV to
changes in position or rotation of the set point.

Figure 2.1: MAV model in V-REP, the set point is depicted in green
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2.2.1 Vertical control

The MAV is most easily controlled in the vertical dimension. In this case, the
algorithm is fairly straightforward. The thrust of all the propellers is adjusted
uniformly according to the difference of altitude between the set point and the
MAV. A series of step responses of the model has been prepared, where the set
point height suddenly jumps by a given value (Figure 2.2). This movement is very
smooth due to the fact that the robot does not have to tilt in order to change
its velocity (as it is the case with the horizontal movement, as shown later). The
time necessary to reach the required elevation is roughly 40 time steps (2 seconds)
for step changes of the set point altitude to 1 m. We can also observe that the
responses to positive and negative elevation changes are symmetrical, which is
not obvious when dealing with ascending/descending movements.
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Figure 2.2: Vertical control
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Another desirable quality of the tested controller is robustness. This is simu-
lated by changing quickly the position of the set point and observe the way the
controller handles it. The vertical control manages consecutive changes very well
(Figure 2.3). There is only a small overshoot caused by inertia but the system
has no problem with stabilization.
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Figure 2.3: Vertical control - consecutive changes

An important specific aspect of MAVs is their mutual interference. Air flow
generated by one robot affects its neighbors. This is especially true if they are
placed one under the other. For this reason the swarm is forced to maintain a
constant height, for now. The effect of this interference and the extension of the
swarming algorithm into 3D is discussed in Chapter 5.
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2.2.2 Horizontal control

The horizontal control is more complex. This is caused by the structure of
the MAV. As was mentioned earlier, only one variable is required to control the
elevation, but horizontal movement is obtained by balancing the thrusts of the
different propellers. The craft tilts in the direction of the set point to accelerate
and tilts in the opposite direction to break. The response to a sudden change of
the position of the set point oscillates (Figure 2.4) and overshoots by approxi-
mately 20%. It takes about 60 time step (3 seconds) for the system to stabilize
around its final position for set point position jumps smaller than 0.5 m. These
oscillations are more significant for higher values, which is why the set point
should not be put too far from the MAV. To travel greater distances, the set
point should be displaced gradually, not in large steps.
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It is also important to notice that the horizontal controller does not handle
consecutive changes of direction as well as the vertical controller. The system is
stable but creates greater overshoots and stabilizes later (Figure 2.5).
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Figure 2.5: Horizontal control - consecutive changes

Another interesting analysis would be to compare the MAV movements in
different directions (Figure 2.6). The main axis of the MAV is the axis going
in the direction of the body of the MAV (X on the figure). Movement in the
direction of this axis, the direction perpendicular to it (Y) and diagonal (D) is
compared and analyzed.

Figure 2.6: Different direction of the movement
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Simulations have been run in all of these three directions (Figure 2.7) and the
following is noticed. There is, as expected, no crucial difference in the movement
along the X and Y axis. The slight asymmetric distribution of mass is negligible.
The movement along the diagonal is different from the other two. It does not
reach the required position as fast, first stabilizing approximately at 95% of the
desired distance, then slowly reaches 100%. The same phenomenon has been
observe in all of the diagonal directions. This is probably an inaccuracy in the
motion controller but it can be considered negligible as the difference is small.
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Figure 2.7: Effect of the direction on the step response
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2.2.3 Rotation control

The third dimension in which the MAV can be controlled is the rotation (the
yaw - rotation around the Z axis). Every adjacent rotor must turn in the opposite
direction to stabilize yaw. In this way the resulting torque is null. By adding
thrust on the clockwise turning propellers and subtracting the same amount on
the counter-clockwise propellers, the MAV starts spinning clockwise on the spot.
Rotation is handled much worse by the controller in V-REP than translation in
the horizontal or vertical direction. The overshoot is about 40% and it takes more
than 10 seconds for the system to be stabilized (Figure 2.8).
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On both Figure 2.8 and Figure 2.9 the MAV reacts very quickly, almost im-
mediately, to changes in the yaw of the set point. It has, however, problems
reaching a stable state, oscillating for more than 10 seconds around the desired
value. We deduce that the simulator’s controller is not well designed for rotary
movement. This is the reason why rotation is not used in this work, as it is not
essential to the implementation of the algorithm. The MAV itself can perform
any translation in 3D without needing to rotate. Yaw could be useful if a special
component, such as a camera or a sensor, is headed in one specific direction and
we need to turn it in another.
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2.3 Adaptation of the coherence swarming al-

gorithm for MAVs

We will now describe the steps of implementing the algorithm introduced in
chapter 1 on an MAV swarm with the software components available in V-REP.
This will enable the algorithm to be simply transferred to real MAVs, as most
of these components have already been implemented on real vehicles. We will
implement successively the different states introduced above: Forward, Avoidance
and Coherence.

2.3.1 Forward state

In the Forward state of the algorithm, the MAV is constantly moving at a
set speed. We implemented this behaviour, using the available PID controller
in V-REP, by placing at every time step the set point indicator to a determined
distance in the direction of the robot’s movement (Figure 2.10).

Figure 2.10: Constant motion
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2.3.2 Avoidance state

The second behaviour that has to be implemented is obstacle avoidance. A
cylindrical omnidirectional proximity sensor is used in V-REP to detect objects in
proximity to each MAV (Figure 2.11). The sensor is composed of two concentric
rings. The outer ring represents the maximal range of the sensor and the inner
ring represents the minimal range, which is necessary to avoid detecting the
MAV’s own propellers.

Figure 2.11: Collision sensor

If the sensor detects an obstacle, the set point is placed at a certain distance
in the opposite direction. The MAV performs a swift evasive manoeuvre and
continues its journey in this new direction. This is a very basic method of obstacle
avoidance, but it is robust and computationally inexpensive. To test and tune-up
this behaviour, we build an environment (Figure 2.12) with a ring of obstacles in
which MAVs fly in straight lines until forced to avoid collision with themselves of
the surrounding obstacles.

Figure 2.12: Environment with obstacles to test the avoidance algorithm. Video
available at http://youtu.be/W9QcrnLVI8Y.

We tuned up the range of the sensor and the sensitivity of the reaction (how
far the set point is placed) to avoid collisions without being too aggressive to
achieve a smooth flight.
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The robustness of the algorithm has been tested by measuring the minimal
distance from the MAVs to each other and to the nearest obstacle (Figure 2.13
and Figure 2.14). In 10 minutes of simulation, the minimal distance recorded
descended to about 0.57m for the distance between MAVs and 0.47m for the
distance between the MAVs and the obstacles. This margin of security is sufficient
as no collision occurred and the MAVs never got into too close of proximity to
be in danger.

Figure 2.13: Distance between the MAVs

Figure 2.14: Distance between the MAVs and the nearest obstacle
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2.3.3 Coherence state

A second proximity sensor is added on the MAV, similar to the one above but
with a wider range (Figure 2.15).

Figure 2.15: Coherence sensor

The task of this sensor is to count the number of MAVs within its range.
Whenever this number diminishes (a neighbor is lost), the vehicle turns back and
flies in the opposite direction. After a certain number of time steps, during which
it does not react to any neighbor loss, it performs a random turn, deviating from
-π/4 to π/4 from its trajectory, and continues in its rectilinear movement.

At this point, the cohesion of a smaller MAV swarm is achieved (video avail-
able at http://youtu.be/t_JBYvmICqQ). With more entities, the swarm be-
comes very compact as the robots react to the loss of every neighbor. This leads
to a MAV performing collision avoidance and coherence manoeuvres more often
than would be necessary, which decreases the overall stability of the swarm (as
will be explained in Chapter 3).
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2.3.4 Alpha algorithm

The above-described algorithm is modified according to [4]. A parameter
Alpha is introduced that indicates to the robot how many neighbors it can let go
before triggering its coherence maneuver. For example, for α = 5, MAVs ignore
the loss of their 6th neighbor, but react to the loss of their 5th one.
We have now an MAV swarm that successfully maintains coherence. Figure 2.16
shows the Alpha algorithm during one simulation. We are now ready to explore
the patterns of behaviour emerging from this system.

Figure 2.16: Swarm of 20 MAVs with α = 6 during one simulation. Video
available at http://youtu.be/YCNWqypC2Po.
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Chapter 3

Parameter Analysis

Parameters of the algorithm will now be tuned up to observe their effect on the
behaviour of the swarm and to find their optimal value. For every configuration
of parameters 10 simulations of 10 minutes have been performed and the results
averaged.

3.1 Factors considered

For each observed parameter, hypothesis are postulated about how it affects
certain aspects of the swarm. After running and analysing the simulations, the
proposed hypothesis will be evaluated. These are the factors considered in the
analysis:

1. Swarm stability.

• Whether or not a swarm is stable (i.e. no MAV is breaking away from
the rest of the group) is not clearly definable. We decided to quantify
it in the following way: stability is represented by the ratio of all time
steps where all robots are not together in the formation to the total
time steps elapsed. This means the swarm is considered as “unstable”
from the first moment the MAV leaves the swarm.

• Stability is the most important aspect to consider when designing a
coherent swarming mechanism. Obviously it should always be maxi-
mized.

2. Swarm width.

• The size of a swarm is also a variable not clearly defined. It has been
defined here as the standard deviation of the position of all the MAVs
in the swarm. This may not give us the exact absolute value of the size
of the swarm, but in this case it does not matter as we are comparing
the effects of various parameter on this size. The error induced is
constant.

• In most cases, the swarm width is maximized as it is efficient at cov-
ering a large area with a minimum of robots.
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3. State distribution.

• The last interesting property is the portion of time MAVs spend in the
various states introduced. These values are easily obtainable as robots
know in which state they are in.

• In most cases, we seek to maximize the portion of time spent in the
Forward state. In this state, the MAV is most efficient at performing
any task given, since it does not have to perform any complex manoeu-
vre at the same time. Poorly negotiated manoeuvres can also lead to
the robot breaking off from the swarm or even crashing.
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3.2 Alpha parameter and robot number

Simulations are run with 5, 10 and 20 robots, each with multiple variations of
the Alpha parameter. Alpha is the threshold indicating the number of neighbors
each MAV tries to maintain.

3.2.1 Hypothesis

Six hypothesis about the behaviour of the swarm were tested:

1. Higher Alpha

(a) makes the swarm more stable.

(b) makes the swarm more compact.

(c) increases the time spent in Avoidance and Coherence state.

2. A greater number of robots

(a) increases the swarm stability.

(b) increases the swarm width.

(c) increases the time spent in Avoidance and Coherence state.
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3.2.2 Simulation results and evaluation of the hypothesis

The data obtained in simulations are displayed on the following graphs (Fig-
ure 3.1, Figure 3.2 and Figure 3.3), showing the behaviour of different-sized
swarms with different values of Alpha.

Figure 3.1: Swarm stability

Figure 3.2: Swarm width

Figure 3.3: State distribution. The labels on the x-axis indicate the used con-
figuration of the swarm (r05 a04 represents a swarm of 5 MAVs using an Alpha
parameter of 4)
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The previously presented hypothesis will now be evaluated.

1. Higher Alpha

(a) indeed increases the stability of the swarm. For bigger swarms, the
probability for the swarm to break apart decreases almost linearly,
reaching 0% at α = 7 and staying there for higher values of Alpha.

(b) decreases the swarm width as we expected. The differences are more
evident for smaller values of Alpha.

(c) increases the time spent in the Avoidance (due to the increased com-
pactness of the swarm) and the Coherence (caused by an increased
sensibility to neighbor loss) state.

2. A greater number of MAVs

(a) does not increase the swarm stability, contrary to our hypothesis. The
results indicate there is an optimal value of Alpha (here 7 or 8) that
is enough to guarantee the stability of the swarm. This value is not
dependent on the number of robots, but on other parameters (such as
the sensor range, size of the MAVs, their flight speed).

(b) increases the swarm width, but this increase is not proportional.

(c) does not increase the time spent in Avoidance and Coherence states.
For a given Alpha, the state distribution is roughly similar for different
swarm sizes. The behaviour of an individual MAV is influenced only
by its local surrounding, not by the total number of robots.

In the following simulations, we will use a configuration of 10 robots with
Alpha = 5. It is a sufficiently good configuration, but still results in some insta-
bility. In this way, the positive impact of other parameters on the swarm stability
can be measured.
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3.3 Sensor range

We will now show the impact of the range of the neighbor detecting sensor
on the overall behaviour of the swarm. The basic range used in all previous
experiments will be called R (R is 4 meters). A series of experiments will be
executed where first the range of the sensor is doubled and halved (2R and R/2),
then the area covered by the sensor doubles and halves (

√
2R and R/

√
2).

3.3.1 Hypothesis

1. Wider range

(a) increases the time spent in Forward state.

(b) increases stability.

(c) increases the swarm width.

3.3.2 Simulation results and evaluation of the hypothesis

Figure 3.4: Swarm stability

Figure 3.5: Swarm width
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Figure 3.6: State distribution

Figure 3.4, Figure 3.5 and Figure 3.6 display the influence of the sensor range
on the behaviour of the swarm. This influence is in accordance with our hypoth-
esis:

1. Wider range

(a) increases the time spent in the Forward state, mainly to the expend of
time in the Coherence state. The MAVs travel a longer distance until
they have to turn back.

(b) increases stability. This is due to the reduced time spent in the Coher-
ence state, where poorly managed manoeuvres can result in the MAV
breaking apart from the rest.

(c) increases the swarm width. With a greater range individual MAVs will
have more space between them.

A greater range produces a better solution, as it enhances stability, increases
the size of the swarm and limits the time spend in the Coherence state. How-
ever, longer range sensors are also more demanding in terms of encumbrance,
computational complexity and cost.
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3.4 Noise in sensor reading

Up to now the system was considered to be noiseless. As losing and regaining
contact between robots is crucial to our algorithm, adding noise might be a source
of instability for the swarm. A uniform probability has been introduced indicating
the chance for the sensor not to detect a neighbor in range.

3.4.1 Hypothesis

1. Noise in the sensor

(a) increases the time spent in the Coherence state.

(b) decreases stability.

(c) decreases the swarm width slightly.

3.4.2 Simulation results and evaluation of the hypothesis

Figure 3.7: State distribution

Figure 3.8: Swarm stability Figure 3.9: Swarm width
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Figure 3.7 indicates the system can handle noise causing a loss of connection
with a probability up to an order of magnitude of 0.1%. A higher noise level
causes the MAVs to spend most of their time in the Coherence state without
actually loosing any neighbor.

1. Noise in the sensor

(a) drastically increases the time spent in the Coherence state, up to a
point where it becomes the dominant state.

(b) and (c): Stability and swarm width cannot be effectively measured to
a swarm with such a high level of noise that the algorithm doesn’t
work. Individual MAVs are just flying back and forth, thinking they
are losing connections.

If, during the implementation of this algorithm on real robots, noisy sensors
are used, the probability of unsuccessful reading must be kept under 0.1% for
the algorithm to work correctly. If the sensors are less reliable, filters could be
introduced to increase the performance of the solution.
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3.5 Sensor angle of view

The real MAV model described in [2] uses visual sensors to detect and identify
nearby MAVs. Until now an omnidirectional sensor has been used in the imple-
mentation of the algorithm. If using visual sensors, there are several possibilities
to obtain such a full sensor. Multiple cameras facing different directions to com-
pose the entire field of view might be used. This approach can be expensive,
encumbering and possibly computationally demanding. Another solution would
be to extend the field of view of the sensor with lenses or mirrors. This, however,
creates a distorted field, where the range, resolution, accuracy and robustness of
the sensor is not equally distributed in all the directions. We claim the cohesion of
the swarm can be maintained by equipping the MAVs with a single sensor with a
reduced angle of view. We tested this hypothesis with sensors with reduced angle
of view to 180 and 90 degrees. All robots are placed in their initial poses facing
the center of the swarm as shown on Figure 3.10.

Figure 3.10: Swarm with the sensor with a limited angle of view. Video available
http://youtu.be/uHPyTaaaqqE.

3.5.1 Hypothesis

1. Narrower angle of view

(a) decreases stability.

(b) decreases the swarm width slightly.

(c) increases the time spent in the Coherence state.
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3.5.2 Simulation results and evaluation of the hypothesis

Figure 3.11: Swarm stability for different configurations of Alpha and sensor range
(a5 R4 stands for α = 5 and sensor range R = 4m)

Figure 3.12: Swarm width for different configurations of Alpha and sensor range
(a5 R4 stands for α = 5 and sensor range R = 4m)

Figure 3.13: State distribution for different configurations of Alpha and sensor
range (a5 R4 Ang90 stands for α = 5 and sensor range R = 4m and sensor angle
90 degrees)
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Two parameter configurations were used in these simulations. The first con-
figuration (α = 5 and sensor range R = 4m) has an average performance with a
full sensor. As shown on Figure 3.11, this swarm is highly unstable for reduced
angles of view. We then chose a better Alpha with a greater sensor range (α = 7
and R = 8m) to compensate the reduced angle and received much better results.

Based on these results, we can confirm our hypothesis on the impact of the
reduced angle as follows.

1. Narrower angle of view

(a) decreases stability. We must be careful to choose good parameters if
we want to use a reduced angle. The setting with an average average
performance with the full sensor becomes unusable while the good one
holds on.

(b) decreases the swarm width, although we might need more data to make
a well-founded conclusion.

(c) increases the time spent in the Coherence state, while the occurrence
of the Avoidance state remains roughly the same.

As we have seen, the proposed algorithm works well even if the angle of view
of the sensors is reduced. We must be careful however to use a well tuned Alpha
value and invest a little of the resources saved when narrowing the angle into
extending its range.
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Chapter 4

Directed Swarming

A swarm stabilizing algorithm has been successfully implemented (in chapter
2) and tuned (in chapter 3). This algorithm will now be expended to allow the
swarm to follow a target, enabling it to move in space.

4.1 Principle

Let us first imagine that the target is a simple light beacon. There are multiple
approaches to create a target following algorithm that respects the restrictions
set on the communication and sensor capacities of the MAVs.

One approach (the one discussed in [4]) is to equip the MAV with a binary
light sensor that can recognise whether the target is in sight or not. By sharing
this information with its neighbors, the whole group can have a vague idea of the
target’s location based on the fact that the vehicles that do not see the target are
further away or behind obstacles. However this would necessitate more complex
communication channels between individuals, and we want to limit that in our
work.

The second approach would be to make a rough on-board estimate of the
target’s general direction. We use a couple of sensors (4 are used in this im-
plementation) and deploy them around the robot. The position of the target
is allocated in this way to the corresponding quadrant. Although it is a very
inaccurate measurement, our argument is that a swarm can use this method to
effectively drift towards the target.

We also chose this method having in mind the implementation of the proposed
swarming algorithm on real MAVs. There, a set of 4 cameras pointing in different
directions is used for neighbor detection as well as for obstacle avoidance [2].
The task of detecting the target can also be assigned to these cameras and no
additional sensor is needed.
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4.2 Implementation

To implement in V-REP the behaviour described above, the MAVs were
equipped with four additional long range proximity sensors (Figure 4.1).

Figure 4.1: One of the target detecting sensors. The other 3 are hidden for clarity.
The target is represented by the green object on the left.
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We explained earlier how the robot performs a random turn when emerging
fromthe Coherence state. Now the direction of the random turn is shifted to-
wards the activated sensor. This is depicted on Figure 4.2 and Figure 4.3. The
randomness is preserved, its center is just shifted accordingly.

Figure 4.2: Original random turn. V⃗ is the velocity vector of the MAV. The blue
area indicates the possible angle of the random turn.

Figure 4.3: Random turn modified for the target following algorithm. S⃗ rep-
resents the direction the sensor detecting the target is headed. The blue area
indicates the possible angle of the random turn.

The possibility of occlusion of the sensor by a neighboring MAV or an obstacle
is also taken into account. This enables a realistic simulation of large swarms,
where only the MAV in the front can see the target. It is also necessary when
simulating directed swarming in environments with obstacles.
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4.3 Results

A series of simulations will be performed to test and analyse the behaviour of
the directed swarm. Figure 4.4 displays the movement of the swarm during one
simulation. The position of the center of the swarm (the average position of all
the MAVs - depicted in red on Figure 4.4) is tracked and used in the following
comparisons. The initial distance between the swarm and the target is 20 meters.

Swarms of different sizes (4, 9 and 18 MAVs) will be compared according to
two factors:

1. The distance of the swarm to the target during the simulation.

2. The mean distance from the ideal (straight line) trajectory. This indicates
how much the swarm deviates from the line defined by the position of the
set point and the initial position of the center of the swarm.

Four hypothesis about the movement of the MAV swarm towards the target
were analysed:

1. The distance to the target decreases linearly (speed is constant) at first,
then it is stabilized around 0 as the target location is reached.

2. A smaller swarm reaches the target faster.

3. The swarm does not deviate much from its ideal trajectory - a maximum
of 4 meters of deviation for 20 meters of total distance.

4. Bigger swarms to deviate more from their ideal trajectory.
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Figure 4.4: Swarm of 9 MAVs executing the directed swarming algorithm.
The position of the center of the swarm is drawn in red. Video available at
http://youtu.be/_GurlF9shCg.
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Figure 4.5: Distance of the center of the swarm to the target. N is the number
of MAVs in the swarm.

Figure 4.6: Speed of the swarm as a function of its size.

Figure 4.7: Distance of the swarm from its ideal trajectory through time. N is
the number of MAVs in the swarm.
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After running and averaging simulations with swarms of 4, 9 and 18 robots,
the obtained results are displayed on Figure 4.5, Figure 4.6 and Figure 4.7. We
will now evaluate the hypothesis we proposed.

1. As expected, the speed of the swarm is constant at first and starts to de-
crease at 5 to 7.5 meters from the target (depending on the size of the
swarm). The swarms stabilise at a distance of about 1.8 meters from the
target.

2. As we saw in the previous point, the speed of the swarm can be considered
constant until the swarm gets too close to the target. We compared these
speeds on Figure 4.6. According to our results, bigger swarms move slower.
This is because the MAVs must react to more neighbour losses in bigger
swarms and the vehicles in the the back are often occluded by those in the
front.

3. The deviation for all three sets oscillates between 0.5 and 3 meters. This is
considered this very good for a total distance of 20 meters.

4. We cannot discern clear patterns between the distinct swarms. Either there
is no clear behaviour differences or the statistical set used in this work (10
simulations for each setting) is not sufficient.

A target following algorithm that extends the basic alpha swarming algorithm
has been successfully implemented without adding any demands on the communi-
cation capacities of individual MAVs, requiring only minimal additional sensorial
an computational capacities. The effectiveness of our approach, speed of the
swarm, decreases with its size. For very large swarms, a different solution might
be better suited.
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4.4 Environment with obstacles

The presented target following algorithm is tested in a environment with dif-
ferent kinds of obstacles. The algorithm is well designed for environments with
obstacles sparsely distributed in the space. For example it cannot, like other more
explicitly controlled swarming algorithms, make the swarm fly through a narrow
corridor by aligning individual MAVs in a row.

The different obstacles in the environment are displayed on Figure 4.8 and
described on the following list:

• A: a window 4 meters wide (the diameter of the swarm is 10 meters)

• B: a long wall the swarm flies along

• C: an open space with columns

• D: a moving obstacle (column). The obstacle must be slower than the
MAV’s speed during it’s evasion manoeuvre, so that it does not collide with
them.

Figure 4.8: Environment with obstacles. The capital letters represent the different
kinds of obstacles. The green numbered circles indicate the successive position of
the target.

39



The obstacle avoidance algorithm presented in chapter 2 has been retuned to
suit this new environment. The range of the sensor has been slightly reduced
to enable better passing through tight spaces. The intensity of the avoidance
manoeuvre has been increased (the set point is placed further from the MAV), in
part to compensate for the shorter range of the sensor, partly to enable the MAV
to dodge the dynamic obstacle.

Figure 4.9: Trajectory of the swarm through obstacles. The blue arrows represent
the intended trajectory, the red curve represents the actual trajectory of the
swarm during one simulation.
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After successfully overcoming one obstacle the target automatically moves to
redirect the swarm towards another (Figure 4.8 and 4.9). The distance from
the center of the swarm to the target was measured and the results displayed on
Figure 4.10. It shows how the target changes it’s position as the swarm approaches
it. Figure 4.11 displays the swarm’s trajectory during one simulation run. The
algorithm proves to work well in this kind of environment.

Figure 4.10: Distance of the center of the swarm to the target during one simu-
lation.
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Figure 4.11: Simulation of the target following algorithm in a environment with
obstacles. The trajectory of the center of the swarm is depicted in red. Video
available at https://youtu.be/gqFxtVEcEdc.

42

https://youtu.be/gqFxtVEcEdc


Chapter 5

Expansion into 3D

In the previous parts of this work, MAVs were made to move at a constant
and commune altitude. Now will be described an extension of this algorithm to
allow a general motion of the swarm in space.

5.1 Vertical air flow interference

As we mentioned earlier, propellers of the MAVs create an air flow that nega-
tively affect neighbors in close proximity. In V-REP, this flow is represented by a
cloud of bubbles emerging from the MAVs propellers (Figure 5.1). The generated
air flow then exerts a force on nearby objects.

Figure 5.1: Representation of the air flow generated by the propellers in V-REP
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Two properties of the air flow implemented in V-REP have been observed.
Firstly, the flow is directed almost exclusively in the Z axis of the vehicle. This
was something expected and therefore it was not necessary to include the prob-
lematic of air flow interference in the 2D approach, where MAVs fly at the same
altitude. Secondly, the air flow affects only the area below the MAV and not
above. Real propellers do produce much less flow in this direction and so V-REP
designers decided to neglect the effect in this way. These two statements have
been validated by simulations. To examine the effect of the air flow, a series of
simulations has been conducted where two MAVs try to follow parallel trajectories
on different altitude levels (Figure 5.2).

Figure 5.2: Sequence of images depicting the effect of interference by air flow.
Video available at http://youtu.be/aiuGY_pvLoo.

We tracked the altitude of both vehicles for various altitude differences be-
tween them and displayed their trajectories on the following graph (Figure 5.3).

Figure 5.3: Relative altitudes of the lower MAV with respect to the upper one
(the altitude of the upper MAV is constant, marked “u”). Different trajectories
mark the different altitudes of the set point in cm (L5 is the trajectory of the
lower MAV when its set point is 5 cm under the set point of the upper MAV).
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As seen on the graph, the air flow generated by the upper MAV influences the
lower to up to 80cm of altitude difference. The cylindrical proximity sensor used
in obstacle detection was stretched to 1m on both sides to avoid situations of air
flow interference (Figure 5.4).

Figure 5.4: Comparison of the sizes of obstacle detection sensors for uses in 2D
(left) and 3D (right).
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5.2 Expanding the algorithm to 3D

The extension of the algorithm into 3D is fairly straightforward. A spherical
proximity sensor must be used for the detection of neighbors instead of a cylin-
drical one (the sphere is the equivalent of the circle in 3D). The code must then
be adjusted to enable the set point to be set in directions with different altitudes.
Figure 5.5 previews an example of a simulation of such a swarm.

Figure 5.5: Swarm in 3D. Video available at http://youtu.be/o0v5oe6ekVY.
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The position of the center of the swarm has been tracked on Figure 5.6. The
avoidance manoeuvre performed by the MAVs to avoid collision is more aggressive
in the vertical direction because the MAVs must keep a larger margin of security
along the Z axis (due to the air flow interference discussed above). This causes the
altitude of the swarm to oscillate more than the positions along the two horizontal
axis.

Figure 5.6: Position of the swarm in space.
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5.3 Issues of the 3D algorithm

The 3D algorithm might have been fairly easy to implement once we have the
2D one, but for the following reasons we used the 2D model in the previous parts
of our work:

1. It is relatively easier to develop a new behaviour in 2D and then convert it
into 3D (as we did above for the basic coherence behaviour) than to develop
it directly in 3D.

2. The current control system of MAVs which is expected to be used in real
deployment of the system (described in [2]) does not support very well this
kind of random flying in 3D.

(a) On real MAVs, the air flow generated by propellers is much more
significant than it is in V-REP simulations. In a system where the
emphasis is given to random movements, an accident can very soon
happen as MAVs fly at different altitude levels.

(b) The vehicle controller uses optical flow to measure the relative velocity
of the ground below with a down facing camera. If this camera is
occluded by another MAV, it can disturb flight stability.
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Chapter 6

Conclusion

The Minimalist Coherent Swarming algorithm presented by Nembrini et al [4]
has been successfully implemented and extended for using with MAVs. After in-
troducing the algorithm itself, the implementation process was described step by
step, as well as the simulation environment we worked in, V-REP. The behaviour
of the swarm was analysed by changing parameters of the algorithm, or by intro-
ducing restraints such as noisy sensor readings or limited angles of view. A target
following mechanism was designed, implemented and verified, enabling the swarm
to move in a environment with obstacles into a given location and requiring only
minimal sensorial and computational resources. Finally, the swarming algorithm
was expended into 3D, respecting the constrains of the MAV.

Finally let us conclude that all the mandatory points of the thesis assignment
were fulfilled. After consultation with the thesis supervisor, it has been decided
not to include in this work the implementation of this algorithm on real MAVs,
which will be the topic of a subsequent common research. The overall system
was verified in numerous simulations in realistic robotic simulator V-REP. The
swarming approach was adapted and integrated into the system being developed
by the Multi-robot Systems group for relative stabilization of MAVs, which en-
ables its experimental deployment in real world scenarios in a similar way as it
was done for testing swarm behaviour in [13, 8, 12] and stabilization of MAV
formations in [9, 14, 10, 11].
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Appendices

Appendix A: Content of the enclosed CD

/
bachelor thesis.pdf.......................This thesis in PDF format
Scenes ...............................V-REP scenes used in this thesis

readme.txt................... Instruction on how to open scene files
3D.ttt .......... Scene with Alpha algorithm expended into 3D (5.2)
AlphaAlgorithm.ttt.........Scene with the Alpha algorithm (2.3.4)
EnvironmentWithObstacles.ttt.....Scene with the target following
algorithm in and environment with obstacles (4.4)
ReducedAngle.ttt...Scene with the Alpha algorithm with a reduced
sensor angle (3.5)
TargetFollowing.ttt Scene with the target following algorithm (3.5)

Videos
3D.avi...Simulation of the expention of the Alpha algorithm into 3D
(5.2)
AlphaAlgorithm-10.avi....Simulation of the Alpha algorithm for 10
MAVs (2.3.4)
AlphaAlgorithm-20.avi....Simulation of the Alpha algorithm for 20
MAVs (2.3.4)
AltitudeTest.avi.Simulation of the effect of air flow interference on
the MAVs (5.1)
AvoidanceTest.avi.........Simulation of the testing of the collision
avoidance algorithm (2.3.2)
BasicAlgorithm.avi .... Simulation of the basic coherence algorithm
(2.3.3)
EnvironmentWithObstacles-FastVersion.wmv........Simulation of
the target following algorithm in and environment with obstacles (4.4)
- 10x speed up
EnvironmentWithObstacles.avi...Simulation of the target following
algorithm in and environment with obstacles (4.4)
ReducedAngle.avi.Simulation of the Alpha algorithm with a reduced
sensor angle (3.5)
TargetFollowing-FastVersion.wmv ........ Simulation of the target
following algorithm (3.5) - 5x speed up
TargetFollowing.avi...Simulation of the target following algorithm
(3.5)
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