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Abstract

This thesis studies capabilities of various scripting languages to communicate with native
code. Languages Lua, JavaScript (implementation V8) and C# (implementation Mono) are
studied and tested for performance of invoking script from C++ code and and calling the
C++ code from script. This work also contains an implementation of a custom scripting
language NativeScript based on LLVM and its comparison to the other languages. The
results are discussed and explained using the language implementation details.

Abstrakt

Tato práce se zabývá schopnostmi r·zných skriptovacích jazyk· komunikovat s nativním kó-
dem. Jsou zkoumány jazyky Lua, JavaScript (implementace V8) a C# (implementace Mono)
a je testován jejich výkon pro volání skriptu z C++ kódu a volání C++ kódu ze skriptu.
Práce obsahuje také implementaci vlastního skriptovacího jazyka NativeScript postaveného
na LLVM a jeho porovnání s ostatními jazyky. Výsledky jsou diskutovány a zd·vodn¥ny na
základ¥ detail· implementací daných jazyk·.
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Chapter 1

Introduction

Software development and programming languages are evolving as the time goes. As the
computing power price decreases and the most expansive commodity becomes the work of
the programmer, languages originally developed for scripting are getting more popular for
general application development [78]. To the most important advantages of these languages
belong simplicity, independence of platform and just in time compilation, which speed up
the development greatly.

However, many of the applications today are still computational heavy while requiring
to be responsive to the user. For this reason, performance plays an important role for them.
Some of the examples are computer games or graphical editors. But even in such applications
scripting can be still very useful. Computational heavy operations can be implemented
natively to ensure the required speed, while the business logic, GUI or generally any code
that tends to change often can be scripted. The code written in script than can be developed
or modi�ed without the need of recompilation of the whole application, sometimes even after
the release by the users themselves. It is apparent that in such applications the execution
tends to switch between the native code and the script quite often.

There are numerous scripting languages that o�er C/C++ API to provide the required
means of communications. There are multiple ways to implement such a language and each
of them brings some advantages and disadvantages. The implementation details can a�ect
not only the speed of its execution, compilation or data marshalling, but also the syntax
of the language or the complexity of the code required to connect the speci�c C/C++ API
with the script. For those reasons, the selection of correct scripting language for speci�c
application can play an important role.

1.1 Aim of the project

The main purpose of this work is to examine several scripting languages and their binding
capabilities to native code (C++). Under the term scripting language we understand a
language (and its implementation), that is capable of interpretation or runtime compilation
and communication with C/C++ code (or generally any system language). Such a language
can be used to control other programs, to de�ne high-level behovior, or to extend or customize
existing programs.

1



CHAPTER 1. INTRODUCTION

In this work we mainly focus on the binding capabilities. There are already benchmarks
comparing the language execution itself [25] [26], but we weren't able to �nd anything com-
paring the bindings for various scripting language types. We especially focus on the following
criteria:

• Performance of invocation the script and passing parameters.

• Performance of invocation C/C++ callback from within the script and receiving pa-
rameters created by script.

• E�ectiveness of optimizations for binding implementation and execution delegation.

• Ease of usage of the language and the binding API, including the availability of docu-
mentation.

• Requirements and di�culty of making the language operational, including size of li-
brary, legal issues and ease of compilation.

Rather than running generic tests for many languages, we select only few languages that
signi�cantly di�er in their implementation approach. We study these languages in detail
and identify advantages and disadvantages of their features. We also implement our own
language and compare it to the existing solutions. The results of this project should be
usable as a guide for selecting the best language type for given case. More, it should give an
insight into the binding speeds and suggest which approaches and optimizations can increase
performance for given language.

1.2 Contents

In chapter 2 we introduce the concept of scripting and the reasons for which scripting lan-
guages were created. We also present and discuss typical features of scripting languages and
their implementations.

Chapter 3 presents 3rd-party languages (and their implementations) we selected for this
work. We brie�y discuss their history, main target and non-functional topics like licensing
and platform availability. Most of the chapter is dedicated to the internal details of languages'
implementations, that will be later used to explained the results in chapter 6. We also talk
about their binding API and ease of usage.

Chapter 4 is dedicated to the topic of creating a custom scripting language. We discuss
possible motivations to create a custom language instead of using existing solution. Then we
present our own simple language NativeScript implemented using existing tools and frame-
works like Flex, Bison and LLVM. We discuss its syntax and details of its implementation.

Chapter 5 contains description of our testing approach. We introduce our testing ap-
plication, used environments, library settings and measurement tools. We also describe our
testing scenarios and the language features, they are supposed to measure.

In chapter 6 we present the measured results. We use knowledge from chapters 3 and 4
to explain the results and compute approximations of real binding speeds without overheads.
We also present recommendations for each language application.

2



1.2. CONTENTS

Finally, in chapter 7 we summarize the results of this work and evaluate its success. We
also discuss possible continuation of this work.
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Chapter 2

Scripting Languages

Scripting programming languages are a speci�c type of languages. In this chapter we discuss
their origin, purpose and typical features.

2.1 Evolution of programming languages

In order to better understand the concepts for scripting programming languages and scripting
in general, we should brie�y look at the reasons that made them birth. The programming
languages in general were created to provide tools for de�ning what computer should do. As
the time went, the programs got more complicated which caused new programming languages
to emerge, to better address this issue. In the following part we will brie�y describe the
evolution of programming languages to show why the scripting programming languages were
created and what is their purpose.

2.1.1 Beginnings

The �rst programming was nothing more than specifying the machine instructions manually.
Assembly programming languages were used to do this. One statement in such a language
represented a single machine instruction. The problem with this approach was that pro-
grammer had to do everything, including allocating the registers and handling the stack on
procedure call. As the programs grew larger, the code became complicated and very di�cult
to maintain [55].

There was a need for some kind of abstraction and thus new higher-level programming
languages such as Lisp or Fortran emerged by the late 1950s. By higher-level we mean that
the ratio number of machine instructions per statement increased. Soon languages like C
emerged. These languages enabled the programmer to use abstract constructs like variable
assignments, function calls or cycles instead of manually handling the stack or the communi-
cation between memory and registers. The code was then translated into the machine code
by compilers. We generally call this type of languages system programming languages. The
performance of the system programming languages was lower than the performance of the
assembly languages, but they enabled faster development of even bigger and complicated
software and its reasonable maintenance [70].

5



CHAPTER 2. SCRIPTING LANGUAGES

2.1.2 Typing and objects

Typing in general is a way to specify a meaning of an information. By giving a type to
some piece of data, we specify an information about its purpose and usage. For example by
specifying some data to be a string of characters, we prevent it to be a part of arithmetic
operations. In statically typed languages every piece of data has its type. Because the com-
piler has an information about how the data should be managed, it can discover some errors
in usage during compilation. More, it can optimize the �nal machine code by generating
speci�c instructions. In dynamically typed languages the usage of the data is not explicitly
restricted, so the compiler has to generate additional instructions for checking the type. This
reduces the performance of the �nal program, however it provides greater variability for the
programmer [38].

As the software was becoming bigger and bigger, more abstraction was needed. The
programming languages tended to become more programmer-friendly than machine-friendly.
The new concept of abstract data types was introduced. Abstract data types in general
represent concepts from the programmer point of view rather than just restricting usage of
some bytes. An example of such a type can be a list. A programmer uses it to work with a set
of data in a simple manner, although its computer representation might in fact be far more
complex, for example the allocation of memory during additions to the list. Object oriented
languages emerged around this principle, which enabled development of enormous software
by big developer teams. It is not in capabilities of an individuals to comprehend such a big
systems, so the abstract data types provided tools to build clearly de�ned interfaces and
thus enabling big teams to e�ciently cooperate. [44]

2.1.3 Scripting languages

The evolution as described so far enabled the development and maintenance of big and
complicated programs. However, as the programs grew bigger, so did the amount of work
the compiler had to do. Even small change in the code of a huge program can force a
recompilation of a big part of it. This can take a signi�cant amount of time, thus slowing
the development greatly. Also, usually the syntax and principles of a system programming
language require good programmers who had studied and worked with the language for some
time.

These are some of the problems solved by scripting programming languages. The scripting
programming languages tend to be simpler and easier to use. They are even higher-level than
system programming languages, meaning a single statement can represent even hundreds or
thousands of machine instructions. One of their main advantages is that they don't need
to be compiled, at least not the same way the system programming languages are. Their
source code is parsed and interpreted during runtime, which makes it in fact an additional
program input. Scripting languages may thus seem to be at the top of the programming
language evolution tree, since they provide even faster development and simpler syntax.
However, those features come with a great performance cost and so these languages are
often used only for some speci�c tasks. As the computers are getting more powerful, this
performance impact is being compensated and today there are scripting languages used even
for development of whole applications [78].

6



2.2. SCRIPTING PRINCIPLES

We can see that one of the the main trends in evolution of the programming languages is
going closer to the user - the programmer. However the code has to be always executed by
the machine in the end and making the job easier for the programmer makes the job more
di�cult for the machine. The computing power of the hardware is still growing, however
there are applications that need as much speed as possible, so even assembly programming
languages are still used today.

2.2 Scripting principles

There is not a strict de�nition of what a scripting programming language exactly is. For the
purpose of this work we will use this term in connection with languages that are compiled
or interpreted during runtime. We should also note here that this feature depends more on
the speci�c implementation of the language rather that on the language itself. Compilers
can be written even for languages originally created for scripting and on the other hand,
any language can be interpreted. However, the syntax of the scripting language is usually
more convenient for scripting and vice versa, so di�erent cases are not as common. For this
reason and reader's convenience, in the rest of the work we will be talking about scripting
languages, even though we really mean also their implementations, that use interpretation.
In this section we will describe the common applications of scripts and the basic principles
upon which they work.

2.2.1 Main purpose

There is quite a lot of scripting programming languages today, used in various areas. E.g.
on Unix platforms, shell scripts or the terminal input in general can be referred as scripting
language code. Shell interprets the commands from the script or user input and executes
respective actions. Another application of scripting is web, most often using JavaScript.
The web page downloaded from the web server can contain JavaScript code, which is then
interpreted by the web browser. It can be used to e.g. interactively modify the GUI created
from the HTML, to start another HTTP communication or even to give commands to the
GPU [72]. Apart from that, scripting is also used to enable users to modify or add some
features of already released application. Such application can o�er its users to e.g. modify the
GUI, automate some of the often used commands [61] or do computations (e.g. spreadsheet
macros).

All those examples above have something in common. The scripting language is not used
to develop the whole application. It merely assumes there is already a set of components
implemented in another language (Unix programs like ls, DOM in web browser, prede�ned
functions is spreadsheet application). The script doesn't implement complex algorithms or
data structures here. It simply gives commands and glues those components together. It
connects smaller pieces to build higher-level logic. This approach is very powerful in the
way that most of the machine execution happens e�ciently within those components, while
the script developer can build custom and often complex logic using simple language (e.g.
connecting shell commands using pipes). All without the need of compilation delay and
platform issues.

7



CHAPTER 2. SCRIPTING LANGUAGES

2.2.2 JIT and e�ciency

The high performance cost of the scripting languages comes mainly from the fact that they are
interpreted. The compiler of a system programming language usually translates the character
+ in the source code directly into machine instruction ADD. The interpreter however has to
parse the input, check the correctness of the syntax and than call its own add(x,y) function,
that contains the machine instruction ADD. We can see that many additional instructions
have to be executed to achieve the same result. The above approach is however quite naive
and today interpreters are much more sophisticated.

The obvious optimization is to parse and process the input once and save it within some
data structure for later use. This way functions or other constructs can be prede�ned and
used later without the need to parse the code again. This however only prevents repeated
parsing of the input and there is no improvement in the execution itself. The code itself can
be small and the execution quite long by using recursion or loops.

The common approach of increasing the performance of script execution is to actually
compile it. The compilation happens during runtime and this principle is generally called
just-in-time compilation, shortly JIT [34]. There are two main approaches:

• Compilation to machine code. For the best performance the script can be compiled
into the target machine code directly. This compilation can take signi�cant amount
of time and is dependent on the target platform, so the script doesn't have to work
everywhere.

• Compilation to bytecode. Bytecode is an intermediate code representation [43].
It is usually still platform independent, but no longer human-readable, because it is
represented by numeric codes, constants and references. However it enables much faster
interpretation than direct interpretation of source code. The program that executes
the bytecode instructions is usually referred as a virtual machine, since it simulates
real machine executing real instructions.

Some programming languages use both these principles. E.g. Java compiles its source
into bytecode, stored in its .class �les. This bytecode remains platform independent and
can be distributed. When the program is ran, the platform speci�c interpreter called Java
virtual machine converts bytecode into the native code and executes it [80].

It might seem that by compiling the scripting languages we returned back to the waiting
for the time-consuming compilation and gained nothing in the end. That is not entirely
correct. The JIT compilation happens during runtime and thus it allows features like adaptive
optimization. The complexity and level of optimization can be chosen with respect to the
requirements on delay of the start of the script execution. The code can be e.g. interpreted
the �rst time it is ran to be executed quickly and then compiled to more e�cient form, as it
is used more often. Also when the scripting language is used to invoke the underlying native
components rather that to implement the whole application, usually only a small portion of
the code has to be recompiled on change and the rest can remain cached.
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2.2.3 Ease of usage

System programming languages or generally lower-level programming languages let the pro-
grammer work with the basic constructs like bit operations or memory allocation. Due to
this fact, the programmers have to understand the theory behind in order to write a working
and quality code. They have to be educated in the topic so only specialists can do this work
e�ciently. Also considerable amount of the e�ort is spent on handling these constructs in-
stead of on the implementation of the actual logic itself. The code created by this approach
is usually very fast and optimized, however its development can be very costly.

On the other hand, scripting programming languages tend to be simple and platform
independent. They solve many of the low-level problems automatically at the cost of per-
formance. They also tend to be dynamically typed so the programmer doesn't have to care
about types and usually neither declarations. Their basic components are chosen for power
and ease of use rather than an e�cient mapping onto the underlying hardware. Instead of
indexed arrays, hash tables can be used for their higher generality and even numbers can be
sometimes represented by strings to unify the handling of variables [69].

Because of these features, more of the total development e�ort can be spent on the desired
logic. The programmers don't have to understand the mapping of the code onto hardware
that much which enables even less seasoned programmers or often even other members of
the team to create script code. Another huge bene�t is the lack of compilation time which
enables the developers to try out and test their code immediately. This way any errors can be
�xed and tested immediately instead of waiting for another compilation. The development
of the scripts thus tend to be cheaper and faster and they can be even used as tools for the
other members of the team, like UX designers or animators, to incorporate their work into
the �nal product directly.

The seasoned programmers can focus on the low-level algorithms and data structures
to create fast and optimized components, which can be used by the other members of the
team trough scripting. This approach balances the development cost (and time) and the
performance.

2.3 Properties of scripting languages

Earlier we discussed the main principles of scripting programming languages. Here we will
peek into other, more detailed properties which scripting programming language can have
and we will discuss their advantages and disadvantages.

2.3.1 Memory safety

Memory related errors can cause the program to crash, expose a security leak or behave
unpredictably. The lower-level languages tend to allow the programmer to manipulate the
memory freely, e.g. access memory directly using an arbitrary address. This feature allows
the result code to be very fast, since it lacks the extra operations that check the correctness
of the memory operations. However, this feature allows memory errors and corruption to
occur, which often causes unrecoverable crash of the program.
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The higher-level languages, especially scripting languages, usually ensure the memory
safety by explicitly checking the correctness of memory operations. This introduces addi-
tional performance overhead, however any errors are caught and can be handled. Even the
crash of the virtual machine can be often handled from the native code, into which it is em-
bedded. Thus even errors that slip trough the testing phase of development don't have to be
always fatal. Because the errors are caught, more information about what caused the crash
can be available. Developers can �x the code faster, further speeding up the development.

Since one of the main purposes of the scripting programming languages is to abstract the
low-level operations from the programmer, they almost always ensure the memory safety.
Sometimes their syntax may even hide the fact, that memory operations happen in the
background. Even scripting languages that compile into the native code can ensure memory
safety by generating guaranteed safe code, if the syntax of the language allows it.

2.3.2 Garbage collection

In lower-level programming languages the programmer usually has to explicitly mark that
some memory won't be needed anymore by the program and the operating system can
reclaim it. Not releasing the no longer needed memory is known as a memory leak which
can eventually cause the program to crash, because all its available memory is exhausted.
The release of the memory can become impossible when the last reference to it is lost.

Higher-level programming language implementations usually provide a feature called
garbage collector. It is a part of the virtual machine that automatically frees the mem-
ory, that can be no longer used by the program. There are many approaches for garbage
collection [63]:

• Reference counting. The GC uses pointers to allocated memory to count its usages.
When there is no reference to some part of memory left, the GC frees this memory.
The advantage is that the memory is freed as soon as possible and incrementally during
the whole execution. However, reference counts have to be updated quite often and
additional e�ort has to be put into breaking cycles (two pointers each referencing to
the memory location of the other one).

• Mark and sweep. The GC happens in two phases. First, all memory accessible by
the program is marked by iterating in tree-like fashion from all root variables. Second,
the memory is scanned for unmarked objects and they are deallocated. The advantage
is that no additional performance cost due to reference manipulation within the code is
introduced, but the drawback is that the garbage collection happens all at once, so the
execution has to be paused and the application can become unresponsive from time to
time.

• Copying. Instead of deallocating individual pieces of memory that are no longer
reachable, GC copies the still used pieces of memory into one continuous block and
updates all the pointers. The rest of the memory can be used in its entirety, making
the further allocation very fast. Because the pointers have to be updated, this GC
is suitable only for languages, where pointers can be identi�ed with certainty. It also
requires at least twice the amount of memory, which is split and each time GC occurs,
all pieces are copied to the other half.
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• Generational. Because most memory allocations live only for a short time and the
parts that actually survive the GC cycle are likely to stay in the memory for a while, it
might be unnecessary to check the whole memory during each GC cycle. Generational
GC assigns all new allocations into generation 0 and over time they are being promoted
into higher generations (1, then 2 and so on). Lower generations are collected more
often. This heuristic takes advantage of the observations of general behavior of memory
and it tends to shorten the average GC time. However, the no longer needed long-live
memory may remain allocated for longer time, since it is not checked that often.

• Concurrent. The GC happens concurrently with the program execution in a separate
thread (or multiple threads). This approach mainly takes advantage of the multipro-
cessor machines. The application execution usually still has to be paused from time to
time, but only for the minimal necessary time and the rest of the GC can be executed
while the program is running. However, all the memory access of the running execution
threads has to be often done in a speci�c way, which can impact the performance.

Even with the garbage collector, a memory leak may occur. If the memory is no longer
used, but it is still reachable from the currently used variables, the GC cannot claim it. Thus
the programmer still has to take care of getting rid of unnecessary references, especially if
the execution is going to take some time and the memory might start to �ll up.

While embedding the scripting language into the native application, some scripting data
may be referenced from the C/C++ code only and the native API thus should provide
means to cooperate with the GC. This can be achieved by using special pointers to this
data, keeping the data alive only within the stack context of the C/C++ code where they
are used, or providing explicit constructs for manual deallocation.

The garbage collection is generally slightly slower than freeing the objects explicitly.
However the actual performance depends on many details and often there can be almost no
additional cost [54].

2.3.3 Threads

Most of the modern hardware supports multiple threads of execution. Since there are usually
multiple cores or even processors available, the thread execution can be truly concurrent,
which can be convenient when the script needs to e.g. run some longer algorithm without
disrupting its other responsibilities. It is simple to run a virtual machine per thread to
achieve multiple concurrent script executions. However, if the concurrent script executions
should cooperate, e.g. exchange or share data, the situation might be more complicated.

There might be virtual threads provided by the virtual machine available. However, they
may not always run really concurrently. The overall di�culty of running a virtual machine
is increasing with threads, since features like GC have to deal with multiple simultaneous
allocating attempts or locks on various structures of the virtual machine itself, since system
threads can interrupt it as well. More, threading is a feature provided by operating system
and thus there is has to be speci�cally provided for various operating systems, reducing
portability.
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2.3.4 Native interface

The script has to be capable of communicating with the native optimized code. When
the execution of the script is initiated, it might require arguments - and vice versa, the
script might need to invoke some component with some arguments, or just simply return
result value. For these reasons, scripting programming languages are usually designed to be
easily embeddable and make the communication easy from the both sides. Within the script
code, declarations without de�nitions may be used or sometimes even values and functions
not declared can be used. On the native side, the implementation of the scripting language
usually o�ers an API for de�ning function callbacks, passing or retrieving values and invoking
script code.

The usual requirement of a scripting language is to be multiplatform. This might have
impact on the representation of the data within the script and on the ways the data are
exchanged between the script and the native application. There are multiple approaches of
the representation of the primitive types (e.g. numbers):

• Native values. The scripting language implementation is compiled together with the
native application for given platform and thus the native types can be used directly
for the representation of the values within the script. This approach makes the data
exchange faster, since the value can be simply copied. However, there is a small impact
on the platform independence of the scripting language, since e.g. the maximal value
of a number may not be clearly de�ned.

• Internal platform independent values. The scripting language implementation
uses its own internal representation. An example of this is a representation of every
value as a string. The advantage is a total platform independence, but the cost is
necessity of marshalling the values passed trough the boundary between the script and
the native code, which can cause signi�cant performance loss.
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Chapter 3

Languages Tested

We tested several di�erent scripting languages in this work. They were selected in order
to examine and compare di�erent scripting approaches. All of the tested languages and
interpreters are multiplatform (operational on at least the major platforms), free to use,
embeddable from C++ and widely used. In this chapter we introduce all of the 3rd-party
languages and interpreters tested, discuss their features and notable implementation details
and evaluate their documentation and ease of installation and usage. The details discussed
in this section might also be of interest to anyone who is trying to choose a scripting language
and requires some speci�c features.

This section doesn't discuss the custom language and engine NativeScript, that was
created during this work and compared to the existing solutions. It is discussed in chapter 4

3.1 Lua

Since Lua is generally less known compared to the other selected languages, we will discuss
its inner syntax and constructs it o�ers. We will also examine its binding principles and
some notable details of its inner implementation. There are many libraries extending the
small and basic Lua core, so we will introduce some of the them.

3.1.1 Introduction

Lua [7] is a lightweight and easy to use scripting language. Its o�cial interpreter we use in
this work is written in clean ANSI C and compilable with C++, thus being embeddable on
many systems and into many kinds of programs. It has a very small codebase (625 KB as
of the version 5.3.0), so it can be compiled quickly, out-of-the-box and even on small devices
without a lot of memory. Lua provides only a small number of primitives and constructs by
default so there are e.g. no objects or inheritance. However it is highly extensible, so all
those features can be easily implemented within the language itself.

Lua was created in 1993 at the Ponti�cal Catholic University of Rio de Janeiro in
Brazil [59]. It is originally an academic language, however since its creation it highly evolved
and became widely used in various �elds of programming, especially game development [1].
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Despite having such a small codebase, Lua became a mature language and today it contains
modern features like incremental garbage collector or full lexical scoping.

Lua in this test represents lightweight and easy to use scripting language. There are
many similar languages, e.g. AngelScript, GameMonkey, Io, Pawn, Squirrel or Scheme. We
chose Lua for this work because of its widespread usage. The comparison with some other
similar languages has been already made [81].

3.1.2 The language

Since its creation, the purpose of Lua was to be very lightweight and small, while being
widely portable. Because of that, there are only 8 data types. Lua is dynamically typed,
thus variables are typeless. The type is saved together with the value, so a single variable
can contain di�erent types during its lifespan. The notable features of the types are:

• boolean Simple true or false. However, any type can be used in condition and only
false or nil evaluate to false.

• nil Has a single value nil. Its purpose is to be di�erent from any other value.

• number All Lua numbers are double-precision �oating-point numbers. It can be
however changed to di�erent type during compilation.

• string Strings in Lua are immutable and can be also used to hold any binary data.

• function Functions in Lua are �rst-class values. It means that all functions are anony-
mous and are given names by being assigned into variables as values. The functions
have also full lexical scoping (also called static scoping [77]).

• user data Serves as a storage for arbitrary C data. It is mainly used trough the C
API.

• thread Represents a Lua coroutine - a separate line of execution with its own stack
etc. Coroutines however run sequentially rather concurrently than concurrently and
cannot be preempted (by other coroutines).

• table Lua table is an associative array with additional extra features making it an
universal building block for mostly anything. It can be indexed by any value except
nil and has dynamic size. Like functions, tables are anonymous and can be assigned to
any variable. Any table can be additionally assigned with metatable, that can change
its default behavior, e.g. �eld access.

Lua has a lot of convenient features implemented into its syntax. E.g. the expression
myTable.tableField is equivalent to myTable["tableField"] , which makes the tables
available for being used also as packages or objects. Another example is a function de�nition:
function inc(x) return x+1 end is equivalent to inc = function(x) return x+1 end

and there are many other similar examples.
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3.1.3 Binding to C/C++

The border between Lua values and C/C++ values is represented by a simple stack. Any-
time a programmer wants to send a value into the Lua environment, she pushes it into the
stack and invokes some API function, which speci�es how the value will be used. E.g. the
invocation of a Lua function call pops from the stack the value containing the function and
every argument of that function. The stack is accessed by the programmer only from the
native side, from the Lua side values are pushed and popped automatically.

By using this approach the problem of sending a value from a static type system into dy-
namic system is solved elegantly. Value of any type can be pushed to the stack with appropri-
ate function. While popping a value, the developer should know its type and use appropriate
function as well. If she doesn't know, the API provides functions like lua_istable(...).

There is also no problem for the GC to know what values are still used on the native
side, because simply none are. The values can be only read into C variables or created by
pushing the stack, so the actual Lua representation of the values can be garbage collected
freely.

3.1.4 Internal implementation

Lua compiles its source into bytecode instructions (called opcodes) [67], that are then inter-
preted by its VM. The bytecode is binary and highly optimized to make the VM run fast.
It can be ran from memory or saved into a �le and ran later, which can be used for caching
the compilation.

Since version 5.0, Lua's virtual machine is register-based, which means that the instruc-
tions contain direct addresses of the operands. Upon entering a function, Lua allocates all
local values into the registers. As a result, local variables access is very fast, since it avoids
the push and pop operations to get local values from the stack. The drawback of this ap-
proach is that the instructions must hold the addresses of the operands, thus taking more
space (4 bytes in Lua), which can grow the bytecode size and the time it takes to decode
it [58].

The values in Lua are represented as tagged-unions, which are value-type pairs, where
the type is represented by a simple integer and the value is represented by union. The values
of types of dynamic size like strings or tables are implemented as pointers within the union.
Numbers and booleans are stored unboxed directly in the union.

By default Lua's internal representation for number is C type double, which doesn't
have guaranteed its limits by C standards. However, if the target platform implements the
�oating-point standard IEEE 754 [83], double has to represent at least its 32-bit format.
In reality, on most platforms double is represented by the 64-bit format. If Lua is built for
platform that doesn't guarantee these formats, the type can be still changed. So even though
the number type in Lua is theoretically not entirely multiplatform, it requires the attention
only in special cases and there are tools to solve the issue.

The strings are internalized, which means that a single copy of each string is stored within
a hash table, which allows fast comparison and indexing using the hash table keys. If the
string is very long, not all bytes are used to compute the hash, since such a operation would
be very costly for long strings [58].
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Although tables can be indexed by any value, if the indexes are integers, Lua saves the
values in actual array. Single Lua table can have some values stored in an array and some
in a hash table simultaneously. This can reduce the memory usage and increase the �eld
access without the need for the programmer to specify the optimal data structure [46].

Lua uses classic mark-and-sweep garbage collector. From version 5.1 it is incremental
instead of atomic, which means that only a part of the memory is collected during one cycle,
resulting in shorter pauses.

3.1.5 Extension libraries

Because Lua's target is to be small, its core doesn't have the features that wouldn't be used
by the majority of the applications. There are many libraries that extend Lua's functionality
or improve some of its features for the cost of size or making the solution platform speci�c.
Some of the libraries might also provide bindings to other libraries so they can be used
directly from Lua. We mention only few of them that we consider interesting for this work,
although there are many more [8].

• LuaJIT LuaJIT [71] is a competent implementation of the Lua interpreter. It is gen-
erally way faster than the o�cial Lua implementation, but it is less portable and takes
more memory and doesn't support all of the latest features of the o�cial implementa-
tion. It is written in assembler and uses advanced techniques like tracing-compiler or
SSA-based optimizations.

• Threading support Lua itself doesn't support concurrent execution of multiple threads.
Its couroutines only create an illusion of this, while executing one after another and
not being preemptive. In order to achieve actual concurrent execution, intercommu-
nication and more thread-like behavior in general for multiple Lua scripts, extension
library has to be used. There are many libraries with di�erent approaches [9].

• LuaBind If there are many C/C++ functions that need to be exposed to Lua or
many Lua functions that need to be called from C/C++, the binding code can grow
to notable size. Especially if the interface changes often, it can be tedious to create
and maintain the bindings. LuaBind [75] is a library, that automatically generates
the binding code for C++ callback and provides an interface to simplify calls to Lua
functions as well. The drawback is that LuaBind works only for C++ and might not
be capable of solving more complicated cases. There are more alternatives, namely e.g.
LuaPlus [62] or toLua [39].

3.1.6 Documentation and installation

Almost everything about Lua is simple. Its library can be built from source code (625 KB as
of the version 5.3.0) without any dependencies using standard compilers. Linking the static
library increases the program size by 390 KB. It is distributed under MIT license [10] which
requires only a mention that Lua is included in the software.
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There is a book about Lua (written by its developers), which describes the syntax and
principles of the binding API and Lua itself [57]. The o�cial site [7] contains these informa-
tion online as well. There are several articles describing design decisions of Lua, history of
its development and some of its inner functions [67] [59] [58] [46].

3.2 Javascript

We will introduced the history of JavaScript and the engine V8 we have selected for this
work. We will talk about some of the advanced features, that enable V8 engine to be fast
and examine the state of its documentation.

3.2.1 Introduction

JavaScript is a scripting language mainly focused on web. It was created as a part of
Netscape 2 and then spread into other web browsers. However, the languages di�ered slightly
in each browser - they had even di�erent names. JavaScript is today standardized under the
name of ECMAScript and its latest speci�cation is ECMA v6 [76]. The similarity of names
with Java was purely a marketing ploy [47].

There are multiple JavaScript engines, basically for each major browser there is one (V8
for Google Chrome and Opera, Chakra for Internet Explorer, SpiderMonkey for Mozilla Fire-
fox and Nitro for Safari), but there are many more [79]. We have selected V8 from Google
since it is open source and comes with good embedding API. SpiderMonkey appeared as a
good candidate as well, since its speed is comparable and they both have similar features.
Our decision was thus based on the embedding API, which looks more interesting for V8
for comparisons with the other APIs we test. In this work JavaScript with V8 represents a
scripting language, which is highly optimized using complex engine to achieve high perfor-
mance.

V8 is written in C++ and implements ECMAScript as speci�ed in ECMA-262, 5th
edition. It compiles JavaScript directly into native code and most of the today's major
processor architectures are covered o�cially or by extensions [52] [30] [31]. It was created by
Google as a JavaScript engine for their browser Google Chrome and was released together
with its �rst version in 2008. Because of its high performance and the availability due to being
open source, it was used in other projects as well - probably most notably in Node.js [78]. It
is quite sizable and complex piece of software (source code alone has 28MB as of the latest
version 4.9.234), however it is very fast due to the use of advanced techniques.

3.2.2 V8 hidden classes

The objects in JavaScript are created by functions. If the function is called using the keyword
new, it is used as a constructor. The objects have no type, they consist of the properties
assigned to them during runtime. Because the objects don't have static types, the interpreter
cannot use many optimizations, that statically typed languages o�er.

V8 uses a somewhat hybrid approach, where it allows the objects to be dynamic as
required by the language speci�cation, however during runtime it creates constructs that de-
scribe the current object type and contain optimizations. These constructs are called hidden
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classes. The adjective hidden is used because the programmer working with JavaScript code
doesn't know about them, they are used only internally [51].

The justi�cation for the usage of hidden classes comes from the observation, that while
most of the objects in JavaScript are created dynamically, after creation they actually have
the very same structure. By creating an optimized code for this structure, a big part of the
execution can be optimized while keeping the amount of generated code small (not having
separate optimizations for each object instance).

The assignment of the hidden classes happens during object creation and modi�cation.
New hidden class is created for each new property added to the instance, thus object can
jump trough many classes during its creation. However, an old hidden class remembers the
step that resulted into the creation of new hidden class. If another object having this old
class does the same step, the hidden class that is remembered to be the result of this step
is reused instead of creating identical new one. Because of this approach, all objects created
the same way end up having the very same hidden class.

3.2.3 Inline caching

Inline caching [56] is the way of generating optimized code for operations that repeat fre-
quently. It takes advantage of the information provided by the hidden classes. Inline cache
is a small native code stub, that contains the optimization. It is created during runtime,
based on the information gathered during previous execution of the code.

When a property is used for the �rst time, V8 does standard dynamic lookup of the
value, since there is no information about its location known beforehand. However, during
this lookup it creates and compiles the inline cache for this access, which will be used next
time. This optimized code basically checks whether the hidden class of the object is the
same class this code was generated for and if it is, the optimized code is executed. If there
is a mismatch, it suggests the fact that in this situation there might be multiple objects and
the code is deoptimized to do the dynamic lookup again. However, the already generated
stubs can be still used [40].

The inline cache is �ushed during garbage collection. This way the engine gets rid of the
code stubs that are probably no longer going to be used and gives the chance to create new,
optimized stub again, even if this part of the code was deoptimized previously. The fact that
GC could �ush the cache suggests that some part of the execution �nished and the new part
might take advantage of the optimized code again.

Because a lot of JavaScript code might be executed only once, e.g. initialization code,
the generated optimized code might not be used at all. Because of that, the code might be
actually generated not the �rst time it is run, but only after few usages.

3.2.4 Data representation

All JavaScript objects are aligned to 4 bytes within V8. This means, that the last 2 bits of
their 32-bit pointers are always going to be 0. V8 uses these bits to optimize numbers. If the
last bit of the object pointer is 0 (its value is even), the previous 31 bits represent a signed
integer directly, instead of a pointer address. The integer value can be acquired by simple
bit shift. If the number value won't �t the 31 bits or is a �oating point, it will be boxed
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inside an object as a double-precision �oating point compliant with IEEE 754 [83]. V8 can
ensure this number format, since it directly creates the native code.

Each object consist of a pointer to its hidden class and pointers to properties (string
indexed values) and elements (integer indexed values in incremental order). If the code is
optimized by the inline caching, the pointers to values can lead to arrays and the access
requires only an o�set, otherwise they lead to dictionary [41]. There are more optimizations
going on, e.g. when the array contains only double values, they are stored unboxed. If the
values are mixed, double values have to be boxed.

V8 uses C types to represent its types, however it makes sure the representation is always
the same on all platforms. It also contains few of its own type implementations, e.g. the
small 31-bit signed integers, for optimization purposes.

3.2.5 Compilers

V8 compiles JavaScript directly into machine code, there is no intermediate bytecode repre-
sentation. It actually uses 2 di�erent compilers:

The �rst one, full-codegen compiler, processes the abstract syntax tree and generates
native code using the inline caches, as was shown above. All local values are stored on
stack or heap and appropriate instructions are necessary to retrieve them or store them.
The compiler runs only when the function is actually used for the �rst time, to avoid long
starting delay caused by unnecessary compilations.

After that, pro�ling starts to examine which parts of the code are hot - used often. It also
gathers information about what data types are passed trough certain parts of code. Once
V8 has gathered enough information, it can attempt to improve the hot code by launching
its optimization compiler, called Crankshaft [42]. It generates high-level intermediate rep-
resentation (HIR) �rst, which is in SSA form. Several optimizations like constant folding
or method inlining are performed here, with the help of the type information. This form
is then compiled into low-level intermediate representation (LIR), which resembles machine
code but is still mostly platform-independent. Other optimizations are performed here and
the result is prepared for allocating the local variables to registers. More about the HIR and
LIR forms in general can be found here: [32].

In order to decrease startup delay, V8 also contains a snapshot feature. It can basically
cache the entire heap state to drive so it can be loaded and used immediately after next
engine start.

3.2.6 Garbage collection

Because a small integer values di�er from the pointers in the last bit, GC cannot accidentally
think these are pointers as well, as some GCs like Boehm-Demers-Weiser do. Thus it always
knows which data represent the pointers and which not.

V8 implements a generational GC with 2 generations. Objects are always allocated into
new-space, which is quite small (around 1 - 8 MB). When this space �lls up, the GC starts
and quickly removes the dead objects from the new-space. Objects that survive 2 GC cycles
are promoted to the old-space. GC for the old-space is run once it reaches certain size and
usually takes considerable more time than the GC for new-space.
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Pointers that lead from old-space to new-space are maintained in a store-bu�er to keep
the new-space GC fast. The code that handles this is called write barrier is it has to be
executed anytime a pointer is written [73].

3.2.7 API

The embedding API is based on C++ objects and their types. It provides handle types
for storing references to JavaScript objects, which also can control their scope of existence.
All values passed from C++ to JavaScript have to be wrapped in those handlers. Once the
handler leaves its scope, its value can be subject to GC, unless the handler is explicitly made
persistent. Templates for functions and objects can be created with custom function and
access callbacks to C++. Property accesses on objects can also have their own callbacks.

V8 enables several independent JavaScript environments using a concept of contexts
and isolates. Contexts represent independent JavaScript environments, however for running
multiple simultaneous threads, separate isolates have to be used. Isolates can be also locked
by a speci�c thread, so other threads cannot use it during that time.

3.2.8 Documentation and installation

Documentation for the basic embedding of V8 is available [29], however it is not always
up to date, as during our research some of the code samples didn't match the actual API.
The API itself changes often as well, so we recommend to always use single speci�c version.
Another drawback is that the documentation doesn't contain everything. It is good for
understanding the principles and writing small code samples, but it was insu�cient even for
writing the benchmarks in this work. The missing information is usually searchable in the
API reference [28] or on user forums, however this state is far from ideal.

The details of V8 internals are o�cially discussed in videos by Google [53], in their
documentation page [51] or blog posts [50], however, there are practically no articles about
V8, just few that discuss similar features but in di�erent languages [32] [56].

The building of V8 engine requires few additional steps, especially if the system doesn't
already contain prerequisites. V8 is build with help of repository helper depot_tools, python
and meta build system GYP, which have to be installed �rst. On Windows, Visual Studio
2013 or cygwin are required to build (those are the supported build options). The situation
on Linux is easier, since there is no need for cygwin and the build is done using make. The
�les fetched by depot_tools have together around 700 MB, linking the library increases the
program by 5 MB and compiled as dynamic library it takes about 4.5 to 8 MB, depending
on the features selected (e.g. internationalization support can be dropped). V8 is available
under the BSD license [2], which requires again basically only a mention V8 is in the program.

3.3 C#

We will discuss the possibilities of using C# as a scripting language trough Mono. We will
talk about its JIT feature, garbage collector and the features enabling fast communication
between C/C++ and C#.
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3.3.1 Introduction

C# is an object-oriented programming language, based on C++ and Java. It was devel-
oped by Microsoft as part of the .NET initiative and later standardized by ECMA [33] and
ISO [60]. It was originally developed for Microsoft's virtual machine called Common Lan-
guage Runtime (CLR), which is used to execute all programs written for .NET. CLR is a part
of an implementation of Microsoft's Common Language Interface (CLI), which describes the
environment that allow high-level languages to be used independent of platform.

C# is a language not mainly targeted on scripting. We have selected it for this work as
a representation of a language intended mainly for system programming, but leveraged for
scripting. C# is however already used for scripting with notable popularity [27]. Since C#
is targeted more on system programming than scripting, it has some lower-level features like
static typing or bitwise operators. However, it has also a garbage collector and is memory
safe. Because of that, it is lacking some of the ease of usage, but still is more user-friendly
that a purely system programming language like C++. The performance is also higher than
for a purely scripting language.

We have selected Mono as the environment for testing C# for scripting, especially because
of its multiplatform support and C++ embedding API. Mono is an open-source multiplat-
form implementation of CLI based on the ECMA standard. It consists of compiler, the
runtime and various libraries. It was founded and sponsored by company Ximian, later it
came under Novell and today it's lead by Xamarin [11]. Mono is generic byte-code level
virtual machine capable of compiling and running multiple languages, not just C#. Each
supported language is compiled into Mono byte code and then ran by the generic VM.

Mono is quite big. Static linking requires a commercial license and the binary installation
takes 450MB on hard drive. However, it is possible to pick only small portion of the
installation based on required features. For example for the purposes of this work, only
8.5MB would be su�cient.

3.3.2 JIT

C# is compiled into a low-level but still human-readable language called common interme-
diate language (CIL), which is packed into assemblies. Mono and .NET both produce the
very same multiplatform assemblies, however Mono doesn't support all the .NET features
yet, so some .NET code might not work under Mono. C# is a statically typed language and
thus provides a lot of information that can be used for optimization.

Mono uses a JIT compiler, that similarly like V8 generates machine code. There is
an option to use LLVM instead, however we will use LLVM in chapter 4, so we chose to
use the default JIT compiler. LLVM produces faster code, however it takes more time to
compile and not all features required by Mono are supported (in that case it falls back to the
default JIT) [17]. If using LLVM, JIT IR (intermediate representation) is generated from
the assemblies, transformed into SSA form and then transformed to LLVM IR.

The JIT �rst transforms the CIL into its linear intermediate representation [16]. Then
optimizations take place and appropriate local and global values are allocated to registers.
Finally, machine code is produced.
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Mono can precompile the code, instead of the lazy compilation that occurs only when
the code is run for the �rst time. This feature is generally called ahead of time compilation
(AoT). In Mono, this process creates position independent code (PIC) which is a bit slower
compared to JIT code, but AoT can use more optimizations, since the compilation time can
be longer. The drawback is that the result code is no longer portable [12].

Mono JIT is using a concept called trampolines. They are small pieces of native code,
that can be used as stubs. E.g. they can be placed as a target of call instructions instead
of the functions, that should be called, so when the call happens the trampoline executes
instead. It contains code, that starts JIT, compiles target function and connects the call to
the newly generating function, cutting the trampoline o�. Because of this feature, functions
are lazily compiled which means no time is lost on compilation code that may never be
executed. There are multiple trampoline kinds for various purposes [24].

3.3.3 Garbage collection

Mono originally used Conservative Boehm Garbage Collector [36]. Such garbage collector
doesn't modify heap in any way (like e.g. reference counting), which means it has to explicitly
search for pointers. It might not clean all the unreachable objects, but it is unlikely that it
would result in memory leak growing over time. This GC is still available in Mono, however
recommended is their more advanced Precise SGen Garbage Collector [21], which will be
discussed in this section.

SGen is generational and it allocates objects into several sections:

• Nursery All new small objects are allocated here. Nursery is relatively small, by
default is has 4 MB and never grows. Whenever there is no space for new objects
to allocate, quick GC cycle goes trough the nursery, frees objects that are no longer
reachable and copies the survivors to the old generation. There is one exception -
pinned objects. An object can be pinned explicitly by programmer using C# directive
�xed, or if it is referenced in communication with the native code and thus its location
cannot be changed. Those objects stay in the nursery and can be moved only when they
are no longer pinned. In order to prevent synchronization locks during simultaneous
allocation by multiple threads, each thread owns a small piece of the nursery (called
thread local allocation bu�er) exclusively.

• Old generation Objects that are expected to live for longer time (since they were not
collected as garbage from nursery) are stored here. Major GC cycle that frees memory
from this part happens less often than small and fast nursery cycles. Similarly to
V8, Mono implements write-barriers to handle pointers from old generation object to
nursery.

• Large objects Objects larger than some threshold are expansive to move, so they
are allocated into their own OS pages. When they are no longer referenced, they are
deleted by releasing their pages back to the OS. This happens in the major GC cycle
where old generation is examined.
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When GC occurs, all threads have to be stopped. However, once the mark part of GC
is done, threads can be restarted. Sweep part treats data that are no longer reachable and
thus it can happen while the rest of the program is still running.

3.3.4 Native code connection

CLI standard de�nes ways to communicate with the C/C++ code. In the standard, classic
C/C++ code is generally called unmanaged code, while C# code is called managed code. The
invocation of managed code from unmanaged code depends on the C# engine, since it has
to be started. The CLI standard method of invoking unmanaged code from managed code
is called Platform Invoke (P/Invoke). Since C# is statically typed object-oriented language,
all external methods or structures used as parameters have to be declared within the C#
code as well as within the C/C++ code.

P/Invoke uses dlsyn function on Unix or GetProcessAddress function on Windows to get
the address of the target method. The target method has to be C ABI-compatible, which
can be achieved in C++ by wrapping it into extern "C" { ... } block to avoid C++ method
names mangling. Additionally, the calling convention has to be set according to the platform
(e.g. Stdcall fro Windows or Cdecl for Unix). In C# the function has to be declared with
DllImport(...) attribute specifying the external library that contains the target function
(or the fact that the function is within the same executable). Then this function can be
normally called from C#. The drawback here is that the data passed have to be copied or
even marshaled, if the formats aren't compatible [19].

Mono o�ers another way to call underlying C/C++ code that doesn't follow CLI standard
and was meant to provide fast interoperability with its own libraries. Programmers can
however normally use this feature, which is called Internal calls. Internal calls work directly
with Mono inner data representation and Mono API is required to manipulate them. E.g.
you can get a pointer to the actual char data of Mono string trough the embedding API.
By accessing the data directly the overhead of communication between C/C++ and C# is
signi�cantly lowered [82]. However, the C# code becomes dependent on Mono, since instead
of DllImport attribute, Mono speci�c one is used. Since we are using Mono for all platforms,
we chose to use this faster approach.

C# method can be invoked using Mono API, however, this approach is slower compared
to using unmanaged to managed thunks. Using thunk will create a custom trampoline from
unmanaged code to managed code for the particular method signature that is being invoked.
When this code is called, the thunk makes sure that the target function is compiled and
than replaces itself with direct call to the native code generated from C#. No parameter
validation occurs (except for mandatory MonoException pointer), it must be ensured by
programmer. Because of that, once JIT is compiled, the transition is very fast. However on
parameter mismatch, the program might run into unexpected issues.

3.3.5 Threads

C# has a direct syntax support for threads and Mono uses system threads to implement
this feature. Because threads are OS dependent feature, Mono o�ers special interface called
io-layer, that has to be speci�cally implemented for target OS. This layer provides all OS

23



CHAPTER 3. LANGUAGES TESTED

speci�c features including network sockets, etc. Mono runtime has locks on several levels
(global, domain, JIT code, etc.) working in hierarchy [23]. For interprocess communication,
shared �le mapping across multiple Mono processes is used.

3.3.6 Documentation and installation

Dynamic compilation of C# sources into assemblies is not trivial, since Mono's C++ API
doesn't support it. The most straightforward solution is to run mcs compiler (part of Mono)
using system call from C++. More elegant and portable solution is to write your own
compiler in C#, which requires only several lines of code, and distribute it as an assembly
with your program. The compiler can be then run from C++ as any other script. We have
however encountered undocumented errors using this approach, and since we mainly focused
on the performance of the already compiled script, for the purposes of this work we used the
mcs system call which worked well enough. Compared to the other languages, we observed
that the compilation of C# assemblies takes considerable time (even seconds for our simple
scenarios).

The state of the documentation [15] is similar as for V8. There are o�cial basics and
the API [13] available online but they are insu�cient and sometimes inaccurate. The details
of Mono implementation are mainly discussed in their website [14] and there is also a book
available [45].

Mono doesn't o�cially support 64-bit version for Windows [20] and static linking requires
commercial license [18], so we haven't been able to �nd a di�erent workaround, than using
32-bit version dynamically. It can be installed (takes up to 450MB on hard drive) or compiled
from source. However, it is possible to pick only small portion of the installation based on
required features. For the purposes of this benchmark, only 8.5 MB were required, which
could be most probably further reduced [22].
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Custom Language

We design our own simple scripting language called NativeScript in this chapter. We imple-
ment an engine to run it using two di�erent approaches (AST interpretation and JIT using
LLVM), including API for communication with C++. We also discuss the motivation to
create a new scripting language and the details of NativeScript implementation and libraries
used. NativeScript isn't as rich as the other languages discussed in chapter 3, although it is
Turing complete [74]. It is a highly specialized language for certain tasks, speci�cally double
operations and communication with native code. Its performance is compared to the other
languages in chapter 6 together with the bene�ts and caveats of the idea of implementing a
custom scripting language.

4.1 Motivation

Developers can sometimes decide to create their own scripting language/engine. The moti-
vation behind it can be various:

• Speci�c features The software might require some speci�c features and languages
that provide them cannot be used from di�erent reasons.

• Customization The software is expected to grow or change greatly and the selected
scripting language might need to be altered accordingly.

• Performance The scripting languages is required for only very speci�c tasks. Because
of that, great part of the existing solutions would be unused and even slowing the
critical features down (e.g. dynamic types where only single type is required).

• Fun For some people, developing their own language might be an exciting experience
and they are willing to invest the extra e�ort necessary to create it.

The important fact about developing a custom language is that the task is not simple.
As you can see from the history of the scripting languages discussed in chapter 3, it took
a considerable amount of e�ort and time to get the languages and engines into the current
state. It is possible to create a custom programming language with a compiler or interpreter
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in few days, however the result is very likely to be poor. The design of the syntax should
enable fast and convenient development and maintenance of the code and the implementation
should provide required performance.

Most likely there is already a suitable scripting language that has all the required features,
since somebody most likely already faced the same issues before. Thus before making the
decision to create a new language, veri�cation of the reasons should be made. E.g. if the
problem is performance, the software or language should be evaluated or pro�led �rst and
the newly designed language should be proven to really make the di�erence. Also, the
developers (especially the new ones) will have to learn the new language and there might be
other di�culties or risks, e.g. security.

If it is really necessary to implement a custom scripting language, the developers should
posses at least some theoretical knowledge of computational theory and terms like Turing
completeness or halting problem should be known to them. Luckily, there are libraries and
frameworks that can provide great help when composing a new language and those should
be evaluated (we use some in this chapter).

4.2 LLVM

The main framework we use is the LLVM [65]. LLVM stands for Low Level Virtual Machine
and it is basically a compiler framework that can produce an optimized machine code based
on a high-level information provided. LLVM contains a subproject called Clang, which is
a C/C++/Objective-C compiler based on LLVM, that is comparable (if not better) with
compilers like gcc and is widely used by Apple [68].

LLVM works with code in a form called intermediate representation (IR). The main
advantage is that this representation is language and platform independent. It is slightly
richer than assembly languages, so it keeps things like type information and the control �ow
and data �ow representations. However, it doesn't contain high-level constructs like classes,
inheritance or exceptions. These properties make it universal for description of practically
any language, while still being able to keep enough information for optimizations. However,
some of the languages, especially those that contain higher-level constructs like e.g. Java
probably won't be as e�cient with LLVM, since it won't be able to optimize them as well
as their specialized compilers.

LLVM IR is in static single assignment form (SSA form) which allows only a single
assignment to each variable. This form is suitable for many optimizations which can be
performed faster. For imperative languages that require mutable variables, LLVM suggest
an approach of using stack allocated memory, which doesn't have to be in SSA form. LLVM
can automatically optimize this representation into registers, which makes the generation of
IR for imperative languages more convenient [5].

Once the code is in IR, optimization passes can be run. LLVM implements many of
them and provides a pluggable interface for implementation of custom pass. Because of this,
speci�c optimizations for given language can be selected to customize the trade-o� between
code generation speed and code execution speed.

The optimized IR can be executed using an execution engine. There are interpreter
and JIT implementations available in LLVM, although there is also a pluggable interface
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for custom engine implementation. We are using LLVM JIT to produce machine code in
NativeScript. Machine code can be produced into memory and dynamically linked. The
C++ API of LLVM enables the pointers to the generated machine code to be retrieved, and
also to pass pointers to custom C++ functions, which will be called from within the machine
code. Because direct addresses are passed, the transitions between C++ code and script are
very fast.

There is a lot of documentation on the o�cial web page of LLVM [6] describing the
principles and usage of LLVM. There are also guides for writing pluggable modules (e.g.
custom optimizing pass).

There are already scripting languages written using llvm [49] [35]. We wanted to imple-
ment our own more for the purpose of showing the process rather than to use the actual
product.

4.3 Features included

Because the design and implementation of a full scripting language is a time consuming
process, NativeScript contains only a small amount of features. We implement just enough
to make the language Turing complete and to be able compare its binding speeds to the
other languages from chapter 3.

NativeScript's main building block is a function. Every source �le is simply a list of
functions, which can be either de�ned by specifying a body, or just declared to be bound
to C++ callback later. Those functions can be then invoked from C++. Every function
returns a single value and accepts 0 to n arguments. Functions are distinguished purely by
their name, there is no polymorphism.

There is only a single type available, representing a 64-bit �oating point number. Because
of that, types aren't involved in the syntax at all, since all variables are automatically
doubles. This simpli�es the language greatly, while not having any performance cost for
dynamic types. Types are known by the compiler automatically, so it can generate speci�c
instructions directly. However, the list of possible features of NativeScript is signi�cantly
reduced by this. NativeScript in this work represents a custom language tailored for a speci�c
task (double operations), so this is in fact an optimization.

Variables can be used for assignments and as a part of expression. Every variable is
automatically declared �rst time it is assigned, so there is no syntax for declarations. Func-
tions parameters are the only input variables usable within the function - there are no global
variables. NativeScript has static scoping [77] in its simplest form, since the functions cannot
be nested.

NativeScript supports loops and conditions, which makes it (together with the variables)
Turing complete [37]. It also supports binary operators +, −, ∗, < and ==. Value 0 is
considered to represent false, any other value represents true.

The library provides C++ interface capable of parsing source code from �le or string.
The result script then can be either interpreted by iterating its AST or compiled into native
code using LLVM and executed. For both versions callbacks can be speci�ed and any script
function can be invoked. NativeScript is memory and type safe and the only runtime error
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possible is caused by over�owing the double type or stack during deep recursion. The errors
during parsing and compilation are printed to stderr.

4.4 Implementation

In this section we closely look at the implementation details of NativeScript. It consists of
a lexer and a parser which produce an AST, that can be directly interpreted. The com-
pilation process generates LLVM IR, runs optimizations and generates machine code. The
compilation steps and subproducts are depicted in �gure 4.1.

Figure 4.1: Compilation process in NativeScript.
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4.4.1 Lexer and Parser

Lexer is a tool that reads a source code and translates it into tokens, which represent atomic
building blocks. Parser then takes those tokens and generates an AST based on the syntax
rules of the language. We use lexer and parser generators Flex and Bison [66] for those tasks.

Flex is a library capable of generating a C source code of lexer de�ned by a con�guration
�le. The con�guration �le contains rules which consist of a regular expression and an action
executed on match. The action usually consist of returning the appropriate token, however,
arbitrary C code can be speci�ed. Arbitrary C code can be also put to the initial and the
�nal part of the generated �le. This feature is used mainly for including necessary �les,
declarations or custom function de�nitions. Apart from parsing all basic tokens, notable
features of NativeScript's �ex con�guration �le are line counting for better error feedback
and de�nition of functions for switching between �le and string parsing.

Bison works on the same principle as Flex. Its con�guration �le is however slightly more
complex. It is meant to contain a speci�cation of a context-free grammar [48]. The rules
of such a grammar consist of terminal and non-terminal symbols. At the beginning of the
con�guration �le, union type is de�ned, to cover all the possible types that can represent
symbols (both terminal and non-terminal). Then terminal symbols are de�ned together with
their types. The default type doesn't have to be speci�ed nor here, neither within the union
- it is an enumeration describing tokens without any metadata. Then, non-terminal symbols
are de�ned. Finally the rules of the grammar are de�ned using previously de�ned symbols.
For each possible output of a rule, arbitrary C code can be executed. This is usually used to
create the AST nodes and connect them together. The nodes be used to directly represent
the non-terminal symbols and thus accessible as metadata during the execution of the rules.

Our grammar has a list of functions as its root. Each function consists of a declaration
and optionally a body. The body can contain arbitrary expressions. For simplicity, every
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statement in NativeScript is an expression, so e.g. condition is in fact a ternary operator
and the loop always returns 0. The value of the �nal expression of the body (annotated by
keyword return) is used as a return value of the encapsulation function. The precedence
of the binary operators is de�ned directly in the con�guration �le. This description of the
grammar is simpli�ed, since we didn't want to sink into tedious details.

4.4.2 Abstract syntax tree

Abstract syntax tree represents the structure of the program within the memory. Its nodes
represent operations and commands, whose operands are represented as nodes as well. Us-
ing this approach the tree can be iterated from some node to visit all parts of code that
participate on this node's execution.

We use C++ classes and inheritance, speci�cally the composite pattern, to represent the
nodes of our AST. The two root types are Expression and Function (representing declaration,
not call). All other types are direct extensions of Expression, as can be seen on �gure 4.2.
The only logic implemented within the nodes is for its creation within constructor. Thus,
the nodes just represent the structure and its data. For iterating the AST (to generate IR
or interpret the code) visitor pattern is used. This slightly lowers the performance, however
it makes the code maintainable, reusable and easily extendable.

The AST is produced when the source code is parsed. It is stored within the ns::Script
object of the C++ interface of NativeScript. It can be further used to create an interpreter
or a compiled code.

Figure 4.2: Node hierarchy of NativeScript's AST.
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4.4.3 Intermediate Representation

To generate the machine code using LLVM, IR must be generated �rst. In LLVM, IR is
generated into top-level containers called modules. A module holds all the memory of its IR
and can be compiled separately. In NativeScript, for each parsed string or �le, new module is
created to contain the IR. Then, function pass manager is created and several optimization
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passes are assigned to it. Finally, for each function in AST root, IR is generated by using
visitor pattern and function pass manager is executed on the result. All of this happens in
our ns::Executor class.

To help with IR emitting, LLVM provides convenient class llvm::IRBuilder which remem-
bers the current position within IR and inserts instructions based on methods called. So e.g.
instruction for �oating point number addition is created by simply calling builder.CreateFAdd
and passing LLVM representations of operands as arguments.

IR instructions are always emitted to blocks. Blocks are simple containers that hold
instructions in serial manner. They can be assigned to functions, or e.g. used as targets of
conditional branching. We also use them in loop representation.

The basic class representing an SSA register is llvm::Value, however since our language
is imperative, we allocate stack memory and then let LLVM optimization pass mem2reg to
convert it into registers. We keep all variable representations for the current scope in a map,
so they are accessible during the visitor traversals. LLVM can optimize stack allocations to
registers only under certain conditions - the only limitation relevant for NativeScript is that
all allocations must happen at the beginning of a function (its initial block), before it can
e.g. branch because of condition. To achieve that, we simply move all declarations at the
very beginning of the function and don't allow any variable shading.

Similarly like local variables, we hold all declared functions in a map so they can be used
as targets of call instructions. We don't need forward declarations in source code, since we
�rst declare all functions and then loop over them again to generate their bodies. If the
declaration is external, the function doesn't have the body and has to be bound to callback
using C++ interface, before the machine code is generated.

4.4.4 Compilation and execution

Once the IR is generated and optimized, external function declarations have to be bound
to callbacks. This is done trough llvm::ExecutionEngine class. The ExecutionEngine is
created trough builder class by passing it a module. Details about target architecture can
be speci�ed, otherwise they will be set based on the module passed.

We use MCJIT as the implementation [4] of ExecutionEngine in NativeScript. It is
capable of emitting machine code into memory and dynamically linking it to the current
executable. It is more a dynamic machine code generator than an actual JIT. It compiles
whole modules, instead of individual functions as they are called. The modules can be
recompiled or linked together with other modules [64], however, for the purpose of this work,
single module compilation is enough.

For MCJIT code generation on Windows, we had to change the format of the generated
objects to ELF, since the dynamic linker for the default COFF format (32-bit) was not
implemented in LLVM version 3.7.0.

Before the code can be generated, all declarations must be resolved. This can be done
by passing C++ function pointer to ExecutionEngine, together with the LLVM object, that
represents function (llvm::Function). Once all callbacks have been assigned, the Execu-
tionEngine can be �nalized, which causes it to generate actual machine code. After that,
pointers to addresses of the generated functions can be retrieved and used to invoke those
functions.
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4.4.5 Interpretation

The interpretation of NativeScript is simpler, but also slower. The interpreter executes
NativeScript by evaluating the AST tree. No �nalization is necessary and callbacks for
script external declarations can be passed anytime. The interpreter traverses the AST tree
using a visitor pattern, which causes it to use an extra function call for each node, however
enables the AST tree to be universal and reusable.

When a root function is called, the interpreter stores its parameters in a map repre-
senting local variables and then evaluates its body expressions. Each expression evaluates
its subexpressions and the result of the last expression in a body (after keyword return) is
returned.

The external callbacks are stored in a map indexed by their names and the interpreter
looks them up when an external function is called. Callback functions must have speci�c
type. They have 2 parameters - argument count and array of doubles representing the
arguments. This universal declaration can be dynamically called while representing any
NativeScript declaration.

The main advantage of the interpretation is that it doesn't cause any compilation delay
and has no other dependencies, thus can be run on any machine that can compile its C++
code. LLVM today contains many target platforms for generation of machine code and since
its spread and frequent usage it is unlikely that some major platforms won't be supported
in the future. However, the dependency is there.

4.5 API and guide

In this section we describe NativeScript's syntax and its C++ interface together with expla-
nations what is happening when certain API functions are invoked.

4.5.1 NativeScript syntax

Source code of NativeScript is basically just a list of functions. There are 2 function types:

• Function with de�nition This is the function executed by NativeScript. It consists
of its name, parameter names and body. Body consists of expressions separated by a
semicolon and the last expression within a body has to start with the keyword return.
A simple example can look like this: add(x,y) {return x+y;} .

• External declaration These constructs are used to represent an external function,
that is implemented in C++ and can be called from within NativeScript. External
declarations don't have a body and begin with a keyword external. A simple example
can look like this: external add(x,y) .

No forward declarations are necessary. The function body can contain any number of
expressions. Variables don't need to be declared, it happens automatically the �rst time
they are assigned. Variable and function names can be any alphanumeric strings containing
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underscores, however, the �rst symbol cannot be a digit. The reserved keywords are if, else,
external, for and return. NativeScript is case sensitive.

There are math operators +, − and ∗ and boolean operators < and ==. All values are
�oating point numbers so false is represented as 0 and true as any other value. Multiplication
has precedence, however brackets ( and ) can be used. Assignment is done using operator =,
e.g.: varToBeAssigned = valueToAssign; . Number literals can be written using numbers
and optional point symbol. All numbers have to begin with a digit (leading point symbol is
not allowed).

Condition is implemented as a ternary operator using brackets and keywords if and
else, e.g.: if (a < b) a else b; . The for loop is also an expression returning always

value 0. It has the following syntax: for (loopVar = initValue, loopCondition,

additionToLoopVar) expressionToExecute; . The value of expression additionToLoop-
Var is added to loopVar at the end of each loop execution. Blocks of code aren't imple-
mented, so there can be only a single expression in the loop or the condition. However, this
expression can be a function call and functions can contain multiple expressions. Function
calls are represented simply a name and a list of arguments, e.g.: add(1,2); .

The syntax is very simple and there are probably several features that could be added
to make it more convenient - like more operators, blocks of code and some kind of arrays.
However, for the purpose of this work, it is su�cient.

4.5.2 C++ API

The C++ API consists of 3 classes:

• ns::Script This class represents a parsed source �le. It can be created by static calls
ns::Script::parseString or ns::Script::parseFile. Those calls return a pointer to the
newly created ns::Script object. This object already contains an AST produced by
�ex and bison.

• ns::InterpretableScript This class represents a script, that can be run using inter-
preter. It can be created by calling getInterpreter function on the ns::Script object.
Callbacks for external declarations within NativeScript can be speci�ed by calling
function bindExternal. Type ns::ExternalFunction is a required function type for all
callbacks. NativeScript function can be executed by calling function runFunction.

• ns::CompiledScript This class represents a script, that can be ran using LLVM. It
can be created by calling compile function on the ns::Script object. During this call,
an IR and ExecutionEngine are created, however no code is compiled yet. This object
has 2 states - initial and �nalized. When created, it in its initial state. In this state,
function bindExternal can be called to bind C++ callbacks to external declarations
within NativeScript. By calling function getFunction for the �rst time, this object
goes into �nalized state. This transition means generation of the actual machine code.
After that, the bindExternal function cannot be called anymore and if there were any
unresolved external declarations, the machine code generation will fail. The function
getFunction returns a function pointer that can be cast to match the declaration within
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NativeScript and called directly to invoke the function. There is also debug method
dumpIR, which prints generated IR to standard output.

All those 3 objects are independent on each other. That means that once e.g. Compile-
Script object is created, its original Script object can be destroyed or used to construct other
classes. In order to avoid copying of the AST, each function in the root collection is held
using std::shared_ptr. Once created, AST nodes are never altered, so the function nodes of
AST (and their child nodes) can be shared.

For maximal conectivity, no standard library constructs are passed trough the interface.
This is especially convenient for cases where the NativeScript is compiled with di�erent stan-
dard library implementation than the application, that links it. Also, NativeScript handles
all of its memory itself. That is the reason why the object constructors and destructors are
private. To destroy any of these objects, simply call its method free;
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Chapter 5

Performance Testing

To test the interoperability of selected scripting languages, we developed a testing application
in C++. In this chapter we discuss the testing application details, the environment and tools
used for running the tests and the various scenarios and features tested. The results of the
tests are presented and discussed in chapter 6.

5.1 Testing application

Because we aim to test the interoperability of scripting languages with the native code,
we developed an application in C++, which contains the bindings to the selected scripting
languages. The speci�c test of given language binding can be executed by running the
application with speci�c arguments. The application contains uni�ed measurement and
scenario logic in order to ensure the testing environment to be identical for all languages.

User guide for the testing application is in appendix C.3.

5.1.1 Architecture

The application is designed so that the additional languages or scenarios can be easily added.
The common logic of scenarios, argument processing and measurement, which is independent
of the scripting language, is implemented in separate �les and API is provided. The initial-
ization and convenient methods for a speci�c scripting language are implemented separately
as well. Each test case then speci�es its name which is used as an application argument to
run it. This approach greatly reduces the code duplication and ensures the scenarios are ran
the same way for all the scripting languages. More, the implementation of speci�c test cases
then mostly uses those API calls which causes them to be simpler and more readable. We
are aware that this approach introduces the overhead of native function calls, however this
mostly exists outside the measurements. The overhead which impacts the measurements is
expected to be minimal, since all scenarios share it and the function call count is minimal
and clearly apparent from the code.

In order to avoid hidden overhead, no inheritance is used and global variables are used
instead. However, the whole application is divided into namespaces by scripting language
and scenario in order to avoid intervention of the global variables. Global variables are used
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only when necessary, e.g. when the script calls native function and some context is required
in its body. We carefully identify the overhead during pro�ling in chapter 6.

5.1.2 Measurement tools

Measurements for CPU time and wall time are both implemented. By default, wall time is
enabled, but this can be changed in �le settings.h using preprocessor macros and recompiling
the application. We chose to use preprocessor macros here instead of application arguments
to simplify the usage of the testing application. We prioritize the wall measurement because
it is more precise on Windows. The di�erence of both measurement results is in our case
less than 1% (mean of all di�erences was 0.8%, standard deviation 0.75%), thus we consider
the di�erence irrelevant.

In all test cases, only operations which are necessary for every script invocation are
measured into the result time. We exclude the script initialization and compilation, but we
include the initialization of the script call arguments or the processing of the return value.
We measure the time before and after the measured section and compute the di�erence.
There is some known overhead of our code, e.g. counting the results to verify the correctness
of the result and prevent optimizations that could occur because the results wouldn't be
used. We pro�led the application and discovered the size of this overhead. It is discussed in
section chapter 6.

For measuring the CPU time on Windows we use GetProcessTimes function, since we
weren't aware of a better option. It measures time accurately on all circumstances, even e.g.
core switch. The drawback is that the results are based on sampling and this information
is updated only 64 times per second. Thus the precision is not very high. However, the
tests are designed to take several seconds on average and never less than 200ms, so this lack
of precision shouldn't bias the results greatly. However, because of this, we prefer the wall
measurement.

For measuring wall time on Windows we use QueryPerformanceCounter. On Windows
7, the measurement has very �ne precision (in our case the precision was under 1µs, can
be discovered by calling QueryPerformanceFrequency function) and is synchronized across
cores as well. We use it as our primary measurement tool.

On Linux we use function clock_gettime with clocks CLOCK_PROCESS_CPUTIME_ID
for CPU measurement and CLOCK_MONOTONIC for wall time measurement. The CPU
time in this case might be biased if the process is transferred to another CPU. It depends on
the speci�c implementation of the clock. The default measurement type is wall time, so we
recommend using the CPU timer on Linux with caution, although the inaccuracy shouldn't
be signi�cantly big.

5.1.3 Library con�gurations

For all scenarios we use the same versions and con�guration of all libraries:

• V8 4.4.9.1 It is currently the last version that doesn't cause segmentation fault on
Linux for our compilation settings. To lower the size of the library, we use it without
the internationalization support, since it is not needed for the tests. We link V8 as
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a shared library, to avoid mismatch in settings in the rest of the code (e.g. standard
library type). For all script runs, we use a single shared context. Since the scripts
don't use any global data, context sharing doesn't cause any trouble - it is a suitable
optimization. However, for general usage separate contexts might be needed, which
will most probably cause additional allocations for each script run.

• Lua 5.3.0 The newest version available at the time we were construction tests. We
link it as a static library, since it is very small and is not made by default for linking
as shared library (additional e�ort would be needed).

• Mono 4.2.1.102 The latest stable version. Because 64bit version is not supported
for Windows, we were forced to make the whole testing application 32bit. Licensing
allows to use Mono freely only as a shared library, so we simply use the downloaded
binaries. We ran all tests for both Mono's garbage collectors (Boehm and SGen) and
observed no signi�cant di�erence (under 2% in all cases).

• LLVM 3.7.0 It was the latest version during the creation of this work. We believe we
have discovered a bug in version 3.7.0 that caused the library to crash on Windows. We
made it operational by adding one line into one include �le. Details are in appendix D.

• SDL 2.0.3 SDL is not very important for the testing itself, it is used just for the
visualization of point simulation scenario. We linked it as a shared library.

5.2 Environment

Each test was ran in the same environment as a separate process, one after another. The
environment was 64-bit Microsoft Windows 7 Home Premium Service Pack 1, processor Intel
Core i5 M450 2.4 GHz with 8 GB RAM 1067 MHz. The benchmark was compiled using
Microsoft Visual Studio Community 2013 as 32-bit application in Release con�guration.
Power settings were set to no processor limitations and only few other critical processes were
running during the tests.

The whole testing application is compilable and runnable on Linux. However we were able
to run the test only on virtualized Ubuntu 14.04 and the results di�ered signi�cantly from the
Windows results. Since some operations on this virtualized OS were generally unnaturally
slow and some ran at normal speed, we couldn't consider these results as reliable. Thus we
show and discuss only results generated on Windows.

5.3 Pro�ling

To discover which parts on engines cause performance costs under certain circumstances, we
pro�led some of the tests. We used AMD CodeXL version 1.9.10103 for time sampling on
Windows. We pro�led the expression and callback scenarios for the minimal and maximal
parameter counts. The accuracy of results is only moderate, since the method itself is
relatively inaccurate and the internals of the engines can be quite complicated. E.g. Lua
has its virtual machine implemented with heavy usage of macros, which is quite di�cult to
pro�le.

37



CHAPTER 5. PERFORMANCE TESTING

The execution of languages compiled to native code couldn't be pro�led in detail, since
the code was dynamically created during runtime and no symbol information was available.
However, AMD CodeXL was at least able to identify this code as unknown module and count
samples for it as a whole. Thus we were able to see which portion of execution happened
within this module. Based on the implementation details of languages discussed in chapter 3,
we expect this code to be mainly the actual script execution. We were also able to track the
other support features like garbage collection or call and parameters checks for some cases.

The pro�ling results help to explain the results of the tests and should be taken as
suggestions and highly probable reasons behind the results. However, the testing results
should be taken as the primary source of information, since unlike the pro�ling they can be
measured precisely.

5.4 Scenarios

There are 3 main testing scenarios, each targeted to test di�erent part of the interoperability.
In this section we describe each of them including the features they are supposed to measure.

5.4.1 Expression evaluation

This test measures mainly the function call from C++ to scripting environment with varying
number of parameters. The script executes a simple evaluation of few variables using math
operations and returns the result. Each script is called 2 000 000 times (each time using
di�erent values) and total execution time is measured.

The expression pattern used is always the same, to eliminate the bias caused by mathe-
matical operations: (v*v)+(v+v)*(v-v), where v represents the variables. For each language,
2 to 6 parameters are passed and assigned to the expression so that optimization by rear-
ranging the expression doesn't happen. Using this approach, we are able to measure the
impact of sending di�erent number of parameters. However, parameters have to be passed
in order to prevent the script to return a constant value, which could be also optimized. The
cost of a call without parameters is only extrapolated and assumed from pro�ling.

The expected overhead caused by test implementation consist of the loop for repeated
script execution, calculation of the input parameters and adding the result to a single result
variable. In some cases the generated parameters have to be put to an array to be able to be
passed to the script. This is not counted as overhead, since it is a necessary part of invoking
the C/C++ interface. All these overheads showed to be very small and actually signi�cantly
altering the results only for script executions with speed close to the speed of C/C++. More
importantly, for all languages these overheads were the same.

To show how signi�cant impact even simple optimization can have, we show the results
with and without the basic performance recommendations. For JavaScript (V8) and Lua we
wrap the expression within a function and call the function instead. The local operations in
these languages are signi�cantly faster than global ones [3] [46]. The function wrap for both
Lua and JavaScript can be done automatically right before compilation so there is no API
di�erence for the rest of the code. For C# we use generated direct C++ function (called
thunk) instead of normal method invocation. Thunks require to just de�ne a C++ function
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interface and use it to cast the function, which might be actually more convenient than doing
generic calls every time. For NativeScript we use the interpreted version as the naive case
and the LLVM compiled version as the optimized case.

An interesting special case can happen when V8 receives integer values as parameters,
even if they are passed trough the �oating point API as type double. V8 is capable of
recognizing such values and runs signi�cantly faster. Other languages showed no signi�cant
di�erence in performance results, thus we show only comparison for V8.

For the optimized case of Mono and NativeScript the execution was so fast, that the
measurements became inaccurate. For this reason, we executed 100 times more expressions
and the measured times were divided by 100. This created slightly di�erent testing envi-
ronment for those cases, because e.g. the values of the variables passed to the expressions
were di�erent, since they all had to be distinct. However we believe that these di�erences
are negligible and unimportant for the �nal results.

5.4.2 Callback function

By callback function we mean a call from scripting environment to C++. To measure
a performance of such a call, we run a script, which has a loop with a simple callback.
Callback can have from 0 to 4 arguments which are all simply the current value of the loop
iteration variable. On the C++ side, all parameters are retrieved and collected to verify all
the callbacks we really executed and all parameters were sent with correct values. We ran
each callback 50 000 000 times.

The expected overhead of this scenario is the loop execution within the script, the col-
lection of the parameters on the C++ side and the initial script call. The initial script call
is negligible compared to the high number of callback calls. The collection of parameters on
the C++ side was examined by pro�ling so this part of the overhead can be estimated. The
overhead caused by the execution of the loop creates the biggest bias for this scenario, since
for some engines it can be hard to be estimated by pro�ling. However we believe that this
measurement is still more accurate than measuring a single callback separately.

5.4.3 Point simulation

This is a model scenario for more realistic scripting application. Its purpose is to show
performance of the languages for combined binding usage and various optimization attempts.
The test represents a simulation of movements of 400 points in a 2-dimensional space. The
behavior of the points is scripted and thus in each of the 1000 frames there is a script ran
for each point. The script inputs are a current point and a lead point structures (wrapping
positions and velocities) which contain getters and setters implemented as callbacks to C++.
The script computes the distance between the current point and the lead point and updates
current point's velocity and position. The lead point moves in a circle in the center of the
space to ensure the other points keep moving. The measurement starts after initialization,
right before the �rst frame execution, and ends after the last frame execution. The scenario
can be visualized and the lead point position can follow the mouse to see the scripted
behavior. However while measuring, the rendering and all unnecessary code remains inactive
to achieve accurate results.
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Since the point parameters are passed to the script as structures with methods, this
scenario is not implemented in NativeScript. Implementation of structures with members
would imply adding types to NativeScript and many other features, which would make it
way more complicated and it would become a project out of bounds of this work.

The scenario was run in 3 di�erent con�gurations for each scripting language and once
in C++ for comparison. The con�gurations show the performance of di�erent approaches
and optimization attempts:

• naive All of the point behavior is scripted and getters and setters are used for all value
accesses. This is the most straightforward implementation of the behavior.

• half delegated The computation of the point distance and updating the velocities is
implemented within the script the same way as in the naive approach. The update
of point positions is however implemented in C++ and invoked from the script using
callback (with point as an argument). Thus approximately half of the script execution
happens within the script and the other half within C++. The results of this scenario
should reveal the impacts of an optimization attempt to delegate common and rarely
changing parts of logic to C++ for performance improvement.

• optimized All of the behavior is scripted, however the callback count is minimized.
Each getter is called once at the beginning of the script and its result is stored to local
variable, that is used for the computations instead. Similarly, at the end of the script,
each setter is called once to pass the �nal results. This scenario should imply when and
how much it pays o� to limit the usage of getters and introduce additional temporary
variables.
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Chapter 6

Results and Discussion

In this chapter we present the results generated by our testing application for each scenario
and its con�gurations. We discuss the reasons for these results based on the languages
study from chapter 3. We also compute the approximate cost of binding call invocation
and parameter passing using the results and pro�ling of the engine, trying to exclude as
much overhead and bias as possible. In the end, we discuss advantages and disadvantages of
speci�c languages and for which applications they are suitable.

In this section we present the results for each scenario, discuss it and use it to compute
the approximation of binding costs.

6.1 Expression

This scenario measures the performance of invoking script execution from C/C++. Fig-
ure 6.1 contains results produced by our testing application for the expression scenario. Fig-
ure 6.2 contains the same results, however the chart is zoomed in so the di�erences between
very fast executions were apparent.

6.1.1 Result explanation

The dependency of time execution on the number of parameters seems to be linear for all
cases. The passing of parameters to C# and the compiled version of NativeScript seems to
have almost no impact on the execution speed, since they are simply passed by value without
any marshalling or checking.

Lua transforms the parameters into its union structure, however from the results we can
see this operation is quite fast. In the unoptimized version, Lua assigns the values into the
global table, which takes considerably more time than simply setting the local registers in
the optimized version. The execution of Lua script is also faster when using local registers,
than accessing the global table for each variable.

The unoptimized version of C# did considerable amount of checks for each call, thus
being slower than the optimized version, which simply called its native compiled code by
address directly from the C/C++ side. Pro�ling showed, than the time of the execution
itself for both C# versions was similar.

41



CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.1: Evaluation of 2 million expressions with varying number of parameters.
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The interpreted version on NativeScript had a big performance cost for parameter manip-
ulation, since it used a map indexed by string (parameter name) for value lookups. Pro�ling
showed that 85-90% of the execution was spent on the map lookups and saves. The perfor-
mance cost of using the visitor pattern was around 3%.

JavaScript showed to be the slowest language for the transition from C/C++ to script
execution. Its naive implementation uses property set on the global object, which is very
slow. We assume this has a connection with V8's hidden classes system and inline caches,
since these constructs are used for properties and need to be set. Signi�cant execution time
was also spent on allocation and garbage collection. The optimized version needed around
100 times less work to be done for each parameter, although allocation and GC cost was
almost the same as for the unoptimized version. However when the values passed were
integers, the allocation and GC took approximately 10 times less time. It appears to be
caused by the V8's optimization of storage of small integers, that are saved directly in the
memory that is normally used for pointer to object, that boxes the number. The comparison
of JavaScript results for �oating-point values and integers is in �gure 6.3. Pro�ling showed
that the overhead of the call itself required also a signi�cant amount of checks and JavaScript
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Figure 6.2: Evaluation of 2 million expressions with varying number of parameters (zoomed).
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thus ended up having the slowest call invocation across all the languages tested (even for the
optimized version).

6.1.2 Cost computations method

From the measured data, we computed the cost of the pure call from C/C++ to scripting
environment and the cost of each added parameter. The results are in tables 6.1 and 6.2.
We used two independent methods to compute these numbers:

• Pro�ling We pro�led the tests for minimal and maximal number of parameters and
found out what portion of the execution time was spent in certain areas. Then, we
multiplied these fractions with the respective execution times we collected from the
tests to get time information and averaged the values for each language con�guration.
This method had the advantage that we could subtract known overheads, however
the precision was based on our assumptions of what parts of the library code were
responsible for speci�c features.
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Figure 6.3: Evaluation of 2 million expressions with varying number of parameters for V8
using �oating-point values (default) or integers.
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• Test results We computed the values from the measured data itself. For the call cost
we simply linearly extrapolated the chart lines to get values for 0 parameters. We
computed the extrapolation for all pairs (2, 3..6) of parameter counts and averaged the
results. This method is based on real and exact results, however it assumes, that the
dependency on parameter counts is linear even for 0 and 1 parameter.

For almost all cases, the results of both methods were very similar. The presented
numbers represent a single call.

6.1.3 Computation of call invocation cost

In table 6.1 we add a column with pro�ling data without overhead caused by our measure-
ment and script execution itself. The script execution overhead was generally quite high,
since expression evaluation took place.

We present the actual call cost of optimized con�gurations for NativeScript and C#
to be 0, since from the facts mentioned in chapters 3 and 4 it appeared it consisted only
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Table 6.1: Speed approximation of the call invocation from C/C++ to script (nanoseconds).

extrap 0 par pro�l 0 par pro�l no over
NativeScript opt 6 7 0
C# opt 11 13 0
NativeScript 72 138 37
Lua opt 190 190 59
Lua 406 458 70
C# 180 178 134
JavaScript opt 198 215 176
JavaScript 265 257 210

of a single native function call. During pro�ling, we weren't able to identify any additional
operations and when we forcibly sent invalid data types, the programs crashed. From this
we assumed that there were no checks, only a single native function call. We weren't able to
pro�le the dynamically created native code that executed the scripts, but it seemed that no
or only few additional checks happened there, since the execution was also very fast.

From the table 6.1 we see that the overhead of execution for Lua was several times
higher than the measured cost itself. This was expected, since Lua has generally the slowest
execution from the measured languages, because it is not compiled to native code. The
arguments are the same for the interpreted version of NativeScript. Additionally, in this
case the extrapolated value and the value computed by pro�ling di�ered by a signi�cant
amount. This was most likely caused by the extrapolation inaccuracy, since the measured
execution times were quite high (further from 0) compared to the �nal extrapolated value.

6.1.4 Computation of parameter cost

Table 6.2: Approximation of speed penalty for additional parameter in the call from C/C++
to script (nanoseconds).

result di� pro�ling
C# 0 0
NativeScript opt 0.5 0
C# opt 0.5 0
Lua opt 6 5
JavaScript opt int 35 48
Lua 62 52
JavaScript opt 218 202
JavaScript int 375 387
NativeScript 463 443
JavaScript 612 591

The 0 values in table 6.2 measured by pro�ling are our assumptions that the arguments
are in this case passed simply by value without any checks. The reasons are the same as
for the 0 call overhead mentioned earlier. C# optimization to use thunks instead of method
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invocation seems to be a�ecting only the call overhead, since the cost of passing parameters
is negligible even for the unoptimized version.

We are not aware of a reason for the di�erence between pro�led and computed values
for the optimized integer version of JavaScript. We assume that this di�erence is caused by
measurement errors or misinterpretation of information during pro�ling. Other values di�er
only by a small amount.

6.2 Callback

Callback scenario measures the cost of call from scripting environment to C/C++ code and
the cost of passing a parameter. Figure 6.4 shows results produced by our testing application
for the callback scenario. The result times appear to be mostly linear with the number of
callback parameters with few exceptions.

Figure 6.4: 50 million calls from script to native code with varying number of arguments.
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In table 6.3 there are times per callback for each language. They were taken directly from
the results, since we ran a test case for passing 0 parameters. However, the measurements
include overheads, which we attempted to separate by pro�ling.
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During pro�ling for this scenario we were trying to discover what part of the test result
was due to overhead and what part was the actual callback or parameter passing. However,
especially for the languages compiled to native code, we weren't able to examine the code
that invoked our callback function and thus pro�ling really only separated the overhead of
our result gathering from the rest of the execution time. For this reason, we added script
execution time into table 6.3 to serve as an upper bound for the possible callback cost
(callback cost for Lua is already excluded from this number). Since there was almost no
code to execute within the script and it all happened natively, we assumed that most of the
execution was actually the callback invocation.

Lua was the slowest language for both callback invocation and parameter passing speed.
During pro�ling we were able to separate the call instruction and count its function subtree
(excluding our result counting) as call overhead. The curve in the �gure 6.4 gets steeper for
3 parameters. We examined the generated Lua bytecode and discovered no di�erences from
other cases. The pro�ling shoved increased execution time of manipulating variables and
loading values and it appears that it was caused by garbage collection, which can be invoked
during execution of those instructions. However we cannot reliably con�rm this hypothesis,
since that whole part was implemented using preprocessor macros.

Table 6.3: Speed approximation of the call invocation from script to C/C++ (nanoseconds).

test result pro�le call pro�le exec
NativeScript 10 - 2
C# 14.8 - 6.4
JavaScript 23.6 - 10.5
Lua 66.4 18 36.5

We computed the cost of adding a parameter to callback as an average of di�erences
between the individual results. However, this number is biased due to the overhead of saving
the result. Similarly to the callback invocation, we were unable to reliably pro�le the engines
to get exact cost for each parameter. However, we identi�ed some parts of the execution
that handle parameters and we divided the rest of the execution by parameter count and
added into table 6.4 as the upper bound.

Table 6.4: Approximation of speed penalty for additional parameter in the call script to
C/C++ (nanoseconds).

result di� pro�le call pro�le exec
NativeScript 1.2 - 0.5
JavaScript 10.2 3.2 2.2
C# 16.8 - 9.5
Lua 38.5 9 19

In JavaScript we were able to compute the cost of extracting the parameter value within
our callback function. It is very likely that this was the most of the cost for adding the
parameter, since the rest of the JavaScript execution is already very fast. In Lua we were
also able to compute this value. Most of the rest of the Lua's execution was looking up the
callback function in its global table.
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There appears to be a big di�erence between 0 and 1 parameter for C#. We observed
signi�cantly lower execution time for 0 parameters, however, the whole execution happened
in dynamically compiled code, so we were unable to discover more details.

6.3 Point simulation

This scenario represents more realistic script usage and tries to give answers for some opti-
mization questions. We weren't pro�ling in this case, since the information about binding
costs for di�erent languages was already acquired by previous scenarios. In point simulation
we simply comment the results using this information and summarize the strong and weak
spots for each language. The results for all con�gurations and the speed of purely native
execution are in �gure 6.5.

Figure 6.5: Results of various con�gurations of point simulation scenario.
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JavaScript has slow binding speed especially when the script is called from C/C++.
However once started, the execution is very fast. This is especially valuable, since unlike C#,
JavaScript has dynamic types and generally higher-level syntax. The callbacks to C/C++
seems to be also slow, which can be observed from the half delegated case, which has the
same speed as naive approach. JavaScript does a lot of garbage collection, as we observed in
the expression scenario. That is probably the reason, why the optimized case is only slightly
faster than the naive case - it requires allocation of extra variables.

Lua appears to have moderately fast invocation of script code, however its execution is
slow compared to the other languages. Even though the callbacks tend to be slower, for half
delegated case its execution speed almost halves because of that fact. The optimized case
doesn't really speed up the execution, it only avoids several callbacks and thus speeds up
the scenario only slightly.
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C# is clearly winning for all con�gurations. We already know that there is almost no
cost for calling the script from C/C++. However in point simulation scenario we had to
create objects representing the current point each time. The execution itself is known to be
very fast for C#, also thanks to the fact that it is a statically typed language with a lot of
meta information for the compiler. The callbacks to C/C++ already have some cost, which
can be seen from the faster optimized con�guration. The binding cost is low enough for
delegation of part of the execution into the C/C++ to pay o�, as can be seen from the half
delegated test case.

In �gure 6.6 we can see that most of the C# execution was spent on manipulation of the
point objects. When using the structs, the execution is more than 3 times faster and only
6 times slower than the C++ implementation, even though script is invoked. The usage of
struct �elds instead of getters and setters is practically free, since a shared struct data are
used for C++ and C# and the values can be read and written directly. Because of that, the
optimized scenario has the same speed as the naive approach. The delegation of half of the
code has similar e�ect as for objects. Thus we recommend the usage of structs if possible.

Figure 6.6: Results of various con�gurations of point simulation scenario for C#, using
di�erent constructs to pass data.
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6.4 Recommendations

In this section we give recommendations for the best scripting language for various cases
based on the results.

Although from the performance results C# might appear as the best choice for all cases,
Mono cannot be linked statically for free and it doesn't o�cially support 64-bit Windows.
In our opinion (among the tested interpreters) Mono is also the hardest to make operational
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and the embedding API is the least documented. There are issues with compilation, which
is not built into the embedding API, although the workarounds are available. C# is also a
strongly typed language, which can sometimes be bene�cial, sometimes not.

Lua is very easy to use and it is still reasonably fast. It is also the most portable
solution, since it doesn't require special code for each target platform (the other languages
have to generate native code). Compared to C# which is statically typed and compiled to
native code, it was only 2 times slower in the point simulation scenario. If no algorithms
or long executions are to be done within the script, Lua can be a suitable solution even for
performance critical applications, since the binding operations are quite fast.

If more execution speed is required and the language should be still dynamically typed,
JavaScript is a good option. It requires moderate time for setup and learning. However,
for applications that use the binding very often, it is not the best solution. Its primary
target is web and fast execution of bigger amounts of code including algorithms, that can-
not be implemented in system programming language simply because they are dynamically
downloaded from web server.

The decision to implement a custom language should be always carefully considered.
Language NativeScript implemented as a part of this work was fastest in all tests. However,
the reason for this is that is was implemented specially to be fast in those tests. For its
simplicity and single variable type it was not su�cient for the point scenario implementation.
Features that would allow NativeScript to implement it would require e.g. to add a type
system which would on the other hand add overhead to the currently implemented scenarios.
A language for a speci�c purpose can be implemented and outperform 3rd-party solutions,
however its further development and widening the area of its usage can quickly throw away
all its original bene�ts.

From the testing of the NativeScript's interpreter we discovered, that 85-90% of its exe-
cution was spent on map lookup of local variables just because they were indexed by strings.
Simple optimization of using rather constants and array could greatly improve its perfor-
mance, even though this optimization would be de-facto already a precompilation. Note that
pro�ling was necessary to discover this information. Thus when implementing a language
for speci�c purpose, make sure to pro�le it to discover potential issues and improvement
opportunities.
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Chapter 7

Conclusion

In this chapter we summarize and evaluate results of this work. We also suggest further
improvements.

7.1 Evaluation of this work

In this work we analyzed the concept of scripting, discussed its origins, purpose and usual
features. We selected 3 scripting languages and their implementations that each has di�erent
syntax and di�erent implementation approaches. We studied these languages in detail to
discover their potential for di�erent scenarios of native interoperability. We also designed and
implemented highly specialized custom language NativeScript using LLVM. We discussed its
features, performance and caveats and thus showed an example and results of a decision to
create a custom language.

We created a testing application that embedded selected scripting language implementa-
tions and NativeScript. We created several scenarios, each designed to test a di�erent part
of the interoperability. We executed the tests and pro�led the scenarios to reveal overheads
and performance costs of di�erent operations for each language. We approximated the cost
of interoperability operations alone using test results and pro�ling results. In cases the cost
couldn't be accurately determined, we at least set its bounds. We also measured e�ectiveness
of several optimizations that can be attempted during script implementation.

The overall results successfully compared selected languages in the tested areas. Based on
the results we also summarized recommendations for each language (and generally scripting
approach) usage.

7.2 Future work

This work could be easily extended by adding additional scripting languages. The test
application was designed to simplify the task of another language addition.

Also more scenarios could be added. We only brie�y mentioned passing more complex
parameters like objects or structures. The application also contains few experimental sce-
narios that weren't discussed in this work. Those can be executed for further details or taken
as an inspiration for custom scenario implementations.
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We mainly measured execution time, however, there are more criteria that could be
relevant. The language implementations could di�er in memory consumption, length of
pauses due to garbage collection, extensibility or capability of error recovery.

The tests could be also executed on other platforms to see it there are any di�erences.
We unfortunately weren't capable of generating reliable results for Linux, however the whole
application is fully compilable and operational on Ubuntu 14.04. We believe that port to
Mac and other platforms should be already easy.

52



Bibliography

[1] Lua uses [online]. 2015. [cit. 6. 12. 2015]. Available from: <http://lua-users.org/
wiki/LuaUses>.

[2] The BSD 3-Clause License. Available from: <http://opensource.org/licenses/
BSD-3-Clause>.

[3] Variable access performance [online]. 2012. [cit. 8. 10. 2012]. Browser test, run
using Google Chrome to test V8. Available from: <http://jsperf.com/
variable-access-performance>.

[4] MCJIT Design and Implementation [online]. 2015. [cit. 28. 11. 2015]. Available from:
<http://llvm.org/docs/MCJITDesignAndImplementation.html>.

[5] Kaleidoscope: Extending the Language: Mutable Variables [online]. 2015.
[cit. 25. 11. 2015]. Available from: <http://llvm.org/docs/tutorial/LangImpl7.
html>.

[6] The LLVM Compiler Infrastructure [online]. 2015. [cit. 26. 11. 2015]. Available from:
<http://llvm.org>.

[7] Lua [online]. 2015. [cit. 31. 7. 2015]. Available from: <http://www.lua.org/>.

[8] Libraries And Bindings [online]. 2015. [cit. 14. 5. 2015]. Available from: <http:
//lua-users.org/wiki/LibrariesAndBindings>.

[9] Multi Tasking [online]. 2015. [cit. 28. 4. 2015]. Available from: <http://lua-users.
org/wiki/MultiTasking>.

[10] The MIT License. Available from: <http://opensource.org/licenses/mit-license.
html>.

[11] About Mono [online]. 2015. [cit. 28. 10. 2015]. Available from: <http://www.
mono-project.com/docs/about-mono/>.

[12] Ahead of Time Compilation (AOT) [online]. 2015. [cit. 2. 11. 2015]. Available from:
<http://www.mono-project.com/docs/advanced/runtime/docs/aot/>.

[13] Mono API Reference [online]. 2015. [cit. 31. 7. 2015]. Available from: <http://docs.
go-mono.com/>.

53

http://lua-users.org/wiki/LuaUses
http://lua-users.org/wiki/LuaUses
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-3-Clause
http://jsperf.com/variable-access-performance
http://jsperf.com/variable-access-performance
http://llvm.org/docs/MCJITDesignAndImplementation.html
http://llvm.org/docs/tutorial/LangImpl7.html
http://llvm.org/docs/tutorial/LangImpl7.html
http://llvm.org
http://www.lua.org/
http://lua-users.org/wiki/LibrariesAndBindings
http://lua-users.org/wiki/LibrariesAndBindings
http://lua-users.org/wiki/MultiTasking
http://lua-users.org/wiki/MultiTasking
http://opensource.org/licenses/mit-license.html
http://opensource.org/licenses/mit-license.html
http://www.mono-project.com/docs/about-mono/
http://www.mono-project.com/docs/about-mono/
http://www.mono-project.com/docs/advanced/runtime/docs/aot/
http://docs.go-mono.com/
http://docs.go-mono.com/


BIBLIOGRAPHY

[14] Documentation [online]. 2015. [cit. 28. 10. 2015]. Available from: <http://www.
mono-project.com/docs>.

[15] Embedding Mono [online]. 2015. [cit. 31. 7. 2015]. Available from: <http://www.
mono-project.com/docs/advanced/embedding/>.

[16] Linear IR [online]. 2015. [cit. 30. 10. 2015]. Available from: <http://www.
mono-project.com/docs/advanced/runtime/docs/linear-ir/>.

[17] Mono LLVM [online]. 2015. [cit. 30. 10. 2015]. Available from: <http://www.
mono-project.com/docs/advanced/mono-llvm/>.

[18] Mono Licensing [online]. 2015. [cit. 31. 7. 2015]. Available from: <http://www.
mono-project.com/docs/faq/licensing/>.

[19] Interop with Native Libraries [online]. 2015. [cit. 3. 11. 2015]. Available from: <http:
//www.mono-project.com/docs/advanced/pinvoke/>.

[20] Mono Supported Platforms [online]. 2015. [cit. 31. 7. 2015]. Available from: <http:
//www.mono-project.com/docs/about-mono/supported-platforms/>.

[21] Generational GC [online]. 2015. [cit. 3. 11. 2015]. Available from: <http://www.
mono-project.com/docs/advanced/garbage-collector/sgen/>.

[22] Small footprint [online]. 2015. [cit. 7. 11. 2015]. Available from: <http://www.
mono-project.com/docs/compiling-mono/small-footprint/>.

[23] Thread Safety/Synchronization [online]. 2015. [cit. 5. 11. 2015]. Available from: <http:
//www.mono-project.com/docs/advanced/runtime/docs/thread-safety/>.

[24] Trampolines [online]. 2015. [cit. 2. 11. 2015]. Available from: <http://www.
mono-project.com/docs/advanced/runtime/docs/trampolines/>.

[25] The Computer Language Benchmarks Game. <http://benchmarksgame.alioth.
debian.org/>, . Accessed: 2015-11-30.

[26] Benchmark language implementations. <http://attractivechaos.github.io/
plb/>, . Accessed: 2015-11-29.

[27] DOCUMENTATION, UNITY SCRIPTING LANGUAGES AND YOU [online].
2014. [cit. 3. 9. 2014]. Available from: <http://blogs.unity3d.com/2014/09/03/
documentation-unity-scripting-languages-and-you/>.

[28] V8 API Reference Guide [online]. 2015. [cit. 31. 7. 2015]. Available from: <http://v8.
paulfryzel.com/docs/master>.

[29] V8 Embedder's Guide [online]. 2015. [cit. 15. 5. 2015]. Available from: <https:
//developers.google.com/v8/embed>.

[30] Port of Google V8 javascript engine to PowerPC [online]. Available from: <https:
//github.com/andrewlow/v8ppc>.

54

http://www.mono-project.com/docs
http://www.mono-project.com/docs
http://www.mono-project.com/docs/advanced/embedding/
http://www.mono-project.com/docs/advanced/embedding/
http://www.mono-project.com/docs/advanced/runtime/docs/linear-ir/
http://www.mono-project.com/docs/advanced/runtime/docs/linear-ir/
http://www.mono-project.com/docs/advanced/mono-llvm/
http://www.mono-project.com/docs/advanced/mono-llvm/
http://www.mono-project.com/docs/faq/licensing/
http://www.mono-project.com/docs/faq/licensing/
http://www.mono-project.com/docs/advanced/pinvoke/
http://www.mono-project.com/docs/advanced/pinvoke/
http://www.mono-project.com/docs/about-mono/supported-platforms/
http://www.mono-project.com/docs/about-mono/supported-platforms/
http://www.mono-project.com/docs/advanced/garbage-collector/sgen/
http://www.mono-project.com/docs/advanced/garbage-collector/sgen/
http://www.mono-project.com/docs/compiling-mono/small-footprint/
http://www.mono-project.com/docs/compiling-mono/small-footprint/
http://www.mono-project.com/docs/advanced/runtime/docs/thread-safety/
http://www.mono-project.com/docs/advanced/runtime/docs/thread-safety/
http://www.mono-project.com/docs/advanced/runtime/docs/trampolines/
http://www.mono-project.com/docs/advanced/runtime/docs/trampolines/
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/
http://attractivechaos.github.io/plb/
http://attractivechaos.github.io/plb/
http://blogs.unity3d.com/2014/09/03/documentation-unity-scripting-languages-and-you/
http://blogs.unity3d.com/2014/09/03/documentation-unity-scripting-languages-and-you/
http://v8.paulfryzel.com/docs/master
http://v8.paulfryzel.com/docs/master
https://developers.google.com/v8/embed
https://developers.google.com/v8/embed
https://github.com/andrewlow/v8ppc
https://github.com/andrewlow/v8ppc


BIBLIOGRAPHY

[31] Port of Google V8 javascript engine to z Systems [online]. Available from: <https:
//github.com/andrewlow/v8z>.

[32] ALPERN, B. et al. The Jalapeno virtual machine. IBM Systems Journal. 2000, 39, 1,
s. 211�238.

[33] ASSOCIATION, E. C. M. et al. Standard ECMA-334: C# Language Speci�cation,
2005.

[34] AYCOCK, J. A brief history of just-in-time. ACM Computing Surveys (CSUR). 2003,
35, 2, s. 97�113.

[35] BEZANSON, J. et al. Julia [online]. 2015. Available from: <http://julialang.org/>.

[36] BOEHM, H.-J. Space e�cient conservative garbage collection. In ACM SIGPLAN
Notices, 28, s. 197�206. ACM, 1993.

[37] BÖHM, C. � JACOPINI, G. Flow diagrams, turing machines and languages with only
two formation rules. Communications of the ACM. 1966, 9, 5, s. 366�371.

[38] CARDELLI, L. Type systems. ACM Computing Surveys. 1996, 28, 1, s. 263�264.

[39] CELES, W. toLua - accessing C/C++ code from Lua [online]. 2012. Available from:
<Seehttp://webserver2.tecgraf.puc-rio.br/~celes/tolua/>.

[40] CONROD, J. A tour of V8: full compiler [online]. 2015. [cit. 28. 11. 2015]. Available
from: <http://jayconrod.com/posts/51/a-tour-of-v8-full-compiler>.

[41] CONROD, J. A tour of V8: object representation [online]. 2013.
[cit. 13. 12. 2013]. Available from: <http://jayconrod.com/posts/52/
a-tour-of-v8-object-representation>.

[42] CONROD, J. A tour of V8: Crankshaft, the optimizing compiler [online].
2013. [cit. 13. 12. 2013]. Available from: <http://jayconrod.com/posts/54/
a-tour-of-v8-crankshaft-the-optimizing-compiler>.

[43] DAHM, M. Byte code engineering. In JIT'99. Springer, 1999. s. 267�277.

[44] DALE, N. � WALKER, H. M. Abstract data types: speci�cations, implementations, and
applications. Jones & Bartlett Learning, 1996.

[45] DUMBILL, E. � BORNSTEIN, N. M. MONO: A developer's notebook. " O'Reilly
Media, Inc.", 2004.

[46] FIGUEIREDO, L. H. d. � CELES, W. � IERUSALIMSCHY, R. Lua Programming
Gems. Lua. org, 2008.

[47] FLANAGAN, D. JavaScript: the de�nitive guide. " O'Reilly Media, Inc.", 2006.

[48] GINSBURG, S. The Mathematical Theory of Context Free Languages.[Mit Fig.].
McGraw-Hill Book Company, 1966.

55

https://github.com/andrewlow/v8z
https://github.com/andrewlow/v8z
http://julialang.org/
See http://webserver2.tecgraf.puc-rio.br/~celes/tolua/
http://jayconrod.com/posts/51/a-tour-of-v8-full-compiler
http://jayconrod.com/posts/52/a-tour-of-v8-object-representation
http://jayconrod.com/posts/52/a-tour-of-v8-object-representation
http://jayconrod.com/posts/54/a-tour-of-v8-crankshaft-the-optimizing-compiler
http://jayconrod.com/posts/54/a-tour-of-v8-crankshaft-the-optimizing-compiler


BIBLIOGRAPHY

[49] GOOGLE. The Crack Programming Language [online]. 2012. Available from: <https:
//github.com/crack-lang/crack>.

[50] GOOGLE. Chrome V8 Blog Posts [online]. 2015. [cit. 11. 8. 2015]. Available from:
<https://developers.google.com/v8/blog-posts>.

[51] GOOGLE. Design Elements [online]. 2012. [cit. 17. 9. 2012]. Available from: <https:
//developers.google.com/v8/design>.

[52] GOOGLE. Introduction [online]. 2012. [cit. 17. 9. 2012]. Available from: <https://
developers.google.com/v8/intro>.

[53] GOOGLE. Chrome Developer Tools: Videos [online]. 2012. [cit. 6. 7. 2012]. Available
from: <https://developers.google.com/v8/videos>.

[54] HERTZ, M. � BERGER, E. D. Quantifying the performance of garbage collection vs.
explicit memory management. In ACM SIGPLAN Notices, 40, s. 313�326. ACM, 2005.

[55] HEY, T. � PÁPAY, G. The computing universe: a journey through a revolution. Cam-
bridge University Press, 2014.

[56] HÖLZLE, U. � CHAMBERS, C. � UNGAR, D. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In ECOOP'91 European Conference
on Object-Oriented Programming, s. 21�38. Springer, 1991.

[57] IERUSALIMSCHY, R. Programming in lua. Lua. Org, 2013.

[58] IERUSALIMSCHY, R. � DE FIGUEIREDO, L. H. � CELES FILHO, W. The Imple-
mentation of Lua 5.0. J. UCS. 2005, 11, 7, s. 1159�1176.

[59] IERUSALIMSCHY, R. � FIGUEIREDO, L. H. � CELES, W. The evolution of Lua.
In Proceedings of the third ACM SIGPLAN conference on History of programming lan-
guages, s. 2�1. ACM, 2007.

[60] ISO, I. IEC 23270: 2006�C# Programming Language, 2006.

[61] JAMES WHITEHEAD, I. � ROE, R. World of Warcraft programming: A guide and
reference for creating WoW addons. John Wiley & Sons, 2011.

[62] JENSEN, J. C. LuaPlus [online]. 2010. Available from: <https://github.com/
jjensen/luaplus51-all>.

[63] JONES, R. � LINS, R. D. Garbage collection: algorithms for automatic dynamic mem-
ory management. 1996.

[64] KAYLOR, A. Using MCJIT with the Kaleidoscope Tutorial [online]. 2013.
[cit. 28. 11. 2015]. Available from: <http://blog.llvm.org/2013/07/
using-mcjit-with-kaleidoscope-tutorial.html>.

[65] LATTNER, C. � ADVE, V. LLVM: A compilation framework for lifelong program
analysis & transformation. In Code Generation and Optimization, 2004. CGO 2004.
International Symposium on, s. 75�86. IEEE, 2004.

56

https://github.com/crack-lang/crack
https://github.com/crack-lang/crack
https://developers.google.com/v8/blog-posts
https://developers.google.com/v8/design
https://developers.google.com/v8/design
https://developers.google.com/v8/intro
https://developers.google.com/v8/intro
https://developers.google.com/v8/videos
https://github.com/jjensen/luaplus51-all
https://github.com/jjensen/luaplus51-all
http://blog.llvm.org/2013/07/using-mcjit-with-kaleidoscope-tutorial.html
http://blog.llvm.org/2013/07/using-mcjit-with-kaleidoscope-tutorial.html


BIBLIOGRAPHY

[66] LEVINE, J. Flex & Bison: Text Processing Tools. " O'Reilly Media, Inc.", 2009.

[67] MAN, K.-H. A no-frills introduction to Lua 5 VM instructions.

[68] NAROFF, S. Clang intro. Apple:[sn]. 2009, s. 41.

[69] OUSTERHOUT, J. K. Tcl: An embeddable command language. Citeseer, 1989.

[70] OUSTERHOUT, J. K. Scripting: Higher level programming for the 21st century. Com-
puter. 1998, 31, 3, s. 23�30.

[71] PALL, M. The luajit project [online]. 2008. Available from: <http://luajit.org>.

[72] PARISI, T. WebGL: up and running. O'Reilly Media, Inc., 2012.

[73] PAYER, H. � MCILROY, R. Getting Garbage Collection for Free [online].
2015. [cit. 7. 8. 2015]. Available from: <http://v8project.blogspot.cz/2015/08/
getting-garbage-collection-for-free.html>.

[74] SIPSER, M. Introduction to the Theory of Computation. Cengage Learning, 2012.

[75] SOFTWARE, R. Luabind [online]. 2005. Available from: <http://www.rasterbar.
com/products/luabind.html>.

[76] STANDARD, E. 262: ECMAScript Language Speci�cation, June 2015. 2015. Available
from: <http://www.ecma-international.org/publications/standards/Ecma-262.
htm>.

[77] TANTER, É. Beyond static and dynamic scope. In ACM Sigplan Notices, 44, s. 3�14.
ACM, 2009.

[78] TILKOV, S. � VINOSKI, S. Node. js: Using JavaScript to build high-performance
network programs. IEEE Internet Computing. 2010, , 6, s. 80�83.

[79] WIKIPEDIA. List of ECMAScript engines, 2015. Available from: <https:
//en.wikipedia.org/wiki/List_of_ECMAScript_engines>. [Online; accessed 22-
December-2015].

[80] WILLIS, I. Method of compiling bytecode to native code, May 22 2007. US Patent
7,222,336.

[81] WINKLE, L. V. Game Scripting Languages [online]. 2009.
[cit. 3. 9. 2014]. Available from: <http://blogs.unity3d.com/2014/09/03/
documentation-unity-scripting-languages-and-you/>.

[82] ZHUKOV, S. Mono unmanaged calls performance [online]. 2014.
[cit. 29. 4. 2014]. Available from: <http://forcedtoadmin.blogspot.cz/2014/
04/mono-unmanaged-calls-performance.html>.

[83] ZURAS, D. et al. Ieee standard for �oating-point arithmetic. IEEE Std 754-2008. 2008,
s. 1�70.

57

http://luajit. org
http://v8project.blogspot.cz/2015/08/getting-garbage-collection-for-free.html
http://v8project.blogspot.cz/2015/08/getting-garbage-collection-for-free.html
http://www.rasterbar.com/products/luabind.html
http://www.rasterbar.com/products/luabind.html
http://www. ecma-international. org/publications/standards/Ecma-262. htm
http://www. ecma-international. org/publications/standards/Ecma-262. htm
https://en.wikipedia.org/wiki/List_of_ECMAScript_engines
https://en.wikipedia.org/wiki/List_of_ECMAScript_engines
http://blogs.unity3d.com/2014/09/03/documentation-unity-scripting-languages-and-you/
http://blogs.unity3d.com/2014/09/03/documentation-unity-scripting-languages-and-you/
http://forcedtoadmin.blogspot.cz/2014/04/mono-unmanaged-calls-performance.html
http://forcedtoadmin.blogspot.cz/2014/04/mono-unmanaged-calls-performance.html


BIBLIOGRAPHY

58



Appendix A

Abbreviation list

GUI Graphical user interface

API Application Programming Interface

LLVM Low Level Virtual Machine

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

GPU Graphics processing unit

CPU Central processing unit

DOM Document Object Model

JIT Just-in-time

UX User experience

GC Garbage collection

VM Virtual machine

SSA Static single assignment

HIR High-level intermediate representation

LIR Low-level intermediate representation

CLR Common Language Runtime

CLI Common Language Interface

CIL Common Intermediate Language

PIC Position independent code

AoT Ahead-of-time compilation
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OS Operating system

ABI Application binary interface

AST Abstract Syntax tree

IR Intermediate representation

MSVC Microsoft Visual C++
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Appendix B

Contents of attached CD

• /textSources - Latex source �les of the thesis

• smrcepet_2016master.pdf - PDF version of the thesis

• /codeSources - all program source �les

� /nativeScript - source �les of our custom language NativeScript

� /scriptSpeed - source �les of our testing application

� README.txt - installation and user manual

� runTests.sh - script for execution of all tests (Linux)

� runTests.bat - script for execution of all tests (Windows)

� OutputProcessor.class - utility for generating statistics from test results

• README.txt - description of contents of the CD

61



APPENDIX B. CONTENTS OF ATTACHED CD

62



Appendix C

Installation and user guide

The installation mainly consist of getting all the dependencies. Once the dependencies are
installed, cmake can be used to create make�le (Linux) or MSVC project (Windows).

C.1 Dependencies

We present guide to getting the dependency binaries for Ubuntu 14.04 and Windows 7. If
the binaries aren't available, we present compilation guide to create them manually.

When building for Windows, download 32bit version of the libraries, since Mono isn't
easily available on Windows in 64bit version.

Versions of the libraries used in this work are speci�ed in chapter 5. You can try to
use newer versions, but we cannot guarantee compatibility. This guide describes getting the
same versions we used.

We would like to note, that the dependency installation guide might not work if e.g.
some of the binaries or underlying guides change. It should be taken only as an convenient
help in getting the dependencies, since we cannot ensure its correctness.

C.1.1 Flex and Bison

On Ubuntu (and most other Linux versions), these libraries are available trough the package
system:

apt-get install flex bison

OnWindows, binaries are available on sourcefoge: <http://sourceforge.net/projects/
winflexbison/>. Add the path to the binaries to system variable PATH.

C.1.2 LLVM

Binaries for Windows and some other platforms are available on the llvm download site:
<http://llvm.org/releases/download.html>. Download binaries for clang version 3.7.0
and install them. LLVM libraries are included.
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On Ubuntu LLVM libraries are available trough packages, although it might be necessary
to set LLVM repository �rst:

wget -O - http://llvm.org/apt/llvm-snapshot.gpg.key|sudo apt-key add -

apt-get install libllvm3.7 llvm-3.7-dev

C.1.3 V8

V8 libraries are available trough Ubuntu package system:

apt-get install libv8 libv8-dev

On Windows, it must be built from source. The guide is available here <https://
github.com/v8/v8/wiki/Using%20Git>. We present the necessary steps here:

• First get depot_tools using this guide: <http://dev.chromium.org/developers/
how-tos/install-depot-tools>

Cygwin isn't mandatory, but can be used if it is convenient for you.

• Now start cmd.exe and run depot_tools to make sure it's up to date:

gclient

• Make sure you are in a directory you selected for building V8. Get V8 and go into its
directory:

fetch v8

cd v8

• Generate MSVC project using GYP. O�cial guide is here: <https://github.com/v8/
v8/wiki/Building%20with%20Gyp#visual-studio>. You need python for this step.
Just run:

python build\gyp_v8

• To build just V8 libraries (nothing more is required for this work), go to folder tools/gyp
and open v8.sln.

• Select Release con�guration and build the solution.

C.1.4 Mono

On Linux, add package repository following the o�cial guide: <http://www.mono-project.
com/docs/getting-started/install/linux/>. Install the complete version using:

apt-get install mono-complete

OnWindows, download and install the 32bit version: <http://www.mono-project.com/
download/#download-win>.
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C.1.5 Lua

On Linux, use package system:

apt-get install lua5.3

On Windows, libraries are available for download here: <http://sourceforge.net/
projects/luabinaries/files/5.3/Windows%20Libraries/>. Select static and download
version lua-5.3_Win32_vc10_lib.zip.

C.1.6 SDL

On Linux, SDL is available trough packaging system:

apt-get install libsdl2-dev

On Windows, binaries can be downloaded from SDL web: <https://www.libsdl.org/
download-2.0.php>. Get 32bit version.

C.2 Compilation

After all dependencies have been acquired, NativeScript and the testing application can
be built using CMake. CMake can be obtained from its website <https://cmake.org/
download/> or using package system:

apt-get install cmake

First create build directory outside of the sources. In-source builds are prohibited. Then
the steps di�er based on the platform:

C.2.1 Linux

• Go into the build directory.

• Run command

cmake <path_to_scriptSpeed> -DV8_DIR=<path_to_v8>

CMake will try to �nd the other dependencies, however, some paths might need to be
speci�ed. Run the command to see which variables need to be set for your case.

• After successfully generating make�le, build everything using command

make

• Copy directory scripts from the source directory to the directory with the executables
you just built. It contains script source codes that are tested.
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C.2.2 Windows

• Run CMake gui executable.

• Set paths to project source directory and your build directory (has to be di�erent). Set
generator to Visual Studio 12 2013 (you can try di�erent version, however we tested
only this option). Again, paths to dependencies that weren't found have to be speci�ed
manually. Run con�guration to see what paths are missing and how to specify them.

• Con�gure the build and then Generate the MSVC solution.

• Open the MSVC solution, select MinSizeRel con�guration and build the solution.

• Copy directory scripts from the source directory to the directory with the executables
you just built. It contains script source codes that are tested.

• If not on your PATH, copy dll �les v8.dll, mono-2.0.dll, SDL2.dll to the directory with
the executables you just built (its name should be MinSizeRel).

C.2.3 Running the tests

To run the testing application simply run scrSpeed executable with appropriate arguments.
You can try e.g.:

./scrSpeed lua expression

Result should be a number showing the measured time.

To execute all test scenarios, copy script runTests from the source directory to the direc-
tory with scrSpeed executable and run it. It might take around half an hour to execute all
the tests, it depends on your proccessing power. Results will be written into �le output.csv.

To generate statistics from the results, you can use �le OutputProcessor.class. You need
Java runtime version 1.6 or later to run it. Assuming you are in the same folder as the �le,
run it using command

java OutputProcessor <results_file_name>

File processed-<original-�lename> will be produced. First column represents mean, sec-
ond standard deviation and third the test case name.

C.3 User guide

This section contains user guide to the testing application. We describe its possible run
arguments and con�gurations.

C.3.1 Con�gurations

By default the application measures wall time and prints the result in a way appropriate for
the runTests script. You can change these settings in �le settings.h in directory scriptSpeed.
Recompilation of the application is necessary for the changes to take e�ect.
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C.3.2 Arguments

First argument of the testing application is always target language. Run the application
without any arguments to see the options.

For each language, several scenarios are implemented. Run the application olny with the
language argument to see which scenarios are available for given language. Scenario name is
passed as the second argument.

Other arguments depend on the selected scenario:

• expression Third argument represents number of arguments passed in the script in-
vocation. Possible values are from 2 to 6, default is 2. As a fourth argument string opt
can be passed to specify optimized version of invocation should be used. Otherwise,
naive approach is used.

• callback Third argument represents number of parameters passed with the callback.
Default is 0. Fourth argument can be used to specify the number of callbacks invoked.

• pointSimul Third argument represents speci�c con�guration of the point simulation
scenario. To see available con�gurations for given language, run the application without
specifying the third argument. Fourth argument can make the application to visualize
the testing scenario rather than measure it. You can select values show to see the point
movements that are tested, or interactive to make the leading point follow mouse. Fifth
argument can specify custom frame count and sixth custom point count.

There are several additional experimental con�gurations implemented, however they were
not included into this work. We selected scenarios and con�gurations that we believed to
be the best (and su�cient) for gathering the results. So e.g. in Lua or JavaScript, point
simulation scenario has con�guration with program �ow control within the script. It is
called loopControl. However, since these con�gurations weren't added to this work, they
weren't pro�led and cleaned as much as the other scenarios. They may however serve as an
inspiration or a basis for extending this work.
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Appendix D

LLVM bug workaround

We believe we discovered a bug in LLVM. It happens during function call of PHINode:Create
within which overriden operator new is called. Inside the new operator implementation, �elds
of the not yet created class are set, speci�cally value of �eld HasHungO�Uses is set to true.
However, during constructor call, this memory can be erased - C speci�cation states the
memory is unde�ned. On Windows using MSVC build, we encountered cases when during
constructor call all �elds have been set to 0, thus resetting the �eld value to false. We believe
this implementation style to be a bad practise that doesn't guarantee corect behavior.

As a workaround we added one statement to include �le llvm/IR/Instructions.h to line
2327:

this->HasHungOffUses = true;

This addition is the �rst line of method allocHungo�Uses(unsigned N) so it basically
makes sure that before any allocation the �eld is set correctly. This is by no means a robust
bug�x. It is simply a fast solution that made this part of LLVM operational in our case. If
you encounter issues during generation of IR, this solution might help you as well.
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