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Abstract

This diploma thesis focuses on several problems related to micromanipulation based on
dielectrophoresis (DEP). First, a new real-time position estimation method for microparticles
was designed, implemented and tested in experiments. The method is based on twin-beams
illumination and lensless digital holography. As such, it only needs a very simple, cheap and
compact hardware. Second, in order to pursue a model-based control design strategy for po-
sitioning the microparticles, a simple yet accurate mathematical model relating the voltages
applied to the microelectrodes with the generated DEP force is needed. In this thesis, such a
model is derived within the framework of Green’s functions. Third, the computational prob-
lem of determining the voltages to be applied to the microelectrodes in order to establish the
required DEP force is analyzed and several algorithms solving the problem are introduced.
These invoke some linear-algebraic concepts from the numerical range (or field of values) of
a complex matrix and semidefinite programing.

Abstrakt

Tato diplomová práce se zabývá několika tématy souvisejícími s mikromanipulací pomocí
dielektroforézy (DEP). V práci je nejprve popsána nově vyvinutá metoda pro odhadování
polohy mikročástic v reálném čase. Metoda byla i implementována a otestována v labora-
torních experimentech. Je založena na dvou-paprskovém osvětlení a bezčočkové digitální
holografii a jako taková poťrebuje ke své funkci jen velmi jednoduchý, levný a kompaktní
hardware. Dále, jelikož pro účely na modelu založeného řízení polohy mikročástic je nutné
mít k dispozici jednoduchý ale dostatečně přesný model svazující napětí na mikroelektrodách s
vygenerovanou DEP sílou, v předložené práci je takový model odvozen pomocí aparátu Green-
ových funkcí. V poslední části se práce zabývá problémem určení napětí na mikroelektrodách
tak, aby vytvořená DEP síla splňovala požadavky vyšších úrovní řídicího systému. V práci je
zdokumentována analýza tohoto problému a několik nových metod jeho řešení. Tyto využívají
výsledků pro tzv. numerický obor matice a semidefinitní programování.
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Notation Description
R The set of real numbers.
C The set of complex numbers.
Fn×m A n×m matrix with entries from F ∈ {R,C}.
H (n) The set of all Hermitian n× n matrices.
Aᵀ Transposition of a matrix A.
A∗ Hermitian (conjugate) transposition of a matrix A.
tr(A) Trace of a matrix A.
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2(A−A∗).
λ1(A)≥ · · · ≥ λn(A) Eigenvalues of a matrix A ∈H (n).
Ek(A) The eigenspace associated with the eigenvalue λk(A).
Re(z) Real part of a complex number z.
Im(z) Imaginary part of a complex number z.
Arg(z) Principal argument of a complex number z.
‖x‖2 Euclidean norm of a vector x ∈ Rn.
‖x‖∞ Infinity norm of a vector x ∈ Rn.
∂M Boundary of a compact set M ⊂ Rm.
∂ Bm−1 The unit hypersphere in Rm.
co(M) Convex hull of a compact set M ⊂ Rm.
S(η, b) A hyperplane defined by S(η, b) = {x ∈ Rm |ηᵀx= b}.
s(η) The support function of a compact set M defined

by s(η) =maxx∈Mη
ᵀx.
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Chapter 1

Introduction

T his thesis deals with three topics related to micromanipulation by dielectrophoresis (DEP):
position estimation, mathematical modeling, and control. DEP is a physical phenom-

enon enabling us to develop a (dielectrophoretic) force on polarizable particles by shaping
the surrounding electric field. The electric field is usually created and shaped by application
of varying potentials on electrodes nearby the microparticles. As DEP is able to manipulate
microparticles without any contact, it is especially well suited for contact-less manipulation in
biology or medicine. List of several applications can be, for instance, found in [1, 2], and one
is also sketched in Fig. 1.1.

Topics of this thesis are motivated by real problems. The work presented here was under-
taken in the research group Advanced Algorithms for Control and Communications (AA4CC),
Department of Control Engineering, Faculty of Electrical Engineering at Czech Technical Uni-
versity in Prague. Even though the author’s colleagues in AA4CC already have a fully functional
prototype using DEP for simultaneous micromanipulation of several microparticles, there is
still a room for improvements. Specifically, the currently used position estimation method for
microparticles is able to measure the position only in two dimensions, while the microparticles
can move in three dimensions. The currently used model of DEP force cannot be evaluated in
real-time and thus the data have to be precalculated and stored in a huge look-up table. Fi-
nally, the currently used control algorithm involves a non-convex optimization problem which
is solved by a general heuristic without exploitation of the structure of the problem. We will
address all these problems in this thesis.

In the following sections, we will discuss in detail the motivation for individual topics of
this thesis.

Electrodes

Microparticles

Pool

100 µm
100 µm

Figure 1.1: A sketch of micromanipulation by DEP. The microparticles are dispersed in a pool with
deionized water. The electric field around the microparticles is shaped by application of varying
potentials on the parallel electrodes bellow the microparticles.
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Chapter 1. Introduction

1.1 Position estimation

The currently used position estimation method in the group AA4CC is based on processing
of images from a microscope. The images capture the microparticles and the electrode array
from the top and as such they allow us to estimate the position only in 2D; they do not allow
us to estimate the levitation height of the microparticles. But the levitation height is crucial
for the control, because if the levitation height is not known, it is not possible to precisely
determine the DEP force acting upon the microparticles. Furthermore, if the microparticles
are too low, they tend to stick to the bottom. Therefore, there is a need for a new method
estimating the position in 3D.

We have basically only two requirements on the new method. The method has to provide
accurate enough estimates and it has to be fast enough for real-time use. The manipulation
area for the microparticles is in our case typically a cuboid with base 1500× 1500 µm (given
by the size of the electrode array) and height 200 µm (approximately the maximum levitation
height in our hardware setup for 50 µm microparticles, which we typically use). From the
manipulation area and the size of the microparticles, reasonable requirements on the sought
method can be deduced. The method has to estimate the position with accuracy at least 10 µm
in all three dimensions. Worse accuracy would not be of much use for the control system.
Regarding the speed, to achieve a reasonable control period, the process of estimation should
not take more than several tens of microseconds.

This thesis deals mostly with methods based on digital holography in the lensless configu-
ration: the image sensor is used without any optical lenses. Such hardware configuration has
several advantages. Due to the simplicity of the hardware setup, this solution is very cheap,
simple and compact. Furthermore, compared for instance to Confocal microscopy, which is also
used for 3D position estimation, methods based on digital holography allows us to estimate
the position of microparticles moving in a rather large space. Besides, digital holography has
a great potential for real-time estimation because it encodes 3D position in 2D image—that
means less data to process.

Despite the immense progress in position estimation of microparticles in recent years (en-
abled mostly by rapid development of image sensors and processing power), majority of the
methods are computationally demanding and thus not applicable for real-time use. That is
not a problem if one needs to only analyze trajectories of microparticles. Nonetheless, it is a
crucial issue when the estimated position is used—as it is in our case—for control. Therefore,
in this thesis we will review the currently available off-line methods, pick the most appropriate
one and modify it for real-time use.

1.2 Mathematical model of DEP force

In order to control the position of the microparticles, one needs a mathematical model
relating the set potentials on the electrodes with the developed DEP forces acting upon the mi-
croparticles. Only then the control system can compute potentials that, when applied, generate
such forces, that the microparticles move towards the desired positions. The exact model—for
a dipole approximation of the microparticle—is known from the first principles, but unfor-
tunately, it involves a boundary value problem with Laplace equation. Laplace equation is a
partial differential equation (PDE) and those are usually not easy to solve analytically. Our case

2



1.3 Control algorithm

is no exception and thus also the exact analytical model relating the set potentials with the
DEP force remains unknown. Currently, the boundary value problem is solved numerically and
the data needed for calculation of DEP force are stored in a huge look-up table. Every time
one needs to determine the DEP force acting upon a microparticle, the look-up table has to
be searched according to the position of the microparticle. In this thesis, we will approximate
the boundary value problem in the exact model to a mathematically more tractable form that
allows us to find the analytical solution by the framework of Green’s functions.

1.3 Control algorithm

The currently used control algorithm takes the difference of the reference and desired
position and based on this difference it calculates the force that has to be developed upon the
microparticle in order to move it towards the desired position. Then, based on the model of the
DEP force, the potentials that need to be set on the electrodes are determined. But the model
relates the set potentials to the generated DEP force, not the other way around. Therefore,
one actually needs an inverse of the model—relation from DEP force to the set potentials—but
the inverse is not known. Thus, the problem of finding the potentials for a given DEP force
is formulated as an optimization problem, which, unfortunately, turns out to be non-convex.
The optimization problem is being solved by a general heuristic for non-convex problems; it
is being solved by simulated annealing which does not utilize the structure of the problem
in any way and it also does not provide any guaranties about the solution it finds. In this
thesis, we will try to take a more insightful approach. We will analyze the inverse problem
and propose several algorithms which make use of the structure of the problem and provide
some guaranties about the solution.

1.4 Structure of the thesis

According to the topics, the thesis is divided into three parts: position estimation, modeling
and control. The first part begins with Chapter 2, which is devoted to a brief introduction to
the principles of digital holography. In Chapter 3, we review methods for position estimation
of microparticles in 3D. In Chapter 4, the last one in the first part, we propose and evaluate our
novel method for real-time position estimation of microparticles in 3D. The second part begins
with Chapter 5 introducing the model of the dynamics of microparticles in fluid and the model
of the DEP force. In Chapter 6, we discuss modifications of the exact model of DEP force and
solution of the modified model by Green’s functions. The last part is introduced by Chapter 7
designated to a description of the used control algorithm and to an analysis of the inverse
problem. The inverse problem is then separately treated for 2D case in Chapter 8 and for
higher dimensional case in Chapter 9. Of course, the thesis ends with a chapter summarizing
the achieved results, Chapter 10.

3





Part I

Position estimation
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Chapter 2

Digital holography

A nice and comprehensive introduction to digital holography is given in [3]. Since there
is no need to duplicate their work, in this chapter, digital holography is introduced only

briefly for the readers who have never heard about it. Furthermore, we will emphasize certain
aspects of digital holography that will be important in the remainder of this thesis.

In its original meaning, holography is a process of recording light fields for the purpose
of visual reconstruction of 3D objects. Basically, an object is illuminated by a coherent light
source and the reflected light field is recorded by a film, which turns into a so called hologram.
Subsequent illumination of the film (hologram) reconstructs the captured light field so that
the previously illuminated object appears behind the film. It is not very usual to put links to
YouTube videos in written texts, but we make an exception because that is what Introduction
to Holography shot by Encyclopaedia Britannica in 1972 absolutely deserves. So here is the
link: http://y2u.be/tjWznlGst9M. The film explains all the basic concepts of holography.
The process was originally purely mechanical. Digital holography simplifies the process of
recording and reconstructing the light fields, because the recording is done by an image sensor
and the reconstruction is carried out computationally by a computer.

Let us have a look on the underlying physics. When the light falls on an object, several
phenomenons can occur. If the object is opaque, the light can be only reflected, absorbed, or
diffracted. If the illuminated object is small—as the microparticles in our case are—the shadow
behind it does not look as we would expect based on our experience from the macro-world.
Due to the diffraction of light, the shadow—or as the right terminology dictates, diffraction
pattern—is not sharply bounded, it consists of bright and dark regions. If the object is translu-
cent, the light also passes through the object. Consequently, the shadow of the object is given
by superposition of the diffraction pattern and the scattered light that passed through the ob-
ject. The composed shadow is called interference pattern and it encodes the position and the
shape of the object it is formed by.

It is necessarily to note, that even though an interference pattern from an object truly
encodes full information about the position and the shape of the object, the image sensor
captures only part of the information. The interference pattern is nothing but a monochromatic
electromagnetic wave. Provided the wave vector is known, a monochromatic electromagnetic
wave is characterized at every point by its amplitude and phase. But the only measurable
quantity by the image sensor is intensity. Therefore, part of the information is missing and
that makes the position estimation from interference patterns more difficult.

7
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Chapter 2. Digital holography

2.1 Hardware arrangements and illumination sources

Because digital holography plays an important role in our method introduced in Chapter 4,
we will spend some time commenting one particular hardware arrangement and possible illu-
mination sources.

There are more hardware configurations used in digital holography, but in this thesis, we
will present and use only the simplest one: in-line digital holography. This hardware setup in
the lensless variant is depicted in Fig. 2.1. It consists only of a source of light illuminating the
objects and an image sensor capturing the light going through and around the objects. We
chose this particular setup for its simplicity; it does not need any lenses, mirrors or some other
expensive optical equipment.

In digital holography, objects are illuminated by a source of coherent or partially coherent
light. By coherence, we mean both temporal and spatial coherence. The coherence of light
source determines the quality of the produced interference patterns (also called fringe visibil-
ity); the more coherent the light is the more visible the interference patterns are. The typical
light source is a laser because it produces nearly perfectly coherent light. Another widely used
light source is a light-emitting diode (LED). LEDs usually produce light in a very narrow band
of frequencies hence the light is partially temporally coherent. The spatial coherence can be
to some extent attained by filtering the light through a small aperture (tens or hundreds of
micrometers in diameter). Smaller diameter results in more spatially coherent light. An ad-
vantage of partially coherent illumination is that it removes speckle noise [4]—interference
patterns caused by very small objects. A disadvantage is that very small apertures are very
impractical to use because usually only a very small part of the emitted light passes through
the aperture. Therefore, smaller apertures provide more coherent light, but they require high
power LEDs. Nevertheless, as Mudanyali et al. [5] has shown, it is possible to use even large
apertures without significant loss of spatial coherence.

LEDs as partially coherent light sources have one crucial disadvantage that has to be taken
into account. As the emitted light is filtered by a small aperture, the aperture, according to
Huygens’s principle, becomes approximately a source of spherical waves. Spherical waves
have one undesired property; if an object is illuminated by spherical waves then its shadow
on the image sensor is magnified. The magnification depends on the distance of the image
sensor to the object and on the distance of the light source (the aperture) to the object. The
magnification is reduced when one puts the image sensor closer to the object and the light
source further away from the object.

Image sensor

Coherent light

Figure 2.1: An illustration of lensless in-line digital holography.
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2.2 Position estimation based on interference patterns

2.2 Position estimation based on interference patterns

If an interference pattern encodes the position of the object it is formed by, is it possible
to use it for position estimation? Is it possible to decode the position from the interference
pattern? It is and we will discuss several approaches how to do it in the following chapter. But
here, we would like to show you how the interference patterns look like in our case. Fig. 2.2
shows interference patterns from a 50 µm polystyrene spherical microparticle placed at differ-
ent axial displacements (levitation height) from the image sensor. Clearly, if the axial distance
of the microparticle is increased only by 100 µm, the interference pattern varies only slightly.
That makes the position estimation—or more specifically, estimation of the axial distance—
very difficult. That is despite the fact that the interference patterns were captured in almost
ideal conditions; they were illuminated by a laser and captured in very high resolution.

2.3 Back-propagation

Among other things, digital holography is also used because it enables us to see micro-
objects only by use of an image sensor [6, 7, 5, 8]—without a microscope and without any
lenses at all, actually. The field dealing with the use of digital holography for the purpose
of visualization of micro-objects is called digital holographic microscopy (DHM). Nevertheless,
as we already know, in digital-holography the micro-objects are not clearly visible in the im-
ages from the image sensor; the images capture interference patterns from the micro-objects.
But as it was stated in the previous part of this section, the interference patterns have en-
coded information about the position and shape of the micro-objects in themselves. So the
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Figure 2.2: Interference patterns and their radial intensity profiles from a spherical microparticle
with diameter 50 µm located at different axial distances from the image sensor. The base axial
distance h0 is approximately 1500 µm. The microparticle was illuminated by a red laser with
collimator and the interference patterns were captured by an image sensor with 1.4 µm pixels.
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Chapter 2. Digital holography

Image sensor board

Coherent light

Figure 2.3: Transformation of a captured image I(x im, yim) with an interference pattern from
a microparticle to the image Iz(x im, yim) representing back-propagation of the original image to
the axial distance z at which the microparticle is located.

crucial topic in DHM is how to transform the images containing interference patterns from
some objects to images displaying the objects. This transformation is called back-propagation
because it actually simulates back propagation of the captured light field. The principle of the
back-propagation is illustrated in Fig. 2.3.

An example of back-propagation is shown in Fig. 2.4. Fig. 2.4a displays an image with some
interference patterns, but it is difficult to say by what objects they are formed by. Fig. 2.4b
displays back-propagation of the image to the axial distance where the objects are located.
Now, the situation is different. The objects are clearly visible in the back-propagated image.

The reason why it is possible to back-propagate the captured interference patterns is clar-
ified in Appendix A.1.

2.3.1 Implementation

The back-propagation is carried by calculation of Rayleigh-Sommerfeld diffraction inte-
gral [9]. This is usually numerically done by the following relation

Iz(x im, yim) =F−1
�

H−z( fx , f y)F {I(x im, yim)}
	

, (2.1)

where (x im, yim) are the image coordinates, ( fx , f y) are the spatial frequencies, I is the original
image, Iz is the image back-propagated to a distance z, F and F−1 are Fourier and inverse
Fourier transformations, respectively, and
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is Fourier transform of Rayleigh-Sommerfeld propagator, where λ is the wave length of the
illumination and n is refractive index of the surrounding medium.
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2.3 Back-propagation

(a) Original (b) Back-propagated

Figure 2.4: Back-propagation in work: (a) shows an interference pattern from a microparticle
and a piece of dust, (b) shows a back-propagation of the image.

2.3.2 Issues

There are two problems with the back-propagation algorithm that was described here.
As mentioned, the image sensor does not capture complete information about the light field,
it captures only its intensity. That can be partially solved by estimation of the unrecorded
phase [5]. We do not address the estimation here because the lack of information about the
phase causes only visual artifacts in the back-propagated images, and in the proposed method,
we will use back-propagation only for purposes where visual artifacts does not cause any trou-
bles.

The second problem is that the medium between the image sensor and the microparticles is
not—as you will see in Chapter 4—homogeneous while the back-propagation assumes that it
is homogeneous. But that does not have to trouble us because the medium is characterized by
its refractive index and refractive index only influences the speed at which the complex wave
field propagates through the medium. Therefore, if the complex wave field propagates through
more than just one medium and we use only one refractive index in the back-propagation
algorithm then the back-propagated complex wave field to axial distance z1 do no match to
the actual complex wave field at z1, but it matches to complex wave field at some near axial
distance. With wrong refractive index, the back-propagation distances only shift with respect
to the real ones. Since the back-propagation distance does not play any role in the proposed
method, this imperfection is also not important.
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Chapter 3

Review of methods

I n this chapter we review some of the methods for position estimation of microparticles.
However, we do not intend to cover all the principles because that was recently done by

Yu at al. [10]. The main purpose of this chapter is to evaluate applicability of selected methods
from the perspective of their possible use for real-time estimation.

The methods utilizing digital holography are here divided into three groups. The first
group is based on the model of interference patterns given by Lorenz-Mie solution to Maxwell’s
equations. The second group exploits back-propagation of the interference patterns and the
last group covers methods that estimate 3D position by making use of several light sources.
In addition to methods based on digital holography, methods utilizing two-camera setup are
discussed in the end of this chapter.

3.1 Lorenz-Mie solution

Lorenz-Mie solution to Maxwell’s equation describes how light (electromagnetic) plane
wave propagates through a homogeneous sphere [11, 12]. In other words, if we use the in-
line digital holography setup, the solution describes how the interference pattern captured by
an image sensor looks like when a spherical microparticle (of certain parameters like diameter,
refractive index, ...) located at a certain axial distance is illuminated.

All methods localize the centers of the interference patterns at first. This way, the lateral
position of the microparticles is estimated. Only the way how the axial distance is estimated
differs.

Guerrero-Viramontes et al. [13] proposed one of the most simple methods based on the
Lorenz-Mie solution. To estimate the axial position, the diameter of the first minimum in
the radial intensity of the interference pattern is measured (see Fig. 3.1). The diameter is
then searched in a look-up table that contains simulated diameters by Lorenz-Mie solution
for microparticles located at various axial distances. Once the best matching entry is found,
the corresponding axial distance is used as the estimate. The method is very simple and it
definitely could be used in real-time. Nevertheless, as we showed in the previous chapter,
the interference patterns vary only slightly in our case and thus the method would be very
inaccurate.

Other methods [14, 15] estimate axial distance of the microparticles by fitting the Lorenz-
Mie solution to the captured interference patterns. Since one of the parameters of the Lorenz-
Mie solution is the axial distance, the solution that fits the best yields an estimate of the axial
distance. The trouble is that the Lorenz-Mie solution is a rather complex model hence very
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Chapter 3. Review of methods

Figure 3.1: Diameter of the first minimum in radial intensity of an interference pattern for a
spherical microparticle (reprinted from [13]).

computationally demanding to fit. And even if you manage to carry out the fitting in real-time,
you still need to have the interference patterns in very high resolution to estimate the axial
distance accurately. But high resolution means that you either have to magnify the interference
patterns by an objective—remember, we excluded that option and want to use lensless setup—
or you have to use an image sensor with very small pixels. With the pixel size, you would hit
very quickly the limits of current image sensors. For instance, we use an image sensor with
3.75 µm pixels and you can get down to 1 µm with common image sensors, but no more.
Furthermore, with smaller pixels you have to process more data or reduce the area where you
want to estimate the position. In summary, these methods are not particulary well-suited for
real-time use.

Park et al. [16] described a method where the interference patterns are at first numeri-
cally calculated for various axial distances. The captured interference pattern is then cross-
correlated with the simulated interference patterns and the axial distance corresponding to
the best match is taken as the estimate. This approach is very simple but it suffers from the
same problem as the methods in the previous paragraph; the interference patterns have to be
captured in high resolution.

To summarize, the methods based on the Lorenz-Mie solution are not suitable for our
application. It is relatively easy to estimate the lateral position from the interference patterns
but not so with the axial distance; it can be estimated very precisely by fitting Lorenz-Mie
solution to the captured interference patterns, but that is computationally very demanding
and requires high resolution interference patterns. Similarly, the axial distance can also be
estimated by pattern matching or by measuring of the first minimum in radial intensity of
the interference pattern, but then high resolution interference patterns have to be recorded
otherwise the estimate is inaccurate.

3.2 Back-propagation

As it was described in Section 2.3, back-propagation is a method used in DHM to numeri-
cally reconstruct a captured image with interference patterns from some objects to an in-focus
image where the objects have sharp contours and are clearly visible. There is an obvious way
how to use back-propagation to estimate the axial distance of a microparticle. An image with
an interference pattern from the microparticle can be successively back-propagated to increas-
ing axial distances. The back-propagation is carried out up to the distance where the micropar-
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3.2 Back-propagation

Figure 3.2: Deconvolution of volumetric reconstruction of an image containing interference pat-
terns from several microparticles with a PSF of the corresponding microparticle type (reprinted
from [22]).

ticle is in-focus. This distance can be used as the estimate of the axial distance [17, 18, 19].
Another way is to search the microparticles in a volumetric reconstruction. Volumetric

reconstruction is a stack of images back-propagated for equidistantly divided axial distances.
Dependent on the various aspects, the volumetric reconstruction is searched for microparticles
by different methods. For instance, one way is to simulate a volumetric reconstruction for
a single microparticle. This volumetric reconstruction is called point spread function (PSF).
The volumetric reconstruction for a captured image is then deconvolved with the PSF of the
microparticle. The deconvolution yields bright spots at places where the microparticles are
located (see Fig. 3.2). The volumetric reconstruction also can be searched for local extremes
in the intensity which indicate a presence of a microparticle [20, 21]. Fig. 3.3 shows results of
this method for an image with one microparticle and for an image with several microparticles.

Bouchal et al. [23] presented a method that can estimate position of microparticles in 3D
based on only one back-propagation of the captured image. The method proceeds as follows.
First, the captured image with interference patterns is back-propagated to a distance z0 close
to the expected axial distance of the microparticles. Then, the frequency spectrum of the
back-propagated image is filtered by a filter designed so that the PSF of the microparticles
changes from, roughly speaking, a cone-like PSF (see Fig. 3.3a or Fig. 3.2) to two spirals with
a desired longitudinal period. In such a reconstructed image, there are two bright spots at

(a) Single object (b) Multiple objects

Figure 3.3: Bright spots in volumetric reconstructions containing one and several microparticles
(reprinted from [20]).
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Figure 3.4: The top row shows interference patterns from a microparticle located at different
axial distances with the base axial distance h0=1700 µm. The bottom row shows results of the
processing of the interference patterns described in [23].

places where the microparticles are located. The angle of the line joining these two spots with
respect to the image coordinate system is proportional to the difference of the axial distance of
the microparticle and z0. Therefore, the axial distance of a microparticle is estimated based on
this angle and lateral position of the microparticle is estimated as the center point between the
two bright spots. Fig. 3.4 shows interference patterns from a 50 µm microparticle located at
different axial distances together with their numerical reconstructions we have just described.
Clearly, the two bright spots rotate as the axial distance of the microparticle changes hence
their angle can be used to estimate the axial distance of the microparticle. This method is rather
unique among other methods based on back-propagation because it needs to back-propagate
the captured image only once and thus the method has a great potential for real-time use.

Despite the fact that methods based on back-propagation are not as computationally de-
manding as methods based on fitting of Lorenz-Mie solution, they are still rather complicated
and they need to process a lot of data. Back-propagation of one image to one axial distance is
computationally relatively cheap, but these methods need to perform the back-propagation for
many distances. Furthermore, the precision of the methods is usually related to the number
of performed back-propagations. To summarize, with one exception, the methods based on
back-propagation are still too slow for real-time use.

3.3 Multi-angle illumination

In this section, we describe methods that use multiple light sources to estimate the axial
distance of microparticles. The light sources illuminate the microparticles under different
angles hence the interference patterns from one light source are shifted with reference to
the interference patterns from the other light sources. The shift of the shadows from one
microparticle and different light sources can be used to estimate the axial distance of the
microparticle. This principle is shown in Fig. 3.5.

Su et al. [24] presented a method where microparticles are successively illuminated by
individual light sources under different angles. For each light source, the image with interfer-
ence patterns is recorded by an image sensor and for each interference pattern in the image an
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3.4 Two-camera setup

Figure 3.5: Illustration of a multi-angle illumination hardware setup used for 3D position esti-
mation of micro-objects (reprinted from [24]).

imaginary ray connecting the center of the interference pattern and the light source is formed.
Ideally, imaginary rays connecting interference patterns from one microparticle should inter-
sect at one point indicating the position of the microparticle. Even though the method is very
simple and might seem to be also very quick, it is not. The bottleneck is that the images are
captured separately for each light source. That reduces the frame rate of the image sensor.

Su et al. further modified this method in [25]. They used only two light sources with
different wavelengths. One light source illuminates the microparticles from the top, the other
is tilted and illuminates the microparticles under an acute angle. The light sources illuminate
the microparticles simultaneously hence there are interference patterns in the captured images
from both of them and thus they have to be separated. This is done by back-propagation be-
cause objects are sharp in a back-propagated image only if the back-propagation is carried out
with the right parameters (axial distance, wavelength of the light source, refractive indexes,
...). First, a captured image is back-propagated with the wavelength of the straight illumina-
tion. The distance where an object becomes sharp is taken as a rough estimate of its axial
position and the position of the interference pattern in the image is taken as the estimate of
its lateral position. According to the rough estimate, approximate position of its interference
pattern in the oblique channel is calculated and then refined by localization of the nearest
interference pattern. Since we know positions of both interference patterns from one object,
we can simply calculate their lateral shift which is proportional to the axial distance. Again, in
order to estimate the axial distance, several back-propagation have to be carried out and this
take some time.

3.4 Two-camera setup

Very intuitive approach how to estimate position of objects in 3D is to use a two-camera
(microscope) setup [26]: one microscope for a top view and one for a side view. Lateral
position can be easily estimated from the top view and the axial position from the side view.
This method is very simple in principle but has several drawbacks. The major drawback is
the limited depth of dield (DOF) of the microscopes. DOF determines the range of distances
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at which the microparticles are in focus. Thus, DOF also restricts the space where we can
estimate the position. The top view enables us to estimate lateral position of microparticles in
a very wide range, but the microparticles have to be located in a very narrows range of axial
distances from the microscope and similarly for the side-view. Since we want to estimate both,
lateral and axial position, the combination of the top and side view results in a very restricted
space where the microparticle can be located. Furthermore, the hardware setup with two
microscopes is rather complicated and expansive.

3.5 Conclusion

Despite the fact that there are plenty of methods for 3D position estimation, we did not
find any method directly usable for real-time use in our case. All the methods described in the
preceding sections have some aspects that make them difficult to use in real-time. Neverthe-
less, there is one method that seems to be modifiable for real-time applications and that is the
method based on twin-beams illumination. Although it is rather computationally demanding
in the original version presented in [25] it is possible to make it more efficient and in result
faster. The following chapter is devoted to a description of such a modified method.

18



Chapter 4

Twin-beams method

T his section presents a novel method for real-time position estimation of microparticles
in 3D. To build at least a wisp intuition how the method works, the method is here

briefly presented. The method is based on a very basic principle; it is based on triangulation.
The principle is pictorially shown in Fig. 4.1. The microparticles are illuminated by two light
sources under different angles. The first one illuminates the particles directly from the top
and the second one is tilted. Because the particles are illuminated by two light sources under
different angles, there are two shadows on the image sensor under each particle. These two
shadows are laterally shifted with respect to each other and this lateral shift corresponds to
the axial position of the microparticle. In the simplest case, if we measure the lateral shift of
the shadows and assume that the light does not refract as it passes through different media,
we can form a right triangle where one leg is the lateral shift and the other one is the axial
distance. Provided we know the angle under which the second light source illuminates the
microparticles, the axial distance can be easily calculated from the triangle.

The rest of the chapter is organized as follows. Section 4.1 describes the hardware setup.
Section 4.2 briefly shows how the position estimation is carried out. In Section 4.3, we take
into account propagation of light through different media in the hardware setup and derive
the relation between the axial distance of a microparticle and the lateral shift of the shadows.
Section 4.4 describes how the lateral shift of the shadows is measured. Section 4.7 addresses
calibration of the method. In Section 4.8, we present some experimental results together with
an assessment of the accuracy of the method. Finally, we discuss possible improvements of the
proposed method in Section 4.9.

Image sensor board

Figure 4.1: A sketch of the basic principle of the twin-beams method for 3D position estimation
of microparticles.
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Chapter 4. Twin-beams method

4.1 Hardware description

Before we delve into a more detailed discussion of the method, we describe the hardware
setup. The hardware setup developed for the proposed method is depicted in Fig. 4.2. We
describe the image from the top to the bottom.

The microparticles are illuminated from the top by two plastic optical fibers with 500 µm
core. The fibers are butt-coupled to red and green LEDs. The colors are chosen so that they
match the sensitivity peaks of the image sensor hence each LED excites mostly one color chan-
nel of the image sensor with minimum leak to the other color channels. That allows very simple
separation of interference patterns from one light source and from the other light source. The
red and green LED have center wavelengths 625 nm and 525 nm, respectively. As can be seen
from Fig. 4.4b, the peaks in the sensitivity of red and green channels of the image sensor are
540 nm and 610 nm, respectively. The optical fibers serve two purposes. They simplify the
setup because the bulky and hot LEDs do not have to be mounted somewhere above the rest
of the setup; they can be placed somewhere else where it is more convenient to place them
and cool them. The second purpose is that an optical fiber functions as an optical aperture
hence it filters the emitted light from LED so that the outgoing light is partially coherent and
can produce interference patterns (for more on the topic see Chapter 2).

There is a pool made from polydimethylsiloxane (PDMS) under the optical fibers. Besides
other reasons, PDMS is chosen because it is transparent. Therefore, if the pool is fabricated
with some care one or more of its walls can be made transparent and hence it is possible
to use a camera to see the microparticles from side. The pool is filed with deionized water
where the microparticles are dispersed. The pool is covered by a cover glass because without
it the surface of the water would function as a lens and thus it would distort the captured
interference patterns on the image sensor.

The pool is placed on a foil with layer of indium tin oxide (ITO) wherein the electrode
array is etched. The drawing of the electrode array is shown in Fig. 4.3. Apart form the
electrodes, one can also see small rhombuses in the drawing. The rhombuses serve as marks
for identification of transformation from the image coordinate system to the electrode array
coordinate system. Such a transfomration is necessary for the control purposes where the
electrodes are used for the manipulation of the microparticles. This topic will be discussed
later on in Section 4.5. To prevent bending of the foil, the foil is placed on a microscope slide
and the slide is placed above the image sensor by spacers made from PDMS.

Cover glass
PDMS pool 2×1.5×1.5 mm

PDMS spacer

Red LED
(625 nm)

Green LED
(525 nm)

Electrode array

Side view
camera

ALU heat sink

Peltier cooler

Microscope slide

6 cm

2 mm

1.5 mm

Image sensor
(See3CAM 10CUG, 3.75 µm/px)

Figure 4.2: A side view on the hardware setup used throughout this thesis.
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Figure 4.3: A drawing of the electrode array used in the hardware setup.

The used image sensor is See3CAM_10CUG camera from e-Con System (see Fig. 4.4a).
The camera is based on a complementary metal–oxide–semiconductor (CMOS) chip with the
maximum resolution 1280x960 pixels of size 3.75 µm. The camera communicates with a
computer via USB 3.0 with maximum frame rate for the full resolution 45 frames per second.
The CMOS chip does not capture color images directly; instead, it uses a so called Bayer filter
which is a color filter array placed on the pixel array. The color filter array filters the incident
light so that some pixels are sensitive mostly to red light, some mostly to green light, and
some mostly to blue light. The sensitivity functions are shown in Fig. 4.4b. The color filter is
organized in a grid composed of 2× 2 squares with green filters at the main diagonal and red
and blue filters at the remaining corners. The intensity values of the pixels sensitive to green
light are used as intensity values for the green channel. Analogously, the values of pixels
sensitive to red and blue light are used as values for the red and blue channels. This way,
however, only a small part of the pixels in the color channels have assigned an intensity value.
Values of the remaining pixels are usually obtained by an interpolation.

The image sensors heats up during operation and the heat transfers to the pool where it
causes undesired fluid currents. To overcome this problem, the image sensor is cooled by a
peltier cooler. The cooling side of the peltier cooler is coupled by thermal conductive paste to
the image sensor board and the hot side is coupled to a custom-made aluminum heatsink.

The remaining undescribed component of the hardware setup is the side-view camera. The
side-view camera provides a view on the microparticles from side hence it allows us to directly

(a) Photo (b) Sensitivy characteristics

Figure 4.4: Image sensor See3CAM_10CUG used in the hardware setup.
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estimate the levitation height of the microparticles. As it is discussed in Section 3.4, side-view
cameras are not particularly suitable for 3D position estimation in larger volumes, but here we
use the camera only for the purposes of calibration and evaluation of accuracy of the proposed
method; the limitied DOF does not cause us any troubles here.

4.2 Method description

Algorithm 1 briefly describes how the proposed method proceeds. The comments in the
algorithm provide references to the sections or chapters where the corresponding part of the
algorithm is discussed.

First of all, an image with interference patterns from both illumination sources is cap-
tured. The captured image is then separated to images with interference patterns from the
straight and oblique illumination sources. Due to reasons discussed later, these images are

Algorithm 1. Brief description of the method
k := 0; // Time index
while true do

img := captureImg();
imgStr, imgObl := separImg(img); // Separation of images from straight and
oblique illumination sources (Section 4.4.1)

/* Back-propagation of the image (Section 2.3) */
imgStr := backProp(imgStr);
imgObl := backProp(imgObl);
imgVis := backProp(imgStr); //Back-propagation for visualization (Section 4.6)

if initialization then
for i← 1 to N do

strPos(k, i) := selectObj(imgVis); // Manually mark ith object to track
oblPos(k, i) := findCorrsp(strPos(k, i), imgObl); // Find the corresponding
interference pattern in imgObl (Section 4.4.2)

end
else

for i← 1 to N do
strPos(k, i) := posEst(strPos(k-1, i), imgStr); // Update position in imgStr
(Section 4.4.3)
roughPosEst := oblRoughPosEst(strPos(k-1, i), axDist(k-1, i)); // Rough
estimate of position in imgObl (Section 4.4.2)
oblPos(k, i) := posEst(roughPosEst, imgObl); // Refine position in imgObl
(Section 4.4.3)

end
end
for i← 1 to N do

/* Transform positions to el. array coordinate system (Section 4.5) */
strPos(k, i) := strTrans(strPos(k, i));
oblPos(k, i) := oblTrans(oblPos(k, i));

axDist(k, i) := axDistEst(strPos(k, i), oblPos(k, i)); // Estimate axial distance
(Section 4.3)

end
k := k + 1;

end
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4.3 Estimation of axial distance from lateral shift

back-propagated to distances where positions of interference patterns are easier to precisely
localize. The image from the straight illumination is also numerically reconstructed in terms
of DHM for the purpose of visualization.

In the initialization phase of the algorithm, an user marks the microparticles that will be
tracked by the algorithm in the numerically reconstructed image from the straight illumination.
The positions of the microparticles are further automatically refined and the resulting positions
are taken as estimates of lateral positions of the microparticles. Based on these positions and
the model of the lateral shift of interference patterns—dependence of the shift on the axial
distance of a microparticle—approximate positions of the interference patterns in the image
from oblique illumination are calculated.

In the run-time phase, the current position of a microparticle is estimated according to its
last estimated position. Specifically, in the image from the straight illumination the interfer-
ence patterns from the tracked microparticles are searched in small windows around the last
measured position and the interference patterns in the image from the oblique illumination
are searched in small windows around the position where the interference patterns should be
located according to the last measured axial and lateral position.

For each microparticle, positions of its interference patterns are transformed from the im-
age coordinate system to the electrode array coordinate system. The difference of these po-
sitions represents lateral shift of the interference patterns at the height of the electrode array
and this lateral shift is used for the estimation of the axial distance of the microparticle.

4.3 Estimation of axial distance from lateral shift

In the introduction to this chapter, the principle of the proposed method was illustrated
on the simplified model where we neglected the refraction of light and assumed that the mi-
croparticles are illuminated by planar waves. In such a case, the axial distance of a microparti-
cle together with lateral shift of its interference patterns forms a right triangle that can be used
for the estimation of the axial distance (see Fig. 4.1). But the refraction of light clearly occurs
in the hardware setup and the tips of the optical fibers behave more like sources of spherical
waves. This section describes a model where the refraction of light is taken into account and
the influence of non-planar illumination is minimized.

Refraction of light is a phenomenon occurring when light is incident upon media of dif-
ferent refractive indexes. The refraction of light obeys a simple physical law called Snells’s
law:

sinθ1

sinθ2
=

n2

n1
, (4.1)

where θ1 is the angle of incidence of the light, θ2 is the angle of refraction of the light and n1,
n2 are indexes of refraction of the media.

Fig. 4.5a depicts the propagation of the light in the used hardware setup. For simplicity,
only air, water in the pool and the supporting microscope slide are considered while the cover
glass and the foil with the electrode array are neglected. In addition, it is assumed that the
microscope slide lies directly on the image sensor. This simplifications should not introduce
a significant error into the model because cover glass, electrode array and the space between
the microscope slide and the image sensor are of substantially smaller thickness than the rest
of the hardware setup. From the figure it is obvious that it is no longer possible to form a right
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Image sensor board

(a)

Image sensor board

(b)

Figure 4.5: Propagation of the light from straight and oblique light sources illuminating (a)
particle directly bellow the straight illumination source and (b) particles that are not directly
below the straight illumination source.

triangle with axial distance H = h1+h2 as one leg and the measured lateral shift L = l1+ l2 in
the captured image as the other leg. But we can form a smaller right triangle with legs h1 and
l1 and use this triangle for the estimation of the axial distance. That seems reasonable because
h1 is the levitation height of the microparticle above the electrode array and that is what we
actually want to measure anyway. Although lateral distance l1 is not measured directly, it
can be easily calculated from distance L by Snell’s law. Or even more simply, we can use the
following relation between h1 and L

h1 =
L − l2
tanβ

=
L

tanβ
−

l2
tanβ

. (4.2)

If we assume that l2 and β are constant, we can make the substitution k1 = 1/ tanβ and
k2 = −l2/ tanβ . Then we get

h1 = k1 L + k2, (4.3)

where k1 and k2 are constants which have to be calibrated. So we obtained a simple linear
relationship between the axial distance h1 and the measured lateral shift L.

The assumption of constant parameters l2 and β is met if the microparticles are illuminated
by planar illumination. According to the Huygen’s principle, the tips of the optical fibers,
however, behave more like sources of spherical waves. This is illustrated in Fig. 4.5b. The
assumption still can be reasonable if the distance between the tips of the optical fibers and
the microparticles is large enough. Then the light incident upon the microparticles can be
approximated by planar waves. Unfortunately, it turns out that this not the case in the used
hardware setup and that it is necessary to consider the light sources as sources of spherical
waves.

A model of the lateral shift incorporating the refraction of light and the non-planar il-
lumination would be too complex to use and calibrate. Nonetheless, the influence of these
undesired effects depends on the distance at which the lateral shift is measured: the influence
would be smaller if the microscope slide was thinner and the distance between the microscope
slide and the image sensor smaller. We cannot make the microscope slide thinner nor put the
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4.3 Estimation of axial distance from lateral shift

(a) Straight illumination (b) Oblique illumination

Figure 4.6: Ray optics based model of propagation of the light illuminating a microparticle that
is not placed directly below the straight illumination source. Left and right image describe prop-
agation of the light from the straight and oblique illumination sources, respectively.

image sensor closer, but we can transform the measured position of the interference patterns
to the electrode array coordinate system and calculate the lateral shifts there. This way, we
effectively measure the lateral shift at the height of the electrode array; we effectively measure
directly the distance l1 in Fig. 4.5a. Furthermore, positions of the microparticles in electrode
array coordinate system need to be known for the control purposes anyway. It follows that the
levitation height h1 is simply

h1 = l1 tanβ . (4.4)

At first glance, this model seems to be even simpler than model (4.3) because it has only
one parameter. Nevertheless, in contrast to model (4.3), where L is directly measurable in
the captured image, the calculation of l1 in (4.4) requires identification of transformations
from the measured positions of the interference patterns in the image coordinate system to
the electrode array coordinate system. The transformations are described in Section 4.5.

We should analyze how accurate are models (4.3) and (4.4). Fig. 4.6 depicts how the
light propagates through the simplified model of the hardware setup. Both parts of the figure
captures the same situation. The only difference is that the straight illumination is annotated
in the left part and the oblique illumination in the right part of the figure. Clearly, the image is
based on ray optics and the light sources produce spherical waves. Notice that the micropar-
ticle is not placed directly below the straight illumination. That is because the influence of
the spherical wave illumination get larger as the microparticle moves further away from the
straight illumination; in other words, the influence is larger as lb grows.

In order to compare the models, we at first find a relation between lb and the lateral shifts
d1 and d2—the lateral shifts of the interference patterns measured at the electrode array level
and the image sensor level, respectively. Then, we will calculate the levitation height by models
(4.3) and (4.4) based on d1 and d2 for different lb and compare the errors.
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We begin with the straight illumination (Fig. 4.6a) and determine lr2. Once the angle βr is
known, distance lr2 can be easily calculated from the right triangle with legs lr2 and (h2−hb).
From the figure we see that

lb = lr1 + l̃r2. (4.5)

If we express lr1 and l̃r2 by trigonometry from the right triangles they form, we obtain

lb = h1 tanαr + hb tanβr. (4.6)

Now we make use of the Snell’s law and express αr by βr

lb = h1 tanαr + hb tanβr = h1 tan
�

arcsin
�

n2

n1
sinβr

��

+ hb tanβr. (4.7)

Equation (4.7) is a nonlinear relation between levitation height of the microparticle, lateral
shift lb of the microparticle in reference to the position of the straight illumination and angle
of incidence βr. If we fix parameters lb and hb, we can numerically solve the equation for
βr and calculate distance lr2 of the interference pattern from the straight illumination at the
electrode array level

lr2 = (h2 − hb) tanβr. (4.8)

The distance of the interference pattern from the straight illumination at the image sensor
level is then calculated by

lr3 = lr2 + h3 tanγr, (4.9)

where γr = arcsin
�

n2
n3

sinβr

�

.
Similarly, we proceed with the oblique illumination source and obtain relationship for βg

lb + lLED = lg1 + l̃g2 = h1 tanαg + hb tanβg = h1 tan
�

arcsin
�

n2

n1
sinβg

��

+ hb tanβg. (4.10)

Lateral shifts of the interference patterns are then calculated as follows

lg2 = (h2 − hb) tanβg, (4.11)

lg3 = lg2 + h3 tanγg = lg2 + h3 arcsin
�

n2

n3
sinβg

�

. (4.12)

Finally, lateral shifts of the interference patterns from the oblique and straight illumination
sources measured at the electrode array level and at the image sensor level are

d1 = lg2 − lr2, (4.13)

d2 = d1 − lr3 + lg3. (4.14)

Having the relations for d1 and d2, we can finally compare the accuracy of the models.
As a reminder, model (4.3) estimates the levitation height based on d2—the lateral shift of
the interference patterns measured directly in the image—while model (4.3) estimates the
levitation height based on d1—the lateral shift of the interference patterns measured in the
electrode array system. Fig. 4.7a compares the accuracy of models (4.3) and (4.4). We used
parameters β , k1 and k2 identified in the situation where the microparticle is placed directly
under the straight illumination source at height h = 200µm above the electrode array which
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(b) Lateral position error

Figure 4.7: Error analyses of (a) axial distance and (b) lateral position estimation. The errors
are calculated for the parameters of the used hardware setup and for a microparticle levitating at
200 µm above the electrode array.

is approximately the maximum levitation height and thus the error corresponds to the worst
case scenario. Fig. 4.7a shows the deviation of the estimates from the true levitation height
200 µm for varying lateral shift lb. The lateral shift lb varies from 0 to 1.5 mm because that is
approximately the range where the microparticles can be manipulated. The remaining param-
eters are given by the dimensions of the hardware setup and they are: h1 = 60 mm, h2 = 2mm,
h3 = 1 mm and lLED = 40mm. From the figure it is obvious that the model represented by (4.4)
estimates the position more accurately; the error is approximately six times smaller than that of
the other model. Furthermore, we can see that this simple model provide sufficient precision.

As it was stated in Section 4.2, it is assumed that the interference patterns from the straight
illumination are located directly below the microparticles hence their positions are used as
estimates of lateral positions of the microparticles. Nevertheless, as it is obvious from the
previous discussion, due to the non-planar illumination the lateral positions of the interference
patterns from the straight illumination are shifted with respect to the lateral position of the
microparticles. If the position of the interference pattern is measured at the electrode array
level, then this shift is equal to lr2 (see Fig. 4.6a) and if the position is measured at the image
sensor level then the shift is equal to lr2 + lr3. Fig. 4.7b shows absolute values of the error in
the estimated lateral position at the electrode array level and at the image sensor level. Again,
apparently the error is significantly smaller if the position is measured at the electrode array
level.

The comparison of accuracy of the models clearly shows that the model estimating axial
distance from the lateral shift measured at the electrode array level achieves better accuracy
than the other one. It is important to note that in the error analyses it was assumed that the
positions of the interference patterns are known. But they are not known, they have to be mea-
sured and that, of course, introduces another source of error. Here, we only wanted to show
that it is necessary to somehow deal with the non-planar illumination and that model (4.4)
does this job sufficiently well.
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4.4 Measurement of lateral shift of interference patterns

As it is apparent from the previous section, measurement of the position of the interfer-
ence patterns is of crucial importance because it determines the accuracy of the proposed
method. In this section, we will show how the position of an interference pattern is measured
and consequently how the lateral shift of the interference patterns from one microparticle is
estimated.

4.4.1 Separation of interference patterns

First of all, we need to separate the interference patterns from straight and oblique illumi-
nation. Thanks to the choice of the illumination sources (see Section 4.1), this is easily done:
the red channel of a captured image contains only the interference patterns from the straight
illumination and the green channel contains only the interference patterns from the oblique
illumination. The separation of the interference patterns is shown in Fig. 4.8.

4.4.2 Identification of interference patterns corresponding to one microparticle

In order to measure the lateral shift of the interference patterns from one microparticle we
have to be able to find which interference patterns from the straight illumination and oblique
illumination correspond to the same microparticle. This task differs in the initialization and
run-time phase of the algorithm.

In the initialization phase, an user selects the microparticles that will be tracked. The
selection is done by marking the microparticles in the numerically reconstructed image from
the straight illumination (see Section 4.6). As a byproduct, the user directly provides positions
of the interference patterns in the red channel (straight illumination), only the corresponding
interference patterns in the green channel (oblique illumination) have to be found.

(a) Captured image (b) Red channel (c) Green channel

Figure 4.8: Separation of interference patterns from the straight (red color) and the oblique
(green color) illumination sources. The captured image contains interference patterns from one
microparticle. The fact they correspond to each other is visualized by the yellow line. The red and
green channel obviously separate the interference patterns from individual illumination sources.
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4.4 Measurement of lateral shift of interference patterns

To find the corresponding interference pattern in the green channel, let us have a look
where it actually can be located. The angle between the corresponding interference patterns is
given by the mutual position of the illumination sources and thus we assume that it is constant.
The lateral shift depends on the axial distance of the microparticle. Since the microparticles
can levitate only in a very limited range, the lateral shift is limited as well. Therefore, given the
position of an interference pattern in the red channel, the corresponding interference pattern
in the green channel can be located only along a very short line segment (see Fig. 4.9) and that
is where it is searched by an algorithm described in the following section. A drawback of this
approach is that no other interference pattern from other microparticles can be located along
the line segment, because then the algorithm may identify a wrong interference pattern as the
corresponding one. But given the length of the line segment, this does not have to bother us.
The microparticles would have to nearly touch each other to cause any troubles.

In the runtime phase it is assumed that the positions of the interference patterns in the
red channel have not changed much from the last measurement and thus the last measured
positions are used as rough estimates of the current positions. The rough estimates are further
refined by the algorithm described in the following section.

The corresponding interference patterns in the green channel are found by similar ap-
proach. Here, the position of an interference pattern does not depend only on the lateral po-
sition of the microparticle; it also depends on its axial distance. Therefore, the rough estimate
is calculated according to the currently estimated position of the corresponding interference
pattern in the red channel and the last estimated axial distance. Again, the rough estimates
are refined by the algorithm described in the following section.

4.4.3 Precise localization of interference patterns

This section describes how the rough estimate of the position of an interference pattern in
the red or green channel is refined.

The refinement of the position is not carried out directly in the recorded color channels.
As it is discussed in Section 4.1, the image sensor does not record RGB image with each color

a)

b) c)

e)d) 25 µm 129 µm

x
z

Figure 4.9: Variation of the position of the interference pattern from a microparticle levitating at
different heights while its lateral position is fixed. (a) shows a cutout of the green channel and
the yellow line represents all possible positions of the interference pattern, (b-c) Blown-up regions
of the green channel for a microparticle located at different levitation heights as it is shown from
side view in (d-e).
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channel at full resolution. Specifically, only one quarter of the intensity values in the red
channel are actually recorded by the image sensor. The remaining values are usually obtained
by an interpolation. Since the interpolation cannot add any new information to the image, we
can get rid of the pixels without recorded intensity value by collapsing the red channel to an
image with quarter of the original resolution. This way, we have to process less data and do
not lose any information. The grid of the Bayer filter does not allow us to do the same with
the green channel, where every other pixel contains recorded value of intensity. Therefore,
we use the green channel in the full resolution and the unrecorded values are computed by
an interpolation. Fig. 4.10a shows a cutout from the reduced-resolution red channel, and
Fig. 4.10c shows a cutout from the interpolated green channel.

Fig. 4.10 also shows the back-propagation of the cutouts for distances where the inter-
ference patterns focus to a point. This distance was find by back-propagation of the cutouts
for successively increasing distances. The radial intensity (intensity in dependence on the dis-
tance from the center of the interference pattern) of the interference patterns is displayed in
Fig. 4.11. We can see from the figure that the interference patterns are focused for a rather
large range (several hundreds of micrometers) of back-propagation distances. Choosing the
back-propagation distance in the middle of the range we can be sure that the interference
patterns will be focused for all microparticles (independent on their levitation height) because
the axial distance of the microparticles is limited to 200 µm.

The back-propagation is very beneficial here. From the perspective of image processing, it
is easier to identify the position of interference patterns in the back-propagated images than
in the original images. Positions of the focused interference patterns can be simply identified
by weighting pixels around the expected position—the rough estimates—by their intensity
values. Whereas in the original image, one would have to use a more sophisticated algorithm.
Thresholding followed by calculation of the center of mass could do the work, but it is very
sensitive to the choice of the threshold. In addition, the optimal threshold can change as the
ambient conditions change.

Back-propagation is not a cheap computational operation because it involves Fast Fourier
transform (FFT) of the image to be back-propagated. FFT is more efficient for images with
dimensions of a power of two. Therefore, the captured red and green channels are cropped
to sizes 256× 256 px and 512× 512 px, respectively. The size of the cropped red channel is
smaller due to the reduction of the resolution discussed in the beginning of this subsection.
The green channel has resolution 3.75 µm/px which is the original resolution of the image
sensor. We can easily calculate that the cropped green channel captures 1920×1920 µm part
of the electrode array. The red channel has resolution 7.5 µm/px but it captures the same

(a) (b) (c) (d)

Figure 4.10: Localization of the interference patterns in the red (straight illumination) channel
and green (oblique illumination) channel: (a) displays the reduced-resolution red channel, (c)
shows the green channel after the interpolation, (b) and (d) show back-propagations of (a) and
(c) where the interference patterns focus to a point.
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(a) Red channel
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(b) Green channel

Figure 4.11: Radial intensity profiles of interference patterns for (a) the red channel (straight
illumination) and (b) the green channel (oblique illumination).

area. The color channels are cropped so that each one contains the same part of the electrode
array.

Position estimation of a focused interference pattern is carried out as follows. Since we
have a rough estimate, we can look only at its small neighborhood and search the interference
pattern there. At first, we search the interference pattern in a rather large neighborhood
because the rough estimate can be very inaccurate. The position of the focused interference
patterns in the neighborhood is estimated by the following equations

xc =

∑

i j x i j I
p
i j

∑

i j I p
i j

, (4.15)

yc =

∑

i j yi j I
p
i j

∑

i j I p
i j

, (4.16)

where xc and yc are position coordinates of the interference pattern in the image coordinate
system, Ii j is the intensity of the pixel at coordinates i and j, p is a parameter of an even value
that determines how much the intensity is weighted and the summation is carried out over a
specified neighborhood of the rough estimate. The position xc and yc is taken as a new rough
estimate and the estimation is done repeatedly until a certain number of iterations is reached
or until the newly estimated position is within a specified tolerance the same as the last one.

To make the estimate more accurate, the estimated position is taken as a new rough esti-
mate and the estimation is carried out once more, but this time with a smaller neighborhood.
This way, the motion of the microparticles should be covered by the larger neighborhood and
the smaller neighborhood allows us to estimate the position more precisely because it sup-
presses influence of the surroundings of the interference pattern.

4.5 Transformation of the coordinate systems

As it was discussed in Section 4.3, lateral and axial position of a microparticle is estimated
more precisely if the positions of its interference patterns measured in the image coordinate
system (xim, yim) are transformed to the electrode array coordinate system (xel, yel). Since
we have two color channels we need two transformations from (xim, yim) to (xel, yel). In the
following paragraphs we will describe how to find and use the transformations.
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Figure 4.12: Transformation of the image coordinate system to the electrode array coordinate
system. Blue dots show positions of the side marks given by the user. Yellow rectangles repre-
sent transformed positions of the electrodes. (a) shows an image with interference patterns from
the straight illumination and (b) shows an image with interference patterns from the oblique
illumination.

We assume that (xim, yim) and (xel, yel) are related by a planar projective transformation,
that is by a linear transformation on homogeneous vectors represented by a regular matrix
from R3x3 [27]. Thus, a projective transformation for the red channel from (xim, yim) to
(xel, yel) is expressed by the following relation





xelw
yelw
w



= HR





xim

yim

1



 , (4.17)

where HR ∈ R3x3.

Of course, the projective transformation for the green channel looks exactly the same, only
the transformation matrix—let us denote it by HG—differs.

To identify the matrices HR or HG, at least four pairs of corresponding points in the coordi-
nate systems have to be known. Here comes the time for the side-marks along the electrodes
(see Fig. 4.3). Since the positions of the side-marks in the electrode array coordinate system
are known and the side-marks are clearly visible in the image, they are used for the identifica-
tion of the projective transformations. An user manually marks positions of several consecutive
side-marks in the image at the top and bottom of the electrode array. The first side-mark in the
bottom line have to lie bellow the first one in the top line because then the relative positions of
the marked side-marks can be simply determined. Now, for each marked position in (xim, yim),
the corresponding position in (xel, yel) is easily found and the transformation HR or HG can be
identified. The problem of determining the transformation matrix from a set of corresponding
points is a standard task. Thus it is not described here and the reader is referred to [27].
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4.6 Visualization of lateral position of microparticles

4.6 Visualization of lateral position of microparticles

To provide an user a possibility to visually inspect the motion of the microparticles, the
captured image with interference patterns from the straight illumination is numerically re-
constructed so that it resembles a view from a microscope. The numerically reconstructed
image allows the user to see directly the microparticles and their motion independent on the
proposed position estimation method. Furthermore, in contrast to the position estimation al-
gorithm, the reconstructed image shows also the untracked objects hence it can also possibly
show some obstacles in the trajectories the microparticles are controlled along.

The numerical reconstruction is carried out by back-propagation (see Section 2.3) of the
image from the straight illumination (the red channel of the captured image) to an axial dis-
tance where the objects become sharp. In order to make the back-propagation efficient, the
same 256× 256 px cut-out of the red channel as was used for the position estimation is used
here. The same cut-out is chosen because now we want to back-propagate an image which
was already back-propagated. Therefore, the FFT of the image, which is necessary for the
back-propagation, was already computed and we do not have to compute it again. This saves
some time and makes the method more efficient.

To help the user to identify positions of the microparticles in the electrode array coordinate
system, the electrodes are visualized in the reconstructed image. Positions of the electrodes
in the image are computed by the inverse projective transformation HR. The numerically re-
constructed cut-out of the red channel with the visualized electrodes is shown in Fig. 4.13.
Apparently, the numerically reconstructed image servers its purpose pretty well because the
microparticles in the figure are clearly recognizable.

4.7 Calibration

The proposed method has several parameters that are not a priori known and have to be
identified. Namely, angle β in model (4.4) and projective transformations HR and HG repre-

Figure 4.13: Numerical reconstruction of an image from the straight illumination to an image
resembling a view by a microscope. The black rectangles represent the electrodes.
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senting mapping from the image coordinate system to the electrode array coordinate system.
Identification of HR and HG was discussed in Section 4.5 hence there is no need to discuss it
again here. This section is devoted to identification of the angle of incidence β which turns
out to be a more difficult task.

There is a dedicated device solely for the purpose of the identification of β in the hardware
setup: the side-view camera. Side-view camera allows us to see the microparticles from the
side hence measure their levitation height (axial distance). As a result, it provides us the neces-
sary reference for the identification of β . We can focus the side-view camera to a microparticle,
change its levitation height by DEP and for each levitation height record the image from the
side-view camera and lateral shift of the interference patterns from the microparticle. The
angle β is then easily found by fitting model (4.4) to the recorded set of data.

In order to be able to measure the axial distance of a microparticle in an image from the
side-view camera, we need to transform the image coordinates to another coordinate system
where we can measure distances in micrometers. To establish such a coordinate system, we
put the mask used for the fabrication of the electrode array into the pool. Fig. 4.14 shows an
image from the side-view camera with the mask in the pool. In addition, the figure shows two
coordinate systems. The coordinate system (xsv, ysv) is the coordinate system of the image
and the coordinate system (xmsk, ymsk) is a coordinate system established in reference to the
electrode array in the mask. The mask is placed in the pool so that it is perpendicular to the
bottom of the pool. Therefore, the axial distance of a microparticle can be measured in the
coordinate system (xmsk, ymsk). Again, we relate the two coordinate systems by a projective
transformation and identify it similarly as in Section 4.5: an user marks corners of the side-
marks in the image, positions of the side-mark corners in (xmsk, ymsk) are known and thus we
have pairs of corresponding points for the identification of the projective transformation.

Let us use the same notation as in (4.4): h1 denotes the levitation height and l1 the lateral
shift. Now, we can conduct an experiment and measure lateral shifts l1 for a microparticle
located at different levitation heights h1, and use this set for the identification of the angle

Figure 4.14: An image from the side-view camera capturing a mask with electrodes and side-
marks. The corners of the side-marks marked by an user are represented by blue dots. Yellow lines
show edges of the transformed positions of the side-marks by the identified projective transforma-
tion.
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Figure 4.15: Calibration of the model of the levitation height-lateral shift dependence. (a) side
views on a microparticle at different levitations heights and (b) fitting of model to the measured
data.

β . Nevertheless, what we are really after is not directly the angle β but tanβ because that is
the scalar factor between lateral shift l1 and levitation height h1. Let us denote tanβ by kβ .
Identification of kβ is easily done by fitting the model

h1 = kβ l1 (4.18)

to the measured set of data.

Fig. 4.15a shows side-views on a microparticle at different levitation heights. The levitation
heights are computed by the projective transformation as the distance in the coordinate system
(xmsk, ymsk) from the marked center of the microparticle to the line representing the bottom
of the pool. The line representing the bottom of the pool is easily identified from a side-view
where a microparticle lies on the bottom of the pool.

A set of measured levitation heights h1 and the corresponding lateral shifts l1 is shown in
Fig. 4.15b. The figure also shows the estimation of the levitation height based on the identified
model represented by (4.18). Apparently, the estimated values match the measured ones.

4.8 Experimental results

To evaluate the performance of the proposed method, we manipulated a microparticle
along an eight-shaped trajectory and compared the estimated position by the proposed method
with the reference measurement obtained by the side-view camera. The estimation was car-
ried out in real-time at 10 Hz on an ordinary PC (Intel Core i7, 8 GB RAM) and it was used in
the feedback loop of the control algorithm proposed in Chapter 8. The comparison is displayed
in Fig. 4.16. The side-view camera enables us to measure only one coordinate of the lateral
position but from the principle of the estimation the estimate in the other coordinate should
have the same accuracy. The standard deviation of the error in x-coordinate is 2.41µm and
of the levitation height 6.64µm. Even though the experiment was conducted with only one
microparticle, the proposed method can simultaneously estimate positions of more micropar-
ticles.
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Figure 4.16: A comparison of estimated position by the proposed method with reference measure-
ment obtained by the side-view camera.

4.9 Possible improvements

This section discusses two changes in the proposed method that could lead to either im-
proved accuracy or better performance in terms of speed.

The accuracy of the estimation can be easily improved by use of an image sensor with
smaller pixels. Actually, not only the accuracy would improve but also the numerically re-
constructed image used for visual check would be more detailed. However, this comes at a
cost. For the same manipulation area, smaller pixels mean more data to process and thus the
method would be slower.

The most computationally demanding part of the proposed method is the image processing.
Currently, the method is implemented in Simulink and all operations are performed by a CPU
and CPUs are not particularly well suited for image processing. The speed of the proposed
method could be improved by transferring the image processing to a GPU because GPUs are
designed for this kind of operations and perform them much faster than CPUs. The major
drawback of this improvement is its price. Price of a high-performance graphic card can easily
climb up to several thousand of dollars. In addition, implementation of anything on a GPU is
not as trivial as implementation on a CPU.
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4.10 Conclusion

4.10 Conclusion

We developed a simple method for real-time position estimation of spherical microparti-
cles in 3D. The method requires only a very cheap, simple and compact hardware setup. We
demonstrated the accuracy of ~2–3µm in lateral position and ~7µm in axial position. Fur-
thermore, we successfully used the method for real-time manipulation. Despite the fact that
the method is developed for spherical microparticles, it can be potentially extended to track
also non-spherical micro-objects. The only thing that would have to change is the procedure
of localization of the interference patterns, because they would not have to focus to a point
any more.
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Model
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Chapter 5

Motion of a microparticle in a DEP force field

W e are able to measure the position of microparticles; next logical step on the way to the
goal of controlling their position is to obtain a model of the motion and a model of

the dielectrophoretic force acting upon the microparticles. The model of the dielectrophoretic
force allows us to relate the set potentials on the electrodes to the generated force acting upon
the microparticles. The model of the motion enables us to predict how a microparticle will
react to an applied DEP force. Since it is not a goal of this thesis to develop a new mathematical
model of motion of a microparticle in DEP force field and the author of this thesis did not
contribute anyhow to this topic, we will provide only a very brief description of the model
necessary for the remainder of this thesis. This whole chapter heavily mines from the work
done by my colleagues Jǐrí Zemánek, Tomáš Michálek and Jakub Tomášek [28, 29, 30, 31].

5.1 Hardware setup

Before we describe the models, we extend the description of the hardware arrangement
introduced in Section 4.1 to include also the electric part. We use a signal generator (METEX
MXG-9810A) to generate a sinusoidal signal of frequency 300 kHz, 20 V peek to peek. The
sinusoidal signal is multiplied by analog multipliers (Analog devices AD633ARZ) with analog
outputs of an IO card Humusoft MF624. The resulting signal is applied on the electrodes. The
IO card allows us to set the amplification of the sinusoidal signal from −1 to 1 in real-time
from Matlab/Simulink environment.

5.2 Dielectrophoretic force

We briefly mentioned in the introduction that the DEP force somehow depends on the set
potentials on the electrodes. Now the time comes to derive a precise mathematical relation.

The time-averaged dielectric force acting upon a spherical microparticle located at (x , y)
is given by the following relation [32]:

Fdep(x , y) = k∇|E(x , y)|2, (5.1)

where E(x , y) is electric field and

k =
1
4

v Re

�

εp(ω)− εm(ω)

εp(ω) + 2εm(ω)

�

, (5.2)
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Chapter 5. Motion of a microparticle in a DEP force field

where v is the volume of the microparticle, εp(ω) and εp(ω) are complex permitivities of the
microparticle and the surrounding medium, respectively, andω is the angular frequency of the
sinusoidal signal generated by the signal generator. Time-averaged here means, that the force
is averaged over the period of the sinusoidal signal. The only thing that ω influences are the
permitivities and since we do not change ω during the manipulation with the microparticles,
we can consider it to be constant. Thus, the only way how to shape Fdep(x , y) is through
E(x , y), or more precisely, through the amplitudes of the applied potentials on the electrodes.

We should mention that relation (5.1) holds only when phase of the electric field E(x , y)
is spatially invariant. But that is exactly our case because we are able to control only the
amplitudes of the signals applied on the electrodes. Otherwise the relation would become a
bit more complicated and we would have to consider also a phenomenon called traveling wave
DEP.

The DEP force Fdep(x , y) acting upon a microparticle is proportional to the gradient of the
magnitude of the electric field E(x , y) at the locus of the microparticle. Therefore, in order to
determine Fdep(x , y), we have to determine the electric field. Since electric field is obtained
as the negative gradient of the potential field φ(x , y), we start with the potential field. For
simplicity, we will not explicitly state the dependence on coordinates x and y .

As linearity applies in this case, we decompose the potential φ to the sum of contributions
from individual electrodes, that is

φ =
8
∑

i=1

uiφi = uᵀΦ, (5.3)

where ui is a scaling factor and φi is the contribution to the net potential from ith electrode
when 1 V is applied on it and the remaining electrodes are grounded. We put the scaling
factors ui and potentials φi to vectors u = [u1, . . . , u8]ᵀ and Φ = [φ1, . . . ,φ8]ᵀ. The electric
field is then given by

E= −∇φ =
�

Ex

Ey

�

= −

�

uᵀ ∂φ∂ x

uᵀ ∂φ∂ y

�

. (5.4)

Now, we substitute E to the relation for Fdep = [Fdep
x , Fdep

y ]ᵀ:

Fdep
a = 2k

�

Ex
∂ Ex

∂ a
+ Ey

∂ Ey

∂ a

�

= 2k

�

uᵀ
�

∂φ

∂ x
∂ 2φᵀ

∂ x∂ a
+
∂φ

∂ y
∂ 2φᵀ

∂ y∂ a

�

u

�

, a = {x, y}. (5.5)

If we introduce matrix matrices Aa defined by

Aa = 2k

�

∂φ

∂ x
∂ 2φᵀ

∂ x∂ a
+
∂φ

∂ y
∂ 2φᵀ

∂ y∂ a

�

, (5.6)

we can express Fdep as

Fdep =

�

uᵀAxu
uᵀAyu

�

. (5.7)

The scaling factors ui represent the control signals; it is through them we shape the poten-
tial field. Since we will refer to ui very frequently in the remaining part of the thesis, from now
on we will refer to ui—even though it is not terminologically correct—-as potentials ui and
say that we set potentials ui on the electrodes. It is not correct, but it sounds more intuitive
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5.2 Dielectrophoretic force

Figure 5.1: Boundary conditions for Laplace equation ∇2φi = 0.

than saying that we change the scaling factors to shape the potential field above the electrode
array.

We are still missing something to fully determine the relation between u and Fdep: functions
φi . It turns out, that this is actually the harder part. Functions φi , as potentials, have to satisfy
Laplace equation

∇2φi = 0 (5.8)

for given boundary conditions. Laplace equation falls into the category of PDEs which are
known to be difficult to solve. To entirely specify a problem with a PDE, we have to add
boundary conditions—a required behavior of the solution at the boundary of a domain where
we seek a solution. The domain together with the boundary conditions for our case is shown in
Fig. 5.1. Each electrode imposes a Dirichlet boundary condition: φi = 1 V for the ith electrode
and φi = 0 V for the remaining ones. On the rest of the boundary, we use Neumann boundary
condition ∂ φi

∂ n , where n is the normal vector to the boundary.
We should mention that for the control purposes we will need to evaluate (5.7) in real-

time hence we need to calculate functions φi—or actually its first and second derivatives (see
(5.6))—in advance, store them and load the solution every time we need to determine the
DEP force based on the set potentials u.

There are basically two ways how to solve a PDE:

Numerical solution Nowadays, numerical solvers of partial differential equations are fairly
developed and easy to use. One simply specifies the problem—the partial differential
equation, domain and boundary conditions—and the solver gives him a solution. How-
ever, the solver provides only an approximate solution and only as numerical values at
certain grid of points over the domain. As a result, we are able to determine DEP force
only at certain points in the domain and the solution has to be stored as a file which
grows in size as the grid gets finer. Nevertheless, a great advantage of this approach
is that it enables us to solve PDEs with mixed boundary conditions (Dirichlet and Neu-
mann) very easily. Why this is important will be obvious in the next chapter.

Analytical solution The other way is to somehow find a closed-form solution. This is a very
tricky task because there is no general procedure of solving PDEs. Nevertheless, for a
limited set of problems there are known solutions or approaches for obtaining them. We
will present one of this approaches in the next chapter.

Tomáš Michálek and Jǐrí Zemánek [28, 29] successfully used numerical solution as a way
of solving this problem. However, they found this approach to be rather impractical due to
the file size. In particular, a numerical solution for the eight electrode array with grid spacing
1 µm takes approximately 750 MB. They also used the same approach for more complicated
electrode array arrangements where the file size grew up to several tens of gigabytes. To
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Chapter 5. Motion of a microparticle in a DEP force field

overcome this problem, we will use one of the approaches for obtaining an analytical solution
and discuss the necessarily modifications of the original boundary value problem in the next
chapter.

5.3 Dynamics of a microparticle in fluid

We assume that the inertia inertia of a 50 µm microparticle is negligible [33]. The the
motion of a microparticle is governed by drag force Fdrag, sedimentation force Fsed and DEP
force Fdep.

Drag force is a frictional force acting against the motion of a microparticle in liquid. In our
case, we can apply Stoke’s law and compute the drag force as

Fdrag = 6πµrv, (5.9)

where µ is the dynamic viscosity of the fluid, r is the radius of the microparticle and v is its
velocity.

Sedimentation force is a force caused by gravity and it is given by

F sed =
4
3
πr3(ρp −ρm), (5.10)

where ρp and ρm are densities of the microparticle and the surrounding medium, respectively.
Finally, the model of motion of a microparticle is obtained by putting all the forces into

balance. Specifically, to obtain a state space model, we express the components of velocity
vector v from Fdrag. This way we get

ẋ = kFFdep
x , (5.11a)

ẏ = kF

�

Fdep
y − F sed

�

, (5.11b)

where kF =
1

6πµr .

For simplicity, we denote Fdep
x by Fx and (Fdep

y − F sed) by Fy. Thus we obtain

ẋ = kFFx, (5.12a)

ẏ = kFFy. (5.12b)

Assuming we can arbitrarily control the forces Fx and Fy, equation (5.12) represents a very
simple linear model.

5.4 Extension from 2D to 3D

We described a model of DEP force and a model of dynamics of a microparticle in 2D, but
it can be analogously derived for 3D. Without going into details, here we just state that the
DEP force is

Fdep =





uᵀAxu
uᵀAyu
uᵀAzu



 (5.13)
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with

Aa = 2k

�

∂φ

∂ x
∂ 2φᵀ

∂ x∂ a
+
∂φ

∂ y
∂ 2φᵀ

∂ y∂ a
+
∂φ

∂ y
∂ 2φᵀ

∂ z∂ a

�

, (5.14)

and the model of the dynamics of a microparticle in fluid is

ẋ = kFFdep
x , (5.15a)

ẏ = kFFdep
y , (5.15b)

ż = kF

�

Fdep
z − F sed

�

. (5.15c)

To summary, we found a relation coupling applied potentials on individual electrodes to
the generated DEP force field and we also described a model of motion of a microparticle in
this force field.
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Chapter 6

Control-oriented model of DEP force

I n this chapter, we derive a control-oriented model of DEP force. Here, the term control-
oriented is used in the usual meaning; the model can be less precise, but it has to be

computationally tractable. The only problematic part of the relation for DEP force is the calcu-
lation of the potentials φi(x , y) from the boundary value problem (5.8). We obtain a control-
oriented model by a modification of (5.8) that, at the cost of lower accuracy, enable us to solve
the problem analytically by the technique of Green’s functions.

At the outset, we briefly introduce the framework of Green’s functions together with its
limitations. Then we proceed separately for 2D and 3D case. Based on the limitations, we
approximate the original boundary value problem to fit into the framework of Green’s functions
and solve it analytically in closed-form. Finally, we use the approximate analytical solution for
calculation of DEP force and compare it with the numerical solution of the original unmodified
boundary value problem.

6.1 Brief introduction to Green’s functions

Green’s functions bear the name after the famous mathematician George Green who in
early nineteenth-century examined the solutions of Poisson equation ∇2φ = − f and Laplace
equation ∇2φ = 0 as a special case. He discovered that if he finds the solution of the Poisson
equation with a point-charge source—that is,∇2G = −4πδ(r−r0), where δ(r−r0) is the Dirac
delta function for the point-charge located at r0—and zero Dirichlet boundary conditions along
the boundary S, then the solution of Laplace equation is given by the following integral [34]

φ(r) =
1

4π

�
S

h∇G · n dS, (6.1)

where h is the value of φ on the boundary S imposed by Dirichlet boundary conditions and n
is the normal vector to the boundary S. We denoted the solution G by letter G deliberately;
the solution is a Green’s function.

This result allows us to analytically find the solution of any Laplace equation with arbitrary
Dirichlet boundary conditions by determining the Green’s function for the problem at hand.
Even though that might not seem to be a very useful result as we still have to solve a PDE, only
a different one, it actually turns out that for some special geometries (shape of the domain)
it is fairly simple to find the Green’s function. Luckily, our boundary value problem from the
previous chapter is easily modifiable to such a special geometry.
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Chapter 6. Control-oriented model of DEP force

We should point out, that we merely scratched the surface of the powerful technique of
Green’s functions. This technique solves not only the Laplace equation but also more complex
PDEs with different kind of boundary conditions.

6.2 Solving the boundary value problem in 2D

The boundary value problem (5.8) from the previous chapter cannot be directly solved
by Green’s functions; it does not possess any special geometry and it does not have bondary
condition of just one kind. But if we slightly modify the problem and rectify these two short-
comings then Green’s functions will provide us the solution. In this section we describe the
necessary modifications and solve the modified problem.

6.2.1 Modifications

First of all, we notice that the domain of our problem (depicted in Fig. 5.1) can be extended
to the whole positive half-plane. We move the side boundaries and the upper boundary to
infinity. A half plane is a special geometry for which the Green’s function is known.

What remains is to somehow get rid of the Neumann boundary conditions and specify only
Dirichlet conditions along the boundary. As we go with the side boundaries and with the upper
boundary to infinity, the potential has to decay to zero and thus we can replace the Neumann
boundary conditions by zero Dirichlet conditions. The trouble is with the Neumann conditions
on the bottom boundary between the electrodes. We assume that

φi±1(x , y) = φi(x ± xshift, y), (6.2)

where xshift is the distance between the centers of two adjacent electrodes. As a result, we
have to find φi(x , y) for only one i, say i = 4, and the remaining potential functions φi(x , y)
for i 6= 4 can be determined simply by shifting φ4(x , y). As a reminder, we assume that the ith
electrode is set to 1 V and the remaining ones are grounded. It seems reasonable to assume
that on the bottom boundary the potential decays from the ith electrode to the closest adjacent
electrodes and that it does not propagate to the next gap between electrodes. Thus, we can
replace all but the closest two Neumann boundary conditions on the bottom boundary by zero
Dirichlet conditions. But how to get rid of the remaining two Neumann boundary conditions?
We will approximate the decay of the potential between the ith electrode and its neighbors by
a function and surrogate the Neumann boundary conditions by Dirichlet boundary conditions
with this function.

One approach presented in [35] is to assume that the potential decays linearly. Specifi-
cally, assuming that the ith electrode is located at the origin, the Dirichlet boundary condition
obtained by linear approximation is

hlin(x) =























1
100 (x + 150) x ∈ [−150,−50),

1 x ∈ [−50, 50],
1

100 (−x + 150) x ∈ (50,150],

0 otherwise,

(6.3)

where x is the position in microns.
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Figure 6.1: Approximations of the contribution to the net potential from the forth electrode at
the bottom boundary of the domain. The black thick segments represent electrodes.

We use a different and more accurate approximation. At first, we solve the original bound-
ary value problem numerically by finite element method (FEM) in COMSOL Multiphysics. Then,
we take the values of the potential on the bottom boundary between the ith electrode and its
left adjacent electrode and fit a polynomial p(x) to these values. Specifically, we fitted a third-
order polynomial p(x) to the values because it is simple and yet accurately fits the values. The
fitted polynomial is

p(x) = 1.3573 · 10−6 x3 + 4.3365 · 10−4 x2 + 5.1492 · 10−2 x + 2.5882 (6.4)

and the Dirichlet boundary condition for the polynomial approximation has the following form

hpoly(x) =























p(x) x ∈ [−150,−50),

1 x ∈ [−50,50],

p(−x) x ∈ (50,150],

0 otherwise,

(6.5)

where, again, x is the position in microns.

You can see both approximations in Fig. 6.1. Apparently, the polynomial approximation
describe the FEM solution far better than the linear approximation. However, one should not
overlook the humps in the gaps between the further electrodes which are completely omitted
by both approximations. Furthermore, the figure shows an exact solution for i = 4, for the
electrode which is in the middle of the electrode array, and if we chose an electrode closer to
the edge, the bumps would be even larger. We have eight electrodes so let us take, for instance,
i = 1 and i = 2. The FEM solutions for these cases are shown in Fig. 6.2. Obviously, the humps
are getting larger and our approximate worse for the electrodes located closer to the border
of the electrode array. In case of the second electrode, we still can consider the error to be
acceptable but we cannot do so in the case of the first electrode. Nevertheless, we can change
the design of the electrode array and add ground plates next to the border electrodes to force
the potential to decay faster behind the border of the electrode array. As we have to work
with the electrode array we currently have, we deliberately restrict ourselves to use only to
the six electrodes in the middle and use the border electrodes as the ground plates. Based on
the comparison shown in Fig. 6.1, we use hpoly(x) as the approximation of the exact boundary
conditions by a Dirichlet boundary condition.
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Figure 6.2: FEM solutions for φ1(x , y) and φ2(x , y). The black thick segments represent elec-
trodes.

To summarize, the modified problem obtained by the extension of the domain to the whole
upper half-plane and by the approximation of the mixed boundary conditions by Dirichlet
boundary conditions is

∇2φi(x , y) = 0, (6.6)

with upper half-plane as the domain, zero Dirichlet boundary conditions in the infinity and
bottom boundary condition given by hpoly(x). Since the modified boundary problem has a
special geometry for which the Green’s function is known and the boundary conditions are
only of one kind, we can find the solution by the framework of Green’s functions.

6.2.2 Analytical solution

Solving the modified problem (6.6) is straightforward. The Green’s function for the half-
plane domain is known to be [36, p. 37]

G(r′, r) = −
1

2π

�

ln |r′ − r| − ln |r′ − r∗|
�

, (6.7)

where r′ = (x ′, y ′), r = (x , y) and r∗ = (x ,−y). Substitution of (6.7) to (6.1) with the
boundary condition hpoly(x) gives us the solution

φi(x , y) =
y
π

∫ ∞

−∞

hpoly(x ′)

(x − x ′)2 + y2
d x ′. (6.8)

To evaluate the integral in (6.8), we split the integral according to the cases in the definition
of hpoly(x). This way we obtain

φi(x , y) = φi0(x , y) +φi1(x , y) +φi1(−x , y), (6.9)

where

φi0(x , y) =
y
π

∫ 50

−50

1
(x − x ′)2 + y2

d x ′, (6.10a)

φi1(x , y) =
y
π

∫ −50

−150

p(x ′)
(x − x ′)2 + y2

d x ′. (6.10b)

The integral in (6.10a) belongs to, let us say, standard integrals and is very easy to evaluate.
However, things are getting a bit more complicated in the case of (6.10b) where it is not
that trivial to evaluate the integral by hand. Fortunately, mathematical software like Wolfram
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Figure 6.3: Streamlines resulting from FFEM(x , y) (red dashed line) and Fanl(x , y) (blue line).

Mathematica, Maple or Matlab can do it for us with ease. We do not present the evaluated
integrals here, because they are rather lengthy and it would not serve any purpose; everyone
can calculate them in one of the mentioned software.

Again, we should summarize what we achieved in this section. So, we obtained the ana-
lytical closed-form solution φi(x , y) of the modified problem for one particular i, that is for
the ith electrode. By assumption (6.2), potentials φ j for j 6= i are obtained simply by shifting
φi(x , y). Since now we have the analytical solutions for potentials, we can differentiate them
and obtain also the first and second derivatives necessary for calculation of the DEP force Fdep

in (5.7).

6.2.3 Comparison with numerical solution

In this section, we examine how accurately the analytical solution of the modified (approx-
imate) problem fits to a numerical solution of the original problem. As it will be obvious from
the following chapter, what we are really after is the ability to determine the force acting upon
a microparticle for any location above the electrode array and for any given set of potentials
u. In other words, what we are after is the ability to calculate Fx and Fy in the model (5.12).
Thus, what we compare are not directly the potential fields but the derived force fields. Since
Fx = Fdep

x and Fy = Fdep
y − F sed, we determine a DEP force field based on a FEM solution of

the original boundary value problem and a DEP force field based on the analytical solution of
the modified boundary value problem, and subtract the sedimentation force Fsed from the y
component of both DEP force fields. Let us denote the two resulting force fields by FFEM(x , y)
and Fanl(x , y), respectively. We can evaluate how useful the approximate solution is by a
comparison of these two force fields.

It is rather difficult to compare two two-dimensional vector fields where the entries in the
vectors differ by orders of magnitude. Furthermore, the vector fields depend on the poten-
tials u. To give you at least an informative comparison, we randomly generated the vector
u and for this particular choice we calculated the force fields FFEM(x , y) with Fanl(x , y) in a
grid of points ranging in x direction along the whole electrode array and in y direction from
zero to 200 µm—the maximum levitation height of a microparticle. We compare these force
fields in three ways. We compare streamlines, HSV images computed from the force fields
and generated forces along the electrode array for a particular levitation height (constant y
coordinate).

Fig. 6.3 shows streamlines resulting from FFEM(x , y) with Fanl(x , y). A streamline shows
the trajectory that a microparticle in the force field follows if we neglect its inertia and if
it starts at the beginning of the streamline. Apparently, the streamlines computed from the
approximate solution very accurately resemble the streamlines computed from the numerical
solution.
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Figure 6.4: A comparison of force fields FFEM(x , y) and Fanl(x , y) by HSV images where the hue
channel shows angle of the force and the visibility channel shows magnitude of the force.

µ

µ

Figure 6.5: A comparison of magnitude and angle of FFEM(x , y) and Fanl(x , y) for y = 120 µm.

Next, we generate HSV images from the force fields FFEM(x , y) and Fanl(x , y). This com-
parison is inspired by domain coloring [37], which is a technique used for visualization of
complex variables hence 2D vector fields. A HSV image has three channels: hue, saturation
and visibility. We set angles of the vectors in the force field as the values of the hue channel,
normalized logarithm of the magnitude of the vectors as the values of the visibility channel
and we leave the saturation channel at a constant value. HSV images computed in this way
for both force fields are shown in Fig. 6.4. Again, qualitatively the force field computed from
the approximate solution is very similar to the one computed form the numerical solution.

Finally, we compare the force fields at one particular levitation height. Fig. 6.5 displays
the magnitude and angle of FFEM(x , y) and Fanl(x , y) at y = 120 µm. We chose this partic-
ular height because it is in the middle of the reasonable manipulation space. In the current
hardware setup, it is not physically possible to manipulate a microparticle higher than 200 µm
and below 40 µm the microparticles tend to fall down and stick to the bottom. Likewise in the
previous two comparisons, the approximate solution closely follows the numerical solution.
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6.3 Solving the boundary value problem in 3D

6.3 Solving the boundary value problem in 3D

Let us now see how the approach from the previous section can be extended from 2D to
3D. We follow the same procedure—with some minor changes—as in the 2D case: we modify
the original boundary value problem with mixed boundary conditions and without a special
geometry to one with only Dirichlet boundary conditions and with a special geometry for which
the Green’s function is known. Then we analytically solve the modified problem and compare
the result with a numerical solution of the original problem.

We did not describe in detail the 3D boundary value problem in the previous chapter be-
cause it was more convenient to derive the relation for DEP force for 2D and simply extend
the result to 3D. Therefore, we very briefly describe the 3D boundary value problem here. Left
part of Fig. 6.6 shows the top view on an electrode array and thus also on the domain where
we seek the potential. Since the electrode array consists of four quadrants, we call it a four-
quadrant electrode array. Similarly as in 2D case, the electrodes impose Dirichlet boundary
conditions and the rest of the boundary imposes zero Neumann boundary conditions.

6.3.1 Modifications

Along similar lines as in the 2D case, we extend the domain in x and y directions to ±∞.
That also means that we lengthen the electrodes to infinity. This way we change the domain
to the positive half-space, for which the Green’s function is known.

Again, we describe the net potential φ(x , y, z) as a sum of contributions φi(x , y, z) from
individual electrodes (the indexes are shown in Fig. 6.6) and we do it so that the contributions
are the same only shifted and/or rotated with respect to each other; mathematically speaking,
for electrodes from the same quadrant, it holds that

φi+1(x , y, z) = φi(x + xshift, y + yshift, z), (6.11)
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Figure 6.6: Part (a) shows the four-quadrant electrode array and part (b) the proposed approxi-
mation of the exact boundary conditions by Dirichlet boundary conditions.
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Chapter 6. Control-oriented model of DEP force

where xshift and yshift are mutual distances between the electrodes in x and y direction, re-
spectively. Then, we need to solve the boundary value problem for only one electrode, say
φ1(x , y, z). That is, all electrodes are grounded except the ith one where we set 1 V.

Next, we need to get rid of the Neumann boundary conditions. We would like to approxi-
mate the bottom boundary condition so that it imitates a FEM solution obtained by COMSOL
Multiphysics. The FEM solution for φ44(x , y, z) is displayed in Fig. 6.7 and the approximation
we would like to use is shown in the right part of Fig. 6.6 as the red and the blue curved blocks.
Nevertheless, as we will see shortly, the integral by which the analytical solution is obtained is
not as simple as it was in the 2D case. Now, we are unable to evaluate the integral for anything
else than for a constant boundary condition. Thus, instead of using a polynomial approxima-
tion, we build the desired shape of the potential from blocks. To be more specific, we initially
approximate the boundary condition in the roughest possible way; we assume that the poten-
tial between the electrodes drops instantaneously to zero (see Fig. 6.8a). Then by “stretching”,
“squeezing” and “shifting” of this boundary condition (see Fig. 6.8b) we approximately build
up the desired shape (see Fig. 6.8c).

We define the block boundary condition for one side infinitely long electrode as

h0(x , y, d) =

(

1 x ≤ 0 and y ∈
�

− d
2 , d

2

�

,

0 otherwise,
(6.12)

where d is the width of the electrode. The staircase approximation of the desired shape is then
obtained by

h(x , y) =
N
∑

i=1

ai h0

�

x −
(bi − 1)d

2
, y, bi d

�

, (6.13)

where ai determines the height of the block and bi is the stretching parameter in the meaning,
that bi = 2 stretches the block so that it is twice as wide as the electrode. Notice, that we
assumed that the potential decays the same along x and y axes and thus the coefficients bi

determine not only the width but also the shift of the blocks along x axis.

Figure 6.7: FEM solution obtained by COMSOL Multiphysics for a φ44(x , y, z).
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6.3 Solving the boundary value problem in 3D

(a) (b) (c)

Figure 6.8: A staircase approximation of the desired shape of the bottom boundary condition: (a)
one block approximation, (b) multiple blocks approximation and (c) boundary condition obtained
by FEM. Black rectangles represent electrodes.

It remains to determine the coefficients ai and bi in (6.13). We formulate this task as the
following optimization problem

min
ai ,bi

‖h(x0, y)−φFEM(x0, y, 0)‖2 (6.14)

s.t.:
N
∑

i=1

ai = 1,

bi ∈ [1,3],

where φFEM(x , y, z) is a FEM solution obtained by COMSOL Multiphysics. Since both ai and
bi can be determined from a y-z cross-section of φFEM(x , y, z), we fixed x to be a negative
constant value x0. The coefficients ai have to sum up to one because only then the height
of the piled up blocks will be one. We restrict the coefficients bi to be from interval [1,3]
because then the blocks cannot be narrower than the electrode and they cannot interfere to
other electrodes. Even though the optimization task is not convex, it still provides very good
results when one provides a good initial guess of the coefficients ai and bi . Fig. 6.9 shows
result of the optimization task (6.14). We use N = 10 and for the initial guess, we let bi to
grow linearly from 1 to 3 and set ai to be proportional to the derivative of φFEM(x0, y, 0).
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Figure 6.9: A cross-section of the boundary potentialφFEM(x , y, 0) and a staircase approximation
h(x , y).
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Chapter 6. Control-oriented model of DEP force

6.3.2 Analytical solution

Now, solving the 3D boundary value problem is easy. The Green’s function for the 3D
half-space domain is [36, p. 37]

G(r′, r) = −
1

4π‖r′ − r‖2
+

1
4π‖r′ − r∗‖2

, (6.15)

where r′ = (x ′, y ′, z′), r= (x , y, z) and r∗ = (x , y,−z). Substitution of (6.15) to (6.1) with the
boundary condition h(x , y) gives us the solution

φi(x , y, z) =
z

2π

∫∫

R2

h(x ′, y ′)

((x − x ′)2 + (y − y ′)2 + z2)1/2
d x ′d y ′. (6.16)

If we think it through, instead of using the boundary condition h(x , y) composed of several
blocks, we can use the one block boundary condition h0(x , y), calculate the contribution to
the potentialφi(x , y, z) and obtainφi(x , y, z) as a composition of the individual contributions.
This is exactly how we will proceed. Substitution of h0(x , y) to the integral (6.16) gives us

φi0(x , y, z, d) =
z

2π

d/2
∫

−d/2

0
∫

−∞

1

((x − x ′)2 + (y − y ′)2 + z2)1/2
d x ′d y ′. (6.17)

Again, we do not present the evaluated integral here and just claim that it is possible to evaluate
it in Wolfram Mathematica, Maple or Matlab.

We have a contribution of the one block approximation of width d to the net potential
φi(x , y, z). The net potential φi(x , y, z) is then obtained by the same composition as we used
for h(x , y). Thus, the approximate analytical solution for φi(x , y, x) is

φi(x , y, z) =
N
∑

i=1

aiφi0

�

x −
(bi − 1)d

2
, y, z, bi d

�

. (6.18)

6.3.3 Comparison with numerical solution

Similarly as in the 2D case, we do not compare directly the potentials because what we
are really interested in are the force fields derived from the potentials. Bringing back the
description of the force fields, we calculate a DEP force field based on the numerical solution
of the original boundary value problem and a DEP force field based on the analytical solution of
the modified (approximate) boundary value problem. Having the DEP force fields, we take into
account also the sedimentation force and compute the force fields acting upon a microparticle.

Since it is a rather challenging task to somehow compare 3D force fields, we compare
separately the components of the force fields. Fig. 6.10 shows a comparison of the force fields
for a randomly generated set of potentials applied on the electrodes. It is quite surprising
how well the force field computed from the approximate solution match the force field based
on the FEM solution. The comparison clearly shows that all the approximations we made in
the modified boundary value problem are justifiable and that the analytical solution of the
modified problem is usable.
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Figure 6.10: A comparison of individual components of the force fields calculated from the ap-
proximate and FEM solution. The numerical values inside the electrodes represent set potentials
in volts.
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Chapter 6. Control-oriented model of DEP force

6.4 Conclusion

In this chapter, we developed a control-oriented model of 2D and 3D DEP force fields.
We took the exact description of the force field in the form of a boundary value problem
and modified it so that it became solvable by the method of Green’s function—a method that
provides the analytical solution in the form of an integral over the boundary of the domain. The
modification involved an extension of the domain and an approximation of mixed boundary
conditions by Dirichlet conditions. We came up with a novel approach and approximated the
boundary conditions so that they imitate values of the numerical solution of the unmodified
boundary value problem. In 2D, the integral describing the solution was so simple that we
could approximate the boundary conditions very accurately by polynomials. On the contrary,
in 3D, we were able to evaluate the integral only for constant boundary conditions and thus we
approximated the exact boundary conditions by a composition of blocks. Finally, we showed
that, in both cases, the force fields obtained by the analytical solution of the modified boundary
value problem closely resembles the force field obtained from a numerical solution of the
original boundary value problem.
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Control
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Chapter 7

Control strategy

I n the previous two parts, we developed a method for position estimation of microparticles
and proposed a control-oriented model, so now it is time to focus our attention on the

control of the position. In this chapter, we describe the control strategy for DEP that was
originally introduced by Jǐrí Zemánek and Tomáš Michálek [28]. Then, we identify a weak
spot of the control strategy, analyze it and discuss how to suppress its influence.

7.1 Currently used control scheme

The control strategy proposed by Jǐrí Zemánek and Tomáš Michálek [28, 29] is shown
schematically in Fig. 7.1. We begin with the description of the left scheme in the figure. We
assume that the microparticles are manipulated in 2D—meaning, we can control the position
only in 2D—but the description is analogous for 3D. An estimate x̂ = [ x̂1, ŷ1, . . . , x̂ l , ŷl]ᵀ of
the current position x = [x1, y1, . . . , x l , yl]ᵀ of l microparticles is obtained by the algorithm
described in Chapter 4. As in a classical control scheme, the measured (estimated) position
is subtracted from a desired position xdes = [xdes

1 , ydes
1 , . . . , xdes

l , ydes
l ]
ᵀ and the resulting error

vector e is fed to a controller—in this case, a proportional one with gain K . The output of
the controller is a vector of desired forces Fdes = [Fdes

x,1 , Fdes
y,1 , . . . , Fdes

x,l , Fdes
y,l ]
ᵀ acting upon the

microparticles. The next block in the scheme is a crucial one and, at the same, it is the above
mentioned weak spot. It takes the desired forces Fdes as the input and calculates what poten-
tials u = [u1, . . . , u8]ᵀ have to be set on the electrodes in order to develop such forces. If this
block works properly, it essentially linearize the system. This is shown in the right scheme
in the figure. This fact allows us to pretend that we control the linear system represented by
(5.12), where the inputs are the forces and the states are the positions of the microparticles.
However, as we will see in a moment, the task of determining u for given forces Fdes is not
trivial. Far from it. The remaining part of the left scheme only shows that the potentials u are

des

u = f−1(F) Plant
Fdes u xx e

K

Position

estimation

des

x̂ x̂

Fdes xx e
K

Position

estimation

k
∫ẋ

Figure 7.1: A scheme of the used control strategy.
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fed to the plant. What happens in the block is that the potentials are set on the electrodes, DEP
force field is generated and, hopefully, the microparticles move towards the desired positions.

7.2 Constrained inverse quadratic problem

As mentioned, the crucial part of the control strategy is the ability to determine such po-
tentials u that the desired forces are developed. For reasons that will become obvious later on,
we refer to this problem as constrained inverse quadratic problem. In this section, we formalize
this problem and discuss some of its properties.

For simplicity, we start with only one microparticle that is manipulated in 2D. Then, the
problem is to find such u that a desired force Fdes = [Fdes

x , Fdes
y ]
ᵀ is generated. According to

(5.7) and (5.11), we have

Fdes
x = uᵀAxu, (7.1)

Fdes
y = uᵀAyu− F sed. (7.2)

Since the sedimentation force F sed is constant we can simply add it to Fdes
y and obtain

Fa = uᵀAau, a ∈ {x, y}, (7.3)

where Fx = Fdes
x and Fy = Fdes

y + F sed. Thus for one particle, the task of determining u for

a given Fdes reduces to solving of (7.3). Analogously, for 3D manipulation and/or more mi-
croparticles, the problem also reduces to a system of equations with quadratic forms.

Vector u represents potentials applied on the electrodes and the potentials cannot be ar-
bitrary; they are limited by physical capabilities of the control system. We reflect this fact by
addition of a constraint on a norm of u. The choice of the norm depends on the used control
system. Since in our case the components of u are independent with respect to each other, the
maximum norm is used.

Putting it altogether, the problem that we would like to be able to solve is

Fi = uᵀAi u, i = 1, . . . , m, (7.4)

subject to ‖u‖∞ ≤ 1,

where scalars Fi and generally indefinite matrices Ai ∈ Rn×n are given, and vector u ∈ Rn is
unknown. We call this problem constrained inverse quadratic problem as we seek a vector u
that is mapped by the set of quadratic forms uᵀAi u to a given vector F= [F1, . . . , Fm]ᵀ.

7.2.1 Properties

We should spend some time commenting properties of the constrained inverse quadratic
problem. First of all, matrices Ai are not arbitrary; they possess certain structure. Specifically,
according to (5.6) and (5.14), they are given by a sum of k so-called dyads, where k is the
dimension of the space where we can control the position of the microparticle. Therefore,
matrices Ai are of maximum rank k. Furthermore, matrices Ai are not in general symmetric
nor definite. But that does not matter because we can take only their symmetric part without
any impact on the generated set by the quadratic forms.
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7.2 Constrained inverse quadratic problem

As in every other mathematical problem where one seeks a solution, the question that
should come to mind among the first ones is: Does a solution exist? It is not difficult to show
that the system of equations (7.4) does not have to have a solution. For instance, if uᵀAiu is a
positive definite quadratic map and Fi is negative, then, obviously, ith equation of the system
does not have a solution and so the whole system cannot have a solution.

Another inevitable question concerns the uniqueness of a solution. We can trivially prove
that a solution does not have to be unique. Let m= 1, F1 = 1 and A1 = 1. Then the constrained
inverse quadratic problem simplifies to the quadratic equation u2 = 1 which obviously has two
solutions u = ±1 satisfying the condition ‖u‖∞ ≤ 1. Therefore, a solution of a constrained
quadratic inverse problem does not have to exist and if it exists, it does not have to be unique.

7.2.2 Approximate solution

If there is no u solving (7.4), we can seek such vector u that the generated forces Fi are
in some sense the closest to the desired ones. The closeness of the forces can be defined in
various ways. Then, instead of solving (7.4), we can reformulate the problem as the following
optimization task

min
u

m
∑

i=1

|Fi − uᵀAi u|, (7.5)

subject to ‖u‖∞ ≤ 1.

However, this optimization task is apparently not convex hence difficult to solve.
Tomáš Michálek [29] used the method of simulated annealing [38] to solve this optimiza-

tion problem and it turned out that this heuristic approach actually yields surprisingly good
results. Despite this fact, it still only is a heuristic approach and does not provide any guaranties
about the optimality of the solution it finds. Therefore, we will try to find a more insightful
approach and make use of the structure of the problem.

We turn around the problem and instead of seeking a vector u satisfying (7.5), we seek in
some sense the closest force to F for which the associated constrained inverse quadratic prob-
lem has a solution. Let us denote the closest force by F̃. Thus, we optimize over the space of
forces and not over the space of potentials u. This is very beneficial because the forces lie inRm

which is usually much smaller than the space of potentials which lie in Rn. However, if we find
F̃, we still have to solve the associated constrained inverse quadratic problem. Furthermore,
we have to somehow be able to determine the set of all feasible forces under the constraint
‖u‖∞ ≤ 1 in order to be able to determine F̃. As we will see, the capability of determining
the set of all feasible forces is crucial and it will, as a side product, give us a hint how to find
a solution of the associated constrained inverse quadratic problem.

We should also note what it means for a feasible force to be the closest possible to a given
infeasible force. We can define the closeness differently. The first choice that probably would
come everyone to mind is to use Euclidean norm of the difference of the two forces. However,
we use a different metric. We consider the closest feasible force to be the largest (measured by
Euclidean norm) feasible force with the same direction as the given infeasible force. The reason
is that for the manipulation the direction of the force is more important than the magnitude.
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Chapter 8

2D constrained inverse quadratic problem

I n this section, we restrict our attention to solving a 2D constrained inverse quadratic prob-
lem. In other words, we seek a solution of the following system of equations

Fx = uᵀAx u, (8.1a)

Fy = uᵀAy u, (8.1b)

subject to‖u‖∞ ≤ 1, (8.1c)

where u ∈ Rn and Ax,Ay are symmetric matrices from Rn×n. In addition, we assume that
n≥ 3.

Before we delve into the description of a proposed algorithm solving the problem, we
define a so-called numerical range, which will serve us as a vehicle for solving of (8.1).

8.1 Numerical range

Definition 8.1 (Numerical range). The numerical range (also known as the field of values) of
a matrix A ∈ Cn×n is defined as

W (A) = {u∗Au |u ∈ Cn, u∗u= 1}. (8.2)

In words, the numerical range is the image of the unit n-dimensional Euclidean sphere
under the continuous map u 7→ u∗Au.

The numerical range possesses a wealth of useful properties. A comprehensive list of the
properties can be, for instance, found in [39, Chapter 1] or [40]. Here, we state only the
properties exploited in the remaining text:

(P1) W (A) is compact and convex.

(P2) W (a A+ b In) = aW (A) + b, for all A ∈ Cn×n and a, b ∈ C.

(P3) W (A) =W (U∗AU), for any unitary matrix U.

(P4) If a matrix A is normal (A∗A = AA∗) then W (A) is equal to the convex hull of the
spectrum of A.

(P5) W (H(A)) = ReW (A), where Re is used to denote the real part of the numerical range.
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Chapter 8. 2D constrained inverse quadratic problem

How can the numerical range help us to solve our system of equations? At first glance,
the only similarity with the original problem is that there is a quadratic form involved in the
definition of the numerical range. But the quadratic form is defined above complex numbers.
In addition, according to the condition u∗u = 1, the domain of the numerical range is a unit
hypersphere and not the interior of a hypercube defined by ‖u‖∞ ≤ 1 in the original problem.
Nevertheless, as we will see in the rest of this section, with some modifications, the numerical
range is in fact particularly well suited for characterization of all feasible forces (Fx, Fy).

8.1.1 Drawing of the numerical range

From the previous discussion, it is evident that we need a way to determine the numerical
range. Although two very efficient and sophisticated algorithms approximating the numerical
range were introduced recently [41, 42], we will describe a simplified version of the algorithm
introduced by Johnson in late seventies [43]. All mentioned algorithms approximate the nu-
merical rangeW (A) by determining k of its boundary points fk and taking convex hull of these
points, but only the Johnson’s algorithm also provides generating vectors uk for all these points,
that is fk = u∗kAuk. The importance of this property will become obvious in Section 8.2.

The original version of Johnson’s algorithm allows us to control the precision of the ap-
proximation by running the algorithm iteratively till the desired precision is achieved. This
comes at the cost of losing the ability to control the time needed for the calculation. Since
this work is aimed for deployment in real-time control, we will describe a simplified version
of Johnson’s algorithm that does not enable us to control the precision, but it has a constant
time of execution.

The algorithm is based on the following proposition:

Proposition 8.1 (Johnson [43]). For any A ∈ Cn×n it holds

max
z∈W (A)

Re(z) = λ1 (H(A)) , (8.3)

Re
�

u∗1Au1

�

= max
z∈W (A)

Re(z) (8.4)

and
eiθ W (A) =W (eiθA), (8.5)

where u1 is a unit eigenvector associated with the largest eigenvalue λ1 of matrix H.

Although the proof can be found in [43], we show it here since it gives some insight that
we build upon later.

Proof. Observation (8.3) follows directly from properties (P4) and (P5). Statement (8.5) read-
ily follows from property (P2).

Relation (8.4) is also straightforward to prove. We begin with the very definition of eigen-
values and eigenvectors and the fact that we have chosen an eigenvector of unit length. The
defining relation for eigenvalues and eigenvectors is

H(A)u1 = λ1 (H(A))u1. (8.6)
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8.1 Numerical range

Figure 8.1: A visualization of relations given by equations (8.3) and (8.4).

If we multiply this relation by u∗1 from left, we get

u∗1H(A)u1 = λ1 (H(A))u
∗
1u1 = λ1 (H(A)) . (8.7)

The remaining step is to show that Re
�

u∗1Au1

�

= u∗1H(A)u1. That follows from

Re
�

u∗1Au1

�

=
1
2

u∗1Au1 +
1
2

u∗1A∗u1 = u∗1

�

1
2
(A+A∗)

�

u1 = u∗1H(A)u1. (8.8)

Thus the relation (8.4) holds.

Observations (8.3) and (8.4) have a nice geometric interpretation shown in Fig. 8.1. Eigen-
value λ1(A) is the real part of the rightmost point of W (A) and the eigenvector u1 is a gener-
ating vector of the rightmost point.

Now, we have a recipe how to determine the rightmost boundary point of W (A). We take
the Hermitian part of a matrix A, calculate its largest eigenvalue λ1(H(A)), find an associated
unit eigenvector u1 and map it by the quadratic form u∗1Au1.

Since property (P1) states thatW (A) is convex, we can approximateW (A) by taking convex
hull of several of its boundary points. So far, we know how to determine one boundary point.
To find more boundary points, we rotate W (A) and use the same procedure to calculate the
rightmost point of the rotated W (A). This idea is illustrated in Fig. 8.2.

The numerical range is a set in a complex plane, thus we can rotate it by multiplication
with eiθ , where θ is the angle of rotation. As the observation (8.5) suggest, the rotation of the
numerical range is carried out by multiplication of matrix A with eiθ . Therefore, to calculate
boundary points of W (A), we divide interval [0,2π) to N equidistant angles:

θk = k
2π
N

, k = 0, . . . , N − 1, (8.9)

and for each angle θk, we find a unit eigenvector uθk
∈ E1

�

H(eiθkA)
�

. We know that the
rightmost boundary point of the rotated numerical range eiθW (A) is given by u∗

θk

�

eiθkA
�

uθk
.

In order to transform it to a boundary point of the original W (A), we have to rotate the point
by angle −θk. It follows that the boundary point of W (A) associated with angle θk is

fθk
= e−iθk

�

u∗θk

�

eiθkA
�

uθk

�

= u∗θk

�

e−iθk eiθkA
�

uθk
= u∗θk

Auθk
. (8.10)
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(a) Rotation (b) Inner approximation

Figure 8.2: Approximation of the numerical range: (a) computation of boundary points fθk
of

W (A) by rotation and (b) inner approximation of W (A) by the convex hull of points fθk
.

An inner approximation of the numerical range W (A) is then given by

W̃ (A) = co
�

{ fθ0
, . . . , fθn−1

}
�

. (8.11)

Remark 1. It is important to note, that there is an analogous relation to (8.3) for the minimum
eigenvalue λn(.):

min
z∈W (A)

Re(z) = λn (H(A)) . (8.12)

Therefore the algorithm can be as well based on the calculation of the leftmost boundary
points. But more importantly, we can rotate the numerical range by angles from interval [0,π)
and for each angle calculate the leftmost and the rightmost boundary point. If an algorithm
providing all eigenvalues at once is used then this way, we save half of the calculations of
eigenvalues and thus make the approximation more computationally efficient.

Remark 2. Another way how to improve the efficiency of the algorithm is to use Lanczos al-
gorithm. Lanczos algorithm is an iterative algorithm estimating a given number of the largest
eigenvalues and the associated eigenvectors. The algorithm is very efficient for large and
sparse matrices and that is its main area of use. Nevertheless, in our case it could be beneficial
to use it even for smaller matrices. Lanczos algorithm needs a starting point, an initial guess of
the dominant eigenvector, and since uθ is a continuous function of θ , there is a good chance
that the eigenvector uθk

lies close to uθk+1
hence it will serves well as the starting point for

estimation of uθk+1
and make the algorithm converge faster. This idea is discussed in [44].

8.2 Set of all feasible forces

Here, we discuss how to utilize the numerical range to describe an approximation of the
set of all feasible forces (Fx, Fy) of problem (8.1). As a remainder, by feasible forces we mean
forces for which system of equations (8.1) has a solution. We denote the set by Ω∞(Ax,Ay),
where the subscript emphasizes that the set represent the set of all feasible forces under the
constraint ‖u‖∞ ≤ 1.

68



8.2 Set of all feasible forces

First of all, we combine real matrices Ax and Ay into a new complex matrix Axy = Ax+ iAy.
We emphasize that Axy obviously remains symmetric. This enables us to merge (8.1a) and
(8.1b) to only one equation:

Fx + i Fy = uᵀAxy u. (8.13)

Now, if we respectively identify the real and imaginary axis with Fx and Fy, the numerical
range W (Axy) coincides with the set of all feasible forces if we consider control signals from
the set {u ∈ Cn |u∗u= 1}, which we do not.

Next, we deal with fact that the numerical range is defined for complex vectors u whereas
we are restricted to real control signals u. Of course, we can define a real numerical range as
follows:

Definition 8.2 (Real numerical range). For any A ∈ Cn×n we define the real numerical range
as the set

R(A) = {uᵀAu |u ∈ Rn, uᵀu= 1}. (8.14)

Then the set of all feasible forces under the constraint uᵀu = 1 equals to R(Axy). But if
we do so, we lose all the mathematical results derived for the complex numerical rangeW (A),
which is the majority. Luckily, as Brickman [45, Corollary on p. 65] showed, the real and
complex numerical range, under certain condition, coincide.

Proposition 8.2 (Brickman [45]). Let C ∈ Cn×n and n≥ 3. Then

R(C) =W
�

1
2

C+
1
2

Cᵀ
�

. (8.15)

Since matrix Axy is symmetric, according to the proposition, we can writeR(Axy) =W (Axy)
and thus the numerical ranges coincide.

Now, we deal with the different constraints on u in the definition of the numerical range (8.2)
and in the constrained inverse quadratic problem in (8.1). We would like to bend W (Axy) so
that it equals Ω∞(Ax,Ay) or at least approximates it, but W (Axy) is defined for u∗u = 1 and
Ω∞(Ax,Ay) is defined for ‖u‖∞ ≤ 1. We can extend W (Axy) to the set Ω2(Ax,Ay) containing
the forces generated by ‖u‖2 ≤ 1. We observe that if we take an arbitrary vector u satisfying
condition u∗u= 1, scale it down by 1

2 and map it by a quadratic form u 7→ u∗Au, we get

�

1
2

u
�∗

A
�

1
2

u
�

=
1
4

u∗Au. (8.16)

From this observation it follows that if we define a modified numerical range as

W ′(A, c) = {u∗Au |u ∈ Cn, u∗u= c}, (8.17)

then we can write
W ′(A, c) = cW (A). (8.18)

In words, if we, roughly speaking, scale down the equality condition in the definition of the
numerical range, we just scale down the numerical range itself. Thus the set Ω2(Ax,Ay) is
easily obtained by the convex hull of W (A) and the origin of the complex plane:

Ω2(Ax,Ay) = {uᵀAxyu |u ∈ Rn, ‖u‖2 ≤ 1}= co
�

{W (Axy), 0}
�

. (8.19)

69



Chapter 8. 2D constrained inverse quadratic problem

Since the numerical range can be approximated by (8.11), we can approximate Ω2(Ax,Ay)
by

Ω̃2(Ax,Ay) = co
�

{ fθ0
, . . . , fθn−1

, 0}
�

. (8.20)

Now it is obvious that the notation of the boundary points fθk
was not chosen arbitrarily;

we denote the boundary points by fθk
to emphasize that they lie in the same space as the forces

F= [Fx, Fy]ᵀ.
To summarize, we found a way how to describe the set Ω2(Ax,Ay) of all feasible forces

by real control signals constrained by condition ‖u‖2 ≤ 1. This constraint is stricter than the
original constraint ‖u‖∞ ≤ 1 hence Ω̃2(Ax,Ay) ⊂ Ω∞(Ax,Ay). In other words, set Ω2(Ax,Ay)
does not contain all feasible forces under the original constraint. As a result, if we classify
all the forces outside Ω2(Ax,Ay) as infeasible, we can discard some forces that are actually
physically feasible.

8.3 Existence of a solution

Here, we make an important observation and that is the fact that all the forces feasible by
‖u‖∞ ≤ 1 (that is the set Ω∞(Ax,Ay)) lie in the cone given by the set of all feasible forces by
‖u‖2 ≤ 1 (that is the set Ω2(Ax,Ay)).

Proposition 8.3. Let Ax,Ay ∈ Rn×n be symmetric matrices. Then

Ω∞(Ax,Ay) ⊂ {z ∈ C | z = α f ,α ∈ R,α > 0, f ∈ Ω2(Ax,Ay)}. (8.21)

Proof. Let us assume that a force f fromΩ∞(Ax,Ay) does not lie in the cone given byΩ2(Ax,Ay).
Let u denote a generating vector of f , that is f = uᵀAxyu. Now, we normalize the vector u
hence we get u′ = u/‖u‖2 = cu. Then f ′ = u′ᵀAxyu

′ = c2
�

uᵀAxyu
�

= c2 f . We see that
f ′ ∈W (Axy) ⊂ Ω2(Ax,Ay), because it is generated by the unit vector u′. But since f ′ = c2 f , f
has to lie in the same cone as f ′. That is a contradiction.

This is a very important observation because it tells us what we lose if we restrict ourselves
toΩ2(Ax,Ay) instead of the originalΩ∞(Ax,Ay). The only thing that we lose is the magnitudes
of feasible forces, but for every force from Ω∞(Ax,Ay) there is a force in Ω2(Ax,Ay) with the
same direction—possibly with smaller magnitude.

We can put the same observation in a bit different way and relate it to a solution of the
original constrained inverse quadratic problem (8.1). We are able to find the setΩ2(Ax,Ay). Let
us further assume that we are also able to find a generating vector u for every F ∈ Ω2(Ax,Ay).
We use the same notion as in (8.1) and simply use F for the desired force for which we seek a
generating vector u. Then we have three cases:

• If F ∈ Ω2(Ax,Ay) then trivially, (8.1) has a solution and we are able to find it.

• If F /∈ Ω2(Ax,Ay) but there is a F̃ ∈ Ω2(Ax,Ay) satisfying F = cF̃ for a scalar c > 1, then
(8.1) might have a solution, but we are not able to find it.

• If F /∈ Ω2(Ax,Ay) and there is no F̃ ∈ Ω2(Ax,Ay) satisfying F= cF̃ for a scalar c > 1, then
(8.1) does not have a solution.
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8.4 Solving the problem

At this stage, we know how to determine whether a force F = [Fx, Fy]ᵀ is feasible by a
generating vector satisfying ‖u‖2 ≤ 1 or not. It either lies in the set Ω2(Ax,Ay) and it is
feasible or it does not lie in the set and it is not feasible. If a force is not feasible we can
take the maximum feasible force in the same direction and seek a solution for this force (see
Fig. 8.3). Either way, it is assured that a solution of (8.1) exists. It remains to find a way how
to determine a generating vector u for any force from Ω2(Ax,Ay).

We base our algorithm on the observation that if we find a boundary point f0 ∈ ∂Ω2(Ax,Ay)
positively collinear (the vectors point at the same direction) with a desired force f des = Fx+i Fy,
we can simply scale down a generating vector u0 of f0 to obtain a generating vector u of
f des, and the vector u0 is always known because of the way we determine boundary points
(see (8.10)). This observation is proven by the following equation

f des = c2 f0 = c2
�

uᵀ0 Axy u0

�

= (c u0)
ᵀAxy (c u0) = uᵀAxy u, (8.22)

which also shows that the scaling factor c is
p

‖ f des‖2/‖ f0‖2 and a generating vector u of f des

is cu0.
The requirement that the point f0 has to be a boundary point is important because other-

wise it could happen that even for f des ∈ Ω2(Ax,Ay) we would have to scale up u0 by c > 1
and thus the constraint ‖u‖∞ ≤ 1 (see (8.1c)) could be violated. If f0 ∈ ∂Ω2(Ax,Ay), this
cannot happen.

Recall that our ultimate goal is to find u generating f des and satisfying condition ‖u‖∞ ≤ 1
hence we do not have to stop after learning that the problem is infeasible for the Euclidean
norm. We can not only scale u0 down, we can also scale it up till ‖cu0‖∞ ≤ 1. Therefore,
in order to satisfy the original condition, we determine the scaling factor c by the following
relation:

c =min

(

1
‖u0‖∞

,

√

√

√
‖ f des‖2
‖uᵀ0Axy u0‖2

)

. (8.23)

We can divide values of c into three cases:

• If c ≤ 1, then f des ∈ Ω2(Axy) and we can scale down u0 to obtain a generating vector u
of f des. We found an exact solution of (8.1).

Figure 8.3: Approximation of the setΩ2(Ax,Ay) of all feasible forces under the constraint ‖u‖2 ≤ 1
with a feasible force f a and an unfeasible force f b.
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• If 1< c < 1/‖u0‖∞, then f des /∈ Ω2(Axy), but we can scale up u0 to obtain a generating
vector u of f des without violating the constraint ‖u‖∞ ≤ 1. We found an exact solution
of (8.1).

• If c = 1/‖u0‖∞, then the value of c is saturated; we cannot scale up u0 to obtain a
generating vector u of f des without violating the constraint ‖u‖∞ ≤ 1. We did not find
an exact solution of (8.1).

Now, the problem is how to find the boundary point positively collinear with a given force
f des. Let us denote the point by f̃ des. Then we seek a point f̃ des ∈ ∂Ω2(Ax,Ay) satisfying

f̃ des = k f des, k ∈ R, k > 0 (8.24)

At first, we approximate Ω2(Ax,Ay) by (8.20). Thus, we obtain a set of points fθk
∈

∂W (Axy). Since we are interested only in boundary points of Ω2(Ax,Ay), we discard all points
fθk

that lie in the interior of Ω2(Ax,Ay). For instance, in the situation illustrated in Fig. 8.3 we
discard fθ2

and fθ3
.

Next, we check whether f des is positively collinear—within some tolerance—with one of
the points fθk

. If there is such a point, then we are done because we found f̃ des. If there is no
such a point, we find a couple of boundary points fθi

and fθ j
for which it holds

Arg( fθi
)< Arg( f des)< Arg( fθ j

). (8.25)

For instance, in Fig. 8.3 for f des = fa, points fθ5
and fθ6

satisfies this condition. If the couple
fθi

, fθ j
satisfying the condition does not exist, then, according to the discussion in Section 8.3,

the constrained inverse quadratic problem does not have a solution.
In the rest of this section, we introduce a method seeking the point f̃ des by compression of

W (Axy) with Axy ∈ Rn×n to W (B) with B ∈ R2×2. The compressed numerical range enables us
to find easily real generating vectors for any f ∈ ∂W (B). An alternative method is presented
in Appendix B.1

8.4.1 Compression of the numerical range

Our method seeking f̃ des is based on the solution of the inverse numerical range problem
introduced by Carden [46]. Carden showed that if a point f ∈W (A) is a convex combination
of two other points f1, f2 ∈ W (A) with known generating vectors u1,u2, then a generating
vector u of f can be found by compression of the numerical range W (A) to a 2D case. In
our case, we seek a point f̃ des which lies (in angle) between points fθi

and fθ j
with known

generating vectors uθi
and uθ j

, but it is not necessarily given by their convex combination.
Furthermore, Carden’s method works only for complex generating vectors. Hence, there are
some minor changes that have to be made in order to use Carden’s method for our case.

Following Carden’s algorithm, we compress the numerical range to a 2D case. We con-
struct an orthonormal matrix U ∈ Cn×2 such that uθi

,uθ j
∈ Range(U). Let B = UᵀAxyU. Then

the numerical range W (B) is a compression of W (Axy) to 2D. It is noteworthy, that B is sym-
metric, because Axy is symmetric and the unitary transformation does not destroy symmetry.
Furthermore, since vectors uθi

and uθ j
are eigenvectors of real symmetric matrices H(eiθi Axy)

and H(eiθ j Axy), respectively, they are real and thus also U is real, that is U ∈ Rn×2.
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Numerical range W (B) and also R(B), by construction, contains fθi
and fθ j

. According to
Proposition 8.2, W (B) = R(B) only for n ≥ 3 and here we have n = 2. Thus, W (B) does not
coincide withR(B) in general. Since we seek only real generating vectors andW (B) 6=R(B),
we leave W (B) and focus solely on R(B).

Real numerical range R(B) necessarily contains a point positively collinear with f des, be-
cause it contains fθi

and fθ j
, and we can get from fθi

to fθ j
continuously by a unit real gen-

erating vector. Let us denote the positively collinear point by f̂ des. Point f̂ des, however, is not
the sought point f̃ des because it does not necessarily have to lie on the boundary of W (Axy),
but, as we will see, it will serve as a very good approximation.

We seek a point f̂ des as an intersection of R(B) with the line in the direction of f des (see
Fig. 8.4). In order to simplify the calculation, we modify the matrix B so that it has zero trace:

B′ = B−
1
2

tr(B) I2. (8.26)

Because matrix B′ is symmetric and has zero trace, it has the following form

B′ =

�

a b
b −a

�

, (8.27)

where a, b ∈ C. Carden further simplified B′ by unitary matrix transformations to a real
matrix with zeros on the diagonal (see [39, p. 19]). But the unitary matrices would necessary
contain complex numbers which, as it will be obvious in a moment, would make the following
procedure inapplicable. Thus, we cannot further simplify B′ and leave it as it is.

Removing the trace from B changes R(B). According to property (P2), which also applies
on real numerical range, we have

R(B′) =R
�

B−
1
2

tr(B) I2

�

=R(B)−
1
2

tr(B). (8.28)

In words, R(B′) is R(B) shifted by −1
2 tr(B). Since we seek an intersection of R(B) with the

line in the direction of f des and now we shifted R(B), we also will have to shift the line by
−1

2 tr(B).

Let us now see how R(B′) looks like. We can describe all 2D real unit vectors as v(α) =
[cosα, sinα]ᵀ. Making use of the form of the matrix B′, we can describe all values of the real
numerical range as

R(B′) = v(α)ᵀB′ v(α) = a cos(2α) + b sin(2α). (8.29)

Notice, thatR(B′) is a description of an ellipse. In fact,W (B′) is an ellipse with its interior
(see [39, Lemma 1.3.3]) and R(B′) is its boundary, that is R(B′) = ∂W (B′). Since R(B′)
is shifted R(B), R(B) has to be an ellipse as well. Fig. 8.4 illustrates the relation between
Ω2(Ax,Ay), Ω̃2(Ax,Ay) and R(B). Obviously, since R(B) is an ellipse having two boundary
points of Ω2(Ax,Ay) on its boundary, it serves as a better local approximation of ∂Ω2(Ax,Ay)
than Ω̃2(Ax,Ay).

Having a convenient description of R(B′), we proceed with the description of the shifted
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Figure 8.4: Visualization of a compression of the numerical range W (Axy) to a 2D case R(B).

line given by f des. One can easily verify that the shifted line is described by

fx = t, (8.30a)

fy = k1 t + k2, (8.30b)

where t ∈ R is the parameter of the line, k1 =
Re( f des)
Im( f des) and k2 = k1 Re

�1
2 tr (B)

�

− Im
�1

2 tr (B)
�

.

Next, we decompose complex numbers a and b in (8.28) to real and imaginary parts:
a = a1 + i a2 and b = b1 + i b2. Then intersection points of R(B′) with the shifted line (8.30)
are found as solutions of the following system of equations

a1 cos(2α) + b1 sin(2α) = t, (8.31a)

a2 cos(2α) + b2 sin(2α) = k1 t + k2, (8.31b)

which has in general two solutions for α. The solutions are

α1,2 = arctan

 

b2 − b1 k1 ±
q

a2
1 k2

1 − 2 a1 a2 k1 + a2
2 + b2

1 k2
1 − 2 b1 b2 k1 + b2

2 − k2
2

a2 + k2 − a1 k1

!

. (8.32)

Therefore, we have two real generating vectors for two intersection points. But these intersec-
tion points are shifted by −1

2 tr(B) from the original setup hence we have to shift them back.
Thus, the sought intersection points are

f̂ des
i = vᵀ(αi)B

′ v(αi) +
1
2

tr(B) (8.33)

= vᵀ(αi)
�

B−
1
2

tr(B)
�

v(αi) +
1
2

tr(B) (8.34)

= vᵀ(αi)Bv(αi)−
1
2

tr(B)vᵀv+
1
2

tr(B), i = {1, 2}, (8.35)

but since vᵀv= 1, we get
f̂ des
i = vᵀ(αi)Bv(αi), i = {1, 2}. (8.36)

The intersection points are visualized in Fig. 8.4. One can see that the point f̂ des
1 is very

close to the boundary hence it is a very good approximation of the sought point f̃ des.
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In order to transform the 2D vectors v(α1) and v(α2) to the original n-dimensional space,
we multiply them by the unitary matrix U:

ûdes
1 = Uv(α1), (8.37)

ûdes
2 = Uv(α2). (8.38)

Obviously, matrix U has to be real because otherwise it would transform a real vector v(αi)
to a complex vector ûdes

i . But we seek only real generating vectors. That is why we could not
further simplify the matrix B′.

So we obtained two real generating vectors for points f̂ des
1 and f̂ des

2 that are positively
collinear with the desired force f des. The remaining step is to scale the generating vector
corresponding to the intersection point closer to the boundary of Ω2(Ax,Ay). Since it is not as
easy as it seems to determine which of the points f̂ des

1 and f̂ des
2 is closer to the boundary, we

scale both generating vectors by (8.23) and take the one which generates a force closer to the
f des.

8.5 Comparison of the set of all physically and computationally
feasible forces

We described a way how to solve the constrained inverse quadratic problem (8.1) for all
forces that have a generating vector u satisfying ‖u‖2 ≤ 1. We denoted this set by Ω2(Ax,Ay).
We also showed that the set of all forces for which we are able to find a solution of (8.1) can be
extended from Ω2(Ax,Ay) to a larger set. Let us denote the extended set by Ωext(Ax,Ay). The
set Ωext(Ax,Ay) is obtained as follows. Let f be an arbitrary boundary point of Ω2(Ax,Ay) and
u is a generating vector of f . We normalize the generating vector u to u′ = u/‖u‖∞. Then
the point u′ᵀAxy u′ is a boundary point of Ωext(Ax,Ay).

Fig. 8.5 shows comparisons of the sets of all physically feasible forces Ω∞(Ax,Ay) with
the sets Ω2(Ax,Ay) and Ωext(Ax,Ay). Since we are not able to calculate the boundary of
Ω∞(Ax,Ay), we approximated the set by sampling the set of all admissible control signals
u. We randomly sampled the interior of the hypercube defined by the constraint ‖u‖∞ ≤ 1
and use these samples as generating vectors. The black dots in the figure represent forces ob-
tained in this way. To make the approximation a bit more informative, we also sample all the
edges of the hypercube and the forces generated by these samples are in the figure visualized
by the gray dots. We compared the sets in four cases. We placed an imaginary microparticle at
four places above the electrode array and for these places we calculated matrices Ax and Ay.
The figure clearly shows that, at least in these cases, the set Ωext(Ax,Ay) captures only a small
part of Ω∞(Ax,Ay). In words, the proposed method clearly fails to find a solution in a rather
large set of cases. We can also infer from the figure, that the extension of the set Ω2(Ax,Ay)
to Ωext(Ax,Ay) enlarges significantly the set of forces for which the proposed algorithm finds
a solution.

8.6 Possible improvements

As Carden has shown in [46], there are n linearly independent generating vectors for each
point from the interior ofW (A), where A ∈ Rn×n. We solved the constrained inverse quadratic
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Figure 8.5: Comparisons of all physically feasible forces (gray and black dots) with forces feasible
under the condition ‖u‖2 ≤ 1 (Ω2) and with forces for which the proposed algorithm is able to
solve the constrained inverse quadratic problem (Ωext).

problem by finding a point f̂ des ∈ Ω2(Ax,Ay) that is positively collinear with the desired force
f des. This point is then lengthened/shortened to match the magnitude of f des. However, we
cannot lengthen it more than by the factor equal to 1/‖u‖∞, where u is a generating vector of
f̂ des. According to Carden’s result, f̂ des has n linearly independent generating vectors. Thus,
if a generating vector u does not allows us to extend the f̂ des to the desired length, it could
happen that f̂ des has another generating vector that would allow us to do it. Currently, we are
able to find only of its generating vectors and we do not know how to find the others.

8.7 Experimental results

To verify the applicability of the proposed algorithm, we implemented it and used it as
a part of the control strategy described in Chapter 7. Execution of the algorithm itself takes
approximately 1.5 ms but due to the position estimation method, the control period is 100 ms.

Fig. 8.6 shows the measured trajectory of a microparticle steered along a desired trajectory.
Apparently, the microparticle follows the desired trajectory and thus we can claim that viability
of the control strategy and the proposed algorithm is proven. In order to get some insight
how the generated potentials look like, we also add Fig. 8.7 showing the potentials along the
trajectory.
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Figure 8.6: An experiment showing manipulation of a microparticle by the described control
strategy. The dashed black line shows the reference trajectory and the blue line represents the
measured trajectory.
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Figure 8.7: An illustration showing the potentials set on the electrodes during the manipulation
with a microparticle. The purple line represents the x component of the measured trajectory.

Sure, the tracking error could be better and it could possibly be lowered by use of a better
tunned proportional regulator or by use of a more complex regulator. But that was not the
main goal of this thesis. We, to some extent, solved the 2D constrained inverse quadratic
problem and here we showed that the overall control strategy works.

8.8 Conclusion

In this chapter, we proposed an algorithm partially solving the 2D constrained inverse
quadratic problem. By partially, we mean that we had to replace the original constraint
‖u‖∞ ≤ 1 by the stricter constraint ‖u‖2 ≤ 1. This reduces the set of forces for which we
are able to find a generating vector u. Nevertheless, the situation is not that bad because we
managed to extend the set even for some forces with ‖u‖2 > 1. In addition, we proved that if
the direction of the desired force is physically feasible, the proposed algorithm always finds a
vector u generating a force in the desired direction, but possibly with a smaller magnitude.
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Chapter 9

nD constrained inverse quadratic problem

W e continue in the discussion of solving the constrained inverse quadratic problem (7.4).
We will try to generalize the proposed algorithm solving the 2D case to a m-dimen-

sional case. For convenience, here we restate the constrained inverse quadratic problem:

Fi = uᵀAi u, i = 1, . . . , m, (9.1)

subject to ‖u‖∞ ≤ 1,

where vector u ∈ Rn, Ai ∈ Rn×n and Ai = Aᵀi .
In the same spirit as in the 2D case, we use a similar set as the numerical range as a tool

for solving the system of equation. This time, we use a so called joint numerical range.

9.1 Joint numerical range

The numerical range generalized to higher dimensions is called joint numerical range. Un-
fortunately, similarly as with the numerical range defined in Section 8.1, also the joint numeri-
cal range has several names. Some authors refer to is as generalized numerical range [47], some
multiform numerical range [48] and some authors also as k-dimensional field of values [39]. We
will stick with the name joint numerical range.

Definition 9.1 (Joint numerical range). Let (A1, . . . ,Am) be an m-tuple of matrices Ai ∈H (n).
Then the joint numerical range (JNR) of (A1, . . . ,Am) is defined as follows

Wm(A1, . . . ,Am) = {(u∗A1u, . . . ,u∗Amu) |u ∈ Cn, u∗u= 1}. (9.2)

In contrast to the numerical range, the joint numerical range is not always convex. When
m = 2, there is one-to-one correspondence between the numerical range and the joint nu-
merical range hence W2(A1,A2) is always convex [49, 50]. When m = 3 and n > 2, the
joint numerical range W3(A1,A2,A3) remains convex [50]. However, convexity may fail if
m> 3 [49].

We also define the real joint numerical range:

Definition 9.2 (Real joint numerical range). For any m-tuple (A1, . . . ,Am) of matrices Ai ∈
H (n) we define the real joint numerical range (rJNR) as the set

Rm(A1, . . . ,Am) = {(uᵀA1u, . . . ,uᵀAmu) |u ∈ Rn, uᵀu= 1}. (9.3)
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For simplicity of notation, we denote a m-tuple (A1, . . . ,Am) by A and we will write sim-
ply Wm(A) instead of Wm(A1, . . . ,Am), or analogously Rm(A), when no confusion can arise.
Furthermore, let η ∈ Rm, then we write ηᵀA instead of

∑m
i=1ηiAi .

Similarly as in the 2D case, we would like to be able to determine all the boundary points
ofRm(A) orWm(A) if they coincide. For that purpose, we base our discussion on the following
proposition.

Proposition 9.1 (Gutkin [51]). Let A = (A1, . . . ,Am), where Ai ∈ H (n), and let s(η) be the
support function of W (A). Then

s(η) = λ1(η
ᵀA). (9.4)

Let η ∈ ∂ Bm−1. Then

Wm(A)∩ S(η,λ1(η
ᵀA)) = {u∗(ηᵀA)u |u ∈ E1(η

ᵀA),u∗u= 1}. (9.5)

In words, the proposition states that all points from ∂W (A) that also lies in ∂ co(W (A))
have a generating vector (not necessarily real) from the eigenspace E1(ηᵀA) for a vector η.

Although not of immediate use, based on the simulations, we make the following conjec-
ture:

Conjecture 9.1. Let A = (A1, . . . ,Am) be an m-tuple of symmetric matrices Ai ∈ Rn×n. Then
for every point from ∂ co(R(A)) it holds that it is given by a convex combination of at most two
points from ∂R(A).

We feel that the key to a proof of the conjecture is hidden in Proposition 9.1, which, besides
other things, tells us that every 2D projection of rJNR is convex.

9.2 Extending the proposed algorithm from 2D to mD

Now, we try to generalize the algorithm solving the 2D constrained inverse quadratic prob-
lem (see Section 8.4) to higher dimensions.

To begin with, we remind that the algorithm relied on the ability to determine all the
boundary points of R(Axy) together with their generating vectors. In 2D we were able to de-
termine all the boundary points ofR(Axy) because we found a way how to determine boundary
points ofW (Axy) andW (Axy) coincided with R(Axy). We examine whether those two aspects
are fulfilled in a general m-dimensional case and thus whether we can generalize the algorithm
from 2D to higher dimensions.

The first part of Proposition 9.1 shows us how boundary points of co(Wm(A)) can be deter-
mined: by variation of η we find all supporting hyperplanes of Wm(A) and thus, according to
the supporting hyperplane theorem [52], we determine ∂ co(Wm(A)). Unfortunately, the second
part of the proposition reveals only how to get generating vectors for points lying in ∂Wm(A)
and at the same time in a supporting hyperplane of Wm(A). Therefore, we failed to satisfy
the first aspect—by application of Proposition 9.1 we can determine generating vectors only
for points from ∂Wm(A) ∩ ∂ co(Wm(A)), and since Wm(A) is not always convex there can be
boundary points of Wm(A) that does not lie in a supporting hyperplane. This is troubling be-
cause it seems that the approach from the 2D case is in more dimensions applicable only for
convex Wm(A)—provided that the second aspect is met.
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Let us now see if the second aspect is fulfilled for convexWm(A), that is ifRm(A) =Wm(A)
for convex Wm(A). We show by a counterexample that it does not have to be fulfilled. Let
A = (A1,A2,A3). Since W3(A) is always convex, it follows from Proposition 9.1 that for all
F ∈ ∂W3(A) there is η ∈ R3 such that u ∈ E1(ηᵀA) is a generating vector of F. But is there
always a real generating vector for any F ∈ ∂W3(A)? If it is, then ∂R3(A) = ∂W3(A). Let
us further assume that for a vector η the eigenvalue λ1(ηᵀA) is of multiplicity two and thus
E1(ηᵀA) = span{v,w}, where v,w are unit real vectors (keep in mind that matrix ηᵀA will
be always real and symmetric in our case). Then all real unit vectors u from E1(ηᵀA)—that
is u = v cosα+w sinα, where α ∈ [0, 2π)—generate a one-dimensional manifold in R3, but
the intersection W3(A)∩ S(η,λ1(ηᵀA)) is in general a 2D manifold. Hence some points from
W3(A)∩ S(η,λ1(ηᵀA)) necessarily have only complex generating vectors and thus ∂R3(A) 6=
∂W3(A). This result can be analogously generalized for m > 3. Based on this discussion, we
can, however, infer that if Wm(A) is strictly convex then ∂Rm(A) = ∂Wm(A).

Proposition 9.2. Let A= (A1, . . . ,Am) be a m-tuple of symmetric matrices Ai ∈ Rn×n. Ifλ1 (ηᵀA)
is a simple eigenvalue for all η ∈ ∂ Bm−1, then Wm(A) is strictly convex and

∂Rm(A) = ∂Wm(A) (9.6)

Proof. If λ1 (ηᵀA) is simple for every η ∈ ∂ Bm−1 then E1(ηᵀA) = span{v}, where v is a real
unit eigenvector—it is real because all matrices ηᵀA are real symmetric. It follows from Propo-
sition 9.1 thatWm(A)∩S(η,λ1(ηᵀA)) = vᵀ (ηᵀA) v. In words, intersection ofWm(A) with any
of its supporting hyperplane is a point. It follows that Wm(A) is strictly convex. Furthermore,
all points ∂Wm(A) are generated by real vectors and thus ∂ Rm(A) = ∂Wm(A).

To summarize, the convexity of Wm(A) does not allow us to extend the algorithm solving
the 2D constrained inverse quadratic problem to higher dimensions, only the strict convexity
of Wm(A) enables us to do so. An obvious question arises, does the special form of matrices
Ai—derived in Chapter 5 (see (5.14))—ensure that λ1(ηᵀA) is simple for all η ∈ ∂ Bm−1?
Unfortunately, by simulation we found out that the answer is negative. Therefore, the joint
numerical rangeWm(A) for the special form of matrices Ai is not in general strictly convex and
thus we cannot use the approach we used for solving the 2D case for higher dimensions.

9.3 Reformulation to semidefinite programming

Since we are unable to extend the algorithm solving the 2D case, we will try to tackle the
higher dimensional case by a different approach. We reformulate the original problem (9.1).
We make use of the fact that the quadratic form can be also written as

uᵀAu=
n
∑

i=1

n
∑

j=1

ai juiu j =
n
∑

i=1

n
∑

j=1

ai j pi j = tr (PA) , (9.7)

where elements of matrix P = [pi j] are given by pi j = uiu j and thus P = uuᵀ. Therefore, the
quadratic form equations in the original problem (9.1) can by written as

Fi = tr (PAi) , (9.8)
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where P = uuᵀ and ‖u‖∞ ≤ 1. That did not help us much, so we proceed further and com-
pletely get rid of the dependence on u. Notice, that matrix P has to be positive semidefinite,
because only if it is positive semidefinite, it can be, according to the spectral theorem (see, for
instance, [53]), decomposed to

P=
n
∑

i=1

λi(P)viv
ᵀ
i , (9.9)

where vi is an orthonormal eigenvector associated with λi(P). Thus for any positive semidef-
inite matrix P we can write

tr (PAi) =
rankP
∑

j=1

λ j(P) tr
�

v jv
ᵀ
j Ai

�

=
rankP
∑

j=1

�q

λ j(P)v j

�

Ai

�q

λ j(P)v j

�ᵀ
=

rankP
∑

j=1

ṽ jAi ṽ
ᵀ
j . (9.10)

Apparently, another requirement on matrix P is that it has to be of rank one. In order
to completely reformulate the original problem (9.1) from u to P, it remains to transform
the condition ‖u‖∞ ≤ 1. Clearly, since P = uuᵀ, the diagonal elements of P are equal to u2

i
and thus we can reformulate the condition ‖u‖∞ ≤ 1 to pii ≤ 1. Putting it all together, the
problem (9.1) can be reformulated to

Fi = tr (PAi) , (9.11)

P� 0

rankP= 1

pii ≤ 1,

i = 1, . . . , m.

Even though we transformed the quadratic equations to linear ones, due to the introduced
rank constraint, the problem remains to be a tough nut to break. Therefore, we relax the rank
constraint and further modify the problem to a so-called rank minimization problem (RMP):

P∗ = arg min
P

rank (P) (9.12)

s.t.: Fi = tr (PAi) ,

P� 0,

i = 1, . . . , m,

which is known to be NP-hard [54], but at least one can choose from several heuristics dealing
with this problem. Notice, that we removed the condition pii ≤ 1. That is because it lost its
original meaning—P∗ can be of higher rank than one, and then pii 6= u2

i .

We should discuss how to interpret the minimizer P∗. If rankP∗ = 1 and pii ≤ 1 for every
i, then a solution of (9.1) is easily obtained by the decomposition of P to uuᵀ. However, if
rankP∗ > 1 or pii > 1 for any i, then a solution of (9.1) does not exist.

As we already said, optimization problem (9.12) is hard to solve. But because it emerges
in many areas like signal processing or control systems design, it gained quite an extensive
attention from many researchers and several heuristics [55, 56] were developed. Here, we
use a so-called trace heuristic which converts the non-convex problem (9.12) to the following
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semidefinite programming (SDP) problem

Q∗ = argmin
Q

tr (Q) (9.13)

s.t.: Fi = tr (QAi) ,

Q� 0,

i = 1, . . . , m.

This optimization problem is, in contrast to (9.12), convex.

Finally, we ended up with a problem that is easy to solve. But we should not be mistaken
and bear in mind that this is only a heuristic and thus it does not necessarily give us a minimal
rank solution. There are special cases of rank minimization problems where the trace heuristic
yields the minimum rank solution [57, 58]; unfortunately, our problem does not fall into this
category. Another hitch is that even though the reformulated problem is easy to solve, the
optimization runs over a symmetric matrix P and thus the number of optimization variables
grew up from the original n to n/2(n+ 1).

Again, we should discuss how to interpret the minimizer Q∗. If rankQ∗ = 1, then the
situation is the same as with the original RMP and the solution of (9.1) is obtained via de-
composition of Q∗ to uuᵀ. However, if rankQ∗ > 1 then the situation differs; we cannot state
anymore that a solution of (9.1) does not exist because we cannot be sure that there is no
matrix Q satisfying the conditions with lower rank.

Now, we describe how to tackle the case when rankQ∗ > 1. We use a so-called log-det
heuristic [59, 56]—a more sophisticated heuristic for RMP than the trace heuristic—to find
Q with lower rank. Furthermore, we show that by chattering control we can use even Q∗ of
higher rank than one to generate the desired force.

9.3.1 Log-det heuristic

The log-det heuristic [59, 56] is another heuristic approximately solving RMP. Without any
derivation or explanation, here we just state that the heuristic iteratively solves the following
SDP

Qk+1 = argmin
Q

tr
�

(Qk +δI)−1 Q
�

(9.14)

s.t.: Fi = tr (QAi) ,

Q� 0,

qii ≤ 1,

i = 1, . . . , m,

and that the initial value Q0 is the output of the trace heuristic, that is Q0 = Q∗. Apparently,
the log-det heuristic can be viewed as an iterative refinement of the result obtained by the
trace heuristic. The obvious disadvantage of this approach is that we have to solve the SDP
several times. That could not be possible due to the time constraints given by the fact that
the algorithm is supposed to be used in a real-time application. In addition, this heuristic also
does not necessarily converge to a true minimum rank solution P∗.
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9.3.2 Chattering control

In the chattering control, the control action is composed of several values and the control
system switches between those values so that the desired output is achieved. Probably the
most famous example is pulse-width modulation (PWM), where, for instance, we have 0 V and
5 V, and in order to achieve the desired output voltage, say 2.5 V, the control system spend
half of the control period with 0 V and the other half with 5 V.

We can use the concept of chattering control so, that we decompose the output of the
trace heuristic Q∗, according to (9.9), to

∑l=rankQ∗

i=1 λi(Q∗)uiu
ᵀ
i . Then in order to generate the

desired force, the control system switches between ui with switching times proportional to
λi(Q∗). This can be mathematically expressed as

u(t) =























u1 t ∈ [0, k1T ),
...

ul−1 t ∈ [kl−2T, kl−1T ),

ul t ∈ [kl−1T, T ),

(9.15)

where T is the control period, time t is from the interval [0, T ) and

ki =

∑i
j=1λ j(Q∗)

∑l
j=1λ j(Q∗)

. (9.16)

In theory, as T converges to zero, the force generated by u(t) converges to the desired
force. One should immediately argue, that this approach assumes that we are able to switch
between ui during the control period T . That would be a good objection, because we are
actually not able to switch between ui during the control period; currently, the control system
runs in Simulink/Real-Time Windows Target environment which due to the access to the image
sensor does not allow us to run a faster control loop side-by-side with the main control loop.

9.3.3 A comparison of SDP solvers

To implement the algorithm solving the general m-dimensional constrained inverse quadratic
problem we need to select an appropriate—the fastest—solver for the SDP. We chose solvers
that are written in Matlab or that has available interface to Matlab. We used the basic variant
of the proposed algorithm—the trace heuristic—as a benchmark. Table 9.1 summarizes the
run times of different solvers for different parameters n and m (for details see (9.1)). Based
on the table, CSDP solver is the winner and thus it is also the one we used in the experiments.
Also notice the bad scalability—the average time grows very fast in dependence on n.

9.4 Relation of the SDP formulation to the rJNR

In this section, we examine the relation between the SDP formulation and rJNR. We will
illustrate the relation on a 3D case. Specifically, we randomly generated matrices A1,A2 and
A3 from R10×10.

Fig. 9.1a shows boundary points of R3(A1,A2,A3) obtained by Proposition 9.1. That
means, we varied η and generated the boundary points by real unit vectors u ∈ E1(ηᵀA).
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Problem size Average time [ms]

n m SeDuMi SDPT3 CSDP DSDP Mosek

8 2 11.3 28.4 2.4 2.1 3.0

8 4 12.0 32.6 2.5 2.5 3.1

48 2 43.1 46.8 13.3 18.1 24.4

48 4 46.9 48.1 17.7 23.0 27.4

48 8 55.2 50.1 25.7 32.3 35.1

Table 9.1: A comparison of SDP solvers.

In fact, Proposition 9.1 actually allows us to find only the boundary points from the strictly
convex part of the boundary. This is clearly visible in the figure, where one can see some
circular blank spots—the non-strictly convex part of the boundary.

Now the situation becomes more interesting because a comparison of Fig. 9.1a with Fig. 9.1b
shows that there is a deep connection between the SDP formulation and rJNR. But first things
first, we should comment how Fig. 9.1b was obtained. We uniformly sampled the space of all
unit forces F. For each sample, we solved the constrained inverse quadratic problem by the
trace heuristic (9.13) and, if the rank of Q∗ was higher than one, we also solved the log-det
heuristic (9.14) and obtained QN . We decomposed Q∗ to

∑n
i=1λi(Q∗)viv

ᵀ
i and possibly also

QN to
∑n

i=1λi(QN )wiw
ᵀ
i . From the decompositions, we took only the eigenvectors associated

with the largest eigenvalue, that is v1 and w1, and use them as generating vectors. Forces
generated in this way by v1 and w1 are in the figure represented by green and red dots, re-
spectively. Interesting, the SDP formulation actually do the same as the algorithm proposed in
the previous chapter; it seeks a boundary point ofR3(A1,A2,A3) in the direction of the desired
force and scale its generating vector so that it generates the desired force. Apparently, it also
fails in the same situations because without the log-det heuristic the figure would have the
same blank spots. Luckily, the log-det heuristic manages to fill those blank spots.

Let us figure out why the SDP formulation behaves like that. At first, we will try to get an
intuition how the trace heuristic works. In the following discussion, we will frequently refer
to the rank of Q, so let us denote it by r. For simplicity, we will write λ j instead of the full
λ j(Q).

First of all, we make use of the fact that tr (Q) =
∑r

i=1λi and change the objective function
accordingly. Then, we express the constraint Fi = tr (QAi) by the spectral theorem and (9.10)
as Fi =

∑r
j=1λ ju

ᵀ
j Ai u j . Thus, we get

Q∗ = arg min
Q

r
∑

i=1

λi (9.17)

s.t.: Fi =
r
∑

j=1

λ ju
ᵀ
j Ai u j ,

Q� 0,

i = 1, . . . , m.
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(a) Real joint numerical range (rJNR)

(b) Semidifenite programming (SDP)

Figure 9.1: Relation of the SDP formulation to the rJNR.

Now, we will tinker a bit more with the constraints involving Fi . We can rewrite the constraints
to the vector form

F=







F1
...

Fm






=

r
∑

j=1

λ j







uᵀj A1 u j
...

uᵀj Am u j







︸ ︷︷ ︸

F̃ j

=
r
∑

j=1

λ j F̃ j . (9.18)

Keep in mind, that vectors u j form an orthonormal basis of Q hence they are of unit length and
vectors F̃ j are necessarily fromR (A). We are getting closer to a nice interpretation; we already
see that the trace heuristic optimization problem seeks the optimal solution as a weighted sum
of points from R (A) while it minimizes the sum of the weights.

To see, why the optimal solution Q∗ is of rank one only if F points at the strictly convex
part of the boundary and higher rank otherwise, we further modify the constraint with F. We
divide the weighting coefficients λ j by λ̃=

∑r
j=1λ j . Thus, we get

F= λ̃
r
∑

j=1

λ′j F̃ j = λ̃F̃, (9.19)
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where F̃ is given as the convex combination of points F̃ j with coefficients λ′j . Since F̃ is a convex
combination of points from R (A), it necessarily lies in co(R (A)). Finally, if we replace the
condition involving Fi in (9.17) by the condition (9.19) and

∑r
j=1λ j by λ̃, we get

min
F̃∈co(R(A))

λ̃ (9.20)

s.t.: F= λ̃F̃,

λ̃≥ 0.

Event though, this optimization problem does not tell us how to choose u in order to gen-
erate the desired force F, it still is in principle the same as the original trace heuristic opti-
mization problem (9.13). It shows us, that an optimization solver actually seeks the point
F̃ from co(R (A)) that has the largest magnitude and that is positively collinear with F—in
other words, it seeks the positively collinear boundary point of co(R (A)). Only then is the
coefficient λ̃ minimized. We finally found the connection. If the boundary point F̃ is on the
strictly convex part of the boundary, then it lies in R (A), it has a real generating vector and
rankQ∗ = 1. Otherwise, F̃ is given by a convex combination of two or more boundary points of
R (A), it does not have a real generating vector and the trace heuristic optimization problem
ends up with Q∗ of rank higher than one.

It is here, where Conjecture 9.1 becomes useful. To remind, it states, that every point from
∂ co(R (A)) is given by a convex combination of at most two points from ∂R (A). Since the
minimizing F̃ must be from ∂ co(R (A)), it is given by a convex combination of at most two
points from ∂R (A). Thus, if the conjecture is right, we can conclude that the trace heuristic
optimization problem never ends up with Q∗ of higher rank than two. As a result, in chattering
control, one never needs to switch between more than two sets of potentials u.

9.5 Possible improvements and modifications

The first modification we mention here deals with the situation where the trace heuristic
ends up with matrix Q∗ of rank higher than one. Then, instead of using the log-det heuristic or
the chattering control, one can also decompose Q∗ by the spectral theorem, take the dominant
u—a unit eigenvector associated with the largest eigenvalue—and use it as the initial value
for one of many local search algorithms and the optimization problem minimizing

∑m
i=1 |Fi −

uᵀAi u| (for details, see (7.5)).

Second, the trace heuristic is based on an optimization method that needs to be initialized
with a starting point. Currently, we do not provide to the used SDP solver a starting point and
it generates it by itself. However, we can be more clever and use the Q∗ from the previous
control period as the starting point for the current control period.

Finally, instead of a generic SDP solver, we could develop our own problem specific solver.
Solver designed for a problem with a special structure might be faster than a generic solver [60,
Chapter 1].
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Figure 9.2: A demonstration of manipulation of microparticles. The dashed black lines show the
desired trajectories and the blue and red lines represent the measured trajectories.

9.6 Experimental results

Similarly as in the previous chapter, also here we show that the proposed algorithm truly
works and is useful. As we mentioned earlier, currently, we are unable to implement the
chattering control, thus we show experimental result only for the log-det heuristic.

We used the proposed algorithm for control of position of two microparticles in the same
hardware setup as in the previous chapter. That means, we have eight electrodes (n= 8) and
we need to solve a constrained inverse quadratic problem with four equations (m= 4) at every
control period. We use CSDP solver hence according to Table 9.1, the execution of the trace
heuristic itself takes 2.5 ms. Since one iteration of the log-det heuristic takes approximately
2.5 ms as well, we limited the number of iterations of the log-det heuristic to five. Therefore,
the execution of the algorithm with the log-det heuristic should not take more than 15 ms
which still is acceptable for real-time use.

Fig. 9.2 shows measured and desired trajectories of the microparticles. The microparticles
obviously follow the desired trajectories and the proposed algorithm with the log-det heuristic
proved to be be applicable. Similarly as in the 2D case, we also add Fig. 9.3 showing the set
potentials on the electrodes along the trajectories.

It is difficult to argue why the microparticles actually follow so nicely the desired trajecto-
ries despite the fact that the log-det heuristic might fail to find a rank-one solution. Of course,
it could be the case that this situation just did not happen during the experiment but that is
very unlikely. More plausible explanation is that even though the log-det heuristic fails from
time to time it usually does not fail in more control periods in a row. Because if it fails and
the generated force slightly differs from the desired one, the microparticles move to different
positions where the setup of the constrained inverse quadratic problem changes and where
the log-det heuristic might succeed to find a rank-one solution.

9.7 Conclusion

In this chapter, we discussed solution of the general m-dimensional constrained inverse
quadratic problem. Since we did not find an algorithm fully solving the 2D version, we did not
aspire to find one for higher dimensions. At the beginning, we tried to extend the algorithm
partially solving the 2D version to higher dimensions. Similarly as in 2D, where we based
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Figure 9.3: An illustration showing the potentials set on the electrodes during the manipulation
with the microparticles. The green and purple lines show the x component of the trajectories of
the microparticles.

the algorithm on the numerical range, here, we based the algorithm on generalization of the
numerical range to higher dimensions: joint numerical range. However, in contrast to the
numerical range, joint numerical range is not always convex and that is one of the aspects
preventing us to extend the algorithm partially solving the 2D case to higher dimensions.

Thus we tried a different approach and reformulate the constrained inverse quadratic prob-
lem to a semidefinite program. Specifically, we reformulate it to a rank minimization problem
which is also hard to solve but at least one can use one of many available heuristics. We used
the trace heuristic followed by the log-det heuristic. In the end of the chapter, we showed on
an experiment that such an algorithm truly is usable for real-time use.
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Chapter 10

Conclusion

W e had three goals in this thesis: develop and implement a real-time method estimating
position of microparticles in 3D; find a model of dielectrophoretic (DEP) force suitable

for control purposes and design an algorithm that computes potentials which needs to be set on
electrodes in order to develop desired DEP forces at one or several places above the electrode
array. The first two goals were fully achieved, the third goal was achieved to a satisfactory
level.

In the first part of this thesis, we dealt with the position estimation method. Since we did
not find a real-time method that would be directly usable for our case in the literature, we
reviewed several methods that could possible be modified for real-time use. Specifically, we
spent some time examining digital holography as a promising principle for real-time position
estimation. Based on the review, we singled out the twin-beam method. Because the method
was originally designed for off-line use, we modified it so that it became usable also for real-
time use. We proved the applicability of the method by an experiment where we compared
the estimated position by the method with ground truth measurements.

Then we focused on development of a control oriented model of DEP force field. The
ability to compute a DEP force field boils down to the ability to compute the first and second
derivatives of the potential field and that boils down to the ability to solve a specific boundary
value problem—Laplace equation with Dirichlet boundary conditions imposed by the electrodes
and zero charge Neumann conditions everywhere else. We found a way how to approximate
the mixed boundary conditions purely by Dirichlet conditions and how to change the domain
of the problem so that one can use Green’s functions to solve this modified boundary value
problem. This way, we obtained an analytical description of the potential field that enable us
to compute the DEP force in real-time.

Finally, we delved into the design of an algorithm computing the potentials on electrodes
for one or more prescribed DEP force(s). We treated separately 2D and higher dimensional
case. In the former, we proposed an algorithm solving the problem, both based on the nu-
merical range and its properties. For higher dimensions, we modified the problem to a rank
minimization problem and solved it approximately by a heuristic. Unfortunately, in both cases,
the algorithms are unable to find the potentials for all physically feasible forces, they are able
to do so only for more limited sets. But we showed by experiments, that the sets seem to be
sufficiently large to control arbitrarily the position of microparticles. ×©
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Appendix A

Digital holography

A.1 Theoretical treatment of back-propagation

An image with interference patterns is something like a snapshot of intensity values of the
complex wave field incident upon the image sensor. If we assume that the complex wave field
propagates through a linear and space invariant imaging system then the complex wave field
at the image sensor plane can be described by the following two dimensional convolution

u0(x im, yim) = hz(x im, yim)⊗ uz(x im, yim), (A.1)

where x im, yim are the image coordinates, u0(x im, yim) is complex wave field at the image sen-
sor plane, uz(x im, yim) is complex wave field at axial distance z from the image sensor plane
and hz(x im, yim) is the impulse response of the system for propagation distance z. This descrip-
tion allows us to easily propagate the captured complex wave field to an arbitrary distance.
Therefore, if a captured image contains interference pattern from an object with a known ax-
ial distance z from the image sensor, the complex wave field captured by the image can be
back-propagated by convolution with impulse response h−z(x im, yim):

uz(x im, yim) = h−z(x im, yim)⊗ u0(x im, yim). (A.2)

Then, if we take intensity of the back-propagated complex wave field we obtain an image
where the object is sharp and looks like it would be seen by a microscope.

There are more choices for the impulse response hz(x im, yim) of the system. In this thesis,
we used the most general one, the Rayleigh-Sommerfeld propagator:

hz(x im, yim) =
1

2π
∂

∂ z
eikR

R
, (A.3)

where R2 = x2
im + y2

im + z2, k = 2πn
λ , n is refractive index of the medium the light propagates

through and λ is wavelength of the illumination.
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Appendix B

2D constrained inverse quadratic problem

B.1 Univariate optimization

As a reminder, the boundary points fθk
are obtained as the rightmost (or possibly also

leftmost) points of the rotated numerical range W (ei θkAxy) (see Section 8.1.1). It is intuitive
to formulate the search for f̃ des as the following optimization problem:

θ ∗ = arg min
θ∈(θi ,θ j)

|Arg( f des)−Arg( f (θ ))|, (B.1)

s.t.: f (θ ) = uᵀ
θ
Axyuθ ,

uθ ∈ E1(H(e
iθAxy)), ‖u‖2 = 1.

To show that this optimization task is easily solvable, we inspect the function Arg( f (θ )).
If we increase angle θ , we find out that function Arg(f(θ )) decreases monotonously. The only
exception is when the step between −π and π (or 0 and 2π in dependence on the definition of
Arg()) occurs, but this step can be removed by addition of 2π appropriately. We can visually
verify this fact with the aid of Fig. B.1. We start with θ = 0. Then the value of Arg( f (θ ))
corresponds to the angle of the rightmost point of W (Axy). Now as we increase θ we rotate
W (Axy) in the counterclockwise direction. Taking the rightmost point of the rotated numerical
range, we get a boundary point of the original numerical range shifted in the clockwise direc-
tion. Therefore, Arg( f (θ )) decreases as θ increases. Since Arg( f (θ )) is monotonous, function

Figure B.1: Computation of boundary points of a numerical range W (A).
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Figure B.2: An example of numerical range with non-stricly convex boundary.

|Arg( f des)−Arg( f (θ ))| has only one local minimum because it is given by the absolute value
of a monotonous function. Thus, the optimization problem is easily solvable by, for instance,
golden search method [38].

However, there is a hitch in the preceding discussion. Fig. B.1 is a little misleading be-
cause it shows a strictly convex numerical range. The situation gets a bit more complicated
in the case of a non-strictly convex numerical range, because then different unit vectors uθ ∈
E1(H(eiθAxy)) can generate different boundary points. Have a look at Fig. B.2 where there are
infinitely many rightmost boundary points. Now many questions arises. Do we have to detect
the case where the choice of uθ matters? Potentially, how to detect it? How to choose a unit
uθ from E1(H(eiθAxy))? We will treat the questions one after the other.

Luckily, the answer to the first question is negative and the second one thus meaningless.
We do not have to detect such cases. If f̃ des lies on a strictly convex part of the boundary then,
trivially, it is immaterial how we choose u on the rest of the boundary. The optimization will
always end up with f (θ ∗) = f̃ des. If f̃ des lies on a non-strictly convex part of the boundary, then
the choice of u influences the value of f (θ ∗) but not the optimal value θ ∗. The optimization
will always end up with θ ∗ for which a unit generating vector of f̃ des lies in E1(H(eiθ ∗Axy)).
This gives importance to the third question.

Now, we will answer the question how to find a unit vector u from E1(H(eiθ ∗Axy)) generat-
ing f̃ des. Let us have a look how the rightmost points of a rotated numerical rangeW (eiθ ∗Axy)
are generated and hopefully we will find a hint of the answer. They are generated by the
following relation

uᵀ
�

eiθ ∗Axy

�

u, u ∈ E1(H(e
iθ ∗Axy)), ‖u‖2 = 1. (B.2)

We decompose matrix eiθ ∗Axy. First of all, we express the rotation by the famous Euler formula:

ei θ ∗ Axy = Axy cosθ ∗ + i Axy sinθ ∗. (B.3)

Next, we make use of the fact, that the matrix A has a special form; it is given by Axy = Ax+iAy.
Substitution of this relation to the previous one yields

ei θ ∗ Axy = (Ax + iAy) cosθ ∗ + i (Ax + iAy) sinθ
∗ (B.4)

= (Ax cosθ ∗ −Ay sinθ ∗) + i (Ax sinθ ∗ +Ay cosθ ∗). (B.5)
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B.1 Univariate optimization

Now we can see that the decomposition is

ei θ ∗ Axy = H(ei θ ∗ Axy) + i S′(ei θ ∗ Axy), (B.6)

where matrices H(ei θ ∗ Axy) and S′(ei θ ∗ Axy) are

H(ei θ ∗ Axy) = Ax cosθ ∗ −Ay sinθ ∗, (B.7)

S′(ei θ ∗ Axy) = Ax cosθ ∗ −Ay sinθ ∗. (B.8)

Note, that this decomposition is not standard Hermitian decomposition; matrix S′(ei θ ∗ A) is
not skew-Hermitian.

Substituting the decomposition to (B.2), we get

uᵀ
�

eiθ ∗Axy

�

u= uᵀH
�

eiθ ∗Axy

�

u+ i uᵀS′
�

eiθ ∗Axy

�

u. (B.9)

Since matrices H
�

eiθ ∗Axy

�

and S′
�

eiθ ∗Axy

�

are real and symmetric, the first and the second
term determine the real and the imaginary part of the generated boundary points, respectively.
Vectors u from E1(H(eiθ ∗Axy)) generate the rightmost boundary points of the rotated numerical
range hence the real part is necessarily constant, and by the assumption that f̃ des is among the
rightmost boundary points of the rotated numerical range, the real part equals to Re(ei θ ∗ f̃ des).
Thus, our problem reduces to

Im(ei θ ∗ f̃ des) = uᵀS′
�

eiθ ∗Axy

�

u. (B.10)

Let λ1(H(ei θ ∗Axy)) be of multiplicity k and {u1, . . . ,uk} be the real orthonormal basis of
E1(H(ei θ ∗Axy)). There always is such a basis because H(ei θ ∗Axy) is real and symmetric. Let us
express a unit vector u ∈ span{u1, . . . ,uk} as

u=
�

u1 . . . uk

�







α1
...
αk






= Uα,

k
∑

i=1

α2
i = ‖α‖2 = 1. (B.11)

Substituting this relation to (B.10) yields

Im(ei θ ∗ f̃ des) = αᵀUᵀS′
�

eiθ ∗Axy

�

Uα, ‖α‖2 = 1. (B.12)

If we define a new matrix B= UᵀS′
�

eiθ ∗Axy

�

U, we get

Im(ei θ ∗ f̃ des) = αᵀBα, ‖α‖2 = 1. (B.13)

Since matrix B is also real and symmetric, vector α can be expressed in the orthonormal
basis {b1, . . .bk} of B, that is α=

∑k
i=1 βibi . Then we can rewrite (B.13) to

Im(ei θ ∗ f̃ des) = αᵀBα=
k
∑

i=1

β2
i λi(B),

k
∑

i=1

β2
i = 1. (B.14)

This problem is nothing else than a possibly under-determined system of linear equations,
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that, by construction, always has a positive solution:

�

λ1(B) . . . λk(B)
1 . . . 1

�







β2
1
...
β2

k






=

�

Im(ei θ ∗ f̃ des)
1

�

. (B.15)

Therefore, by solution of (B.15) we obtain coefficients β1,...,k. These coefficients enable

us to calculate vector α =
∑k

i=1 βibi which enables us to determine u = Uα. Vector u is the
sought solution, because we have

uᵀ
�

eiθ ∗Axy

�

u= ei θ f̃ des (B.16)

and thus
uᵀAxyu= f̃ des. (B.17)

In Section 7.2.2, we showed how the system of equations (7.4), can be formulated as an
optimization problem. Here we ended up with an optimization problem as well so what is the
difference? Which of the optimization problems is more tractable? It is not difficult to see
that the optimization problem stated here is significantly more tractable. First of all, it has
one local minimum. Moreover, the optimization runs over θ , which is a scalar. In contrast,
the optimization problem (7.5) can have more local minimums and it runs over n-dimensional
vector u.
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