
L.S.

prof. Ing. Róbert Lórencz, CSc.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 9, 2015

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Network Time Protocol attacks detection

 Student: Mr Alejandro Robledo

 Supervisor: Ing. Tomáš Čejka

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2016/17

Instructions

Study Network Time Protocol (NTP) that can be used for time synchronization in computer networks.
Study principles of modern network monitoring using network flows.
Study published vulnerabilities in [1] that allow attacks based on manipulation of victim's system time and
try to repeat an attack in an experimental/virtual network.
Propose a set of needed information from NTP for detection of the attacks shown in [1].
Develop a detection module for the Nemea system [2] to detect the described attacks.
Evaluate the detection module functionality using an experimental real network infrastructure (in
cooperation with the supervisor).

References

[1] Malhotra, Aanchal, et al. "Attacking the Network Time Protocol."
[2] https://github.com/CESNET/Nemea

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Master’s thesis

NETWORK TIME PROTOCOL

ATTACKS DETECTION

Bc. Alejandro Robledo Urrea

Supervisor: Ing. Tomáš Čejka

8th May 2016

Acknowledgements

I would first like to thank my thesis supervisor Ing. Tomáš Čejka of the Fac-
ulty of Information Technology at Czech Technical University in Prague. He
was always open whenever I ran into a trouble spot or had a question about
my research or writing. I must express also my very profound gratitude to
my parents for providing me with unfailing support and continuous encour-
agement throughout my years of study and through the process of researching
and writing this thesis. This accomplishment would not have been possible
without them. Thank you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 8th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Alejandro Robledo Urrea. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Robledo Urrea, Alejandro . NETWORK TIME PROTOCOL ATTACKS DE-
TECTION . Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2016.

Abstrakt

Network Time Protocol (NTP) se v poč́ıtačových śıt́ıch použ́ıvá pro synchron-
izaci času. Nevhodně nastavená NTP infrastruktura umožňuje útočńıkovi
manipulovat se systémovým časem oběti. Ćılem této práce je ověřeńı zran-
itelnosti použ́ıvaného protokolu v simulovaném prostřed́ı. Výsledkem práce je
experimentálńı otestováńı proveditelnosti tohoto typu útoku, návrh funkčńıho
detekčńıho mechanizmu a nakonec i vlastńı implementace detekčńıho mod-
ulu pracuj́ıćıho se záznamy o toćıch rozš́ı̌renými o NTP informace. Imple-
mentovaný modul byl integrován a testován v rámci existuj́ıćıho systému NE-
MEA.

Kĺıčová slova Śı̌tová bezpečnost, Network Time Protocol, On-line útok,
Off-line útok, Kiss of Death,Priming the pump, NEMEA systém, Detekce
útok̊u, Spolehlivostńı interval

Abstract

Network Time Protocol (NTP) is used for time synchronization in computer
networks. When NTP is insecurely configured, it is possible for attackers to
manipulate victim’s system time. The aim of this thesis is to verify a vulner-
ability of the widely-used protocol in a simulation environment. The result of

ix

the thesis is a created experimental environment for testing the NTP attacks,
design of a working detection mechanism and, finally, an implementation of a
detection module that works with flow records that are extended by NTP in-
formation. The implemented module was integrated and tested with existing
NEMEA system.

Keywords Network Security, Network Time Protocol, On-line attack, Off-
line attack, Kiss of Death, Priming the pump, NEMEA system, Detection of
attacks, Confidence Interval

x

Contents

Introduction 1

1 NTP Fundamentals 5

1.1 NTP Protocol . 5

1.2 NTP Packet Structure . 5

1.3 NTP Exchange of Packets . 8

1.4 Peer Process Statistics Variables 9

1.5 How Does NTP Work? . 10

1.6 Important NTP Thresholds and States 10

1.7 NTP Timestamp . 12

1.8 NTP Implementation . 12

2 Attacking NTP Protocol 15

2.1 Technical Conditions and Assumptions 15

2.2 On-line Attack . 16

2.3 Off-line Attack, Kiss-of-Dead 22

2.4 Discussion about On-line and Off-line Attacks 24

3 Detection Module of NTP Attacks 25

3.1 NEMEA System . 25

3.2 NTP Plugin . 27

3.3 Detection On-line Attacks Based on Offset 28

3.4 Detection On-line Attack Threshold Estimation 32

3.5 Detection On-line and Off-line Attack by Modelling Behaviour
using States of NTP Exchanges 33

3.6 Detection Module Implementation 38

4 Evaluation of Detection Module 41

4.1 Evaluation of Thresholds . 41

4.2 Test During Attack . 44

xi

4.3 Throughput Calculation . 44
4.4 Difficulties During Evaluation 45
4.5 Future Work . 46

Conclusion 49

Bibliography 51

A Acronyms 55

B Contents of Enclosed CD 57

xii

List of Figures

1.1 NTP Hierarchical Structure . 6
1.2 NTPv4 Packet Format . 6
1.3 NTP Packet Exchange . 8
1.4 Test 2 by NTP Client . 9
1.5 Format of NTP Timestamp Field 12

2.1 Rage for Accepted Time Steps for ntpd v4.2.6 17
2.2 NTP Packet Exchange, on-line attack 18
2.3 Spoofed Mode 4 response, on-line attack 19
2.4 Topological Diagram for On-line Attack 20
2.5 Flow Diagram for On-line Attack Script 21
2.6 Topological Diagram for Off-Line Attacks 22
2.7 Off-line DoS Attack by Spoofing KoD 23
2.8 Off-line DoS Attack by Priming the Pump 23

3.1 Monitoring Infrastructure of NTP Traffic 26
3.2 NEMEA System for NTP attacks Detection 26
3.3 Offsets NTP Exchanges (Normal Traffic) 29
3.4 Offsets During On-line Attack (1 Hour Forwarding) 31
3.5 Definition of States for one NTP Exchange 37
3.6 Detection Module Implementation 38

4.1 Case 1 Confidence Interval . 42
4.2 Case 2 Confidence Interval . 43
4.3 Case 3 Confidence Interval . 44

xiii

List of Tables

1.1 Examples Reference ID Values . 7
1.2 NTP Processes and Algorithms . 11
1.3 NTP Thresholds . 11

2.1 Experimental Conditions for Attacks over NTP 16
2.2 Ingredients for On-line Attack over NTP 18
2.3 Software Implemented for On-line Attacks 20

3.1 NTP Plug-in Fields . 27
3.2 Software Implemented for NTP Plug − in 27
3.3 Pros and Cons of Using Attack Detection Based on Offsets 30
3.4 States for Modelling NTP traffic 34
3.5 Definition of Anomaly States . 34
3.6 Pros and Cons of Using States of NTP Exchanges 36
3.7 Examples of Extended States . 37
3.8 Program Implemented for Detection Module 38

4.1 Experiments Confidence Interval 42
4.2 Pros and Cons of Threshold Definition by using Mean an Standard

Deviation . 46

xv

Introduction

Network Time Protocol (NTP) [1], is commonly defined as one of the oldest
Internet protocols in current use (in operation since 1985), and is also the
most widely used and accepted method for maintaining accurate time across
entire data networks (some alternatives are: Precision Time Protocol (PTP)
[2], Reference Broadcast Synchronization (RBS) [3], Global Position System
(GPS) [4]). Managing time has become an essential ingredient in networking
nowadays for different reasons: the most obvious reason is to have configured
all the networking devices with accurate time; but, behind this naive reason
there are implications directly for Information Technology (IT) application
systems which correct and secure functioning relies on the fact that time must
be synchronized and accurate on all the elements involved in the system.

If NTP fails on a time dependant system, multiple elements (e.g. applica-
tions) on the system could fail also. Some examples (among others), of these
kind of systems are: a) Bitcoin is a digital currency system where managing
transactions is carried out collectively by the use of peer-to-peer technology
to operate with no central authority. One of the most important elements is
the block-chain, which is a public ledger1 of all transactions in the Bitcoin
network, and is composed by timestamps “blocks”. Each block contains a
record of some or all recent transactions, and a reference to the block that
came immediately before it. By announcing inaccurate timestamps when con-
necting to a node, an attacker can alter a node’s network time counter and
mislead it into accepting an alternate block-chain. This could significantly in-
crease the chances of a successful double-spend, drain a node’s computational
resources, or simply slow down the transaction confirmation rate [5]; (this is
a general problem of all digital currencies). b) HTTP Strict Transport Secur-
ity (HSTS) RFC-6797, is a web site security mechanism that mitigates Man-
In-The-Middle (MITM) attacks by enabling web servers to declare themselves
accessible only via Hyper Text Transfer Protocol Secure (HTTPS) connec-

1And account book of recorded business transactions

1

Introduction

tions [6]; but, in [7] it is described how an attacker who sends forward in time
a computer device connected to a web server using HSTS, can force HSTS
policies to expire; as a consequence, a web client typing a Hyper Text Trans-
fer Protocol (HTTP) Uniform Resource Locator (URL) in its browser, could
get connected in an insecure way, and the attacker could also intercept all
the information. c) An attacker could also forward in time a Domain Name
Service (DNS) server by a day (typical live-time of a cache entry), causing
most of its cache entries expire. As it is stated by [8], a widespread NTP fail-
ure could cause multiple resolvers to flush their cache at the same time and
flooding the network with DNS queries. d) When working with Transport
Layer Security (TLS) certificates, an attacker who sends backward in time
the date of a computer system, could cause the host to accept certificates that
the attacker acquired fraudulently2, and have since been revoked; finally, the
attacker could make expired certificates to become valid [8]; as a consequence,
this allows the attacker to decrypt the data.

NTP is an excellent way to keep a large number of network nodes in close
synchronization, requires a minimum of network overhead (one exchange of
NTP packets every 64 to 1024 seconds [1]), can also maintain a high level of
synchronization accuracy and is easy to implement. On the other hand, NTP
is vulnerable to attacks and the most representative is the NTP amplification
attack, topic on which researchers focus their attention nowadays. Moreover,
some implementations of the protocol present security issues when they are
configured without authentication (e.g., Ubuntu ntpd 4.2.5p5). When using
some of these NTP implementations, an attacker on-line (attacker with visibil-
ity of NTP traffic) and off-line (attacker without visibility of NTP traffic), can
change the time of an NTP client or can also perform a Denial-of-Service (DoS)
attack by not allowing the client to synchronize to its server, as it was stated
by [8]. In order to continue the investigation over the integrity of time inform-
ation transmitted by NTP protocol, the focus of this thesis will be on on-line
and off-line attacks over NTP, and also on methods for their detection.

There exist tools in internet (e.g. Delorean [9], free access), that allows to
perform on-line attacks [7]. Some vendors provided patches to mitigate on-
line and off-line attacks over NTP (e.g. Cisco Systems, RedHat security team
[10]); additionally, Juniper Networks investigated about this topic in order to
stablish which of its operative systems and software versions are vulnerable
to on-line attacks over NTP [11] (CTPOS/CTPView are vulnerable). There
is still a technological gap due to the fact that many other vendors haven’t
solve this issue; moreover, even counting with some patch, it is required to
be applied, and of course, there is no guaranty that all devices with this
vulnerability would apply it.

The main objective and contribution of this thesis is to fill that gap in the

2This conference by Moxie Marlinspike, exposes a case of stolen certificates: http:

//youtu.be/Z7Wl2FW2TcA

2

http://youtu.be/Z7Wl2FW2TcA
http://youtu.be/Z7Wl2FW2TcA

following way: First, it is going to be proved that NTP is vulnerable to on-line
and off-line attacks by considering a NTP client-server operation implemen-
ted in a simple network using virtual machines (Ubuntu server 14.04.3) in
VirtualBox; both client and server will be running the un-authenticated NTP
implementation ntpd v4.2.6p5 (which is the second most popular version of
ntpd found by [8] after v4.1.1).

Second, it is going to be designed and implemented a strategy for de-
tection of anomaly values of timestamp offsets in the NTP communication,
which leads to the detection of on-line attacks. It is also necessary to define a
threshold in order to reduce the amount of false positives. As a complement
to the previous strategy, the behaviour of the normal NTP traffic is modelled
using a state machine where the states are defined by values of the NTP field
reference ID. Some transitions between states can be used as evidence of an-
omaly or suspicious behaviour, and provide information about possible on-line
and off-line attacks.

Third, this implementation will be integrated to Network Measurement
Analysis (NEMEA) system. NEMEA is a framework for automated analysis
of flow records gathered from network monitoring processes in real time [12].
After the integration, the implementation could be used and tested in real
environments.

If we want to understand the current state of NTP security, it would be
a good idea to take a look to the specification RFC-5905 [1], which describes
the implementation of NTPv4. This document bases the security of NTP on
the use of authentication. NTPv4 supports both symmetric and asymmetric
cryptographic authentication, but, it is rarely used in practice; when using
symmetric cryptography it is required manual configuration of a symmetric
key in both, the client and server, and this makes symmetric cryptography not
very practical when a server must communicate with a big amount of clients.
As stated by [8], the use of cryptography combined with additional defence
mechanisms already built in the NTP architecture, protocol, and algorithms,
makes timestamps exchange scheme resistant to spoofing and packet-loss.

A different approach for securing NTP is documented in [13]. Security
is achieved by following two approaches: First, it is recommended the im-
plementation in routers Cisco or Juniper, of BCP383, for Network Ingress
Filtering to defeat Denial of Service Attacks that employ IP Source Address
Spoofing; Second, it is stated a set of recommendations about how to reach
secure NTP, by using a better configuration of the ntp.conf file4 than the
default configuration. One example of the recommendations is to configure
synchronization with the local operative system, which is particularly useful
when there is no communication with the configured NTP servers. However,

3Also known as “Network Ingress Filtering”, is a security mechanism that filters incoming
packets from end customers and allow packets only from IP addresses assigned to them.

4configuration file of NTP for Linux operative systems

3

Introduction

none of the security mechanisms discussed previously are utilized during the
experiments described in this thesis.

As it was already mentioned, the focus of most researchers nowadays, from
a security point of view related to NTP protocol, is about NTP amplification
attacks. [14] explains this attack in the following way: An NTP amplification
attack begins with a computer controlled by an attacker on a network that
allows source IP address spoofing. The attacker generates a large number of
UDP packets with spoofed source IP address. These UDP packets are sent to
NTP servers that support the MONLIST command in order to request a list
of the last IP addresses that accessed the NTP server. If an NTP server has
its list fully populated, the response to a MONLIST request will be 206-times
larger than the request. In this attack, since the source IP address is spoofed
and UDP does not require a handshake, the amplified response is sent to the
intended target.

This thesis is divided as follows: NTP Fundamentals will be described
in Chapter 1, and gives an explanation of how a NTP environment works,
considering un-authenticated NTP and using client-server mode of operation.
Attacking NTP protocol will be described in Chapter 2 as well as experimental
results. In Chapter 3, it is shown the implementation of the detection module
of these attacks. The next step is the integration between the detection module
of NTP attacks and NEMEA system, which is explained also in Chapter 3.
Finally, the whole system (module of detection of NTP attacks + NEMEA
system) is evaluated and documented in Chapter 4.

4

Chapter 1

NTP Fundamentals

The objective of this chapter is to explain the fundamental concepts about
NTP protocol, to define some terminology and to describe the exchange of
packets between the NTP client and NTP server. It is also focused on concepts
and aspects that an attacker must be aware of in order to perform the attacks
described in Chapter 2.

1.1 NTP Protocol

NTP is widely used to synchronize system clocks among a set of distributed
time servers and clients and it is built on the Internet Protocol (IP) and User
Datagram Protocol (UDP) [1]. There are three NTP protocol variants: sym-
metric, client/server, and broadcast. Client/server mode of operation is the
most widely used in Internet, and is the mode on which [8] found vulnerabil-
ities. As a consequence, that’s the mode considered in this thesis.

Client/server mode operates in an hierarchical structure where the level
of the server defines it’s stratum, as it is shown in Figure 1.1 [15]. A client
requests time information to a set of servers. The stratum is a number from
0 to 16 where 1 means that the server is at the root of the structure (primary
server); a client which synchronizes to a stratum 1 device, will be at stratum
2 and the structure continues this way. Devices at stratum 0 and 16 means
that they are unsynchronized. Secondary servers are those at stratum 2 to 15.

1.2 NTP Packet Structure

The attacks described in Chapter 2, and that were investigated by [8] and [7],
are based on spoofing NTP packets, so, a full description of the NTP packet
is shown in Figure 1.2 and explained as follows5 :

5This is a reduced view of the NTP packet since not all fields are explained and also not
all possible values of every field are shown. This explains the fields considered important for

5

1. NTP Fundamentals

Figure 1.1: NTP Hierarchical Structure

Figure 1.2: NTPv4 Packet Format

6

1.2. NTP Packet Structure

Leap Indicator (LI): Warns about one second to be inserted or deleted
in the last minute of the current month [1]. The utility for this field during
this thesis is by the fact that LI is equal to 3 in case the client’s clock is
unsynchronized and it is equal to 0, 1, or 2 if synchronized.

Mode: Since the focus is on client/server mode, it is most interesting
when Mode is equal to 3, which means that the client sends a request for
time information to the server. Additionally, Mode equal to 4 means that the
server responds to client with it’s time information. This type of packets are
explained in detail in Section 1.3.

Stratum: Indicates the level in the hierarchical structure explained in Sec-
tion 1.1. 1 indicates primary server (e.g., equipped with a GPS receiver); 2-15
are secondary servers synchronized via NTP; 0 invalid and 16 unsynchronized
[1].

Poll : Maximum interval between successive messages, in log2 seconds[1].

Precision: It is the smallest possible increase of time that can be experi-
enced in NTP. NTP precision is determined automatically, and it is measured
as a power of two. For example if precision variable is equal to -16, it means
that the precision is 2−16 seconds [16].

Root Delay, Root Dispersion: Indicates the total round trip delay and total
dispersion, respectively to the primary reference source (Stratum 1) [17]. The
concept of Delay is described in detail in Section 1.4.

Reference ID : The interpretation depends on the value in the stratum field.
For packet stratum 0 (unspecified or invalid), this is a four-character ASCII
RFC-1345 string, called the kiss code [1]. Some values that are useful (from an
attacker point of view) and discussed in next Chapters are shown in Table 1.1.
Moreover, above stratum 1 (secondary servers and clients), represents the

Table 1.1: Examples Reference ID Values

Reference ID ASCII Code Observation

INIT 73.78.73.84 NTP client service initialized
STEP 83.84.69.80 NTP client takes server’s time
RATE 82.65.84.69 client must reduce polling interval
DENY 68.69.78.89 stop sending packets to the server

identifier of the server from which the time information is taken. Since we are
working with IPv4 RFC-791, the identifier is the four-octet IPv4 address. If
using the IPv6 address family, it is the first four octets of the MD5 hash of
the IPv6 address [1].

Reference Timestamp: Time when the system clock was last set or correc-
ted [1].

the attacks that are discussed in Chapter 2

7

1. NTP Fundamentals

Origin Timestamp: Considering a mode 4 response, it is the client’s time
when the Mode 3 request departed towards the server. As it is explained in
Chapter 2, this field is very important since it is used by the client as nonce
in order to check if the Mode 4 response from the server is valid.

Receive Timestamp: Considering a mode 4 response, it is the server’s time
when the Mode 3 request (coming from the client) arrives to the server.

Transmit Timestamp: Local time when client sends Mode 3 request or
server sends Mode 4 response packet. Also know as Sent Timestamp.

1.3 NTP Exchange of Packets

Figure 1.3: NTP Packet Exchange

Figure 1.3 shows the exchange of packets required for an NTP client to
select a server as its peer. Normally a client configures more than one server.
This example works with just one server for simplicity for explaining the con-
cepts. Lets assume that the NTP server is synchronized (It is taking its time
from a selected NTP peer), and NTP service at the client side just starts. The
client sends a mode 3 packet to the server; this mode 3 packet represents a
request for time information; the main characteristics of this packet are: mode
= “3” and referenceID = “INIT”. The server receives the mode 3 packet and
replies with a mode 4 packet; the main characteristics of a mode 4 packet are:
mode = “4”, origin timestamp = “Transmit timestamp used by the client in its

8

1.4. Peer Process Statistics Variables

mode 3 request” and Transmit timestamp = “Server’s time when sends mode
4 packet”. When the client receives the mode 4 reply from the server, the
first packet exchange is finished. The client sets its time to the server’s time.
Then, the client starts the exchange number s by sending a mode 3 packet
with referenceID = “STEP”. Additionally, in the packet exchange number p
the client notifies the server that it was selected as the client’s peer. The pos-
sible values for s and p are determined by the poll process and clock discipline
algorithm (described in Section 1.5). As it is expressed in Figure 1.4, when
the client receives the mode 4 packet response, it checks that the value in
the field Origin timestamp corresponds to the value Transmit timestamp in
the mode 3 packet request. This is defined by [1] (page 36) as Test 2, and is
the mechanism used by the client to know if the response from the server is
legitimate.

Figure 1.4: Test 2 by NTP Client

1.4 Peer Process Statistics Variables

Using the definitions of timestamps stated in Figure 1.3, it is possible to define
some important variables that the client’s NTP daemon uses to select the peer:

Delay δ : Round-trip delay during NTP exchange of packets between client
and server [1].

δ = (T4− T1)− (T3− T2) (1.1)

Offset θ : Offset quantifies the time shift between a client’s clock and a
server’s clock [8]. This is a very important parameter for detection of on-line
attacks described in Chapter 2 and implemented in Chapter 3. Lets assume
that delays on client to server communication and reverse, server to client, are
symmetric and equal to δ

2 . Then, the gap between the server and client clock

is T2–(T1 + δ
2) for the mode 3 request, and T3–(T4 + δ

2) for mode 4 response.
After averaging this two values we get Equation 1.2.

θ =
1

2

[
(T2− T1) + (T3− T4)

]
(1.2)

9

1. NTP Fundamentals

1.5 How Does NTP Work?

Some of the following concepts may not be necessary at the moment of per-
forming an attack on NTP, but are necessary to understand its behaviour and
possible ways to detect the attack. The algorithms and processes described
in Table 1.2 , are used by the client using the NTP daemon in the following
way: First, it is discovered the available NTP servers and start association for
each server found; those servers become candidates for being the peer of the
client. Clock Select Algorithm determines from the candidates, the ones that
are good timekeepers and bad timekeepers (with offset θ 〉 10 seconds [8]).
Then, the Clock Cluster Algorithm produces the survivor list by pruning the
statistical outliers from the good timekeepers. Finally, the Clock Discipline
algorithm uses the survivor statistics in order to discipline the system clock6

[18].

1.6 Important NTP Thresholds and States

Assume an NTP client is synchronized to an NTP server and they continue
with exchange of packets. The client calculates the offset when the mode 4
packet is received from the server using Equation 1.2. Then the Clock Update
Routine described in Table 1.2 uses that information, compares with the NTP
Thresholds from Table 1.3 , and the possible results are the following [1]:

PANIC: Means the offset is greater than the panic threshold PANICT
(1000 s) and should cause the program to exit with a diagnostic message to
the system log.

STEP: Means the offset is less than the panic threshold, but greater than
the step threshold STEPT (125 ms). In this case, the clock is stepped to the
correct offset.

ADJ: Refers to adjustment. Means the offset is less than the step threshold
and thus a valid update.

6This is an overview of NTP processes and algorithms and not all algorithms are included.
In order to have a detail description of them, it is recommended to read [18],[16] and [1]

10

1.6. Important NTP Thresholds and States

Table 1.2: NTP Processes and Algorithms

Process / Algorithm Description

Poll Process Sends NTP packets at intervals determ-
ined by the clock discipline algorithm.
The process is designed to provide a suf-
ficient update rate to maximize accuracy
while minimizing network overhead. The
process is designed to operate over a poll
exponent range between 3 (8 seconds)
and 17 (36 hours).

Clock Select Algorithm Determines from a set of servers, which
ones are correct (good timekeeper) and
which ones are not (bad timekeeper) ac-
cording to a set of formal correctness as-
sertions.

Clock Cluster Algorithm Processes the good timekeepers produced
by the clock select algorithm to produce
a list of survivors by pruning the stat-
istical outliers. These survivors are used
by the mitigation algorithms to discipline
the system clock.

Clock Discipline Algorithm It is the heart the NTP [1]. NTP keeps
precision time by applying small adjust-
ments to system clock periodically [16].

Clock Update Routine Each time an update is received from the
system peer, the clock update routine
is called. It uses different modes (e.g.
PANIC, ADJ and STEP) to describe the
result [1].

Table 1.3: NTP Thresholds

Variable Description

PANICT Panic Threshold (Default value 1000 s)
STEPT Step Threshold (Default value 125 ms)
step-out Minimal interval the client will consider a time step as valid

since the last step (Default value 900 s)

11

1. NTP Fundamentals

1.7 NTP Timestamp

Working with timestamps is very important for NTP protocol. As it was
discussed in previous sections, there are fields in NTP header that contains
time information such as: origin timestamp, receive timestamp and transmit
timestamp. Some important parameters related with NTP are calculated
based on timestamps information. Also, in order to parse correctly NTP
packet headers related to timestamps, it is important to know its structure
and the way to work with them. A timestamp is a 64-bit, unsigned fixed-point
number in seconds and fraction [18]. So, the timestamp is composed by 32
bits for representation of seconds relative to 0 hours on 1 January 1900 and
32 bits to represent fractions of seconds, as it is shown in Figure 1.5. The
multipliers to the right of the point are 1/2, 1/4, 1/8, 1/16, etc [19].

Figure 1.5: Format of NTP Timestamp Field

1.8 NTP Implementation

There exist implementations of NTP protocol for different operative systems
like Linux Systems, Microsoft Windows and Virtual Memory system. Lets
focus on the implementation of NTP for Linux Systems since it is the operative
system used during all the experiments explained in this thesis. The software is
available as C source and it runs on most UNIX compatible operating systems.
This implementation of an NTP client and server is available for free. The
software consists of the following components:

ntpd: It is the daemon process that is both, client and server.
ntpdate: A utility to set the time once.
ntpq, ntpdc: These components are used for monitoring and control pro-

grams that communicate via UDP with ntpd.
ntptrace: This is an utility to back-trace the current system time, starting

from the local server.
The ntpd program is an operating system daemon that sets and maintains

a computer system’s time in synchronization with time servers. It is a com-

12

1.8. NTP Implementation

plete implementation of the NTP Protocol version 4 (the current version).
Additionally, ntpd uses a single configuration file to run the daemon in server
and client modes. The configuration file, usually named ntp.conf, is located
in the /etc directory in Linux systems [20] . Another important characteristic
of ntpd is its configuration option called -g, which allows an NTP client that
first initializes to accept any time shift, even one exceeding 1000 seconds [8].

Since the -g is the origin of the vulnerability disused in 2.2 it is important
to disuse it in detail. Normally, ntpd exits with a message to the system log if
the offset (difference between server and client time) exceeds a value of 1000
seconds by default. This option allows the time to be set to any value without
restriction; however, this can happen only once. If the threshold is exceeded
after that, ntpd will exit with a message to the system log.

13

Chapter 2

Attacking NTP Protocol

The objective of this chapter is to describe the attacks over NTP protocol
found by [8] and [7]. First it is important to describe the conditions under
which the experiments took place. Then, there is a description of On-line
and Off-line attacks. At the same time, experimental results are shown and
disused.

2.1 Technical Conditions and Assumptions

Figure 2.4 and 2.6 describe the topological diagrams for on-line and off-line
attacks respectively. Table 2.1 summarizes the conditions for the experiments.
The experiments are performed in a controlled virtual environment using Vir-
tualBox [21] on a Debian [22] host operative system. There are three guests
virtual machines using Ubuntu [23] Operative System (one of the most widely
used desktop Linux distributions); one is the NTP client, other the NTP server
and the last one is the attacker.

It is used the NTP Deamon ntpd 4.2.6p5 as implementation of NTP version
4. The NTP implementation is very important, since [8] and [7] found that
ntpd 4.2.6p5 is vulnerable to on-line and off-line attacks7. Additionally, this
implementation of NTP is the one which is downloaded and installed by default
when using Ubuntu operative system8.

The NTP environment is configured in client/server operation mode. There
is one server which is synchronized to its local operative system time in order
to avoid dependence with Internet connectivity. Additionally, the client/server
communication is un-authenticated. The experiments hold under IP version
4 [24]. The technique for MITM attack (which is one of the ingredients for
on-line attacks), is Address Resolution Protocol (ARP) Poisoning. Finally,

7Ubuntu and ntpd 4.2.6p5 are not the only systems vulnerable to NTP on-line and off-
line attacks. [7] states that these attacks can also be designed against Fedora, Mac OS X
Lion, Mac OS X Maverick and Microsoft Windows

8apt-get install ntp

15

2. Attacking NTP Protocol

Table 2.1: Experimental Conditions for Attacks over NTP

Technical Features of Experiments Description

Virtual Environment Vitualboxr103443 4.3.32Debian
Host Machine Debian GNU/Linux 8 (Jessie) 64

bits
Image Guest Virtual Machines Ubuntu14.04.3server amd64.iso.

One is the NTP client, other for
NTP server and finally a virtual
machine for the attacker

NTP Implementation ntpd 4.2.6p5. For both, NTP
server and client

Scripts for attacks The programming language for
attacks is Python language ver-
sion 2.7.6 and Scapy version
2.2.0

NTP Configuration NTP is configured in cli-
ent/server operation mode
un-authenticated. The client is
configured with one NTP server.
The server is synchronized with
its own operative system time.

Internet Protocol Version IPv4
MITM Technique ARP Poisoning

the programming language used for the implementation of scripts for attacks
is Python [25]. Scapy [26], is a tool for packets manipulation based on Python
programming language 9. This tool is very used for attacking techniques that
involve spoofing of packets. Scapy has a little different terminology for the
fields of the NTPv4 packet, and it is important to take them into account:
LI is leap in Scapy, Reference ID is id , Reference timestamp is ref , Origin
timestamp is orig , Receive timestamp is recv and Transmit timestamp is
sent .

2.2 On-line Attack

[8] describes the way to perform on-line attacks and it is registered in CVE-
2015-7704 10. The expression on-line attack refers to the fact that the attacker

9Python https://www.python.org/
10Common Vulnerabilities and Exposures (CVE) is a database of publicly known inform-

ation security vulnerabilities and exposures sponsored by the office of Cybersecurity and
Communications at the United States Department of Homeland Security [27]

16

https://www.python.org/

2.2. On-line Attack

most have visibility over the traffic between the server and the client.

As it is described in Figure 2.1 and defined by [1], a client will accept a
time step from its server if it is greater than the step threshold (125 ms by
default) and smaller than the panic threshold (1,000 s). It is true just if the
last clock update is greater than the step-out value, which for ntpd is 900
seconds by default.

Figure 2.1: Rage for Accepted Time Steps for ntpd v4.2.6

From the previous definition, [7] designed what is called the time skimming
attack where an attacker on-line can spoof the mode 4 responses from server
to client and generate a time step in the range between the step threshold and
the panic threshold, and this can be performed with a periodicity greater than
the step-out value. [8] states that this approach is very inefficient since the
attack could last at least 114 days in order to produce one year step11.

In order to quickly shift a client’s time, [8] proposes another approach
which ingredients are described in Table 2.2: First, some MITM technique is
necessary in order to have visibility of the traffic between client and server.
ARP Poisoning12, is the technique used during the experiments in order to
perform MITM attack. Second, there exists an option in the ntpd implement-
ation called the -g option. The -g function works in the following way: The
variable allow panic equal to TRUE is the responsible for not allowing time
steps bigger than the panic threshold. But, when the ntpd service is started,
allow panic variable is set temporarily to FALSE, which allows time steps
bigger than the panic threshold. The -g option of ntpd must be enabled (it is
enabled by default) for on-line attacks to be successful. Third, it is necessary a
reboot of the ntpd service in order to take advantage of the -g configuration.
[8] arguments that an attacker can take advantage of some maintenance or
use a packet-of-death technique to deliberately reboot the OS, and cause ntpd
to restart. Finally, the attacker must spoof mode 4 packets coming from the
server to the client by modifying the Transmit timestamp.

11Shifting the client back one year using steps of size 16 minute each requires
1x365x24x60

16
= 32850 steps in total; with a 5 minute step-out value, this attack takes

at least 114 days
12In ARP Poisoning an attacker sends spoofed ARP messages onto a local area network.

Generally, the aim is to associate the attacker’s MAC address with the IP address of another
host, causing any traffic meant for that IP address to be sent to the attacker instead [28]

17

2. Attacking NTP Protocol

Table 2.2: Ingredients for On-line Attack over NTP

Element Description

Man-in-the-Middle What is important is that the attacker most have
visibility of the exchange of packets between the
client and the server. In order to achieve this task
the attacker could use whatever technique for hi-
jacking, for instance: ARP poissoning, DNS spoof-
ing, DHCP spoofing

-g option of ntpd The -g is an option of the implementation ntpd
that allows time steps greater that panic threshold
when there is a reboot of the ntpd service

Reboot Reboot of ntpd service
Spoof NTP packets Spoof of NTP mode 4 packets from server to client.

The bogus packet determines the time step desired
by the attacker

NTP CLIENT NTP SERVER

MODE 3 REQUEST

MODE 4 REPLY

T1
T2

T3

T4

MODE 3 (refID=INIT)NTP reboot

spoofed MODE 4

ATTACKER

.

.

.

ntp initial condition*

* ntp inital condition: Client considers the server as peer, and is taking the time from it

MODE 3 (refID=STEP)

spoofed MODE 4

reboot detected
start attack

.

.

.

.

.

.
MODE 3 (refID=server's ip)

spoofed MODE 4

T1'

T2'

T3'
T4'

Real MODE 4

Figure 2.2: NTP Packet Exchange, on-line attack

The sequence of packet exchanges for on-line attack is described by Figure
2.2. Lets assume that the client is synchronized with its server and there is a

18

2.2. On-line Attack

normal exchange of NTP packets between them. The MITM attack starts and
the attacker forwards all packets without any alteration. The ntpd service is
restarted, and the attacker detects it when receives the mode 3 packet with
reference ID equal to INIT. Then, the attacker starts to spoof every mode 4
packet coming from the server by manipulating the Transmit timestamp value
(bogus time) that allows the time step. The exchange of packets continues
until the client accepts the bogus time and sends a mode 3 packet with refer-
ence ID equal to STEP. After some packet exchanges the client will consider
the server as its peer, the mode 3 packets in the reference ID will be equal to
the server’s IPv4 address and the attack can be considered successful.

Lets focus now on how to spoof mode 4 packets. As it is described in Figure
2.3, the attacker modifies the Transmit timestamp by a value (a specific date
forward or backward in time) we can call Time attack (Ta). In order to set
Ta it is necessary to add or subtract some Attack offset (Ao) to the Transmit
timestamp of the real mode 4 packet.

Figure 2.3: Spoofed Mode 4 response, on-line attack

The experiments were executed under a controlled environment described
by Figure 2.4. The Figure 2.5 describes the script which was used to execute
the on-line attack during the experiments. The experiments confirm that it
is possible to perform an on-line attack by sending the client’s time forward
and backward in time using time greater than the panic threshold.

A detail experiment of on-line attack is described as follows and some
packets are shown in Figure 2.5, the client is synchronized to its server with
current date and time Monday 29 February 2016 15:22:36(3665748156.0).
The client ntp service is restarted. The attacker detects the reboot (mode 3
packet reference ID is equal to INIT) and starts to spoof mode 4 packets
using Ao = -215000000.0 seconds which means the Ta is Friday, 08 May 2009
05:09:16 (3450748156.0). After 5 packet exchanges the client STEP into the

19

2. Attacking NTP Protocol

Figure 2.4: Topological Diagram for On-line Attack

bogus time. At packet exchange number 8 the client considers the server as
its peer and the attack is considered successful.

The scripts listed in Table 2.3 were implemented in Python Language13,
and are utilized to perform on-line attacks. arpPoisoning.py is used first to
guaranty the attacker visibility of the NTP traffic between client and server.
Then, the script attackOnLine.py is in charge of sending the client forward or
backward in time.

Table 2.3: Software Implemented for On-line Attacks

Script Description

arpPoisoning.py Script used to perform MITM attack using the
strategy of ARP poisoning. Implemented in Python
language

attackOnLine.py Script used to perform the on-line attack

13Python language https://www.python.org/

20

https://www.python.org/

2.2. On-line Attack

Figure 2.5: Flow Diagram for On-line Attack Script

21

2. Attacking NTP Protocol

2.3 Off-line Attack, Kiss-of-Dead

An off-line attack means that the attacker doesn’t have visibility over the
exchange of packets between the client and server. It was found by [8] that
it is possible to perform a DoS attack on a NTP client by an off-line attacker
who sends spoof NTP packets. It is a DoS attack because the client (the
victim) will be banned by the server to send mode 3 packets. This behaviour
is documented in CVE-2015-7704.

There are two approaches in this case: spoofing a Kiss-of-Death (KoD)
packet and the technique called by [8] as priming-the-pump. As described
in Figure 2.6, there is an off-line attacker who has connectivity with both,
the server and the client, which means he must be able to send packets to
the client and/or server. During the experiments it was used the topology
described in Figure 2.4 for simplicity.

Figure 2.6: Topological Diagram for Off-Line Attacks

An off-line attacker with connectivity to the client can spoof one KoD
packet and send it to the client. This situation is shown in Figure 2.7. The
KoD packet has the following characteristics: mode 4, LI 3, some value for
polling interval τε{1, 2, ..., 17}, stratum 0 and reference ID equal to RATE
or DENY. RATE is the kiss code and is an order to the client to reduce
immediately its polling interval [1]. As a consequence, the client will stop
sending mode 3 queries to the server for at least 2τ seconds (if τ = 17, 2τ will
be around 36 hours). The previous value is just the lower bound, in this case
the attacker is not able to control exact values since it is made by poll process
algorithm. According to [1], the kiss code DENY can completely disconnect
the client from its server. According to [8], when using ntpd v4.2.6, an off-line
attacker can trivially send the client a KoD that is spoofed to look like it came
from its server; the only information the attacker needs is the IP addresses
of the relevant client and server; in other words, the TEST 2 explained in
Section 1.3, doesn’t apply to KoD packets. During the experiments using
ntpd 4.2.6p5 on Ubuntu14.04.3, and under the conditions described in Table

22

2.3. Off-line Attack, Kiss-of-Dead

2.1, off-line KoD was not successful since ntpd 4.2.6p5 utilizes Test 2 for KoD
packets.

Figure 2.7: Off-line DoS Attack by Spoofing KoD

Figure 2.8: Off-line DoS Attack by Priming the Pump

In priming-the-pump approach, and attacker spoofs multiple mode 3 re-
quests and sends them to the server. [1] defines that a NTP server will send
a KoD packet to a client that queries the server many times during within a
specified time interval. In order to test this vulnerability, the exact number of
spoofed mode 3 packets that are sent to the server and their time intervals are
not relevant. In order to perform the experiment a couple of scapy commands
were used. It is sent to the server 90 mode 3 queries in rapid succession (every
1 second), each of which was spoofed with the source IP of the victim client
and origin timestamp equal to the current time on the attacker’s machine.

packet = IP(src=”clientIP”,dst=”serverIP”)/UDP()/NTP(mode=3)
sendp(packet, iface=”eth1”, inter=1 , count=90)

23

2. Attacking NTP Protocol

As it is described in Figure 2.8, the server will send the client a mode 4
response which is called Kiss-of-Death. During the experiment, the client
stopped sending mode 3 queries during 30 hours.

2.4 Discussion about On-line and Off-line Attacks

The condition for off-line attacks based in KoD is based on network connectiv-
ity. Once the attacker has connectivity with the server or the client, the attack
is reduced to spoofing NTP packets. Talking about on-line attacks, the con-
ditions are more difficult to achieve since the main ingredient is the reboot of
NTP client. The attacker could wait until the client reboots due to software
updates or power cycling. Additionally, the attacker could use some packet-
of-death technique to force reboot at operative system level, for instance using
Teardrop attack14.

About the possibility of performing on-line attacks over NTP, [30] states
that a computer device with a clock that was set to a date months or years
in the past could probably trigger errors from the operating system or other
applications. On the other hand, it is a real vulnerability and potentially
harmful.

At first glance, off-line attacks by spoofing KoD packets or by priming the
pump seems not very harmful, but [8] explains an scenario that describes the
consequences of these attacks: An off-line attacker could turn off NTP at that
client’s side by preventing it from synchronizing to any of its preconfigured
servers. Some implications could be :

1. The client will rely on its own local clock for the time. If the client has
accurate local time, then this attack is unlikely to cause much damage.

2. The client machine could be incapable of keeping time for itself, e.g.,
because it is in a virtual machine [31]. In this case, client’s clock wont be
corrected by NTP.

14Teardrop is a program that sends IP fragments to a machine connected to the Internet
or a network. The bug causes the TCP/IP fragmentation re-assembly code to improperly
handle overlapping IP fragments. As a consequence, when a Teardrop attack is run against
a vulnerable machine, it will crash or reboot [29].

24

Chapter 3

Detection Module of NTP
Attacks

This chapter explains NEMEA system and the way it is used to achieve the
task of detection of NTP attacks described in Chapter 2. It starts with an
overview of NEMEA system functionality. There is a description of the way
the plug-in for parsing NTP packets was developed. Then, it is explained how
offset θ can be used as a parameter for detecting anomaly behaviour and the
procedure to establish a correct threshold in order to reduce the amount of
false positives. As a complement to the previous strategy, the behaviour of
the normal NTP traffic is modelled using a state machine where the states
are defined by values of the NTP field reference ID. Some transitions between
states can be used as evidence of anomaly or suspicious behaviour and give
information about possible on-line and off-line attacks.

3.1 NEMEA System

Figure 3.1 shows the monitoring infrastructure an organization can follow by
using NEMEA system for detection of NTP attacks. First, the NTP traffic
between the server and the client is captured by the monitoring probe15.
Second, the collector receives the network traffic from multiple probes. Third,
the traffic is received by NEMEA system, which performs data analysis that
generates alerts in case an NTP attack is detected. A security analyst who
reads the received alert, can handle a security incident according to security
policies of the specific organization.

The NEMEA system is a modular system for network traffic analysis and
anomaly detection16. It is composed by independent modules developed using

15An example of probe used by other projects which involves NEMEA system, are
COMBO cards http://www.liberouter.org/technologies/cards/

16https://github.com/CESNET/Nemea

25

http://www.liberouter.org/technologies/cards/
https://github.com/CESNET/Nemea

3. Detection Module of NTP Attacks

Figure 3.1: Monitoring Infrastructure of NTP Traffic

the NEMEA framework. The framework makes the development of NEMEA
modules by implementing common tasks in form of shared libraries. Figure 3.2
shows an example of interconnected modules of NEMEA system.

The way flow records are handled is based on IP Flow Information Export
(IPFIX)17, however, NEMEA uses its own binary data format called Unified
Records (UniRec) [12]. Contrary to IPFIX, UniRec was designed for efficient
access to all data fields and therefore it can be used for real-time continuous
processing of flow records.

Figure 3.2: NEMEA System for NTP attacks Detection

17In paper [32] there is a complete explanation of how flow records work, and it is focused
on IPFIX

26

3.2. NTP Plugin

Table 3.1: NTP Plug-in Fields

UniRec Fields for NTP Description

NTP LEAP Leap Indicator
NTP VERSION NTP Version
NTP MODE Mode 3 Request/Mode 4 Response
NTP STRATUM Stratum
NTP POLL Poll Interval
NTP REF ID Reference ID
NTP ORIG Origin Timestamp
NTP RECV Receive Timestamp
NTP SENT Transmit Timestamp

Table 3.2: Software Implemented for NTP Plug − in

Program Description

ntpplugin.cpp Implementation of the NTP plug-in in C++
language

ntpplugin.h Implementation of the NTP plug-in in C++
language

flowifc.h, flow meter.cpp These files were modify in order to work with
ntpplugin.cpp and ntpplugin.h

3.2 NTP Plugin

Since there was no existing monitoring element that could export NTP inform-
ation needed for this thesis, a flow meter module was extended. It is a simple
flow exporter implemented as part of the NEMEA system. The flow meter

module can be extended by an implementation of a plug-in that is capable
of exporting application specific information. For the purposes of this thesis,
NTP plug-in for flow meter was developed.

The plugin was implemented in the C++ Language18 and the list of created
or extended files can be seen in Table 3.2. Using the plugin, NTP related fields
were added into flow records. Table 3.1 shows the added NTP fields used
during the parsing process. The resulting records are expected and processed
by the proposed NTP Attack Detector module.

18C++ Programming Language http://www.cplusplus.com

27

http://www.cplusplus.com

3. Detection Module of NTP Attacks

3.3 Detection On-line Attacks Based on Offset

θ =
1

2

[
(T2− T1) + (T3− T4)

]
(3.1)

The detection of on-line attacks is based on offset computation. The ob-
jective of this approach is to compute the offset θ of every packet exchange
using Equation 3.1, as a parameter to model the behaviour of the NTP traffic.
Using this technique, it is possible to build a traffic profile where the symptom-
specific feature vector is the offset of every NTP packet exchange. The sign of
the offset helps to identify if one step in time is forwards (positive) or back-
wards (negative). Once this parameter is calculated, it is compared with a
threshold in order to determine if there is an attack in process. The inform-
ation about T4 (client’s time when receives mode 4 packet), is not present in
the mode 3 request neither is in the mode 4 response. In order to have this
information, it is necessary to wait until the next mode 3 request and take
this value from the field Received timestamp.

Figure 3.3 shows the results of the calculation of offsets for 100 NTP packet
exchanges under normal conditions (there is no attack). It is very useful in
order to determine and define normal behaviour of the NTP traffic, and to
define some threshold during the detection of the attack.

The process of how to calculate the offset for one NTP exchange based on
Equation 3.1 requires some additional explanation and also requires to review
Figure 1.3. In Figure 1.3 it is defined T1 as the client’s time at the moment
it sends the mode 3 request to the server and it is in the NTP field Transmit
timestamp. Additionally, T2 is server’s time at the moment it receives the
mode 3 request and this information can be taken from the mode 4 response
in the field Receive timestamp. T3 is server’s time at the moment it sends
the mode 4 response and this information can also be taken from the mode
4 response in the field Transmit timestamp. Finally, T4 is the client’s time
when it receives the mode 4 response, but, it is not present in the mode 4
response. In order to know the information about T4 it is necessary to wait
until the next mode 3 request and take it from the field Receive timestamp.
As a consequence, to have all the information required to calculate the offset
of one NTP exchange Ei it is necessary to wait until the beginning of the next
NTP exchange Ei+1.

Data from Figure 3.3 and 3.4 was measured in virtual environment during
real experiments. The attacker will send the client’s time one hour forward
in time. The X-axis represents the timestamps since the beginning of the
experiment (one timestamp represents one NTP packet exchange). In red
it is represented the calculation of the offset and its value in the Y-axis at
the left side (in logarithmic scale). Additionally, in blue it is the client’s
time and its value is at the Y-axis at the right side. At the beginning of the
experiment the client’s time is 04:11:23 (using format Hours:Minutes:Seconds).
From timestamps 1 to 11 it is shown a normal behaviour of NTP where the

28

3.3. Detection On-line Attacks Based on Offset

Figure 3.3: Offsets NTP Exchanges (Normal Traffic)

offset is at the order of milliseconds and client’s time is increasing normally.
The attack starts at timestamp 12 where the server is proposing the client
to shift its time one hour to the future. At this timestamp number 12, it
is possible to see the evidence of the attack since the offset is about 1,800
seconds, but, it is not evident at the client’s time (its value is normal). At
timestamp number 17, it is evident that the client accepted the time and it is
now 05:28:33 and the attack is considered to be successful. The attack remains
active (MITM is active and also the spoofing of mode 4 responses) during the
time determined by the attacker. Once the attack is successful, offset is not
useful for attack detection any more since it behaves in a normal way again.

The Algorithm 1 describes the way the offset θ for every NTP packet
exchanged is calculated. It is assumed there is a client/server NTP commu-
nication. Every exchange of packets is represented by E which is composed
by two types of packets, one mode 3 request and one mode 4 response. We
have n number of packet exchanges E, and for each of them the offset θ is
calculated using Equation 3.1. To calculate offset θ[i] of the NTP exchange
Ei, it is necessary to wait until the beginning of the next NTP exchange Ei+1

The detection module needs to be designed in a way that allows to detect
NTP attacks not just for one NTP conversation, but for many. One NTP con-
versation is defined as the exchange of NTP packets between one client and
one server. In order to store information about past exchanges, ten hash-maps
were implemented19. In these hash-maps, one key is mapped to one value.

19The data structured used to build the hash-map in Python is the Dictionary. The

29

3. Detection Module of NTP Attacks

Algorithm 1 NTP Offset (in: E[1,...,n],out:θ[1, ..., n])

Require: NTPExchangesEi = {PacketMode3[i], PacketMode4[i]}, iε{1, ..., n}

for all Ei i:=[1,...,n] do
if i > 1 then
T4← PacketMode3[i].ReceiveT imestamp
θ[i− 1]← CalculateOFFSET (T1, T2, T3, T4)
if θ[i− 1] > Threshold then
GenerateALERT ()

end if
else
T1← PacketMode3[i].T ransmitT imestamp
T2← PacketMode4[i].ReceiveT imestamp
T3← PacketMode4[i].T ransmitT imestamp

end if
i← i+ 1

end for

Table 3.3: Pros and Cons of Using Attack Detection Based on Offsets

Pros Cons

Offset of one NTP packet exchange
is simple to compute.

Detection of an anomaly based on
offset is simple to implement by
comparison with a threshold.

If offset is greater that
1,000 seconds. It is an anom-
aly. This value of offset is not
allowed by th the specification [1].

The amount of false positives can
be reduced by determining experi-
mentally the value of the threshold.

It is a simple implementation that
considers each client/server NTP
communication. It is designed
to support detection of NTP at-
tacks for multiple NTP conversa-
tions (multiple client/server com-
munications) at the same time.

In order to have all the informa-
tion to compute the offset of NTP
packet exchange Ei, it is necessary
to wait until packet exchange Ei+1.

Wrong selection of the threshold
can produce false positives or un-
detected attacks.

When values of offsets are less than
1,000 seconds, this technique of de-
tection is prone to false positives
and or undetected attacks.

The process of determining ex-
perimentally the threshold doesn’t
have a fixed time.

30

3.3. Detection On-line Attacks Based on Offset

Figure 3.4: Offsets During On-line Attack (1 Hour Forwarding)

Two examples of how the dictionaries are used: The hashmap hashmap mode3
stores the information of transmit timestamp for mode 3 packets, and the
key is the identification of the conversation that follows the format clientIP-
serverIP. For instance 10.10.10.3-192.168.1.1 where 10.10.10.3 is the client
and 192.168.1.1 is the server. In the same way, there is another hash-map
hashmap mode4 that stores the information of transmit timestamp and re-
ceive timestamp for mode 4 packets, and also the key is the identification
of the conversation that follows the format clientIP-serverIP. This technique
allows the module to handle the detection of NTP attacks for multiple NTP
conversations at the same time.

dictionary is defined as an unordered set of key:value pairs, with the requirement that
the keys are unique (within one dictionary). https://docs.python.org/2/tutorial/
datastructures.html

31

https://docs.python.org/2/tutorial/datastructures.html
https://docs.python.org/2/tutorial/datastructures.html

3. Detection Module of NTP Attacks

3.4 Detection On-line Attack Threshold
Estimation

As it was stated in the previous section, one important step in the detection
process is to compare the offset to a threshold that must be selected wisely
to reduce the number of false positives. The proposed strategy for calculation
of the threshold involves experimental analysis of normal NTP traffic. A
template of the mean and standard deviation of offsets is then used to detect
anomalous behaviour, as it is recommended by [33]. In this approach, online
learning is used to build a traffic profile for a given network. When newly
acquired data fails to fit within some confidence interval of the developed
profiles then an anomaly is declared. Normal behavior of time series data is
captured as templates and tolerance limits are set based on different levels
of standard deviation. The metric is a random variable θ (offset of NTP
Exchange) representing a quantitative measure accumulated over a period.
This statistical model makes no assumptions about the underlying distribution
of θ; all knowledge about θ is obtained from observations [34]. This model
is based on the assumption that all we know about θ1,...,θn, are mean and
standard deviation using the equations from Algorithm 2.

Algorithm 2 Offset Threshold (in: i, θi, sumi−1, ssi−1; out: Threshold)

Require: i # Identifier current NTP exchange
i-1 # Identifier previous NTP exchange
θi # Offset current exchange
sumi−1 # Sum of offsets until previous exchange
sumi # Sum of offsets until current exchange
ssi−1 # Sum of offset squares until previous exchange
ssi # Sum of offset squares until current exchange
sq # Square of offset
sd # Standard Deviation
d # Multiplier standard deviation

if i > 1 then
sqi ← θ2i # Square of offset
sumi ← θi + sumi−1 # Sum all offsets
ssi ← sqi + ssi−1 # Sum all offset squares

mean← sumi

i
Mean all offsets

sd←
√

ssi
i− 1

−mean2 # Standard Deviation Calculation

Threshold← d x sd
end if

32

3.5. Detection On-line and Off-line Attack by Modelling Behaviour using
States of NTP Exchanges

The statistical tool to determine the Confidence Interval is theChebishev’s
Inequality, which is very useful in this case since the random variable (offset)
doesn’t follow any specific probability distribution.

Every time there is a new NTP packet exchange Ei, its value of offset θi is
compared with a value of Threshold in order to determine if the offset belongs
to the confidence interval using Algorithm 3. The confidence interval is defined
by mean ± Threshold, where Threshold = d x Standar Deviation. If the offset
is outside the confidence interval an anomaly is detected. By Chebyshev’s
inequality [35], the probability of a value falling outside this interval is at
most 1/d2; for d = 4, for example, it is at most 0.0625. For this problem,
Chevishev’s inequality is useful since it guarantees that for any probability
distribution (nearly all) values are close to the mean and no more than 1/d2

of the distribution’s values can be more than d standard deviations away from
the mean. Additional advantages of using this technique are described in
Table 4.2.

Algorithm 3 Confidence Interval Threshold (in: θi, Threshold, mean)

if (mean - Threshold) 〈 θi 〉 (mean + Threshold) then
return TRUE # No Anomaly

else
return FALSE # Anomaly

end if

3.5 Detection On-line and Off-line Attack by
Modelling Behaviour using States of NTP
Exchanges

Another technique suggested in [33], is to model the traffic using a finite state
machine. For the case of NTP traffic every NTP packet exchange will receive
a state. The NTP traffic is modelled by strings of codes (one letter) that
represents the states. The patters of anomaly traffic are transitions (sequence
of two letters) or set of transitions of the states. The use of this technique
works as a complement to the detection based on offsets, and could help to
reduce the amount of false positives. Additionally, it is useful for detection
of both on-line and off-line attacks. Another advantage about this approach,
is that during a forensic analysis of traffic, it is easier for a security analyst
to understand the behaviour of the NTP traffic. It is due to the fact that
the analysis can be done by reading sequences or letters. The definitions of
the states are based mainly on the analysis of NTP field reference ID of every
packet. The interpretation of the reference ID depends on the value in the
stratum field. For packets with stratum 0 (unspecified or invalid), this is a
four-character ASCII RFC-1345 string, called the kiss code [1]. Moreover,

33

3. Detection Module of NTP Attacks

Table 3.4: States for Modelling NTP traffic

Name of State Code and Description

OK O - Normal NTP traffic Exchange Figure 1.4. Stratum
1-15.

STEP S - A step in system time has occurred. The value of
NTP’s field Stratum is 0.

RATE R - The server has temporarily denied access because
the client exceeded the rate threshold. Useful state to
detect off-line attacks. The value of NTP’s field Stratum
is 0.

INIT I - The association has not yet synchronized for the first
time. Implies reboot. Useful to detect on-line attacks.
The value of NTP’s field Stratum is 0.

DENY D - Access denied by remote server. Useful state to
detect off-line attacks. The value of NTP’s field Stratum
is 0.

OTHER B - Other type of kiss code. The value of NTP’s field
Stratum is 0.

Table 3.5: Definition of Anomaly States

Anomaly Description

n number of Is = one S Suggests on-line attack by the detection of a
reboot at the client’s side and then one step.

D Implies off-line attack by kiss of death spoof-
ing or primping the pump.

R Implies off-line attack by kiss of death spoof-
ing or primping the pump.

above stratum 1 (secondary servers and clients), represents the identifier of
the server from which the time information is taken. Table 3.4 shows the
defined states using definitions from [1].

Table 3.5 lists the definition of anomalies to detect off-line attacks and
possible on-line attacks.

For instance, the attack described by Figure 3.4, can be modelled as a
sequence of states in the following way: OOOOOOOOOOOIIIIISSSSOO. The
first 11 Os are normal exchanges. Then, the ntpd service at the client side
reboots and the next 5 exchanges represents INIT-I state (the association has
not yet synchronized for the first time). After that, there is one exchange
in STEP-S state when the client accepts the time from the attacker and
exchanges continues normally.

34

3.5. Detection On-line and Off-line Attack by Modelling Behaviour using
States of NTP Exchanges

Algorithm 4 NTP States (in: E[1,...,n],out: S[1,...,n])

Require: NTPExchangesEi = {PacketMode3[i], PacketMode4[i]}, iε{1, ..., n}
int flag = 0
for all Ei i:=[1,...,n] do

Switch (PacketMode3[i].ReferenceID)
Case “INIT”:
S[i]← “I” # State INIT
flag ← 0 # Don’t Analyse mode 4 packet

Case “STEP”:
S[i]← “S” # State STEP
flag ← 0

Default:
flag ← 1 # Analyze mode 4 packet

end Switch

if flag == 1 then
if PacketMode4[i].Stratum == 0 then

Switch (PacketMode4[i].ReferenceID)
Case “DENY ”:
S[i]← “D” # State DENY

Case “RATE”:
S[i]← “R” # State RATE

Default:
S[i]← “B” # State OTHER

else
S[i]← “O” # State OK

end if
end if
end Switch

end for

In Algorithm 4, it is explained the way how the states for every packet
exchange are defined. The state of one NTP exchange is described as follows:
First, it is analysed the mode 3 packet, and it is checked if its reference ID
(stratum = 0) is equal to INIT or STEP ; in this case the state is I or S
respectively and the mode 4 packet is not analyzed. Otherwise, the mode 4
packet is analysed and it is checked if its reference ID(stratum = 0) is equal
to RATE or DENY ; in this case the state is R or D respectively. If stratum
is different than 0 the state is O. There is one additional state (B), and is
the case of an mode 4 packet with stratum 0, but reference ID is different to
RATE or DENY. The same is done for every packet exchange in order to have
the set of states that model the behaviour of the conversation.

The idea of states was extended in order to have more information about

35

3. Detection Module of NTP Attacks

Table 3.6: Pros and Cons of Using States of NTP Exchanges

Pros Cons

Simple way to define states of NTP
packet exchanges.

Works as a complement to the de-
tection of attacks based on anom-
alies in offsets.

Allows to detect typical packets in-
volved in on-line (Mode 3: refer-
ence ID equal to INIT or STEP)
and off-line attacks (Mode 4: refer-
ence ID equal to RATE or DENY)
in real time.

Helps to identify a pat-
tern for on-line attacks:
OOOOOOOOOOOIIIIISSSSOO.

Useful to identify new anomalies in
the behaviour of NTP packet ex-
changes.

The use of characters to define
states makes it easy to read by
a security analyst during network
forensic analysis process.

This strategy does not consider
the time between NTP packet ex-
changes.

Requires the user to specify the
NTP conversation over which the
analysis will be performed.

Most be executed together with the
detection strategy based on anom-
alies of offsets.

Requires off-line learning of mali-
cious patterns before the scheme
can be deployed on the network.

one NTP packet exchange, and also this analysis could be useful for future
investigations about the behaviour of NTP. After the extension, one NTP will
be described by 4 characters X1X2X3X4. X1 represents the state of reference
Id field, as it was explained previously in Table 3.4 . X2 represents time
between 2 consecutive packet exchanges. With X3 it is possible to know if
the client is backward or forward in time with reference to the server. X4

gives information about how big is the offset. The different values of states
are illustrated in Figure 3.5.

In order to understand the utility of this approach, in Table 3.7 it is ex-
plained a summary (not all of packet exchanges are shown) of the states during
the attack described by Figure 3.4.

36

3.5. Detection On-line and Off-line Attack by Modelling Behaviour using
States of NTP Exchanges

Figure 3.5: Definition of States for one NTP Exchange

Table 3.7: Examples of Extended States

NTP Exchange State X1X2X3X4 Analysis of NTP packet Exchange

O 6 - f X1=O: The exchange was OK ac-
cording to definition in Table 3.4.
X2=6: The previous NTP exchange
was less than 3 minutes ago. X3=-
: The client’s time is backward
in time with respect to the server.
X4=f: The value of offset is less
than 250 ms.

I 6 - a X1=I: There was a reboot of ntp
service at client’s side. X2=6: The
previous NTP exchange was less
than 3 minutes ago. X3=-: The cli-
ent’s time is backward in time with
respect to the server. X4=a: The
value of offset is more that 1000
seconds. This state is considered
dangerous since represents an at-
tempt of on-line attack.

S 6 - f X1=S: The client steps in time.
X4=f: The value of offset is less
than 250 ms.

37

3. Detection Module of NTP Attacks

3.6 Detection Module Implementation

The module implemented using NEMEA system, is “NTP Attack Detector.py”.
This module implements the detection strategies described in the previous sec-
tions (Section 3.3 , Section 3.4 and Section 3.5).

The detection module receives NTP flow records in the input interface.
The input interface, as well as the output interface, can be a TCP interface20

(for remote communication between modules) or a UNIX socket21 (for local
communication). Every packet is processed by Algorithm 1 (to calculate the
offset of the exchange) and then by Algorithm 4 (to set the estate of the
exchange). In case an alert is generated, it is sent to the output interface.

Figure 3.6: Detection Module Implementation

Table 3.8: Program Implemented for Detection Module

Program Description

NTP Attack Detector.py Program that implements the strategies
of detection described in Chapter 1re-
fchp:detectionModule

The functionalities and modes of operations of the detection module are
described as follows:

1. Learning Mode: Learns normal behaviour of offsets. The outputs are
values of lower bound and upper bound (offset threshold) for every NTP com-
munication. Doesn’t generate alerts of attacks. The outputs are stored in a
configuration file config.ini.

2. Alert Mode: Uses the results of thresholds from Learning Mode. In
case there is a new NTP conversation which wasn’t learned previously, the

20TCP interface format t:〈hostname or ip〉, 〈 port〉
21UNIX socket format u:〈socket identifier〉

38

3.6. Detection Module Implementation

default threshold is : lower bound = -1,000 seconds and upper bound = 1,000
seconds. It is used the value of 1,000 seconds because not even the NTP will
allow steps bigger that this value, as it was explain in Section 2.2 and Figure
2.1.

3. Step Analysis Mode: Generates a report with all states for every NTP
packet exchange.

4. Focus Mode: The module can focus the analysis to a specific NTP
communication (one client and one sever)

39

Chapter 4

Evaluation of Detection Module

This chapter describes the way how the module of detection was tested using
traffic from real networks. NTP traffic was captured from different sources:
from the laboratory described by Figure 2.4, also from NEMEA office at Fac-
ulty of Information Technology and finally from CESNET network. From
CESNET network 22, it was captured 85.648.459 NTP flow records stored in
a file which size was 17 GB. First, it is described three experimental cases
about calculation of threshold. Second, NTP module is tested during on-line
attack. Third, it is discussed the module’s throughput. Finally, it is described
some difficulties experienced during this evaluation. This experiments involve
all the programs implemented: NTP plug-in, detection module and also scripts
for attacks.

4.1 Evaluation of Thresholds

The strategy proposed in this thesis for detection of on-line attacks is based
on the idea of computing the offset of a NTP packet exchange and compare
that value with a threshold value defined by an upper-bound and a lower-
bound that satisfy a confidence interval based on Chebishev’s Inequality. It
is important to remember from Section 2.2, that the maximum possible value
of offset allowed by NTP protocol is 1,000 seconds. Table 4.1 shows some
examples of Confidence intervals found experimentally using the detection
module. It is important to notice that every case is independent and the
results can vary. A good threshold for one specific case, can be very different
to the results found for another case. Another important observation is that
the calculation of lower and upper-bound, could be affected by the way the
NTP flow records are capture, as it will be discussed in Section 4.4.

22CESNET: is a developer and operator of national e-infrastructure for science, research,
development and education in Czech Republic https://www.cesnet.cz/?lang=en

41

https://www.cesnet.cz/?lang=en

4. Evaluation of Detection Module

Table 4.1: Experiments Confidence Interval

Experiment Lower Bound (sec) Mean (sec) Upper Bound (sec)

1 -0.68 -0.008 0.69
2 -26.22 -1.18 23.85
3 -0.27 -0.002 0.27
4 -65.28 -6.49 52.28
5 -77.97 -12.33 53.31
6 -59.51 -5.57 48.37
7 -79.91 -10.89 58.11

During this section it is going to be shown a set of cases that illustrates the
way the learning mode works using the detection module. It is important to
remember that the purpose of this mode is to acquire knowledge about offsets
of normal NTP traffic:

Figure 4.1: Case 1 Confidence Interval

Case 1 “Regular Offsets, Same Network”: Figure 4.1, shows an example
of calculation of confidence interval for the case described in Section 2.2 and
Figure 2.4. During this experimental test of learning process; it was used
real traffic from a laboratory where the client and server are in the same
network (low delay traffic). Both the client and server are synchronized. This
figure illustrates the way the confidence interval of 93.75% is calculated while
NTP traffic is detected. It was calculated the threshold for 100 NTP packet

42

4.1. Evaluation of Thresholds

exchanges. Since the values of NTP offsets are very regular, the mean and
confidence interval are regular as well.

Figure 4.2: Case 2 Confidence Interval

Case 2 “Non-Regular Offsets, Server in Internet”: For this experiment,
the server is in internet (which increases the delay), and the client and server
are synchronized. The results in Figure 4.2 illustrates very well the process
of learning done by the detection module. The first packet exchanges present
very regular offsets (order of millisecond); then, there is one offset of about
-30 seconds. After this, the interval grows considerably. Finally, the values
of offsets are regular again (order of millisecond), and the interval starts to
decrease gradually.

Case 3 “CESNET Network, Long Experiment”: This experiment is inter-
esting since the detection module was tested using NTP data captured during
3 days. This test was done using 2,831 NTP packet exchanges (5,662 NTP
packets). The results of this experiment are shown in Figure 4.3. It can be
seen how the confidence interval adapts to the new results during a long term
experiment. It is important to mention that some of the offsets were calcu-
lated incorrectly by the Algorithm 1, due to the fact that some of the NTP
packets were not recorded in correct sequence by the probes; this difficulty is
going to be discussed in detail in Section 4.4.

43

4. Evaluation of Detection Module

Figure 4.3: Case 3 Confidence Interval

4.2 Test During Attack

The on-line attack described by Figure 2.2, was replicated but this time the
traffic was analysed by the detection module. The detection module detected
5 consecutive ALERTS of on-line attack when it was detected offsets of about
1,800 seconds. It is important to notice that once the attack is successful, the
alerts stop because the offsets are normal. The detection module is capable
of detecting on-line attacks while the attack is in process, but doesn’t detect
the attack when it happened in the past, even if the MITM attack is still in
process. Additionally, it was tested that the module generates alerts when a
kiss of death packet i detected.

4.3 Throughput Calculation

The throughput of the detection module was tested in the following way:
85.648.459 flow records captured during 3 days from two probes located in a
CESNET network (the records were anonymized, which means that the IP
addresses don’t correspond to the real ones). These records were used as
input for the detection module. It was measured the time at the beginning
of the computation of the flow records and at the end. It was found that the
detection module can compute 8,196 NTP records per second. During the
capture of flow records using the monitoring probes, it was observed 350 NTP

44

4.4. Difficulties During Evaluation

flow records per second on average. As a consequence, the detection module
is capable of computing NTP records faster than the average value of received
records. The testing machine specifications are described as follows:

Operative System: Fedora 21 GNU/Linux

CPU: Intel i7-4785T @ 2.2GHz

RAM: 16 GB

Cores: 8

The memory required to store the data related to one NTP conversation
using Python dictionaries is low. Every one will use one entry of the 10 dic-
tionaries implemented for different purposes. The memory starts to increase
while the number of NTP conversations increases. During the test using the
85.648.459, it was detected 27,321 NTP communications.

Table 4.2, discusses the pros and cons about the proposed method for
threshold calculation.

4.4 Difficulties During Evaluation

During the test of the detection module there were some difficulties that are
described as follows. This section also works as lessons learned about the
conditions on which the detection module works correctly:

1. There was a test where the detection module didn’t produce any result.
It was due to the fact that the file with flow records only contained records for
NTP request. So, it is necessary for the correct functionality of the module,
to see both directions of the communication (request + response).

2. There were other tests where the results from the detection module were
not correct, due to the fact that the file with flow records contained duplicate
records. So, it is necessary for the correct functionality of the module, to
count with not duplicate records. It was probably caused by the nature of
configuration of monitoring infrastructure, where the main router mirrors all
packets to local monitoring probe.

3. There were also cases where some records were not sorted by start time
of the flow record, causing incorrect calculations of offsets.

4. The quality of results from the detection module depends on a correct
set of records: Sorted by start time of the flow, not duplicate records. The
set of flow records must follow the order of the NTP communication between
client and server.

5. The reason of these problems with flow records was mainly because in
CESNET backbone network it is not possible to see all packets from traffic due
to routing policy, so, it is possible that packets of the same NTP conversation
travel via different paths. Another identified problem appear when the device
from which the flow records were taken, uses two interfaces for the capture,
which can produce duplicate records.

45

4. Evaluation of Detection Module

Table 4.2: Pros and Cons of Threshold Definition by using Mean an Standard
Deviation

Pros Cons

Working with standard deviation
guaranties that Threshold will be
in the same units as the measured
variable (seconds). This values are
simple to calculate. Doesn’t re-
quire to store all previous values of
offsets, it is just necessary to store
the total sum of offsets and sum of
square values of offsets.

This strategy also allows to ap-
ply Chebishev’s Inequality, which
is very useful for cases of random
variables without specific probabil-
ity distribution.

This method is used to learn what
constitutes normal activity from its
observations, and the confidence
intervals automatically reflect this
increased knowledge.

Because the confidence intervals
depend on observed data, what is
considered to be normal for one
user can be considerably different
for another.

The learning process for multiple
NTP communications can be done
simultaneously.

Online learning is used to build a
traffic profile for a given network.

The efficiency of this approach de-
pends on the accuracy of the traffic
profile generated.

The Algorithm 1, requires that the
flow records are received by the
detection module in the same se-
quence that the NTP communica-
tion traffic, which implies that the
monitoring strategy and infrastruc-
ture must be taken into account.

The learned information from one
NTP communication is useless for
other NTP communications.

The transition from learning mode
to alert mode is not automatic and
there is not a strategy that determ-
ines when the learning is over.

6. The memory usage of the module could be improved if it is implemented
a time-out for idle NTP communications that clears the entries on the Python
dictionaries related with these conversations.

4.5 Future Work

After the end of this thesis, some ideas for future work in this area are ex-
plained:

46

4.5. Future Work

1. It is possible to focus security of NTP by testing and detecting off-line
attacks based on fragmentation of NTP packets.

2. Some alternatives for detection of on-line attacks could be designed.
For instance, the strategy of states definition explained in Section 3.5, could
be combined with Markov’s Chain analysis and define the probability of occur-
rence for each state. This idea could be also used to detected new anomalous
behaviour of NTP traffic.

3. In 2016 it was found new vulnerabilities on NTP protocol. One of
them is described by CVE-2016-1550 “Improper Input Validation”: ntpd does
not use a constant-time memory comparison function when validating the
authentication digest on incoming packets. In some situations this may allow
an attacker to conduct a timing attack to compute the value of the valid
authentication digest causing forged packets to be accepted by ntpd. CVE-
2016-1548 “Authentication Bypass by Spoofing”: By spoofing packets from a
legitimate server, an attacker can change the time of an ntpd client or deny
service to an ntpd client by forcing it to change from basic client/server mode
to interleaved symmetric mode23.

4. Implementation in C language of the algorithms exposed in this thesis
in order to have better performance.

5. It would be interesting and useful to design a technique that allows the
transitions from learning mode to alert mode automatically when an algorithm
considers that the traffic is stable and the values of offset don’t differ too much
among them.

6. In the introduction of this thesis it was explained some theoretical
scenarios where some applications or protocols (Bitcoin, HSTS protocol, DNS
protocol, TLS certificates), could be affected if the time integrity is not guar-
anteed. It would be worthy to test this potential consequences in order to find
new ways to protect these applications and protocols.

23CERT, Vulnerability Notes Database https://www.kb.cert.org/vuls/id/718152

47

https://www.kb.cert.org/vuls/id/718152

Conclusion

The implementation of NTP protocol ntpd v4.2.6 is vulnerable to on-line
attacks when the -g option is enabled, since it is possible for an attacker to
send spoof timestamps just after the ntpd service is rebooted on the client
side. As a consequence, the on-line attacker can send the client forwards or
backwards in time.

Additionally, the implementation ntpd v4.2.6 is vulnerable to off-line at-
tacks by priming the pump, where the attacker spoofs and sends many mode 3
bogus packets to the server; consequently, the server will send a Kiss-of-Death
packet to the client, notifying that the client must reduce the rate of quer-
ies. The off-line attack by spoofing KoD packet was tested for ntpd 4.2.6p5 on
Ubuntu14.04.3, and it was found that this particular scenario is not vulnerable
due to the fact that ntpd applies Test 2 to KoD packets (a KoD is no longer
trivially spoofable with ntpd v4.2.6p5). Finally, the best option to perform
off-line attack is by using priming the pump technique.

The security of NTP protocol matters since it lies in the background of
many other systems, which means that there are applications and protocols
whose correctness and security relies on the correctness of local clocks. Some
consequences of attacking NTP could be: Bitcoin transactions that are com-
posed by blocks of timestamps could be altered; HSTS protocol could be
disabled and web traffic wouldn’t be encrypted and vulnerable to eavesdrop-
ping; DNS protocol could be affected by making expire cache on DNS servers
and possible flooding of DNS queries; TLS certificates could be affected by
forcing the host to accept certificates that the attacker acquired fraudulently
and make the communication vulnerable to eavesdropping.

Strategies for detection of on-line and off-line attacks were designed: Threshold
definition by calculation of a confidence interval during learning mode of the
detection module. Detection of on-line attacks by comparison of offsets with
threshold boundaries using alert mode. Finally, detection of on-line and off-
line attacks by states definition of NTP exchanges. This last strategy reduces
the possibility of false positives when on-line attacks are detected, it is de-

49

Conclusion

signed to be easy readable by security analysts and useful for network forensic
analysis.

Calculation of offsets of NTP packet exchanges is useful when on-line at-
tacks are detected. Detection of an anomaly based on offsets is simple to
implement by comparison with a threshold that must be determined experi-
mentally. Using the mean and standard deviation of a set of measured offsets
in NTP communications, works as a source of knowledge about the beha-
viour of the NTP traffic; this allows to set the confidence interval by using
Chebishev’s Inequality. This strategy works well in cases where it is guaran-
teed that the flow records reflects the real sequence of NTP traffic.

The contribution of this thesis starts by the design of a virtual environment
for proving attack strategies over NTP. Also, the implementations of scripts
to perform the attacks. Additionally, the implementation of a plug-in for
parsing NTP flow records that works for NEMEA systems. Moreover, the
implementation of a detection module according to the designed strategies for
detection.

50

Bibliography

[1] Mills, D.; Martin, J.; Burbank, J.; et al. RFC 5905: Network time pro-
tocol version 4: Protocol and algorithms specification. Internet Engineer-
ing Task Force, 2010.

[2] IEEE. IEEE Standard for a Precision Clock Synchronization Protocol
forvNetworked Measurement and Control Systems. IEEE Std. 1588, 2008:
pp. 1–269.

[3] Elson, J.; Girod, L.; Estrin, D. Fine-grained network time synchroniz-
ation using reference broadcasts. ACM SIGOPS Operating Systems Re-
view, volume 36, no. SI, 2002: pp. 147–163.

[4] Parkinson, B. W. Progress in Astronautics and Aeronautics: Global Po-
sitioning System: Theory and Applications, volume 2. Aiaa, 1996.

[5] Corbixgwel. Timejacking and bitcoin: The global time agreement puzzle.
http://culubas.blogspot.cz/2011/05/timejacking-bitcoin_
802.html, 2011, accessed February 2016.

[6] Mattsson, J.; Näslund, M. Detection and Mitigation of HTTPS Man–in–
the–Middles and Impersonators.

[7] Selvi, J. Bypassing HTTP Strict Transport Security. Black Hat Europe,
2014.

[8] Malhotra, A.; Cohen, I. E.; Brakke, E.; et al. Attacking the Network
Time Protocol. NDSS’16, 2016.

[9] Selvi, J. Delorean. https://github.com/PentesterES/Delorean, ac-
cessed February 2016.

[10] RedHat. CVE-2015-5300. https://access.redhat.com/security/cve/
cve-2015-5300, 2015, accessed February 2016.

51

http://culubas.blogspot.cz/2011/05/timejacking-bitcoin_802.html
http://culubas.blogspot.cz/2011/05/timejacking-bitcoin_802.html
https://github.com/PentesterES/Delorean
https://access.redhat.com/security/cve/cve-2015-5300
https://access.redhat.com/security/cve/cve-2015-5300

Bibliography

[11] RedHat. Security Announcement cve-2015-5300. https:

//kb.juniper.net/InfoCenter/index?page=content&id=
JSA10711&actp=search, 2015, accessed February 2016.

[12] Bartos, V.; Zadnik, M.; Cejka, T. Nemea: Framework for stream-wise
analysis of network traffic. CESNET, Technical Report, 2013.

[13] Stenn, H. Securing the Network Time Protocol. Queue, volume 13, no. 1,
2014: p. 20.

[14] Graham, J. Understanding and Mitigating NTP-based DDoS Attacks.
https://blog.cloudflare.com/understanding-and-mitigating-
ntp-based-ddos-attacks/, 9 January 2014, accessed February 2016.

[15] Wikimedia. Network Time Protocol. https://en.wikipedia.org/wiki/
Network_Time_Protocol, Last modified on 13 April 2016, accessed Feb-
ruary 2016.

[16] NTP.org. Clock Quality (FAQ). http://www.ntp.org/ntpfaq/NTP-s-
sw-clocks-quality.htm, 2010, accessed February 2016.

[17] Mills, D. L. Internet Time Synchronization: The Network Time Protocol.
Internet Engineering Task Force, 1994.

[18] NTP.org. How NTP Works. https://www.eecis.udel.edu/~mills/ntp/
html/warp.html, 2014, accessed February 2016.

[19] NTP.org. How does it work? http://www.ntp.org/ntpfaq/NTP-s-
algo.htm, 2010, accessed February 2016.

[20] Baum, F. ntpd - Network Time Protocol (NTP) Daemon. https://

www.eecis.udel.edu/~mills/ntp/html/ntpd.html, 2014, accessed Feb-
ruary 2016.

[21] Oracle. VirtualBox. https://www.virtualbox.org, 2016, accessed Feb-
ruary 2016.

[22] Debian.org. Debian The universal operative system. https:

//www.debian.org, 2016, accessed February 2016.

[23] Canonical. Ubuntu Operative System. http://www.ubuntu.com, 2016, ac-
cessed February 2016.

[24] RFC-791. Internet Protocol Version 4 RFC-791. https:

//tools.ietf.org/pdf/rfc791.pdf, 1981, accessed February 2016.

[25] Python. https://www.python.org/, 2001, accessed February 2 016.

52

https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10711&actp=search
https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10711&actp=search
https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10711&actp=search
https://blog.cloudflare.com/understanding-and-mitigating-ntp-based-ddos-attacks/
https://blog.cloudflare.com/understanding-and-mitigating-ntp-based-ddos-attacks/
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Network_Time_Protocol
http://www.ntp.org/ntpfaq/NTP-s-sw-clocks-quality.htm
http://www.ntp.org/ntpfaq/NTP-s-sw-clocks-quality.htm
https://www.eecis.udel.edu/~mills/ntp/html/warp.html
https://www.eecis.udel.edu/~mills/ntp/html/warp.html
http://www.ntp.org/ntpfaq/NTP-s-algo.htm
http://www.ntp.org/ntpfaq/NTP-s-algo.htm
https://www.eecis.udel.edu/~mills/ntp/html/ntpd.html
https://www.eecis.udel.edu/~mills/ntp/html/ntpd.html
https://www.virtualbox.org
https://www.debian.org
https://www.debian.org
http://www.ubuntu.com
https://tools.ietf.org/pdf/rfc791.pdf
https://tools.ietf.org/pdf/rfc791.pdf
https://www.python.org/

Bibliography

[26] Secdev.org. Scapy Usage. http://www.secdev.org/projects/scapy/
doc/usage.html, 2008, accessed February 2016.

[27] CVE.org. CVE. https://cve.mitre.org/, 1999, accessed February 2016.

[28] Jajodia, S.; Mazumdar, C. Information Systems Security: First Inter-
national conference, ICISS 2005, Kolkata, India, December 19-21, 2005,
Proceedings, volume 3803. Springer, 2005.

[29] Teardrop. http://www3.physnet.uni-hamburg.de/physnet/security/
vulnerability/teardrop.html, 2010, accessed February 2016.

[30] Dan, G. New attacks on Network Time Protocol can defeat HT-
TPS and create chaos. http://arstechnica.com/security/2015/10/
new-attacks-on-network-time-protocol-can-defeat-https-and-

create-chaos/, 2015, accessed February 2016.

[31] VMware. Timekeeping in vmware virtual machines: vsphere 5.0, worksta-
tion 8.0, fusion 4.0. http://www.vmware.com/files/pdf/Timekeeping-
In-VirtualMachines.pdf, 2011, accessed February 2016.

[32] Hofstede, R.; Celeda, P.; Trammell, B.; et al. Flow monitoring explained:
From packet capture to data analysis with netflow and ipfix. Communica-
tions Surveys & Tutorials, IEEE, volume 16, no. 4, 2014: pp. 2037–2064.

[33] Thottan, M.; Ji, C. Anomaly detection in IP networks. Signal Processing,
IEEE Transactions on, volume 51, no. 8, 2003: pp. 2191–2204.

[34] Denning, D. E. An intrusion-detection model. Software Engineering,
IEEE Transactions on, , no. 2, 1987: pp. 222–232.

[35] Toader, G. On Chebyshev’s inequality for sequences. Discrete Mathem-
atics, volume 161, no. 1, 1996: pp. 317–322.

53

http://www.secdev.org/projects/scapy/doc/usage.html
http://www.secdev.org/projects/scapy/doc/usage.html
https://cve.mitre.org/
http://www3.physnet.uni-hamburg.de/physnet/security/vulnerability/teardrop.html
http://www3.physnet.uni-hamburg.de/physnet/security/vulnerability/teardrop.html
http://arstechnica.com/security/2015/10/new-attacks-on-network-time-protocol-can-defeat-https-and-create-chaos/
http://arstechnica.com/security/2015/10/new-attacks-on-network-time-protocol-can-defeat-https-and-create-chaos/
http://arstechnica.com/security/2015/10/new-attacks-on-network-time-protocol-can-defeat-https-and-create-chaos/
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf

Appendix A

Acronyms

NTP Network Time Protocol

PTP Precision Time Protocol

GPS Global Position System

RBS Reference Broadcast Synchronization

HSTS HTTP Strict Transport Security

MITM Man-In-The-Middle

HTTPS Hyper Text Transfer Protocol Secure

HTTP Hyper Text Transfer Protocol

URL Uniform Resource Locator

NEMEA Network Measurement Analysis

DoS Denial-of-Service

IP Internet Protocol

UDP User Datagram Protocol

DNS Domain Name Service

TLS Transport Layer Security

LI Leap Indicator

IT Information Technology

ARP Address Resolution Protocol

IP Internet Protocol

55

A. Acronyms

Ta Time attack

Ao Attack offset

KoD Kiss-of-Death

IPFIX IP Flow Information Export

UniRec Unified Records

56

Appendix B

Contents of Enclosed CD

readme.txt the file with CD contents description
virtual machines..................the directory with virtual machines
src.......................................the directory of source codes

module detection dyrectory module detection
NTP Attack Detector.pydetection module python

ntp plug-in directory ntp plug-in
ntpplugin.h..................................ntp plug-in .h file
ntpplugin.cpp..............................ntp plug-in .cpp file

scripts attacks..................................directory scripts
arpPoisoning.py.................arp poisoning attack in python
attackOnLine.py on-line attack in python

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
turorials.....................................directory of tutorials

57

	Introduction
	NTP Fundamentals
	NTP Protocol
	NTP Packet Structure
	NTP Exchange of Packets
	Peer Process Statistics Variables
	How Does NTP Work?
	Important NTP Thresholds and States
	NTP Timestamp
	NTP Implementation

	Attacking NTP Protocol
	Technical Conditions and Assumptions
	On-line Attack
	Off-line Attack, Kiss-of-Dead
	Discussion about On-line and Off-line Attacks

	Detection Module of NTP Attacks
	NEMEA System
	NTP Plugin
	Detection On-line Attacks Based on Offset
	Detection On-line Attack Threshold Estimation
	Detection On-line and Off-line Attack by Modelling Behaviour using States of NTP Exchanges
	Detection Module Implementation

	Evaluation of Detection Module
	Evaluation of Thresholds
	Test During Attack
	Throughput Calculation
	Difficulties During Evaluation
	Future Work

	Conclusion
	Bibliography
	Acronyms
	Contents of Enclosed CD

