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Petrouš, Petr. CUDA implementation of the GMP library. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2016.



Abstrakt

Ćılem této práce je zhodnotit použitelnost CUDA technologie pro práci s
velkými č́ısly. Byla implementována knihovna podobná knihovně GMP, ale
mı́sto na CPU prob́ıhaj́ı výpočty na grafické kartě. Mezi podporované op-
erace patř́ı sč́ıtáńı, odč́ıtáńı a násobeńı velkých č́ısel a dále bitový posun a
operace AND, OR a XOR. Násobeńı prob́ıhá pomoćı algoritmu využ́ıvaj́ıćıho
rychlé Fourierovy transformace. Knihovna byla porovnána s GMP knihovnou
z hlediska přesnosti a zejména z hlediska výkonu.

Kĺıčová slova CUDA, GMP, FFT.

Abstract

Main goal of this thesis is to asses CUDA technology for large integer arith-
metic. A library similar to GMP was developed, supporting addition, sub-
traction, multiplication of large integers and also bitwise shift, AND, OR and
XOR operations. Multiplication was implemented using fast Fourier transform
algorithm. Library was compared to GMP library, mainly from performance
and precision perspective.

Keywords CUDA, GMP, FFT.
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Introduction

Modern computers can generally work with 64-bit integers. Arithmetic oper-
ations with numbers of this precision can be done natively in hardware com-
ponent called arithmetic logic unit (ALU). But what if we want to compute
with numbers larger than that?

Several solutions to this problem exist today. Our main contender will
be GNU Multiple Precision Arithmetic Library (also called GMP). How big
integers can this library handle? Authors claim that there is no practical
limit to the precision except the ones implied by the available memory in the
machine GMP runs on [1].

GMP is around since 1991 and it’s main target applications are crypto-
graphy applications and research, security applications, algebra systems and
computational algebra research. GMP is carefully designed to be as fast as
possible. It is even capable of using multiple algorithms for the same opera-
tion, choosing the right one based on operand sizes.

On the other hand, there is always the possibility to go further. GMP does
all of it’s computations single-threaded, even though we have many core CPUs
today. Apart from that, there are several claims that, with good parallel al-
gorithm, using GPU as a parallel computing platform can provide considerable
speedup against GMP (stated in articles [2] and [3]).

Goals

Main goal of this thesis is to asses the suitability of CUDA technology to do
large integer arithmetic. At first I want to review existing parallel algorithms,
their precision and if I will be able to use them with CUDA. Then I will
implement chosen algorithms, mainly for addition, subtraction, multiplication
and bitwise operations like SHIFT, AND, OR and XOR. At last I will focus on
performance optimizations to be able to show that CUDA can be considerably
faster than existing CPU-based solutions.
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Introduction

For performance comparison I will use GMP as a benchmark as it is one
of the most common library to do large integer arithmetic on CPU.

The results will be publicly available on github, so anyone can improve,
extend or validate existing solution. I believe this to be an important step
in moving the research around CUDA technology further and I encourage all
future researchers to build on it.

Thesis structure

First part of this thesis is dedicated to analysis of the necessary algorithms,
theoretical background and overview of existing work. Separate chapter is also
dedicated to CUDA technology where I would like to make readers familiar
with the basic concepts of GPGPU computing in context of CUDA.

Next chapter is called design. There I discuss various architectural de-
cisions, explain used algorithms and application structure. This chapter might
be useful for someone trying to go through the code for contribution, review
or other usage.

Following chapter is dedicated to realization details - what has been done
and how it’s been done. I try to describe all the implementation details and
performance optimizations made.

In the last chapter I evaluate performance of the new library, sum up
achievements and try to explain what further limitations exist. Then I try
to outline possible further research in this topic. Things I believe would be
interesting to implement and to evaluate against existing work and against
GMP as well.

After conclusion there is also bibliography, contact to the author, install-
ation instructions and contents of the attached media.
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Chapter 1

Analysis

In this chapter I am going through the necessary algorithms, problem defin-
ition, theoretical background and overview of existing work. I will discuss
Fourier transform as a mean of multiplication. I will also explain how large
integers are stored in memory.

1.1 Storing large numbers in memory

As discussed in introduction, I am going to deal with integer numbers almost
as large as available system memory. This requires an efficient way of storing
such numbers in memory to allow fast arithmetic operations to be done with
them.

As I will try to mimic GMP interface in operations implemented in my
library, I will also adopt a concept of limbs. A limb means the part of a
multi-precision number that fits in a single machine word. Word limb has
been chosen because a limb of the human body is analogous to a digit of a
number (only larger, and containing several digits). In our case, limb is 64
bits of data stored as unsigned integer [4].

1.2 Theoretical background

As far as large integer arithmetic is concerned, there are some concepts, al-
gorithms and mathematical theory needed to go through, especially when
effective parallelization is in question.

1.2.1 Addition operation

Parallel addition is basically very simple - it is enough to add corresponding
limbs together, in parallel. The result, however, can overflow and therefore
produce carry.
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1. Analysis

1.2.1.1 Carry propagation

To propagate carry appropriately there are number of ways. We could for
example take that carry and propagate it in the thread that detected it -
that means to increment the more significant result limb. That operation of
incrementing other result limb can however also produce carry. But the main
problem is, that the more significant limb might not be computed at the time
- we would therefore end up with a race conditions and data dependencies.

To solve this problem without data dependencies, I propose to originate
carry detection on the target. That means, looking in the least significant
direction. To be able to detect, that carry could not affect the limb in question,
we have to determine one of three states on each limb.

The obvious one is carry - that happens when a limb produces carry.
Second one is usually called propagate - that is a special state that would
produce carry, if carry would come from lesser significant limb. This state
happens only when resulting limb is equal to maximum value, limb can hold
- adding one therefore produces carry. The third is possible state is obvious
- nothing. If carry would propagate from lesser significant bit, it would not
propagate any further.

That means, the process of looking for carry can safely stop when it reaches
other than propagate state. If it reaches carry, it increments it’s own limb. If
it reaches nothing state or the least significant limb, it just stops. Example of
this, shown on single-bit hardware adder, is presented at chapter [5], section
Carry look-ahead adder.

To summarize, what each thread does:

• Save its own state (carry/propagate/nothing) to carry buffer

• Look in the least significant direction

if nothing is found, stop

if propagate is found, continue in least significant direction

if carry is found, add 1 to its result

1.2.2 Multiplication operation

For multiplication, GMP actually uses several different algorithms as stated
in [6]. It chooses the right algorithm based on the operands sizes. Those
algorithms are (from smallest to biggest operands):

• Basecase (schoolbook)

• Karatsuba

• Toom-Cook

4



1.2. Theoretical background

• FFT

It is my main ambition to improve the performance on really large oper-
ands. That means my main target is to implement FFT multiplication as it
is asymptotically fastest algorithm, that is commonly used.

Multiplication using FFT is made possible because of Convolution theorem
as explained in section 1.2.2.5.

1.2.2.1 Fourier transform

The Fourier transform decomposes a function of time into the frequencies
that make it up. The result of such transform is a complex valued function
of frequency, whose absolute value represent the amount of that frequency in
the original function (input signal) and whose complex argument is the phase
offset of the sinusoid representing that frequency. We can therefore say that
Fourier transform is frequency domain representation of time domain function.

1.2.2.2 Discrete Fourier transform

The discrete Fourier transform (DFT) converts a finite sequence of equally
spaced samples of a function into the list of coefficients of a finite combination
of complex sinusoids, ordered by their frequencies, that has those same sample
values.

The input samples are complex numbers (in practice, usually real numbers
as in our case), and the output coefficients are complex as well.

1.2.2.3 Fast Fourier transform

The fast Fourier transform is a discrete Fourier transform algorithm which
reduces the number of computations needed for n elements from O(n2) to
O(n log n)[7].

Several algorithms exists for FFT. As part of CUDA Toolkit there is cuFFT
library, that uses Cooley-Tukey algorithm as stated in documentation [8], [9].
It is a divide-and-conquer algorithm for efficiently computing discrete Fourier
transforms of complex or real-valued data sets. It is one of the most important
and widely used numerical algorithms in computational physics and general
signal processing. Internally it uses single or double precision floating point
complex numbers in frequency domain. It’s internals are discussed a bit closer
in section 2.4.

1.2.2.4 Cooley-Tukey

As nicely explained in paper [10], the elegance of the Cooley-Tukey algorithm
lies in its divide-and-conquer nature - lets explain how a polynomial can be

5



1. Analysis

split up into two polynomials of half the original degree, and how we can
combine their results to compute the results of the original polynomial.

If n is even, we can divide an n− 1 degree polynomial

p(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1

into two (n/2− 1) degree polynomials

peven(x) = a0 + a2x + a4x
2 + · · ·+ an−2x

n/2−1

podd(x) = a1 + a3x + a5x
2 + · · ·+ an−1x

n/2−1
(1.1)

which we can combine into p using the equation

p(x) = peven(x2) + xpodd(x2). (1.2)

We can easily verify that the above formula for combining the two poly-
nomials is correct by entering x2 into the formulas of peven and podd. In the
following, let “all n powers of ω” denote the set of values ωk, with k ranging
from 0 to n− 1. We will also assume that n is a power of 2.

Let our recursive FFT procedure be declared with two parameters, one
specifying the n − 1 degree polynomial p, and the other, which we call ω,
specifying the nth primitive root of unity. So by definition of the DFT, what
we have to do in this procedure is evaluate p at all n powers of ω. Ignoring
the base case for now, we first split the polynomial up into two polynomials
peven and podd, according to equation 1.1.

Now we perform a recursive call to our FFT procedure for these two poly-
nomials, passing ω2 as second parameter, which is justified by the reduction
property, which tells us that ω2 is a primitive n/2th root of unity and since
n is a power of two, peven and podd are both of degree n/2− 1 (since they are
half the size of the original polynomial, by definition of even and odd).

So by these recursive calls, we now have the values for peven and podd,
evaluated at all the n/2 powers of ω2. Since we know by the reduction property
that all n/2 powers of ω2 are a subset of the powers of the n powers of ω, and
to be more specific, we know that they match exactly half the values of the n
powers of ω, we can combine their results using equation 1.2, which will give
us evaluations of p for half the values in the set of n powers of ω. The other
half, we can derive from these values by using the reflective property. This
idea is formalized in equation 1.3:

p(ωk) = peven(ω2k) + ωkpodd(ω2k)

p(ωk+n/2) = peven(ω2k)− ωkpodd(ω2k)
(1.3)

The first line of equation 1.3 is just equation 1.1 filled in for ωk. Note that
this use of the formula is valid, since we have called peven and podd with the
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1.3. Existing work

value ω2, their values at the kth index are actually their evaluations at the
kth power of ω2, ((ω2)k). Furthermore, equation 1.2 specifies that peven and
podd be called with a square, which they are, since (ω2)k = (ωk)2 = ω2k.

Now since we have n/2 values in which peven and podd are evaluated, we
can loop equation 1.3 n/2 times, with k ranging from 0 to n/2 − 1. Recall
that this will give us evaluations of p for exactly half the values (the lower
half) in the set of n powers of ω in which we have to evaluate p. The other
half is calculated in the second line of equation 1.3.

The second line of equation 1.3 is justified by the reflective property, which
we recall telling us that ωk+n/2 = −ωk. So by this property, we have to flip
a sign wherever ωk occurs. Note that the only actual difference between the
first and second line of equation 1.3 is a single minus sign. This is because the
other two occurrences of ωk are squared, and we know that for every number
a, real or complex, a2 = (−a)2, so we do not need to change these products.

1.2.2.5 Convolution theorem

Convolution theorem states that the Fourier transform of a convolution is the
pointwise product of Fourier transforms. In other words, convolution in time
domain equals point-wise multiplication in the frequency domain. Let F be
a Fourier transform, ∗ convolution operator and · pointwise multiplication
operator. Then we can say that:

F{f ∗ g} = F{f} · F{g}

If we take that one step further it means, that

f ∗ g = F−1
{
F{f} · F{g}

}
In the above equations f and g are polynomials (in time domain). F{f}

and F{g} are those polynomials represented in frequency domain. Normally,
multiplication of two polynomials (convolution) would take O(n2) steps for
polynomials of length n. Pointwise multiplication in frequency domain on the
other hand takes only O(n) steps.

1.3 Existing work

There have been a number of works done on the topic of large integer arith-
metic, on polynomial multiplication etc. In the following chapter I will try
to give an idea of things I have used in my design, things that I have had to
modify and things that I have done differently.
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1. Analysis

1.3.1 Source code availability

I have not been able to find source codes for almost none of the papers and
works I have studied in preparation for this thesis. That said, paper [2] at
least contains some code samples on memory structures. In article [11], there
are some samples of how the cuFFT library is used during the process of
multiplication, which is helpful to begin with.

But in general I am disappointed that I couldn’t dig inside the code behind
those articles, that describe sometimes quite complex algorithms. This lead
me to decision to publish my source codes on github - I expect that to help
someone trying to extend research in the area of CUDA computing.

1.3.2 Performance and precision

In Masters Thesis [12], the main goal is to implement as many algorithms as
possible. The performance results on the other hand are not as impressive as
in other works. For example multiplication, even using Schönhage-Strassen
algorithm, which is basically FFT multiplication, is approximately 30 times
slower than GMP library for the largest operands tested. Interestingly enough,
this implementation is even a little bit slower than GMP doing addition, but
the results are at least comparable.

I suspect that the main problem of this implementation is, that the op-
erands are mostly kept in host memory only. That means, the arithmetic
operation itself has to do all the memory transfers to and from CUDA device,
which can hurt performance a lot. On the other hand, this should not affect
multiplication so much, as the main calculation should take considerably more
time than the memory operations itself. It seems, that the main performance
problem is with FFT implementation and probably with selection of recurs-
ive multiplication algorithm. That said, this implementation of multiplication
probably does not suffer from FFT rounding errors.

More promising performance results come in paper [2]. This project has
performance evaluation of CUDA technology as a main goal and it compares
with GMP library. It achieves around 10 times the performance of GMP
for large enough operands. On the other hand, implementation details are
discussed very briefly, I suspect for example that they use cuFFT library,
but it does not say it clearly. This is also one of the projects that mentions
rounding errors and possible loss of precision doing FFT multiplication. That
said, there is no evaluation of this, so I do not know how big error can be
expected.

Another, very valuable, source is paper [3]. In this paper, the author is
very clear about multiplication implementation details, it uses cuFFT library
and it helped me a lot to understand some key parts of the algorithm. As for
performance, this project achieved approximately twice the speed of GMP. It
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1.3. Existing work

does not deal with other methods than multiplication and rounding errors due
to the use of FFT are not mentioned at all.

1.3.3 Integer representation

Weird thing that surprised me on paper [3] is using very different concept
to store integers in memory. For polynomial representation this project uses
base 10 and base 100. I have not seen any benefit in this, it is probably due
to use of some library that stores numbers this way internally. I see this as
a performance bottleneck as it prevents usage of bit masking and bit shifting
for polynomial representation and overflow propagation. Instead, it has to use
multiplication and division.

Interestingly, the same concept of base 10k appeared also in paper [10].
This work does not use GPU at all, but it discusses rounding error in detail
and does provide some measurements of those errors. Those measurements,
on the other hand, are not comparison to the correct results, but it just detects
and sums up rounding error on the way as the computation goes.

1.3.4 Number Theoretic Transforms and Fast Convolutions

There is also a paper [13] proposing usage of Number Theoretic Transforms
(NTT) with FFT transform. This can be viewed as FFT over finite field.
That eliminates rounding errors, but adds quite a lot of complexity. For result
extraction, there is Chinese Remainder Theorem used. I have discovered this
work late in the process of implementation, but I propose ideas presented in
the future work section 6.3.

1.3.5 Conclusion

As there was no implementation with similar targets (mainly performance),
that I could build on, available, I have decided to implement my own library
from scratch.

To provide reasonable comparison with GMP, I decided to try to imple-
ment the interface as similar as possible. Operations will have the same func-
tion names. Data types will be the same or will extend the current ones.

Results will be published together with source code, so that future re-
searchers can more easily implement more advanced functions, hopefully being
able to reuse most of the logic that I will implement.

9





Chapter 2

CUDA technology

In this chapter I would like to introduce CUDA technology, which I will be
using to implement large integer arithmetic with parallel algorithms.

CUDA is a parallel computing platform and programming model invented
by NVIDIA. It allows to use GPU as a parallel co-processor. It offers signific-
ant speed-up in performance when good parallel algorithm is available. On the
other hand, it introduces several additional responsibilities to the programmer
like managing two separate memory address spaces.

To distinguish memory and operations in GPU from those in CPU and
main computer memory, we will call GPU with its memory the device and
CPU with its RAM the host.

2.1 Kernels

CUDA C extends C language by functions called kernels, which, when called,
are executed N times in parallel by N different CUDA threads.

That means that instead of writing one for-loop to do a vector addition
like in Source code 1, we would write simple function to add one element of
the vector and then we execute as many threads as there are elements of the
vectors - as presented in Source code 2.

Source code 1 Vector addition using traditional for-loop.

for (int i = 0; i < size; i++)

{

c[i] = a[i] + b[i];

}

11



2. CUDA technology

Source code 2 Vector addition using kernel run in parallel on CUDA.

__global__ void VectorAdd(float* a, float* b, float* c)

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

c[i] = a[i] + b[i];

}

int main()

{

...

VectorAdd<<<size / blockSize + 1, blockSize>>>(A, B, C);

}

2.2 Threads, blocks and grids - CUDA Thread
hierarchy

Inside each kernel we usually start with determination of thread number -
which is similar to iterator (i) inside a for-loop. There is some complexity to
it, since there are multiple levels of thread execution in CUDA technology as
illustrated in Figure 2.1.

At the lowest level, there is a thread. Each thread has it’s own memory
- very fast, but also very small - can be compared to L1 memory inside the
CPU. We are declaring per-thread local memory inside a kernel the same way
as we would create local variable inside a standard C function. In Source code
2 we do use this memory to store thread id (int i).

Each thread also can be uniquely identified. To do so, we have several
built-in variables, for thread number it’s threadIdx. Since CUDA runs on 3D
graphics accelerator, those variables are 3-component vectors and can there-
fore have separate identificators for up to three dimensions. In our case we
will manage with one dimension only.

Threads are then grouped together to blocks. Each block can consist of
up to 1024 threads. Block, same as a thread, is not only a logical concept, but
also has it’s own memory area called shared memory. It is also very fast and
it is shared across all threads inside each block, but each block has it’s own.
To synchronize access to shared memory, there is syncthreads(); intrinsic
function, which acts like a barrier. That means each thread stops execution
until all threads from one block reach the barrier. Shared memory is declared
inside a kernel with shared prefix.

To identify thread inside a block, there are two more built-in variables.
BlockIdx identifies a block inside a grid. BlockDim specifies the number of
threads inside each block.

Blocks are then grouped inside a grid. Grid has no private memory area.

12
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Figure 2.1: CUDA Thread hierarchy

Number of threads inside each block (blockDim) and number of blocks is
determined upon kernel execution inside <<<. . .>>>syntax. Inside there
are two numbers - number of blocks and number of thread per block.

2.2.1 Thread execution - warps

The multiprocessor creates, manages, schedules, and executes threads in groups
of 32 parallel threads called warps. Individual threads composing a warp start
together at the same program address, but they have their own instruction
address counter and register state and are therefore free to branch and execute
independently.

When a multiprocessor is given one or more thread blocks to execute, it
partitions them into warps and each warp gets scheduled by a warp scheduler
for execution. The way a block is partitioned into warps is always the same;
each warp contains threads of consecutive, increasing thread IDs with the first
warp containing thread 0.

13
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A warp executes one common instruction at a time, so full efficiency is
realized when all 32 threads of a warp agree on their execution path. If threads
of a warp diverge via a data-dependent conditional branch, the warp serially
executes each branch path taken, disabling threads that are not on that path,
and when all paths complete, the threads converge back to the same execution
path. Branch divergence occurs only within a warp; different warps execute
independently regardless of whether they are executing common or disjoint
code paths. This architecture is called SIMT - single instruction, multiple
threads. Further description is available in CUDA documentation [14].

2.2.2 Device memory hierarchy

Apart from per-thread local memory and per-block shared memory, there is
yet another area called global memory. This memory area is persistent not
even through the life of one grid, but even through multiple kernel executions.
Memory hierarchy is nicely illustrated in Figure 2.2.

Memory chunks are usually allocated using cudaMalloc API call from the
host. Returned memory pointers are usually passed to the threads using kernel
arguments.

2.2.3 Heterogeneous programming

As illustrated by Figure 2.3, the CUDA programming model assumes that
the CUDA threads execute on a physically separate device that operates as
a co-processor to the host running the C program. The kernels execute on a
GPU and the rest of the C program executes on a CPU.

The CUDA programming model also assumes that both the host and the
device maintain their own separate memory spaces in DRAM, referred to as
host memory and device memory, respectively. Therefore, a program manages
the memory spaces visible to kernels through calls to the CUDA runtime
(described in 2.3). This includes device memory allocation and deallocation
as well as data transfer between host and device memory.

2.3 CUDA Programming Interface

The runtime is implemented in the cudart library, which is linked to the
application, either statically via cudart.lib or dynamically via cudart.dll. All
its entry points are prefixed with cuda - for example cudaMalloc, cudaMemcpy
etc.

There is some initialization of CUDA runtime going on, but this all hap-
pens automatically after first CUDA API call is made. CUDA context is then
created and kernel code is compiled using Just-in-Time compilation scheme
and loaded into device memory. This context then lives until cudaDeviceReset
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Figure 2.2: CUDA Memory hierarchy
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Figure 2.3: CUDA Heterogeneous programming
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is called. This function clears all state information and destroys the context
until other CUDA API call is executed.

2.3.1 Memory management

As stated before, host and device both have separate memory. In order to
make parallel calculations inside CUDA device, there is usually the need to
copy the data to the device. After the calculation, there is the need to copy
results back to the host memory.

Typical example of such operations can be nicely illustrated on example
with vector addition in Source code 3 - allocate memory for operands using
cudaMalloc, copy operands using cudaMemcpy, execute addition kernel in
parallel on CUDA, copy result back from device to host, free the allocated
memory using cudaFree.

As explained in section 2.2.2, global device memory (allocated using cudaM-
alloc) is persistent. Therefore our operands can be initialized and copied to
the device in completely different part of the code. This way we can separate
operand initialization from the main calculation in performance measurement
5.1.

2.4 cuFFT library

CuFFT stands for NVIDIA CUDA Fast Fourier Transform library. It consist
of two libraries actually. CuFFT is designed to provide high performance on
CUDA GPUs. CuFFTW is to provide an easy way to start using GPU to
FFTW users. FFTW is a common FFT open-source library.

That said, I will be using performance optimised cuFFT version. This
library is highly performance optimized, it allows transfer sizes of up to 512
million elements in single precision and up to 256 million elements in double
precision floating points. It actually allows execution on multiple GPUs sim-
ultaneously. It is nicely documented in the manual [15].

The algorithm that cuFFT library uses to do FFT transform is named,
after the two authors, Cooley-Tukey. It is one of the most common FFT
algorithms (explained in section 1.2.2.4).

2.4.1 Plans and memory consumption

CuFFT provides a simple configuration mechanism called a plan that uses
internal building blocks to optimize the transform for the given configur-
ation and the particular GPU hardware selected. Then, when the execu-
tion function is called, the actual transform takes place following the plan of
execution. The advantage of this approach is that once the user creates a
plan, the library retains whatever state is needed to execute the plan multiple
times without recalculation of the configuration. This model works well for
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Source code 3 Transferring memory to and from CUDA device - example.

__global__ void VectorAdd(float* a, float* b, float* c)

...

int main()

{

...

size_t arr_size = sizeof(float) * size;

float *dev_a, *dev_b, *dev_c;

cudaMalloc((void**)&dev_a, arr_size);

cudaMalloc((void**)&dev_b, arr_size);

cudaMalloc((void**)&dev_c, arr_size);

cudaMemcpy(host_a, dev_a, arr_size, cudaMemcpyHostToDevice);

cudaMemcpy(host_b, dev_b, arr_size, cudaMemcpyHostToDevice);

VectorAdd<<<size / blockSize + 1, blockSize>>>(dev_a, dev_b, dev_c);

cudaMemcpy(dev_c, host_c, arr_size, cudaMemcpyDeviceToHost);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

}

cuFFT because different kinds of FFTs require different thread configurations
and GPU resources, and the plan interface provides a simple way of reusing
configurations.[15]

In the process of plan creation, cuFFT allocates work area to make FFT
operations fast. To get an idea about memory size this work area consumes,
functions like cufftEstimate and cufftGetSize1D are available.

2.4.2 Complex numbers

CuFFT supports two internal data types for complex numbers. CuFFTCom-
plex consists of two single precision floating point numbers - real and imagin-
ary, named x and y. CuFFTDoubleComplex is the same, apart from floating
point precision, which is double (64bit).

Transforms using single precision floating points are faster, but I will be
using double precision integers, as I will be able to store larger parts of the
limbs to the complex numbers without losing precision.

Single precision floating point can store up to 24 bit long integer without
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losing precision. Double precision floating point can store up to 53 bit long
integer without losing precision.

After forward transform, point-wise multiplication and inverse transform
I expect results to be twice as long as the inputs - that means I can store
maximum of 26 bit elements on the input. For single precision this shrinks to
12 bits. More on this topic discussed in section 3.4.1.
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Chapter 3

Design

In this chapter I will discuss various architecture decisions, go through applic-
ation structure and also explain used algorithms in detail. I will explain how
the CUDA related code with all arithmetic functions is separated in a static
library, that for the purpose of this thesis will be used in a testing application,
but could be also used by any other application in the future.

3.1 Addition operation

Parallel addition of 64-bit long limbs can be in general viewed similarly as
multiple 1-bit hardware adders combined together via carry propagation. For
better understanding this is illustrated in figure 3.1 (picture taken from [5]).

In fact, after addition of two limbs (regardless of their size) only three
scenarios can happen. Result overflows, result would overflow if carry has
been added to it (also known as carry propagate) and the third option - result
fits into the limb without carry or carry propagate.

If we want to detect that addition of two limbs overflows and therefore

Figure 3.1: Simple hardware adder
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produce carry, we only have to check that result of addition operation is
smaller than one of the operands. In code that looks like this:

carry = (result < a)

Detection of carry propagate state is even easier, because limb would
propagate carry only if all of its bits are set to one. In case of unsigned
variables, this value is also equal to minus one. That said, carry propagate
would be checked like this:

carry propagate = (result == −1)

In case of C implementation, we only have to make sure that -1 is the same
data type as the result (uint64 t in our case). The resulting code therefore
looks like this (adding llu modifier after the number constant):

carry propagate = (result == −1llu)

All that is left is to efficiently propagate carry to the right limbs. This to
be done efficiently has to be done in parallel. I have made an assumption that
carry would in real life not propagate through large number of limbs. Even
though in order to make this reasonably fast I have decided to make a carry
buffer to store if corresponding limb is in carry, carry propagate or nothing
state. Each limb then, on its own, detects if it should add 1 to itself. This
is done by scanning the carry buffer in the right direction. While there is
carry propagate, scanning continues with the next element. If there is carry
reached, add 1 and stop. If there is nothing state reached (or end of carry
buffer), do nothing.

In the worst case scenario, there could be one CUDA thread scanning
the whole carry buffer (n steps over char array), but profiling over randomly
generated numbers didn’t indicate this to be a performance problem. Carry
propagation usually takes less than half the time that addition kernel does.
In theory this could be sped up employing parallel prefix sum algorithm, but
it seems not worth adding the complexity to the code. This possibility is in
detail discussed in future work, section 6.1.

3.2 Subtraction operation

Subtraction process is very similar to addition. Only difference is, that this
time instead of carry, I will propagate so called borrow. To be able to propag-
ate borrow (subtracting one from the more significant limb), I always have to
subtract smaller operand from the larger one using following formula:

a− b = −(b− a)
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That means if b is larger than a, I swap the operands and then multiply
the result by -1 (simply by changing the sign).

The other difference is, that borrow occurs when:

borrow = (result > a)

Borrow could be only propagated over limbs that contain value of 0:

borrow propagate = (result == 0)

3.3 Bit shifting operation

Again, bit shifting can be seen as a simple operation. Only performance
drawback is that to avoid possible synchronization issues, this operation can-
not work in-place on CUDA or any other parallel architecture. This means
that for the result there have to be enough limbs allocated. This is not a
problem for normal measurements as we can allocate in advance (discussed in
section 3.6.2.1) but it is a problem while using it as a part of other operation
- which I do for example in multiplication operation.

Apart from that issue it is quite easy. I have split this into two parts. At
first, shift whole limbs (if shifting more bits than the size of one limb). Second,
shift inside each limb + adding overflow to the more significant limb.

3.4 Multiplication operation

As proposed in articles [2] and [3] I am going to use Convolution theorem
(explained in section 1.2.2.5) and Fast Fourier Transform (explained in section
1.2.2.1) for large integer multiplication.

3.4.1 Representing integer as polynomial

Convolution technically is a polynomial multiplication, but we want to mul-
tiply integers. To be able to do so, we need to represent our large integers as
polynomials. To do so we only need to choose a base in which the number
will be converted. To illustrate this process, let’s say we want to represent
number 12345 in base 10:

12345 = 1 · 104 + 2 · 103 + 3 · 102 + 4 · 101 + 5 · 100

The resulting polynomial p with base b = 10 would then be:

p = b4 + 2b3 + 3b2 + 4b + 5

We can now choose the width of polynomial base as we want it, for example
with base 100:
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12345 = 1 · 1002 + 23 · 1001 + 45 · 1000

And polynomial p in base b = 100 is:

p = b2 + 23b + 45

As I am dealing with binary represented number and want to be able
to make polynomial representation using simple operations like shifts and
logical ANDs, I will choose base as a power of 2. I could actually use 64 bit
limbs directly with base 264 - that way I could skip this step entirely. Only
drawback is that cuFFT library uses only float or double precision floating
point numbers to store operands. Only way to pass arguments to cuFFT
without losing precision is to encode them to mantissa. In case of double
precision floating-point mantissa can handle up to 53 most significant bits (as
stated in article [16]).

To make things as simple as possible I propose to choose base in a way
that results in splitting limbs to parts, that means that base b must divide
limb without remainder. In our case (64 bit limbs):

264 ≡ 0 mod b

Making polynomial representation this way is very straightforward and
can be easily parallelized on CUDA device. Implementation details will be
discussed in section 4.5.2.

3.4.2 Pointwise multiplication

The next step after converting operand polynomials into frequency domain via
Fourier transform is pointwise multiplication. This is a simple step containing
only multiplication of two corresponding complex numbers.

Multiplying two complex numbers (x = a + ib and y = c + id) means
computing:

x · y = (a + ib) · (c + id)

This can be simplified as [17]:

x · y = ac + ibc + iad− bd

x · y = (ac− bd) + i(ad + bc)

If we have L limbs, we divide each limb in k smaller parts (explained in
section 3.4.1), we need to do only k · L times the above computation in the
process of FFT multiplication. All those computations can be also done in
parallel as they do not depend on each other - which is the main advantage
of this method for parallelization.
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3.4.3 Result normalization

As stated in [15]:

“cuFFT performs un-normalized FFTs; that is, performing a for-
ward FFT on an input data set followed by an inverse FFT on the
resulting set yields data that is equal to the input, scaled by the
number of elements. Scaling either transform by the reciprocal of
the size of the data set is left for the user to perform as seen fit.”

That means the results of forward and then inverse Fourier transform are
upscaled by a number of elements used in transforms. To deal with this, I do
divide each resulting limb by the number of elements. This can also be all
done in parallel so it doesn’t hurt performance a lot.

This should not affect precision, as the division is in fact only affecting
floating point exponent, leaving mantissa intact.

3.4.4 Carry propagation

After performing result normalization there is still one step left before correct
result can be extracted. As we divided limbs into smaller parts in section
3.4.1, we now have, as a result of multiplication, almost twice as big limbs in
the result variable. To avoid losing data, some sort of carry propagation has
to be done. This time, however, it is not zero or one bit carry. If we split
limbs in 16 bit parts in the beginning, after multiplication we can have up to
32 bit numbers.

This basically leads to another addition operation. As that operation
is also made in cuGMP library, I decided to reuse it. To do so, there are
two result variables allocated - one for most significant bits and one for least
significant bits. Each part of the result is split in two parts and those are
added to the result variables.

The most significant bits variable is then shifted left by the size of one part
(in this example by 16 bits then) and both variables are added together via
standard addition explained in section 3.1. The process is in detail explained
in chapter 4.5.5, and illustrated on Figure 4.1.

3.4.5 Multiplication process summary

To sum up the whole multiplication process:

1. Represent integers as polynomials = split limbs into smaller parts ac-
cording to the base selected.

2. Perform forward Fourier transform on both polynomial-form integers.
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3. Pointwise multiply transformed integers in frequency domain = multi-
plication of complex numbers.

4. Perform inverse Fourier transform on resulting integer to transfer it from
frequency domain back to time domain - still polynomial form.

5. Normalize the result - divide by the size of Fourier transform.

6. Extract result - split normalized result variable into two standard 64-bit
limb variables and add those together to propagate carry properly.

All those parts are done effectively in parallel and on CUDA device. This
differs from article [3], where for polynomial representation base 10k has been
selected and polynomial representation has been done in CPU and RAM and
after that it was copied to CUDA device. In the end the carry propagation
has been done also in CPU to avoid concurrency problems. The scheme I have
proposed relies solely on operands initialized straight in CUDA and therefore
should perform better especially with larger operands.

3.4.6 Multiplication precision

There is one drawback to the method presented above and that is precision.
CuFFT library has been probably designed primarily with signal processing
in mind - therefore 100% precision may not be absolutely required. Internally
it uses double precision floating points to store complex numbers. Those are
by design prone to rounding errors. That means the result of multiplication
can slightly differ from the correct result.

Unfortunately I have not been able to determine how big difference to ex-
pect, because all of my sources just mentioned that there is some error in the
result, but did not specify how much of an error. My intention is to analyze
this a bit more and to measure the average multiplication error based on op-
erand size. I think it is worth knowing that number for two reasons. First -
someone considering this method as good enough may thoroughly evaluate if
this method is good enough. Second - anyone trying to implement similar solu-
tion may easily compare his results to mine and as a result some improvement
in precision may come out.

It is actually possible to multiply large integers using Fourier transform
without error in the result. Unfortunately, it requires a lot more pre-computation
to be done and therefore it is probably reasonably fast only for astronomically
large numbers. Secondly, it requires recursive multiplications of large integers
in some cases, which adds complexity. And most importantly it requires Four-
ier transform to support so called number-theoretic transform. With that,
Fourier transform works over finite field, using modular arithmetic and in-
tegers instead of floating point complex numbers. Those operations are then
error-free.
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Figure 3.2: Multiplication process summary

That would unfortunately mean not using cuFFT library for fast Fourier
transforms, as it can work only over complex floating point numbers. I have
proposed implementation of FFT over finite fields on parallel architecture in
future work chapter, section 6.3.

3.5 Multiplication - design optimizations

The multiplication process is discussed in section 3.4.5 and illustrated in Fig-
ure 3.2. The figure is taken from article [3]. In the figure, white background
means host (CPU) code, yellow means memory transfer to and from device
and green illustrates computation on GPU device.
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My design is greatly inspired by this diagram, but I propose several op-
timizations to it.

At first, input and output (parsing, storing as string etc.) will not be a
part of multiplication operations. This is very similar to how GMP library
works - initialization, generation and loading is separate operation.

Another important difference is that operands are loaded into device memory
right after initialization (parsing from string). Therefore, memory operations
are avoided and all operations are done right inside the GPU. This is ex-
ceptionally useful in multiplication example as in my design, there are some
immediate results, that need to be added together (carry propagation dis-
cussed in section 3.4.4). These big numbers never copy from device to host,
because they are already in the device. Only thing that is copied to host is the
pointer to operand data (limbs) and the size of the number (count of limbs).

To sum up - memory operations are avoided and polynomial representation
and carry propagation is also done in the device, in parallel, using one kernel
each.

3.6 Application structure

There are two main parts of my work in this project - large integer arithmetic
functions implemented in CUDA framework and with those functions there is
a lot of measurement, testing and evaluation. To leave the possibility to use
the main arithmetic functions in a different way and to let others to extend
this part of my work I have two main projects in my solution.

First and most important is called cuGMP. It is a static C++ library,
contains only CUDA source files (*.cu), depends solely on nvcc compiler to
create cuGMP.lib file. This project depends heavily on CUDA framework
using it’s header files, dynamic libraries etc. All CUDA kernels, CUDA API
calls, memory management (for both CUDA device and host storage of large
numbers) and integer initialization are implemented here. Idea is that to make
a simple application that uses all this should be as easy as possible, ideally
without many things to configure in a C++ project.

Second part is a simple console application called TestApp. Main re-
sponsibility of this application is to evaluate both libraries against each other
regarding result correctness and computation time (eg. performance). Other
purpose is to demonstrate how to use cuGMP library.

3.6.1 Storing the large integer in memory

For storing large integers in memory I’ve adopted a concept of so called limbs,
used also throughout the GMP library. One limb is just a normal unsigned
integer - 32 or 64 bits long.

On modern CPUs there is no reason not to use the bigger, 64-bit, in-
teger to store a limb. On CUDA on the other hand, there might be, because
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CUDA does not support native 64-bit integer arithmetic. Operations with
64-bit operands are actually split in several instructions on 32-bit parts in the
compilation process. Yet I have chosen to use 64-bits for each limb in cuGMP.

This is an arguable decision since it might hurt performance and perform-
ance is a main goal in cuGMP. On the other hand it allow me to address
larger operands and I do believe that this won’t hurt performance at all be-
cause even though every operation splits into a bit more instructions in the
assembly, these are all done in parallel without collisions. The main arithmetic
operation with two limbs is actually expected to be just a small portion of the
overall computation. For example in addition operation I would have to deal
with twice as many possible overflows, I would have to allocate considerably
more memory for FFT calculations in multiplication operation etc.

To evaluate how much time is spent with the main operations (kernels), I
have used NSIGHT profiler that shows exactly (in fractions of micro seconds)
how long it took to launch each kernel and CUDA API call. Measurements
confirm that kernels with the main arithmetic operation are usually not the
performance bottleneck. Exact results are discussed in section 5.4.1 for addi-
tion operation.

3.6.1.1 64-bit integers on Windows

As stated in [18] Microsoft Windows operating system and its C++ library
uses 32-bit large long. This does not go against C language specification as it
says that long is at least 32-bit long. On the other hand, most of the other
64bit operating systems like Linux use 64-bit longs. One solution would be to
use unsigned long longs, as it’s an integer that’s at least 64 bits long (stated
in C standard [19]).

For better compatibility across variety of systems, I have decided to use
uint64 t, that requires including stdint.h header file. This, on Windows, uses
unsigned long longs anyway, but should ease the process of porting this library
to other operating systems in the future.

This differs from GMP library as it uses plain unsigned longs. This is one
of the reasons GMP is not supported on Windows very much. It is also a
reason why MPIR (Multiple Precision Integers and Rationals) was created as
a fork of GMP. For testing purposes on Windows, I will use MPIR. On Linux
I will use GMP. Both libraries are interchangeable as MPIR exposes almost
identical gmp.h header file and also almost exactly the same implementation.
For performance comparison I will use GMP running on Linux system.

3.6.2 Data types

For storing large integers into limbs I’ve adopted existing C-style structure
from GMP library called mpz struct. It consists of two integers and one
array pointer, that point to an array of limbs. All items are:
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• mp alloc - number of limbs allocated in memory already

• mp size - number of limbs actually used

• mp d - pointer to array of limbs

If the mp size is negative, the whole number is negative. All limbs are
unsigned and store an absolute value of the number.

The problem I had to face was that to compute on CUDA, I have to copy
all limbs to CUDA. At first I wanted to store limbs only on CUDA device, but
first I had to parse the numbers from string and copy it to CUDA limb by limb.
It then turned out that calling cudaMemcpy repeatedly on small amount of
data is very slow. To avoid this issue I have decided to split operand storage
in two separate structs - keeping pointer to the device structure in the host

mpz struct.

This allowed me to simplify the process of initializing numbers, reading
results and copying data to and from CUDA device. Now when number gets
initialized on a host it all happens in host memory and then only once cu-
daMemcpy is called to copy all limbs to CUDA device. Second cudaMemcpy
is then required to copy details about operand size to the device and most
importantly to copy pointer to those limbs to the device.

As a result we have two structs:

Source code 4 dev mpz struct
typedef struct

{

int _mp_alloc;

int _mp_size;

mp_limb_t *_mp_d;

} __dev_mpz_struct;

Source code 5 mpz struct
typedef struct

{

int _mp_alloc;

int _mp_size;

mp_limb_t *_mp_d;

__dev_mpz_struct *_dev_mp_struct;

} __mpz_struct;

The device structure (Source code 4) is exactly the same as in GMP lib-
rary. The host structure (Source code 5) has been extended by a pointer to
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dev mpz struct. This allows programmers using cuGMP to work only with
one pointer to mpz struct as an operand, all else (eg. copying data to CUDA
device) is hidden inside cuGMP logic.

3.6.2.1 Initialization

All mpz t type variables has to be initialized before usage. There are two
main options of doing that - both are in detail discussed in GMP manual [20].

Most common option is using mpz init(mpz ptr x) function. This function
initializes variable of type mpz struct to size 0 and allocates one limb.

Second option is to use mpz init2(mpz ptr x, mp bitcnt t bits) which can
allocate larger amount of limbs straight away. This can be helpful to eliminate
allocation from performance measurement.

The same set of functions is implemented in cuGMP library - only signific-
ant difference is that in cuGMP there is also immediate allocation on CUDA
device.

In cuGMP library there are two additional functions to initialize CUDA
device. First is called cudaInit() and it calls cudaSetDevice(0) from CUDA
API. This is to be changed on systems with multiple GPUs. Second func-
tion here is called cudaReset(). It is optional to use this function, but it
ensures that CUDA clears all state variables after computation, therefore it is
guaranteed not to affect following computations.

All those functions are implemented in file mpz/init.cu.

3.6.2.2 Set operand from string

To accurately test that cuGMP library produce correct results I have imple-
mented a set of string functions.

At first there is mpz set str(mpz ptr x, const char *str, int base) - again
the definition is taken directly from GMP library. Purpose of this function
is to take a number represented by string in some base and convert it to

mpz struct. In GMP this function accepts all bases in the range from 2 to
62. In cuGMP I have decided to support only binary and hexa-decimal bases.
The reason for this is simple - strings in those two common bases can be easily
divided into the right sized parts that fit exactly one limb. This means that
the whole operation of setting operand from string is to divide an input string
into parts and then use standard functions to convert string to integer.

I originally wanted to support base 10 since it is a bit more human-
readable. I have checked source code of the GMP library and it is quite
obvious that it would mean first implementing several arithmetic operations
before being able to set operand from string. I then considered calling existing
functions in GMP library directly, but that would mean the new library would
be entirely dependent on GMP and it would also mean a great deal of trouble
trying to expose the same interface as GMP because of the naming conflicts.
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In the end it seems that for our purposes base 2 and 16 are more than
enough - usage of this functionality is discussed in section 5.2.3.1.

3.6.2.3 Get string from operand

As an inverse to set string (section 3.6.2.2) there is also mpz get str(char *
str, const int base, const mpz ptr x). This function converts existing operand
back to a string representation. Again, supported bases are 2 and 16. This is
also heavily used for testing purposes as it means we can check the result of
computation.

3.6.3 Memory management

As working with memory is a common place to make programming mistakes,
I propose an unified way of working with memory through a simple set of
functions.

First, there is the function allocate memory, that is responsible for allocat-
ing limbs to the existing operand (initialized in section 3.6.2.1). What is does
is check if there is enough memory allocated based on the requested size in
the parameter. If not, existing limbs are freed and new are allocated, both in
host and the device memory. Both operand structures are updated (value of
mp alloc and mp size) in host and in device. If sufficient memory is already

allocated, nothing happens.

There is also a function copy operand data without limbs that unifies copy-
ing of operand (type mpz ptr) from and to device. It’s main use is to propagate
changes in size and number of limbs allocated. For example, when result size
is determined on the device, operand needs to be copied back to the host after.
It accepts only two arguments - mpz ptr and the direction - to or from device.
Elegance of this is, that it is always called from host and in mpz ptr there is
a pointer to the device store of the operand. This is a difference to the GMP
library, but it is only extension, all the things from GMP remains untouched.
It also does not have to be used outside the cuGMP library.

Similar function is copy operand data with limbs, accepting the same ar-
guments. Only difference is, that this function also copies limbs. It is usually
used during operand parsing or converting result back to the string represent-
ation (operations explained in section 3.6.2.2).

The primary storage for all limbs is the CUDA device. Host storage is
usually used in set and get string phase. This way the overall performance is
improved as all calculations are primarily done on CUDA, without the need
to transfer limbs back and forth.

From the programmer point of view, this saves a lot of programming errors
and mistakes as it seems to me that this is a common place to make mistakes
with pointers and references, not remembering to copy some properties etc.
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Last thing that there is about memory management is freeing up the
memory allocated. This is also done in a standard GMP way. That means,
utilizing mpz clear frees up host and device limbs as well as host and device
descriptors. For every mpz init, there should be one mpz clear.

3.6.4 Library interface

To provide interface familiar to current GMP users I exposed the main arith-
metic functions in cuGMP.h header file with mostly the same function defin-
itions as GMP library exposes through gmp.h header file. This ensures the
possibility to use exactly the same test program on both libraries and then
see the performance differences without any doubt. On the other hand, im-
plementing all the functionality of GMP library certainly isn’t in the scope of
this project - some limitations might occur.

3.6.5 Example usage - TestApp

To test the library, make performance measurements and to demonstrate how
to use cuGMP library I have implemented TestApp console application. De-
tailed structure and implementation characteristics are discussed in results
chapter, section 5.2.1. This application provides an easy and automated way
to process large batches of performance tests storing the results in unified way
similar to CSV file format. This enables us to tweak various parameters like
CUDA block size, multiplication limb size the best possible way. This is also
needed to provide representable data for performance comparison discussed
in chapter 5.4.
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Chapter 4

Realization

In this chapter I will discuss implementation details, optimizations and over-
view of the cuFFT library usage. I will also describe porting this project from
Visual Studio on Windows platform to Makefile on Linux platform.

The main functionality is implemented in a static C++ library called
cuGMP as an acronym for CUDA and GMP. This library contains only *.cu
files (discussed in chapter 2). There is also a console application using this
library to make all the testing and measurement, that is called TestApp.

4.1 Limitations of cuGMP

As GMP supports a huge number of public functions and even larger amount of
internal procedures, cuGMP is very young and does not have many functions
implemented yet. For example it does not support random number generation,
so in order to test it against GMP, the usual scenario is to generate random
number in GMP, convert it to a string representation and then transfer it to
CUDA device.

Initialization of large integers in cuGMP is also a bit limited. As support
for all meaningful bases in which integers can be expressed as a string would
require a handful of arithmetic functions I have decided to support only binary
and hexadecimal bases - the reasoning is explained in section 3.6.2.2. On the
other hand, as a way of validating results and transferring operands from one
library to the other this proved to be sufficient.

4.2 Get and set string

This section provides implementation details about functions, that are re-
sponsible for conversions between numbers in string representation and in-
ternal representation stored in limbs.
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4. Realization

First there is mpz set str(mpz ptr x, const char *str, int base). It works
simply by splitting the input string into parts, that correspond to one limb.
For base 2, as 1 character represents one bit, it takes 64 characters from input
string to initialize one limb. In base 16, one character represents 4 bits, so
one limb corresponds to 16 characters. With those strings, I utilize standard
C function to convert from string to unsigned 64 bit integer - strtoull.

Apart from that there is memory allocation to ensure there is enough space
allocated to write those limbs.

The second function, mpz get str(char *str, const int base, const mpz ptr
x), works in similar way. Operand is copied from device to host. For each
limb ui64toa is called to convert 64 bit integer to string. Those strings are
then concatenated and returned as a result.

One difficulty, that I had to deal with - string returned by ui64toa are
not always the same length as they do not contain the leading zeroes. To deal
with that I start by allocating the result string with all characters set to ’0’.
Destination of the converted limb is computed based on string length. As a
last step, leading zeroes are stripped simply by copying the string to the left.
I have verified that this procedure returns exactly the same strings as GMP
does - this testing is implemented in TestApp - section 5.2.3.2.

4.2.1 Optimization - get and set string

At first I wanted to have CUDA global memory area as the only storage for
all the limbs, as all calculations take place in the device anyway. This lead
to repeated cudaMemcpy API call for every limb that got parsed. I have
examined results from NSIGHT profiler and discovered, that repeated call to
copy small block of memory (8 bytes in this particular case) is significantly
slower than one call to copy the same memory all at once.

To shorten the time to transfer operands from GMP to cuGMP in Test-
App, I have added another limb storage to the host side. This increases
memory consumption a little bit (not drastically compared to the string rep-
resentation of the numbers), but speeds up set string operation significantly
(approximately 5 times).

4.3 Addition operation

Addition is pretty straightforward process, explained in detail in design 3.1.

AddKernel does the hard work adding corresponding limbs together, de-
tecting overflow and carry propagate states. Those states are then written to
carry buffer (array of unsigned chars).

CarryPropagateKernel then examines this carry buffer. Each thread starts
at its corresponding limb and ends execution when carry is propagated or
nothing state is reached.
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4.4. Subtraction operation

Result of addition can have the same amount of limbs as the larger of the
addition operands, or it can have one limb more. CalculateResultSize is used
to decide about the result size. It has to be decided inside a CUDA kernel,
because operand is in the device memory. This kernel is executed on one
thread only.

4.3.1 Optimization - memory allocation

As for the carry buffer, there is cudaMalloc once called. For smaller operands,
this takes more time than the actual computation (approximately hundreds
of micro seconds). This does not affect larger operands much.

Possible optimization would be to avoid this buffer at all. Each thread
would then, inside carryPropagationKernel, have to compute the state on its
own. This, being operation done on 64 bit integers, could be relatively slow.

As this does not affect larger operands and provides only constant time
improvement, I have found it not promising enough to implement. I have
mentioned this idea in future work chapter, section 6.1.1.

4.4 Subtraction operation

In order to detect which operand is larger, I had to implement a simple kernel,
that is always run in single thread only, called subSwapOperandsKernel. The
result is stored in device variable and then copied to the host using cudaMem-
cpyFromSymbol - this way I have avoided one cudaMemcpy and cudaFree API
call.

Result size (number of active limbs) cannot be guessed as in case of ad-
dition operation. To compute the result size in parallel fashion, I have used
CUDA function atomicMax inside calculateSubResultSizeKernel. Each thread
looks if its own limb has a value greater than zero and also if value of the more
significant limb is zero.

If such thing occur, it then stores the index of, presumably, the first empty
limb to the result operand size. This scenario, however, can also occur in the
middle of active limbs. The value I want to store is the maximum of all those
indexes detected. AtomicMax function guarantees that no race condition will
occur during this process and the maximum of the two values will be set
atomically.

Downside is, that atomic functions were introduced in compute capabil-
ity 2.0. That means, subtraction will not work on early CUDA cards with
compute capability less then 2.0.
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4.5 Multiplication operation

There is a number of variables and memory allocations going on inside mpz mul
operation. First, there are arrays that represent integer as polynomial - those
are of cufftDoubleComplex type. As each limb splits into four parts and each
part consist effectively of two doubles, we end up with considerable memory
footprint. For each 64 bit limb, there are at least 512 bits of data. This in-
creases even further as all operands have to be padded to the same size as the
result - which is usually around double the size of operands. And we have 3
of those arrays - one for each operand and one for multiplication result.

As an estimation, lets consider two 1MB operands. We have 3 arrays,
2 times the size of the operands, using 2 times bigger data type, each limb
splitting in 4 parts.

size = op size · 3 · 2 · 2 · 4

For 1MB operand, we get 48MB only in FFT buffers.
Another 3 allocations are used for partial results (res msb and res lsb,

4.5.5). These are all the same size as the result - in the above example -
3 · 2MB. Another memory is consumed by cuFFT plan.

All and all we can expect memory consumption of around 60-100 times
the size of one operand. This corresponds nicely with my test results as the
largest operands I have been able to process on GPU with 2GB of memory
were 16MB each. That should take around a 1000-1500MB.

This memory consumption is in my opinion unavoidable. There are dif-
ferent cuFFT transport types, that use real instead of complex data types on
the input, but they also produce complex results. As the transformation is
done in-place, this does not provide much benefit.

4.5.1 Using cuFFT library

CuFFT library has been optimized for repeated transforms of the same size. It
is therefore configured using so called plans. Plan has to be created before any
cufftExec is invoked. Plan contains information about transform size (number
of elements) and type (single or double precision etc.). Calling cufftPlan1d
initialize some internal cuFFT memory structures. Plan has to be destroyed
after all computations are done - using cufftDestroy.

To transform operands from time to frequency domain there is cufftEx-
ecZ2Z function. Z2Z suffix means it is used with cufftDoubleComplex input.
If input and output pointers are the same, cuFFT performs the transform
in-place without the need of additional memory - and I do it this way to allow
processing of larger operands.

After computation in frequency domain has been completed, I call cufftEx-
ecZ2Z once more, but this time with CUFFT INVERSE direction parameter
instead of CUFFT FORWARD.
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4.5. Multiplication operation

As we can see, using cuFFT API is not very complicated.

4.5.1.1 Optimization - cuFFT transform size

As stated in [8]:

“The cuFFT library has highly optimized kernels for transforms
whose dimensions have these prime factors. In general the best
performance occurs when using powers of 2, followed by powers of
3, then 5, 7.”

To be able to exploit this optimization I rounded transform size to the
next bigger power of 2. This can increase memory consumption - in worst
case scenario to almost double the size required without this optimization.
But then this is not only performance, but also precision optimization as the
documentation in [8] continues:

“When the length cannot be decomposed as multiples of powers
of primes from 2 to 127, Bluestein’s algorithm is used. Since the
Bluestein implementation requires more computations per output
point than the Cooley-Tukey implementation, the accuracy of the
Cooley-Tukey algorithm is better. The pure Cooley-Tukey imple-
mentation has excellent accuracy, with the relative error growing
proportionally to log2(N), where N is the transform size in points.”

That means not using this optimization would affect both performance
and precision for some operand sizes.

4.5.1.2 Optimization - cuFFT initialization

Due to the fact that I have used memory leak detector regularly during devel-
opment (not only cuda-memcheck, but also host memory leak detector - Visual
Leak Detector in my case), I have detected a strange behavior of cuFFT ini-
tialization. The library gets initialized first time an API call is made. As
stated in [21]:

“The cuFFT library is initialized upon the first invocation of an
API function, and cuFFT shuts down automatically when all user-
created FFT plans are destroyed.”

The first call to cuFFT API (usually during plan creation - cufftPlan1d)
with memory leak detector took around 10 seconds. Without memory leak
detector it took around 500ms. This still is significant amount of time.
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I have exposed a simple function, cuFFT Init, accepting no parameters.
It creates cuFFT plan and immediately destroys it. My measurements sug-
gest, that cuFFT documentation [21] is not accurate in this. From the docu-
mentation I would assume, that after destroying the plan, cuFFT would shut
down. Even though, when I execute measurement after creating and destroy-
ing cuFFT plan, I get better results (approximately by 500ms).

I believe that this corresponds to initialization as discussed in section 2.3.
After first cuFFT API call, the library probably gets JIT compiled and loaded
into the device. By initializing it ahead of measurement, I get more stable
results.

4.5.2 Polynomial representation

To extract polynomial representation from limbs directly, without much com-
putation, I do only splitting of the limbs to smaller parts.

This is done using only logical ANDs and SHIFTs inside polynomialRep-
resentationKernel. There is a parameter defined, called MUL BASE BITS,
that controls the size of resulting parts. To experiment with this parameter,
it is sufficient to change only the define value. Supported values are 2k for k
in range < 1, 5 >, that means 32, 16, 8, 4, 2.

Each thread is responsible for one source limb to be split in parts. Let the
MUL BASE BITS be set to 16 bits. Each thread then takes mask of 0xFFFF,
shifts this mask to the left to the appropriate part, ANDs it with the source
limb and the result is then shifted back to the right. Resulting value is set to
the x coordinate of cufftDoubleComplex type. The y coordinate is set to zero
as this number does not have an imaginary part in this step. This is repeated
4 times to cover all 64 bits of the source limb.

4.5.3 Pointwise multiplication

Pointwise multiplication of complex values, that are stored in Cartesian co-
ordinates (which is the way cuFFT stores complex numbers) is done in the
way proposed in paper [3], chapter VI. Multiplication of cufftComplex values
a and b goes like this:

c.x = a.x · b.x− a.y · b.y;

c.y = a.x · b.y + a.y · b.x;

This is done for each pair of values in parallel in pointwiseMultiplica-
tionKernel.
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4.6. Bit shifting operation

4.5.4 Result normalization

As discussed in section 3.4.3, I need to divide result by the size of the trans-
form. Again, this is a very simple kernel, called resultNormalisationKernel.
Each resulting complex number is divided by the size of the transform.

In fact, only the x coordinate is divided, as the y coordinate is not used
in the result extraction.

4.5.5 Result extraction

In extractResultKernel, double precision floating point is converted into 64
bit unsigned integer limb. If no rounding errors occur during FFT transform
and pointwise multiplication, the floating point contains whole-number. As
rounding error do occur, I have used llrint function to round the result to the
nearest 64 bit integer.

After that, the integer is split into two parts - least significant bits are
assigned to appropriate limb in res lsb, most significant bits are first shifted
right and then assigned to res msb. This shift right is a bit confusing, but I do
that to avoid race conditions and data dependencies - this way, lsb and msb
parts end up in the same limb index of res lsb and res msb.

To balance out the shift right from previous step, I then have to call
mpz mul 2exp on res msb to shift the whole operand back 16 bits left. After
that, both msb and lsb parts can be added together using mpz add imple-
mented also in cuGMP. The process of extracting IFFT result to msb and lsb
parts is illustrated in Figure 4.1 for better understanding.

4.6 Bit shifting operation

Bit shifting is done in two GMP functions that correspond to the standard C
bit shifts, but are called * mul * and * div * as bit shifts can be also seen as
multiplication and division. They both end with 2exp suffix to indicate it is
multiplication/division by 2k where k ∈ N .

First there is mpz mul 2exp, which is in fact shift left by exponent bits.
First I calculate the number of whole limbs to shift - simply by dividing
exponent/GMP LIMB BITS. Then the number of bits to shift inside each
limb - this time it is not division, but modulo - exponent%GMP LIMB BITS.

Then there is only one simple kernel called shiftLeftKernel. Inside, new
mapping is composed - first shift limbs least significant limbs are filled with
zeroes, others are generally filled partly from the lower bits from the corres-
ponding limb (shifted left) + upper bits from the less significant limb (shifted
right). I have illustrated this process in Figure 4.2. In the illustration, limbs
are only 16 bits wide and we are shifting 24 bits - so it’s 1 limb + 8 bits shift.

For shifting right (division by the power of two) I have implemented
mpz tdiv q 2exp. This function works in similar fashion as the previous one,
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Figure 4.1: Extract IFFT result to msb and lsb operands

Figure 4.2: Shift left by 24 bits example
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Figure 4.3: Shift right by 24 bits example

only in the opposite direction. Instead of padding bits with zeroes, this time
we are truncating exponent least significant bits. 24 bit shift right with 16 bit
limbs is illustrated in Figure 4.3.

4.7 Logical operations

Implementation of AND, OR and XOR operations is very straightforward.
It means only to do the logical operation in question between corresponding
limbs. That sounds very much like addition, but in this case, there is no carry
propagation.

AND is implemented in mpz and function. As ANDing with zero is still
zero, andKernel is executed only on limbs that exist in both operands. If one
operand is larger, the exceeding part is ignored completely. Size of the result
is the minimum of the sizes of input operands.

That said, ANDing two operands of 1000 limbs creates 1000 threads that
all have to do one logical AND between two uint64 numbers and nothing more
really.

OR is implemented in mpz ior. This time, as ORing with zero is not
always zero, there is one more if-statement inside the orKernel. If one operand
is larger than the other, exceeding limbs are simply copied from the larger
operand.

If-statement does not introduce much divergence either as all thread-blocks
will be executing the same branch of code and at most one thread-block will
diverge.

XOR is implemented in mpz xor. Only difference between OR and XOR
kernel is the bit-wise operation used inside.

That said I do not see much room for performance improvements.

4.8 Implemented operations

GMP library divides operations in two main parts - MPZ are high-level oper-
ations intended to be used outside the library, they do take care of memory
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management etc. Then there are low-level MPN functions, used to implement
the high-level GMP functions, but also intended for time-critical user code.

I have primarily focused on MPZ functions to provide the whole arithmetic
operation. To sum up all GMP operations implemented:

• mpz add - addition

• mpz sub - subtraction

• mpz mul - multiplication

• mpz mul 2exp - shift left

• mpz tdiv q 2exp - shift right

• mpz and - logical AND

• mpz ior - logical OR

• mpz xor - logical XOR

• mpz init - operand initialization

• mpz init2 - operand initialization and limbs allocation

• mpz clear - operand memory cleanup

• mpz get str - convert operand to its string representation

• mpz set str - initialize operand from its string representation

4.9 Porting to linux

To be able to measure performance on our university GPU cluster called
STAR, I had to adapt the project to be able to work on Linux OS. Performance
measurement on Linux is discussed in section 5.1.1.

Apart from that, on several places, I had to include cstdlib and cstring
headers to support various functions, that on Linux worked differently or had
different name and definition. I had to rename and, or and xor operations
in my Operation enum, because in g++ compiler, these apparently are some
keywords, that cannot be used in various contexts.

I also had to re-implement ui64toa function that, on Windows C++ lib-
rary, can convert integer to its string representation in any given base. I have
not been able to find any suitable substitution in the Linux libc.
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4.9.1 Makefile

After that all I had to do was to build the library and TestApp. To do that
I have implemented simple Makefile, that uses regular expression to find all
the necessary source files (only in valid paths), builds each one into an object
file (using nvcc for .cu files and g++ for .cpp files). In the end it links all of
them together.

It also supports the standard clean operation (removes all built files and
object files) and it can also build only cuGMP library without TestApp.

Sample usage:

make - builds cuGMP and TestApp in testApp binary
make cuGMP.a - builds only cuGMP using nvcc
make clean - removes all object files and built files

45





Chapter 5

Results

In this chapter I will present testing methodology, describe hardware config-
uration used for performance measurement and also provide measured data
and graphs of performance speedup against GMP library.

5.1 Performance measurement

To accurately measure computational time I have implemented a simple, but
platform dependent, set of functions. It uses thoughts described in detail in
article [22]. It requires to include windows.h header file for QueryPerform-
anceCounter and QueryPerformanceFrequency API calls.

The performance measurement functionality exposes simple functions to
start/stop measurement and to compute elapsed micro-seconds, mili-seconds
and seconds. It uses a simple struct (called measurement) to store results.
It then allows me to measure computational time in micro-second precision,
which wouldn’t be possible without OS API calls.

Example usage of this functionality is shown in Source code 6. To be more
accurate in the results I usually do repeat the same calculation several times,
using average computational time as a result. Example of this is shown in
Source code 7. Measurement functions actually accept number of repeats as
a parameter.

Source code 6 Example measurement
__measurement measurement;

start_measurement(&measurement);

<DO THE EXPENSIVE WORK HERE>

stop_measurement(&measurement);

return get_measurement_microseconds(&measurement);
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Source code 7 Example measurement - repeats
__measurement measurement;

start_measurement(&measurement);

for (size_t i = 0; i < REPEATS; i++)

{

<DO THE EXPENSIVE WORK HERE>

}

stop_measurement(&measurement);

return get_measurement_microseconds(&measurement, REPEATS);

5.1.1 Performance measurement on Linux

In later part of the project I have decided to add support for Linux OS. I have
therefore followed suggestions from article [22] and added Linux support to
performance measurement.

If the compiler does not define WIN32 (that means, we are not on Win-
dows), our start and stop measurement functions use gettimeofday function
instead of QueryPerformanceCounter. It also includes sys/time.h instead of
windows.h header file. To store the time values, there is also different timeval
struct instead of LARGE INTEGER struct on Windows.

In the end however, on both platforms the same API is exposed and on
both systems, the measurement is therefore done in the same way. The API
returns number of micro seconds as uint64 t which is universal type for 64bit
unsigned integer.

5.2 Testing methodology

In order to rightfully compare performance with GMP library I’ve devised a
standardized methodology to call arithmetic functions in each library. The
main problem that I had to address was that both libraries do number ini-
tialization and memory allocation differently. Reason is that some features
of GMP library are out of scope of this project - all those limitations are
discussed in detail in section 4.1.

5.2.1 TestApp

In order to make performance measurement I implemented console application
called TestApp. This application uses two libraries - GMP and cuGMP.

It consist of a few files. TestApp.cpp is responsible for argument parsing or
batch file loading and parsing and then executing appropriate tests. Tests are
defined in Tests.cpp - those test consist of calling both GMP test and cuGMP
test. Here, result evaluation and output is taken care of. Structures for passing
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5.2. Testing methodology

test results are defined in Tests.h header file. Then there are TestGMP.cpp
and TestCuGMP.cpp files with all library tests.

5.2.2 Library test

Each combined test (explained in section 5.2.3) consist of two separate library
tests that are structurally very similar but one use GMP library and the other
use cuGMP library.

5.2.2.1 Random number generation

This part of library test is specific to GMP tests because cuGMP currently
does not support random number generation. Random numbers used in GMP
calculation are then transferred to the second test that use cuGMP library.
Operand transfers are discussed later in section 5.2.3.1.

This is done this way to ensure that if performance results would depend on
argument properties (which it can as described in section 3.1), both libraries
use the same numbers and therefore differences in this matter will appear in
test results.

5.2.2.2 Variables

Variables (usually of type mpz t - explained in section 3.6.2) are named a, b
and c meaning:

c = a (operation) b

This means that c is used to store the result and a and b are computation
operands.

All operands have to be initialized before usage (initialization explained
in section 3.6.2.1). For this I sometimes use mpz init2 function for result
variable, because it can allocate appropriate amount of memory in advance
- that way I can eliminate influence of result re-allocation inside arithmetic
functions. That occurs only if result operand is initialized with not enough
memory allocated.

5.2.2.3 Repeated calculation

To have more accurate performance results even for operations taking not
much time to complete I do often repeat the same calculation several times,
dividing the measured time after. Immediate results show that there is not
much more precision in the results using this method, so I have not used this
functionality in the end.
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5.2.2.4 Memory cleanup

All test have to clean allocated memory after themselves to allow stable meas-
urement in batches. GMP and cuGMP operands both use standard function
mpz clear(mpz ptr x) that frees all allocated memory. CuGMP implement-
ation ensures correct cleanup in both host and device memory via standard
free() and cudaFree() functions.

To ensure that there is no performance dependency on previous tests I
also call cudaDeviceReset() after each test. That CUDA API call ensures
that CUDA device clears all state, so it should be the same as restarting the
program on freshly booted machine.

5.2.2.5 Return values

All tests return number of micro-seconds that one call to the tested operation
took. This does not include operand initialization, random number generation,
string manipulations etc. Main focus is to compare the main computation
algorithms.

5.2.3 Combined test

All complete tests are placed in Tests.cpp file. In related header file, there is
also a struct to contain test result and another for test setup to support batch
processing and to be able to manage test output from one place.

Combined test usually ensures that GMP test is run first. Inside GMP
test there are random numbers generated for operands. Operation is then
executed with those operands. Both operands and the result is then extracted
in the string representation for following evaluation.

5.2.3.1 Random number generation

Random numbers for the tests are generated using GMP library. The random
number state is seeded with current time + test iterator. The iteratir is added
for the case that the test is faster then current system time changes value.

To provide error checking and fair comparison, cuGMP uses the same num-
bers that GMP generated. To do so, operands used in GMP are transfered in
string representation in base 16 utilizing mpz get str in GMP and mpz set str
in cuGMP library.

5.2.3.2 Compare results

As both libraries use the same operands in TestApp, I am able to validate
results of both libraries against each other. To do so, results from both libraries
are extracted using mpz get str function. Results are then compared character
by character to check if they match exactly - this way it is ensured that cuGMP
behaves exactly the same as GMP.
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In case of multiplication, however, there is some rounding error (explained
in section 3.4.6) that means the result strings often do not match. To measure
the size of the rounding error, I use GMP again and divide the cuGMP result
by GMP result. Ideally, when no rounding error occurs, the result is 1.

All arithmetic operations implemented in cuGMP library (except multi-
plication) return absolutely the same results as GMP library. Measurement
would fail if they would not. Size of the rounding error in the result of multi-
plication will be discussed in section 5.5.

5.3 Hardware configurations

As a test setup I have used a computer running Windows 10 x64 with the
following HW configuration:

• CPU: Intel Core i3-4330 @ 3.50 GHz

• GPU: NVIDIA GeForce GTX 750 Ti

GPU Frequency: 1059 MHz

Memory frequency: 1350 MHz

Memory: 2048 MB (GDDR5)

Bus width: 128 bit

Theoretical memory bandwidth: 86.4 GB/s

CUDA cores: 640

• RAM: 8 GB (DDR3, 1600 MHz)

On top of that I have measured performance on university cluster called
STAR. I have made measurements on two nodes, gpu-01 and gpu-02, both
running x64 Linux, with the following configuration for gpu-01:

• CPU: 2x 6core Xeon 2620 v2 @ 2.10 GHz

• GPU: NVIDIA Tesla K40c

GPU frequency: 875 MHz

Memory frequency: 3 GHz

Bus width: 384 bit

Theoretical memory bandwidth: 288 GB/s

CUDA cores: 2880

• RAM: 32 GB

And for gpu-02:
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• CPU: 2x 6core Xeon 2620 v2 @ 2.10 GHz

• GPU: NVIDIA GeForce GTX 780 Ti

GPU frequency: 928 MHz

Memory frequency: 3,5 GHz

Bus width: 384 bit

Theoretical memory bandwidth: 336 GB/s

CUDA cores: 2880

• RAM: 32 GB

5.3.1 Compiler settings

Compilers on both Windows and Linux systems use mostly the default set-
tings. Nvcc utilizes –machine 64 switch to force the code to be 64bit. No
debug switches are activated. For compute capability, sm 30,compute 30 is
specified to support grids larger than 65536 blocks and to support atomicMax.

Compiler settings can be changed in Makefile and in Visual Studio project
settings.

5.4 Performance comparison

In the following section I will compare performance in terms of speedup versus
operand size. All operand sizes will be registered as a number of bits. To get
a number of limbs, simply divide by 64. To compare with GMP I will take
measurements from gpu-01 node as a base. It uses Linux GMP library installed
on the system.

Most measurements will consider operand sizes in range from 220 to 232

(or 1mbit to 4gbit). Smaller operands are not very interesting as they usually
take less than 1ms to compute on both CPU and GPU. Larger operands on
the other hand do not fit in available memory. Multiplication, with its FFT
transforms, consumes even more memory, therefore only operands of size 227

and smaller were compared. Memory consumption of multiplication operation
is discussed in detail in section 4.5.

5.4.1 Addition operation

As we can see in Figure 5.1, real speedup comes when using operands larger
than 225bits. This might be due to the memory allocation needed for my
implementation of carry buffer discussed in section 4.3.1.

To determine why small operands take more time to compute (compared
to GMP library) I have profiled addition operation with 220 bit large operands
using NSIGHT profiler. All three kernels together (add, carry propagate and
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Figure 5.1: Addition speedup

Table 5.1: Computation time - addition (micro seconds)

Operand size GMP (gpu-01) Tesla K40c GTX 780 Ti GTX 750 Ti

220 45,4 547,7 459,3 843,9

221 67,1 592,6 458,9 793,5

222 130,6 604,7 482,2 851,5

223 253,0 685,1 554,8 1131,0

224 503,5 764,4 636,2 1264,3

225 1121,2 916,0 731,0 1387,4

226 4374,0 1254,8 999,0 2264,5

227 6190,7 1710,9 1330,3 4863,9

228 12086,7 2620,0 1995,7 8943,7

229 34711,4 4396,8 3304,5 12139,4

230 70539,6 7939,6 5931,1 20780,9

231 141066,4 15027,8 11177,9 39324,1

232 281121,0 29266,1 21728,2 87123,3

calculate result size) took around 75 micro seconds. The whole addition op-
eration, on the other hand, was measured 850 micro seconds. There is also a
single cudaMalloc call (to allocate carry buffer) that took 400 micro seconds.

This affects only small operands, because the cudaMalloc has almost the
same duration for small and large operands. For example for 10 times larger
operand it takes only 430 micro seconds (less than 10% increase).
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Figure 5.2: Logical AND speedup

5.4.2 Subtraction operation

Subtraction has almost the same performance as addition. There is a small
slowdown due to the operand swapping - there is one extra kernel to detect
which operand is larger, followed by cudaMemcpyFromSymbol. Other than
that, the performance is very similar.

5.4.3 Logical operations

To keep this chapter short, I will present graph and results table only for
AND operation - OR and XOR results are almost identical. All three logical
operations implemented, AND, OR and XOR, perform very well on CUDA.
This is due to the simplicity of the operations - there is no overflow propagation
etc. There is only one kernel, that loads two limbs and stores one result limb.
I have accomplished almost 1000x speedup compared to GMP for the larges
operands as illustrated in Figure 5.2. In the result table 5.2 we can see that
computation time is almost constant to the operand size.

5.4.4 Bitwise shift operation

To illustrate performance of bit shifting, I present results for bit shift left,
implemented in mpz mul 2exp function. As seen in Figure 5.3, speedup comes
around 224bit large operand. Maximum speedup is around 50x for GTX 780
Ti device, which has the fastest memory access of up to 336 GB/s.
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Table 5.2: Computation time - logical AND (micro seconds)

Operand size GMP (gpu-01) Tesla K40c GTX 780 Ti GTX 750 Ti

220 45,7 155,0 133,3 96,7

221 66,1 171,0 142,5 104,9

222 127,5 195,0 170,0 133,9

223 237,6 248,2 226,5 173,2

224 488,9 254,8 234,7 261,2

225 1305,1 266,2 240,6 264,0

226 4387,4 295,0 272,1 273,3

227 6744,7 303,9 277,1 261,3

228 12861,9 313,1 276,7 262,1

229 35021,0 317,2 277,3 258,3

230 70423,5 319,2 285,0 257,9

231 141349,3 322,2 284,1 260,3

232 281662,2 319,0 279,7 270,0
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Figure 5.3: Bit shift left speedup
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Table 5.3: Computation time - bit shift left (micro seconds)

Operand size GMP (gpu-01) Tesla K40c GTX 780 Ti GTX 750 Ti

220 50,5 171,6 154,4 143,4

221 57,7 184,6 163,5 169,1

222 111,1 215,2 193,7 209,6

223 224,0 273,0 252,9 256,2

224 443,6 291,4 261,7 389,9

225 1239,4 331,0 300,3 460,2

226 6396,7 414,3 348,1 584,1

227 5315,0 535,3 433,6 805,0

228 9071,4 749,3 606,8 1254,9

229 29782,2 1164,0 915,2 2190,4

230 59849,4 2004,1 1537,1 4063,5

231 120737,6 3672,3 2780,0 7817,1

232 241371,5 7001,2 5259,8 15317,1
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Figure 5.4: Multiplication speedup

5.4.5 Multiplication operation

Multiplication operation using cuFFT library provides very stable speedup
even for smaller (around 1mbit) operands. For operands larger than 225bits,
speedup becomes almost constant - around 30x for the most powerful devices.

As discussed in section 1.2.2, GMP uses different multiplication algorithms
based on operand size. Results I have measured indicated, that the threshold
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Table 5.4: Computation time - multiplication (micro seconds)

Operand size GMP (gpu-01) Tesla K40c GTX 780 Ti GTX 750 Ti

220 9813,3 4052,1 3435,6 7428,6

221 21646,8 5050,7 4246,2 13945,7

222 49540,9 6418,0 5598,8 27695,1

223 109000,6 8112,6 7578,7 49202,3

224 242472,2 11000,4 11101,6 93401,4

225 542244,9 19065,8 18474,8 178437,9

226 1123717,9 38893,2 37579,2 362871,7

227 2321044,9 74382,2 75360,1 713915,5
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Figure 5.5: Relative error - multiplication

might be around 225 bits, because from there on the GMP scales similarly to
cuGMP. I have looked into this and it seems the thresholds differ from CPU
to CPU, but they are usually set between 5000 and 10000 limbs as stated in
manual [23]. That means, GMP uses FFT multiplication for operands larger
than 0.5-0.7mbit. All operands I have tested are larger than 1mbit. That
means, GMP is also using FFT multiplication - only difference is, that GMP
does not utilize parallel algorithm.

5.5 Multiplication precision

As discussed in section 3.4.6, multiplication algorithm using cuFFT library
suffers from rounding errors. To determine how big those errors are, I have
measured not only computation time, but also relative error. This error is
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Figure 5.6: Relative error based on operand size - multiplication

Table 5.5: Relative error and standard deviation based on operand size.

Operand size Average Error Standard deviation

220 1,21591E-06 5,51864E-06

221 1,22158E-06 5,46757E-06

222 1,72845E-06 6,65414E-06

223 2,20125E-06 8,88246E-06

224 2,84342E-06 8,81661E-06

225 1,35525E-06 8,16525E-06

226 4,52421E-06 1,39462E-05

227 1,05841E-06 6,01884E-06

obtained by dividing cuGMP result by GMP result and then subtracting 1.

In Figure 5.5 we can see the errors measured for different operand sizes.
Size of the circle illustrates the number of results with the same value. Biggest
circles are those with the same value - usually 0, that means no rounding error.

Average error for operands from 220 to 227bits (around 160 different data
points) is 2, 02 · 10−6.

To illustrate that there is no obvious relation between operand sizes and the
size of the relative error, I have made Figure 5.6. The middle of each vertical
line represent the average error for corresponding operand size. Upper and
lower ends of each line represent the size of standard deviation. Error and
deviation is also illustrated in table 5.5
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5.6 Results - conclusion

All implemented operations provide significant speedup, mainly for large op-
erands. To achieve this, all arithmetic operations had to be implemented
entirely on the GPU to avoid unnecessary memory transfers.

The largest speedup has been recorded for logical operations. They per-
form up to 1000x faster than GMP library on CPU. Other operations provide
around 10x - 50x speedup for largest operands.

One drawback is multiplication precision that, unfortunately, isn’t 100%,
because of the use of floating point FFT transform. This effectively means,
that current multiplication implementation cannot be used in practice. Pos-
sible solution is suggested in future work, section 6.3.

All other implemented operations provide both speedup and accuracy and
can therefore be used for practical computation.

On the graphs illustrating speedup against GMP library, we can see that
the implemented algorithms scale nicely in terms of parallelism - the larger the
operands, the greater the speedup. We can also compare mid-range CUDA
device (GTX 750 Ti) against hi-end cards (Tesla K40c and GTX780 Ti). I
have also verified, that the library works consistently on both Windows and
Linux platform.
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Chapter 6

Future work

In this chapter I will summarize topics, that I think can be optimized further. I
will also discuss operations, that were not implemented yet in cuGMP library.

6.1 Addition operation

Carry propagation can be very slow in specific conditions - for example when
adding 1 to a large integer that has every bit set to one. In that scenario,
carry has to travel from least significant bit to the most significant and in
current implementation, this takes O(n) steps for n limbs.

That would not be a problem for multiplication algorithm that can have
complexity O(n2), but for addition that is O(n) as the whole operation that
means a lot - especially as the rest of the algorithm is done in parallel, but
carry propagation is not.

This scenario is not very probable or often in real life, but even so, it could
be optimized a bit further. This can be done via parallel prefix sum algorithm
as proposed in article [24]. The only difference from normal PPS algorithm is
in the operation - instead of sum (addition) we would decide if carry should
or should not propagate.

6.1.1 Memory allocation

As proposed in section 4.3.1, small performance could be achieved (mainly for
smaller operands) by avoiding the use of carry buffer. That would probably
mean more uint64 computations, which tend to be slower on CUDA. On the
other hand, for small operands, allocating carry buffer itself takes more time
than the rest of the addition process.
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6.1.2 CUDA PTX Carry detection

As explained in article [25], CUDA supports overflow detection inside its in-
struction set architecture. This is, however, not usable in the scope of this
thesis. Carry-out flag, that is set using uadd assembly function can be con-
sumed only using another assembly function like uaddc.

What I would need is extract the carry-out flag and save it to the carry
buffer for later processing. This way I could save some, but probably not
large, amount of computational work.

I think one way this could be exploited to gain performance advantage it
through loop unrolling - addition could be unrolled inside the kernel, doing
several limb additions per one thread, utilizing uaddc assembly function. This
way some memory bandwidth may be saved as carry information would not
have to be stored inside the carry buffer for all the limbs. This however adds
complexity as number of limbs would have to be divisible by the number of
limbs processed in each thread.

6.2 Comparison operation

There is a set of functions in GMP that could also be implemented - Com-
parison Functions. Those are discussed in manual [26]. These functions are
mpz cmp, mpz cmpabs and mpz sgn. Mpz cmp returns positive integer, if
first operand is larger, zero if they are the same and negative integer, if the
second operand is larger. Mpz abs does the same, but only with the absolute
values.

I believe CUDA can provide significant speedup, but mainly for numbers
that are mostly the same, or the same value completely. Otherwise, GMP will
probably return the result almost instantly.

6.3 Multiplication - Number Theoretic Transform

There is a problem of rounding errors in the result of multiplication as dis-
cussed in section 3.4.6. This is caused by floating point nature of cuFFT
library. GMP actually does not use such FFT and the reason is explained in
GMP manual [27]:

“Floating point FFTs use complex numbers approximating Nth
roots of unity. Some processors have special support for such
FFTs. But these are not used in GMP since it’s very difficult
to guarantee an exact result (to some number of bits). An occa-
sional difference of 1 in the last bit might not matter to a typical
signal processing algorithm, but is of course of vital importance to
GMP.”
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6.4. Division operation

As discussed article in [13], there is a way to avoid rounding error in the
process of multiplication by the use of NTT. This is also a way that GMP
uses as stated in manual [28]. GMP manual specifically mentions Fermat style
FFT.

Results of article [13] suggests that this method does provide reasonable
performance when implemented right.

I believe that implementing NTT capable library on CUDA would be very
beneficial work.

6.4 Division operation

As proposed for example in thesis [29], large integer division can be computed
with the same asymptotic complexity as multiplication. To be able to do that,
there are so called inversion algorithms, that do quite a lot of precomputation,
but end up with large integer multiplication. Most common algorithm of this
type is called Newton Division. This method is probably suitable for really
large integers as the precomputation phase can be quite large.

6.5 Measure performance on different hardware

Future readers are welcome to perform measurements on their CUDA hard-
ware. Anything with compute capability 2.0 should work out of the box.

The Visual Studio project is currently configured with compute capabil-
ity 3.0. This is done only to support larger x-dimension of a grid of thread
blocks, therefore supporting larger operands. Compute capability less than
3.0 supports only 65535. That effectively limits current multiplication im-
plementation to operands of around 16 milion limbs. This could of course be
easily fixed via multiple kernel executions for larger operands, but since I have
compute capability 5.0 GPU, I did not have to deal with that.

Linux is now also supported. When CUDA and GMP is installed on the
system, installation of cuGMP with TestApp is a question of cloning the GIT
repository and issuing make command.

As for testing methodology, it is largely determined in the implementation
of TestApp, so it should not be difficult to execute similar tests as I have
executed. Output is basically a valid CSV file, that could be easily submitted
on github for comparison.
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Conclusion

I have successfully implemented large integer arithmetic using parallel al-
gorithms running on CUDA device. Implemented arithmetic operations are
addition, subtraction, bitwise shift left and right, logical AND, OR and XOR
and multiplication. I have compared my solution against GMP library running
on CPU.

Main focus of this thesis was performance - all implemented operations
provide significant speedup for large enough integers - from 10x speedup in
case of addition and subtraction to up to 1000x speedup in case of logical
operations (AND, OR, XOR).

To provide reasonable comparison, I have ported the library to Linux and
tested it not only on Windows OS on a consumer PC, but also on our university
GPU server cluster called STAR.

The main disappointment is implementation of multiplication algorithm
using floating point FFT transform. It provides significant speedup against
GMP library, but also suffers from rounding errors, which makes it practically
unusable for most uses.
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Appendix A

Links and contacts

As I would like future readers to be able to contact the author if anything is
unclear and to be able to browse the source code, possibly even use it or extend
it in any way I provide my e-mail address and URL of my github repository.
Main reason is that my university e-mail address will cease to exist short after
I will finish studying.

• E-mail: petr@petrous.cz

• Repository: https://github.com/trubus/cuGMP
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Appendix B

Installation

To start using cuGMP library, there are several prerequisites. To build the
library code, CUDA toolkit with nvcc compiler has to be installed. To build
TestApp that does the performance measurements, GMP library has to be
installed or built. In this chapter I will go through the installation process for
two supported platforms - Windows OS with Visual Studio IDE and Linux
OS with g++ compiler.

B.1 Windows x64

Start by preparing folder for cuGMP project. I will use c:\cuGMP for reference,
but you can use whatever path you like.

Download the source files inside c:\cuGMP either by git clone command
from cuGMP repository (URL in chapter A) or by copying them from attached
CD.

B.1.1 Visual Studio

Then install Visual Studio IDE. For users without MSDN subscription, there is
a free Community edition that is also supported by CUDA. At the time, latest
stable CUDA framework for Windows supports only Visual Studio 2013. Sup-
port for 2015 version is in beta stage. For Community edition, download in-
staller package from https://www.visualstudio.com/en-us/news/vs2013-
community-vs.aspx.

B.1.2 CUDA

To install nvcc compiler, cuFFT library, NSIGHT profiler, Visual Studio sup-
port and CUDA enabled graphics driver, download installer package from
https://developer.nvidia.com/cuda-downloads. Nvidia GeForce Experi-
ence software (if installed) will complain, that you do not have the latest
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B. Installation

graphics drivers installed - ignore that, you have the latest CUDA drivers
installed.

B.1.3 GMP

To be able to build GMP library using the same toolset (Visual Studio with
MSBuild), there is a fork of GMP called MPIR. It exposes the same API,
but it comes with Visual Studio projects (for many recent versions of Visual
Studio) that can compile almost instantly without the need to install further
software or tweaking the configuration.

• Download MPIR from http://www.mpir.org/mpir-2.7.2.zip

• Extract obtained package into c:\cuGMP\mpir-2.7.2

• Open mpir-2.7.2\build.vc12\mpir.sln (VS Solution for VS2013)

• To assure correct build order, add build dependency of lib mpir cxx to
lib mpir gc (Right click lib mpir cxx ->Build dependencies ->Project
build order)

• Setup batch build of all configurations of projects lib mpir gc and lib mpir cxx
(Build ->Batch build)

• Select Build in the Batch build dialog

This way, all configurations of GMP (32 and 64 bit, debug and release)
are built on one click. If newer version of MPIR is used, make sure to update
include paths in TestApp project.

B.1.4 cuGMP and TestApp

Now everything is ready to start using cuGMP. Open c:\cuGMP\cuGMP.sln
(VS solution). Now there are two projects - cuGMP (the library using CUDA
compiler) and TestApp (measurement and testing application using Visual
C++ compiler).

B.2 Linux

Start by preparing folder for cuGMP project. I will use ~/cuGMP for reference.
Inside you can download sources from repository by issuing git clone command
or you can copy source files from attached CD.
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B.2. Linux

B.2.1 Prerequisites

I have actually used Linux servers that already had GMP library and CUDA
toolkit installed. GMP library can be obtained from package repository or by
downloading source files from http://gmplib.org and compiling using Make-
file. For CUDA toolkit, packages can be obtained from https://developer.nvidia.com/
cuda-downloads. Installation may differ slightly according to Linux distribu-
tion used.

B.2.2 cuGMP and TestApp

In order to build cuGMP and TestApp, go to the directory with source files.
There is a Makefile that takes care of the build process.

In order to build cuGMP library only, issue make cuGMP.a command.
In order to make the library and TestApp, issue make all command.
On different environment, there might be a need to some variables inside

the Makefile, mainly CCCUDAINCL (path to CUDA installation).
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Appendix C

Acronyms

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

GPGPU General-purpose computing on graphics processing units

GMP The GNU Multiple Precision Arithmetic Library

MPIR Multiple Precision Integers and Rationals (GMP fork)

cuFFT NVIDIA R© CUDATM Fast Fourier Transform

nvcc NVIDIA R© CUDATM Compiler

API Application Program Interface

OS Operating System

NSIGHT profiler CUDA toolkit profiler

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

NTT Number Theoretic Transform

ALU Arithmetic Logic Unit

PPS Parallel Prefix Sum

IDE Integrated Development Environment

MS Microsoft
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Appendix D

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables

win64.....................................Windows x64 executables
linux64 ..................................... Linux x64 executables

results............................Raw measured data in excel format
src.......................................the directory of source codes

cuGMP ................. cuGMP and TestApp implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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