
L.S.

doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague October 11, 2014

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Machine Learning in Game Playing using Visual Input

 Student: Bc. Martin Brázdil

 Supervisor: Ing. Pavel Kordík, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Theoretical Computer Science

 Validity: Until the end of winter semester 2016/17

Instructions

Survey machine learning and data processing techniques for game playing using raw visual input only.
Implement and evaluate deep reinforcement learning or related algorithms on Pong simulator or Atari game
collection. Describe your final approach in details, explain behavior of all components (preferably by
visualization techniques) and report the performance of alternative methods and their settings.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of theoretical computer science

Master’s thesis

Machine Learning in Game Playing using

Visual Input

Bc. Martin Brázdil

Supervisor: Ing. Pavel Kord́ık Ph.D.

10th May 2016

Acknowledgements

I would like to thank my supervisor Pavel Kord́ık for support even though I
am very imperfect person.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 10th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Martin Brázdil. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Brázdil, Martin. Machine Learning in Game Playing using Visual Input.
Master’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2016.

Abstrakt

Hrańı her z visuálńıho vstupu je komplexńı problém, jehož úspěšné řešeńı
vyžaduje kombinaci posilovaného učeńı a aproximačńıch metod. Tato práce
detailně zkoumá obě oblasti a testuje vhodné metody na speciálně navržených
minihrách. Finálńı funkčńı řešeńı je výsledkem inkrementálně nabalovaných
d́ılč́ıch výsledk̊u.

Kĺıčová slova Posilované učeńı, neuronové śıtě, evolučńı programováńı.

Abstract

Game playing using visual input is complex problem which requires com-
bination of reinforcement learning and function approximation for successful
solution. This thesis investigates both fields and tests suitable methods on
specially designed minigames. Final working solution is a result of increment-
ally aggregated partial solutions.

Keywords Reinforcemen learning, neural network, evolutionary program-
ming.

ix

Contents

1 Introduction 1

1.1 What Is a Game . 1

2 Metalearning of Hyperparameters 5

2.1 Metalearning in General . 5

2.2 Metalearning in Machine Learning 6

2.3 Methods and Application . 6

2.4 Evolutionary Programming . 7

2.5 Improved Fast Evolutionary Programming 7

3 Reinforcement Learning 13

3.1 Comparison to Other Forms of Learning 13

3.2 Curse of Dimensionality . 14

3.3 Finite Markov Decision Process 15

4 Neural Network 21

4.1 Neuron . 21

4.2 Multiple Layers . 22

4.3 Convolutional Layer . 22

4.4 Identity Activation . 23

4.5 Linear Rectifier . 23

4.6 Sigmoid Activation . 23

4.7 Hyperbolic Tangent Activation 24

4.8 Universal Approximator . 24

4.9 Credit Assignment . 24

4.10 Network Training . 25

4.11 Backpropagation . 26

4.12 Stochastic Gradient Descent . 26

4.13 Experiments on MNIST . 27

xi

5 Implementation 35
5.1 Implementation . 35
5.2 Architecture . 37
5.3 Agents and Worlds . 39
5.4 Breakout World . 43

Conclusion 61
Achieved Goals . 61
Developed Framework . 62
Possible improvements . 62

Bibliography 63

A Excluded Graphs 65

B Excluded Graphs 67

C Contents of enclosed CD 85

xii

List of Figures

2.1 Interpolated surface of generalized Ackley’s multimodal function
in interval (-1, 1) for both variables produced by grid of 200x200
points (with constant step size). 9

2.2 Visualisation of single run of IFEP with 5 generations and 10 in-
dividuals per generation. Left: Initial random generation. Middle:
Last 5th generation. Right: All generations (without rejected off-
springs). 10

2.3 The mean difference in 10000 runs is approximately 0.003. IFEP
has outliers with considerably lower fitness but it also has lower
quartile closer to the mean which means that most of the points be-
low mean are actually closer to the mean than in random sampling
method. 10

3.1 The most abstract view of reinforcement learning problem. Agent
perceives state of environment x0 then acts creating change y2
which is received by environment which responds by closing the
circle. 13

4.1 Neuron - basic unit of feedforward multilayer perceptron. 21

4.2 Three layered neural network. First input layer is not composed of
neurons. Arrows symbolize feedforward direction (errors propagate
back in exactly oposite way). 22

4.3 Connections represented by the same color are shared between spe-
cial purpose perceptrons called filters. Filter outputs are stacked
and called feature maps. 23

4.4 Perceptron with identity activation hyperparameter dependencies
on MNIST. 30

4.5 Perceptron with ReLU activation hyperparameter dependencies on
MNIST. 30

xiii

4.6 Perceptron with tanh activation hyperparameter dependencies on
MNIST. 30

4.7 Perceptron with logistic activation hyperparameter dependencies
on MNIST. 30

4.8 Two layered perceptron with identity activation hyperparameter
dependencies. 31

4.9 Two layered perceptron with ReLU activation hyperparameter de-
pendencies. 31

4.10 Perceptron with tanh activation hyperparameter dependencies on
MNIST. 32

4.11 Two layered perceptron with logistic activation hyperparameter
dependencies on MNIST. 32

4.12 ConvNet with identity activation hyperparameter dependencies on
MNIST. 33

4.13 ConvNet with ReLU activation hyperparameter dependencies on
MNIST. 33

4.14 ConvNet with tanh activation hyperparameter dependencies on
MNIST. 34

4.15 ConvNet with logistic activation hyperparameter dependencies on
MNIST. 34

5.1 As sorted at last iteration: Lowest line at bottom is RU agent then
GFVMC and EGFVMC agents, then OSGFVM, OSEGFVMC,
GEVMC and EGEVMC with very similar performance. 41

5.2 As sorted at last iteration: Lowest line at bottom is RU agent then
GFVMC and EGFVMC agents. Then OSGFVM, OSEGFVMC,
GEVMC and EGEVMC agents with very similar performance. . . 43

5.3 State value iteration 4 with parameters γ = 0.9, ε = 0.0001,
limit = 50 evaluated on GridWorld. 44

5.4 GridWorld state values generated by SVI 4 algorithm with para-
meters γ = 0.7, ε = 0.0001, limit = 50 evaluated on GridWorld.
Left: First iteration. Right: Last iteration. Greedy policy using
first iteration is already optimal. 44

5.5 . 45

5.6 Left: Ball movements defined by force vector with force range para-
meter set to 3. Middle: Ball movement does not have Markov prop-
erty, next state depends on previous. Right: All different shortest
paths to given position. 46

5.7 State value iteration 8 with parameters γ = 0.9, ε = 0.0001,
limit = 50 evaluated on 8x8 Breakout. 50

5.8 As ordered around iteration 10: At bottom there is RU agent.
At bottom there are (without order) OSEGEVMC, OSEGFVMC,
OSGFVMC and OSGEVMC agents. At top there are (without
order) EGEVMC, EGFVMC, GFVMC and GEVMC. 50

xiv

5.9 As ordered at last iteration: At bottom there are (without order)
RU, OSEGEVMC, OSEGFVMC, OSGFVMC and OSGEVMC agents.
At top there are (without order) EGEVMC, EGFVMC, GFVMC
and GEVMC. 51

5.10 State value iteration 8 with parameters γ = 0.9, ε = 0.0001,
limit = 50 evaluated on 8x8 Breakout. 52

5.11 As ordered around iteration 10: Bottom line is RU agent. Four in
the middle are OSEGFVMC, OSGFVMC (lower two) and OSE-
GEVMC, OSGEVMC (upper two). Top four are from bottom up
EGFVMC, GFVMC, EGEVMC and GEVMC agents. 52

5.12 As ordered at last iteration: At bottom there are (without order)
RU, OSEGEVMC, OSEGFVMC, OSGFVMC and OSGEVMC agents.
At top there are (without order) EGEVMC, EGFVMC, GFVMC
and GEVMC. 53

5.13 State value iteration 8 with parameters γ = 0.9, ε = 0.0001,
limit = 50 evaluated on 8x8 Breakout. 54

5.14 All agents totally fail. They are as useless as RU agent. 54
5.15 All agents totally fail. They are as useless as RU agent. 55
5.16 The most successful EGDQN agent in simple BreakOut which

achieves around 90 out of 100 possible bounces. 55
5.17 Seems to converge properly. Needs more training time. 56
5.18 Seems to converge properly. Needs more training time. 56
5.19 It looks like it is converging but this could be just result of some

deverged state. 57
5.20 It seems to diverge immediately. 57
5.21 Seems to diverge. 58
5.22 It seems to be stuck in oscilations. 58
5.23 Seems to be stuck in oscilations. 59
5.24 Seems to be stuck in oscilations. 59

xv

List of Figures

2.1 Interpolated surface of generalized Ackley’s multimodal function
in interval (-1, 1) for both variables produced by grid of 200x200
points (with constant step size). 9

2.2 Visualisation of single run of IFEP with 5 generations and 10 in-
dividuals per generation. Left: Initial random generation. Middle:
Last 5th generation. Right: All generations (without rejected off-
springs). 10

2.3 The mean difference in 10000 runs is approximately 0.003. IFEP
has outliers with considerably lower fitness but it also has lower
quartile closer to the mean which means that most of the points be-
low mean are actually closer to the mean than in random sampling
method. 10

3.1 The most abstract view of reinforcement learning problem. Agent
perceives state of environment x0 then acts creating change y2
which is received by environment which responds by closing the
circle. 13

4.1 Neuron - basic unit of feedforward multilayer perceptron. 21

4.2 Three layered neural network. First input layer is not composed of
neurons. Arrows symbolize feedforward direction (errors propagate
back in exactly oposite way). 22

4.3 Connections represented by the same color are shared between spe-
cial purpose perceptrons called filters. Filter outputs are stacked
and called feature maps. 23

4.4 Perceptron with identity activation hyperparameter dependencies
on MNIST. 30

4.5 Perceptron with ReLU activation hyperparameter dependencies on
MNIST. 30

xvii

4.6 Perceptron with tanh activation hyperparameter dependencies on
MNIST. 30

4.7 Perceptron with logistic activation hyperparameter dependencies
on MNIST. 30

4.8 Two layered perceptron with identity activation hyperparameter
dependencies. 31

4.9 Two layered perceptron with ReLU activation hyperparameter de-
pendencies. 31

4.10 Perceptron with tanh activation hyperparameter dependencies on
MNIST. 32

4.11 Two layered perceptron with logistic activation hyperparameter
dependencies on MNIST. 32

4.12 ConvNet with identity activation hyperparameter dependencies on
MNIST. 33

4.13 ConvNet with ReLU activation hyperparameter dependencies on
MNIST. 33

4.14 ConvNet with tanh activation hyperparameter dependencies on
MNIST. 34

4.15 ConvNet with logistic activation hyperparameter dependencies on
MNIST. 34

5.1 As sorted at last iteration: Lowest line at bottom is RU agent then
GFVMC and EGFVMC agents, then OSGFVM, OSEGFVMC,
GEVMC and EGEVMC with very similar performance. 41

5.2 As sorted at last iteration: Lowest line at bottom is RU agent then
GFVMC and EGFVMC agents. Then OSGFVM, OSEGFVMC,
GEVMC and EGEVMC agents with very similar performance. . . 43

5.3 State value iteration 4 with parameters γ = 0.9, ε = 0.0001,
limit = 50 evaluated on GridWorld. 44

5.4 GridWorld state values generated by SVI 4 algorithm with para-
meters γ = 0.7, ε = 0.0001, limit = 50 evaluated on GridWorld.
Left: First iteration. Right: Last iteration. Greedy policy using
first iteration is already optimal. 44

5.5 . 45

5.6 Left: Ball movements defined by force vector with force range para-
meter set to 3. Middle: Ball movement does not have Markov prop-
erty, next state depends on previous. Right: All different shortest
paths to given position. 46

5.7 State value iteration 8 with parameters γ = 0.9, ε = 0.0001,
limit = 50 evaluated on 8x8 Breakout. 50

5.8 As ordered around iteration 10: At bottom there is RU agent.
At bottom there are (without order) OSEGEVMC, OSEGFVMC,
OSGFVMC and OSGEVMC agents. At top there are (without
order) EGEVMC, EGFVMC, GFVMC and GEVMC. 50

xviii

5.9 As ordered at last iteration: At bottom there are (without order)
RU, OSEGEVMC, OSEGFVMC, OSGFVMC and OSGEVMC agents.
At top there are (without order) EGEVMC, EGFVMC, GFVMC
and GEVMC. 51

5.10 State value iteration 8 with parameters γ = 0.9, ε = 0.0001,
limit = 50 evaluated on 8x8 Breakout. 52

5.11 As ordered around iteration 10: Bottom line is RU agent. Four in
the middle are OSEGFVMC, OSGFVMC (lower two) and OSE-
GEVMC, OSGEVMC (upper two). Top four are from bottom up
EGFVMC, GFVMC, EGEVMC and GEVMC agents. 52

5.12 As ordered at last iteration: At bottom there are (without order)
RU, OSEGEVMC, OSEGFVMC, OSGFVMC and OSGEVMC agents.
At top there are (without order) EGEVMC, EGFVMC, GFVMC
and GEVMC. 53

5.13 State value iteration 8 with parameters γ = 0.9, ε = 0.0001,
limit = 50 evaluated on 8x8 Breakout. 54

5.14 All agents totally fail. They are as useless as RU agent. 54
5.15 All agents totally fail. They are as useless as RU agent. 55
5.16 The most successful EGDQN agent in simple BreakOut which

achieves around 90 out of 100 possible bounces. 55
5.17 Seems to converge properly. Needs more training time. 56
5.18 Seems to converge properly. Needs more training time. 56
5.19 It looks like it is converging but this could be just result of some

deverged state. 57
5.20 It seems to diverge immediately. 57
5.21 Seems to diverge. 58
5.22 It seems to be stuck in oscilations. 58
5.23 Seems to be stuck in oscilations. 59
5.24 Seems to be stuck in oscilations. 59

xix

Chapter 1

Introduction

Thesis is in the incremental order and each successive chapter build upon
previous chapters.

First Chapter provides an introduction, some first insights and thoughts
regarding problem domain and couple of loosely connected ideas in order
to provoke relevant thoughts which need to be solved.

Second Chapter elaborates on metalearning, explains why it is important
and interesting and how it is implemented and used in following exper-
iments.

Third Chapter explores reinforcement learning and describes theory of learn-
ing from experience which is essential for a solution. Formalized descrip-
tion and learning methods for an agent acting in environment with goal
to maximize reward is provided.

Fourth Chapter explores methods of function approximation using neural
networks. Different architectures with varying neuron types, activation
functions and connection patterns are tested. Fourth chapter starts
with considered and used technologies. Then experimental framework
architecture is justified from the point of view developed in third chapter.

1.1 What Is a Game

1.1.1 Possible description

Informally ordinary human-created game (such as Pong, Atari, Chess,..) is
generally a structure (set of possible states) defined (generated) by game rules
(possible actions in each state) in sequence of steps from predefined initial
conditions and a subset of (terminal) states called (sub)goals with associated
qualitative meaning (reward or punishment).

1

1. Introduction

1.1.2 Complexity of state space

Game structure is completely determined by game rules. Interestingly rules
(possible actions) are typically defined locally based on subset of current state
or states visited earlier in sequence of steps taken. For example there is no
separate definition of a chess piece moves specified for all different positions
but only one local rule with boundary conditions. Although alternatively
there is in principle a possibility to define chess piece moves for each unique
state separately. The difference is that in first local approach all moves of
given piece in all positions are encoded by a lossless compression compared
to second approach. But there is a drawback associated with decompression
(i.e. checking boundary conditions) which introduces sort of memory lookup
where memory is a subset of current state.

Nevertheless such simple rules can be Turing complete (capable of any
computation) as shown for example by Stephen Wolfram’s automata which
mean that tremendous state spaces could be described effectively by just a few
rules and initial conditions. Such compressed representation of state space is
called a game model.

1.1.3 Can it be learned?

Intuition of game model generating state space offers reversed possibility. Is it
possible to learn game model just from information contained in a sequences
of actions and resulting states? This assumption is essential for any learning
and seems natural for humans. Infants are born with a model which prior
information is insufficient even for their own survival. However they learn and
build their internal model by exploration, i.e. waving limbs, tasting objects
around.

One of properties which allow learning is assumption of deterministic
model. It means if perfect observation of the whole state is made then res-
ulting action is inevitable (defined by relations in such a model). Indeed this
seems to be the case with nature - more and more deliberate observation seems
to provide more and more definite answers with less and less uncertainty. [1]

1.1.4 Does free will exist?

All the states seemed to be determined at the moment when the rules are cre-
ated. However which state sequences are actually going to be visited depends
on strategy (which actions are chosen) of each involved player. What is the
role of free will?

For example argument based on correlation of decision and previous neural
activity is used as argument against free will. However alternative view could
be that neural correlates do not determine our actions but instead restrict the
range of actions that are available to freely choose from. From such perspective

2

1.1. What Is a Game

no matter how much we correlate neural activities with our actions there will
always be enough for free will to escape. To escape into a world of correlates.

3

Chapter 2

Metalearning of
Hyperparameters

Metalearning is widely used cross-disciplinary term used not only in machine
learning but also in neuroscience or psychology. Generally it is conscious
awareness and control of learning process itself - in other words it is about
learning how to learn. If the usual behavior patterns do not generate satis-
factory result then metalearning allows self-reflection and offer a change of
changing behavioral patterns which were fixed during previous trials. Often
the behavioral patterns of interest are not directly associated with solution
itself which means that they are usually sufficient to achieve results.

2.1 Metalearning in General

As soon as we consider that some pattern is usually sufficient we invoke some
form of generalisation property which defines a class of problems. Unfor-
tunately true generalisations exist only in conceptual world. At least some
level of ignorance is required to fit real world into concepts which means that
source of novel behavior patterns comes from world itself. It is true however
that nature around is not perfect white noise and some patterns repeat and
prevail in nature.

Interesting question is what would it mean to solve metalearning? Would
the result be a kind of behavior (or perspective) where doing is immediate
and never accompanied by second thoughts or regret any more yet still always
results in (subjectively) good results? The dividing line between learning and
metalearning from this point of view is subjective at best bacause it depends
heavily on what is considered as common knowledge. Perhaps there is always
possibility for another level of metalearning (or out of a box thinking).

5

2. Metalearning of Hyperparameters

2.2 Metalearning in Machine Learning

In machine learning community the term metalearning is defined in somewhat
more definite meaning but still remains fuzzy. Different models achieve dif-
ferent performance on different data. There are multiple reasons why there
is not yet one ’best’ model. One of the well known results is ’no free lunch’
theorem by D. Wolpert and D. Macready [2]. ’No free lunch’ theorem explores
connections between effective optimization algorithms and problems they are
solving. For any algorithm any elevated performance over one class of prob-
lems is offset by performance in another class.

Metalearning then is about matching (or modifying) existing algorithms to
a existing problems. In order to do so information another so called metadata
information collection and processing is necessary. Connection between al-
gorithm characteristics and problem characteristics are learned.

One particular metalearning task which can be further categorized as meta-
optimization is optimization of hyperparameters, variables which are not set
by learning process, in order to achieve best performance for a given problem.

2.3 Methods and Application

In this thesis I am using mathematical models which typically have a few
real valued hyperparameters. Metaoptimization is used in two ways - first to
search for best performing set of hyperparameters and second to explore the
space of hyperparameters. Both can be done by iterative sampling of space of
hyperparameters which are evaluated by computation of performance function
called fitness function.

The simplest methods are grid sampling search and random sampling
search which are empirically proven to work well but have a few drawbacks.
Grid or random search might do unnecessary evaluations such as taking a
small steps in ’obviously’ negative gradient. But it is hard to tell which evalu-
ations are unnecessary unless we have a prior expectation about fitness func-
tion, which is seldom true. The advantage of random search is convergence
to globally best solution in limit because every point is visited given infinite
time.

However despite lacking prior information it is sometimes useful to pick
samples according to accumulated knowledge based on previous samples. Es-
pecially when fitness function for a given problem takes a long time to compute
which is true in scope of this thesis. The goal is to maintain both exhaustive
exploration and intelligent search. Evolutionary programming is a standard
well researched method which offers both.

6

2.4. Evolutionary Programming

2.4 Evolutionary Programming

Evolutionary programming is a generic population-based metaheuristic optim-
ization algorithm. Globally optimal solution is not guaranteed compared to
random search. It is inspired by ideas from biological evolution. Population
of individuals is evolved for a number of generations determined by stopping
criterion. Mechanisms which take place in each generation are reproduction,
mutation, recombination and selection. Various implementations of those ab-
stract concepts exist.

2.5 Improved Fast Evolutionary Programming

Improved fast evolutionary programming(IFEP [3]) is a method of choice in
this thesis (algorithm 1). IFEP uses strategy parameter η which reflect ac-
cumulated metadata during metalearning. IFEP is a combination of FEP
(fast EP) and CEP (classical EP) because it utilizes two types of mutations
- Gaussian mutation and Cauchy mutation. Strategy parameter is evolved
along objective parameters and used as standard deviation for mutations.
The main idea behind Cauchy mutation is to introduce bigger steps than
Gaussian mutation. Bigger Cauchy steps have a chance to escape from local
optima and potentially stumble upon global optimum while smaller Gaussian
steps are more likely to intensify local search. This effect is achieved through
(un)expected length of jumps:

EGaussian(x) = 2

∫ +∞

0
x

1√
2π

exp(−x
2

2
)dx = 0.8 (2.1)

ECauchy(x) = 2

∫ +∞

0
x

1

π(1 + x2)
dx = +∞ (2.2)

7

2. Metalearning of Hyperparameters

Algorithm 1: Improved fast evolutionary programming algorithm

input : fitness - arbitrary vector-valued fitness score function
input : (λmin, λmax) ∈ (RN ,RN) - objective vector boundaries
input : generations ∈ N - number of generations
input : population ∈ N - number of individuals

Initialize constants such that:

τ ←
√

2
√
N
−1

;

τ ′ ←
√

2N
−1

;

Initialize first generation ∀i ∈ population such that:
ρ← (λmax − λmin)/5;
λi ← Ui(λmin, λmax), λi ∈ RN ;
ηi ← ρ · Ui(0, 1), ηi ∈ RN ;
scorei ← fitness(λi), scorei ∈ R;
for epoch← 1 to generations do

for i← 1 to population do
/* Nn and Un indicates that new random value is drawn

for each variable in vector λi. Both offsprings

are validated against (λmin, λmax) and if they

fail new random numbers are drawn */

o1← population+ i;
λo1 ← λi + ηi · Nn(0, 1);
ηo1 ← ηi exp(τN (0, 1) + τ ′Nn(0, 1));
o2← 2 · population+ i;
// Q is Cauchy quantile function

λo2 ← λi + ηi ·Q(Un(0, 1));
ηo1 ← ηi exp(τN (0, 1) + τ ′Nn(0, 1));

end
foreach i← 1 to 3 · population do

scorei ← fitness(λi);
end
Sort 3 · population of (λ, η, score) by score

end

2.5.1 IFEP Experiment

IFEP is chosen because it should provide extensive yet intelligent search. Fit-
ness function used in this experiment should be complicated enough to test
those desirable properties. Particularly it should be multimodal with multiple
local and global optima.

One of suitable fitness functions commonly used as a benchmark for evolu-
tionary algorithms is Auckley’s function. Generalized form of Auckley’s func-
tion [4] to multiple variables is used:

8

2.5. Improved Fast Evolutionary Programming

fAuckely(λ1, . . . , λN) = −20 exp(−0.2

√√√√ 1

N

N∑
i=1

x2i)− exp(
1

N

N∑
i=1

cos(2πxi)) + 20 + e

(2.3)

Figure 2.1: Interpolated surface of generalized Ackley’s multimodal function in
interval (-1, 1) for both variables produced by grid of 200x200 points (with constant
step size).

Parameterization and Results

Evolution is parameterized by very small population size of 5 individuals per
generation and modest number of 3 generations. Expected computation time
of most complicated fitness functions in this thesis is a few minutes. Fitness
function is evaluated 5 times for initial population and 10 times for each
generation resulting in expected computation time of a few hours which is
suitable.

From figure 2.3 it can be seen that reasonable enough exploration is main-
tained and multiple neighborhoods of global optima are explored. Of course
the result differs each time and one example is not sufficient to draw any
conclusions - purpose if purely demonstrative.

Quantitative comparison against random sampling is done by running each
algorithm 10000 times. Result of this experiment is a very close match in favor
of IFEP. Advantage is small but significant taking number of repetitions in

9

2. Metalearning of Hyperparameters

Figure 2.2: Visualisation of single run of IFEP with 5 generations and 10 individuals
per generation. Left: Initial random generation. Middle: Last 5th generation. Right:
All generations (without rejected offsprings).

consideration. Perhaps small difference in fitness can be attributed to quite
a wide neighborhood around global optima. It is rather questionable if using
IFEP instead of random sampling will bring any real difference. Nevertheless
IFEP is a method of choice for any further metalearning tasks in this thesis.

Figure 2.3: The mean difference in 10000 runs is approximately 0.003. IFEP has
outliers with considerably lower fitness but it also has lower quartile closer to the
mean which means that most of the points below mean are actually closer to the
mean than in random sampling method.

Modification to IFEP

During exhaustive comparative experiments of IFEP with low population and
few generations to grid and random search with equal number of fitness eval-
uations I have noticed that IFEP is the best method when boundaries of
Ackley’s function are larger than initially set (i.e. from (-1, 1) to (-35, 35)).
The problem is in strategy parameter η which controls mutation variances
because it is always initialized uniformly in interval (0, 1). Individuals from
initial population are then initialized to absurdly large variances and it con-
sumes unnecessary limited resources to adapt them.

10

2.5. Improved Fast Evolutionary Programming

I have made a modification which introduces constant ρ called dispersion
which is computed from objective parameter boundary vector λ and then used
to initialize η to a more sensitive value as follows:

ρ =
λmax − λmin

5
(2.4)

η = ρ · U(0, 1) (2.5)

11

Chapter 3

Reinforcement Learning

Reinforcement learning [5] is a computational approach to learning from in-
teraction which means it does not incorporate detailed information based on
how people learn but instead explores effectiveness of various models for al-
gorithmic knowledge discovery. It applies to closed-loop systems where se-
lected actions influence future states. Agent has no direct instructions what
to do next in order to maximize reward or how particular decisions influence
future actions.

EnvironmentAgent

...

...

...y0 y1 y2 y3

x0 x1 x2 x3

t0 t1 t2 t3

Figure 3.1: The most abstract view of reinforcement learning problem. Agent
perceives state of environment x0 then acts creating change y2 which is received by
environment which responds by closing the circle.

3.1 Comparison to Other Forms of Learning

Reinforcement learning is different from other forms of learning including su-
pervised and unsupervised learning.

13

3. Reinforcement Learning

3.1.1 Supervised learning

Supervised learning focuses on learning labeled data where input signal comes
in pairs - input and label. Learning from pairs is suitable for function approx-
imation problems and it is very well established field. Supervised learning is
not adequate for game playing because supervision signal (label) is usually
not available. Nevertheless be utilized as approximators of various parts of
reinforcement learning model. Supervised learning focuses on correct gen-
eralization (extrapolation) to inputs which were not present during training.
Correct generalization is crucial since game state space is vast and only a frac-
tion is ever experienced by agent. Exploration could potentially benefit from
generalization if it is possible to discover rewarding states by extrapolation of
other previously visited states.

3.1.2 Unsupervised learning

Unsupervised learning focuses on learning hidden structure in data. Tra-
ditionally unsupervised learning is understood as data clustering based on
some similarity measure. Search for hidden structure is not itself adequate for
learning because it’s objective does not maximize total reward. Nevertheless a
hidden structure found by unsupervised learning can be very useful for game
model construction. Learning hidden structure first by unsupervised learn-
ing (technique called pretraining) has been shown to enhance performance
(especially generalization) of supervised learning algorithms.

3.2 Curse of Dimensionality

In reinforcement learning from visual input we assume pixel representation.
Pixels are obtained from visual input by discretization using two dimensional
grid. The grid is two dimensional but each pixel is usually modeled as a single
real dimension. Size of the grid (called resolution) defines how many pixel
dimensions are used. We typically use trillions of pixels for image representa-
tion in daily life which is however totally infeasible in reinforcement learning.
Even much lower number of pixels such as thousands or even hundreds is con-
sidered highly dimensional discrete space and therefore suffers from curse of
dimensionality.

When we try to solve such problem we typically start developing techniques
using model examples in low dimensional space which are intuitively easy to
imagine. Then we scale the dimension of obtained technique to match practical
problems which have typically much higher dimension.

From the technical point of view it is often easy to scale it. In most cases
we plug in higher number representing number of dimensions and we are done.
This is in contradiction with intuitive understanding which does not scale so

14

3.3. Finite Markov Decision Process

good. This can lead to underestimating of consequences if it is not taken into
account.

3.2.1 Curse in Discrete Spaces

The problem is that if we discretize space it grow exponentially with number of
dimensions. Exponential growth is underestimated by intuition. One example
is folding a paper. It looks like an easy task if we fold it once, twice or
thrice. But it is actually almost impossible to fold it 10 times. Folding it
approximately 50 times will create stack that will take us to the moon. Folding
it approximately 100 times would create mass of paper which will span the
whole observable Universe. Each fold in this example represent one additional
dimension in binary space. One of the problems of using pixels directly as
state representation is that they cannot be stored in lookup tables which are
a part of some reinforcement learning techniques.

3.2.2 Exploration of Cursed Discrete Space

Geometrically every point in high dimensional space with dimension N has
N coordinates. Even in binary spaces number of points required in order to
distribute them with small constant distance is exponential. Or from learning
perspective we need to take exponential number of samples to explore such
space.

3.2.3 Generalization in Cursed Discrete Space

Multiple geometrical examples exist showing how unintuitive and complic-
ated highly dimensional spaces are. For example imagine two vectors d =
(a, a, . . . , a) ∈ RN and p = (a, 0, ..., 0) ∈ RN . Then when N approaches in-
finity two interesting things happen. First d becomes orthogonal to p. And
second d becomes infinitely larger. Both are important from learning perspect-
ive - for example when cosine similarity measure of orthogonality is affected.

cos(φ) =
dT p√
||d||2||p||2

=
a2√
da2a2

=
1√
d
→∞ (3.1)

||d||2

||p||2
=
da2

a2
= d→∞ (3.2)

3.3 Finite Markov Decision Process

3.3.1 Basic Notation

Finite Markov decision process is a useful method for describing very general
reinforcement learning techniques. First we define state St ∈ S, where S is

15

3. Reinforcement Learning

the set of all possible states, action, A ∈ A(st) where A(st) is a set of actions
available in St and reward, Rt ∈ R ⊂ R is a received reward from St+1.

At each time step agent queries a mapping from states to probabilities of
selecting each possible action which is called agent’s policy function πt(a|s) is
a probability of selecting action At = a when in state St = s.

3.3.2 Return Value

Reward hypothesis states: ”That all of what we mean by goals and purposes
can be well thought of as maximization of the expected value of the cumulative
sum of a received scalar signal.” We formalize this statement by defining return
Gt as some function of rewards following time t:

Gt = Rt+1 +Rt+2 + ...+RT =

T∑
t=0

Rt+k+1. (3.3)

Then reward hypothesis can be though of as return maximization. T is
a final step accompanied by ST terminal state. If there is a final step then
interaction with environment naturally breaks into subsequences which we call
episodes which is implemented in a form of episodic learning algorithm 2 used
for learning and greedy evaluation 3 used for evaluation. When there are no
terminal states returns can be potentially infinite and we need discounting
which leads to prioritization of closer rewards. Discounted return is defined
as:

Gt = Rt+1 + γRt+2 + ...+ γRT =

T∑
t=0

γkRt+k+1, (3.4)

where 0 ≤ γ ≤ 1 is called discount rate. This formalism can be used for
T =∞ when γ 6= 1 or with a notion of absorbing states.

3.3.3 Markov Property

In general, causal environment can respond at time t + 1 by next state and
reward conditioned on everything that has happened earlier. Such dynamics
can be defined by complete joint probability distribution:

Pr{St+1 = s′, Rt+1 = r|S0, A0, R1, . . . , St−1, At−1, Rt, St, At}. (3.5)

Markov property is particularly useful assumption which says that next
state is conditioned only on current state:

16

3.3. Finite Markov Decision Process

Algorithm 2: Episodic agent learning algorithm

input: world← object implementing IWorld interface
input: agent← object implementing IAgent interface
input: epizodes← number of epizodes to be generated
input: limit← maximum number of steps before termination

for i← 1 to epizodes do
s0 ← world.RandomState();
for t← 1 to limit do

if world.Terminal(st) then
break loop

end
p← world.Observation(st);
a← agent.Choose(p);
// st is altered to st+1 by transition

r ← world.Transition(st, a);
agent.Feedback(p, a, r);

end
agent.LearnEpizode();

end

Algorithm 3: Greedy agent evaluation algorithm

input : world - object implementing IWorld interface
input : agent - object implementing IAgent interface
input : episodes - number of episodes to be generated, episodes ∈ N
input : limit - maximum number of steps before termination
output: reward

for i← 1 to episodes do
s0 ← world.RandomState();
for t← 1 to limit do

if world.Terminal(st) then
break loop

end
p← world.Observation(st);
a← agent.GreedyChoose(p);
// st is altered to st+1 by transition

r ← r + world.Transition(st, a);

end

end

17

3. Reinforcement Learning

Pr(s′, r|s, a) = PrSt+1 = s′, Rt+1 = r|St = s,At = a. (3.6)

If all histories have Markov property then a whole task has Markov prop-
erty. It is particularly useful because this assumption enables to develop theory
which can predict all future states and returns from current state based on
current state only.

3.3.4 Value Functions

State value function defines value of a state s under policy π denoted vπ(s) as
expected return,

vπ(s) = Eπ[Gt|St = s] = Eπ[

∞∑
k=0

γkRt+k+1|St = s]. (3.7)

State value function is however not practical because algorithms based on
it require perfect model of the environment because each possible next state
needs to be evaluated. However if we have perfect model of the environment
we can than compute state value function by value iteration algorithm 8.

Algorithm 4: State value iteration algorithm

input: γ ∈ R← discount factor, 0 < γ ≤ 1
input: c ∈ R← constant, 0 < c << 1
input: limit ∈ N← number of iterations before termination

Initialize V such that:
∀s ∈ S, V (s) = 0

repeat
∆← 0;
limit← limit− 1;
foreach s ∈ S do

v ← V (s);
V (s)← maxa

∑
s′,r Pr(s

′, r|s, a)[r + γV (s′)];

∆← max(∆, |v − V (s)|);
end

until ∆ < c ∧ 0 < limit;

Output a deterministic policy π, such that:
π(s) = argmaxa

∑
s′,r Pr(s

′, r|s, a)[r + γV (s′)]

Similarly defined but much more practical is state action value function of
a state s and action a under a policy qπ(s, a) as expected return starting from
s, taking action a and then following policy π:

18

3.3. Finite Markov Decision Process

Eπ[Gt|St = s,At = a] = Eπ[

∞∑
k=0

γkRt+k+1|St = s,At = a]. (3.8)

If separate averages are kept for each action taken in each state then these
averages converge to action values qπ(s, a). Approximation can be obtained
by Monte Carlo methods such as first visit Monte Carlo ?? and a variation
of that algorithm called every visit Monte Carlo which computes averages of
returns every time in backward order as in which s and a were visited.

Algorithm 5: First-visit Monte Carlo value estimation algorithm

Initialize:
π ← policy to be evaluated;
V ← an arbitrary state-value function;
Returns(s)← an empty list, ∀s ∈ S
repeat

Generate an episode SE ⊆ S using π;
foreach s ∈ SE do

G← return following the first occurence of s;
Append G to Returns(s);
V (s)← average(Returns(s));

end

until terminated ;

3.3.5 Bellman Equations

The fundamental property of state value function is this recursive relationship:

vπ(s) = Eπ[Gt|St = s] =
∑
a

π(a|s)
∑
s′,r

Pr(s′, r|s, a)[r + γvπ(s′)] (3.9)

and similarly for the state action value function:

qπ(s, a) = Eπ[Gt|St = s,At = a] =
∑
a

π(a|s)
∑
s′,r

Pr(s′, r|s, a)[r + γvπ(s′)]

(3.10)

which are instances of the Bellman equation. The Bellman equation av-
erages over possibilities weighting by probability of occurance. It states that
the value of the start state must equal the (discounted) value of expected next

19

3. Reinforcement Learning

state plus the reward expected along the way. And it also does the same for
state action pairs.

For finite Markov decision process the Bellman equation when iterated in
limit converges to a unique optimal solution.

3.3.6 Q-learning

Another algorithm used for state action value function approximation is Q−
learning. It is type of temporal difference method because it uses difference
maxaQ(St+1, a)−Q(St, At). Also it is type of bootstrapping method left term
is action with maximum approximated value from after state.

Q(St, At)← Q(St, At) + α[Rt+1 + γmaxaQ(St+1, a)−Q(St, At)] (3.11)

Q-learning approximation method is part of deep Q-learning agent 6.

Algorithm 6: Off policy ε-greedy deep Q learning agent algorithm

Initialize:
B ← empty replay buffer list (s, a, r);
Q(s, a)← randomly initialized neural network;
Returns(s, a)← an empty list, ∀(s, a) ∈ S
repeat

Generate an episode SE ⊆ S using Q(s, a);
foreach s ∈ SE do

G← return following the first occurence of s;
Append G to Returns(s);
V (s)← average(Returns(s));

end

until terminated ;

20

Chapter 4

Neural Network

Artificial neural network is a series of linear or nonlinear transformations
of input vector to output vector conditioned on a vector of parameters and
equipped with supervised learning procedure. Basic unit is an artificial neuron.

4.1 Neuron

Figure 4.1: Neuron - basic unit of feedforward multilayer perceptron.

Basic unit of feedforward multilayer perceptron is a neuron 4.1. Activation
is computed from any subset of input vector as follows,

aj =
N∑
i=1

wjixi + wj0, (4.1)

where wji are adjustable parameters and wj0 is bias. Then ’squashing’
function is computed taking activation as parameter producing an output o,

21

4. Neural Network

o = f(a) = σ(a). (4.2)

4.2 Multiple Layers

Figure 4.2: Three layered neural network. First input layer is not composed of
neurons. Arrows symbolize feedforward direction (errors propagate back in exactly
oposite way).

Neurons can be generally connected in any way up to a full graph but
feedforward multilayer perceptron is restricted to layers. Generalization to
multiple layers is straightforward. Layer is a group of neurons which is typ-
ically (in feedforward multilayer perceptron) connected to previous (inputs
to the layer or flow-in) and next layer (they are inputs to next layer) and
the neurons in the same layer are not interconnected(as opposed to recurrent
neural networks). Flow-in inputs are always from some layer below - in other
words network forms acyclic graph.

4.3 Convolutional Layer

Convolutional network is an architecture developed specifically for visual in-
puts. It is also inspired by biology of primate visual cortex. Typically it is
used with pooling layer for image processing but not for example by Google
Deepmind paper [6] for reinforcement learning. From one point of view con-
volutional architecture can be viewed just bunch of perceptrons which are
sharing weights connected to the input in special way 4.3. From figure it can
be seen that each perceptron has local square receptive field. Implementation
in this thesis offers such convolutional layer with rectangular receptive fields
which are not overlapping.

22

4.4. Identity Activation

Figure 4.3: Connections represented by the same color are shared between special
purpose perceptrons called filters. Filter outputs are stacked and called feature maps.

4.4 Identity Activation

The simplest squashing function of all is no squashing function at all - identity
function. When identity function is used then even multilayer network is still
linear approximator.

σ(a) = a. (4.3)

4.5 Linear Rectifier

Another simple function similar to identity is linear rectifier. It has neat
theoretical properties in solutions considering infinite error propagation with
unitary matrices and other beyond the scope of this thesis.

σ(a) = max(0, a). (4.4)

4.6 Sigmoid Activation

Sigmoid function is selected according to assumed probability distribution.
For multiple binary classification problems logistic sigmoid function is used,

σ(a) =
1

1 + e−a
. (4.5)

23

4. Neural Network

4.7 Hyperbolic Tangent Activation

Hyperbolic tangent is similar to to logistic function but with half of the range
negative. I am using special parameterization of Y. Lecun.

σ(a) = 1.7159 tanh(
2x

3
). (4.6)

4.8 Universal Approximator

Approximation properties have been widely studied by for example K. Hornik
et al., [7]. Network with one hidden layer can approximate any continuous
function to arbitrary accuracy given enough hidden units and progressively
decreasing learning rate. This is why neural networks are called universal
approximators. However one hidden layer is not practical because number of
neurons needed can for some problems be exponential in number of inputs.
Those problems are typically intrinsically deep and can be solved by adding
more layers into network with reasonable number of neurons in each layer.

4.9 Credit Assignment

Credit assignment is a basic problem which arises in network of interconnected
simple units such as artificial neural network but also forms basis in neuros-
cience, cognitive psychology, philosophy of mind, etc. The question is how to
penalize or reward single unit’s contribution if required behavior is an emer-
gent property of a whole network where one unit’s contribution is conditioned
on possibly many other units’ contribution.

First approaches were inspired by D. Hebb’s learning rule mentioned in
The organization of behavior [8, 1949] which suggests to strenghten synapses
between neurons which are repeatedly firing together (more specifically one
after another). Hebb’s learning rule formed the basis for development and
formalization resulting in first learning algorithms such as perceptron learning
rule pioneered by F. Rosenblatt [9] or later Hopfield networks [10] among
others. Early networks after Rosenblat’s paper about perceptron [9, 1958] but
prior to late 80’ were directly connecting input to output layer. Perceptron
learning rule is also called delta rule because the synaptic strength change is
proportional to the product of difference between actual output and desired
output and input pattern. Perceptron learning rule is stated as:

∆w = α(d− y)x (4.7)

wt+1 = wt + ∆w (4.8)

24

4.10. Network Training

where wt ∈ R is weight on synapse in time t ∈ N, ∆w is weight change,
α ∈ R is learning rate, d ∈ R is desired output, y ∈ R is actual output and
x ∈ R is input.

Such simple architecture were able to learn useful output patterns from in-
put patterns. However it was shown that learning capability is insufficient for
many interesting problems. Minsky and Papert in their book Perceptrons [11]
showed that it is indeed impossible for input to output network to learn xor
function. Based on this argument they pointed out that multilayer perceptron
is necessary to solve xor problem. The problem was there had not been any
suitable algorithm available which would be capable to learn multilayer net-
work where neurons in hidden layers (those between input and output) could
be conditioned on outputs of other neurons in hidden layer.

Solution to credit assignment problem was proposed by P. J. Werbos in his
thesis [12]. In following years the term backpropagation or simply backprop
was coined.

4.10 Network Training

First two subsection show how to derive right error terms from chosen activ-
ation functions (which are chosen by required distribution properties).

4.10.1 Gaussian Distribution

We assume Gaussian distribution where network output is a mean dependent
on input,

p(t|x,w) = N (t|y(x,w), β−1), (4.9)

where β ∼ 1/σ2 is called precision, for independent identically distributed
input variable maximum likelihood has a form,

p(t|x,w, β−1) =
N∏
n=1

N (tn|xn, w, β), (4.10)

and decomposing it by taking negative logarithm we get,

− ln p(t|x,w) =
β

2

N∑
n=1

(y(xn, w)− tn)2 − N

2
lnβ +

N

2
ln(2π) (4.11)

(4.12)

which means that minimizing finding maximum likelihood is the same as
minimizing mean squared error,

25

4. Neural Network

E(w) =
1

2

N∑
n=1

(y(xn, w)− tn)2, (4.13)

(4.14)

4.10.2 Bernoulli Distribution

If we assume Bernoulli distribution (i.e. logistic function) dependent on the
input,

p(t|x,w) = y(x,w)t(1− y(x,w))1−t (4.15)

then for independent class labels maximum likelihood is,

p(t|x,w) =

K∏
k=1

yk(x,w)tk(1− yk(x,w))1−tk (4.16)

and decomposing it taking negative logarithm we get,

− ln p(t|x,w) = −
N∑
n=1

(tn ln yn + (1− tn) ln(1− yn)) (4.17)

which means that finding maximum likelihood is the same as minimizing
cross-entropy error,

E(w) = −
N∑
n=1

(tn ln yn + (1− tn) ln(1− yn)) (4.18)

4.11 Backpropagation

Backpropagation is learning technique composed of two steps. First step is
error evaluation using derivatives with respect to weights. Second part is
weight update. In online learning mode, which is used, updates are done after
each single feedforward and backpropagation.

4.12 Stochastic Gradient Descent

Gradient descent is very simple way how to evaluate derivatives. It is taking
steps in the direction of negative gradient in order to minimize given error
function and is stated as,

wt+1 = wt − η∇En(wt). (4.19)

26

4.13. Experiments on MNIST

Identity Gradient

∂E

∂wi,j
= 1 (4.20)

ReLU Gradient

∂E

∂wi,j
= x if0 < x (4.21)

∂E

∂wi,j
= 0.01 ∗ x otherwise (4.22)

Logistic Gradient

∂E

∂wi,j
= x(x− 1) (4.23)

Tanh Gradient

∂E

∂wi,j
= 1.14393

2

exp((2x)/3) + exp(−(2x)/3)

2

(4.24)

4.12.1 Weight Stabilization

The magnitude of weights is unbound in context of Hebbian like updates which
can cause trouble because floating point numbers in computer are very finite.
This can be easily corrected by weight normalization called Oja’s rule which
is performed for each neuron separately.

w =
w

||w||2
(4.25)

4.13 Experiments on MNIST

Direct combination of neural networks as approximators for value functions
given pixel data can be tricky and hard to debug. This is why I present separ-
ate experiments for evaluation performance and behavior network of different
neural network architectures which result from combination of described tech-
niques.

27

4. Neural Network

Algorithm 7: Cross Validation Algorithm

input : network ← Network object with arbitrary layers
input : mnist← MNIST object with (digit, label) pairs
input : factor ∈ N← affects train/test batch size
output: fitness← sum of max of correctly classified in each batch

Initialize such that: fitness← 0;

for i← 0 to factor − 1 do
batchtest ← from imnist.countfactor to (i+ 1)mnist.countfactor ;

correctmax ← 0;
errorold ← mnist.count;
errornew ← 0;
correct← 0;
wrong ← 0;
for ever do

foreach (digit, label) not in batchtest do
network.Learn(digit, label);

end
foreach (digit, label) in batchtest do

class← network.Classify(digit, label);
if class equals label then

correct← correct+ 1;
else

wrong ← wrong + 1;
end

end
correctmax ← max(correctmax, correct);
errornew ← errorold + 0.1 · (wrong − errorold);
if errorold < errornew + 0.1 then

break;
end
errorold ← errornew;

end
fitness← fitness+ correctmax;
network.Reset();

end

28

4.13. Experiments on MNIST

4.13.1 MNIST dataset

MNIST dataset is composed of handwritten digits with labels which can be
used as a supervised learning task. It is suitable in context of approximations
with pixel input because digits are represented as pixels with resolution 28x28
resulting in 784 dimensional input vectors which is more than enough for
testing purposes.

4.13.2 Experiments Design

Whole dataset has 60000 training pairs and 10000 testing pairs. But for
experimental purposes with respect to computation time considerations only
a subset of a whole dataset is used. Experiments have two parts first is
evolution of hyperparameters which provide insights into behavior of different
architectures and then evolved parameters are used to find best performance.

Metalearning of Hyperparameters

Evolution is computation time consuming and only 500 pairs are used to
evaluate fitness function. Fitness function is evaluated using corss validation
algorithm 7. Cross validation is parameterized with factor = 2.

Perceptron with four different activation functions which are identity, linear
rectifier, hyperbolic tangent and logistic. The only hyperparameter is
learning rate α.

Two Layer Perceptron with four different activation functions which are
identity, linear rectifier, hyperbolic tangent and logistic. Both layers use
same activation function. Hyperparameters include separate learning
rates for each layer α1 and α2 both bound into interval (0.0001, 0.1) and
also ratio parameter bound into interval (0.01, 0.5) which sets the size
of second layer to ratio · first layer size.

ConvNet is a combination of convolutional layer followed by perceptron
layer. Four different described activation functions are used which are
identity, linear rectifier, hyperbolic tangent and logistic. Hyperparamet-
ers include separate learning rates for each layer α1 and α2 both bound
into interval (0.0001, 0.1) and also filters parameter bound into interval
(4, 96) which sets the number of filters used in convolutional layer.

29

4. Neural Network

Perceptron, Identity

Figure 4.4: Perceptron with identity activation hyperparameter dependencies on
MNIST.

Perceptron, ReLU

Figure 4.5: Perceptron with ReLU activation hyperparameter dependencies on
MNIST.

Perceptron, Tanh

Figure 4.6: Perceptron with tanh activation hyperparameter dependencies on
MNIST.

Perceptron, Logistic

Figure 4.7: Perceptron with logistic activation hyperparameter dependencies on
MNIST.

30

4.13. Experiments on MNIST

Two Perceptron Layers, Identity

Figure 4.8: Two layered perceptron with identity activation hyperparameter de-
pendencies.

Two Perceptron Layers, ReLU

Figure 4.9: Two layered perceptron with ReLU activation hyperparameter depend-
encies.

31

4. Neural Network

Two Perceptron Layers, Tanh

Figure 4.10: Perceptron with tanh activation hyperparameter dependencies on
MNIST.

Two Perceptron Layers, Logistic

Figure 4.11: Two layered perceptron with logistic activation hyperparameter de-
pendencies on MNIST.

32

4.13. Experiments on MNIST

Convolution and Perceptron Layer, Identity

Figure 4.12: ConvNet with identity activation hyperparameter dependencies on
MNIST.

Convolution and Perceptron Layer, ReLU

Figure 4.13: ConvNet with ReLU activation hyperparameter dependencies on
MNIST.

33

4. Neural Network

Convolution and Perceptron Layer, Tanh

Figure 4.14: ConvNet with tanh activation hyperparameter dependencies on
MNIST.

Convolution and Perceptron Layer, Logistic

Figure 4.15: ConvNet with logistic activation hyperparameter dependencies on
MNIST.

34

Chapter 5

Implementation

Solving non-trivial reinforcement learning problems like Pong or even more
complex games requires decomposition to multiple simple parts (which are
nevertheless a single tightly interconnected system). Learning from raw pixel
data inherently evokes the curse of dimensionality problem which is not solv-
able by straightforward methods for any size of practical interest. Or artificial
noise on pixel level makes problem even more non-stationary and state space
so big it is impossible to solve without function approximation techniques.
Of course those difficulties could be prevented by incorporation of prior do-
main knowledge but another requirement is that learning algorithm should be
able to perform well in multiple different games with minimum (automatized)
finetuning of minimum number of hyperparameters.

Because of complexity (considering all of the requirements mentioned)
which leads to considerable amount of programming (which is error prone)
the reasonable approach is to build and test system incrementally on prob-
lems which fulfill simplified assumptions. Simplified problems and simplified
solutions then form a performance baseline testbed against which advanced
techniques are compared and also serve as unit tests when generic and ob-
ject oriented programming techniques are utilized in order to develop unified
experimental architecture which avoids code copying. Then games with ap-
propriate modifiable assumptions are used to experimentally verify expected
performance of advanced techniques. The whole incremental approach repres-
ents continuous evolution of various techniques with a final best solution at
the end.

5.1 Implementation

First thing to be chosen is a tool chain and/or framework suitable for im-
plementation of all requirements in assignment. Requirements include: 1)
ability to create or run multiple scalable and modifiable games in special ex-

35

5. Implementation

perimental conditions, 2) (high performance) mathematical computations, 3)
various visual and statistical graphs and plots.

5.1.0.1 Available Technologies

To this date there are many opensource or commercial solutions targeting
each requirement available worldwide. Machine learning communities prefer
combinations of scripting (Python, Lua...), high performance (C++...) and
special purpose (Haskell-like, Wolfram...) programming languages. Among
available machine learning frameworks are for example:

OpenAI non-profit artificial intelligence research company which released
very recently (too late to be used) OpenAI Gym Beta standardized
reinforcement learning testing environment.

TensorFlow open source software library for numerical computation using
data flow graphs), Torch (a scientific computing framework with wide
support for machine learning algorithms.

Torch a scientific computing framework with wide support for machine learn-
ing algorithms.

Caffe deep learning framework developed by Yangqing Jia while in the PhD
program at University of California at Berkeley.

Theano a Python library that allows to efficiently define, optimize, and eval-
uate mathematical expressions involving multi-dimensional arrays.

cuDNN list of primitives and standard routines useful for neural network
implementation accelerated by NVIDIA GPUs.

Although using some of those very powerful frameworks would allow me
to solve more complex problems faster it would also hide away too much
detail. This is why I am using only C++ with standard libraries for all
computation and Python with numerical and plotting library (Numpy and
Matplotlib respectively) for visual presentation of results.

5.1.1 Required Technologies

Specifically I am using latest up to date C++11/14/17 standard compiler
Visual-C++ provided with community edition of Visual Studio 2015 - which
is needed to successfully load, compile and run project provided with this
thesis.

C++11/14/17 standard is chosen for its much improved support of generic
template metaprogramming which enables to achieve more while writing less
without any runtime performance hit. Support of functional programming

36

5.2. Architecture

especially lambda functions with accessible local scope (which proved very
useful for implementation of fitness functions used in evolution). Whole new
random library adopted (with a few other libraries) from Boost replacing
an old C Rand with multiple powerful random number generators (such as
Mersenne twister) and parameterizable distributions (such as normal, uniform,
Cauchy, discrete to name a few used in this thesis) and many other features
which increase productivity (tuples, initializer-lists...).

5.2 Architecture

During implementation of incremental approach many specific architectural
requirements naturally arise. The core of incremental approach are experi-
ments targeted on different aspects where all appropriate agents have to be
tested in strictly equal both conditions and methodology. Different aspects
can range from common basic principles like evaluation of states to some ran-
dom particular aspects of a tiny subset of sophisticated methods. And not
only single modules but all compatible combinations of modules have to be
tested.

Naive approach such as copies of the same experiment manually adjusted
for particular methods is infeasible. It suffers from unnecessary potentially
exponential code repetition which is error prone and makes it hard to keep
exactly the same conditions with different parameterizations. However there is
one advantage of naive approach which is speed of single-purposed experiment
which can be incorporated into incremental approach. Often it is easier to do
trivial implementation for at most a few cases before abstracting to general
case. Following subsections describe implementation and architectural details
realized during multiple incremental steps which were done with respect to
all given considerations. Each step is based on both theoretical analysis of
required behavior and multiple naive implementations (a little bit of code
jamming).

5.2.1 IWorld and IState

Multiple world introduced in this thesis share common abstract interface in
order to achieve easy reusability by switching worlds used in experiments. All
worlds are derived from IWorld which is inspired by Markov chain because
it makes (forces) them to be ’memoryless’. Memorylessness here means that
state of a world is strictly separated from implementation of world mechanics.
Each state therefore uniquely represents single state in world state space.

However the distinction is made between the memoryless state space used
as representation of true world state and perception state space as perceived
by agent. They are not necessarily equal which also means that perceptions
do not necessarily fulfill Markov ’memoryless’ property. This also leads to
implementation of modified value iteration algorithm called perception value

37

5. Implementation

iteration algorithm 8. This algorithm is useful for insights about how different
perception of the same environment affects convergence of value functions.

Algorithm 8: Perception value iteration algorithm

input: world← object implementing IWorld interface
input: γ ∈ R← discount factor, 0 < γ ≤ 1
input: c ∈ R← constant, 0 < c << 1
input: limit ∈ N← number of iterations before termination

Initialize S and V such that:
S ← world.AllStates();
V (p)← initialize to empty map, ∀p ∈ P , V (p) = 0;

repeat
∆← 0;
limit← limit− 1;
foreach s ∈ S do

p← world.Observation(s);
v ← V (p) A← world.Actions(s);
V (p, a)← initialize to empty list, ∀a ∈ A, V (p, a) = 0;
forall a ∈ A do

sa ← s;
// sa is altered from s to sa by transition

r ← world.Transition(sa, a);
pa ← world.Observation(sa);
V (p, a)← r + γV (pa);

end
V (p)← maxaV (p, a);
∆← max(∆, |v − V (p)|);

end

until ∆ < c ∧ 0 < limit;

Output a deterministic policy π, such that:
π(p) = argmaxa

∑
p′,r Pr(p

′, r|p, a)[r + γV (p′)]

States in more complicated worlds usually contain so many variables that
it is not convenient to use all of them. For example pong world state contains
pong and ball positions but also discrete force vectors moving the ball and
discrete time which parameterizes discrete ball movement function.

Agent generates perception from state using interface method ’Observa-
tion’. Agent also generates a set of possible actions for each state by using
interface method ’Actions’. Selected action together with a state are used
in interface method ’Transition’ which changes given state to next state and
returns immediate reward.

Clear separation of a state and mechanics has multiple advantages, e.g. it

38

5.3. Agents and Worlds

allows to directly initialize world to any state or it allows to save and directly
reuse state for the same or different agent by just taking a copy of a state. It
is also possible to generate all possible states for any world using algorithm 9.
Clear separation of world state from agent’s perception allows to simulate
state space with different properties such as partial observability which lead
to violation of Markov decision process (because state is not identifiable which
is one of the assumptions).

Algorithm 9: Breadth first search state space generating algorithm

input : world - object implementing IWorld interface
output: S ← set of all generated (reachable) states

Initialize S, queue such that:
S ← empty set;
queue← push world.DefaultState();

while queue not empty do
s← queue front;
foreach a ∈ world.Actions(s) do

snext ← s;
// s is altered to snext by transition

world.Transition(snext, a);
if snext 6∈ S∧ not world.Terminal(snext) then

Add s to S;
Push snext to queue;

end

end
Pop s from queue

end

5.3 Agents and Worlds

This chapter provides a detailed description of all worlds and all experiments

5.3.1 List of Agents

RU is an agent with random uniform policy. It serves as a baseline for other
agents.

GFVMC is an agent with greedy policy which uses first visit Monte Carlo
approximation of state action value function. It has only discount para-
meter gamma.

39

5. Implementation

GFEVMC is an agent with greedy policy which uses every visit Monte Carlo
approximation of state action value function. It has only discount para-
meter gamma.

EGFVMC is an agent with epsilon greedy policy which uses first visit Monte
Carlo approximation of state action value function. It has discount
parameter gamma and and policy parameter epsilon.

EGFEVMC is an agent with epsilon greedy policy which uses every visit
Monte Carlo approximation of state action value function. It has dis-
count parameter gamma and and policy parameter epsilon.

OSGFVMC is an agent with greedy policy which uses first visit Monte Carlo
approximation of state action value function. If there are any unexplored
states they are visited with probability 1. It has discount parameter
gamma.

OSGFEVMC is an agent with greedy policy which uses every visit Monte
Carlo approximation of state action value function. If there are any
unexplored states they are visited with probability 1. It has discount
parameter gamma.

OSEGFVMC is an agent with epsilon greedy policy which uses first visit
Monte Carlo approximation of state action value function. If there are
any unexplored states they are visited with probability 1. It has discount
parameter gamma and policy parameter epsilon.

OSEGFEVMC is an agent with epsilon greedy policy which uses every visit
Monte Carlo approximation of state action value function. If there are
any unexplored states they are visited with probability 1. It has discount
parameter gamma and policy parameter epsilon.

EGDQN is an agent with policy approximated by neural network which uses
Q-learning approximation of state action value function. It is used only
with pixel input and stacks pixel perceptions up to a certain number
called Markovorder. It takes neural network as parameter and also
discount parameter gamma, policy parameter epsilon andMarkovorder.
This agent is inspired by Google Deepmind paper [6].

5.3.2 K-Bandit World

K-Bandit world is inspired by an actual slot machine originally called a one-
armed bandit for a special case with one lever. K-Bandit is generalization to
a slot machine with K levers. Selecting (pulling) a lever immediately provides
agent a reward. Agent does not know values associated with levers in advance
and has to learn them in order to maximize total reward. It represents a simple

40

5.3. Agents and Worlds

control problem which reflects core ideas of reinforcement learning. Those
ideas are learning action selection model based on observation (as opposed to
training signal) which necessarily introduces exploration versus exploitation
dilemma.

Agents Performance in KBandit

Figure 5.1: As sorted at last iteration: Lowest line at bottom is RU agent
then GFVMC and EGFVMC agents, then OSGFVM, OSEGFVMC, GEVMC and
EGEVMC with very similar performance.

5.3.2.1 Description

In this particular K-Bandit implementation reward R given after selecting dis-
crete action a ∈ A is a random variable Ra distributed according to Gaussian
distribution with uniformly distributed mean µ and variance of one σ = 1:

µ = U(min,max) =

{
1

max−min for µ ∈ [min,max]

0 otherwise
, (5.1)

N (µ, σ2) =
1

σ
√

2π
exp(−(x− µ)2

2σ2
), (5.2)

Ra = N (µ, 1) =
exp(−(x− µ)2)√

2π
(5.3)

5.3.2.2 Action Value Estimation

Each of discrete actions is associated with single lever and therefore with single
reward. There is always the best action a ∈ A with greatest mean reward.
Optimal strategy is to select only the best action all the time. But there are
two complications. Firstly, it is not known to the agent which action is the best

41

5. Implementation

apriori which means agent has to try all of them. Secondly reward signal is
stochastic forcing the agent to try each action many times in order to discover
best one. The definition of value, which is based on those two properties, is
then expected reward given action, q∗(a), which has to be estimated at each
time step t as Qt(a) from agent’s experience.

Algorithm 10: Bandit ε-greedy action selection algorithm

Initialize Q, N such that:
∀a ∈ A, Q(a) = 0, N(a) = 0

repeat

A←

{
argmaxaQ(a) with prob. 1− ε (breaking ties randomly)

a random action with prob. ε

(5.4)

R← bandit(A);
N(A)← N(A) + 1;

Q(A)← Q(A) + [R−Q(A)]
N(A) ;

until terminated ;

One way to estimate Qt(a) from agent’s experience is to compute average
such as in algorithm 10. There is one average estimate for each discrete action.
For example unbiased sample mean estimation methods like arithmetic aver-
age is trivially Fisher efficient in K-Bandit world where reward is distributed
according to multivariate N (µ,Σ).

5.3.3 Grid World

GridWorld is supposed to be easily scalable problem of higher difficulty with
more properties than KBandit. KBandit is the simplest because it has only
single state. GridWorld introduces multiple states and identifiable represent-
ation of each state becomes crucial for value function approximation. Grid-
World can be easily scaled if necessary and is able to provide state space of a
size in between KBandit and BreakOut which is useful for iterative develop-
ment.

Definition

GridWorld is implemented as a simple two dimensional grid of variable width
and height. Default testing scenario is a GridWorld of size 5x5 with two
teleporting states located at (0, 1) and (0, 3) using zero indexing (see black
squares in figure 5.4). First (0, 1) teleporting state provides agent with reward
of 10 and second teleporting state provides agent with reward of 5.

42

5.4. Breakout World

5.3.3.1 Experiments and Evaluation

First value iteration was used to get insight about learning 5.4. Then all
agents excluding EGDQN agent were learned in first by evolution and evolved
parameters were used for evaluation by epizodic learning algorithm 2 until full
convergence 5.2.

Various performance is achieved by various agents. First visit Monte Carlo
agents seem to converge much more slowly.

Agents Performance in Default Init State
GridWorld<GridCoords>

Figure 5.2: As sorted at last iteration: Lowest line at bottom is RU agent
then GFVMC and EGFVMC agents. Then OSGFVM, OSEGFVMC, GEVMC and
EGEVMC agents with very similar performance.

5.4 Breakout World

BreakOut world is a variation of Pong game simulator. Multiple variations
exist each with different characteristics. First some standard implementations
are described. Some of those characteristics are picked and finally implement-
ation of BreakOut and its relation to theory is described in detail.

5.4.1 Original Pong

In original Pong version there are usually two players playing against each
other. There are two paddles (one for each player) situated by the sides.
Paddles are controlled by players and have three actions available: move up,
move down, stay. There is also a ball moved around at constant or variable
speed bouncing off top and bottom walls or paddles. Players score points

43

5. Implementation

GridWorld<GridCoords> Value Iteration

Figure 5.3: State value iteration 4 with parameters γ = 0.9, ε = 0.0001, limit = 50
evaluated on GridWorld.

GridWorld State Values

Figure 5.4: GridWorld state values generated by SVI 4 algorithm with parameters
γ = 0.7, ε = 0.0001, limit = 50 evaluated on GridWorld. Left: First iteration. Right:
Last iteration. Greedy policy using first iteration is already optimal.

by when other player does not bounce incoming ball and lets it pass behind
paddle. Game usually ends after some score is reached or until terminated.

5.4.2 Original BreakOut

Original BreakOut is usually single player version of Pong. Interesting game
mechanics is usually added by concept of bricks. Bricks are small obstacles
somehow scattered in space and can be broken for points. Some advanced

44

5.4. Breakout World

versions also include bricks with special characteristics like indestructibility
or bonuses which occasionally appear when brick is destroyed. Game usually
ends (or progresses to next level) when all bricks are destroyed.

5.4.3 BreakOut Implementation

BreakOut State Space

Figure 5.5

BreakOut implemented in this thesis is a very simple version. After some
considerations and initial experiments only core concepts are implemented.
There is only one paddle (single player) and a ball. This is actually quite
sufficient because learning from pixels is non-trivial even when very little is
happening on the screen.

State Space Discretization

Ultimately everything is discrete in digital computer. But conceptually we
usually think about game space as continuous computed with floating digits
numbers which is then discretized by a grid to create visual pixel represent-
ation. However this BreakOut implementation introduces a discretized game
space.

It has several advantages over continuous representation. Especially when
the whole game window is very small and when ball is defined by single pixel
then continuous representation might give different results by various rounding
of float values undermining Markov property. Ball movement when bouncing
around may then appear almost as random fluctuation.

Ball movement is discretized by discrete force vectors obeying discrete
force range 5.6. Such representation of ball movement is well defined even for
very small instances of the BreakOut world. The same figure also shows all
possible shortest paths from one position to another - with force range vector

45

5. Implementation

movement there is only one path. In continuous representation ball will likely
select those paths according to rounding errors.

BreakOut Ball Movement Mechanics

Figure 5.6: Left: Ball movements defined by force vector with force range parameter
set to 3. Middle: Ball movement does not have Markov property, next state depends
on previous. Right: All different shortest paths to given position.

Terminal States

Since there are neither bricks or opponent the obvious way of termination is
time limit. Actually two kinds of termination are implemented. First is a
termination after some time limit (which ensures process finiteness) combined
with termination when ball is lost. One time tick corresponds to one state
transition. Second is a termination on both successful paddle bounce and
when ball is lost. It also introduces time limit but it is always ruled out by
high value.

Reward Signal

Reward or punishment signal has to be connected to some desirable or un-
desirable states. With paddle and ball there are few events happening: bounce
from paddle, bounce from wall, loosing the ball. Two kinds of reward signal
are implemented and switchable by parameters. First is only positive reward
at bounce from paddle event. Second adds also negative reward when ball is
lost.

Perception Types

Three types of perception are provided. Each perception type modifies set of
assumptions which are valid from agents perspective. They are:

PaddleBallAndForce perception which is actually enough to define state
uniquely and has Markov property. This is the most easily learned
representation which is feasible even for tabular estimation methods (all

46

5.4. Breakout World

agents up without RU and EGDQN). It should serve as a baseline for
other perception types.

PaddleAndBall perception is missing ball force vector. Markov property is
lost. This is still a nice representation and should represent intermediate
level of complexity.

Pixels perception is a final type of perception. The point of previous percep-
tion types is to show how insanely much harder it is to learn from pixels
even for a very simplified problem. Mastering this type of perception is
main goal of this thesis.

5.4.4 BreakOut Experiments

5.4.4.1 Experiment Design Exluding EGDQN Agent

Experiments survey the ability of agents to learn the same instance of Break-
Out with different perception types. Basic BreakOut parameters are: size
is 8x8, paddle is 2 pixels large, force range is 3, termination on bounce and
only positive reward. First the insights into expected learning difficulty are
provided by perception value iteration algorithm 8 which is run for all percep-
tion types.

There are also two different state initialization regimes - random state and
default state. Default state initializes to the middle of BreakOut screen and
sets all state values to boundary values provided during world initialization.
Epizode initialized by default state is always the same and differs only through
agent actions and checks if agent is able to catch the ball which is always going
the same way. Random state on the other hand randomizes ball position
somewhere in the half of the screen opposite to paddle and also randomizes
direction of initial ball force vector. Epizode initialized by random state is
ability to catch the ball in general which can be thrown in many ways (even
to oposite direction and then bounce off the wall multiple times).

All agents except EGDQN agent are then evaluated in two fold process.
First evolution 1 of each agent’s set of hyperparameters is used to explore
hyperparameter space. Then the parameters of fittest individual are used for
evaluation by episodic learning algorithm 2.

5.4.4.2 Experiment Design for EGDQN Agent

EGDQN agent experiments are designed and performed separately. Evolution
is omitted because it would take too much time to evaluate peoperly fitness
properly (to full convergence). Even evaluations of a single individual are
not performed to full convergence with exception of small BreakOut with
termination on paddle bounce. It would probably take many hours or days of
computation time to converge on bigger BreakOut without termination.

There are three different versions of BreakOut used in experiment:

47

5. Implementation

Simple this is first working simplified enough parameterization found. It is
the same as for other agents in order to do direct comparison. BreakOut
parameters are: size is 8x8, paddle is 2 pixels large, force range is 3,
termination on bounce and only positive reward.

Big this is simply a little bit bigger BreakOut with size 12x12. To make
things more interesting paddle is still only 2 pixels wide. Force range is
3, termination on bounce and only positive reward.

Hard this version is called hard because termination is only on miss (or time
limit). Other parameters are the same as small: size is 8x8, paddle is 2
pixels large, force range is 3 and only positive reward.

For three different pong version there are three EGDQN agents with dif-
ferent neural networks. All three types of neural networks from experiments
on MNIST dataset are used because their performance was comparable. Para-
meterization is also inspired by MNIST results.

Perceptron with hyperbolic tangent activation and learning rate α = 0.01.

Two Layer Perceptron with 32 hidden neurons in first layer. Learning
rates are set to α1 = 0.005 and alpha2 = 0.01 for first and second layer
respectively. Hyperbolic tangent activation is used in both layers.

ConvNet with receptive field 4x4 and 16 filters. Learning rates are set to
α1 = 0.005 for convolutional layer and alpha2 = 0.01 for perceptron
layer.

5.4.5 Evaluation of Results

All results of evolution are because there is too much of them and only some
of them are interesting. But for the sake of completeness they are included in
appendix B.

5.4.5.1 Notes on Evolution

Now a few interesting observation from graphs from appendix B. First it needs
to be mentioned that gamma parameters have no effect in KBandit world
because it has effectively only one single state. Gamma parameters seem to
have little to no effect overall parameterizations.

Looking on epsilon parameters of agents without one shot learning there is
a triangluar shape of increasing variance as epsilon decreases. This is because
of unlucky agents who explored bad actions first stick with them because of
small epsilon value. However lucky agents get stuck with actually good states
giving them advantage against more exploratory agents. This pattern is also

48

5.4. Breakout World

true for GridWorld with slight bends and twists under different parameteriz-
ations.

Slightly more epsilon curves can be observed for BreakOut world combined
with paddle ball and force perception. Variance is increased with random
initialization. For paddle and ball perception it is similar but with even more
variance. With pixel perception epsilon parameters look randomly scattered.

5.4.5.2 All Agents Performance

All results are provided on figures below.
First perception type when ball and paddle positions and force vector are

provided is easy to learn as expected. Value iteration algorithm shows fast
convergence which indicates that task should be easy and it is proved by all
agents who learn the task easily. Only when random initialization is used
there is a problem with one shot agents probably because state space is too
big and they get stuck in exploration.

Second perception type when only ball and paddle positions are provided
is problematic as indicated by value iteration. However results are similar
to first perception results and all agents with exception to one shot agents
manage to learn it.

Third perception type is pixels where everything including value iteration
and all agents fail miserably as expected. So even when it is possible to hold
all pixels in memory learning itself is infeasible without preprocessing.

5.4.5.3 EGDQN Agent Performance

In simple BreakOut all agents seem to converge to optimal solution. The
most prominent is two layered network which achieves around 90 out of 100
bounces.

49

5. Implementation

Breakout<PaddleBallAndForce> Value Iteration

Figure 5.7: State value iteration 8 with parameters γ = 0.9, ε = 0.0001, limit = 50
evaluated on 8x8 Breakout.

Agents Performance in Default State Init
BreakOut<PaddleBallAndForce>

Figure 5.8: As ordered around iteration 10: At bottom there is RU agent. At
bottom there are (without order) OSEGEVMC, OSEGFVMC, OSGFVMC and OS-
GEVMC agents. At top there are (without order) EGEVMC, EGFVMC, GFVMC
and GEVMC.

50

5.4. Breakout World

Agents Performance in Random State Init
BreakOut<PaddleBallAndForce>

Figure 5.9: As ordered at last iteration: At bottom there are (without order) RU,
OSEGEVMC, OSEGFVMC, OSGFVMC and OSGEVMC agents. At top there are
(without order) EGEVMC, EGFVMC, GFVMC and GEVMC.

51

5. Implementation

Breakout<PaddleAndBall> Value Iteration

Figure 5.10: State value iteration 8 with parameters γ = 0.9, ε = 0.0001, limit = 50
evaluated on 8x8 Breakout.

Agents Performance in Default State Init
BreakOut<PaddleAndBall>

Figure 5.11: As ordered around iteration 10: Bottom line is RU agent. Four in the
middle are OSEGFVMC, OSGFVMC (lower two) and OSEGEVMC, OSGEVMC
(upper two). Top four are from bottom up EGFVMC, GFVMC, EGEVMC and
GEVMC agents.

52

5.4. Breakout World

Agents Performance in Random State Init
BreakOut<PaddleAndBall>

Figure 5.12: As ordered at last iteration: At bottom there are (without order) RU,
OSEGEVMC, OSEGFVMC, OSGFVMC and OSGEVMC agents. At top there are
(without order) EGEVMC, EGFVMC, GFVMC and GEVMC.

53

5. Implementation

Breakout<Pixels> Value Iteration

Figure 5.13: State value iteration 8 with parameters γ = 0.9, ε = 0.0001, limit = 50
evaluated on 8x8 Breakout.

Agents Performance in Default State Init BreakOut<Pixels>

Figure 5.14: All agents totally fail. They are as useless as RU agent.

54

5.4. Breakout World

Agents Performance in Random State Init BreakOut<Pixels>

Figure 5.15: All agents totally fail. They are as useless as RU agent.

Perceptron in Small Breakout

Figure 5.16: The most successful EGDQN agent in simple BreakOut which achieves
around 90 out of 100 possible bounces.

55

5. Implementation

Two Layered Perceptron in Small BreakOut

Figure 5.17: Seems to converge properly. Needs more training time.

ConvNet in Small BreakOut

Figure 5.18: Seems to converge properly. Needs more training time.

56

5.4. Breakout World

Perceptron in Big BreakOut

Figure 5.19: It looks like it is converging but this could be just result of some
deverged state.

Two Layered Perceptron in Big BreakOut

Figure 5.20: It seems to diverge immediately.

57

5. Implementation

ConvNet in Big BraekOut

Figure 5.21: Seems to diverge.

Perceptron in Hard BreakOut

Figure 5.22: It seems to be stuck in oscilations.

58

5.4. Breakout World

Two Layered Perceptron in Hard BreakOut

Figure 5.23: Seems to be stuck in oscilations.

ConvNet in Hard BreakOut

Figure 5.24: Seems to be stuck in oscilations.

59

Conclusion

Achieved Goals

Main Goal

The final goal of this thesis is to implement a learning algorithm with ability
to learn how to play a simple game given only the visual input represented
by pixels and number of available actions. There is no other prior or runtime
information about game or game state respectively. Deep Q-learning network
was implemented from ground up using only C++ programming language
with standard libraries. DQN is able to, one can almost say, master simplified
variation of Pong game. Although Pong game is simplified it is still non-trivial
problem both theoretically and practically. Similar success with bigger DQN
on more complicated Pong variation and other Atari games was achieved by
Google Deepmind in 2013 was considered breakthrough in the field.

Incremental Approach

Deep Q-learning network is a combination of reinforcement learning which
defines a target state action value function and function approximation which
is used to approximate the target function based on high dimensional visual
perception. Function approximation performance of various neural networks
and their ability to represent visual state space with different parameterization
explored by evolutionary programming is tested separately on MNIST dataset.
Similarly state action value estimation is tested not only in Pong (with various
state representation other than pixels) but also in two other games (KBandit
and GridWorld) providing incrementally harder task. Sensitivity of value
iteration algorithm for all worlds to various state representations provides
insight on task complexity.

61

Conclusion

Developed Framework

Architecture

Final learning algorithm is actually implemented as a part of whole framework
which models games as a worlds and learning algorithms as agents acting in
those worlds. It has carefully designed theory based interfaces and leverages
multiple programming paradigms such as object-oriented, functional program-
ming and generic template metaprogramming. IWorld and IState interfaces
enable to easily simulate worlds as finite Markov decision process. IState is
perceived by IAgent as IPerception which could seamlessly change situation
to finite partially observable Markov decision process.

Tensors and Neural Networks

Another part of a framework deals with necessary mathematical routines and
neural networks. Complicated multidimensional operations such as inner and
outer products, broadcasts, normalizations and other are implemented by
tensors. Perceptron and convolutional layers implement ILayer interface and
can be combined arbitrarily in resulting network. Parameterization such as
learning rate or neuron types with different activation function is also done
layer wise.

Metalearning by Evolution

Last part of the framework deals with metalearning of hyperparameters by im-
proved fast evolutionary programming. Fitness function is supplied as lambda
function with local scope capture making it easy to use in any situation. All
IAgents can be evolved and resulting parameterization easily used.

Possible improvements

There is vast amount of improvements of various difficulty which can be ap-
plied on top of this thesis. The most obvious is to use the same learning al-
gorithm as Google Deepmind [6] which is minibatch RMSProp learning. Use of
minibatch opens possibility for minibatch normalization and other minibatch
techniques. Other learning algorithms for example higher order approximat-
ors such as LBFGS or Conjugate Gradientss can be also utilized. Or other
type of neural network can be used such as one of the recurrent neural net-
works (LSTM) which are naturally good for sequence learning. Even simple
recurrent nets can be powerful with right techniques. More computation time
should be definitely used. Parallel tensor operations on GPU are able to
speed up whole network multiple times. Deeper hierarchy with pretrained
with autoencoders would be interesting. Ensemble of multiple models also
often increases performance. The list of improvements is almost endless.

62

Bibliography

[1] de Laplace, P.; Truscott, F.; Emory, F. A Philosophical Essay on Prob-
abilities. A Philosophical Essay on Probabilities, Wiley, 1902. Available
from: https://books.google.cz/books?id=WxoPAAAAIAAJ

[2] Wolpert, D. H.; Macready, W. G. No Free Lunch Theorems for Op-
timization. Trans. Evol. Comp, volume 1, no. 1, Apr. 1997: pp. 67–
82, ISSN 1089-778X, doi:10.1109/4235.585893. Available from: http:

//dx.doi.org/10.1109/4235.585893

[3] Yao, X.; Liu, Y.; Lin, G. Evolutionary Programming Made Faster. Trans.
Evol. Comp, volume 3, no. 2, July 1999: pp. 82–102, ISSN 1089-778X,
doi:10.1109/4235.771163. Available from: http://dx.doi.org/10.1109/
4235.771163

[4] Bäck, T. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford Univer-
sity Press, USA, 1996.

[5] Sutton, R. S.; Barto, A. G. Introduction to Reinforcement Learning. Cam-
bridge, MA, USA: MIT Press, first edition, 1998, ISBN 0262193981.

[6] Mnih, V.; Kavukcuoglu, K.; Silver, D.; et al. Playing Atari with Deep
Reinforcement Learning. Technical report arXiv:1312.5602 [cs.LG], Deep-
mind Technologies, Dec 2013.

[7] Hornik, K. Approximation Capabilities of Multilayer Feedforward Net-
works. Neural Netw., volume 4, no. 2, Mar. 1991: pp. 251–257, ISSN
0893-6080, doi:10.1016/0893-6080(91)90009-T. Available from: http:

//dx.doi.org/10.1016/0893-6080(91)90009-T

[8] Hebb, D. O. The Organization of Behavior. Wiley, New York, 1949.

63

https://books.google.cz/books?id=WxoPAAAAIAAJ
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.771163
http://dx.doi.org/10.1109/4235.771163
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T

Bibliography

[9] Rosenblatt, F. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, volume 65,
no. 6, Nov. 1958: pp. 386–408.

[10] Hopfield, J. J. Neurocomputing: Foundations of Research. chapter Neural
Networks and Physical Systems with Emergent Collective Computational
Abilities, Cambridge, MA, USA: MIT Press, 1988, ISBN 0-262-01097-
6, pp. 457–464. Available from: http://dl.acm.org/citation.cfm?id=
65669.104422

[11] Minsky, P., Marvin; Seymour. Perceptrons. Oxford, England: M.I.T.
Press., 1969.

[12] Werbos, P. J. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. Dissertation thesis, Harvard University, 1974.

64

http://dl.acm.org/citation.cfm?id=65669.104422
http://dl.acm.org/citation.cfm?id=65669.104422

Appendix A

Excluded Graphs

65

Appendix B

Excluded Graphs

Metalearning of EGEVMC KBandit

Metalearning of EGFVMC In KBandit

Metalearning of GEVMC In KBandit

67

B. Excluded Graphs

Metalearning of GFVMC In KBandit

Metalearning of OSEGEVMC In KBandit

Metalearning of OSEGFVMC In KBandit

Metalearning of OSGEVMC In KBandit

Metalearning of OSGFVMC In KBandit

68

Metalearning of EGEVMC In Random State Init
GridWorld<GridCoords>

Metalearning of EGFVMC In Random State Init
GridWorld<GridCoords>

Metalearning of GEVMC In Random State Init
GridWorld<GridCoords>

Metalearning of GFVMC In Random State Init
GridWorld<GridCoords>

69

B. Excluded Graphs

Metalearning of OSEGEVMC In Random State Init
GridWorld<GridCoords>

Metalearning of OSEGFVMC In Random State Init
GridWorld<GridCoords>

Metalearning of OSGEVMC In Random State Init
GridWorld<GridCoords>

Metalearning of OSGFVMC In Random State Init
GridWorld<GridCoords>

70

Metalearning of EGEVMC In Default State Init
GridWorld<GridCoords>

Metalearning of EGFVMC In Default State Init
GridWorld<GridCoords>

Metalearning of GEVMC In Default State Init
GridWorld<GridCoords>

Metalearning of GFVMC In Default State Init
GridWorld<GridCoords>

71

B. Excluded Graphs

Metalearning of OSEGEVMC In Default State Init
GridWorld<GridCoords>

Metalearning of OSEGFVMC In Default State Init
GridWorld<GridCoords>

Metalearning of OSGEVMC In Default State Init
GridWorld<GridCoords>

Metalearning of OSGFVMC In Default State Init
GridWorld<GridCoords>

72

Metalearning of EGEVMC in Default State Init
BreakOut<PaddleBallAndForce>

Metalearning of EGFVMC in Default State Init
BreakOut<PaddleBallAndForce>

Metalearning of GEVMC in Default State Init
BreakOut<PaddleBallAndForce>

Metalearning of GFVMC in Default State Init
BreakOut<PaddleBallAndForce>

73

B. Excluded Graphs

Metalearning of OSEGEVMC in Default State Init
BreakOut<PaddleBallAndForce>

Metalearning of OSEGFVMC in Default State Init
BreakOut<PaddleBallAndForce>

Metalearning of OSGEVMC in Default State Init
BreakOut<PaddleBallAndForce>

Metalearning of OSGFVMC in Default State Init
BreakOut<PaddleBallAndForce>

74

Metalearning of EGEVMC in Random State Init
BreakOut<PaddleBallAndForce>

Metalearning of EGFVMC in Random State Init
BreakOut<PaddleBallAndForce>

Metalearning of GEVMC in Random State Init
BreakOut<PaddleBallAndForce>

Metalearning of GFVMC in Random State Init
BreakOut<PaddleBallAndForce>

75

B. Excluded Graphs

Metalearning of OSEGEVMC in Random State Init
BreakOut<PaddleBallAndForce>

Metalearning of OSEGFVMC in Random State Init
BreakOut<PaddleBallAndForce>

Metalearning of OSGEVMC in Random State Init
BreakOut<PaddleBallAndForce>

Metalearning of OSGFVMC in Random State Init
BreakOut<PaddleBallAndForce>

76

Metalearning of EGEVMC in Default State Init
BreakOut<PaddleAndBall>

Metalearning of EGFVMC in Default State Init
BreakOut<PaddleAndBall>

Metalearning of GEVMC in Default State Init
BreakOut<PaddleAndBall>

Metalearning of GFVMC in Default State Init
BreakOut<PaddleAndBall>

77

B. Excluded Graphs

Metalearning of OSEGEVMC in Default State Init
BreakOut<PaddleAndBall>

Metalearning of OSEGFVMC in Default State Init
BreakOut<PaddleAndBall>

Metalearning of OSGEVMC in Default State Init
BreakOut<PaddleAndBall>

Metalearning of OSGFVMC in Default State Init
BreakOut<PaddleAndBall>

78

Metalearning of EGEVMC in Random State Init
BreakOut<PaddleAndBall>

Metalearning of EGFVMC in Random State Init
BreakOut<PaddleAndBall>

Metalearning of GEVMC in Random State Init
BreakOut<PaddleAndBall>

Metalearning of GFVMC in Random State Init
BreakOut<PaddleAndBall>

79

B. Excluded Graphs

Metalearning of OSEGEVMC in Random State Init
BreakOut<PaddleAndBall>

Metalearning of OSEGFVMC in Random State Init
BreakOut<PaddleAndBall>

Metalearning of OSGEVMC in Random State Init
BreakOut<PaddleAndBall>

Metalearning of OSGFVMC in Random State Init
BreakOut<PaddleAndBall>

80

Metalearning of EGEVMC in Default State Init
BreakOut<Pixels>

Metalearning of EGFVMC in Default State Init
BreakOut<Pixels>

Metalearning of GEVMC in Default State Init BreakOut<Pixels>

81

B. Excluded Graphs

Metalearning of GFVMC in Default State Init BreakOut<Pixels>

Metalearning of OSEGEVMC in Default State Init
BreakOut<Pixels>

Metalearning of OSEGFVMC in Default State Init
BreakOut<Pixels>

Metalearning of OSGEVMC in Default State Init
BreakOut<Pixels>

Metalearning of OSGFVMC in Default State Init
BreakOut<Pixels>

82

Metalearning of EGEVMC in Random State Init
BreakOut<Pixels>

Metalearning of EGFVMC in Random State Init
BreakOut<Pixels>

Metalearning of GEVMC in Random State Init BreakOut<Pixels>

Metalearning of GFVMC in Random State Init BreakOut<Pixels>

83

B. Excluded Graphs

Metalearning of OSEGEVMC in Random State Init
BreakOut<Pixels>

Metalearning of OSEGFVMC in Random State Init
BreakOut<Pixels>

Metalearning of OSGEVMC in Random State Init
BreakOut<Pixels>

Metalearning of OSGFVMC in Random State Init
BreakOut<Pixels>

84

Appendix C

Contents of enclosed CD

Thesis...............................thesis directory with latex sources
Graphics.....................................all graphics for thesis

RL..............................visual studio 2015 project with sources
RL......................source files and directories with experiments

85

	Introduction
	What Is a Game

	Metalearning of Hyperparameters
	Metalearning in General
	Metalearning in Machine Learning
	Methods and Application
	Evolutionary Programming
	Improved Fast Evolutionary Programming

	Reinforcement Learning
	Comparison to Other Forms of Learning
	Curse of Dimensionality
	Finite Markov Decision Process

	Neural Network
	Neuron
	Multiple Layers
	Convolutional Layer
	Identity Activation
	Linear Rectifier
	Sigmoid Activation
	Hyperbolic Tangent Activation
	Universal Approximator
	Credit Assignment
	Network Training
	Backpropagation
	Stochastic Gradient Descent
	Experiments on MNIST

	Implementation
	Implementation
	Architecture
	Agents and Worlds
	Breakout World

	Conclusion
	Achieved Goals
	Developed Framework
	Possible improvements

	Bibliography
	Excluded Graphs
	Excluded Graphs
	Contents of enclosed CD

