
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague January 23, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Suitability analysis of Kubernetes for Seznam.cz

 Student: Bc. Ondřej Šejvl

 Supervisor: Ing. Jan Baier

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2016/17

Instructions

Make yourself familiar with the Kubernetes system. Compare Kubernetes in different environments
(filesystem, network management, …) and create a set of recommendations for Seznam.cz corporate
machines. Design and implement a set of applications to simulate real traffic. Describe how Kubernetes can
help developers to deploy a software in production environment.

The applications should fulfill the following requirements:
• Load configuration files, SSL certificates and static resources.
• Use persistent storage.
• Raise controlled faults, deadlocks, segmentation faults.
• Simulate heavy CPU and RAM load.
• Log their own activity and reliably transfer the logs to the central log storage.

Implement application servers ready for Kubernetes in Python and Go and run a set of benchmarks on them.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Suitability analysis of Kubernetes
for Seznam.cz

Bc. Ondřej Šejvl

Supervisor: Ing. Jan Baier

10th May 2016

Acknowledgements

Most of all I would like to thank to my thesis advisor Ing. Jan Baier for
his expert guidance and invaluable remarks. I would also like to thank to
Ing. Tomáš Kukrál for his counsel during my work and for a lot of open
source material.

To the Seznam.cz company and to my team leader David Bouček in partic-
ular, I thank for providing me with hardware, introducing me to technologies
like Kubernetes and Docker, letting me dedicate a part of my working time
to this thesis and constantly bringing in fresh ideas for improvements.

My thanks belong to Martin Stružský for the proofreading as well.
And of course, this thesis wouldn’t have been possible without the support

of my family, especially my wife.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 10th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Ondřej Šejvl. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Šejvl, Ondřej. Suitability analysis of Kubernetes for Seznam.cz. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Tech-
nology, 2016. Also available from: 〈https://github.com/sejvlond/master-
thesis〉.

https://github.com/sejvlond/master-thesis
https://github.com/sejvlond/master-thesis

Abstrakt

Tato práce analyzuje použitelnost systému Kubernetes v prostřed́ı společnosti
Seznam.cz. V prvńı části je práce zaměřena na teoretické informace a jsou
zde identifikovány možné problémy spojené s přechodem na tuto technologii.
V druhé části se práce zabývá vyřešeńım těchto problémů a zprovozněńım
clusteru s daľśımi podp̊urnými aplikacemi.

Kĺıčová slova Kubernetes, Seznam.cz, Docker, Heka, Kafka, Linux, virtu-
alizace

Abstract

This thesis analyses the suitability of the Kubernetes system in the Sez-
nam.cz’s company environment. The first part of the thesis focuses on the
theory and identifies possible problems connected with a switch to this tech-
nology. The second part of the thesis describes solving those problems and
running the cluster together with other applications.

Keywords Kubernetes, Seznam.cz, Docker, Heka, Kafka, Linux, virtualiz-
ation

ix

Contents

Introduction 1

1 Seznam.cz nowadays 3

2 What is Kubernetes? 5

3 What is Docker? 9
3.1 Docker architecture . 9

4 Kubernetes basic concepts 11
4.1 Pod . 11
4.2 Volume . 11
4.3 Replication controller . 11
4.4 Service . 11

5 Kubernetes architecture 13
5.1 Etcd . 13
5.2 API server . 13
5.3 Kubelet . 13
5.4 Kube-proxy . 13
5.5 Controller manager . 13
5.6 Scheduler . 14
5.7 Node . 14

6 Possible problems with Kubernetes in Seznam.cz 17
6.1 Docker registry . 17
6.2 Secrets distribution . 17
6.3 Logging . 18
6.4 Security . 18
6.5 Monitoring . 18

xi

6.6 Static content of websites . 18

7 Running Kubernetes 21
7.1 Networking in Kubernetes . 21
7.2 Starting cluster . 24

8 Docker registry 27

9 Secrets distribution 31

10 Logging 33
10.1 FluentD . 34
10.2 Logstash . 35
10.3 Heka . 35

11 Security 41

12 Monitoring 45

13 Static webpages content 47

14 Testing application 49
14.1 Designing Tarsier . 50
14.2 Tarsiers synchronization . 51
14.3 Tarsier plugins and their commands 52

15 Testing the cluster 55

16 Benchmarking Python and Go application servers 59

17 Benefits for Seznam.cz 63

Conclusion 65

Bibliography 67

A Acronyms 73

B Contents of enclosed CD 75

xii

List of Figures

2.1 Virtualization based on hypervisor 6
2.2 Virtualization based on containers 7

3.1 Docker architecture . 10

5.1 Service overview in Kubernetes . 14
5.2 Kubernetes services interconnection 15
5.3 Kubernetes nodes . 15

7.1 The path of a packet in flannel network 23
7.2 Screenshot of kubectl get nodes output 26

8.1 Seznam.cz Docker registry architecture 29

10.1 Fluentd . 34
10.2 Kafkafeeder architecture . 40

14.1 Wave propagation in Tarsier . 52

16.1 Benchmarking Python and Go – Requests per second 60
16.2 Benchmarking Python and Go – Average response latency 61
16.3 Benchmarking Python and Go – Transfer per second 61

xiii

List of Listings

11.1 Dockerfile snippet . 42
14.1 Tarsier plugin’s interfaces . 50
14.2 The heavy_load/spin_cpu command body structure 51
14.3 The persistent_storage/write command body structure 51
15.1 Snippet of replication controller configuration 57

xv

Introduction

Given the performance of today’s servers, it is almost impossible to use their
full potential with a single application. That’s where the possibility to install
more than one application on each server comes to mind. However, this tech-
nique poses certain risks. What about when one application needs specific
libraries or a whole environment in a certain version and another one needs
something different? That’s exactly when virtualization fits. Using virtualiza-
tion we can run many applications on a single machine without them knowing
about each other.

Virtualization does not solve all problems and issues. One of the main
problems with virtualization servers is a very difficult scaling as there is no
easy way to automatically react on application’s needs. Simple example: Let’s
have a website and create a virtual environment for it which we deploy on
2 servers (because of backup in case of one machine’s failure). Together with
this application there can be many others running in their virtual spaces.
When traffic rises to unexpected levels, the application can quickly demand
more resources than the virtual machine can provide and as there are more
virtuals on the master, resource allocation cannot be increased. So the whole
virtual have to be moved to different machine which has more resources avail-
able. And here comes the looking for it. Looking for machine with more
resources can be really hard task, because there is also possibility that no
other machine have enough resources for this kind of application. So someone
have to decided which application can be moved on which machines to make
a space for this, actually greedy one. But this situation may occur again few
hours later, when this application will not need as much and other one will
be busy.

Problems like this – and many others – can be solved using Kubernetes [3].
Kubernetes is an open source system for automating deployment, operation,
and scaling of containerized applications. Application and its virtual environ-
ment has to be packed in a container. In case of Kubernetes, the recommended
container technologiy is Docker. Kubernetes automatically starts containers

1

Introduction

on physical machines in as many instances as the maintainer defines. It is
very simple to automatically react on each application’s needs, give them
more resources, move them among machines, scale them up and down and
run auxiliary jobs at night when the flow of many applications is smaller to
use the server house more efficiently.

Kubernetes offers all those possibilities and that’s why I chose to exam-
ine it more closely and start a testing instance of a private cloud based on
Kubernetes at Seznam.cz company.

2

Chapter 1
Seznam.cz nowadays

Seznam.cz is a big company with more than a thousand employees. More than
one quarter of them are developers. Seznam.cz is divided into compartments
and developers in each compartment are grouped to teams led by team leaders.
Each team leader is responsible for applications allocated to his team. There
are a couple of recommendations on workflow (e.g. unified coding style), but
as different teams have different demands and use cases for their applications,
they also have a slightly different requirements on coding, building, testing,
deployment etc.

All over the company we are using Git as a version control system. Git
is installed centrally using GitLab as a management system. GitLab provides
CI – Continuous integration [2]. So each team has a possibility to easily run
automatic builds or push to a repository after a merge request.

Testing and developing application is each team’s responsibility. But when
someone wants to deploy an app to a production environment, there is a strict
process. Each developer has access rights to the core machine with all the
Debian [42] repositories. Developers have to upload Debian packages to the
right branch (there are development, unstable, testing and read-only stable
branches for each Debian distribution, divided per compartments), and run
an incremental build of the branch.

We are using a request tracker system. Developers have to write a request
consisting of packages which have to be moved to the stable branch, steps to
install and run them on each server and list of servers affected by this change.
A process to rollback has to be described too.

An administrator from the team which manages the affected servers then
takes the ticket and starts deploying. He can consult the process with the
developer, who then tests the application to check whether the deployment
was successful and then traffic is renewed (if it was stopped before) and the
installation continues on the next server in the list.

This means developers have to turn anything they want to deploy to
Debian packages, which depend on other packages. It is quite a simple but an

3

1. Seznam.cz nowadays

efficient way to manage dependencies, to list software installed on each server
or to see who is responsible for changes and maintainance of the package.

The problem with this process arises when you want to use anything that
does not have a Debian package. Developers than have to create one from
an upstream source code (that is not a problem) and maintain it so that it
doesn’t become obsolete after a while – and that is problem.

The same situation can happen when developer wants to use a package
from pip [56] or an updated version of a package, that wasn’t updated in the
official Debian repository. Adding such packages to the tree leads to a massive
growth of the repository and a number of patched versions of software.

4

Chapter 2
What is Kubernetes?

Kubernetes is an open source platform for automatic deployment, scaling and
operation of application containers in a cluster [3]. The main goal of Kuber-
netes is to manage the ecosystem of components in a custom public or private
cloud. The emphasis is on high availability with scaling as an essential ele-
ment.

Scaling needs to be taken into account during the development of any
kind of a high availability application. The problem is when the application
cannot fully use the performance of the physical server. Because of high
availability, the application has to be ran on more machines, which means
that the performance of the servers is wasted. The virtualization is the answer.
There are many ways of virtualization: from entire operating systems (using
VMware [5] or VirtualBox [7]) to container based virtualization (such as widely
used OpenVZ [6]).

All those technologies allow to run more virtual applications on a single
physical machine. It provides better load balance and server efficiency while
preserving isolated environment for each application spread over multiple ma-
chines.

The problem with this kind of virtualization arises when larger traffic
comes to an application or more performance and resources are requested:
there is no easy way to react accordingly. The migration of a whole container
can also be quite difficult as was written in the previous section.

Another type of virtualization focuses on simplifying virtualization pro-
cedures and allowing prompt reaction on application’s needs. Examples of
such virtualization technique are technologies like Docker [11], LXC [8] and
others. The virtualized environments are packed in small containers where no
hypervisor is needed, which reduces virtualization complexity and increases
speed of deployment, starting, scaling etc.

Kubernetes uses such containers, so applications are separated from the
internals and can be easily moved among machines. Those containers work
only with logical resources that Kubernetes provides them. Containers can

5

2. What is Kubernetes?

be built and deployed automatically and as often as needed, which allows
continuous deployment and easy delivery. Thanks to containers, applications
can be separated to small pieces and used as micro-services. And last but
not least the same containers can be used in test, staging and production
environments. The only thing that is changing is Kubernetes configuration
and environment which allows very easy development and testing.

Kubernetes is not a PaaS (Platform as a Service) solution because it does
not limit the type of applications and does not dictate what application frame-
works, languages or runtime libraries have to be used.

Kubernetes supports Docker and Rocket [9] containers at the moment. We
will examine Docker more closely in the following chapters.

Figure 2.1: Virtualization based on hypervisor [10]

6

Figure 2.2: Virtualization based on containers [10]

7

Chapter 3
What is Docker?

Docker is an open source platform for developing, deploying and running ap-
plications. Docker allows to separate applications from infrastructure using
environment virtualization, which is empowered by virtualization support in
kernel and by tools that help to manage and deploy applications. Containers
are used again, but they are not as independent as OpenVZ containers for ex-
ample. Docker uses containerization support in kernel, so applications share
kernel with the host machine. This makes containers more lightweight, faster
to run and portable. Docker allows more advantages thanks to it is wrapping
basic kernel virtualization

3.1 Docker architecture

Docker daemon runs on the host machine and manages all Docker images and
containers. Docker client communicates with this daemon to create images and
to upload them on Docker registry. The figure 3.1 shows the whole concept of
it.

3.1.1 Docker image

Docker image is a read-only template. It contains a chosen operating system
and a set of installed applications. Images used to run simple binary program
can also start from scratch.

3.1.2 Docker container

Docker container is a structure holding everything what application may need
to run. Each container is based on an image. There can be multiple containers
based on the same image, all of them can be started, stopped, moved or
deleted individually and users can attach to any of them. Containers provide
an isolated and a secure platform for applications.

9

3. What is Docker?

3.1.3 Docker registry

Docker registry is a server-side application holding images. It is a storage,
where clients can push their images so anyone can pull them and run containers
based on them.

Figure 3.1: Docker architecture [12]

10

Chapter 4
Kubernetes basic concepts

4.1 Pod

In Kubernetes all containers are run in so called pods. Pod is a package of
more containers (or just one) which logically belong to each other (for example
application server and its proxy). It is against Docker principle to run more
processes in a single container, but proxy and server have to be on same server
so they can communicate via localhost and don’t overload the network. Pod
is the basic building block so it is provided that containers belonging to it will
be run together on the same machine. Scaling is done with whole pods.

4.2 Volume

In Docker a volume is a directory on a filesystem or in another container.
Kubernetes volumes are more abstract. Kubernetes volume has a defined
service life, which is the same as the service life of the pod which requested it.
Pod may contain none or more volumes and each container in it has to define
where the volume should be mounted.

4.3 Replication controller

Replication controller (RC) specifies the amount of pods to run at the same
time. If there is fewer, it creates new ones, if there is too many, it stops some.
RC keeps running exactly the same instances of pods as the maintainer wants
to.

4.4 Service

Pods in Kubernetes may start and quit as the replication controller settle.
Each pod has its own IP address which can change during time so it is better

11

4. Kubernetes basic concepts

not to rely on it, because pod can be moved to another machine. Which leads
to a problem: what if a pod (and container in it) needs to communicate with
another one? Here comes the Kubernetes service. It is an abstraction layer
which defines a logical set of pods and rules for accessing them. Sometimes
it is called a micro-service as well. As an example I can mention a backend
service which is running in 3 instances. The frontend does not care about
which one of them it will be communicating with.

12

Chapter 5
Kubernetes architecture

5.1 Etcd

Etcd is a distributed, consistent key-value store for shared configuration and
service discovery [14].

5.2 API server

The Kubernetes API server validates and configures data for the API objects
which include pods, services, replication controllers, and others. The API
Server services REST operations and provides the frontend to the cluster
shared state through which all other components interact. [4]

5.3 Kubelet

Another very important part of Kubernetes is Kubelet. Kubelet is an agent
running on every node and it provides starting and stopping containers.

5.4 Kube-proxy

Every node in Kubernetes cluster has its own kube-proxy. This application
watches the Kubernetes master node and in case of adding or deleting a service
it will open or close ports (even randomly chosen) on the local node. Each
connection is then forwarded to the right pod.

5.5 Controller manager

The Kubernetes controller manager is a daemon that embeds the core control
loops shipped with Kubernetes. In robotics and automation applications, a
control loop is a non-terminating loop that regulates the state of the system.

13

5. Kubernetes architecture

Figure 5.1: Service overview in Kubernetes [4]

In Kubernetes, a controller is a control loop that watches the shared state
of the cluster through the API server and makes changes in order to move
the current state towards the desired state. Examples of controllers currently
shipped with Kubernetes are the replication controller, endpoint controller,
namespace controller, and service account controller. [4]

5.6 Scheduler

The Kubernetes scheduler runs as a process alongside other master compon-
ents such as the API server. Its interface to the API server is to watch for
pods with an empty PodSpec.NodeName, and for each pod, it posts a binding
indicating where the pod should be scheduled.

5.7 Node

There are two types of nodes in a cluster: the master node and the worker
nodes, formerly known as minions. On the master node the API server, the
scheduler and the controller manager are running together with etcd and pos-
sibly flannel. Each node runs Kubelet and optionally flannel. Using Docker
for those main Kubernetes parts, the final structure of the nodes is as follows
in the figure 5.3.

14

5.7. Node

Figure 5.2: Kubernetes services interconnection [13]

Figure 5.3: Kubernetes nodes [16]

15

Chapter 6
Possible problems with

Kubernetes in Seznam.cz

This chapter summarizes what we have to focus on in Seznam.cz so we can
build and maintain a Kubernetes cluster.

6.1 Docker registry

We have to build our own Docker registry with a support for authentication so
it is clear who and when pushed a certain Docker image and who is responsible
for it in case of problems. Next we have to run Docker registries for developers
both in testing and production environment. Images have to be mirrored from
one to another registry. Production registry has to be in each data centre and
it has to be a high availability service because if a whole data centre depends
on a single server with Docker registry and the server fails (which it will if a
whole data centre starts pulling images from it at once), it will be impossible
to run new applications.

6.2 Secrets distribution

How to share passwords, certificates and other secrets which are different in
development and test/production environment and which cannot be available
outside of the containers that need them? Moreover, the production secrets
are known only to administrators, so there has to be an easy way how to put
secrets into containers without compiling them in images. Kubernetes has a
technique for it and it calls it Kubernetes secrets. It has to be examined more
closely and run in Seznam.cz conditions and environments.

17

6. Possible problems with Kubernetes in Seznam.cz

6.3 Logging

Logging is a very huge problem. Actually most of our applications are creating
debug logs, which are saved on the file system. In case of switching pods among
servers there has to be a log collection and their transfer to a central storage
and it has to be done so that applications don’t get overloaded.

Beyond debug logs we also create so called business logs which are sensitive
and cannot be lost because there are more calculations over them.

And there are also third party logs such as access logs from Nginx [37]
or Apache [38] and many more. Their collection has to be done as well as
gathering server side statistics (CPU load, etc.). There is a Kafka cluster at
Seznam.cz for this task, which can also run support jobs to forward the logs
to specific databases (Elasticsearch [39], HDFS [40], . . .).

Problems may occur with long running applications that generate large log
files unless there is a logrotate running. Cron or logrotate [43] do not belong
to Docker images, because Docker principle is to run only one application in
each container.

6.4 Security

At the moment administrators are taking care of host machines and virtual
machines running on them and developers only deploy applications in form
of Debian packages. When a security issue is discovered (like Heartbleed [41]
for example) administrator is able to maintain it and fix whatever it needs on
the host machine or in specific virtual machine. When developers will deploy
Docker images with operating system inside, fixing such images in case of
security issue needs to be solved. Definitely we cannot rely that developers
will rebuilt images in a few minutes. In case of automatically built images the
whole environment for it has to be built and we also the authorization have
to be solved sufficiently.

6.5 Monitoring

We need to monitor nodes in cluster and also applications and containers
in Kubernetes. We are testing Prometheus [29] for metrics collection, while
monitoring what is running where is built in Kubernetes itself.

6.6 Static content of websites

When deploying a website, there are always at least 2 versions running at the
moment. The old one, where most of the traffic is going to, and the new one.
The problem comes when user sends a request and the new version responds.
User will receive a HTML code with links to JavaScript and CSS files and

18

6.6. Static content of websites

send a request for these files to the data centre. The load balancer and other
services on the way may point this request to the pod with the old version of
the website so none or wrong files will be downloaded and user will see the
page with errors (or nothing at all).

At the moment we are deploying static content of websites first and it is
installed on all machines. Static content is versioned in its path, so requests
for it are always successful. Than one machine is removed from the pool
(and waits until all currently opened connections are done) and it is replaced
with a new version. This ensures that downloading static content never fails.
However, this procedure will no longer be available in Kubernetes.

These are the problems which I have to find solution for.

19

Chapter 7
Running Kubernetes

I will run Kubernetes on 3 testing machines. First decision I have to make is
which operating system I will use. Since almost all machines in Seznam.cz data
centres are running Debian I will use it as well on my testing cluster and I will
install its newest stable version Jessie. There are Linux distributions made
especially for Kubernetes like Fedora Atomic [44], but as our administrators
have many years of experience with Debian, it will be better to use it instead
of changing architecture to cloud and changing Linux distribution at the same
time.

Another decision that has to be make is about networking.

7.1 Networking in Kubernetes

Kubernetes assumes that pods can communicate with other pods, regardless
of which host they land on. They give every pod its own IP address so I do not
need to explicitly create links between pods. This creates a clean, backwards-
compatible model where pods can be treated much like VMs or physical hosts
from the perspective of port allocation, naming, service discovery, load balan-
cing, application configuration, and migration. [4]

7.1.1 Docker model

Before discussing the Kubernetes approach to networking, it is worthwhile
to review the “normal” way that networking works with Docker. By default,
Docker uses host-private networking. It creates a virtual bridge, called docker0
by default, and allocates a subnet from one of the private address blocks
defined in RFC1918 [45] for that bridge. For each container that Docker
creates, it allocates a virtual Ethernet device (called veth) which is attached
to the bridge. The veth is mapped to appear as eth0 in the container, using
Linux namespaces. The in-container eth0 interface is given an IP address from
the bridge’s address range.

21

7. Running Kubernetes

The result is that Docker containers can talk to other containers only if
they are on the same machine (and thus the same virtual bridge). Containers
on different machines cannot reach each other — in fact they may end up with
the exact same network ranges and IP addresses.

In order for Docker containers to communicate across nodes, they must be
allocated ports on the machine’s own IP address, which are then forwarded
or proxied to the containers. This obviously means that containers must
either coordinate which ports they use very carefully or else be allocated ports
dynamically. [15]

7.1.2 Kubernetes model

Coordinating ports across multiple developers is very difficult to do at scale
and exposes users to cluster-level issues outside of their control. Dynamic port
allocation brings a lot of complications to the system – every application has
to take ports as flags, the API servers have to know how to insert dynamic
port numbers into configuration blocks, services have to know how to find each
other, etc. Rather than deal with this, Kubernetes takes a different approach.

Kubernetes imposes the following fundamental requirements on any net-
working implementation (barring any intentional network segmentation policies):

• all containers can communicate with all other containers without NAT

• all nodes can communicate with all containers (and vice-versa) without
NAT

• the IP that a container sees itself as is the same IP that others see it as

In reality, Kubernetes applies IP addresses at the pod scope – containers
within a pod share their network namespaces – including their IP address.
This means that containers within a pod can all reach each other’s ports on
localhost.

This networking mode is implemented in many different ways. The basic
one and the one which is mentioned in documentation of Kubernetes is flannel.
[15]

7.1.2.1 Flannel

Flannel is a virtual network that gives each host a subnet for use with container
runtimes.

Platforms like Google’s Kubernetes assume that each container (pod) has
a unique, routable IP inside the cluster. The advantage of this model is that
it reduces the complexity of doing port mapping.

Flannel runs an agent, flanneld, on each host and is responsible for alloc-
ating a subnet lease out of a preconfigured address space. Flannel uses etcd to

22

7.1. Networking in Kubernetes

store the network configuration, allocated subnets, and auxiliary data (such
as hosts’ IP addresses). The forwarding of packets is achieved using one of
several strategies that are known as backends. The simplest backend is UDP
and uses a TUN device to encapsulate every IP fragment in a UDP packet,
forming an overlay network. The following diagram 7.1 demonstrates the path
a packet takes as it traverses the overlay network. [1]

Figure 7.1: The path of a packet in flannel network [1]

Flannel is simple to start up but there can be some overhead expected.
It is needed to test how big overhead it will be. Another big disadvantage
of flannel is that it is not multitenant and so there is no way how to define
any rules who can communicate with whom and who can’t. In practice that
means everyone sees everyone. For introducing cloud at Seznam.cz it can be
sufficient but in the future this needs to be solved more properly so there can
be policies defining restricted access to sensitive services.

7.1.2.2 Calico

Next networking option is Calico. Calico provides a highly scalable network-
ing solution for connecting data center workloads (containers, VMs, or bare
metal). It is based on the same scalable IP networking principles as the in-
ternet: providing connectivity using a pure Layer 3 approach. Calico can be
deployed without encapsulation or overlays to provide high performance at
massive scales.

23

7. Running Kubernetes

When using Calico networking in containerized environments, each con-
tainer gets its own IP address and fine grain security policy. A calico-node
service runs on each node which handles all of the necessary IP routing, in-
stallation of policy rules, and distribution of routes across the cluster of nodes.
[17]

Calico has even a section dedicated for Kubernetes in their manual [18].
They state that thanks to that there is no overlay, Calico will be faster than
technologies that use overlay, such as flannel. Calico is using the Bird [19]
system for route distribution around the network.

7.1.2.3 OpenContrail

On the meeting with company tcp cloud [46] technology OpenContrail was dis-
cussed [20]. OpenContrail is a network virtualization platform for the cloud.
It has been designed with scale out in mind [21]. OpenContrail is a repres-
entative of SDN (software defined networking) and it offers to define custom
policies of containers communication thanks to label system in Kubernetes. It
will be worth it to examine whether this technology fits for Seznam.cz needs
and environment.

7.2 Starting cluster

From listed options of network management I decided to start with a simple
one: the flannel. This thesis should create a proof of concept that it is possible
to maintain Kubernetes in Seznam.cz. I want to create a testing application
and an example Kubernetes cluster where I solve all potential problem de-
scribed in the previous chapter and then I give this to our administrators who
may test it further as they want to.

Running flannel containers needs privileged permissions but user defined
pods and their containers should not ever have such permissions. So the best
way how to achieve this behaviour is to start two separate Docker daemons
where one will allow to create privileged containers and the second one won’t.

Starting Docker on Seznam.cz corporate machines brought a couple of
problems that must be solved first. From Seznam.cz system preinstaller in
/etc/network/interfaces all routes to private IPs are routed via eth0 inter-
face which cases that Docker could not find and private IP range free for its
purposes. This can be simply solved by freeing an IP range and restarting
network service together with Docker daemon.

Next issue that occured was a little bit tougher. In the Docker log I found
that no chain exists for an iptables rule which Docker wants to set. After
consulting this problem with my team leader it proved to be caused by miss-
ing kernel modul xt_conntrack. After adding this module to kernel Docker
daemon finally started.

24

7.2. Starting cluster

In the Docker log I also found a warning that cgroup memory is not allowed
and that could possibly cause Kubernetes to not work properly with pod
memory limitation. I added the following line to the /etc/default/grub file
and updated grub.

1 GRUB_CMDLINE_LINUX =" cgroup_enable = memory swapaccount =1"

With the Docker daemon running I could start Kubernetes. As was shown
in the Kubernetes basic concepts chapter, the master node has to have API
server, scheduler, proxy, kubelet, controller-manager and flannel running in a
separate Docker daemon.

The first step is to create a bootstrapped daemon. The second is to run
etcd. I used gcr.io/google_containers/etcd-amd64 image. The third is to
setup flannel. I also used a prebuilt image, this time quay.io/coreos/flannel.
Finally the last step is to start kubelet. Kubernetes offers prebuilt Docker
image with all its components included called gcr.io/google_containers/
hyperkube-amd64. From the hyperkube image the kubelet is called and in
configuration of the kubelet there is a set of static pods that should be cre-
ated. The hyperkube firstly creates those pods and then starts the kubelet.
Those pods are the scheduler, the API server, the controller-manager and the
kube-proxy.

I have prepared a script where this whole configuration is scripted and
which may be called with the following single line: ./kube.sh start-master
You can also specify which components should be started.

Now the worker has to be set. The configuration is similar only there
is not so many components to run. The first step is also to create a boot-
strapped daemon, then the flannel and the kubelet are started, respectively.
The kubelet is configured to run only kube-proxy.

Now adding a new worker node to the cluster is very simple. Install the
system, fix problems described earlier and then upload a script and run ./
kube.sh start-worker. This system may be automated with ansible [47] for
example but this is a task for our administrators.

Also there are other possibilities how to run this Kubernetes model. The
kubelet can be installed on bare-metal and not be dockerized and the same
applies to the flannel. But it really is just a matter of personal preferences.

The cluster is now fully functional and pods may start to be distributed.

25

7. Running Kubernetes

Figure 7.2: Screenshot of kubectl get nodes output

26

Chapter 8
Docker registry

The Registry is a stateless, highly scalable server side application that stores
and lets you distribute Docker images. [22]

The Registry is the only reasonable way how to distribute Docker images
inside a network. When a developer creates new image with his application,
there are 2 ways how to get it to production. The first one is to do it through
a Dockerfile. The second one is using Docker image. In the future it would
be nice to have a whole system, where you only put a new Dockerfile (let’s
say simply by merging your dev branch with the new Dockerfile to the master
branch in Git) and the system will then build your image, tag it properly and
upload it to the Docker registry. This is a state we want to achieve eventually,
but it currently takes more work than we can afford to build a system like
this.

So the second way is that Deznam.cz will have to create a Docker registry,
where developers can push their images and then send tickets to administrator
to get them in production. So I have to study the Docker registry more
deeply. The Registry is an application that you can run on server. Then
every developer have to tag his image with server name and port on which the
registry is running and append his own name. In Seznam.cz we are prefixing
each name of application with the department name and the “szn” prefix. For
example szn-fulltext-APP_NAME. So basically now each developer will have
to tag his image similarly like that: REGISTRY_URL /fulltext/APP_NAME and
push it. The Registry URL has to be easy to remember and we need to be
sure it does not cause conflict in the future. You also have to define which
images will be included in the Kubernetes pod and those pod definitions have
to be created in a cooperation of developers with administrators. And if there
are different names for the registry in development, staging and production
environment those pod definitions will have to be updated each time which
might easily lead to mistakes.

We have to create development, staging and production Docker registry
servers where images will be stored. The development registry can be a stand-

27

8. Docker registry

ard server with a large disk space because many versions of images will be
stored here. Developers will have unlimited access to it via the Docker com-
mand line tool and no special policy will be defined here.

We cannot have the dev registry with authentication because when push-
ing new image to registry you would have to set password. As the credentials
are stored in \$HOME/.dockercfg and every developer in our development en-
vironment has root privileges, such practice would be insecure and untrusty.

After successfully creating an image and uploading to the dev server, the
developer will have to send a request to an administrator to deploy it. In
Seznam.cz we have a custom request tracker and when someone want to deploy
something, we have to send a RT ticket with a number of the particular Debian
package version. The only difference with Docker would be that the developer
will send an image signature hash created by Docker. This way there will
always be a possibility to authenticate possible and the developer who sent
the ticket will be responsible for his image.

The administrator will then pull the image from the dev registry and push
it to the staging registry and then to the production registry.

When Kubernetes starts a new pod, the Kubernetes master node down-
loads the image from registry (if it’s not present already) and run it. This
logic makes the registry server a bottleneck for the entire cluster. When the
master node cannot pull from the registry server, the application won’t start.
And even when app is running, if the registry server fails and then Kuber-
netes decides to migrate this pod from one server to another because of load
balancing or something else, application can easily become unavailable. That
means that Seznam.cz’s Docker registry in the production environment has to
run on high availability servers.

The Docker registry is an application which provides an API for clients and
the storage itself is delegated to drivers. The default driver is posix filesystem.
As is said in the manual, this default driver is fine for small deployments and
in our conditions will be fine for development environment where physical
hard drivers will be mirrored. Development registry server does not have to
be high availability and there is always a way how to start custom registry
even on local machine.

The Docker registry storage drivers provided are [23]:

• inmemory: A temporary storage driver using a local inmemory map.
This exists solely for reference and testing.

• filesystem: A local storage driver configured to use a directory tree in
the local filesystem.

• s3: A driver storing objects in an Amazon Simple Storage Solution (S3)
bucket.

• azure: A driver storing objects in Microsoft Azure Blob Storage.

28

• rados: A driver storing objects in a Ceph Object Storage pool.

• swift: A driver storing objects in Openstack Swift.

• oss: A driver storing objects in Aliyun OSS.

• gcs: A driver storing objects in a Google Cloud Storage bucket.

From all these drivers provided the only two options we can use are rados,
with Ceph Object Storage and swift with Openstack Swift storage. And be-
cause in Seznam.cz there are administrators who are well acquainted with the
technology of Swift, we decided that for the production registry we will use
swift as a storage driver.

So the final model is shown in the following figure 8.1.

Figure 8.1: Seznam.cz Docker registry architecture

29

Chapter 9
Secrets distribution

Kubernetes has a mechanism for storing secrets — passwords, keys, certific-
ates, etc. Unsurprisingly, they call it the secret.

Objects of the type secret are intended to hold sensitive information, such
as passwords, OAuth tokens, and ssh keys. Putting this information in a secret
is safer and more flexible than putting it verbatim in a pod definition or in a
Docker image. [24]

Using secrets is safer than putting those sensitive information somewhere
else, like directly to Docker images, to the file system mounted as a volume,
to environment variables, etc. The main idea of the secret is to keep them
centralized somewhere safe and distribute them only to those master nodes
which need them. And also of course to have them on the master node only
as long as necessary. For those purposes Kubernetes are using etcd as a
persistent centralized storage that ensures high availability through peer-to-
peer synchronization between machines. Each master node has a Kubelet
daemon which can ask secrets API server for a secret. Communication from
the master node to the etcd is encrypted. The Etcd sends the secret object
to the master as a base64 encoded string. The size of the secret is limited to
1 MB and the master node will save the secret value to its memory, Not to the
file system, which means that when the master node crashes and its memory
is deleted, no secret can be compromised. The Kubelet then mounts the
secret value to containers in the pod which requested it as a tmpfs filesystem.
Secrets in the etcd are divided into namespaces and only pods from the same
namespace can ask for them. It is the main responsibility of administrators
to check the pod’s namespace when they accept it and deploy it to a running
cluster.

After consulting the Kubernetes secret with our administrators we agreed
that it would be nice to have the same feature for the current virtualization
technologies (LXC and OpenVZ containers). The logic can be almost the
same as Kubernetes have. And because the Kubelet is a standalone binary
which can be called even without Kubernetes and the etcd is also an inde-

31

9. Secrets distribution

pendent component, we decided to build a secrets distribution system for the
current solutions at Seznam.cz. Each LXC container or OpenVZ virtual ma-
chine will have the Kubelet binary in its image. After installing a new virtual
machine, the administrator will add a certificate signed by his team’s certific-
ation authority, which will be configured at etcd so it can request only secrets
belonging to his team. There can be special one way certificates for highly
sensitive data as well. After the virtual machine starts, it will start monit-
oring a known file, such as /www/secrets/request.json, where applications or
even the administrator of the virtual machine have to specify which secrets
are requested. The Kubelet then asks the etcd for them and saves them via
tmpfs to a known place such as /www/secrets/data/. New applications have
to be edited for those new features.

The main advantages of this approach is that all secrets are saved at one
safe plac with a high availability for the whole company infrastructure and
both master and virtual machines do not keep secrets for ever but only on a
temporary file system in their memory.

32

Chapter 10
Logging

Logging is quite a big problem in almost every system. At the moment in
Seznam.cz we have a special library called dbglog which is used for logging
from C/C++ and Python. This library is also open sourced [63]. You can
configure it to log to stderr or to a file. It simply formats the message with
data arguments add a general info, like file from which the log message has
been called, the line number, the function name, the log level, current time
and so on.

The text files take up a lot of space, so we had to think about storing
information in a binary form or even compressed. Another idea was to store
logs not as simple strings but in a structured form. That would be very helpful
for a basic analysis of these debug logs, for example to check the number of
records processed etc. We started to develop a complex logging solution quite
a while ago. I implemented a library for storing data to binary files. The
library is in Go and uses the Apache Kafka [53] file format. Picking the Kafka
file format was quite an easy decision, as we wanted to use the Kafka cluster
as a logging service where all our applications will send their logs. Then we
can decide which logs go to the Elasticsearch [39] for a human analysis and
which will go to the HDFS [40] for permanent storage and time consuming
calculations. And of course in the future more approaches can come. Kafka file
format also supports compression and storing partition key in each message.

A very common problem with logging into file system is rotating files.
There are many approaches for this, but logrotate or another similar daemon
running in the background is not the way we want to go in Docker. The
Docker principle is to have only one process in one container. Sure you can
run logrotate in another container in pod and send signals from one container
to the other, but that’s generally not a good idea. That’s why the library for
storing logs into file system also supports file rotation.

So at the moment I have solved the problem with file rotation and storing
files from our applications. But how to deal with logs from any third part
application? Actually the answer is very easy as well. Does the application

33

10. Logging

support logging to stderr? If so, just make use of it and throug a pipeline to
send the stream to stdin for another application which will simply save each
line into my library. If stderr is not an option (for example nginx), does the
application support syslog interface? If so, do exactly the same, only that the
application which reads it will have to expose the syslog interface.

So now I have the files stored at the file system. How to send them to Kafka
for further processing? This simple task proved to be quite tricky. There are
several daemons which read files and send them somewhere. Kubernetes also
have one of them.

10.1 FluentD

Fluentd is an open source data collector for a unified logging layer. The
Fluentd allows to unify data collection and consumption for a better use and
understanding of data [25].

Figure 10.1: Fluentd [25]

The Fluentd is natively implemented in Kubernetes but there is a couple
of problems. The first one is that plugins for The Fluentd are written in Ruby
[54], which is not used in Seznam.cz, so writing a custom plugin could become
an issue. And we already know we would need at least one custom input
plugin for reading the Kafka file format. The second problem is that in the
default configuration the Fluentd reads from the input file, stores those data
in a memory buffer and tries to send them to Kafka. When the Fluentd, its

34

10.2. Logstash

pod or even the whole node fails, the data are lost and when it starts again it
does not know about the power cut and it starts from the last known position
in the file. This all means that the Fluentd is not an option for us.

10.2 Logstash

Logstash is a tool for managing events and logs. It can be used to collect logs,
parse them, and store them for later use (e.g. for searching) [26].

Logstash plugins are written in JRuby so it’s almost the same as with
Fluentd. We tried to use Logstash in the current conditions at Seznam.cz but
it completely failed because of memory demands. Logstash is written in Ruby
but runs under JVM, so its memory demands are huge. We also wanted to
have one log forwarder from the file system to the Kafka for each pod so that
the failure of one pod won’t affect other pods and with Logstash’s memory
usage this is not possible.

10.3 Heka

Heka [27] is written in Go, its plugins are written in Go and that is an ad-
vantage over Logstash or Fluentd. Heka also supports sandboxed Lua for
filter scripting without the need to recompile Heka. There are plugins for
Apache Kafka, Elasticsearch and many other outputs. That’s why I started
to examine Heka more closely.

Heka is a heavily plugin based system. There are six different types of
Heka plugins [27]:

Inputs Input plugins acquire data from the outside world and inject it into
the Heka pipeline. They can do this by reading files from a file system,
actively making network connections to acquire data from remote serv-
ers, listening on a network socket for external actors to push data in,
launching processes on the local system to gather arbitrary data, or any
other mechanism.

Splitters Splitter plugins receive the data that is being acquired by an input
plugin and slice it up into individual records.

Decoders Decoder plugins convert data that comes in through the Input
plugins to Heka’s internal Message data structure. Typically decoders
are responsible for any parsing, deserializing, or extracting of structure
from unstructured data that needs to happen.

Filters Filter plugins are Heka’s processing engines. They are configured to
receive messages matching certain specific characteristics (using Heka’s
Message Matcher Syntax) and are able to perform arbitrary monitoring,

35

10. Logging

aggregation, and/or processing of the data. Filters are also able to gen-
erate new messages that can be reinjected into the Heka pipeline, such
as summary messages containing aggregate data, notification messages
in cases where suspicious anomalies are detected, or circular buffer data
messages that will show up as real time graphs in Heka’s dashboard.

Encoders Encoder plugins are the inverse of Decoders. They generate ar-
bitrary byte streams using data extracted from Heka Message structs.
Encoders are embedded within Output plugins; Encoders handle the
serialization, Outputs handle the details of interacting with the outside
world.

Outputs Output plugins send data that has been serialized by an Encoder to
some external destination. They handle all of the details of interacting
with the network, filesystem, or any other outside resource. They are,
like Filters, configured using Heka’s Message Matcher Syntax so they
will only receive and deliver messages matching certain characteristics.

I developed a custom splitter plugin and a custom decoder in Go, which
are able to split and decode data from the Kafka file format. So the de-
fault Heka plugin – Logstream Input – reads bytes from the Kafka files, the
Kafkalog splitter and the Kafkalog decoder create Heka messages which are
send through the filters to a simple encoder and to the Kafka output.

When Kafka ran, everything seemed fine and worked as expected. The
problems started when I stressed Kafka. I shutdown some of the brokers and
watched how Heka can handle it. Heka noticed that one or more Kafka brokers
were down and the rest was in the middle of the leader election, but it didn’t
stop trying to send messages. It slowed down, because of the timeouts that
occurred, but after a while the message that cannot be delivered to Kafka is
dropped down and the Input plugin reads new bytes from the file. I tried to
simulate Heka failure, simply by Linux kill command.

The Logstream input plugin keeps a journal file. In the journal there is
the file name, the offset of the last read message and the control hash. But
the problem is, that input plugins do not cooperate with outputs. Heka is
highly expandable with plugins. One input can generate message to Heka’s
pipeline and more outputs can read them and do something with them. Fil-
ters can drop messages or create new messages so there is no simple way to
synchronize the input and the output plugin. Which means there is a risk of
losing messages.

I did a research about Heka’s reliability and found a couple of some e-mails
and discussions where the Heka authors are saying that 100 % reliability was
never their goal. But we need it at Seznam.cz as we can’t say that some logs
will possibly be lost. So I try to fix this.

The Kafka output plugin uses the Sarama library from Shopify [28] to com-
municate with Kafka. There is a synchronous and an asynchronous Kafka pro-

36

10.3. Heka

ducer. In the output plugin the asynchronous one is used. The asynchronous
producer is faster, because it does not wait for errors or success confirmation.
All messages are handled in separate goroutines1. Producer errors are handled
in output plugin, but only to be logged and dropped down. I fixed this with
a special error channel addition. When an error occurs, it is sent to the error
channel and the main goroutine which process Heka messages starts fixing it.
When there is an error I don’t want to process any other messages from the
Heka pipeline, the backpressure is desirable. I create one extra synchronous
Kafka producer with exactly the same configuration as the main (async) one
and the error is sent through it. The maximum number of attempts is con-
figurable and can even be set to infinity. Dealing with the error through the
synchronous producer will not read from the main message channel, which
can fill up eventually. This causes a backpressure and Heka will stop in such
case (of course, only under the condition that no other output processes the
input messages).

I have tested this by writing a Kafka consumer in Python and uploading
files with a few millions of numbered messages. The consumer reads everything
from the special topic and looks for holes and duplicates in sorted sequence of
messages. I randomly shut down Kafka brokers, even whole Kafka, simulat-
ing packet lost with Linux iptables DROP directives and watched consumer’s
statistics. It turned out that with a few millions of messages there is a few
thousands of duplicates but no miss. Duplicates can also be caused by con-
sumer, because Kafka’s philosophy is to deliver each message at least once.
And duplicates are no problem for us, because we can easily discover them.
This fix seems quite useful and generic, so I will try to send it to the upstream
as a merge request.

Fixing this issue will only try to repeat errors when they occurs. This does
not solve the next problem, when Heka input plugin reads something from a
file, it confirms the new offset to its journal file and sends the message to the
Heka pipeline. If Heka fails now, the memory buffer will be lost and after a
new start the input file will seek to the position from the journal file. I need
to figure out how to fix this too.

The problem is, that one input can be processed by more outputs, and also
more inputs can be processed by a single output. The input and the output
plugins don’t know about each other. I think there is not one generic solution
for this problem. The best what I could come out with is the following idea:

• Each input plugin will be working as is plus it will be adding filename,
offset and its name as fields to the message.

• The output plugin will be also working as is plus it will read the suc-
cess message from Kafka, confirming that message was delivered to it.
Output saves those metadata sent from input to its private variable and

1A goroutine is a lightweight thread managed by the Go runtime [62].

37

10. Logging

once in a while it sends a special message: an acknowledgement consist-
ing from the filename, the offset and the name of the input plugin.

• I will write a new plugin, the Checkpointer, which will consume acknow-
ledgements from the output and save checkpoint files per each input.
This plugin has to know which outputs consume messages from which
inputs to be able to successfully maintain acknowledgements from more
output that consumes from single input.

This theoretical idea might be good, but it is unfeasible in practice. The
main problem is, that output plugins are not allowed to generate new mes-
sages. Also the condition to know about all other plugins is senseless in Heka.

So I have to update my idea to be implementable in Heka and useful
for Seznam.cz. Our applications logs through my library, which rotates file
and is using our naming convention: datetime-timezone-rotate_interval-
component_name-postfix.szn. One application can generate more files with
different postfix value. For example szn-fulltext-NAME-dbg and szn-fulltext
-NAME-event. In the log directory, there is a kafkafeeder.yaml file – with our
generic configuration where to send files, how long to retain them and so on.
That means in our conditions it is possible to always have one input for one
output. The problem that output plugins are not able to send new messages
can be solved by implementing the checkpointer logic right into the Kafka
output, so it will be saving checkpoint files to the file system.

There have to be written a new binary, which will start, copy checkpoints to
journals, transform Kafkafeeder configuration to a Heka specific configuration
format, start Heka with some predefined options, watch checkpoints and data
in a separate goroutine and delete old (and successfully uploaded) log files
from filesystem.

This solution will be 100 % reliable but it is also Seznam.cz specific, be-
cause our custom binary (let’s call it Kafkafeeder) will transform our custom
configuration to the Heka format and it will create one Input plugin for one
Output plugin with a unique name, so checkpoints can be saved and reused
as journal files of those Inputs.

10.3.1 Kafkafeeder

I started designing this application in Go. The Kafkafeeder has to:

• Copy checkpoints to journal directory

• Start Heka daemon (hekad)

• Monitor log directory for changes

– Reload when it finds a new kafkafeeder.yaml or when an existing
one disappears

38

10.3. Heka

• Convert the kafkafeeder.yaml custom configuration to the Heka format
and reload hekad

• Monitor checkpoints and delete old and successfully uploaded logs from
the directory

The application is made as a five goroutine architecture, where the main
goroutine initializes all the necessary objects and starts all other goroutines.

The cleaner goroutine is responsible for removing old logs, which have
been successfully sent to Kafka. Successful dispatch may be tracked from
checkpoint files generated by heka. All files with their last modification time
older than the retention duration in the configuration file will be deleted.

The signal goroutine is waiting for system signals and handles them prop-
erly. When SIGTERM is captured, the main shutdown function is called and the
whole application stops safely. When SIGCHLD signal is captured forked child is
dead and so I have to check if it should be running. If so, a problem occurred
and the main shutdown function is called.

The watcher goroutine periodically watches the directory with logs. When
kafkafeeder.yaml file is found it is registered to LogManager object. After all
new logs are registered, the keepValid function is called so the LogManager
will keep only those records that actually exists. If something was changed,
the reload is called.

The hekad goroutine is responsible for copying checkpoint files to the Heka
journal files and starting, stopping and checking hekadCmd. Also when the
reload is called, the hekad goroutine converts all logs from LogManger to the
Heka specific configuration.

HekadCmd is a wrapper around the actual hekad process. This wrapper
sends signals to forked process, captures its standard output and error and
logs all messages via the internal logger.

39

10. Logging

Figure 10.2: Kafkafeeder architecture

40

Chapter 11
Security

As was written before, at the moment masters and virtuals in production
environment are under the administration of administrators. When a security
issue is discovered, they can fix it in a matter of minutes. But on the other
hand developers are forced to pack each app into a Debian package. And
there are applications from many different corners, Python uses pip [56] for
its packages, nodeJs [55] has npm [67] repositories, Go is built from source
code and so on.

With the advent of Kubernetes it will no longer be sustainable to check if
every piece of code in production is packed in a Debian package and uploaded
to custom repository, where it can be easily tracked if a newer version with
security fixes is released.

Because of that there has to be created a new mechanism how to check:

1. What is installed and will be running in a Docker image (system, ap-
plications, dynamic libraries, . . .)

2. Using what and where was it built (gcc version, Go source codes, static
libraries, . . .)

3. Where is the Docker container running at the moment

Those easily looking conditions are quite hard to satisfy in practice. Sez-
nam.cz at the moment is using custom system called Puzzle where everyone
can find on which virtuals is his component running, what packages and their
versions are installed on specified virtuals and on what virtuals is installed
specified package and version. Those information are delivered to system
backend via script called self-checked that have to be installed on each master
and is monitoring its virtuals and software installed in it.

After consultation with our security admins we decided that same function
is needed also with Docker cluster.

The suggested solution is to create a mechanism that will sniff Docker im-
age during pulling from development registry and pushing it to staging registry

41

11. Security

and divulge all necessary information about its content. Those information
together with image digest will be sent to the Puzzle system API for future
tracking. There have to be tracked not only version of debian packages but
also pip and other python modules versions, npm packages, Bower [64] pack-
ages. . . All other packages apart from ours have to be tracked as well. So
we will have to build cache server for each of those repositories and run it.
When developer wants to use some library (in production, developing won’t
be limited) he has to add it to this cache under his name and from now he is
responsible for it, that means when newer version will be found or some secur-
ity issue will be discovered administrators have a privilege to demand update
by this developer and rebuild all dependent images (which will be tracked by
the Puzzle system).

Built information are harder to get. A common scenario is to have separate
image or virtual for building. When virtual is used, there is often one virtual
for building more images that means simple imprint of system state will be
unnecessarily comprehensive. Also when using Go, build is made from source
code so there is no information about version of code.

For start imprint of this development environment have to be sufficient.
For Go we can standardize using glide [65] for vendor dependencies tracking so
each project will have glide.yaml file with dependencies and after built there
will be created glide.lock file with exact commit digest of vendor version
control system. For this information to be responsible developer who will
have to put it all in a simple text file to its production image on well-known
place such as /www/built-info.json for example. Those files then will be read
and send to Puzzle system as well.

Getting runtime information from orchestration system like Kubernetes
appears to be the easiest of all conditions. Kubernetes has an API server
where it is possible to get information about running containers.

With all those information in a custom system we can easily track if there
is a new security issue and what version fixing it and if it is backward com-
patible. Debian offers such mechanism and Seznam.cz is using it right now,
for pip and other management systems we have to find such mechanism and
implement it to our environment. This task will be a responsibility of our
security administrators.

A scenario when a security issue in a system package occurs (such as
Heartbleed) is: find all images that uses this affected package, run script that
will create new Docker image from base developer image and run installation
of fixed package version. An example template of Dockerfile may look like
this:

1 FROM developer_image
2 RUN apt -get update && apt -get install -y openssl =1.0.2 - fix

Listing 11.1: Dockerfile snippet

42

This process will be automatic of course.
However, this solution is only temporary, the future plans are to create

an independent building environment under control of administrators (or in-
tegrators perhaps) where automatic builds of images will be run periodically
and precisely because of information provided from developers, exact built
environment can be generated for each image that guarantees smooth built
process.

On a meeting with our system administrators one more suggestion have
been put on table. Seznam.cz have to build its own base image that will
contain new packages with all system fixes. This base image will be generated
automatically each hour and pushed to all Docker registries. Developers will
have to use this base image or scratch image when no system is required
(running some c++ binaries for example). Using any other system than that
one from base image (Debian) won’t be allowed.

43

Chapter 12
Monitoring

For monitoring application metrics such as count of requests, returned statuses,
average request duration etc. we will use Prometheus. Prometheus is an open
source systems monitoring and alerting toolkit [29]. Implementing Prometh-
eus handler to webserver is really easy because there are client libraries for
Python and Go. Those metrics are then easily scraped and stored in central-
ized database where some other alert system may be configured.

Prometheus has also prepared a Docker image so it can be run in Kuber-
netes cluster.

System logs will be collected with Heka. Heka provides various input
plugins like syslog, statsd or simple tcp input, while Kafka can be used as an
output just like with all our others logs. This way we will have all types of
logs centralized in the Kafka cluster and we can decide what to do with them
next (and even change that decision later).

Metrics and system logs may not necessarily be stored forever. They have
their usage in the real-time and so they probably will not be uploaded to
HDFS for some future analysis. System logs will be send to the Elasticsearch
and they will be visualized in Kibana [57]. We already have the Elasticsearch
cluster in Seznam.cz and the Kibana running so it is no problem to add those
logs here.

Metrics will be stored in Prometheus and Grafana [58] will be used for
data visualization. Prometheus also offers alerting system so each application
can have its separate rules and when something goes wrong an alert may be
issued.

45

Chapter 13
Static webpages content

Deploying static resources the same way as before is no longer possible. We
have to solve this problem with a different approach. There are at least
2 acceptable solutions. The first one is to upload static files to our CDN.
Seznam.cz already has a custom CDN which is used for delivering images and
other resources. But at the moment we are not using the CDN for delivering
CSS and JavaScript files because there was no such need. Using this solution
would mean to discard current debian packages for static resources and start
uploading those files to the CDN instead.

The second possible solution is to deploy static resources in a separate
pod with their own nginx server which will be serving them. This solution
seems as a little overkill to me because when a new version of CSS files will be
created we will have to deploy new pods, wait until all running pods with static
files are replaced and after that start deploying pods with new backend. The
backend pods will also contain an nginx proxy because of SSL termination and
security issues, so it seems unnecessary to run another nginx instance solely
for the purpose of serving static files.

47

Chapter 14
Testing application

Before we can run the Kubernetes cluster at Seznam.cz and start updating all
applications for it, it has to be tested so we can say it will suit our conditions.
For that testing I developed an application that’ll push it to its boundaries.

The hardest task of a programmer is naming things [30] but in this case
my team leader came with an idea – the Tarsier. Tarsiers are small primates
with enormous eyes. Each eyeball is large as its entire brain [31]. That means
they will probably not invent anything new and useful, but they can watch
and see everything – which quite fits for my testing application needs. It won’t
be doing anything extraordinary, it just has to test the cluster and find its
weaknesses.

The basic requirements on the Tarsier are to heavy load the machine re-
sources, to simulate high CPU and RAM usage, to simulate I/O operations
(so it will have to request permissions on some persistent storage), to raise
controlled faults, deadlocks and segmentation faults and finally to simulate a
network communication.

Of course the Tarsier will have to log its activity and probably also expose
its inner statistics and metrics.

When designing the Tarsier I have to think about implementing new func-
tions in the future, so it should be modular. User need to be able to control
the Tarsier’s behavior from the outside, because deploying a new image just
because of a different configuration to make use of another set of its skills
would be slow and inefficient.

Another important thing is that one Tarsier will hardly be able to push
the cluster to its boundaries, but if we employ many monkeys at once that can
communicate with each other and start using the network at the same time
for example, that is something that should be able to easily find the limits of
the Kubernetes cluster.

49

14. Testing application

14.1 Designing Tarsier

I designed the Tarsier as a modular application. However, as there there are
no dynamic libraries in Go that could be joined together during the runtime,
every application with all its dependencies is built from the source. So I cre-
ated a plugin interface and a plugin registration function that will store plu-
gin’s factory method, so Tarsier can invoke the plugin later with the desired
configuration.

As the Tarsier will have to do many different tasks, I decided to separate
each task to the Command interface and plugin that has some commands will
register them.

1 type Plugin interface {
2 Init(config interface {})
3 }
4 type HasConfigStruct interface {
5 ConfigStruct () interface {}
6 }
7 type HasCommands interface {
8 Commands () [] Command
9 }

10

11 type Command interface {
12 Execute (data interface {})
13 Name () string
14 Description () string
15 }
16 type HasDataStruct interface {
17 DataStruct () interface {}
18 }

Listing 14.1: Tarsier plugin’s interfaces

For remote controlling the Tarsier I use HTTP requests, so the Tarsier
is a modular API server, where plugins can register themselves and their
commands and the Tarsier then waits for orders and executes the appropriate
command when invoked. Each plugin can claim self-specific configuration and
each command may demand specific data. There can also be plugins with no
commands because it is possible that in the future the requirements on the
Tarsier might change.

At the moment Tarsier starts as a HTTP server with one handler on the
/exec URL and it accepts YAML POST requests (and because valid JSON
data comply with the YAML specification, it accepts JSON POST requests
as well). The structure of the body is the following:

50

14.2. Tarsiers synchronization

1 command: "heavy_load/spin_cpu"
2 data:
3 durat ion : "15s"
4 wave:
5 remain: 3
6 buddies : 10

Listing 14.2: The heavy load/spin cpu command body structure

If the command named heavy_load/spin_cpu is registered and if it imple-
ments the HasDataStruct interface, the data from the body will be unpacked
to the DataStruct method returned value and the command will be executed
with that structure. This will happen in a separate goroutine so the handler
can also process the wave part. The wave remain is a number of how many
waves are remaining to do. If it is greater than zero that means this Tarsier
will have to send this request beyond and notify 10 its buddies with the same
data as he gets. Obviously the wave remain value will decrease.

The waves are spread exponentially and it is possible that some request
will come back to the same Tarsier that sent them but that does not matter
because I want to test the cluster and some random behavior is even welcome.
Let’s see another example command:

1 command: "persistent_storage/write"
2 data:
3 amount: "100 MB"
4 f i l e s : 10
5 wave:
6 remains: 3
7 buddies : 3

Listing 14.3: The persistent storage /write command body structure

This will start writing 100 MB into 10 files in parallel on each Tarsier.
And also this command will be sent to 3 more Tarsiers randomly chosen from
friends list. The flow of the wave with 9 tarsiers might look like in the following
example 14.1.

14.2 Tarsiers synchronization

To be able to discover all the Tarsiers and to help each one of them find
the others so it can send waves to them I will use Consul [32]. Consul is
designed for service discovery and makes it easy to register services and to
discover them later. Each Tarsier will register itself at startup and then it will
periodically check its buddies. To ensure that Consul will provide only active

51

14. Testing application

Figure 14.1: Wave propagation in Tarsier

Tarsier instances, it has multiple types of health checks. Tarsier will have to
provide some service stats.

At first I wanted to just add some special URLs for this service stuff such
as /health_check and /metrics but then I realized that in the future those
URLs may be needed and also those URLs don’t have to be accessible from
the public network so I designed Tarsiers with another extra interface on its
own port were private data will be provided. There will be health check and
metrics handler with Prometheus statistics about how many requests have
been served and what commands were executed and if they were successful.
I also created a command handler where all the registered commands with
their names and descriptions are provided. Because there will be plugin to
simulate heavy load of memory and CPU I add a handler that shows runtime
statistics from Go. There can be seen how much memory is allocated to the
Go runtime, a garbage collector statistics and much more interesting data.

14.3 Tarsier plugins and their commands

14.3.1 Heavy load

Plugin for simulating heavy load of memory and CPU

Gobble RAM will gobble as much RAM as is specified in the data. When
this amount of memory is not possible to allocate it will try to resize the
amount with the specified ratio and return how many bytes it finally
allocated. Memory is allocated via mmap system call so the garbage

52

14.3. Tarsier plugins and their commands

collector will not free it and is filled with zeros otherwise system will not
physically allocate it.

RAM stats will show allocated mmap regions with their sizes.

Free RAM This command will unmap allocated region. Its data is the index
of the region obtained from the RAM stats command or -1 which means
to free all allocated spaces.

Spin CPU spins the CPU for the specified time. The spinning is simply
done by an infinite loop with acomputation (multiply and division) with
float64 numers.

14.3.2 Faults

Deadlock will create the specified number of goroutines that will be set to
be sticky with system threads (otherwise Go runtime is allowed to move
them all into single system thread, so it has no effect) and deadlock
them all waiting for mutex unlock. After the defined time the handler
will unlock the mutex so all goroutines will finaly end.

Segfault will simulate segmentation fault. It uses Go unsafe package pointer
to variable, which is moved out of bounds and dereferenced. The whole
Tarsier will fault and it is expected that Kubernetes will start new in-
stance.

14.3.3 Net

This package is here to wrap all the network commands. There are no com-
mands for writing or reading from the network but that can be easily simulated
with a dummy command to the Tarsier where waves count will be high enough.

Dial will open a new network connection to the specified address. It can open
a new TCP or UDP connection and also this connection can be estab-
lished directly to an IP address or to a domain name with its resolving.
Those connections are set not to timeout and are not closed.

Stats will show the network connections usage.

Close will close the specified network connection from the Stats command.
When -1 is set it closes all connections.

14.3.4 Persistent storage

Plugin that is working with persistent storages, typically hard disks. This
plugin needs to get directory from configuration of Tarsier otherwise system
temporary directory is used.

53

14. Testing application

Open FD will open as many file descriptors as defined.

Read This command will read the specified amount of bytes from defined
file. Typically /dev/urandom is set as a file. There is also an option how
many concurrent readers are supposed to be created.

Write will write the specified amount of bytes to opened file descriptors.
There can be set how many concurrent writers are supposed to be cre-
ated and each one is writing to its own file. If there is not enough file
descriptors ready, new ones will be opened.

FS stats will show usage of file descriptors, their names and sizes.

Close FD will close the specified file descriptors from the FS stats command.
When -1 is set then all file descriptors are closed and the files are deleted
from the hard drive.

14.3.5 Sleeping beauty

Plugin for simulating requests delay.

Sleep will answer after the specified time expires.

54

Chapter 15
Testing the cluster

Running applications in Kubernetes means to create some specifications for
them. For testing the cluster with my Tarsier application I will need to have
the Consul running at first.

I have prepared the replication controller configuration for Consul and also
the service configuration for it, so it will have the same IP address regardless of
which machine it is running on. The Consul will be used for a service discovery
among Tarsiers. There is no need to use persistent storage for Consul, holding
instances in memory is sufficient enough.

Before Tarsier pod can be created I have to register secrets for it. There
will be two of them. The first secret is a SSL certificate so our service port
can be run on HTTPS. The second secret is the Tarsier configuration. It is a
good idea to use secrets for configuration because there can be different secrets
with different configurations on the development and the production cluster
and also we don’t need to rebuild the whole images just because one text file
changed.

With the secrets set up, it remains to solve the persistent storage. For logs
I will use the hostPath volume which is a directory on the physical machine.
There will be uniform policy that perhaps in /www/logs/ all pods will store
their logs. This way it is provided that logging from the application is fast (to
the local drive) and logs will remain there even when the pod dies. Also each
pod should use the Kafkafeeder to feed logs to Kafka and delete them after
successful upload.

For persistent storage plugin of Tarsier I have to use a real persistent
volume. There are many applications in Seznam.cz which need a large amount
of data for their start or/and which produce a large amount of data. For
those data we have to choose a persistent storage where pod traveling from
one machine to another will not be a problem.

I started 2 GlusterFS [61] servers and created endpoints and service con-
figuration for them. Now I can set a volume claim in the Tarsier replication
controller configuration and use it without knowing the exact location of the

55

15. Testing the cluster

GlusterFS and other paths.
In the Tarsier RC configuration will be more than one container. The

second one will be the Kafkafeeder, which also produces logs, so it stores
them to /www/logs/kafkafeeder as well. Then it loads this directory and
starts watching it and uploading logs to Kafka. After setting those volumes
I realized that the current usage, where application creates symlink from its log
directory to the kafkafeeder.yaml file in the configuration directory, is no more
useful. The kafkafeeder. YAML file which tells the Kafkafeeder where and
which logs to upload is stored as another secret in Kubernetes and mounting
this file as a volume with logs from the hostPath is not possible. I solved
this problem by adding another container to the pod, which is created from
a simple image with a single static application. User passes the source and
the target file to that application and it simply copies it. The snippet of the
replication controller is as follows in the listing 15.1.

With those configurations prepared, the last one missing is the Tarsier
service. Then I will scale the Tarsier to many instances and start sending
commands to its interface.

56

1 c o n t a i n e r s :
2 - name: t a r s i e r
3 volumeMounts:
4 - name: t a r s i e r−l o g s
5 mountPath: /www/ t a r s i e r / l o g s
6

7 - name: ka fka f e ede r
8 volumeMounts:
9 - name: kf−l o g s

10 mountPath: /www/ ka fka f eeder−beta / l o g s /
11

12 - name: cp
13 args :
14 - "/src/kafkafeeder.yaml"
15 - "/dst/kafkafeeder.yaml"
16 volumeMounts:
17 - name: t a r s i e r−ka fka f e ede r
18 mountPath: / s r c /
19 - name: t a r s i e r−l o g s
20 mountPath: / dst /
21

22 volumes:
23 - name: t a r s i e r−l o g s
24 hostPath: { path: /www/ l o g s / t a r s i e r / }
25 - name: t a r s i e r−ka fka f e ede r
26 s e c r e t : { secretName: t a r s i e r−ka fka f e ede r }
27 - name: kf−l o g s
28 hostPath: { path: /www/ l o g s / }

Listing 15.1: Snippet of replication controller configuration

57

Chapter 16
Benchmarking Python and Go

application servers

Traffic on Seznam.cz applications is high and it moves around a few thousands
requests per second per one instance of an application. Python [34] is used
for most of our application servers, especially the Tornado framework [50]
which can handle requests asynchronously and is more lightweight [52] that
frameworks like Django [48] or Flask [49]. I decided to benchmark such Python
server and compare its performance with a server written in Go [33]. Go is a
relatively young programming language, yet there are many big applications
that use it. Kubernetes and Docker are both written in Go. There are also
many libraries for Go, which makes it more interesting for us than Rust for
example.

I developed two simple servers which handle GET requests, generate HTML
output based on a template and return the response. In Python I used the
Jinja2 [51] templating system, in Go I relied on the built-in html/template
package. Both servers compose the output using a layout template and both
render one variable in the template.

I started those servers in Kubernetes and exposed their ports as a service.
Then I had to choose which benchmarking tool to use, so I picked wrk [35].

Wrk is a modern HTTP benchmarking tool capable of generating a signi-
ficant load when run on a single multi-core CPU. It combines a multithreaded
design with scalable event notification systems such as epoll and kqueue [35].

Wrk allows to modify the number of client threads and the count connec-
tions opened simultaneously. I started with 50 threads and 2000 connections
opened at once. Each test was firstly start with 10 second interval for warming
up the server and then repeated 3 times with 2 minute length.

I started both servers in Kubernetes and allowed them to use only one
CPU core. Then I was adding cores to the servers and ran this test again and
again.

For the testing I used a bare-metal server with the Debian Jessie operating

59

16. Benchmarking Python and Go application servers

system installed. The hardware configuration of this machine was 24 Intel
Xeon processors at 2.27 GHz and 32 GB of RAM. Both servers were running
in Docker on one machine and I used another one to run the benchmarks one
after another.

The request rate per second is shown in the graph 16.1 and the average
latency in the graph 16.2.

From the graphs we can see that the Go application server is far much
faster and is scaling linearly with the CPU count. The top boundary of the
scaling was about 33 000 requests per second and was most likely held back by
the network limits in the developer VLAN where my machines were placed.
Python scales well in the beginning but with an increasing CPU count it starts
to scale more slowly. Even with all of the 24 CPUs involved it didn’t achieved
the performance of the Go server and that is a good reason to start writing
our application servers in the Go language.

Figure 16.1: Benchmarking Python and Go – Requests per second

60

Figure 16.2: Benchmarking Python and Go – Average response latency

Figure 16.3: Benchmarking Python and Go – Transfer per second

61

Chapter 17
Benefits for Seznam.cz

In the chapter “Seznam.cz nowadays” I described how the developers are work-
ing today, what do they have to do and how the administrators are managing
the machines. What is the motivation to switch to a solution based on Docker
and Kubernetes and how to spread this new idea around? Obviously, apart
from all the problems we identified before, there also have to be certain key
benefits for both the developers and the administrators, otherwise it wouldn’t
make sense to use it.

The biggest benefit I see as a developer is that when an environment is
created and deployed in the production environment, the developers can still
access it easily. That is something I miss a lot nowadays. The adminis-
trators prepare the virtual machine in the production using their Salt [68]
prescriptions and then install packages from the developers. The developers
are building and testing packages on their own virtual machines they create.
There can be differences in many things from the network settings to different
source list and different versions of libraries. It is also difficult to maintain
virtual machines for building and testing for developers who could spend that
time coding instead.

Docker solves those problems. Developer knows which packages in which
version he needs, so he creates a Dockerfile with it. His image will be built
from a base image provided by administrators where all the necessary settings
are done and the same image will be used both in the production and in the
testing environment.

Docker also solves problems with library versions. Typical example may
be one virtual machine where one service is running which consists of many
packages and many smaller micro services. Each of this micro service is main-
tained by a different developer from the same team. When one of them changes
somethings and wants to upgrade his micro service but he depends on a newer
library, all other micro services will have to be updated as well. But with
Docker, he just pushes the new image that will be updated in pod and no one
else intervention is needed.

63

17. Benefits for Seznam.cz

For the administrators the deployment will be easier as well. The developer
defines the whole environment in a single image, so they just have to start it.
The problem will be with debugging issues that occur in operation, because
nowadays they can connect to any server and use debug tools they want and
know. With Docker images in Kubernetes they first have to find the right
container so they can attach to it, but if that image was created from scratch,
no tools are provided there. In the beginning of our Kubernetes experience
we should probably create all images from a base Debian image tailored to
our needs so the administrators can use the same tools that they are used to.
Then in the future we can move to more lightweight solutions.

Another inconvenience that the Kubernetes solution will solve is the secrets
and configuration distribution. When the product manager wants a config-
uration change, for example setting a lower bound of a delivery score, the
developer currently has to repack the application and issue a request ticket.
The administrator then stops traffic to one server, installs the new version
and restarts the application. After confirming that everything is alright, he
can move on with the rest of the servers. With Kubernetes the developer
will simply update the configuration, generate secret, push it to Git and send
a merge request to the administrator. When the administrator accepts it,
he updates the secret in the Kubernetes cluster and starts rolling update (or
just sends signal to container, if the application supports configuration reload
when running). Also SSL certificates can be stored in the Kubernetes cluster
for development and production.

With Kubernetes the developers don’t need to maintain virtual machines
for testing anymore. The administrators start two (or even more) instances
of the Kubernetes cluster in the production and in the testing environment.
The same pods, secrets and other resources will be deployed to those clusters.

Economic benefit is also that fewer servers is needed because they will be
used more effectively. We can scale applications fast and more adaptively.
Traffic will be monitored and examined and there surely be services that have
minimal traffic in night so their number can be reduced dynamically.

The idea for the future not so far away is to use the same cluster which
means the same machines in production delivery (services such as homepage
and others) and for internal tasks like counting signals of webpages, machine
learning of our algorithms and so more. If we group all machines in the data
centre to one cluster and define proper policies for pod preference and priority,
we can use the whole potential of this cluster at night and still have sufficient
availability for users who access our services at the same time. This is the
future goal were we are heading for.

64

Conclusion

The goal of the suitability analysis of Kubernetes for Seznam.cz was to become
familiar with the basics such as using Docker and virtualization in general.
That’s why the beginning of this thesis is dedicated to the theory about Docker
containers and using Kubernetes for orchestrating them.

The next step was to employ those information in Seznam.cz’s specific
environment. I mapped and examined the current situation of application
development and deployment at Seznam.cz and was wondering about how to
upgrade it and how to make use of container virtualization there. I focused on
possible problems such as creating the Docker registry, how to deal with the
security and contents of images, how to log and where to store logs for further
analysis and I also had to have in mind that containers are able to move
between machines but logs have to be processed correctly. I had to propose
how to monitor the applications in the containers and also the containers
themselves. And I had to find out how to deploy the static content of the
webpages using load balancers.

I successfully dealt with all of those issues and after consulting with our
security administrators I suggested how to secure and monitor what is in the
images that we are running. I suggested the architecture of the Docker registry
we have to build. This architecture achieved high availability thanks to the
Swift storage on which the Docker registry will be running in each data centre.
I explored different network management solutions that are possible to use in
Kubernetes and chose to start the cluster with the flannel. The flannel has a
significant overhead compared to other possibilities but it is sufficient for the
purposes of my thesis.

It is important to know how the new Kubernetes cluster is behaving under
heavy load and in other specific situations such as deadlocked applications,
too many open files or network connections, so I developed an application
for testing such cluster. This application uses secrets with SSL certificates,
secrets with configuration and produces logs. It also uses a persistent storage,
for which I utilized GlusterFS servers. The application provides Prometheus

65

Conclusion

metrics on its service interface. Moreover I created another application that
watches a specified directory and sends logs to kafka for further processing.
I had to resolve many problems with reliability and performance and I handled
them successfully and implemented the Kafkafeeder application which will be
present in each pod for uploading the logs.

In the end I focused on better repeatability of the cluster creation proced-
ure and I wrote scripts that simplify installing it again later or adding new
nodes to the existing cluster. I wrote the Kubernetes configurations for my
applications, creating services, secrets and other prescriptions used in Kuber-
netes.

During my work on this thesis I found answers for many generic issues
associated with starting the Kubernetes cluster while only a few of them were
specific for Seznam.cz, so I decided to open source all my code and images
I created. Those applications, images and the Kubernetes configurations can
be used as examples for further development and can help others as well.

66

Bibliography

[1] CoreOS. flannel. [online] [cit. 2016-05-09]. Available from: https://
github.com/coreos/flannel

[2] GitLab.org. GitLab Documentation. [online] [cit. 2016-05-09]. Available
from: http://doc.gitlab.com/ce/ci/quick_start/README.html

[3] Google, Inc. Kubernetes. [online] [cit. 2016-05-09]. Available from: http:
//kubernetes.io/

[4] Google, Inc. Kubernetes – Guides. [online] [cit. 2016-05-09]. Available
from: http://kubernetes.io/docs/

[5] VMware Inc. VMware. [online] [cit. 2016-05-09]. Available from: http:
//www.vmware.com/

[6] Parallels, Inc. OpenVZ. [online] [cit. 2016-05-09]. Available from: https:
//openvz.org/

[7] Oracle Corporation. VirtualBox. [online] [cit. 2016-05-09]. Available from:
https://www.virtualbox.org/

[8] Canonical Ltd. Linux Containers. [online] [cit. 2016-05-09]. Available
from: https://linuxcontainers.org/

[9] CoreOS. rkt – App Container runtime. [online] [cit. 2016-05-09]. Available
from: https://github.com/coreos/rkt

[10] Wallner, R. Linux Containers: Parallels, LXC, OpenVZ, Docker
and More. [online] [cit. 2016-05-09]. Available from: http:
//aucouranton.com/2014/06/13/linux-containers-parallels-
lxc-openvz-Docker-and-more/

[11] Docker, Inc. Docker. [online] [cit. 2016-05-09]. Available from: https:
//www.docker.com/

67

https://github.com/coreos/flannel
https://github.com/coreos/flannel
http://doc.gitlab.com/ce/ci/quick_start/README.html
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/docs/
http://www.vmware.com/
http://www.vmware.com/
https://openvz.org/
https://openvz.org/
https://www.virtualbox.org/
https://linuxcontainers.org/
https://github.com/coreos/rkt
http://aucouranton.com/2014/06/13/linux-containers-parallels-lxc-openvz-Docker-and-more/
http://aucouranton.com/2014/06/13/linux-containers-parallels-lxc-openvz-Docker-and-more/
http://aucouranton.com/2014/06/13/linux-containers-parallels-lxc-openvz-Docker-and-more/
https://www.docker.com/
https://www.docker.com/

Bibliography

[12] Docker, Inc. Docker Docs. [online] [cit. 2016-05-09]. Available from:
https://docs.docker.com/

[13] Kukrál, T. Kubernetes – úklid mezi kontejnery. [online] [cit. 2016-05-
09]. Available from: https://www.linuxdays.cz/2015/video/Tomas_
Kukral-Kubernetes_uklid_mezi_kontejnery.pdf

[14] CodeOS. etcd. [online] [cit. 2016-05-09]. Available from: https://
github.com/coreos/etcd

[15] Google, Inc. Networking in Kubernetes. [online] [cit. 2016-05-09]. Avail-
able from: http://kubernetes.io/docs/admin/networking/

[16] Google, Inc. Docker (Multi-Node). [online] [cit. 2016-05-09]. Avail-
able from: http://kubernetes.io/docs/getting-started-guides/
docker-multinode/

[17] Project Calico. Calico for containers. [online] [cit. 2016-05-09]. Available
from: https://github.com/projectcalico/calico-containers

[18] Project Calico. Calico for containers. [online] [cit. 2016-05-09]. Avail-
able from: https://github.com/projectcalico/calico-containers/
blob/v0.18.0/docs/cni/kubernetes/README.md

[19] CZ.NIC Labs. The BIRD Internet Routing Daemon. [online] [cit. 2016-05-
09]. Available from: http://bird.network.cz/?get_doc&f=bird-1.html

[20] tcp cloud, a.s. OpenContrail SDN Lab testing 1 – ToR Switches
with OVSDB. [online] [cit. 2016-05-09]. Available from: http:
//www.tcpcloud.eu/en/blog/2015/07/13/opencontrail-sdn-lab-
testing-1-tor-switches-ovsdb/

[21] Juniper Networks. OpenContrail. [online] [cit. 2016-05-09]. Available from:
http://www.opencontrail.org/opencontrail-quick-start-guide/

[22] Docker, Inc. Docker Registry. [online] [cit. 2016-05-09]. Available from:
https://docs.docker.com/registry/

[23] Docker, Inc. Docker Registry Storage Driver. [online] [cit. 2016-05-09].
Available from: https://docs.docker.com/registry/storagedrivers/

[24] Google, Inc. Kubernetes – Secrets. [online] [cit. 2016-05-09]. Available
from: http://kubernetes.io/docs/user-guide/secrets/

[25] Treasure Data, Inc. fluentd. [online] [cit. 2016-05-09]. Available from:
http://www.fluentd.org/

[26] Elasticsearch BV. Logstash. [online] [cit. 2016-05-09]. Available from:
https://github.com/elastic/logstash/tree/2.2

68

https://docs.docker.com/
https://www.linuxdays.cz/2015/video/Tomas_Kukral-Kubernetes_uklid_mezi_kontejnery.pdf
https://www.linuxdays.cz/2015/video/Tomas_Kukral-Kubernetes_uklid_mezi_kontejnery.pdf
https://github.com/coreos/etcd
https://github.com/coreos/etcd
http://kubernetes.io/docs/admin/networking/
http://kubernetes.io/docs/getting-started-guides/docker-multinode/
http://kubernetes.io/docs/getting-started-guides/docker-multinode/
https://github.com/projectcalico/calico-containers
https://github.com/projectcalico/calico-containers/blob/v0.18.0/docs/cni/kubernetes/README.md
https://github.com/projectcalico/calico-containers/blob/v0.18.0/docs/cni/kubernetes/README.md
http://bird.network.cz/?get_doc&f=bird-1.html
http://www.tcpcloud.eu/en/blog/2015/07/13/opencontrail-sdn-lab-testing-1-tor-switches-ovsdb/
http://www.tcpcloud.eu/en/blog/2015/07/13/opencontrail-sdn-lab-testing-1-tor-switches-ovsdb/
http://www.tcpcloud.eu/en/blog/2015/07/13/opencontrail-sdn-lab-testing-1-tor-switches-ovsdb/
http://www.opencontrail.org/opencontrail-quick-start-guide/
https://docs.docker.com/registry/
https://docs.docker.com/registry/storagedrivers/
http://kubernetes.io/docs/user-guide/secrets/
http://www.fluentd.org/
https://github.com/elastic/logstash/tree/2.2

Bibliography

[27] Mozilla Corporation. Heka. [online] [cit. 2016-05-09]. Available from:
https://hekad.readthedocs.org/en/latest/

[28] Shopify, Inc. sarama. [online] [cit. 2016-05-09]. Available from: http:
//shopify.github.io/sarama/

[29] Prometheus Authors. Prometheus. [online] [cit. 2016-05-09]. Available
from: https://prometheus.io/docs/introduction/overview/

[30] Johnson, P. Don’t go into programming if you don’t have a
good thesaurus. [online] [cit. 2016-05-09]. Available from: http:
//www.itworld.com/article/2833265/cloud-computing/don-t-go-
into-programming-if-you-don-t-have-a-good-thesaurus.html

[31] Wikipedia: the free encyclopedia. Tarsier. [online] [cit. 2016-05-09]. Avail-
able from: https://en.wikipedia.org/wiki/Tarsier

[32] HashiCorp. Consul. [online] [cit. 2016-05-09]. Available from: https://
www.consul.io/

[33] Google, Inc. The Go Programming Language. [online] [cit. 2016-05-09].
Available from: https://golang.org/

[34] Python Software Foundation. python. [online] [cit. 2016-05-09]. Available
from: https://www.python.org/

[35] Glozer, W. wrk. [online] [cit. 2016-05-09]. Available from: https://
github.com/wg/wrk

[36] Microsoft Corporation. Visio. [cit. 2016-05-09]. Available from: https:
//products.office.com/cs-cz/visio/flowchart-software

[37] NGINX, Inc. nginx. [online] [cit. 2016-05-09]. Available from: http://
nginx.org/

[38] The Apache Software Foundation. Apache HTTP Server. [online] [cit.
2016-05-09]. Available from: https://httpd.apache.org/

[39] Elasticsearch BV. Elasticsearch. [online] [cit. 2016-05-09]. Available from:
https://www.elastic.co/products/elasticsearch

[40] The Apache Software Foundation. HDFS Users Guide. [online] [cit. 2016-
05-09]. Available from: https://hadoop.apache.org/docs/r1.2.1/hdfs_
user_guide.html

[41] Codenomicon Ltd. The Heartbleed Bug. [online] [cit. 2016-05-09]. Avail-
able from: http://heartbleed.com/

69

https://hekad.readthedocs.org/en/latest/
http://shopify.github.io/sarama/
http://shopify.github.io/sarama/
https://prometheus.io/docs/introduction/overview/
http://www.itworld.com/article/2833265/cloud-computing/don-t-go-into-programming-if-you-don-t-have-a-good-thesaurus.html
http://www.itworld.com/article/2833265/cloud-computing/don-t-go-into-programming-if-you-don-t-have-a-good-thesaurus.html
http://www.itworld.com/article/2833265/cloud-computing/don-t-go-into-programming-if-you-don-t-have-a-good-thesaurus.html
https://en.wikipedia.org/wiki/Tarsier
https://www.consul.io/
https://www.consul.io/
https://golang.org/
https://www.python.org/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://products.office.com/cs-cz/visio/flowchart-software
https://products.office.com/cs-cz/visio/flowchart-software
http://nginx.org/
http://nginx.org/
https://httpd.apache.org/
https://www.elastic.co/products/elasticsearch
https://hadoop.apache.org/docs/r1.2.1/hdfs_user_guide.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_user_guide.html
http://heartbleed.com/

Bibliography

[42] Software in the Public Interest, Inc. Debian. [online] [cit. 2016-05-09].
Available from: https://www.debian.org/

[43] TROAN E., Brown P. logrotate. [online] [cit. 2016-05-09]. Available from:
http://www.linuxcommand.org/man_pages/logrotate8.html

[44] Red Hat, Inc. Project Atomic. [online] [cit. 2016-05-09]. Available from:
http://www.projectatomic.io/

[45] Y. Rekhter, Cisco Systems, B. Moskowitz, Chrysler Corp., D. Karrenberg,
RIPE NCC, G. J. de Groot, RIPE NCC, E. Lear, Silicon Graphics, Inc.
RFC 1918 – Address Allocation for Private Internets. [online] [cit. 2016-
05-09]. Available from: https://tools.ietf.org/html/rfc1918

[46] tcp cloud, a.s. tcp cloud. [online] [cit. 2016-05-09]. Available from: http:
//www.tcpcloud.eu/

[47] Red Hat, Inc. Ansible. [online] [cit. 2016-05-09]. Available from: https:
//www.ansible.com/

[48] Django Software Foundation. Django. [online] [cit. 2016-05-09]. Available
from: https://www.djangoproject.com/

[49] Ronacher, A. Flask (A Python Microframework). [online] [cit. 2016-05-
09]. Available from: http://flask.pocoo.org/

[50] Tornado Authors. Tornado Web Server. [online] [cit. 2016-05-09]. Avail-
able from: http://www.tornadoweb.org/en/stable/

[51] Ronacher, A. Jinja2. [online] [cit. 2016-05-09]. Available from: http://
jinja.pocoo.org/docs/dev/

[52] Long, J. Python’s Web Framework Benchmarks. [online] [cit. 2016-05-09].
Available from: http://klen.github.io/py-frameworks-bench/

[53] The Apache Software Foundation. Apache Kafka. [online] [cit. 2016-05-
09]. Available from: http://kafka.apache.org/

[54] Ruby community. Ruby. [online] [cit. 2016-05-09]. Available from: https:
//www.ruby-lang.org/en/

[55] Node.js Foundation. Node.js. [online] [cit. 2016-05-09]. Available from:
https://nodejs.org/en/

[56] qwcode, dstufft, brosner, carljm, jezdez, ianb. pip. [online] [cit. 2016-05-
09]. Available from: https://pip.pypa.io/en/stable/

[57] Elasticsearch BV. Kibana. [online] [cit. 2016-05-09]. Available from:
https://www.elastic.co/products/kibana

70

https://www.debian.org/
http://www.linuxcommand.org/man_pages/logrotate8.html
http://www.projectatomic.io/
https://tools.ietf.org/html/rfc1918
http://www.tcpcloud.eu/
http://www.tcpcloud.eu/
https://www.ansible.com/
https://www.ansible.com/
https://www.djangoproject.com/
http://flask.pocoo.org/
http://www.tornadoweb.org/en/stable/
http://jinja.pocoo.org/docs/dev/
http://jinja.pocoo.org/docs/dev/
http://klen.github.io/py-frameworks-bench/
http://kafka.apache.org/
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
https://nodejs.org/en/
https://pip.pypa.io/en/stable/
https://www.elastic.co/products/kibana

Bibliography

[58] Torkel Ödegaard & Coding Instinct AB. Grafana. [online] [cit. 2016-05-
09]. Available from: http://grafana.org/

[59] Evans, C. C. YAML. [online] [cit. 2016-05-09]. Available from: http:
//yaml.org/

[60] . JSON. [online] [cit. 2016-05-09]. Available from: http://www.json.org/

[61] Red Hat, Inc. GlusterFS. [online] [cit. 2016-05-09]. Available from:
https://www.gluster.org/

[62] Google, Inc. Goroutines. [online] [cit. 2016-05-09]. Available from: https:
//tour.golang.org/concurrency/1

[63] Seznam.cz, a.s. DbgLog. [online] [cit. 2016-05-09]. Available from: http:
//dbglog.sourceforge.net/

[64] @fat & @maccman. Bower. [online] [cit. 2016-05-09]. Available from:
http://bower.io/

[65] Farina, M. glide. [online] [cit. 2016-05-09]. Available from: https://
github.com/Masterminds/glide

[66] SwiftStack, Inc. OpenStack Swift. [online] [cit. 2016-05-09]. Available
from: https://www.swiftstack.com/openstack-swift/

[67] npm, Inc. npm. [online] [cit. 2016-05-09]. Available from: https://
www.npmjs.com/

[68] SaltStack, Inc. SaltStack. [online] [cit. 2016-05-09]. Available from: http:
//saltstack.com/

71

http://grafana.org/
http://yaml.org/
http://yaml.org/
http://www.json.org/
https://www.gluster.org/
https://tour.golang.org/concurrency/1
https://tour.golang.org/concurrency/1
http://dbglog.sourceforge.net/
http://dbglog.sourceforge.net/
http://bower.io/
https://github.com/Masterminds/glide
https://github.com/Masterminds/glide
https://www.swiftstack.com/openstack-swift/
https://www.npmjs.com/
https://www.npmjs.com/
http://saltstack.com/
http://saltstack.com/

Appendix A
Acronyms

PaaS Platform as a service

RC Replication Controller

IP Internet Protocol

API Application Programming Interface

REST Representational State Transfer

CPU Central processing unit

HTML HyperText Markup Language

CSS Cascading Style Sheets

eth Ethernet network interface

veth Virtual Ethernet device

NAT Network Address Translation

UDP User Datagram Protocol

TCP Transmission Control Protocol

TUN Network tunnel

VM Virtual machine

SDN Software-defined networking

GET HTTP method

POST HTTP method

HTTP Hypertext Transfer Protocol

73

A. Acronyms

HTTPS Hypertext Transfer Protocol Secure

RAM Random-access memory

VLAN Virtual LAN

LAN Local area network

HDFS Hadoop Distributed File System

stdin Standard input I/O connection

stdout Standard output I/O connection

stderr Standard error I/O connection

I/O input/output

JVM Java virtual machine

SIGTERM Generic signal used to cause program termination

SIGCHLD When a child process stops or terminates, SIGCHLD is sent to
the parent process

npm Package manager for JavaScript

GCC GNU Compiler Collection

GNU GNU’s Not Unix!

PIP Pip Installs Packages, Pip Installs Python

CDN Content delivery network

YAML YAML Ain’t Markup Language

JSON JavaScript Object Notation

FD Ffile descriptor

SSL Secure Sockets Layer

URL Uniform Resource Locator

74

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

go-kafkalog.........Apache Kafka log format implementation in Go
go-ultimate-server....................Go server for benchmarking
heka...................Some Heka adjustment for greater reliability
heka-kafkalog Splitter and Decored plugins
kafkafeeder................Application that transfers logs to Kafka
kafkalog-logrus...........................Kafkalog hook to logrus
kubernetes-testing Support scripts for testing Kubernetes
python-ultimate-server...........Python server for benchmarking
tarsier...................Application fer testing Kubernetes cluster

text..the thesis text directory
appendix............................. cd contents file and acronyms
chapters.......................................files of each chapter
images...all used images
inc.................. includes such as assignment, logo, class file, . . .
bibliography.bib.................................bibliography file
sejvlond masters thesis.tex main tex file
sejvlond masters thesis.pdf...........................final PDF

75

	Introduction
	Seznam.cz nowadays
	What is Kubernetes?
	What is Docker?
	Docker architecture

	Kubernetes basic concepts
	Pod
	Volume
	Replication controller
	Service

	Kubernetes architecture
	Etcd
	API server
	Kubelet
	Kube-proxy
	Controller manager
	Scheduler
	Node

	Possible problems with Kubernetes in Seznam.cz
	Docker registry
	Secrets distribution
	Logging
	Security
	Monitoring
	Static content of websites

	Running Kubernetes
	Networking in Kubernetes
	Starting cluster

	Docker registry
	Secrets distribution
	Logging
	FluentD
	Logstash
	Heka

	Security
	Monitoring
	Static webpages content
	Testing application
	Designing Tarsier
	Tarsiers synchronization
	Tarsier plugins and their commands

	Testing the cluster
	Benchmarking Python and Go application servers
	Benefits for Seznam.cz
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

