CzECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

Title: Schema enforcement in a schema-free graph database |
Student: Bc. Jifi Kovacic¢

Supervisor: Ing. Michal Valenta, Ph.D.

Study Programme: Informatics

Study Branch: Web and Software Engineering

Department: Department of Software Engineering

Validity: Until the end of summer semester 2016/17

Instructions

The aim of the work is to explore possibilities of schema enforcement, i.e., specification and check of
integrity constraints (IC) in a schema-free graph database (GD). A prototype is required in order to proof the
concept. Selection of supported ICs will be based on analysis of practical requirements and will take into
account the cost (in the sense of computational complexity) of 1Cs checking.

There are two parallel theses focused on this topic. They share the first part - requirements specification
(point 1 below).

1. Explore and collect realistic requirements for IC enforcement in a GD.

2. Study GD neo4j and query language CYPHER, its implementation and possibilities of its extension.

3. Select a subset of requirements collected in point 1 that are convenient for implementation in CYPHER.

4. Design the syntax for definition of ICs selected in point 3 and the way of their implementation.

5. Implement functional prototype, realize testing, and evaluate your solution.

References

Will be provided by the supervisor.

L.S.

Ing. Michal Valenta, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague November 18, 2015

CzecH TecHNICAL UNIVERSITY IN PRAGUE

FacuLrry oF INFORMATION TECHNOLOGY /

DEPARTMENT OF SOFTWARE ENGINEERING

Master’s thesis

Schema enforcement in a schema-free graph
database I

Bc. Jiri Kovacié

Supervisor: Ing. Michal Valenta, Ph.D.

4th May 2016

Acknowledgements

I would like to express my gratitude to my supervisor of my Master’s thesis
Ing. Michal Valenta, Ph.D. for his time and valuable guidance, who was
always available when I needed, and was able to share his rich knowledge
with me. Furthermore I would like to thank MSc. Michal Bachman, the
creator of GraphAware Framework, who has willingly shared his experience.
I would like to thank Ing. Jaroslav Ramba for providing me a contact with
MSc. Michal Bachman. Iwould like to thank Bc. Lenka Chmelikov4, for being
the grammar and spelling police, taking her time to carefully read the thesis.
I would like to thank my parents for their patience and support. Finally,
special thanks go to everyone at CTU FIT for providing me with scientific
background.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 4th May 2016

Czech Technical University in Prague

Faculty of Information Technology

© 2016 Jifi Kovacic. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without
author’s permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Kovaci¢, Jitfi. Schema enforcement in a schema-free graph database I. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Techno-
logy, 2016.

Abstrakt

V této préci jsou pfedstaveny mozné druhy integritnich omezeni, které mo-
hou byt implementovany do grafové databaze Neo4j. Prace je rozdélena
ve vétsi mife na teoretickou a v mensi mife na praktickou ¢ast. Cilem
teoretické casti je vyvodit rliznd omezeni tykajici se integritnich omezeni
a podlozit tato odt@ivodnéni samotnou pouzitelnosti i mimo jiné ve formé
Casové slozitosti. Dale se v préci zabyvdme ndvrhem nové syntaxe jazyka
Cypher pro definovani novych integritnich omezeni. V implementaéni ¢asti
je navrzZen prototyp rozhrani, které ma na starosti spoustét kontrolu dat v

grafové databdzi Neo4j na zdkladé nadefinovanych integritnich omezeni.

Klicovdaslova Neo4j, grafova databdze, integritni omezeni, Cypher, schéma,
validace, konfigurace schématu, GraphAware framework

X

Abstract

This thesis introduces all possible types of integrity constraints which can be
implemented into Neo4j graph database. This work is divided into two parts,
a theoretical and a practical. The aim of the theoretical part is to draw various
restrictions relating to the integrity constraints and substantive reasons by
the usability itself, inter alia, form of time complexity. Theoretical part also
discusses and proposes a new syntax of Cypher Query Language for defining
new integrity constraints. A prototype interface implementation is designed
in the practical part with ability to start a validation process on the bases of
defined integrity constraints on data in Neo4j graph database.

Keywords Neo4j, graph database, integrity constraints, Cypher, validation,
schema, schema configuration, GraphAware framework

Contents

[ntroduction] 1
-of-the- 5

[(l.1 Graphtheory| 5
[[.27 Graphdatabases|. 7

17
2.1 PostgreSQL and Oracle Constraint Research| 17
2.2 Cypher Schema syntax — Research of integrity constraint pro- |
posalsforNeodj| 28

.3 Cypher Schema syntax — Revision of integrity constraints| . . . 32
2.4 Requirementsand assignmenf]. 47

B Cypher syntax desi 51
B.I Comprehensive definitions| 51
B2 Cypher Query Language syntax for integrity constraints| . . . 54
B3 Summary]. 65

4 Realisation| 67
4.1 Implementation background|., 67

4.2 Tmplementation of integrity constraints 70
|3 How to start using SchemaConfigurationAPl 77
B4 Summary]. 77
b__Measurements| 79
.1 Characterization of m rements| 81
6_Future workl 89
[Conclusionl 91

xi

Bibliography| 93

A Acronyms 99

(B Contents of enclosed CDI 101

xii

List of Figures

[L.1 DFS and BFS traversing process|. 7
[1.2° Labeled property graph movie example] 9
[1.3 Neo4j High-Level Architecture] 11
[1.4 Neod4j file record structure for a node and relationship| 12
2.1 Oracle Process of Creating a Table definition and Instance|. 17
2.2 Mind map constraintissues| 33
.3 Endpoint requirement pseudo Cypher symbols fegend| 44
2.4 Label coexistence — the Ingredient example] 45
B.1 Example of schema in a relational database| 52
B.2 Schema Configuration hierarchical structure] 53
B.3 Node and Relationship templateindetail] 54
B.4 Node and Relationship template revised indetaill 58
4.1 Neo4j Transaction Event Handler API| 69
4.2 UML class diagram — Schema configuration API model| 71
0.1__The structure of Cineasts databasel 80
p.2 Unique validation —single property| 82
b.3 Unique validation — multiple property] 84
b.4 Unique validation —comparison| 84
b.5 Property value limitations or Mandatory properties| 86

xiii

List of Tables

2.1 Shopping list before changing the position [43]].|. 28
.2 Shopping list changing the position [43]]. 28
2.3 Property values of givennodes|. 35
2.4 Complexity of integrity constraints validation] 48
B.1 Hardware configuration| 79
.2 Nodelabel segmentation] 81

XV

Introduction

A database management system (shortly DBMS) is a computer program (or
collection of programs) that serves for storing, modifications and extracting
information from a database, in general the DBMS takes care about manage-
ment of information. Before the advent of databases were data traditionally
organized in file formats [1]. The DBMS was a new concept that really helped
with organization of data. The most widespread and well-known DBMS are
relational databases. Their history start in early 1970s where the Relational
Model was invented at IBM Research laboratories [2]. Relational databases
using the model have become the most important systems for data manage-
ment [3]. The model also called a database Schema describes a structure where
data are organized into tables. Each table contains records where every single
record with relevant data information is stored in a row, and each row has its
unique identifier used for distinguish each other. Nowadays, the relational
databases still belong between the most used DBMS in the world. However,
currently DBMS are having trouble because of fast data growth. There are
difficulties in semi-structured data which does not respect a rigid described
structure and also due to data that can be sparse. All these things are not so
good for relational databases and their limited performance of processing this
kind of data. This fact that relational databases cannot handle new types of
data opened the way for new types of database management systems. These
new databases introduce themselves as NoSQL databases which provide a
new mechanism of data processing. They do not use the relational model
which is schema-specific but a specialize structure determined for such type
of data the database should be able to manage. These databases can be
key-value, document or graph. This thesis is engaged in graph databases.
Graph databases are youngﬂ NoSQL representatives that for data storing
use a graph structure. The first thought of graphs and Graph theory falls
within the early 18th century where Leonhard Euler introduced in his solution

IFirst commercial version was introduced in 2003.

INTRODUCTION

of a problem the Seven Bridges of Konigsberg. Graph databases do not use
schema-specific model and they act as schema-free databases. The concept of
schema-free means that it is not needed to define how the data should look like.
We do not have to specify for example datatypes or how the data should be
stored, and this is the main advantage of how to deal with sparse data. Graph
databases use for data representation nodes and relationships. Connections
between nodes are done by relationships. Both nodes and relationships can
contain properties which is a key-value structure where under the specific
key is stored a particular value. Nodes and relationships are separated by its
use and kind of ascii-art description. Nodes are represented in (parentheses)
and we can give a zero, one or more node names called Label(s). Relationships
are represented in [brackets] and must contain the naming convention called
a relationship Type.

The actual real world situation requires that everything must be done, pro-
cessed, executed or controlled immediately. This enormous pressure from all
sides is unsustainable and technology itself is driven into the ground-breaking
heights. Graph databases are starting to be widely used for recommendation
systems or for detection of fraud. These requirements demand almost real-
time interaction where the getting of an important information does not take
hours or minutes, but seconds or better milliseconds. Thus, one of the most
important requirements is to keep low-time latency.

This diploma thesis focuses on some kind of database restriction and a val-
idation where a control of these restrictions takes more time than is adequate
and widely depends on the size of a database. Graph databases are normally
schema-free which means that there are no restrictions. However, customers
working with graph databases would like to use some techniques that are
available in the relational databases that can restrict a database schema. This
kind of restriction is called Integrity constraint. Integrity constraints define the
database schema which can be afterwards enforced at database data.

Chapter 1 of this thesis introduces background of a research including
Graph theory, what is a graph traversal and what types of NoSQL databases
exist. In this chapter it is introduced graph database Neo4j which is used for
design and implementing of those integrity constraints that are be convenient
to deal with them. This chapter also includes basics of Cypher Query Lan-
guage and its syntax which is in this work extended about a new integrity
constraint definition and also there is mentioned a GraphAware framework, a
tool that helps with advance Neo4j use cases. Chapter 2 deals with a research
and how the integrity constraints are implemented in the relational databases.
This chapter takes an inspiration that can be helpful for definition of integ-
rity constraints in Neo4j. Chapter 2 also describes a problem of the integrity
constraints. There is introduced a working paper called Request for proposals:
Cypher Schema syntax designed and proposed by Cypher Language Group.
The working document contains all possible integrity constraints that should
be implemented with a provided description of their behavior. The last sec-

2

tion of the chapter 2 is a complete revision of integrity constraints. There is
discussed possible problems and difficulties that may arise. Revision section
deals with time complexity with combination of DML operations; it contains
one of the possible suggestions of the new Cypher syntax for the integrity
constraint definition and a discussion around the problem. Chapter 3 intro-
duces a new Cypher Query Language syntax design for integrity constraints.
The syntax itself is designed gently to keep a basic idea of actual Cypher syn-
tax for querying Neo4j graph database. Designed syntax covers all possible
options from creation of integrity constraint, its detection by Cypher MATCH
clause, modifications by SET clause and other provided actions. Chapter 4
presents a prototype implementation called SchemaConfigurationAPI and how
the integrity constraints should work and be handled in Neo4j graph data-
base. Chapter 5 contains benchmark of implemented integrity constraints that
are tested on a Cineasts movie database. Provided benchmark could not be
compared with actual Cypher syntax in Neo4j because there are actually not
supported such processes that are tested. However, the benchmark provides
valuable information of implemented integrity constraints and how to use
this information to the future. Chapter 6 comments on the evaluation and
contains next proposal topics for further research in this area of implementing
integrity constraint for Neo4j graph database.

CHAPTER 1

State-of-the-art

1.1 Graph theory

History of Graph theory goes back to the early 18th century where Leonhard
Euler introduced in his paper a solution of a problem the Seven Bridges
of Konigsberg [4, 5]. The city of Konigsberg in Euler time was in Prussia,
today is in Russia and the city actual name is Kaliningrad. The city was
set on both sides of the Pregel River and included two large islands which
were connected each other by seven bridges [6]. Leonhard Euler solved the
problem whether it was possible to find a path that every bridge could be
crossed once and the starting and ending point of the walk must had been at
the same place. In his work Leonhard Euler proved that this problem does
not have a solution and the Graph theory had been born. Nowadays, we can
see graphs everywhere. The graphs consist of points which are connected
each other by lines. These points we can imagine, for example, as cities
and a connection between them we can consider roads. But, this real-world
example has its theoretical thought in nature science, Mathematics.

In this section we will introduce basic definitions from Graph theory
which is a good basis for understanding how the graph databases work. All
these definitions within the Graph theory section are taken from Diestel [7],
unless indicated otherwise.

Graph A graphisapair G = (V, E) of sets satisfying E C (V' x V). The elements
of V are the vertices or nodes of the graph G, the elements of E are its edges or
relationships. For each edge e € E(G) applies that it is connected with a pair
of nodes u, v, where u,v € V(G). In a Graph theory literature we meet with
terms vertices and edges, but instead in a graph database terminology we use
nodes and relationships. These terms in this thesis are interchangeably used.

Order The order is the number of vertices of a graph G. Its number of edges
is denoted by ||G||. Graphs can be finite or infinite due to their order. In this
text we consider all graphs as finite.

1. STATE-OF-THE-ART

Incident vertex A vertex v isincident with anedge eif v € ¢; then eis an edge
ato.

Vertex degree The set of edges vertex v is incident with is denoted with E(v).
The degree of a vertex v, denoted as d(v), is the number |E(v)| of edges incident
with the vertex v.

Subgraph Lets have two graphs G(V,E) and G’(V’,E’). The graphs G’ is a
subgraph of G, written as G’ C G, if V/ € V and E’ C E. That means that
all vertices used in the graph G’ are vertices of the graph G and all edges in
the graph G’ are the edges of the graph G. This definition was adopted from
Bachman and Troup [8} 3]].

Path A pathisanon-empty graph P = (V,E) of the formwhereV = vy, vy, ...,0;
and E = (vov1), (v102), . . ., (k-17k) and k is a finite number. The pair of vertices
(vk—17) is an edge and a number of edges |E| in the path is its length.

Directed graph A directed graph or digraph DG = (V, E, init, ter) is a graph
G = (V,E) with the maps additional information init and ter. Map init: E — V
assigns every edge e an initial vertex init(e) also called as a start vertex or
node. Map ter: E — V assigns every edge e a terminal vertex ter(e) also
called as an end vertex or node. The edge e is said to be directed from
init(e) to ter(e). Note that there may be several edges between the same two
vertices. Such edges with the same direction are called multiple or parallel
edges. 1f init(e) = ter(e) the edge is called loop. This definition was adopted
from Bachman and Troup [8, 3].

Vertex degree revisited In direct graphs the degree of a vertex v, denoted as
d(v), can be formulated as indegree and outdegree. Indegree, denoted d;,(v),
is defined as the number |E;,(v)| of edges incident with the vertex v, where
Eiu(v) € E(v). Similarly, outdegree, denoted d,,:(v), is defined as the number
|Eout(v)| of edges incident with the vertex v, where E,,;(v) C E(v). Note that a
loop case adds one to both, the indegree and outdegree of its vertex v. This
definition was adopted from Bachman [8].

Graph traversal

Graph traversal or graph search is in computer science a technique of visiting
each vertex in a graph. Traversing a graph means visiting its vertices or nodes
following the edges or relationships. There exist two most used algorithm to
traverse the graphs, Depth-first search (DFS) and Breadth-first search (BES).
These algorithms search in linear time, respectively in O(|V|+|E|), where |V|is
a total number of vertices and |E| is a total number of edges. Both algorithms
start searching from a root node. Figure(l.1|shows how traversal algorithms
work. The Depth-first search starts from the root and goes through the nodes
as quickly as possible to the leaf nodes. The Breadth-first search algorithm

6

1.2. Graph databases

Depth-first search Breadth-first search

Figure 1.1: DFS and BFS traversing process [9].

starts at a top level (i.e. root node) and firstly explores its neighbor nodes
before going to the lower level [9,[10].

1.2 Graph databases

Generally, databases are instruments which help us with storing and retriev-
ing data. It is an organized collection of schemas, tables, queries, views
and other database objects [11]. The whole functionality handles a Database
Management System known as DBMS. The DBMS is a set of collaborative
computer applications which interacts with a user, other applications and the
database itself. The main objective of DBMS is to allow create, read, update
and delete operations (or CRUD), querying and not least a database adminis-
tration. The reason why graph databases began to come to foreground is that
from year to year is increased the amount of data in the world and there is a
need to effectively store and query them. These data are increasingly struc-
tured and also interconnected and we start to feel that relational databases
have some limits and their capability may not be sufficient [12].

The databases can be divided into two categories, SQL and NoSQL. The
SQL is an abbreviation meant for Structured Query Language. Development
of the relational databases, thus databases using SQL started in 1970s at IBM
laboratories [2]. The principle of the relational database is storing data into
structured tables. Tables are composed of columns and each column has
defined its datatype. The data itself are then stored into the rows where each
row has such a unique identifier. Data across tables can be linked via keys.
For querying data is used the SQL language mentioned above.

The graph databases belong between NoSQL databases. In comparison
with the relational databases the graph database are quite a bit younger, with
first implementation in 2000s [3]. What exactly describes NoSQL covered

7

1. STATE-OF-THE-ART

Michael Hunger in his presentation [13]]: “NoSQL describes ongoing trend
where developers increasingly opt for non-relational databases to help solve
their problems, in an effort to use the right tool for the right job.” NoSQL
databases can be arranged into specific subcategories reflecting their storage

policy.

e Document stores are document-oriented databases offering storing, re-
trieving and managing document-oriented information also known as
semi-structured data [14]. The behavior is similar to a filling cabinet in
medical clinics where doctors have stored documents about patients in
their medical folders. Typical representatives are MongoDB, CouchDB
and OrientDB.

e Key-Value stores are databases based on a global key-value mapping.
It is a table with a column of keys and a column of values, so all data are
stored within this table [3]. Key-value stores act like large, distributed
hashmap [15]. Between representatives belong Membase, Riak, Redis
and Amazon DynamoDB [13].

e Graph databases store data in a graph. Data information is stored in
both nodes and relationships. A graph database is an online, opera-
tional database management system with CRUD operations and is con-
sidered as a schema-free database [15]. Graph databases are those graph
databases that require edge transition in constant time O(1). Graph
databases store data in denormalized form against relational databases
where is needed to perform join operations, but this is paid by higher
time complexity for writing operations [16]. Typical representatives are
Neo4j, Sones, Infinite Graph, AllegroGraph and FlockDB [12].

Of course, we are not able to mention all representatives of NoSQL data-
bases because a development trend to obtain new kinds of graph databases
is still running.

Property graph

In section (1.1l we mentioned how the graph is defined. The graph is a pair
G = (V,E), where letter V is meant for vertices and letter E for edges, E C (VXV).
However, this kind of graph is not convenient to store suitable data and also
we are not supposed to want it because the graph does not have assumptions
and cannot behave as a suitable data model for data storage [8]. The Neo4j
solved data model for graphs itself and uses a labeled property graph model.
The label property graph must fulfil following characteristics [15]:

e Property graph contains nodes and relationships.

1.2. Graph databases

[Person Person

name: Tom Hanks name: Hugo Weaving
born: 1956 born: 1960
ACTED_IN ACTED IN
ACTED IN roles: Bill Smok roles: Agent Smith

roles: z:chry
vie,

title: The Matrix J

lovie

title: Cloud Atlas]

released: 2012
/ DIRECTED
Person

DIRECTED name: Lana Wachowski J

released: 1999

born: 1965

Figure 1.2: Labeled property graph movie example [17].

e Nodes can be labeled with one or more labels which is good for identi-
fication.

e Nodes can contain properties; properties are stored as a key-value pairs.

e Relationships can be named and directed, the name of a relationship is
called a Type.

e Relationships have both a start and end node.

e And relationships can also contain properties like nodes.

Figure is an existing example which serves as a basic example to
explain how the graph should look like, or how should the information be
kept in Neo4j graph database. The graph stores information about movies
and persons where a particular relationship distinguishes a person from a
director or an actor. Figure[1.2) fulfills all mentioned characteristic describing
the labeled property graph.

Neo4j

Neo4j is a graph database from the NoSQL category. It is an open-source
project developed in Java and Scala languages running on the Java Virtual
Machine [3]. In contrast with the relational databases the Neo4j graph data-
base is schema-free which means that there are no limitations to adhere any

9

1. STATE-OF-THE-ART

predefined database structure, i.e. a database schema [8]. Neo4j is suitable for
Highly connected data where belongs Social networks, or Recommendations,
Business Intelligence, etc. Neo4j offers many features [18]:

e For all transactions supports full ACID behavior. ACID is an abbrevi-
ation for atomicity — a transaction must finish as the whole, if some part
of the transaction fails the entire transaction fails and a database state
will be unchanged. Consistency ensures that database is valid before and
after the transaction. Isolation — parallel transactions will not affect each
other and durability is for transactions that if they were once committed,
then the information was permanently stored in the DBMS.

e Database is provided in two modes, an embedded and server mode.
Embedded means that the database is tightly integrated with a certain
application software. It is faster, but we are not able to share it; no other
process can access the database. Whereas the server mode is a little bit
slower, but the advantage is in its sharing [19].

e Database guarantees high speed querying. This is due to Neo4j design
for storing data into disk. The idea itself is in a smart representation of
nodes and relationships.

e High availability. This feature is only available in Neo4j Enterprise Edi-
tion. It allows two main features, a Database as a fault-tolerant system and
Database as a scalable system. In the first option we can imagine a mas-
ter database with many replicas which can cover all sorts of mistakes.
The second option allows database to be clustered on multiple physical
servers, this is known as a horizontal scaling [20].

e Cypher is supported. Cypher is a textual, declarative query language
built to simplify querying under the graph database. Cypher uses a
form of ASCII art to describe a pattern to query the database. Declarative
paradigm means that we specify what we want to obtain, but not how
to something obtain.

Architecture

Neo4j acts as a Native Graph Storage. We can imagine this phrase that a
graph database has a feature called index-free adjacency. Thus, each node
acts as a micro-index and maintains direct references to its adjacent nodes.
These micro-index nodes replace global indexes which link nodes together,
the global index is known for a nonnative graph databases [15]. With index-
free adjacency one traversing step, step among two nodes, is constant, in time
complexity O(1).

Figure[I.3shows the whole architecture concept for Neo4j graph database.
It is split into three parts, JVM offering variety of APIs, OS with file system

10

1.2. Graph databases

JVM
Neodj
Other APIs
Transaction
Core API Management
Object Cache
Operating System
File System Cache
HDD
Record Files
2 |le ®
@ S ll2af & Transaction
gl (sg] 2 Log
P & %I— 9
g€ | =

Figure 1.3: Neo4j High-Level Architecture [8].

cache and HDD where the particular functionality is designed. Due to index-
free adjacency must be appropriately proposed a physical storage space.
That means that each file record is stored separately on a disk. Figure
distinguishes special files for nodes, relationships, relationship types and
properties for both nodes and relationships. Figure (1.4 shows two records,
how nodes and relationships are physically stored respectively.

Node store file

The node store file is determined for storing node records. This applies for
each node which is created. The node store file is fixed at its agreed size.
Each node has reserved 15 bytes. This brings a very great asset where the
fixed-size enables us a fast lookup for certain node in the node store file

11

1. STATE-OF-THE-ART

Node (15 bytes)

inUse
nextRelld nextPropld labels extra

ANNNRNRNNERENER

Relationship (34 bytes)

inUse firstPrevRelld secondPrevRelld nextPropld
firstNode secondMode relationshipType firstMextRelld secondNextRelld firstinChainiMarker
1 5 9 13 17 21 25 29 3334

Figure 1.4: Neo4j file record structure for a node and relationship [15].

because we simply by a node identification number can calculate where the
node physically lays in the file. If we have reserved 15 bytes per node and
want to find a 50th node (its ID) we will simply find the node location with
a calculation 15 = ID, this leads to the O(1) complexity time. The first byte is
an in-Use flag which tells us whether the node is still active or if the database
can re-write it with a new one. The next four bytes are reserved for first
relationship ID connected to the node. Another next four bytes represent ID
for the first node property. The five bytes are served for labels, i.e. how the
nodes are named, and the last byte is reserved for flags [15].

Relationship store file

The relationship store file stores relationship records. As well as the node
store file, the relationship store file is also fixed-size. Each relationship record
has reserved 34 bytes length. The first byte is in-Use flag with the same
behavior like in the node representation. The next pair of four bytes is for
IDs of the nodes, the start node and end node of the relationship. The next
four parts consist of 4 bytes are reserved as pointers for the next and previous
relationships records for each of the start and end node. The last byte is a flag
called relationship chain which is used in Neo4j’s traversal framework [3, 15].

Cypher

Cypher is a declarative pattern matching query language allowing querying
and updating of the graph. The declarative expressing means that we describe
thorugh Cypher what we want to get from the graph instead of how we want
to get from the graph which is a sign for an imperative paradigm [21]. The
Cypher idea itself was to become a human-readable. It is illustrated in a
pattern definition where is used a form of ASCII art to represent the graph
pattern in the graph database. Cypher borrowed many statements from other
query languages like SQL and SPARQL. Cypher uses clauses such as [22]:

12

1.2. Graph databases

CREATE for a node and relationship creation.

MATCH for a problem description.

RETURN for a returning the result set.

WHERE, ORDER BY, WITH, MERGE, SET, REMOVE, INDEX, CON-
STRAINT, etc. whose name says enough.

Among another query languages which supports graph database Neo4j
belong RDF query language SPARQL and the imperative, path-based lan-
guage Gremlin [15]. This work deals with Cypher. Our goal is to extend the
Cypher with new functionality supporting our constraint definition entries
which is discussed in a chapter 5| Cypher syntax design.

Constraints

Integrity constraints are rules which enforce data structure in a database
schema. These rules specify various restrictions that the database must ful-
fill, if something violates the constraint rule, then the database changes are
not allowed. Integrity constraints are widely used in the relational databases.
The integrity constraints have developed into the present form over the rela-
tional databases lifetime. The more about integrity constraints is discussed
in section 2.1 PostgreSQL and Oracle Constraint Analysis.

Neo4j graph database supports very small amount of integrity constraints.
Neo4j is divided into two versions, a Community edition and Enterprise
edition which is affordable for a fee. Community edition supports Unique
constraint which means that it is possible for a certain labeled node with a
particular property assert its unique value, but it is not supported covering
multiple properties simultaneously yet, and also uniqueness is not suppor-
ted for the relationship properties too. During writing this diploma theses
was announced a new version of Neo4j (exactly v2.3) where in Enterprise
edition was added a new integrity constraint feature called Property Existence
Constraints [23]. This integrity constraint lets us to specify a rule which will
watch if the property is satisfied, i.e. must be set in a given node or relation-
ship. The property existence constraint is an analogy to NOT NULL in the
relational databases. Examples below show us a current state of integrity
constraint definition in Neo4j graph database [23]:

Listing 1.1: Integrity constraint definition in Neo4j GD

(1) CREATE CONSTRAINT ON (movie:Movie) ASSERT
movie.title IS UNIQUE

(2) CREATE CONSTRAINT ON ()-[like:LIKED]-() ASSERT
exists(like.day)

13

1. STATE-OF-THE-ART

First integrity constraint rule checks property uniqueness for all nodes
with a label Movie, this kind of integrity constraint is possible to create in
both editions the Community and Enterprise. The second proposal is an
example how to validate a property existence where the use is shown on
the relationships. All relationships with a type LIKED must contain a prop-
erty day. This integrity constraint feature is only available in the Enterprise
edition.

The next tasks of this diploma thesis is to design and implement extension
for Cypher language which covers some of the integrity constraints specified
in chapter 2] Analysis section2.1]and revised in section 2.3} respectively.

GraphAware framework

GraphAware Framework is an open-source convenient platform for extend-
ing Neo4j graph database. This framework was introduced in Bachman'’s
MSc thesis GraphAware: Towards Online Analytical Processing in Graph Data-
bases. The main target of GraphAware Framework is to speed-up develop-
ment with Neo4j by providing a platform for building useful generic as well as
domain-specific functionality, analytical capabilities, graph algorithms, and
many more [24]. GraphAware Framework has two key parts of functional-
ity [25]:

e GraphAware Server is a Neo4j server extension module allowing to
rapidly build (REST) API{] on top of Neo4j using Spring MVCEI

e GraphAware Runtime is a runtime environment for both embedded
and server deployments. GraphAware Runtime helps us with the use of
pre-built as well as custom modules called GraphAware Runtime Modules.
These modules can extend a core functionality of Neo4j graph database
in ways such as:

- Enforcing the specific integrity constraints on the graph schema.
- Maintaining an in-graph index.

— Improving performance by building in-graph indices and much
more.

Neo4j graph database has implemented techniques which help developers
to create their own plugin extensions, but these techniques in certain parts
are not sufficient. There is a solution in GraphAware Framework which was
designed to help developers with advanced usage of Neo4j graph database.
The framework deals with the following use cases [3]:

2REST APIs are such APIs whose methods can be accessed via HTTP methods [3].
3Spring MVC is a Java framework that, among other things, implements model-view-
controller pattern [3].

14

1.2. Graph databases

e Custom APIs is in Neo4j known as Unmanaged Extensions. This helps
us to build new functionality with full control over APL. It is one level
below than creating Server Plugins where the API is not needed [26].
With help of GraphAware Framework we can simply develop such
APIs for miscellaneous objectives including functions that are missing
in Cypher query language, database access restrictions or custom-build
input/output formats [3]].

e Transaction-Driven Behavior, Neo4j provides behavior to hook into a
transaction handling process and inspect these transactions [3]. This
means that Neo4j gives us a chance to react to these transactions right
before they are actually committed, or right after they have been com-
mitted [27]. Such behavior can be useful in cases like notifications
of modified data, additional modifications or schema enforcement.
GraphAware Framework provides suitable API to work easily with
transactions [3].

e Asynchronous Computation is a very useful thing when we want to
run operations in the background of Neo4j. GraphAware Framework
offers to build functionality that can be executed in the background.
Asynchronous Computation can be widely used in precomputing re-
commendations, gathering information or statistics [3].

Since the time GraphAware Framework were developed came many mod-
ules with useful features. Such features for example are [25]:

e GraphAware Test is a module which provides a simple code testing
with interaction with Neo4j graph database. The code can be tested in
three possible ways:

— GraphUnit is designed for easy unit-testing of code.

- Integration Testing is a part which is helpful for integration testing
of Neo4j-related code.

— Performance Testing which is good to measure performance of
Neo4j-related code, how much time consuming our operations
are, respectively.

e Improved Transaction Event API where the main idea was introduced
in the paragraph Transaction-Driven Behavior.

There are much more examples of implemented modules which are avail-
able, described, documented and ready to use in GraphAware Framework
which has free access in a GraphAware Git repository [25].

15

https://github.com/graphaware/neo4j-framework

CHAPTER 2

Analysis

2.1 PostgreSQL and Oracle Constraint Research

This section discusses the possibilities of integrity constraints in Oracle and
PostgreSQL relational databases. According to this chapter there are lifted up
substantial ideas which were implemented by Oracle and PostgreSQL. The
next chapter dealing with integrity constraints compare main ideas for Neo4;
graph database with this part of the work.

Relational databases use tables for data storing. These tables as parts of a
database schema needs to be created which serves Data Definition Language
(DDL). Figure[2.1|shows a whole life-cycle creation process for defining a new
table in a database. At first, we need to create a Table definition and Instance.
Then we need to define columns for the particular table and after column
definitions we must define the integrity constraints for the table. Dashed
rectangles are optional and cover possibilities needed to a table update oper-
ation [28].

Integrity constraints are rules used to specify some limitations to the cer-
tain database, basically determined for create, insert, update and delete oper-
ations. The integrity constraints define a border to fulfil database correctness.
Integrity constraints consider right data from the other ones. Suitable data are

Process of Creating a Table Definition and Instance
=TT T [
Creaie Table | |
Definiion and (| Define Columns e Define Constraints |-l Update the |
5 Processing Type
Instance | |
! [
——
| Update Snapshot |
Legand ;
I:_| M :.f:mm _—wl andlor Blinding ———
L Optional : Alfributes [
_________ |

Figure 2.1: Oracle Process of Creating a Table definition and Instance [28].

17

2. ANALYSIS

stored and data which violate the integrity constraint condition not [29]. Why
do we really need integrity constraints, or why are we trying to implement
them? One possible answer is that we just simply need those integrity con-
straints because sometimes we need our data to look somehow as we wish.
Thus integrity constraint tells us how the data should look like in storing
them into the tables or columns [30]. Generally, the integrity constraints can
be divided into three sections [29] 31]:

1. Declaratively (Server-side)

Integrity constraints defined as a declarative on the server-side tell us
that they are stored together with a database schema into a database
machine. This way has both advantages and disadvantages. The ad-
vantage is that integrity constraints are defined on the database server
and during the execution DML, or DDL operations this database server
validates input data. The one big difficulty is the server itself and its
validation. This is being done because the user working with the data-
base is informed with error notifications with some delay. Delayed
communication with the database server can be pesky and can lead to
inefficiencies during a work and a bad time scheduling, respectively.

2. Procedurally (Client-side)

The next possibility is defining client-side procedural integrity con-
straints. From a user perspective who works with relational database
all time is this way very effective. It is given by integrity constraints
which are physically stored on the client machine. This causes imme-
diate reaction for data input and no time delay. But this approach has
one flaw. If we needed a database which must be running for many ap-
plications, then the integrity constraint control procedures would have
to be defined for every single application. Also there is no guarantee
an intervention to the database schema. Also the intervention to the
database schema is not ruled out.

3. Procedurally (Server-side)

The control procedures and integrity constraints are saved and run on
the database server machine. This job does the triggers. The triggers are
small programs which are executed depending on a particular event.
These events are DML operations like DELETE, INSERT and UPDATE
and DDL operations such like CREATE, ALTER and DROP statements.

All these three methods have its pros and cons. Among the best and most
effective way to introduce integrity constraints in the relational database
is to use the declarative definition, accompanied by one of the procedural
definitions [31]].

18

2.1. PostgreSQL and Oracle Constraint Research

The relational databases fulfilling SQL92 standard where we can include
also Oracle and PostgreSQL databases. In general, there are defined these
integrity constraints [29,32]:

e NOT NULL,
e UNIQUE KEY,

e PRIMARY KEY,
o FOREIGN KEY,
e CHECK.

Integrity constraints can be defined in both ways, either at a column level
or at a table level. Of course, we have to admit that in a creation process
at the table level where columns are defined are also entered datatypes for
those columns. We automatically count on with this integrity constraint, but
in comparison relational databases with Neo4j graph database where is no
need to use datatypes is this informal constraint needed which must control
and validate datatypes. For example if we define a column with an INTEGER
datatype, it will not be possible to place there a STRING value.

Integrity constraints mentioned above have same behavior in both data-
bases Oracle and PostgreSQL. There is only one small different part and it is
their definition or a syntax statement. If the mentioned basic integrity con-
straints are not enough, then exist a possible way how to enrich the database
with small programs called triggers.

NOT NULL integrity constraint

Integrity constraint called NOT NULL is always defined at the column level
of the database. The NOT NULL integrity constraint ensures that there will
not be stored any null values on the database. Listing [2.1|shows a usage of
the NOT NULL integrity constraint defined in more than one column.

Listing 2.1: PostgreSQL NOT NULL constraint definition [32]

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

s

The NOT NULL integrity constraint is functionally equivalent with creat-
ing of check integrity constraint CHECK(columName IS NOT NULL) [32],
but in SQL databases are explicit not-null integrity constraints more efficient
due to their performance.

19

2. ANALYSIS

UNIQUE integrity constraint

In Oracle database a UNIQUE integrity constraint is known as Unique key [28].
The UNIQUE integrity constraint ensures that inserted data in a column,
column where is a definition with the Unique integrity constraint, in all rows
in the table must contain unique column values. The UNIQUE integrity
constraints can be written in both ways as a column and as a table statement
which is shown in listings 2.2] and 2.3l The UNIQUE integrity constraints
should also be defined in more columns than one in the table.

Listing 2.2: PostgreSQL UNIQUE constraint as a column definition [32]

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

A

Listing 2.3: PostgreSQL UNIQUE constraint as a table definition [32]

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

);

PRIMARY KEY integrity constraint

A PRIMARY KEY integrity constraint is used as a unique identifier for rows
in a table. By the PRIMARY KEY integrity constraints we can determine
unambiguous set of information in the table. The PRIMARY KEY is usually
set to one or more columns for proper data recognition.

The PRIMARY KEY integrity constraints also can be written in both ways
as a column and table statement like a UNIQUE integrity constraint which is
mentioned and shown in listings[2.2land 2.3} Only what we need is to replace
the UNIQUE keyword with the PRIMARY KEY keyword.

FOREIGN KEY integrity constraint

A FOREIGN KEY integrity constraint is an existing value from related table
where its primary key is stored in a certain row and the value of foreign key is
stored in another row(s) in the another table. There is a relation between two
tables where the first table must have its primary key values and the other
one table must contain values of the primary key as values of the foreign key,

20

2.1. PostgreSQL and Oracle Constraint Research

but if it is necessary. We say this maintains the referential integrity between
two related tables [32]. Or we can follow an Oracle definition as the best
way [33]: “Foreign keys provide a way to enforce the referential integrity of a
database. A foreign key is a column or group of columns within a table that
references a key in some other table.”

Foreign keys are also possible to define in the both levels at a column and
table level. Listings[2.4and [2.5/shows us how to create reference between the
PRIMARY KEY and the FOREIGN KEY.

Listing 2.4: PostgreSQL PRIMARY KEY constraint as a column definition [32]

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

Listing 2.5: PostgreSQL FOREIGN KEY constraint as a column definition [32]

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (
product_no),
quantity integer

s

First of all we need to define a new table products with a primary key;
secondly we need to create another table orders which will use the primary
key from the first table as a foreign key in the second table. This is done via
a keyword called REFERENCES.

However, there is a problem which the other integrity constraints do not
have and it is how we will react if we want to apply DML operations which
include delete and update operations. Both databases Oracle and PostgreSQL
have the same solution. They use referential actions where we can specify
an ON DELETE clause and an ON UPDATE clause which are followed by the
appropriate action [33]:

e NO ACTION,
e SET NULL,
e RESTRICT, or
e CASCADE.

The next small part introduces how actions can affect the ON DELETE
clause when it is raised and a few differences between both databases Oracle
and PostgreSQL database.

21

2. ANALYSIS

NO ACTION

An action NO ACTION in PostgreSQL means raising an error message if
there are any referencing rows into table(s), when the integrity constraint is
checked [32]. This action in PostgreSQL is set by default. Oracle database
executes update or delete operation and then checks the dependent tables for
foreign key integrity constraints. If there is a value which breaks the integrity
constraint rule, then the statement is rejected. Oracle database has set by
default NO ACTION too.

SET NULL

A SET NULL action is same for both databases, but Oracle has the SET NULL
clause only for a delete operation [33]. The SET NULL possibility writes a
null value to a child table when a referenced row in a parent table is updated
or deleted, for Oracle database this statement is true only for the delete
operation. For the delete operation a record in the parent table is deleted but
the child table will not be affected and its value will be set as the null value.
On the other hand PostgreSQL has in addition a SET DEFAULT action which
means, apply the same statement like for the SET NULL, but instead of the
SET NULL clause we will use the default value which were set at the begging
of the integrity constraint definition [32].

RESTRICT

Generally, a value cannot be updated or deleted if we have an existing row in a
base table with a reference value in a referenced table [34]. A RESTRICT action
in PostgreSQL prevents from delete or update operation in the referenced row.
The RESTRICT rules are checked before any other operation [35]. Oracle
database does the same. Firstly, it checks dependent tables for foreign key
constraints, and then if any row in a dependent table does not fulfill a foreign
key constraint, a transaction is rolled back [33]. Clearly, the RESTRICT action
checks the integrity constraint before the execution of the update or delete
statement.

CASCADE

A CASCADE action is also applicable in PostgreSQL for both operations
update and delete but Oracle database. Oracle only supports the CASCADE
action for the delete operation. A foreign key with a cascade delete action
means that if a record in a base table is deleted, then the records in child tables
will be deleted automatically too [36]. This rule is corresponding with the
update operation in PostgreSQL where changed value in the base table will
be automatically propagated to the child tables.

22

2.1. PostgreSQL and Oracle Constraint Research

After a short brief of actions that can affect tables on delete clause in our
database we can take a look at listing [2.6| where is an example covering the
usage of these operations in practice by PostgreSQL database.

Listing 2.6: PostgreSQL FOREIGN KEY constraints, ON DELETE clauses [32]

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

s

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products
ON DELETE RESTRICT,
order_id integer REFERENCES orders
ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)
);

CHECK

A CHECK integrity constraint is good if we want to specify a requirement,
which will control rules set up for table columns. On background runs a
search condition which is a Boolean expression and the search condition must
be satisfied for all rows in the column or table where it is defined. The CHECK
integrity constraints are used with update and insert operations. The whole
statement is aborted if any check integrity constraint is violated [33]. The
CHECK integrity constraint also can be used for multiple columns. Listing
R.7Ishows us how to use this constraint constraint.

Listing 2.7: PostgreSQL CHECK constraint [32]

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0)

23

2. ANALYSIS

Managing Integrity Constraints

In some cases we can have a database where we have defined too many
integrity constraints. In that particular case we definitely need a kind of
a special tool which helps us to handle these integrity constraints. Integrity
constraints are strict rules watching inserted values into one or more columns
in a table. In Oracle database integrity constraints can be defined in two
ways. First one is a CREATE TABLE and the second one is an ALTER TABLE
statement. In these statements we identify the column or columns and assign
a certain integrity constraint condition [37, 38]].

If we want to know information how many defined integrity constraints
do we have, we can find out that this possibility is only available in Or-
acle database because PostgreSQL database has not implemented needed
functionality yet. Oracle database for an integrity constraint management
provides views where it is possible to query them with a SELECT clause.
These views are named DBA_CONSTRAINTS or its alternative
ALL_CONSTRAINTS which describe all integrity constraint definitions in
the database, or integrity constraint definitions accessible to current user, re-
spectively. The another one views are called as DBA_CONS_COLUMNS or
ALL_CONS_COLUMNS which describe all columns used in the database that
are mentioned in integrity constraints or similarly all columns appeared in
the integrity constraint specification under the current user [38].

According to Oracle, itis specified that an integrity constraint can be either
states ENABLE or DISABLE. These two states have its own meaning. If the
integrity constraint is passed as ENABLE, then data are checked whenever
they are updated or inserted on the database, and data that do not fulfill the
integrity constraint condition are not stored into the database. If the integrity
constraint is passed as DISABLE, then data that do not conform the integrity
constraint condition can be allowed to store themselves into the database [38].

In addition, in Oracle database we can specify more detailed integrity
constraint condition. It is done by VALIDATE and NOVALIDATE keywords.
The VALIDATE means that existing data in a table must satisfy the integrity
constraint. The NOVALIDATE means that we are not ensured whether our
existing data conforms the integrity constraint [38]. Due to those four states
we are able to gather them and we get following paired phrases:

e ENABLE VALIDATE,
e ENABLE NOVALIDATE,
e DISABLE VALIDATE,
e DISABLE NOVALIDATE.

For those four states could appear one question. Why should we want
to use disabling and enabling of integrity constraints? The solution is ob-

24

2.1. PostgreSQL and Oracle Constraint Research

vious if we had an ability to disable integrity constraints in some cases, we
would be able to manipulate our database from these following performance
reasons [38]:

e When we load large amount of data into a table.
e When we call operations that make huge changes in a table.

e When we import or export one table at a time.

And there is a possible way to enter particular data which violate integrity
constraint condition in a database if we for a small period of time disable the
specific integrity constraint(s). After performed all operations the integrity
constraints should be activated.

Enable validate

A relation ENABLE VALIDATE is an action which starts automatically after
defining an integrity constraint. Typically a CREATE TABLE statement, or if
we specify it in an ALTER TABLE statement. This part of integrity constraint
starts immediately validating of the whole database. During the integrity
constraint definition the specification of VALIDATE action is not needed.
The behavior between actions ENABLE VALIDATE and only ENABLE is the
same. There exists one difficulty and it is if we want the database validation
during data loading. For example we have an empty database and we want
to fill it with data. If the integrity constraint is enabled, then everything else
will be extremely slowed because any included data will have to be validated
which is really time consuming operation [38}39]].

Enable novalidate

An ENABLE NOVALIDATE phrase is a little bit different than the ENABLE
VALIDATE phrase. This ENABLE NOVALIDATE is a missing part which is
really useful in a way where present data in a database cannot be validated.
Due to this possibility, for example, we are able to disable the integrity con-
straint validation then apply some huge data changes or just simply copy
tables where data will not be validated because time consumption and after
all needed operations will have been done, then we enable the integrity
constraint with the NOVALIDATE action. Enabled constraint with NOVAL-
IDATE action is applicable only for newly inserted data or newly updated
data. There is a risk in disabling validation mode because it could appear
data that violate the integrity constraints [38,39].

25

2. ANALYSIS

Disable validate and disable novalidate

These two phrases are designed to disable integrity constraints. There is
one difference between them and it is that DISABLE VALIDATE construct
disallows the integrity constraint and its managed index, which were created
on that integrity constraint, will be dropped. The DISABLE NOVALIDATE
behavior is the same as if we used only the DISABLE action [40].

DROP constraint

It could happen that some defined integrity constraints are no more useful at
all. If the rule is no longer truthful needed to enforce the integrity constraint,
we can easily drop the integrity constraint by ALTER TABLE statement. This
technique is the same for both databases Oracle and PostgreSQL. Listing
shows us a manner how to use the DROP construct with the ALTER TABLE
command. We can see that the syntax for dropping integrity constraint by
the ALTER TABLE is preserved and it is the same as the other used clauses.

Listing 2.8: PostgreSQL DROP constraint [41]

ALTER TABLE table_name (
DROP CONSTRAINT constraint_name
)

DEFERRED or IMMEDIATE constraints

This functionality can be found in both databases Oracle and PostgreSQL. It
is a useful thing if we want to manipulate or postpone an integrity constraint
validation process. There are two possibilities [42]:

o DEFERRABLE INITIALLY IMMEDIATE or
o DEFERRABLE INITIALLY DEFERRED.

By default, with no mention in the integrity constraint construct is a
behavior automatically set as NOT DEFERRABLE which means that integrity
constraint is checked immediately [43]. These options can be controlled with
a SET CONSTRANTS command, but it has one difficulty. If we have an
earlier defined integrity constraint which does not contain the DEFFERABLE
formula, then it is a must to drop that integrity constraint and re-create it
again with the DEFFERABLE construct.

However, is that the main difference in using the DEFERRABLE construct?
If we define an integrity constraint with no DEFERRABLE keyword, we will
obtain behavior in a form where on every insert, or update operation the
integrity constraint will be called. This is a general behavior. But, if we define
a new integrity constraint which would contain a DEFERRABLE keyword

26

2.1. PostgreSQL and Oracle Constraint Research

plus a part behind, the INITIALLY IMMEDIATE, or DEFERRED clause, then
we will be able to handle it via SET CONSTRAINTS command if needed
which is the added value.

A defined DEFERRABLE INITIALLY IMMEDIATE construct for integrity
constraints will have the same behavior as the default, i.e. NOT DEFER-
RABLE. The meaning is that integrity constraints in the current transaction
are checked at the end of the statement. Using of DEFERRABLE INITIALLY
DEFERRED construct means that integrity constraint assertion is not checked
until a transaction COMMIT is called. After the COMMIT phase is run the
validation of particular integrity constraint. If there are some violences, the
performed actions will be rolled back[44].

Oracle database supports this extension for all kinds of integrity con-
straints and PostgreSQL almost too, except for the NOT NULL and CHECK
integrity constraints which are always checked immediately with insert, or
update operations [42].

Listing[2.9/shows an integrity constraint definition with no mention about
DEFERRABLE keyword, but meaning and behavior is NOT DEFERRABLE
thus like IMMEDIATE. Otherwise listing [2.10|shows the same integrity con-
straint, but using the DEFFERABLE formula which can be later handled by
SET CONSTRAINTS commands.

Listing 2.9: Oracle CHECK constraint, NOT DEFERRABLE [45]
CREATE TABLE games (scores NUMBER CHECK (scores >= 0));

Listing 2.10: Oracle CHECK constraint, DEFERRABLE included [45]

CREATE TABLE games (
scores NUMBER,
CONSTRAINT unqg_num UNIQUE (scores)
INITIALLY DEFERRED DEFERRABLE

s

Of course, there are some differences in grammar syntax in both databases
Oracle and PostgreSQL, but behavior is the same. A SET CONSTRAINTS

construct for Oracle is defined as @.11):

Listing 2.11: Oracle SET DEFFERED [45]
ALTER SESSION SET CONSTRAINTS = DEFERRED;

and in PostgreSQL as (2.12):
Listing 2.12: PostgreSQL SET DEFFERED [42]
SET CONSTRAINTS { ALL | name [, ...] }

{ DEFERRED | IMMEDIATE }

2. ANALYSIS

H Id ‘ Position ‘ Name H

25 1 Bread
68 2 Milk
72 3 Eggs

Table 2.1: Shopping list before changing the position [43].

H Id ‘ Position ‘ Name H

25 1 Bread
68 2 Milk
72 1 Eggs

Table 2.2: Shopping list changing the position [43]].

TableR.Tland2.2shows us how different are DEFFERED and IMMEDIATE
clauses. Let explain it on a creation of a unique integrity constraintata column
named position. So, there should not be possible to have the same position
number twice at the time at the position column in the table. Our task
demonstrates an update operation where we want to shift an Eggs item on
our shopping list and mark it to the higher position, for example, mark with
one. If we left a default option which is validating the integrity constraint
immediately, hence IMMEDIATE, we will obtain the integrity constraint error
message that we are not allowed to change a position due to the integrity
constraint violation.

This is being done because the database executes every statement (here
an update operation) immediately. We have already known before that if we
change one position in the shopping list, we will have to change it to the
another position which violates the integrity constraint rule, but the database
does not know it at that time. But, there is a solution in a DEFERRED clause.
The DEFERRED clause was designed to avoid this conflict. The database lets
us to make changes, thus the change of position for Eggs to one and also
change position for Bread to e.g. four, and then after we explicitly COMMIT
the changes, the integrity constraint will check for collisions. There should
not appear any collisions because we did the things right.

2.2 Cypher Schema syntax — Research of integrity
constraint proposals for Neo4j

This section contains taken and re-formulated proposals from a Request for
proposals: Cypher Schema syntax paper published by a representative of Cypher

28

2.2. Cypher Schema syntax — Research of integrity constraint proposals for
Neo4j

Language Group Tobias Lindaaker [46]. The RFP are in most cases inspired
from integrity constraints used in the relational databases which were men-
tioned in section above2.1l This research introduces and describes what kind
of integrity constraints should be defined in Neo4j graph database. Especially,
it is explored a following range of integrity constraints:

e Node property uniqueness,

Mandatory properties,

Property value limitations,

Required relationships,

Cardinality requirements,

Endpoint requirements,

Label coexistence.

Node property uniqueness — Uniqueness constraint

This kind of integrity constraint specifies a certain limit among nodes. Each
node should have given one label, its identifier. For every node is applied
to have a certain attribute, called a property key, with a value. Thus nodes
store values in a key-value combination, there must exists an option for the
node that has the particular value for the given property key, or the particular
combination of values for the particular set of property keys.

Examples:

e Among all nodes with a specified label as User, each node must have a
unique value for the properties like email, username, etc.

e Among all nodes with a specified label as Person, each node must have
a unique value combination for the firstName and lastName. Possible
combinations for two nodes that could be fine are:

— Both nodes can have the same firstName, but no lastName, or

— Both nodes can have the same lastName, but no firstName.

Mandatory property constraints

Mandatory property constraints should be applied for both the nodes and
relationships. This integrity constraint specifies for a node with a particular
label that must have assigned a value for a given property. The same holds
true for a relationship with a particular type. The lack of mandatory property

29

2. ANALYSIS

should not allow creating a new node, or a relationship.

Examples:

e Each node with a specified label User must have filled a value for a
mandatory property email.

e Each relationship with a type ROAD must have filled a value for a
mandatory property distance.
Property value limitations

The next integrity constraint is called Property value limitations which de-
termines for a particular label of a node, or a particular type of a relationship,
if a particular property has a value then that value must meet the criteria to
the given specified rules.

Examples:

e Each relationship with a type ROAD and a distance property must be
finite number greater than 0.

e Each node with a specified label User and an email property must be of
type String that must match a regular expression “[a — z0 — 9]([a — z0 —
N-.]+[a-20-9])?@([a—z0-9]([a—z0 -9\ —.] +[a—z0-9])?\.) +[a—z] +".

e Each node with a specified label User and an active property must be of
a Boolean type.

e Eachnode with a specified label Vehicle and the locations property must
be a list of geospatial points.
Required relationships

The Required relationships integrity constraint defines for a certain node with
a particular label that must have one or more relationships with a particular

type.
Examples:

e Each node with a specified label Person must have an outgoing rela-
tionship of type LIVES_AT.

e Each node with a specified label Sink must have an incoming relation-
ship of type FLOW.

e Each node with a specified label Place must have a relationship of type
NEIGHBOUR, in any direction.

30

2.2. Cypher Schema syntax — Research of integrity constraint proposals for
Neo4j

Cardinality requirements

The Cardinality requirements integrity constraint is closely related to the
Required relationships integrity constraint but instead of requiring a
relationship with a certain type to a particular node, this integrity constraint
specifies the cardinality. The cardinality is the minimum and maximum num-
ber of relationships with a certain type that a given node with a particular
label must have contain.

Examples:

e Each node with a specified label SwedishCitizen may have at most one
relationship of type MARRIED_TO, in any direction.

e Eachnode with a specified label Person must have exactly two incoming
relationships of type PARENT_OF.

e Each node with a specified label BuddhistMonk may not have more
than 14 outgoing relationships of type OWNS.

Endpoint requirements

This kind of integrity constraint specifies a relationship with a particular type
that must, or must not, start or end in the certain nodes with a particular
label, or sets of lables.

Examples:

e Each relationship with a type OWNS must start at a node with either a
Person label or an Organisation label.

e Each relationship with a type OWNS must end at a node with either a
Vehicle, Building, Item label or an Organisation label.

o If each relationship with a type OWNS ends at a node with an Organ-
isation label, then it must start at a node with a Person label.

e Each relationship with a type WORKS_FOR must start at a node with
an Employee label and must end at a node with both the Employee
label and Manager label.

e Each relationship with a type OWNS must not end at a node with a
Person label.

31

2. ANALYSIS

Label coexistence

The next and the last integrity constraint is Label coexistence. The label co-
existence integrity constraint specifies that two certain node labels may not
occur on the same node, or that a particular label may only occur on nodes
with a different particular label.

Examples:

e Each node may not have both labels a Person label and an Organisation
label.

e Each node may only have the User label in the case if it is has also the
Person label.

2.3 Cypher Schema syntax — Revision of integrity
constraints

In Neo4j integrity constraint analysis section 2.2| we showed the integrity
constraint proposals introduced by a representative of the Cypher Language
Group Tobias Lindaaker. The mentioned integrity constraint design pre-
dominantly comes from those integrity constraints which are implemented
and used in the relational databases. However, for those integrity constraints
taken from the relational world some things were not discussed and this is the
right section where we should deal with it. With help of our research dealt
on PostgreSQL and Oracle databases, elaborated in section [2.1| we present
possible issues that must to be ensured. We will take listed problems into
account, theorize them and show from a great point of view how they can
affect an eventual process of integrity constraint validation in Neo4j graph
database.

In general, figure[2.2)shows us a range sphere of interest for each integrity
constraint and how we proceed further. At the forefront it is laid the integrity
constraint itself. Then follow the rectangles where it is important how large
they are. Simply, the larger rectangle is, the more often is mentioned in
a text. Figure [2.2| covers all possibilities which represent the knowledge we
acquired before. This includes time Complexity when statements are executed,
this involves both states empty and full database. The next is a validation
process separated into two parts, DML operations and Time execution where is
very important to describe behavior that can affect the graph database. As a
reminder, DML operations accompany Behavior where belong clauses like
NO ACTION, SET NULL, RESTRICT and CASCADE discussed in chapter
This can be useful in discussion with problem alike foreign key constraint.
The next parts are Discussion and Usefulness where appropriate explanation
will have been appeared and the last one is a Syntax which is not much

32

2.3. Cypher Schema syntax — Revision of integrity constraints

Disable mode
Enable mode

Complexity

Usefulness

Validation

Time
execution

‘ Discussion

Figure 2.2: Mind map constraint issues.

mentioned in this section, but in the next chapter 3| Cypher syntax design
dealing with a grammar syntax for Cypher.

Node property uniqueness

This kind of integrity constraint, in a certain limited form, in Neo4j graph
database already exists. However, Cypher Language Group on the bases of
their analysis of new potential integrity constraints decided to re-formulate
the unique integrity constraint into new form for sure. It was intended this
way because if it is proposed the new Cypher syntax for defining the integrity
constraints, then this integrity constraint has possibly to be entered by the
new Cypher syntax too.

The actual Cypher syntax for the Node property uniqueness integrity
constraint is shown in listing

Listing 2.13: Node property uniqueness - actual Cypher syntax

(1) CREATE constraint ON (p:Person) ASSERT p.Name
IS UNIQUE;

The disadvantage of the current integrity constraint definition is that it
is not possible to assert more properties simultaneously, respectively there
does not exist the unique integrity constraint covering multiple properties

33

2. ANALYSIS

simultaneously. To make this thing possible was needed to use a small hack,
which consequently validates the uniqueness for the multiple properties. The
solution was based on the form of string concatenation.

The new proposal already takes this into account. It is intended to be
possible for each node which has specified a particular label to assert a unique
value for multiple properties simultaneously. The solution was mentioned
in analysis chapter, research section where for each node with a label
Person is possible to assert uniqueness for both properties the firstName and
the lastName simultaneously. If we take a look at Usefullness the usefulness is
more than obvious. We need data to be stored in the database which must not
repeat under the certain property and this is the major task of this integrity
constraint, to watch the property uniqueness.

Nevertheless the most important thing is mainly behavior from two points
of view, the Complexity and Validation. These two parts are very closely re-
lated. The Complexity describes a time spent in a validation process which is
performing the database check (or an integrity constraint validation) control.
The Validation description is important during performing cost-expensive
operations such as when to execute the integrity constraint validation if we
have large amount of data in the database or how will we act if we load large
amount of data, etc.

The unique property validation process has the same impact for both op-
erations insert and update and also for both database state which can be a full
database or an empty database. The validation process must be executed
across all the property values that are stored in the database under the spe-
cified certain node label. This leads to O(n) complexity where n is a total
number of nodes in the database (without optimization) or with an optimiz-
ation n can be a number of nodes with a given particular label, but with no
database overhead. For the optimization could be chosen some kind of index
implementation. The delete operation has O(1) complexity and it is given by
the influence of Neo4j architecture mentioned in section We are able for
each node by his internal identification number (i.e. ID) to compute and find
the exact physical node position. Then, we can just enter a value into in-Use
flag to mark a specific node as an inactive node.

However, if we decide for a possibility where we want to take into con-
sideration enabling and disabling integrity constraint in the database, it is
needed to introduce a few countermeasures. This use case can happen if we
have large set of data and we need the data to be loaded into the database.
If we had turn on the integrity constraint validation for checking unique
values, the all loading operations would last too long. Therefore, we can
draw inspiration from the world of relational databases where we mentioned
in PostgreSQL and Oracle analysis [2.1| these possible actions where belong
keywords like enable validate or novalidate and disable validate or novalidate. For
our purpose we only need if we were able to disable integrity constraint, and
then would enable it under those two options enable validate or novalidate. Let

34

2.3. Cypher Schema syntax — Revision of integrity constraints

Property values
A D
B E
C F

Table 2.3: Property values of given nodes.

go back to our example where we have a big package of data to be uploaded
to the graph database. In the case that we are 100 percent sure that the data
are consistent with the desired integrity constraint rule, we can perform a
sequence of following operations: disable integrity constraint — load data —
enable integrity constraint with novalidate keyword.

In section [2.1| we mentioned that enable novalidate is applicable only for
newly inserted data or newly updated data. With this capability the over-
head is eliminated that would have to do the proper validation under the
loaded data. The validation control process would take more time if the
integrity constraint was turned on as validate. But, if we are certain of data
correctness, it is not necessary to perform the integrity constraint validation.
The disadvantage of this step is that if the data are not valid with respect to the
defined integrity constraint, it can lead to data inconsistency in the database,
but this decision is on our responsibility. If we want to avoid inconsistencies,
we should follow this flow of operations: disable integrity constraint — load
data — enable integrity constraint with validate keyword.

In case if we are unsure of data correctness, then the turning on the enable
validate control will be checked the whole database under the uniqueness
integrity constraint. Shortly afterwards is necessary to check each property
value to the other and this leads in the worst case to O(n%) complexity. The
reason why this is O(1?), is as follows. Imagine nodes with a specified label
and a given property which we must validate its value. Table 2.3 represents
for each node one table cell illustrating a value of a certain property. Totally
we have given n nodes, i.e. n = 6.

To validate the unique integrity constraint we start at a label with a prop-
erty value A. This property value will not be controlled, but we need to check
the other (n — 1) positions with the omitted value A. Furthermore, the same
applied for the property value B, C and others where also is needed to be
checked (n — 1) positions. This leads to O((n — 1)(n — 1)) complexity which is
O(n?) in the worst case. In case the validation of the property combinations
and its values the time complexity will not be so noticeable. In other words
the combination of values has not a marked effect on the time complexity.

Unfortunately, this kind of integrity constraint disrupts a user modifica-
tion process. Especially, in the certain cases, primarily between editing where
we need, for example, switch a few values, but in time of changing the val-

35

2. ANALYSIS

ues are violating the integrity constraint rule, like it is demonstrated on the
shopping list example in section In certain contexts when we have the
integrity constraint turned on may occur during the update operation to ad-
verse effects. The solution is taken from the relational databases where they
were sorted this out with using of a deferred statement execution. The data
validation process is performed after calling a commit command. In practice,
it would look as follows. The integrity constraint would have been set to
deferred. This state allows us to perform a series of update operations, but if
we had had at that time the integrity constraint enabled, the update operations
would have been violated and stopped making changes. Thanks to deferred
option this would not happen and therefore the necessary updates can be
performed, and after the explicit commit would start the database validation
process.

Mandatory properties

The expected behavior of the Mandatory property constraints we can also meet
to a lesser extent in Neo4j database. It is an existential integrity constraint
which was mentioned in a section dealing with the integrity constraints in
Neo4j This existential integrity constraint is used to enforce a property
existence and its value. We have indicated that this option is only available in
the Enterprise Edition of Neo4j graph database. The existential integrity con-
straint supports asserting properties for both nodes and relationships. Like in
the previous section dealing with Node property uniqueness integrity constraint
this existential integrity constraint may be included among candidates which
can be replaced with a new Cypher syntax. The actual Cypher syntax for
mandatory properties for both nodes and relationships is shown in listing

Listing 2.14: Mandatory properties - actual Cypher syntax [23]

(1) CREATE CONSTRAINT ON (book:Book) ASSERT
exists(book.isbn)

(2) CREATE CONSTRAINT ON ()-[like:LIKED]-() ASSERT
exists(like.day)

The first Cypher statement (1) tells us that the integrity constraint is ap-
plied to the all nodes with a particular label Book. Every node with the Book
label requires to have included a property isbn. This isbn property must be
NOT NULL. The second statement (2) defines a data validation rule for rela-
tionships where each relationship that has a type LIKED must enforce a day
property as a mandatory property that should not be absent.

The Mandatory property integrity constraint enforces the existence property
that can be considered as a NOT NULL integrity constraint which is mostly

36

2.3. Cypher Schema syntax — Revision of integrity constraints

known from the relational databases where it is also possible to have the null
values to be inserted into the table cells. In the graph database case the null
values into the properties cannot be stored. The null value is represented by
the property non-existence. For example if for some property is said to be
null, it is useless to establish the property in the graph database. On the other
hand, if some property must exist (i.e. must be NOT NULL), we will enforce
it with the mandatory integrity constraint.

The answer in terms of time complexity for the insert operation, thus
creating nodes and relationships is clear. The integrity constraint control
will always take place locally on the statement which creates a new element
(i.e. node or relationship) and the check itself will last O(1) complexity. The
same applies for the update and delete operations. The update operation is
performed in Cypher syntax by combination of MATCH and SET clauses
where it is able to find the proper results and those results after performed
changes can be also validated in the constant time. But, the main thing we
should have had considered before is behavior for the delete operation. It may
be a case that we would like to delete a property which had earlier defined an
integrity constraint to watch that property. Respectively, we could mention
as an example keeping records for books. The node label would be named
as a Book, next we would have properties for books like name, release date and
isbn. Note, it is not a good idea to be inserted as a property the author of the
book into the Book node. The database schema should be suitably designed
for proper querying and it is good to have Authors as the separate nodes.
The joining authors with books would be managed, for example, through
the relationship type WRITTEN. However, in the case where we have the
integrity constraint turned on and we would performed the delete operation
(listing for remove property which the integrity constraint is actually
validating, it should be expected that the defined integrity constraint should
raise an exception and should not allow us to delete the certain property
(here isbn) because due to the existential integrity constraint, the property
must exist in the database (i.e. must be NOT NULL).

Listing 2.15: Mandatory properties - delete - actual Cypher syntax
(1) MATCH (b:Book) REMOVE b.isbn return b

The same discussion that took place as the Node property uniqueness con-
straint[2.3can be also interested in the issue of behavior when there are loaded
large amount of data into the database machine with our aim which is to avoid
the adequate slowdown during loading data into the database. Again, we
can suggest the same proposal as above which is the use of mentioned two
options enable and disable where the enable is devided into cases the enable
validate or novalidate. The only difference is in the fact that if we turn on after
database data loading the integrity constraint with enable validate clause, it
will have to be validated all the inserted nodes and relationships since the

37

2. ANALYSIS

time the database was firstly initiated. The validation process asymptotically
takes O(n) in time complexity. On the other hand if we enable the integrity
constraint with enable novalidate, then the previously entered data will not be
checked and validated under the present integrity constraint because by the
casting the novalidate clause we guarantee the data correctness. The whole
data validation process will be carried out for new incoming data or during
updating the values under the existing properties under the enabled integrity
constraint. We do not take care with DEFERRED and IMMEDIATE clauses
due to its inapplicability in this integrity constraint use case.

Property value limitations

The next integrity constraint to revise is Property value limitations. This is the
first integrity constraint which does not have an old Cypher syntax and also
like the next other integrity constraints including Property value limitations
currently do not exist in Neo4j graph database. The Property value limitations
integrity constraint is a new proposal which is considered its application
in Neo4j. This integrity constraint finds its value in several ways. As the
integrity constraint name implies, the validation process is related with some
limits ruled on the certain properties. This integrity constraint is designed to
control properties for both nodes and relationships.

In research section [2.2] are shown examples for the property value valida-
tion, and how such the integrity constraint might work in practice. In listing
R.16]is exposed a pseudo Cypher syntax for the few specified examples in[2.2]

Listing 2.16: Property value limitations - pseudo Cypher syntax

(1) CREATE CONSTRAINT ON (book:Book) ASSERT
STRING (book.isbn)

(2) CREATE CONSTRAINT ON ()-[road:ROAD]-() ASSERT
EXISTS(road.distance > 0)

(3) CREATE constraint ON (user:User) ASSERT user.email
AS REGEX("[a-z0-9]([a-z0-9\-.]+[a-z0-9])7@
([a-z0-9]([a-z0-9\-.]+[a-z0-9])?\.)+[a-z]+");

(4) CREATE CONSTRAINT ON (v:Vehicle) ASSERT
EXISTS(List<Points> for v.locations)

The first example shows us a possibility of choice what type of data type
we would like to have to keep in a property with a specific node labeled as a
Book. There is no specification what kind of data types should be supported
except for the Boolean type. However it would be possible for the Property
value limitations integrity constraint supports those values that are described in

38

2.3. Cypher Schema syntax — Revision of integrity constraints

the Java Language Specification. The next example deals with a relationship
property. The relationship of type ROAD and a distance property defines
a particular restriction in a set of integers Z where we could accurate a
specification with use of mathematical symbols like “<, >, =” and also their
combinations from which interval would be allowed to take values. The other
example shows property validation via a regular expression and in the last
example is shown enforcing an array of points in a form of a list datatype.

The enforcement of this integrity constraint in terms of complexity is
very similar to the integrity constraint dealing with the mandatory properties
mentioned above. When inserting new data to the database with a CREATE
statement a validation process will be performed immediately after commit
and the validation itself will be done in a constant time. The same holds true
for updating where the data validation will also take the constant time. In
terms of time complexity is no need to mention a delete operation because it
does not depend on the behavior of the integrity constraint definition, but the
whole operation also executes at O(1) complexity.

When comes a question regarding to update or load of large amount
of data to the database, for this serves a temporary disabling the integrity
constraint for speeding up such operations. We talk about the same use
case mentioned in the previous integrity constraint discussion. If we have
a huge package of data that needs to be loaded into the database, we will
certainly want to avoid the time delay which would be occurred in the case
of the enabled integrity constraint rule. We are offered an option to use
a solution from the relational databases where it is followed in these steps
disable integrity constraint — load data — enable integrity constraint with validate
or novalidate keyword. The other possibility is if the amount of data is small
and we would not want to disable the integrity constraint, then we could take
an advantage in postponed time validation which means that the integrity
constraint must be defined as DEFERRED. In this situation the statements
would be performed and after the explicit commit the loaded or updated
data would be checked whether they do not violate to the specific integrity
constraint rule.

Required relationships

The aim of the integrity constraint named as Required relationships is to define
such integrity restriction which will control the relationships required by the
particular nodes with a specific label. Research in section [2.2|indicates that
should be allowed the verification of three direction types:

e Outgoing,
¢ Incoming, and

e In any direction.

39

https://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html

2. ANALYSIS

Under the influence of preserving the current definition of the integrity
constraint syntax for Neo4j, for now, we can draw an inspiration from the
pseudo Cypher syntax where the examples from section [2.2| are clearly ex-

plained in listing

Listing 2.17: Required relationships - pseudo Cypher syntax

(1) CREATE CONSTRAINT ON (person:Person) ASSERT
ORELATIONSHIP(LIVES_AT)
(2) CREATE CONSTRAINT ON (sink:Sink) ASSERT
IRELATIONSHIP (FLOW)
(3) CREATE CONSTRAINT ON (place:Place) ASSERT
RELATIONSHIP (NEIGHBOUR)

In the Cypher pseudo-code syntax are directions determined in this way.
The first example (line number (1)) is needed to be validated an outgoing re-
lationship with type LIVES_AT. This kind of relationship could be recognized
with the first letter added to the relationship clause under which must be per-
formed the validation process, this first letter would be O as outgoing and the
combination gives a result as ORELATIONSHIP clause. The same principle
could be applied if we consider an incoming relationship where insted of the
letter O, we will use the latter I and we get the IRELATIONSHIP clause. The
third example (line number (3)) tells us a possibility of the integrity constraint
assertion for relationships in any direction. For the last use case defining the
validation could be used the RELATIONSHIP statement itself.

What the Required relationships proposal lacks is any discussion how should
look like the appropriate implementation, thus, what are the technical issues
resulting from this integrity constraint. Because we have to take into account
a time execution in which the Required relationships should be activated. By
this reasoning we can try to avoid too early integrity constraint violations
before the time the data are loaded in the database. For this use case could
be handy one solution that is implemented in the relational databases. The
solution can be called as a deferred validation. Here is an example describ-
ing the problem. We want to manually load data into the database and we
have decided to load nodes and then that nodes join with particular rela-
tionships. Unhappily, if the integrity constraint did not have enabled the
deferred mode, immediately after the creation of nodes, would inserted data
violate the integrity constraint condition. Simply, the execution time in the
integrity constraint enabled as immediate violates the database schema which
the integrity constraint set and restricted before. Therefore there must be
considered an option of using the deferred keyword served to make possible
the validation process to be postponed.

Regarding the loading and updating problems with large amount of data
are suitable like in the previous cases. As a sequence of these steps could be
used disable integrity constraint — load or update data — enable integrity constraint

40

2.3. Cypher Schema syntax — Revision of integrity constraints

with validate or novalidate keyword. 1f we used an enable validate option, then the
asymptotic complexity would be O(n) + O(1) where 1 is a total number of data
stored in the database and O(1) is a constant time for the validation process.
The explanation is as follows. After performed data load action we enable the
integrity constraint as enable validate. The actual graph is extended about new
nodes and relationships, and with that activated integrity constraint there is
needed to check the whole database and thus any data which has mentioned
the restriction in the integrity constraint. The verification process checks the
node after node which is O(n) complexity and during that time by using
micro-indices we also verify the node neighbors which is O(1) complexity.
Totally, we have for the validation loaded or updated data O(n) complexity.
The same O(1) complexity applies for insert, update and delete operations. It is
based on a fact that each node is designed to behave like a micro-index and is
able to look after his siblings. More information about micro-indices can be
found in a Neo4j architecture section[T.2}

Cardinality requirements

The Cardinality requierements integrity constraint is very closely associated
with the previous integrity constraint Required relationships. This integrity
constraint should be useful in fulfilling its core task and that is in watching
node cardinality validation. Under this concept we can imagine a defined
restriction imposed on a number of relationships that a certain node can have
mapped. For demonstration are used examples from the research section in
Because of a similarity with the previous topic we remain in the use of
equivalent pseudo Cypher syntax where listing illustrates the proposed
examples.

Listing 2.18: Cardinality requirements - pseudo Cypher syntax

(1) CREATE CONSTRAINT ON (sc:SwedishCitizen) ASSERT
RELATIONSHIP (MARRIED_TO <= 1)

(2) CREATE CONSTRAINT ON (person:Person) ASSERT
IRELATIONSHIP (PARENT_OF == 2)

(3) CREATE CONSTRAINT ON (bm:BuddhistMonk) ASSERT
ORELATIONSHIP (OWNS <= 14)

The first example listed as (1) tells us that we want to define an integrity
constraint that sets a rule for a node labeled as SwedishCitizen that may only
have at most one type of relationship MARRIED_TO. The relationship can
acquire both directions the incoming or outgoing. This relation in a pseudo
Cypher notation is interpreted by a combination of mathematical symbols
“<=" and a numeral one. The second example (2) shows that a node with

41

2. ANALYSIS

a specific label Person must have exactly two incoming PARENT_OF rela-
tionships. The Cypher pseudo syntax was inspired from the example (2) in
listing [2.17} Thus, using the first letter I as an Incoming indication which then
the letter is inserted before the relationship keyword and we obtain the IRE-
LATIONSHIP clause. In pseudo Cypher syntax the IRELATIONSHIP takes
defined rules that must be checked. This rule uses mathematical symbols
“==" with a specified numeral, here number 2. The third and last example
defines the integrity constraint for a node labeled as BuddhistMonk where
is a restriction in a form of limiting the total number of the relationships
with a type OWN. This kind of relationship is Outgoing and with the use of
the same principle with incoming relationship we obtain ORELATIONSHIP
clause ready to enter the enforcement rule.

Loading or updating the large amount of data is confronted with the same
problem as the previous all integrity constraints. There must be considered
the possibility of the temporary disabling of integrity constraint. As the next
would be followed for us known steps in the form of integrity constraint dis-
abling, then performing the necessary actions, and then repeated constraint
enabling with validate, or novalidate keyword. This is the still repetitive case
and there is no need to discuss here any more.

The next thing what is needed to mention at this integrity constraint is to
have an ability to defer a validation time execution because we should be able
to avoid the integrity constraint validation process in the case if the data are
not fully loaded, or updated in the graph database. As a recommendation we
should have defined this integrity constraint as adeferred, not an immediate,
with a combination of explicit commit.

The complexity for insert and update operations should not be great. If
we focus on the individual nodes and their siblings, we talk about a constant
time because of the Neo4j feature called as a micro-index. This advantage
consists in the fact that an adjacent node can be reached in one step which
is O(1) complexity. What is needed to be fully processed are obligations
of cardinality of the integrity constraint. It is of particular importance, the
behavior that evokes the obligation in the form of mathematical symbols such
as “==, <= or <”. For both operations insert and update are needed to utilize
the late check integrity constraint functionality. Further, if we concentrate on
the number of total relationships, which must be fulfilled, especially for the
integrity constraint defined with this combination of mathematical symbols
“==", the greater time will be required for data validation process. Another
special case that needs to set a record straight is a delete operation. It may
happen a special incident where we have a situation with the cardinality
integrity constraint enabled with a validate keyword and with a condition
where are used these mathematical symbols “==". If this situation occur, the
integrity constraint will not allow to proceed the delete operation. This strict
rule can be bypassed by disabling the integrity constraint, or enabling it with
a novalidate keyword.

42

2.3. Cypher Schema syntax — Revision of integrity constraints

Endpoint requirements

The Endpoint requirements integrity constraint is designed only for relation-
ships, not nodes. This integrity constraint should be served for defining
certain requirements for relationships with specific limits. The Endpoint re-
quirements is primarily determined for nodes, but the integrity constraint rule
is defined on relationships and their TYPE. The integrity constraint should
be able to define a relationship rule which requires a particular node with a
certain label to act as a start node. This rule should be applicable for more
nodes too where these nodes must also behave as start nodes. On the other
hand we can turn the whole idea itself and instead of considering start nodes
we can consider working with the end nodes. The next what is intended to
use are hard-defined patterns in a similar kind of form (x:NodeX)-[t:TYPE]-
>(y:NodeY), or the possibility that some relationship must not end in a certain
node. A summary of those Endpoint requirements integrity constraint is shown
in listing with use of a pseudo Cypher syntax where the examples are
inspired from this part of research[2.2]

Listing 2.19: Endpoint requirements - pseudo Cypher syntax

(1) CREATE CONSTRAINT ON (p:Person, o:0Organisation)-
[0:0WNS]->() ASSERT exist(p, o)

(2) CREATE CONSTRAINT ON ()-[0:O0OWNS]->
(v:Vehicle, b:Building, i:Item) ASSERT
exist(v, b, i)

(3) CREATE CONSTRAINT ON (p:Person)-[o:O0OWNS]->
(o:0rganisation) ASSERT exist(p; o)

(4) CREATE CONSTRAINT ON (e:Employee)-[w:WORKS_FOR]->
(e:Employee, m:Manager) ASSERT exist(e; e, m)

(5) CREATE CONSTRAINT ON ()-[0:OWNS]->(p:Person)
ASSERT exist(!p)

The label separation in the exist clause is in general applicable for all
examples listed in[2.19and shown in figure

If we want to define multiple labels at one time and in one place there is
a solution in pseudo Cypher with comma separation. This applies for both
the left and right node. For a relationship separation of those two different
nodes is used a semicolon. The final formula in exist clause should look like
in the mentioned example of the figure Consider the first example (line
number (1)) where is defined the integrity constraint which must check a rule
for all nodes with a particular label Person, or Organization label. The integrity

43

2. ANALYSIS

(node)

(node)
| II
a,b,c a,

semlcolon
R ==

exist(a, b, ¢; a, b)

[rel]

Figure 2.3: Endpoint requirement pseudo Cypher symbols legend.

constraint rule says that these nodes must have an outgoing relationship with
type OWNS, the nodes must behave as the starting nodes, respectively. The
second example (2) describes that incoming relationships with type OWNS,
must end at nodes with labels Vehicle, Building and Item. The next (3) example
strictly defines a border of the pattern rule which must be validated in the
graph database. On the one side is a node with a label Person and outgoing
relationship with type OWNS directed to the node with Organization label
on the other side. Another example illustrates dependencies between nodes
with labels Employee and Manager, and the last example prohibits the incoming
relationship to the node with the Person label specification.

Regarding the problem of loading large amount of data was plentifully
discussed in all preceding integrity constraint revisions. Here is also needed
to have an ability on enabling and disabling this integrity constraint due
to the performance. Then would follow these known steps disable integrity
constraint — load or update data — enable integrity constraint with validate or
novalidate keyword.

A deferred validation for this integrity constraint is really necessary. Be-
cause we need to count with a possibility of manual entry data where the
nodes are firstly created and then joined with the relationships. If the integ-
rity constrain was not set to a deferred mode, the validation process would
immediately stopped with an integrity constraint violation message. Thus,
the insert and update operations depend heavily on the integrity constraint
execution time.

44

2.3. Cypher Schema syntax — Revision of integrity constraints

Basil-Ingredient
Mozzarella:
Ingredient
Pizza Margherita: .
@ Garlic:Ingredient
‘Yeast:Ingredient \ /
Pizza Dough:
- Tomato sauce:
Product:Ingredient Productingredient

Plain flourIngredient \
00
Olive oil:ingredient Pepper:ingredient
Plum tomatoes:
Ingredient
Bread:Meal ‘Water:Ingredient
Salt:Ingredient

Figure 2.4: Label coexistence — the Ingredient example.

0/'

Label coexistence

The last integrity constraint is Label coexistence. In Neo4j graph database is
possible to put zero, one, or more labels to nodes. This integrity constraint is
concerned only for nodes and lays down limitations that some certain labels
cannot be together in a single node, or vice versa. Then the node is, or is not
allowed to be created. In research section 2.2|are provided two examples of
the rules. The pseudo Cypher syntax can be seen is listing [2.20}

The explanation of the first example (1) is that a specific node cannot
be simultaneously labeled with both the Person and Organization labels. By
this integrity constraint restriction there only exist one possible way and it
is either to create the node with the label Person or the node with the label
Organization. The second example defines the rule that a node with a label
User can only exist in a combination if a node with a label Person exist too
and thus the node must contain the label Person and then it can contain the
label User. For a better understanding of this behavior we have shown this in
tigure The figure illustrates the necessary ingredients that are needed to
achieve a certain product. We have shown the ingredients for making a Pizza
Margherita or Bread, etc. In this example is used the Label coexistence integrity
constraint where for a node with a label Product must simultaneously exist
a label Ingredient which is exactly fitted to the second example mentioned in
listing for nodes with labels User and Person.

Listing 2.20: Label coexistence - pseudo Cypher syntax

(1) CREATE CONSTRAINT ON (p:Person, o:0Organisation)

ASSERT exist (p || o)

(2) CREATE CONSTRAINT ON (p:Person, u:User) ASSERT
exist (u && p)

As in all previous cases of integrity constraints where we were interested

45

2. ANALYSIS

in complexity during loading the large amount of data, here is also the right
place to use this functionality of disabling and enabling integrity constraints
in a chosen mode enable validate, or enable novalidate. In the worst case would
have to be validated the whole database because we do not know whether
the newly inserted, or updated data affected the database. If we take a
look at an insert operation the complexity is in a constant time due to no
relationships connections. The same applies for an update operation. If it is
needed to change a label for the node, where one label must exist to another,
the integrity constraint should violate the changes and will not allow it. For
example, if we decide to change the Ingredient label with a Foodstuff label in
figure Our integrity constraint should evaluate this change as violating
and would not allow the edit node labels. The delete operation is trivial with
O(1) complexity and there is no need to check anything.

Summary

This section dealing with the revision of proposed integrity constraints dis-
cussed in the research section we mentioned some aspects which are
needed to be thought over it if we want to put the integrity constraints into
practice. We were very helped by our research about relational databases in
section2.Tjwhere we found out such interesting issues which are really useful
in enriching the basics of the integrity constraint definitions. Without these
mentioned things which are applied for a long time in the relational data-
bases, the work with integrity constraints in Neo4j graph database would be
unthinkable.

We dealt with a wide range of aspects which are described in figure
Among these aspects belong a current, or pseudo Cypher syntax which covers
actual, or possible integrity constraint definitions. During the discussion,
which is pervaded through separated topics, we dealt with usefulness, and
also complexity and its behavior to the graph database state. In a complexity
part we focused on conducting known operations like insert, update and delete
and how the graph database may behave depending on its capacity. In the
end we took into account time execution and discussed use cases of using the
deferred, or immediate modes.

Table [2.4] illustrates an asymptotic complexity for all discussed integrity
constraint use cases. The table contains cases for both the enable validate and
novalidate and either empty database or full database. When the database
is loaded, or updated with data then must be validated under the certain
integrity constraint. For that purpose the complexity is O(n) where 1 is a total
number of certain nodes that must be validated. But, there is one case repres-
ented by Endpoint requirements integrity constraint where is needed to validate
by the total number of certain relationships where complexity is represented
as O(|E]), letter E like edges. All the other operations are almost O(1), but we
must be careful of hidden influencers. The reason why is as follows. For ex-

46

2.4. Requirements and assignment

ample we can define an integrity constraint for Endpoint requirements where a
pattern would look like (:Employee)-[:WORKS_FOR]->(:Employee:Manager). 1f
we decided to rename label “:Employee:Manager” to “Employee”, the integ-
rity constraint would not allow this operation because it might be needed to
validate all relationships with type WORKS_FOR and it is not complexity O(1)
as we mentioned in the table but O(|E|). It is needed to realize that only
one update operation would start a time-consuming validation process which
is really not O(1). These dependencies we can find at integrity constraints
like Cardinality requirements or Required relationships. Among “so-called” safe
integrity constraints we can only include Mandatory property constraints, Prop-
erty value limitations and Label coexistence where the complexity should be the
same as is illustrated in the table 2.4 for all possible operations without any
hidden influencers.

The last thing what is absolutely missing in the integrity constraint pro-
posals is lack of an integrity constraint management which would be nice
to have for getting information about activated integrity constraints in the
graph database. This issue is discussed in the next design chapter

2.4 Requirements and assignment

Our assignment is to propose a new Cypher Query Language syntax which
will support a selected subset of integrity constraints. An implementation of
the new designed Cypher Query Language will be in Java. The prototype
implementation with exposed APl interface will extend Neo4j graph database
engine about the subset of new integrity constraints.

Functional requirements

e Design new Cypher Query Language syntax for defining the selected
integrity constraints.

e The prototype implementation will cover three types of integrity con-
straints orientated only for a node validation such as:

— Node property uniqueness validation behavior for a single prop-
erty value and multiple property values (exactly for a combination
of a pair properties)

— Mandatory properties to provide properties that must not be NOT
NULL

— Property value limitations to restrict particular properties by some
limits with help of the regular expression, datatype restriction, etc.

o Integrity constraints will be able to define both manually in code and in
tile where is a possibility to load defined integrity constraints that are
stored in a JSON structure.

47

2. ANALYSIS

=

S

= JDUD)SIXA0D
5 | Wo | Wo | Mo | Wo o o o 1PqeT
©

> syuowarnboaz
z Mo | Mo | (Do | (3ho (aho (aho (aho yuodpug
‘T syuowaainboaz
m (DO (mo | Mo | wo o o o Ayeurpred)
S sdnysuonefar
B Mo | Mo | Mo | o wo o o parmbay
—

5D SUOT}L}TWI] dN[eA
m Mo | Mo | Mo | o WO o o Kradorg
= syurenjsuod Ayradoxd
= | (Do | Wo | Mo | o wo o o Kroyepuely
% ssauanbrun A31adoxd
%5 L

ml Mo | Wo | Wo | o wo wo o SPON
S | Rrd arepdn | yasup | ga [md | ga Lidwy | ga (i | gq fdwyg | uopdy/weu jurensuo)
by djepIfeaou ajepIfea

o olqeuy o[qeuy

M ejep jo syunowre a3re[3urpeo

=

48

2.4. Requirements and assignment

e The provided prototype implementation API will provide database
Schema definition in the form of integrity constraints.

e The database schema will be maintained in a hierarchical structure
divided by nodes and relationships.

e The prototype implementation will offer integrity constraints manage-
ment system; already returned defined integrity constraints will be
represented in a JSON format.

e The implementation will not support an integrity constraint definition
in Cypher and communication with a database via REST APL

e The implementation itself will not support parsing of defined integrity
constraint in Cypher.

e The prototype implementation after having done integrity constraint
definition will not provide simultaneously creation of such indexes for
speeding-up of searching in a graph database.

Non-functional requirements

e The prototype of a schema definition by integrity constraints will be
implemented in Java.

e The prototype will be implemented as an API for an embedded mode
of a Neo4j graph database engine.

e The prototype will use GraphAware framework for testing.

Limitations

The provided implementation will act is a prototype dealing with a pos-
sible way which integrity constraints may proceed. We cannot rely on fully
functional life-cycle of processing the integrity constraints. Especially, we
excluded a definition of an integrity constraint through a Neo4j web interface
because that functionality is out of scope of this diploma thesis. We also
will not be bother entering and parsing integrity constraint queries entered
in Cypher language.

49

CHAPTER 3

Cypher syntax design

This chapter serves for introducing an extension of the Cypher Query Language.
We use all knowledge we earned in previous chapters. With regard to the
integrity constraints itself and their fundamental functionality, we are mostly
inspired from the relational databases where this all kind of stuff works for a
long time. In this chapter we design one of the possible ways how to define a
new integrity constraint rule in Cypher. The design is based on a syntax which
provided us the whole integrity constraints revision section (2.3). However,
at first, we need to introduce common definitions used in databases and also
we need to find out the new formal definitions for our purpose.

3.1 Comprehensive definitions

Schema (Relational databases) A database schema is a skeleton structure
that represents a logical view of an entire database. The schema defines how
the data, especially in relational databases, will be organized and how the
relations between the data are organized. Thus, database schema describes
entities and relationships among them and formulates all integrity constraints
that we want to have applied on the data [47].

Figure [3.1| shows the one possible basic example of the database schema
where is a description of a room reservation for the relational databases. How-
ever, graph databases are fundamentally schema-free which means that they
do not have any similar strict schema description like relational databases.

Schema (Neo4j graph database) Is a persistent database state that describes
available indexes and enabled integrity constraints for the property graph [49].

We defined what the schema stands for the graph database Neo4j. The
persistent database state means that the database preserves previous amount
of data for further processing, holds indexes for better querying and time
savings, and enables integrity constraints for allowing restrictions. The entire

51

3. CYPHER SYNTAX DESIGN

room_types rooms

idtype: BIGINT idroom: BIGINT f
description: VARCHAR({40) idtype: BIGINT

capacity: INTEGER

| reservations

guests codreservation: BIGINT

idguest BIGINT _'_,—Oé idguest: BIGINT

name: VARCHAR(40) idroom- BIGINT pPO—
date_start: DATE

date_end: DATE

payment. VARCHAR(20)
hosted_guests_number: SMALLINT
canceled: BOOLEAN

identity: VARCHAR(20)

Figure 3.1: Example of schema in a relational database [48]].

thesis deals with the integrity constraints. In view of the fact that Neo4j is
schema-free and customers in a certain areas become accustomed to the benefits
which the relational databases have. They wanted to make certain parts of
Neo4j to be limited in a way of restricting schema freedom in a form of
integrity constraints wherefrom come the name Schema Enforcement.

Our proposal research conducted at 2.2 tells us that we must deal with
nodes and relationships in the property graph because for any integrity con-
straint implies that needs to have somewhere defined the integrity constraint
rule. Therefore, can be useful to have a top schema organization structure for
integrity constraints. Such needed structure we can see in figure

Schema Configuration hierarchical structure is a structure which holds a
configuration for integrity constraints separated into both the Nodes Configur-
ation and Relationship Configuration. Each separated part has its own default
template for segregation constraint rules.

In simple terms a Schema Configuration hierarchical structure consists of top
level component called Schema Configuration. Schema Configuration has
such a role in taking care of Nodes and Relationships Configurations. These
determined configurations are needed to keep integrity constraint rules apart
because in research section 2.2l we mentioned that exist integrity constraints
which are only determined to either nodes or relationships and this option
should be very suitable for us. Each configuration part (the Node and Rela-
tionship) has intended to have a default pre-defined template from which an
inheritance (dashed rectangles in figure can be used.

52

3.1. Comprehensive definitions

Schema
Configuration
Nodes I Label 1 |
Configuration | Ll ———_ !
| —m—————
I | Label 2
i |
| L e — =
Mode template I ====== 1
el e
]
| m—————
I Label N
L q _ :
Relationships tmmm
Configuration
I TYPE_1 |
I
Relationship ! ,L_ ___________
template I_| TYPE_2 |
i _
| L — — — — _l
| i_ _____ 1
L [
rl |
|l
R
I TYPE_N
L4 :
L

Figure 3.2: Schema Configuration hierarchical structure.

Node and Relationship template is a fundamental pre-defined class struc-
ture which has defined all the things that are needed to be applicable across
all nodes and relationships in a graph database, respectively.

How could, such a template should look like under this definition? If we
take a look at figure 3.3l we can find out very similar things that are among
the Node and Relationship templates. This concept is divided into three parts
and it is possible that through the design section will be changed.

First part is about a naming convention. Neo4j supports that for the nodes
is not required to give them a name (i.e. a node label) and also it is possible
that the node can have more than one label. So, to be able to distinguish
the names under the newly defined integrity constraints, there is a visible
sign (0..*) for our information that it is possible to assign zero, or more node
labels. For a relationship template is a situation a little bit different where is
possible only one action and it is to assign a relationship with one TYPE, this
is symbolized by a star sign (*) as a necessity.

53

3. CYPHER SYNTAX DESIGN

—— Relationship template }

0..*{node:Label) *[relationship: TYPE]

Properties: Properties:

-- Property_1 -- Property_1

-- Property 2 --Property 2

- Property_N — Property_N
FINAL FINAL

Figure 3.3: Node and Relationship template in detail.

The second part is about properties. This part is the same for both the
Node and Relationship templates. There are stored property records from
the integrity constraint rule.

The last one is a FINAL part which has a special functionality. The FINAL
is applicable for both templates. If the FINAL is set to ON, it will not be
possible to make any changes such as property addition, deletion, or rename.
For the naming convention is not possible to rename the node label or the
relationship TYPE. Afterwards, we are able to use an inheritance to create the
precise records (i.e. dashed rectangles in figure[3.2) for the integrity constraint
rule from the pre-defined template.

3.2 Cypher Query Language syntax for integrity
constraints

The section contains discussion and designs the Cypher Query Language
syntax for those integrity constraints proposed in chapter [2| section The
draft of the appropriate CQL we take into account all our knowledge that we
have already acquired in the previous chapters and sections concerning the
research, integrity constraint proposals, and also our revision. This section
is split into parts according to those integrity constraints, we present a brief
introduction of the problem and then we design a new extension of how the
integrity constraint problem could be solved in Cypher Query Language.
Before we begin with the new design of Cypher Query Language, firstly,
we introduce a skeleton of Cypher under which other kind of integrity con-
straints are derived. Our objective was to keep the existing Cypher Query

54

3.2. Cypher Query Language syntax for integrity constraints

Language syntax, so that the new Cypher syntax were not so much differ-
ent from the old one and also was immediately possible easy to use it and
understand. The general skeleton of Cypher for all necessary clause opera-
tions such as CREATE, MATCH, EDIT, REMOVE, DROP and DISABLE are
illustrated in listing 3.1}

Listing 3.1: Integrity constraint skeleton - Cypher

(1) CREATE CONSTRAINT (name:’ic_name’) ON
(PATTERN) ASSERT ACTION(properties)
OPTIONS (enable:’ {VALIDATE |NOVALIDATE}’,
validation:’ {IMMEDIATE |DEFERRED}’,

delete: ’{RESTRICT|CASCADE}’,
update: ’{RESTRICT|CASCADE}’,
final: ’{FALSE|TRUE}’);

(2) MATCH (all_constraints) WHERE name = ’ic_name’

SET (PATTERN) ASSERT ACTION(properties)

OPTIONS (enable:’ {VALIDATE |NOVALIDATE}’,
validation:’ {IMMEDIATE |DEFERRED}’,
delete: ’{RESTRICT|CASCADE}’,
update: ’{RESTRICT|CASCADE}’,
final: ’{FALSE|TRUE}’);

(3) DROP (all_constraints) WHERE name = ’ic_name’;
(4) DISABLE (all_constraints) WHERE name = ’ic_name’;
(5) ENABLE (all_constraints) WHERE name = ’ic_name’;

Line identified by the numeral (1) as a part of the skeleton is a creation of
a new integrity constraint in Cypher. It is composed of several components:

e The integrity constraint name as a required unique property.

The current integrity constraint Cypher syntax in Neo4j is based on
the fact that there is not any register place for already defined integrity
constraints and their validation policy. This situation facilitates the fact
that integrity constraints in Neo4j are not much widespread at the form
we would like to have. If we return to our integrity constraint situ-
ation, the design expanded in new functionalities without any simple
integrity constraint identification would have difficulty in using them.
Therefore, we must distinguish the integrity constraints by name for
the next Cypher clauses we want to use.

e PATTERN part as a required property.

55

3.

CYPHER SYNTAX DESIGN

56

This section is reserved for determining the pattern under which integ-
rity constraint validation should be performed. Typical patterns are:
(n:NodeLabel) for nodes, [t:TYPE] for relationships or a combination of
both, for example, ()-[t:Type]->(n:NodeLabel). Where the last case deals
with this situation. From all the arbitrary nodes from which goes a type
relationship [:TYPE] must only go to the such nodes which are labeled
as (:Node).

ACTION(properties) part as a required property.

The ACTION clause serves for defining nodes, or relationship properties
like email, username, etc., that should be validated with a condition
for some integrity constraint cases. The ACTION itself can acquire
UNIQUIE, or EXISTS values.

OPTIONS (options) the last part is optional.

An assigning pair style (or key-value) is inspired from basic Cypher
syntax where for a particular property key is assigned a particular value.
Due to our research in chapter 2| we collected for our purpose five
properties that should be placed to the OPTIONS part. Between those
keys belong enable, validation, delete, update and final:

— enable: {VALIDATEINOVALIDATE}

Enable with VALIDATE starts immediately validating the whole
database. Enable integrity constraint with NOVALIDATE action
is applicable only for newly inserted data, or newly updated data,
present data will not be validated.

— validation: {IMMEDIATE|DEFERRED}’

This refers to a validation time. If we want to postpone the integrity
constraint validation, we will pick the IMMEDIATE keyword,
otherwise the DEFERRED keyword.

— delete/update: {RESTRICT|CASCADE}

This RESTRICT action prevents from the delete, or update opera-
tion in a referenced node. The CASCADE action for the delete, or
update means that if a property in a a certain node is deleted, then
the records in the child nodes will be deleted automatically too.

— final: {FALSE|TRUEY

If we do not wish in order to have allowed adding additional
properties to the nodes and relationships, we will assign a TRUE
sign to the final property. Otherwise if we want to, we will let the
default value which is a FALSE.

To illustrate the main idea lets show it in an example for a certain
node labeled with User. Consider the node with the User label

3.2. Cypher Query Language syntax for integrity constraints

and following properties username, password and email. We want
to make it impossible enriching the node with label User in the
future with additional properties. Thus, we will create the integrity
constraint with Final:"TRUE'. Since this time it will not be able to
change the node definition given by the integrity constraint for
the node label User. If we would like to enrich the node with
a property phoneNumber, the integrity constraint will not allow it
and firstly we will have to disable, or drop the integrity constraint.
The same situation applies if we wanted to remove some property
from the User node, e.g. password, the integrity constraint would
not allowed it.

The OPTIONS part is an optional and there is not needed to fill any key
with a particular value. In curly braces are placed, for each key, two
values with a sign pipe “|” separation. For the keys the first value in
curly braces is used as a default value. For delete and update keys with
values restrict and cascade are used only for those integrity constraint
which has pattern syntax defined in this and similar forms ()-[t:Type]
->(n:NodeLabel)-[t:Typel->(n:NodeLabl).

Line (2) in listing demonstrate a skeleton for an integrity constraint
edition where is used a standard Cypher syntax with improvements men-
tioned above, i.e. the line (1). What is really important and is noteworthy is
an integrity constraint management itself. Neo4j does not support any integ-
rity constraint management. Our approach is simple in using the standard
Cypher clause MATCH where we query a set where the integrity constraints
are stored.

The next proposed syntax DROP on line (3) is for removal the whole
integrity constraint rule which disables for good the validation policy of that
certain integrity constraint rule. Line (4) is designed for disabling integrity
constraint for a certain period of time then it is needed, with line (5), to enable
the integrity constraint again with help of the ENABLE clause, which in a
default mode enables the integrity constraint as VALIDATE which means
that will be validated only new incoming data by the integrity constraint, not
the data which were already loaded in the database.

It might seem that the command design for DROP, DISABLE and ENABLE
clauses could be done via MATCH clause. Yes, it is true, but the reason why
it is splitted is more than obvious. We were trying to avoid at probably the
most frequently used commands using spreading Cypher syntax. Where the
use would be higly impractical and would complain the work. Once again,
for a better integrity constraint recognition is used the integrity constraint
naming convention.

57

3. CYPHER SYNTAX DESIGN

INode template ! ——————1 Relationship template |
0..%(node:Label) *[relationship:TYPE]
Properties: Properties:
-- Property 1 --Property_1
--Property_2 --Property 2
—Property N - Property N
ICMame ICMame
Enable Enable
Validation Validation
Delete Delete
Update Update
Final Final

Figure 3.4: Node and Relationship template revised in detail.

Node and Relationship template revised

In definition section 3.2l we introduced a basic structure of Node and Rela-
tionship templates which are parts of a Schema configuration. The structure
in those templates was designed before designing the new Cypher Query
Language syntax and we discovered that it is not sufficient enough. There-
fore, we made another new template proposal which covers all the required
information for storing the integrity constraints rules. Figure 3.4/ shows an
updated version of Node and Relationship templates where is considered an
integrity constraint name, and other matters from OPTIONS part in Cypher
design which are the Enable, Validation, Delete, Update and Final properties.

Node property uniqueness

How it was said in the constraint revision section the Node property
uniquenes integrity constraint exists in its simplified way. This integrity con-
straint solves uniqueness of the nodes properties. Firstly fulfill a unique
value for separated properties, like the email or username property valida-
tion for a User node or checking a combination of unique values where as an
example was mentioned a label Person with properties firstName and last-
Name and where must not appear in a graph database the person with the
same credentials twice.

58

3.2. Cypher Query Language syntax for integrity constraints

Listing 3.2: Node property uniqueness - Cypher proposal

(1) CREATE CONSTRAINT (name:’unqMail’) ON
(u:User) ASSERT UNIQUE(u.email);

(2) CREATE CONSTRAINT (name:’ungMail’) ON
(u:User) ASSERT UNIQUE(u.email)
OPTIONS (enable:’VALIDATE’,
validation: ’DEFERRED’,
final: "TRUE’);

(3a) CREATE CONSTRAINT (name:’ungComb’) ON
(p:Person) ASSERT UNIQUE(p.firstName &&
p.lastName);

(3b) CREATE CONSTRAINT (name:’unqComb’) ON
(p:Person) ASSERT UNIQUE(p.firstName,
p.lastName);

(4) MATCH (all_constraints) WHERE name = ’ungMail’

SET (p:Person) ASSERT UNIQUE(p.email)

OPTIONS (enable:’ {VALIDATE |NOVALIDATE}’,
validation:’ {IMMEDIATE |DEFERRED}’,
delete: ’{RESTRICT|CASCADE}’,
update: ’{RESTRICT|CASCADE}’,
final: ’{FALSE|TRUE}’);

(5) DROP (all_constraints) WHERE name = ’ungMail’;
(6) DISABLE (all_constraints) WHERE name = ’ungMail’;

(7a) MATCH (all_constraints) WHERE name = ’ungMail’
SET OPTIONS (enable:’VALIDATE’);

(7b) ENABLE (all_constraints) WHERE name = ’'ungMail’;

In listing [3.2is shown several examples how to create an integrity con-
straint rule under a specific assigned constraint name. There are creational
cases with or without OPTIONS part (line numbers 1 to 3b). Lines (3a) and
(3b) shows two different approaches of unique property combination. The
first one uses && signs and the second one uses a comma. Next following
examples cover edit with help MATCH and SET commands, then DROP,
DISABLE and enable cases. The enable cases have two approaches. The first
consist of the MATCH and SET clauses combination, the second demonstrates
enable VALIDATE only with the use of the ENABLE clause.

59

3. CYPHER SYNTAX DESIGN

The next any subsequent examples defining the integrity constraints with
the new Cypher syntax is not covered with the OPTIONS part (except for
some cases) inasmuch as would be repeated the same Cypher syntax. An
explanation of what each part of the OPTIONS part means can be found
in section under the Integrity constraint skeleton. Also, all integrity
constraint examples are taken from research section[2.2]of the analysis chapter
to demonstrate them in the Cypher language.

Mandatory properties

This kind of integrity constraint exists too. It is allowed to use it only if
we have Neo4j Enterprise edition, not the Community version. The integ-
rity constraint carries feature known from the relational databases as NOT
NULL. The Mandatory property integrity constraint should be specified for
both nodes and relationships properties.

Listing 3.3: Mandatory properties - Cypher proposal

(1) CREATE CONSTRAINT (name:’notNullMail’) ON
(u:User) ASSERT EXISTS(u.email);

(2) CREATE CONSTRAINT (name:’notNullMail’) ON
(u:User) ASSERT EXISTS(u.email)
OPTIONS (enable:’VALIDATE ',
validation: ’DEFERRED ’) ;

(3) CREATE CONSTRAINT (name:’notNullDist’) ON
[r:ROAD] ASSERT EXISTS(r.distance);

(4) CREATE CONSTRAINT (name:’notNullDist’) ON
[r:ROAD] ASSERT EXISTS(r.distance);
OPTIONS (enable:’VALIDATE’,
validation: ’DEFERRED ’);

(5) MATCH (all_constraints) WHERE name = ’notNullMail’
SET (p:Person) ASSERT EXISTS(p.email)
OPTIONS (enable:’ { VALIDATE |NOVALIDATE}’,
validation:’ {IMMEDIATE |DEFERRED}’,

delete: ’{RESTRICT|CASCADE}’,
update: ’{RESTRICT|CASCADE}’,
final: ’{FALSE|TRUE}’);
(6) DROP (all_constraints) WHERE name = ’'notNullMail’;

60

3.2. Cypher Query Language syntax for integrity constraints

(7) DISABLE (all_constraints) WHERE name
"notNullMail ’;

(8a) MATCH (all_constraints) WHERE name = ’notNullMail’
SET OPTIONS(enable:’VALIDATE’);

(8b) ENABLE (all_constraints) WHERE name
"notNullMail’;

Listing[3.3]also follows the RFP paper with integrity constraint proposals
and demonstrates the functionality of defining the integrity constraint rule
through Cypher language. The integrity constraint can be created for both
nodes and relationships. The other Cypher examples MATCH, DROP, DIS-
ABLE and ENABLE are shown only for the first case (line number (1)) because
the next examples would repeat.

Property value limitations

The property value limitations integrity constraint is responsible for a proper
validation whether the properties meet the requirements defined in the Cypher
language. For example a certain property must be of a Boolean datatype or
must not be negative, etc.

Listing 3.4: Property value limitations - Cypher proposal

(1) CREATE CONSTRAINT (name:’positiveDist’) ON
[r:ROAD] ASSERT EXISTS(r.distance > 0);

(2) CREATE CONSTRAINT (name:’regexMail’) ON
(u:User) ASSERT EXISTS(u.email AS
"la-z]?@[a-z].+[a-z]");

(3) CREATE CONSTRAINT (name:’UABool’) ON
(u:User) ASSERT EXISTS(u.active AS BOOLEAN);

(4) CREATE CONSTRAINT (name:’locPos’) ON
(u:User) ASSERT EXISTS(u.active AS LIST<POINT>);

(5) MATCH (all_constraints) WHERE name = ’positiveDist’
SET [r:ROAD] ASSERT EXISTS(r.distance >= 0);

(6) DROP (all_constraints) WHERE name = ’positiveDist’;

(7) DISABLE (all_constraints) WHERE name =
’positiveDist’;

61

3. CYPHER SYNTAX DESIGN

(8) MATCH (all_constraints) WHERE name = ’positiveDist’
SET OPTIONS(enable:’NOVALIDATE’);

The integrity constraint definition on line (3) where is defined a node
with a label user must exist a property active which must be of the Boolean
datatype. The next property values are those values that describes a Java
Language Specification.

Required relationships

The Required relationships integrity constraint defines for nodes with a par-
ticular label that must be linked with a particular relationship TYPE.

Listing 3.5: Required relationships - Cypher proposal

(1) CREATE CONSTRAINT (name:’outRRPerson’) ON
(p:Person) ASSERT EXISTS(p-[:LIVES_AT]->Q0));

(2) CREATE CONSTRAINT (name:’inRRFlow’) ON
(s:Sink) ASSERT EXISTS(s<-[:FLOW]-Q));

(3) CREATE CONSTRAINT (name:’RRNeighbl’) ON
(p:Place) ASSERT EXISTS(p-[:NEIGHBOUR]-());

(4) MATCH (all_constraints) WHERE name = ’'outRRPerson’
SET (p:Person) ASSERT EXISTS(p-[:WORK_AT]->Q0);

(5) DROP (all_constraints) WHERE name = ’'outRRPerson’;

(6) DISABLE (all_constraints) WHERE name =
"outRRPerson’;

(7) MATCH (all_constraints) WHERE name = ’'outRRPerson’
SET OPTIONS (enable: ’NOVALIDATE’);

Cardinality requirements

The Cardinality requirements integrity constraint is almost the same as the
Required relationships integrity constraint. This one requires the cardinality,
thus the minimum and maximum number of relationships with a certain
TYPE for a given node with a certain label.

62

https://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html

3.2. Cypher Query Language syntax for integrity constraints

Listing 3.6: Cardinality requirements - Cypher proposal

(1) CREATE CONSTRAINT (name:’cardRCitizen’) ON
(s:SwedishCitizen) ASSERT EXISTS
(s-[MARRIED_TO]-(O) <= 1);

(2) CREATE CONSTRAINT (name:’cardRparent’) ON
(p:Person) ASSERT EXISTS(p<-[PARENT_OF]-() == 2);

(3) CREATE CONSTRAINT (name:’buddMonk’) ON
(b:BuddhistMonk) ASSERT EXISTS
(b-[:0WNS]->0) <= 14);

(4) MATCH (all_constraints) WHERE name = ’'cardRCitizen’
SET (s:CzechCitizen) ASSERT
EXISTS(p-[:WORK_AT]->(0));

(5) DROP (all_constraints) WHERE name = ’cardRCitizen’;

(6) DISABLE (all_constraints) WHERE name =
’cardRCitizen’;

(7a) MATCH (all_constraints) WHERE name = ’cardRCitizen’
SET OPTIONS (enable:’VALIDATE’);

(7b) ENABLE (all_constraints) WHERE name =
’cardRCitizen’;

Endpoint requirements

The Endpoint requirements integrity constraint is defined in Cypher lan-
guage on relationships. This integrity constraint defines the specific rules for
relationships where must or must not start or end in the certain nodes.

Listing 3.7: Endpoint requirements - Cypher proposal

(1) CREATE CONSTRAINT (name:’erOwnsOutgoing’) ON
(p)-[:0WNS]->() ASSERT
EXISTS(p:Person|Organisation);

(2) CREATE CONSTRAINT (name:’erOwnsIncoming’) ON

()-[:0WNS]->(v) ASSERT
EXISTS(v:Vehicle|Building|Item|Organisation);

63

3. CYPHER SYNTAX DESIGN

(3) CREATE CONSTRAINT (name:’erOwnsStrict’) ON
(p)-[:0WNS]->Co) ASSERT
EXISTS(p:Person;o:0rganisation);

(4) CREATE CONSTRAINT (name:’erWorkStrict’) ON
(e)-[:WORKS_FOR]->(m) ASSERT
EXISTS(e:Employee;m:Employee:Manager) ;

(5a) CREATE CONSTRAINT (name:’erOwnsNegative’) ON
(O-[:0WNS]->(p) ASSERT EXISTS(!p:Person);

(5b) CREATE CONSTRAINT (name:’erOwnsNegative’) ON
(O-[:0WNS]->(p) ASSERT NOT EXISTS(p:Person);

(6) MATCH (all_constraints) WHERE name =
erOwnsOutgoing’ SET (p:Person) ASSERT
EXISTS(p-[:LIVE_AT]->Q0);

(7) DROP (all_constraints) WHERE name =
’erOwnsOutgoing’;

(8) DISABLE (all_constraints) WHERE name =
"erOwnsOutgoing’;

(9) MATCH (all_constraints) WHERE name =
"erOwnsOutgoing’ SET OPTIONS(enable:’NOVALIDATE’);

Label coexistence

The last integrity constraint is Label coexistence. The integrity constraint
specifies that nodes with a certain labels cannot exist, or can exist with some
required condition.

Listing 3.8: Label coexistence - Cypher proposal

(1) CREATE CONSTRAINT (name:’labCoexistl’) ON
(p:Person:0rganisation) ASSERT
EXISTS(p:Person||p:0rganisation);

(2) CREATE CONSTRAINT (name:’labCoexist2’) ON
(p:Person:User) ASSERT EXISTS(p:Person && p:User);

64

3.3. Summary

(3) MATCH (all_constraints) WHERE name = ’'labCoexistl’
SET (p:Person:0Organisation) ASSERT EXISTS
(p:Person && p:0rganisation);

(4) DROP (all_constraints) WHERE name = ’labCoexistl’;

(5) DISABLE (all_constraints) WHERE name
"labCoexistl’;

(6a) MATCH (all_constraints) WHERE name = ’'labCoexistl’
SET OPTIONS (enable:’VALIDATE’);

(6b) ENABLE (all_constraints) WHERE name
"labCoexistl’;

3.3 Summary

This chapter led us through the whole problem of defining a new Cypher
Query Language syntax. At the beginning we introduced the most essential
definitions. We defined a difference between schemas in relational databases
and a graph database, especially with focus to Neo4j. Then, we defined a
hierarchical structure of our schema configuration for making records from
defined integrity constraints with help of Cypher language. We mentioned
that the hierarchical structure has templates for a node and relationship where
are afterwards used to inheritance. Our next task was to propose a new
syntax for integrity constraint definition in Cypher Query Language. The
new syntax is basically formed as a skeleton where are considered all the
possible use cases. After specification of the Cypher syntax we had to made
a few changes in our theoretical part concerning the Node and Relationship
templates Then continued the application of the new Cypher syntax to
the examples of integrity constraints defined in the RFP paper which were
discussed in the research section 2.2l

65

CHAPTER 4

Realisation

At the end of the analysis chapter we delimited in the requirements section[2.4]
what types of integrity constraints will be implemented in a prototype solu-
tion. The issue is about implementing the integrity constraints for validation
of nodes and its surroundings. We speak about Node property uniqueness,
Mandatory properties and Property value limitations. In view of the fact
that we talk about the prototype implementation some designed functions
will not be available. What is not aim of a development of the integrity con-
straints is an executing those defined integrity constraints in Cypher language
because the processing, solving, parsing, capturing and filtering of the par-
ticular Cypher syntax, what kind of defined integrity constraints in Cypher
would be routed further, and another kind routed to the pre-processing phase,
is out of scope of this thesis. The whole implementation is based on using
Neo4j graph database in an embedded mode. For defining integrity con-
straints and their management is used a developed SchemaConfigurationAPI
which provides an interface to use convenient methods in cooperation with
structures in code (or in .json file) for keeping defined integrity constraints.
This chapter guides us through the implementation background and what
core functions are used in the SchemaConfigurationAPI implementation itself
with examples of use.

4.1 Implementation background

Neo4j Core API

In section about Neo4j graph database [1.2) we mentioned the high-level ar-
chitecture parts of Neo4j graph database, and how nodes and relationships
are physically stored. The selected integrity constraints are implemented for
Neo4j graph database engine. Neo4j in large part is implemented in Java,
therefore also Java was used for implementation of integrity constraints. The

67

4. REALISATION

most relevant part of the Neo4j architecture is Neo4j Core API which is an im-
perative Java API responsible for a communication with the graph database.

The most important part is a GraphDatabaseService interface which is used
as a mediator between a code and running Neo4j database instance. This
interface provides many methods such as querying and updating data in
the graph database. There are also supported actions for the node and rela-
tionship creation, traversing a graph by nodes or relationships, transaction
execution, and many more. The ACID properties to be fulfilled, the trans-
actions have designed an interface for doing them in right way. Listing
shows the use of the transaction interface where all operations are placed in
a try-catch block.

Listing 4.1: An example of a transaction in Java

GraphDatabaseService database;

try (Transaction tx = database.beginTx())

{

// doing graph operations

tx.success();
} catch (Exception ...)

{

// Handling errors

The next two important interfaces which are provided by Neo4j Core
API are the Node and Relationship interfaces. The Node interface supports
many methods that cover all possible operations to be done on the nodes.
These operations for a Node can be access to the node labels, its properties,
and incoming or outgoing relationships. Operations for a Relationship are
getting the nodes, type of a certain relationship, its properties, etc. Both Node
and Relationship support retrieval operation (i.e. manual traversing graph
by a programmer) which can be handled by an Iterator pattern.

The GraphDatabaseService interface also enables to execute queries using
the Cypher language. For this possibility was designed an execution method.
This method takes a Cypher command as a String parameter and returns
as a result an instance of a Result class. This method does not need to be
wrapped in the try-catch block because, by default, is executed within the
transaction [3].

68

4.1. Implementation background

Neo4j Transaction Event API

The Neo4j Transaction Event API implements a TransactionEventHandler in-
terface which must be registered within a database instance provided by the
GraphDatabaseService interface. With Neo4j Transaction Event API we can use
methods like beforeCommit, afterCommit and afterRollback which have provided
an instance of TransactionData (figure [£.I). Listing [£.2] shows a skeleton in
Java and how to use the TransactionEventHandler.

<<Interface>>

TransactionData
+createdNodes() : Iterable<Node>
+deletedNodes) : Iterable<Node>
+isDeleted(Node) : boolean
+assignedNodeProperties() : Iterable <PropertyEntry<Node>>
+removedNodeProperties() : lterable <PropertyEntry<Node>>
+createdRelationships() : Iterable<Relationship>
+deletedRelationships() : Iterable<Relationship>
+isDeleted(Relationship) : boolean
+assignedRelationshipProperties() : Iterable<PropertyEntry<Relationship>>
+removedRelationshipProperties() : Iterable<PropertyEntry<Relationship> >

<<uUse>> | <<use>>
]
|l —_—re———_——e—e—e————

— VI PropertyContainer] | =
<<Interface>=) T
PropertyEntry <<Interface>> B

+entity() : T TransactionEventHandler

+keyl() : String +beforeCommit{TransactionData) : T

+previouslyCommitedValue() : Object +afterCommit(TransactionData, T) : void

+value() : Object +afterRollback(TransactionData, T) : void

Figure 4.1: Neo4j Transaction Event Handler API [8].

Listing 4.2: An example of a transaction in Java

GraphDatabaseService database;

database.registerTransactionEventHandler (new
TransactionEventHandler<Void>()

@Override
public Void beforeCommit(TransactionData
transactionData) throws Exception

//Operations to be performed before

commit
return;

69

4. REALISATION

@Override
public void afterCommit(TransactionData
transactionData, Void aVoid)
{
//Operations to be performed after
commit
return;
}
@Override
public void afterRollback(TransactionData
transactionData, Void aVoid)
{
//Operations to be performed after
rollback
return;

IDF

The beforeCommit method serves us for making changes on our own. Due
to the transactionData instance we are able to control and ensure which nodes
and relationships have been created and deleted in the transaction before the
whole transaction is committed. This method is widely used for ensuring and
validating data under the defined integrity constraints rules, and where we
are able to enforce a database schema to validate data, and then if data violate
the database schema, we will return an appropriate error message. The other
methods are self-explained where we can also perform some operations.

4.2 Implementation of integrity constraints

The implementation model described in figure 4.2 describes a way how the
integrity constraints are managed and kept in a database schema. The imple-
mentation of the selected integrity constraints involves several classes. Aswe
can see, we proceed from the bases of the proposal suggested in our design
section The core and most important class is a SchemaConfigurationAPI
and its relations with another classes supported the whole functionality. The
SchemaConfigurationAPI interface is designed for Neo4j graph database as a
single instance. It was achieved by a Singleton design pattern where the in-
stance of SchemaConfigurationAPI can be obtained by calling a public method
getInstance. The SchemaConfigurationAPI handles all operations needed to
start an integrity constraint validation. The class provides methods to man-
age defined integrity constraints and print them out, enforce data on the
bases of integrity constrains, and register configurations for integrity con-
straints defined for nodes or relationships. For data enforcing is needed to
provide the enforce method an instance of TransactionData and an instance of

70

4.2. Implementation of integrity constraints

SchemaConfigurationAPI

- instance : SchemaConfigurationAPI
configurationFactory : ConfigurationFactory
- nodeConfiguration : NodeConfiguration

- databaseService : GraphDatabaseService

- relatinshi pConfiguration : RelationshipConfiguration

- SchemaConfigurationAPI()
+ getinstance() : SchemaConfigurationAPI
+ getAliConfigurations() : List<JSONObject>

+ registerConfiguration(nodeConf : Configuration, relationshipConf : Configuration) : void

+ enforce(transactionData : TransactionData, databaseService : GraphDatab rvice) : String
uses + printAliConfigurations(allConstraints : List<JSONObject>) : void
ConfigurationFactory IConfiguration

+ getConfiguration(type : ConfigurationType) : Configuration

J/Dreale s

- getConfiguration() : List<Configuration>

+ addNodeTemplate() : Boolean

+ addRelationshipTemplate() : Boolean

+ loadNodeConfiguration(path : String) : Boolean

Abstract
Configuration

+ loadRelationshipConfiguration(path : String) : Boolean
+ getNodeRecords() : List<NodeTemplate>

+ getRelationshipRecords() : List<RelationshipTemplate>
+ deleteConfiguration() : Boolean

+ deleteNodeTemplate(icName : String) : Boolean
+ deleteRelationshipTemplate(icName : String) : Boolean

- getConfiguration() : List<Configuration>

+ addNodeTemplate() : Boolean

+ addRelationshipTemplate() : Boolean

+ loadNodeConfiguration(path : String) : Boolean

+ loadRelationshipConfiguration(path : String) : Boolean
+ getNodeRecords() : List<NodeTemplate>

+ getRelationshipRecords() : List<RelationshipTemplate>
+ deleteConfiguration() : Boolean

+ deleteNode Template(icName : String) : Boolean

+ deleteRelationshipTemplate(icName : String) : Boolean

-t

NodeConfiguration

RelationshipConfiguration

- nodeRecords : List<NodeTemplate>

- relationshipRecords : List<RelationshipTemplate>

- getConfiguration() : List<Configuration>

+ addNodeTemplate(template : nodeTemplate) : Boolean
+ loadNodeConfiguration{path : String) : Boolean

+ getNodeRecords() : List<NodeTemplate>

+ deleteConfiguration() : Bocdlean

+ deleteNodeTemplate(icName : String) : Boolean

- getConfiguration() : List<Configuration>

+ addRelationshipTemplate() : Boolean

+ loadRelationshipConfiguration(path : String) : Boolean
+ getRelationshipRecords() : List<RelationshipTemplate>
+ deleteConfiguration() : Boolean

+ deleteRelationshipTemplate(icName : String) : Boolean

NodeTemplate

RelationshipTemplate

- nodelable : String

- nodeProperties : List<String>
- icName : String

- action : String

- enable : String

- validation : String

- delete : String

- update : String

- final : Boolean

- relationshipType : String

- relationshipProperties : List<String>
- icName : String

- action : String

- enable : String

- validation : String

- delete : String

- update : String

- final : Boolean

+ NodeTemplate (nodelabel : String. nodeProperties : List<String=>,
icName : String, enable : String, validation : String,
delete : String, update : String, icFinal : Boolean)

+ addNodeConstraint() : Boolean

+ getters / setters

+ RelationshipTemplate(relationshipType : String, relationshipProperties : List<String=,
icName : String, enable : String, validation : String,
delete : String, update : String, icFinal : Boolean)

+ addRelationshipConstraint() : Boolean

+ getters / setters

Figure 4.2: UML class diagram — Schema configuration API model.

71

4. REALISATION

Neo4j database a GraphDatabaseService. A schema configuration records must
be registered by a registerConfiguration method where is needed to be passed
Configurations for both nodes and relationships. If one of node or relationship
configuration is not necessary, then just instead of them fill a null value.

It is allowed to create only a NodeConfiguration and RelationshipConfigura-
tion, not the Configuration itself because it is implemented as an abstract class.
Anyone, who want to define integrity constraints via the NodeConfiguration
or RelationshipConfiguration is applied a Factory design pattern for a better
selection of a required configuration type. Thus the NodeConfiguration and
RelationshipConfiguration inherit application logic from the Configuration class.
The NodeConfiguration holds every node record for each defined integrity con-
straint kept in a NodeTemplate. The same applies for the RelationshipConfigur-
ation. The integrity constraint records store RelationshipTemplates where each
integrity constraint is described in it. Both NodeTemplate and RelationshipTem-
plate follow design steps that are shown in figure[3.4] Especially is necessary
to mutually distinguish the kind of integrity constraints, thus we collect these
sort of attributes such as a node label (or relationship type), the node (or
relationship) properties, an integrity constraint name, an action (unique and
exists possible clauses), the enable, validation, delete, update and final. Some
of these attributes are not required for our purpose, but they might be useful
in the future.

Representation structure of integrity constraints

The next task what is needed to have done is to create a definition (or schema)
structure for storing defined integrity constraints in Cypher. We have chosen
as a solution to use a JSON technology. It allows the stored structure also to
pass defined database schema on demand of an integrity constraint manage-
ment system. The database schema is illustrated by a structure defined as a
JSON Schema. The JSON Schema is self-descriptive, and for determined in-
tegrity constraints is shown in listing One of the many possible returned
responses is shown in listing 4.4}

Listing 4.3: Integrity constraint structure - JSON Self-Descriptive Schema

"$schema": "http://json-schema.org/schema#",
"required": ["clause","name"],
"properties": |
"clause": |
"type": "string",
"description": "Clause identifier"
by
"name": {
"type": "string",

72

4.2. Implementation of integrity constraints

"description": "Name of the integrity constraint"

b
"pattern": {
"type": "string",
"description": "Pattern identifier"
b
"action": |
"type": "string",
"description": "Action identifier"
b
"properties": {
"type": "string",
"description": "Properties to be validated"
b
"options": f{
"type": "object",
"properties": {
"enable": |
"type": "string"
b
"validation": {
"type": "string"
b
"delete": {
"type": "string"
b
"update": |
"type": "string"
b
"final": {
"type": "boolean"

Listing 4.4: Response example in a JSON structure

—_— —_—
—_—
—_—
[—
—_—

"clause": "CREATE",
"name": "MyICName",
"pattern": "(node)-[TYPE]->(node)",

"action": "EXISTS",

4. REALISATION

"properties": "node.email",
"options": |
"enable": "VALIDATE",
"validation": "DEFERRED",
"delete": "STRICT",
"update": "STRICT",
"final": false

Defining a graph database schema

To create a new schema for a graph database Neo4j, a registerConfiguration
method is provided to register defined configurations for both node and
relationship. If we have created either node configuration or relationship
configuration, we can simply use the registerConfiguration method too with
filled a null parameter for the node or relationship configuration. However,
if we wanted to load defined integrity constraints stored in a .json file, then
would be used a method taking a parameter path to pass the path where a .json
file is physically stored on a disk for loading node or relationship database
schema configuration. If you want to define multiple integrity constraints in
one file you must separate each other with a newline to reach a proper process
of these integrity constraints. For a manual configuration there are exist two
separated possibilities the NodeConfiguration and RelationshipConfiguration for
the manual definition of the integrity constraints in code. The method which
provides this configuration flow is the addNode or addRelationship template
which as an input takes an argument of the integrity constraint template
definition in code. After the configuration load of .json file(s) (or manual
definition of integrity constraints in code) is completed, then we must to
inform the SchemaConfiguration environment by registering defined integrity
constraints in a registerConfiguration method. If the register of our configur-
ations were successful, we would be able to run an enforce method to start a
database validation under the defined schema determined by the defined in-
tegrity constraints. Listings [4.5 and [4.6] describes a load operation of defined
integrity constraints from the json file, and manual definition of integrity
constraints, respectively.

Listing 4.5: Schema definition from .json file

SchemaConfiguration schemaConfiguration =
SchemaConfiguration.getInstance();

74

4.2. Implementation of integrity constraints

Configuration nodeConf = schemaConfiguration.
configurationFactory.getConfiguration(
ConfigurationType.NodeConfiguration);

nodeConf.loadNodeConfiguration("./schemaConfigurations/
nodeConfigs.json");

schemaConfiguration.registerConfiguration(nodeConf,
null);

Listing 4.6: Manual schema definition

SchemaConfiguration schemaConfiguration =
SchemaConfiguration.getInstance();

Configuration nodeConf = schemaConfiguration.
configurationFactory.getConfiguration(
ConfigurationType.NodeConfiguration);

NodeTemplate constraintUser = new NodeTemplate("u:User",
"u:email", "icUniqueUser", "unique", "validate",

"deferred", "restrict", "restrict", false);

NodeTemplate constraintPerson = new NodeTemplate("p:

Person", "p:username", "icUniquePerson", "unique",
"validate", "deferred", "restrict", "restrict",
false);

schemaConfiguration.registerConfiguration(nodeConf,
null);

When creating a NodeTemplate or RelationshipTemplate we must fill argu-
ments in a following sequence. A node label (or relationship type), the node
(or relationship) properties, a name of your integrity constraint for further
recognition in an integrity constraint management, a required action (the
unique or exists), and the next arguments for enabling, validation time, de-
lete and update behavior, and final behavior good for locking the whole data
property changes.

75

4. REALISATION

Start schema enforcing of a graph database

As soon as we are done with the schema definition by the integrity con-
straints, and also we have already registered them in SchemeConfigurationAPI
we are allowed to start the whole enforcement process. This can be done via
calling a method enforce with provided transactionData and databaseService
which is an instance of a GraphDatabaseService interface for keeping the in-
stance of opened session of the current graph database. In Neo4j Transaction
Event API 4.1 we introduced in listing 4.2| the use of transactions in Neo4j
graph database. There are listed three implemented methods beforeCommit,
afterCommit and afterRollback. It is highly recommended to start the schema
enforcement at the beforeCommit method because there we have a privilege
to validate data conditioned by the integrity constraints. The application is
seen in listing [4.7}

Listing 4.7: Manual schema definition

GraphDatabaseService database;
SchemaConfiguration schemaConfiguration;

schemaConfiguration.registerConfiguration(...);

database.registerTransactionEventHandler (new
TransactionEventHandler<Void>()
{
@Override
public Void beforeCommit(TransactionData
transactionData) throws Exception
{
schemaConfiguration.enforce(
transactionData, database);
// Other operations
return;
}
@Override
public void afterCommit(...) {...}
@Override
public void afterRollback(...) {...}

76

4.3. How to start using SchemaConfigurationAPI

Delete and update database schema

A data update in Cypher is handled by MATCH and SET clauses. For our
purpose the update operation is theoretically described in the design section
Due to our limited implementation we are not concerned in solving this
statement practically, and it is simulated by manual data editing through
iterator pattern. A delete operation is designed for a full schema removal or
partial schema removal with the integrity constraint names included.

4.3 How to start using SchemaConfigurationAPI

The SchemaConfigurationAPI for a definition of a graph database schema by
integrity constraints is implemented as a Maven project. Maven is a command
line build tool used to build project and make the jar files. If you wish to
use this API in your own project there is required to use either to put a
produced jar file into the project classpath or clone the GitHub repository
(https://github.com/JiriKovacic/constraints) and run mon clean install and then
produced the jar file put into the your project classpath. Do not forget to
check whether a pom.xml file must have included a GraphAware framework
because some parts of it are in SchemaConfigurationAPI used (e.g. simple
graph database shutdownhook or test methods from GraphUnit). If it has
not specified there yet, the compilation would fail.

44 Summary

At the beginning of this realization chapter we introduced the crucial back-
ground such as Neo4j Core API and Neo4j Transaction Event API needed to
start working with a Neo4j database instance. These API’s also behave as a
mediator to run the new implementation for creating a new schema definition
for a graph database by integrity constraints. This prototype implementation
is ready to add new types of integrity constraints and it is further expandable.
There are already implemented three types of integrity constraints limited to
nodes. It is Node property uniqueness, Mandatory properties and Property
value limitations. We showed that is needed to have an instance of Schema-
ConfigurationAPI, and after defining the new integrity constraints we are able
to enforce data in the graph database. What is hidden in the integrity con-
straint implementation itself is how to exactly perform the whole validation
process. We did not mention it in the text above, but many problems had
occurred. Neo4j Transaction Event APIE] provides methods for different situ-
ations which may arise. It is especially for the transaction data separation into
classes named created, assigned and removed which applies for both nodes

* All operations within the transaction data require to use a provided Transaction interface,
otherwise a transaction exception is thrown.

77

https://github.com/JiriKovacic/constraints

4. REALISATION

and relationships. He, who wants to work with the transaction data, must use
these methods which are independent of each other. The next problem which
was arisen was how to validate data in the database before they are actually
fully loaded. This happens because there is not any way how to access the
database through the transaction data. It is solved by provided an instance of
the mapped database. All operations must be performed in a transaction, if
we decide to check data in the database, we will read an uncommitted state
of data which means that we can find out that a record exists, but we are
not able to read the record content (i.e. property values). Thus, the solution
which works is to create another transaction (called a nested transaction) in
the first executing transaction and perform a commit action to data. This
type of transaction is in Neo4;j called Placebo transaction. The definition by
Michael Hunger is as follows[50]: “Placebo transactions are nested transac-
tions in Neo4j, they are created when there is already a top-level transaction
running, and only affect the top-level transaction when they are:

e not finished,
e rolled back,

e terminated.”

So, with use of placebo transactions we are able to make a partial commit and
work with data as they were committed. But, if those data did not meet the
criteria of defined integrity constraints, we could simply abort the top-level
transaction and partially committed data would be rolled back.

78

CHAPTER 5

Measurements

The measurements chapter is focused on a total integrity constraint validation
time during running process and how the integrity constraints affect a graph
database when they are turned on. There is measured how much time is
needed for defined integrity constraints to data enforcement process. We
also focused on a validation of the full graph database because this database
state represents the worst case which can occur and influence a net process
and database performance. Data creation will be omitted; they have at most
constant time complexity.

To test the graph database served us a Cineasts database[51]; possible
nodes properties are taken from Hunger[52]. This dataset is aimed as a Movie
database where used data come from TheMovieDB. The Cineasts database
stores data about Movies, actors who played in a specific movie and their
roles, users and given ratings for movies in their area of interest. The structure
of the Cineasts database is shown in figure Cineasts behaves a little bit
as a social movie database because there is possible to make friends between
database users. The database contains exactly 106 651 relationships and 63042
nodes, respectively.

For obtaining the most accurate results these measurements are always
performed multiple times and results are averaged. There exist two metrics of
measurement, the time and number of database hits. We measured only time

Table 5.1: Hardware configuration

Parameter | Description
Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz, 2301 Mhz,
Processor
4 Core(s)
RAM 8GB 1600MHz DDR3 SDRAM (2x 4GB)
HDD 1TB SATA (5400 RPM)
OS Microsoft Windows 10 Pro (Build 10586)

79

https://www.themoviedb.org

5. MEASUREMENTS

Movie
String id;
String title;
Set<Role> roles;
Set<Director=> director;
Set<Rating=> ratings;

Role

Movie movie;
Actor actor;
String name;

Rating

User user;
Movie movie;
Integer stars;

String comment;

Actor T

String id; User
String name; String login;
Set<Role> roles; String name;

String password;
Set<Rating=> ratings;
Set<User> friends;

Figure 5.1: The structure of Cineasts database.

in milliseconds because the whole validation process in not performed in the
database itself and it is not needed to measure database hits. For performing
measurements is used a configuration shown in a table

Above we mentioned that the Cineasts movie database stores around 63
thousand nodes. With use of a simple Cypher query MATCH (n) RETURN
n,count(*) we can find out that therefrom 44 943 nodes stands for actors, 6 037
nodes for directors, 12 862 nodes for movies and 45 nodes for users. But, if
we make a total sum of each node groups, we will see that the total number
does not fit. This means that some records must be duplicated, and we are
able to identify them by use of an integrity constraint called Node property
uniqueness. As a reminder, it is good to know that complexity for the unique
integrity constraint data enforcement is theoretically in the worst case O(n?).
However, practically due to its implementation background it is higher. For
the other implemented integrity constraints the time complexity is in theory
the worst case O(n) and only in the case if the non-valid data are placed at
the end of the validation process.

80

5.1. Characterization of measurements

Table 5.2: Node label segmentation

Cineasts nodes | Users | Directors | Movies | Actors
63887 45 6037 12862 44943

5.1 Characterization of measurements

All measurements were performed on the Cineasts database. There were
measured three ways of defined integrity constraints for the database schema
enforcement. All measurements show a slightly higher time because the
integrity constraints are specified without using of some type of an imple-
mented index on the node labels that would be indexed on which the integrity
constraint is turned on. There are measured these following integrity con-
straints:

e Node property uniqueness - single property
e Node property uniqueness - multi property
e Property value limitations.

The measurement is based on how much time does it take to validate data
across the whole graph database on which the integrity constraint defines its
schema. Simply, in comparison with the relational databases, it is measured
the state as ENABLE VALIDATE which means that the integrity constraint
defined for the specific node label(s) starts the validation process of the whole
graph database, and with time execution set on IMMEDIATE which means
that the integrity constraints are started to control data by the database schema
immediately. With this settings we achieve the validation of the whole graph
database. Table[5.2]shows a representation of nodes at the Cineasts database.
Node labels in that database cover Users, Directors, Movies and Actors with
their partial sums in each segment, and a total sum listed in a Cineasts nodes
table cell. For unique measurements are used only node groups with labels
User which consist of 45 nodes, and a Director label consisting of about 6
000 nodes. For the non-unique measurement are used all nodes within the
Cineasts movie database.

Measurement no. 1: Cineasts database — Unique single property
validation

The unique single property validation is an integrity constraint where is for
a specific node label defined a particular property which must be enforced in
a graph database as a unique property. Definition in Cypher syntax looks as

follows in listin

81

5. MEASUREMENTS

Listing 5.1: Node property uniqueness - Single property value

(1) CREATE CONSTRAINT (name:’uniqueUserName’) ON
(u:User) ASSERT UNIQUE(u.name) OPTIONS(enable:
"VALIDATE’, validation:’IMMEDIATE’);

(2) CREATE CONSTRAINT (name:’uniqueDirectorName’) ON
(d:Director) ASSERT UNIQUE(d.name) OPTIONS(enable:
"VALIDATE’, validation:’IMMEDIATE’);

Due to time consumption the integrity constraint for the single prop-
erty uniqueness is decided to use nodes only with the User and Director la-
bels. Above, in this chapter, we mentioned that measurements are performed
multiple times and then the results are averaged. During the measurement
process was database gradually modified to achieve a schema-approved (or
integrity constraint approved) database state with no data violations. In fig-
ure 5.2 is demonstrated this fact as Users or Directors with data violation and
Users or Directors with NO data violation. We can see that data with viola-
tions represents less time during the validation process then data with no
violations. This is achieved by the integrity constraint implementation itself
because when some data violate the integrity constraint rule, then the whole
database validation process stops. The columns labeled with no violations
represents the total validation time if we want to convince ourselves that data
conform the specified database schema. This approach is very useful when
we do first database initialization and we want to be ensured that data do not
violate any database restrictions.

Unique validation - single property
1000000
_E 100000
§ 1om00
&
E 1000
£
. 100
-E 10 4 M Cineasts nodes
1 -
Users Directors Director
) Users no]
with L with no
L violation . .
violation violation violation
Cineasts nodes 185,739 220,501 14418903 | 21873486
Node labels

Figure 5.2: Unique validation — single property.

82

5.1. Characterization of measurements

Measurement no. 2: Cineasts database — Unique multiple property
validation

The next unique multiple property validation is the integrity constraint where
is for a specific node label defined a particular combination of two properties,
which must be enforced in the graph database, as the node unique properties.
For example, if we define a new integrity constraint for a node with a label
Person and properties with the firstName and lastName, then it is allowed to
have nodes with the same firstName values as long as they do not have the
same lastName value, and conversely the same lastName values as long as
they do not have the same fistName value. Definition in the Cypher syntax
for the Cineasts database example looks as follows in listing5.2]

Listing 5.2: Node property uniqueness - Multiple property value

(1la) CREATE CONSTRAINT (name:’uniqueUserComb’) ON
(u:User) ASSERT UNIQUE(u.id, u.name)
OPTIONS (enable:’VALIDATE’, validation:’IMMEDIATE’);

(1b) CREATE CONSTRAINT (name:’uniqueUserComb’) ON
(u:User) ASSERT UNIQUE(u.id && u.name)
OPTIONS (enable:’VALIDATE’, validation:’ IMMEDIATE’);

(2a) CREATE CONSTRAINT (name:’uniqueDirectorComb’) ON
(d:Director) ASSERT UNIQUE(d.id, d.name)
OPTIONS (enable:’VALIDATE’, validation:’ IMMEDIATE’);

(2b) CREATE CONSTRAINT (name:’uniqueDirectorComb’) ON
(d:Director) ASSERT UNIQUE(d.id && d.name)
OPTIONS (enable:’VALIDATE’, validation:’IMMEDIATE’);

As can be seen in listing5.2] there are implemented two ways of how to
separate the property combinations to each other. For the Cineasts database
was chosen a property id where is expected to be natively unique with a
cooperation with a property name. Then the actual measurement itself was
performed in the same way as the measurement for the single property unique
validation 5.1}

Even here thanks to the time-consuming validation the integrity constraint
is determined only for nodes with User and Director labels. Also here during
the measurement process the database was gradually modified till it had been
schema-approved. Figure[5.3|describes for the same nodes which are Users or
Directors with data violation and Users or Directors with NO data violation. The
next figure shows a time-consumption comparison between those two
single and multiple unique property validation. We can see that almost in all
possible cases the multiple property value unique validation consumed more

83

5. MEASUREMENTS

Unique validation - multi property

1000000
_E 100000
g 10000
&
E 1000
=
5 100
E
= 10
1
Users Directors Director
) Users no B}
with _ A with no
.) violation . A . .
violation violation violation
Cineasts nodes| 203,308 196,199 | 314942 061 [433570,396
Mode labels

B Cineasts nodes

Figure 5.3: Unique validation — multiple property.

Unique validation - comparison

1000000
2 100000
E 10000
&8
E 1000
£ 100 -
]
E 10
[
1 -
Users Directars Director
_ Users no)
with _ A with no
o violation o o
violation violation violation
Single property| 185799 220,501 14418,903 | 21873486
Multi property | 203,308 196,199 |314942,061 | 433570,396
Mode labels

M Single property
B Multi property

84

Figure 5.4: Unique validation — comparison.

5.1. Characterization of measurements

time to check data in the database under the specified integrity constraint. The
case “Users no violation” can be some kind of pathological cases. However,
this can be more likely due to its small sample of data.

Measurement no. 3: Cineasts database — Property value limitations
or Mandatory properties

The last one is a node validation called Property value limitations. The inner
implementation body of this integrity constraint is very close to the Mandatory
property integrity constraint and the measured results would be very similar.
As an example the integrity constraint validates a STRING datatype for all
nodes in the Cineasts database which consists of Users, Directors, Movies
and Actors nodes. Following listing [5.3| shows us definitions in the Cypher
language for the Property value limitations integrity constraint where is set
the datatype STRING to the schema definition of the graph database.

Listing 5.3: Property value limitations - String datatype
(1) CREATE CONSTRAINT (name:’dtUser’) ON (u:User) ASSERT

EXIST(u.name AS STRING) OPTIONS(enable:’VALIDATE’,
validation:’IMMEDIATE’);

(2) CREATE CONSTRAINT (name:’dtDirector’) ON
(d:Director) ASSERT EXIST(d.name AS STRING)
OPTIONS (enable:’VALIDATE’, validation:’ IMMEDIATE’);

(3) CREATE CONSTRAINT (name:’dtMovie’) ON (m:Movie)
ASSERT EXIST(m.title AS STRING) OPTIONS (enable:
"VALIDATE’, validation:’ IMMEDIATE’);

(4) CREATE CONSTRAINT (name:’dtActor’) ON (a:Actor)
ASSERT EXIST(m.name AS STRING) OPTIONS (enable:
"VALIDATE’, validation:’ IMMEDIATE’);

This validation process is less time-consuming than the unique integrity
constraint because there is no need to validate data each other which requires
many repetitive comparing operations. Figure shows how much time
is required to perform schema enforcement on the whole graph database.
We may notice that there is a big difference between performance of those
two Node property uniqueness and Mandatory property (or Property value
limitations). Once again, it is due to that the unique validation requires
O(n?) steps and property value limitation requires only O(n) in algorithmic
complexity.

85

5. MEASUREMENTS

Property value limitations or Mandatory
properties
1000
3
E 100
E
E
E 10 M Cineasts nodes
E
1
Users Directors Movies Actors
|Cineast5 nodes| 60,611 441 364 500,52 832,327
Mode labels

Figure 5.5: Property value limitations or Mandatory properties.

Overall evaluation

We have performed three types of measurements of defined selected integ-
rity constraints. These integrity constraints were Node property uniqueness,
Mandatory property and Property value limitations. The measurements were
conducted on the Cineasts movie graph database which consist of more than
63 thousand nodes and over 100 thousand relationships. The whole pro-
totype implementation was intended to validate only nodes, but the whole
implementation design is ready to add the new functionalities for relationship
validation, and also for a definition of the new integrity constraints. The per-
formed measurements itself shows that it is possible to use a database schema
specification declared by the integrity constraints and apply the schema on
the database for data validation.

We found out that it is in our power to use those integrity constraints.
What makes a little bit problems is the unique validation. The problem can
occur while we must enforce the database schema. This can happen during
database initialization and data load. The ability to control and validate data
is at the first time very time-consuming. However, we can argue that this is
done once, and then the further loading of data does not take so much time.
This is happening by the implementation itself which is divided into three
states. For nodes those states are created, assigned and removed. These states
are independent each other and accelerates the validation process.

Unfortunately in measurements we were not able to compare prototype
integrity constraint implementation with the current implementation in the

86

5.1. Characterization of measurements

Neo4j graph database. In Neo4j, for example, we are not able to execute
validation process to the whole database because there is not implemented
such functionality and we could not compare our obtained results with the
current integrity constraint implementation, especially with the unique in-
tegrity constraint. If we talk about the unique integrity constraint in Neo4j
and what nowadays is provided, then it is a definition of unique integrity
constraint with a validation control for newly incoming data and that’s all.

The next other implemented integrity constraints are convenient and the
measurements above this conformed. For the control of the whole database
containing more than 63 thousand nodes the validation process took less than
1 second which is very good outcome.

In view of the fact that in the current Neo4j implementation the integrity
constraint after its creation is automatically accompanied by the implementa-
tion of some kind of index to make less cost querying. This fact can speed-up
the validation process itself, but an implementation of some kind of index
was not intented in this thesis.

87

CHAPTER 6

Future work

This diploma thesis gently broached the issue of definition integrity con-
straints in Cypher Query Language. The work that must be done around
this topic is very widespread, and it requires more concentration that is re-
served. The integrity constraints problem is a very extensive theme. At the
beginning we were concerned at how the integrity constraints are processed
in the relational databases such as the Oracle and PostgreSQL database. We
were inspired from many ideas that are common in the relational databases.
These ideas are implemented, tested, and they work well in the relational
databases, so why not to inspire from them and use their functionality in the
Neo4j graph database. The study involved seven different cases (or types) of
integrity constraints. In revision chapter 2.3/ became clear that some types of
integrity constraints are not convenient for example Endpoint requirements.

The implementation itself acts as a prototype API for an embedded mode
of the Neo4j graph database. There are implemented three types of integrity
constraints which are concerned only for a node validation which work pretty
well. The whole implementation is proposed to make an easy addition of new
functionalities such as integrity constraint validation for relationships. There
is also possible to create new methods for implementation of other integrity
constraint types. The next integrity constraints that could be implemented are
Required relationships, Cardinality requirements or Label coexistence. However,
we must bear in mind that the validation process takes a constant time, but if
we had to validate many node relationships multiple times, we would obtain
many repetitive comparing operations and we would lose the performance.
In those cases should be helpful to use some heuristics if they exist.

The prototype implementation does not use indexes. The next what
should be implemented is a creation of index for a specific node label (or
relationship type) at the time when the integrity constraint is created. Other
thing at the integrity constraint definition is a pattern requirement, thus what
we want to validate. For Node property uniqueness, Mandatary properties and
Property value limitations integrity constraints is only needed a pattern in a

89

6. FuTURE wWORK

form of the node representation like (n:NodeLabel). However, the next pos-
sible integrity constraints can be defined with these kind of patterns ()-[/-()
or long-path patterns for special integrity constraints like ()-[]-0-[]-() et} So
the future work would deal with these patterns too.

The next what should be implemented is support of the Neo4j graph data-
base at a stand-alone mode. This means that provided Cypher, in which the
integrity constraints are defined, through an exposed web interface and use
of REST API should be transferred to the database where the particular in-
tegrity constraint definition would be processed, and the inadequate Cypher
would be forwarded further. The extension of the prototype implementation
could lie as a plugin which would enrich the actual installation of the Neo4;j
graph database where the plugin would be placed into the appropriate Neo4;j
plugin folder.

If we take a look at Cypher in which the integrity constraints are defined
we can imagine that the implementation should contain some kind of Cypher
parser or using of the recommended solution which is currently in use by
Neo4j. The solution is available at a Neo4j blog [53] and the actual execution
plan is as follows:

e Convert an input query string into an abstract syntax tree (AST).
e Optimize and normalize the AST.

o Create a query graph from the normalized AST.

e Create a logical plan from X.

e Rewrite the logical plan.

o Create an execution plan from the logical plan.

e Execute the query using the execution plan.

There exists so much work what to do and what to implement for the
Neo4j graph database. The presented problems would be covered in sev-
eral following diploma thesis which can bring on to the light for the new
possibilities and ideas.

SParentheses () represents nodes and brackets [] represents relationships

90

Conclusion

Graph databases are one of the fastest growing databases systems in the
world. Graph databases are much younger than relational databases and in
some ways they are taking a little bit of inspiration from them because of
well-established processes. Such a case involves this diploma thesis as well.
Before concerning of the proposals of the integrity constraints there must be
conducted an appropriate research where should have covered the most im-
portant and useful methods that are common for the world of the relational
databases because in the Request for proposals: Cypher Schema syntax paper
suggested by Cypher language group is not covered this possibility. Integrity
constraints are such defined rules that describe a database schema. Graph
databases including Neo4j are schema-free and the already implemented in-
tegrity constraints are not as good as they should be. The integrity constraint
term can be represented for example that some data in the graph database
must be unique etc.

We have laid the foundations for a new Cypher Query Language syntax for
creating integrity constraints which define a certain database schema needed
to be enforced. During the work we have introduced all possible integrity
constraints that are proposed on RFP paper. These integrity constraints are
Node property uniqueness, Mandatory properties, Property value limitations, Re-
quired relationships, Cardinality requirements, Endpoint requirements and Label
coexistence. The major contribution is in the Revision chapter where those
integrity constraints from several points of view are discussed. Primarily we
were focused on Syntax and how the Cypher syntax for integrity constraints
should look like, after that Usefulness and which the integrity constraint
deals with, Complexity where we had to introduce problems and possible
difficulties with a combination of a selection of a graph database validation
mode and DML operations such as insert, update and delete, and last but not
least it is needed to deal with postponing of a validation process for the cases
if we want to validate data in an immediate or deferred mode. When the the-
ory and discussion was done it came turn to design the new Cypher Query

91

CONCLUSION

Language syntax for proposed new integrity constraints. The CQL syntax
itself was designed gently to keep the basic idea of the actual Cypher syntax
for querying the graph database. The designed Cypher syntax covers all
possible options from creation of integrity constraint, its detection by Cypher
MATCH clause, modifications by SET clause and there are also provided
possible actions to drop, enable and disable these integrity constraints.

The implementation was intended as a prototype. The implementation is
designed for all kinds of integrity constraint, but supports a subset of them
and is targeted only for the node validation. Exactly, there are supported
integrity constraints Node property uniqueness, Mandatory properties and Prop-
erty value limitations. The implementation exposes its interface which can
be used with JVM-language. At first, it is needed to create an instance of
SchemaConfiguration which registers divided configurations for both nodes
and relationships. Configurations for nodes can be defined in-code or in-file
where for description of defined integrity constraint is used a JSON structure
format. After registering the sub-configurations just need to run enforcement
process and the rest of the internal implementation takes care of everything.
Also the prototype implementation is available at GitHub repository where
the source code is available.

The implemented integrity constraints were tested at the movie database
called Cineasts which consists of around 63 thousand nodes and over 100
thousand relationships. We found out that implemented integrity constraints
can exist and should be included into Neo4j graph database. There were
appeared some difficulties with Node property uniqueness integrity constraint
and its time consumption at the first validation of initialized graph database
state. The Unique validation is a very expensive operation and it is become
the more expensive, the more data in the database must be checked. However,
this full database scan happens only at the first time and primarily depends
on a user and how much he trusts the data because there is a possibility to
switch off the validation control.

The thesis aims to introduce such possibilities how to behave towards
integrity constraints from several points of view. The main part was to focus at
the theory and possible difficulties that may arise. After that design a suitable
Cypher syntax for integrity constraint definition followed an implementation
of a prototype program to demonstrate proposed functionalities. However,
there is still much work that is included at this topic.

92

https://github.com/JiriKovacic/constraints

[1]

2]

3]

[4]

[5]

6]

[7]

[8]

[9]

Bibliography

TutorialsPoint. DBMS - Overview [online]. [cit. 2016-04-27]. Available
from: http://www.tutorialspoint.com/dbms/dbms_overview.htm

Chong, R. F.; Wang, X.; Dang, M.; et al. Understanding DB2: Learning Visu-
ally with Examples (2nd Edition). IBM Press, 2008, ISBN 0131580183. Avail-
able from: http://www.ibmpressbooks.com/articles/article.asp?p=
1163083

Troup, M. Indexing of patterns in graph DB engine Neo4j I. Master’s thesis,
Czech Technical University in Prague, 2015.

Alexanderson, G. L. About the cover: Euler and Konigsberg’s bridges:
a historical view. Bull. Amer. Math. Soc. (N. S.), volume 43, no. 4, 2006.

Tutte, W. T. Graph Theory (Cambridge Mathematical Library). Cambridge
University Press, 2001, ISBN 0521794897.

Paoletti, T. Leonard Euler’s Solution to the Konigsberg
Bridge Problem [online]. [cit. 2016-03-18]. Available from:
http://www.maa.org/press/periodicals/convergence/leonard-
eulers-solution-to-the-konigsberg-bridge-problem

Diestel, R. Graph Theory (Graduate Texts in Mathematics). Springer, 2000,
ISBN 0387989765.

Bachman, M. GraphAware: Towards Online Analytical Processing in Graph
Databases. Master’s thesis, Imperial College London, 2013.

New South Wales, U. Methods of Search [online]. [cit. 2016-02-25]. Avail-
able from: http://www.cse.unsw.edu.au/~billw/Justsearch.html

[10] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; et al. Introduction to Al-

gorithms, Second Edition. The MIT Press, 2001, ISBN 0262032937

93

http://www.tutorialspoint.com/dbms/dbms_overview.htm
http://www.ibmpressbooks.com/articles/article.asp?p=1163083
http://www.ibmpressbooks.com/articles/article.asp?p=1163083
http://www.maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-konigsberg-bridge-problem
http://www.maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-konigsberg-bridge-problem
http://www.cse.unsw.edu.au/~billw/Justsearch.html

BiBLIOGRAPHY

[11] Date, C. An Introduction to Database Systems (8th Edition). Pearson, 2003,
ISBN 0321197844.

[12] Marzi, M. D. Introduction to Graph Databases [online]. [cit. 2016-
02-25]. Awvailable from: http://www.slideshare.net/maxdemarzi/
introduction-to-graph-databases-12735789?related=1

[13] Hunger, M. Intro to Graphs and Neo4j [online]. [cit. 2016-02-
25]. Available from: http://www.slideshare.net/neo4j/intro-to-
graphs-and-neo4j-336771547next_slideshow=2

[14] MongoDB. Document-oriented database [online]. [cit. 2016-02-26]. Avail-
able from: https://www.mongodb.com/document-databases

[15] Robinson, I.; Webber, J.; Eifrem, E. Graph Databases. O’Reilly Media, Inc.,
2015, ISBN 9781491930892.

[16] Neo4j. The Neo4j Graph Database [online]. [cit. 2016-02-28]. Available
from: http://neo4j.com/docs/stable/graphdb-neo4j.html

[17] Bell, P; Hunger, M. Get more intelligence from your data using
Cypher and Neo4j — UPDATED for Neo4j 2.0 [online]. [cit. 2016-02-27].
Available from: |https://jaxenter.com/get-more-intelligence-
from-your-data-using-cypher-and-neo4j-updated-for-neo4j-2-
0-107498.html

[18] Neo4j. Chapter 1. Neo4j Highlights [online]. [cit. 2016-02-29].
Available from: http://neo4j.com/docs/stable/introduction-
highlights.html

[19] Michon, C. H2 database - embedded or server mode? [online]. [cit.
2016-02-29]. Available from: http://stackoverflow.com/questions/
26418682 /h2-database-embedded-or-server-mode

[20] Neo4j. Chapter 25. High Availability [online]. [cit. 2016-02-29]. Available
from: http://neo4j.com/docs/stable/ha.html

[21] Neo4j. 8.1. What is Cypher? [online]. [cit. 2016-03-01]. Available from:
http://neo4dj.com/docs/stable/cypher-introduction.html

[22] Freeman, W.; Needham, M. Optimizing Cypher Queries in Neo4j [on-
line]. [cit. 2016-03-01]. Available from: http://www.slideshare.net/
neo4dj/optimizing-cypher-32550605

[23] Neo4j. 14.2. Constraints [online]. [cit. 2016-03-01]. Available from: http:
//neodj.com/docs/stable/query-constraints.html

94

http://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789?related=1
http://www.slideshare.net/maxdemarzi/introduction-to-graph-databases-12735789?related=1
http://www.slideshare.net/neo4j/intro-to-graphs-and-neo4j-33677154?next_slideshow=2
http://www.slideshare.net/neo4j/intro-to-graphs-and-neo4j-33677154?next_slideshow=2
https://www.mongodb.com/document-databases
http://neo4j.com/docs/stable/graphdb-neo4j.html
https://jaxenter.com/get-more-intelligence-from-your-data-using-cypher-and-neo4j-updated-for-neo4j-2-0-107498.html
https://jaxenter.com/get-more-intelligence-from-your-data-using-cypher-and-neo4j-updated-for-neo4j-2-0-107498.html
https://jaxenter.com/get-more-intelligence-from-your-data-using-cypher-and-neo4j-updated-for-neo4j-2-0-107498.html
http://neo4j.com/docs/stable/introduction-highlights.html
http://neo4j.com/docs/stable/introduction-highlights.html
http://stackoverflow.com/questions/26418682/h2-database-embedded-or-server-mode
http://stackoverflow.com/questions/26418682/h2-database-embedded-or-server-mode
http://neo4j.com/docs/stable/ha.html
http://neo4j.com/docs/stable/cypher-introduction.html
http://www.slideshare.net/neo4j/optimizing-cypher-32550605
http://www.slideshare.net/neo4j/optimizing-cypher-32550605
http://neo4j.com/docs/stable/query-constraints.html
http://neo4j.com/docs/stable/query-constraints.html

Bibliography

[24] Bachman, M. Introducing GraphAware Neo4j Framework [online].
[Cited 2016-03-26]. Available from: http://graphaware.com/neo4j/
2014/05/28/graph-aware-neo4j- framework.html

[25] Bachman, M. GraphAware Neo4j Framework [online]. [Cited 2016-
03-26]. Available from: |https://github.com/graphaware/neo4j-
framework

[26] Neo4j. 32.1. Server Plugins [online]. [cit. 2016-03-27]. Available from:
http://neo4j.com/docs/stable/server-plugins.html

[27] Bachman, M. Neo4j Improved Transaction Event API [online].
[Cited 2016-03-27]. Available from: http://graphaware.com/neo4j/
transactions/2014/07/11/neo4dj-transaction-event-api.html

[28] Oracle. Defining Tables [online]. [cit. 2016-03-03]. Available from: https:
//docs.oracle.com/cd/E18315_02/doc.214/e18306/tables.htm

[29] Valenta, M. Integritni omezeni [online]. [cit. 2016-03-03]. Available
from: https://users.fit.cvut.cz/valenta/doku/lib/exe/fetch.php/
bivs/dbs2_02_io_ddl.pdf

[30] Bilek, P. Sloupcova omezeni, Indexy [online]. [cit. 2016-03-03]. Available
from: http://www.sallyx.org/sally/psql/psql5.php

[31] Vebloud. Teorie relatnich databézi: Integritni omezeni [on-
line]. [cit. 2016-03-03]. Available from: http://www.manualy.net/
article.php?articleID=15

[32] PostgreSQL. Constraints [online]. [cit. 2016-03-03]. Available from:
http://www.postgresql.org/docs/9.5/static/ddl-constraints.html

[33] Oracle. CONSTRAINT clause [online]. [cit. 2016-03-03]. Available from:
https://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqlj13590.html

[34] PostgreSQL. Foreign keys [online]. [cit. 2016-03-04]. Awvailable
from: http://www.postgresql.org/docs/current/static/tutorial-
fk.html

[35] Kozubek, A. ON DELETE RESTRICT vs NO ACTION [online]. [cit. 2016-
03-04]. Available from: http://www.vertabelo.com/blog/technical-
articles/on-delete-restrict-vs-on-delete-no-action

[36] TechOnTheNet. ORACLE/PLSQL: FOREIGN KEYS WITH CAS-
CADE DELETE [online]. [cit. 2016-03-04]. Available from: http://
www.techonthenet.com/oracle/foreign_keys/foreign_delete.php

95

http://graphaware.com/neo4j/2014/05/28/graph-aware-neo4j-framework.html
http://graphaware.com/neo4j/2014/05/28/graph-aware-neo4j-framework.html
https://github.com/graphaware/neo4j-framework
https://github.com/graphaware/neo4j-framework
http://neo4j.com/docs/stable/server-plugins.html
http://graphaware.com/neo4j/transactions/2014/07/11/neo4j-transaction-event-api.html
http://graphaware.com/neo4j/transactions/2014/07/11/neo4j-transaction-event-api.html
https://docs.oracle.com/cd/E18315_02/doc.214/e18306/tables.htm
https://docs.oracle.com/cd/E18315_02/doc.214/e18306/tables.htm
https://users.fit.cvut.cz/valenta/doku/lib/exe/fetch.php/bivs/dbs2_02_io_ddl.pdf
https://users.fit.cvut.cz/valenta/doku/lib/exe/fetch.php/bivs/dbs2_02_io_ddl.pdf
http://www.sallyx.org/sally/psql/psql5.php
http://www.manualy.net/article.php?articleID=15
http://www.manualy.net/article.php?articleID=15
http://www.postgresql.org/docs/9.5/static/ddl-constraints.html
https://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqlj13590.html
http://www.postgresql.org/docs/current/static/tutorial-fk.html
http://www.postgresql.org/docs/current/static/tutorial-fk.html
http://www.vertabelo.com/blog/technical-articles/on-delete-restrict-vs-on-delete-no-action
http://www.vertabelo.com/blog/technical-articles/on-delete-restrict-vs-on-delete-no-action
http://www.techonthenet.com/oracle/foreign_keys/foreign_delete.php
http://www.techonthenet.com/oracle/foreign_keys/foreign_delete.php

BiBLIOGRAPHY

[37] Consulting, B. Enabling and Disabling Constraints [online]. [cit.
2016-02-14]. Available from: http://www.dba-oracle.com/t_enabling_
disabling_constraints.htm

[38] Oracle. CONSTRAINT clause [online]. [cit. 2016-02-14]. Available
from: https://docs.oracle.com/cd/B28359_01/server.111/b28310/
general®05.htm

[39] Foote, R.NOVALIDATE Constraints —No really ... [online]. [cit. 2016-02-
14]. Available from: https://richardfoote.wordpress.com/2008/07/
28/novalidate-constraints-no-really/

[40] Pedersen, A. A. Enabling and disabling Oracle Constraints [on-
line]. [cit. 2016-02-14]. Available from: http://www.databasedesign-
resource.com/enabling-and-disabling-oracle-constraints.html

[41] PostgreSQL. ALTER TABLE [online]. [cit. 2016-02-14]. Available from:
http://www.postgresql.org/docs/9.5/static/sql-altertable.html

[42] PostgreSQL. SET CONSTRAINTS [online]. [cit. 2016-02-14]. Avail-
able from: http://www.postgresqgl.org/docs/9.5/static/sql-set-
constraints.html

[43] Davey,]. Deferring constraints in PostgreSQL [online]. [cit. 2016-02-14].
Available from: https://hashrocket.com/blog/posts/deferring-
database-constraints

[44] Govind. Deferred Constraints [online]. [cit. 2016-02-14]. Awvail-
able from: http://myorastuff.blogspot.cz/2009/05/deferred-
constraints.html

[45] Oracle. Deferred Constraint Checking [online]. [cit. 2016-02-14].
Available from: https://docs.oracle.com/cd/B19306_01/server.102/
b14220/data_int.htm

[46] Lindaaker, T. Request for proposals: Cypher Schema syntax. [cit. 2016-
03-15].

[47] Tutorialspoint. DBMS - Data Schemas [online]. [cit. 2016-03-27].
Available from: http://www.tutorialspoint.com/dbms/dbms_data_
schemas.htm

[48] GenMyModel. Room reservation schema [online]. [cit. 2016-03-
28]. Available from: https://repository.genmymodel.com/online-
example/room-reservation-schema

[49] Neo4j. Terminology [online]. [cit. 2016-03-27]. Available from: http:
//neodj.com/docs/stable/terminology.html

96

http://www.dba-oracle.com/t_enabling_disabling_constraints.htm
http://www.dba-oracle.com/t_enabling_disabling_constraints.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28310/general005.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28310/general005.htm
https://richardfoote.wordpress.com/2008/07/28/novalidate-constraints-no-really/
https://richardfoote.wordpress.com/2008/07/28/novalidate-constraints-no-really/
http://www.databasedesign-resource.com/enabling-and-disabling-oracle-constraints.html
http://www.databasedesign-resource.com/enabling-and-disabling-oracle-constraints.html
http://www.postgresql.org/docs/9.5/static/sql-altertable.html
http://www.postgresql.org/docs/9.5/static/sql-set-constraints.html
http://www.postgresql.org/docs/9.5/static/sql-set-constraints.html
https://hashrocket.com/blog/posts/deferring-database-constraints
https://hashrocket.com/blog/posts/deferring-database-constraints
http://myorastuff.blogspot.cz/2009/05/deferred-constraints.html
http://myorastuff.blogspot.cz/2009/05/deferred-constraints.html
https://docs.oracle.com/cd/B19306_01/server.102/b14220/data_int.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14220/data_int.htm
http://www.tutorialspoint.com/dbms/dbms_data_schemas.htm
http://www.tutorialspoint.com/dbms/dbms_data_schemas.htm
https://repository.genmymodel.com/online-example/room-reservation-schema
https://repository.genmymodel.com/online-example/room-reservation-schema
http://neo4j.com/docs/stable/terminology.html
http://neo4j.com/docs/stable/terminology.html

Bibliography

[50]

[51]

[52]

[53]

Hunger, M. How Spring Data Neo4j does choose the type of the
transaction (Placebo or TopLevel) [online]. [cit. 2016-04-19]. Available
from: http://stackoverflow.com/questions/24649646/how-spring-
data-neo4j-does-choose-the-type-of-the-transaction-placebo-
or-toplev

Misquitta, L. Full dataset (12k movies, 50k actors) of the Spring Data
Neo4j Cineasts.net [online]. [cit. 2016-04-20]. Available from: http://
neo4dj.com/developer/example-data/

Hunger, M. Tutorial Spring Data Graph [online]. [cit. 2016-04-20]. Avail-
able from: |https://github.com/neo4j-examples/sdn4-cineasts/
wiki

Neo4j. Introducing the new Cypher Query Optimizer [online]. [cit.
2016-04-26]. Available from: http://neo4j.com/blog/introducing-
new-cypher-query-optimizer/

97

http://stackoverflow.com/questions/24649646/how-spring-data-neo4j-does-choose-the-type-of-the-transaction-placebo-or-toplev
http://stackoverflow.com/questions/24649646/how-spring-data-neo4j-does-choose-the-type-of-the-transaction-placebo-or-toplev
http://stackoverflow.com/questions/24649646/how-spring-data-neo4j-does-choose-the-type-of-the-transaction-placebo-or-toplev
http://neo4j.com/developer/example-data/
http://neo4j.com/developer/example-data/
https://github.com/neo4j-examples/sdn4-cineasts/wiki
https://github.com/neo4j-examples/sdn4-cineasts/wiki
http://neo4j.com/blog/introducing-new-cypher-query-optimizer/
http://neo4j.com/blog/introducing-new-cypher-query-optimizer/

APPENDIX A

Acronyms

ACID Atomicity, Consistency, Integration, Durability
BFS Breadth-first search

CE Community Edition

CRUD Create, Read, Update, Delete

CQL Cypher Query Language

DBMS Database Management System

DDL Data Definition Language

DFS Depth-first Search

DML Data Manipulation Language

EE Enterprise Edition

GDBMS Graph Database Management System
IC Integrity Constraint

JSON JavaScript Object Notation

NoSQL Not only Structured Query Language
RFP Request for proposals

SQL Structured Query Language

99

APPENDIX B

Contents of enclosed CD

readme.tXt.....vviiiinnnninnnnnnns the file with CD contents description
| MEASUTEMENTS +.vuvnrrrrnenrnrnrnnenenss measured results from chapter 5
=3 the directory of source codes
t impl. .o implementation sources
thesis..........cvvee. the directory of IXTEX source codes of the thesis
= the thesis text directory
| thesis. PAf e e the thesis text in PDF format

	Introduction
	State-of-the-art
	Graph theory
	Graph databases

	Analysis
	PostgreSQL and Oracle Constraint Research
	Cypher Schema syntax – Research of integrity constraint proposals for Neo4j
	Cypher Schema syntax – Revision of integrity constraints
	Requirements and assignment

	Cypher syntax design
	Comprehensive definitions
	Cypher Query Language syntax for integrity constraints
	Summary

	Realisation
	Implementation background
	Implementation of integrity constraints
	How to start using SchemaConfigurationAPI
	Summary

	Measurements
	Characterization of measurements

	Future work
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

