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remarks and help throughout my studies. Also, I would like to thank my
family and friends for their support.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 9th May 2016 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
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Abstrakt

Tato práce studuje regulárńı stromové výrazy, formalismus pro popis regulár-
ńıch stromových jazyk̊u. Hlavńım př́ınosem práce je nový algoritmus pro převod
regulárńıho stromového výrazu na ekvivalentńı zásobńıkový automat, který
přij́ımá stromy v lineárńım postfixovém zápisu. Výsledný automat patř́ı do
kategorie real-time height-deterministic zásobńıkových automat̊u, což zna-
mená, že je vždy zdeterminizovatelný. Algoritmus vytvářej́ıćı tento automat
je modifikaćı Glushkovova algoritmu pro převod regulárńıch výraz̊u na nede-
terministický konečný automat. Implementace převodu je v jazyce C++ jako
rozš́ı̌reńı Automatové knihovny.

Kĺıčová slova Glushkov̊uv automat, regulárńı stromový výraz, zásobńıkový
automat, real-time height-deterministic zásobńıkový automat
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Abstract

This thesis studies regular tree expressions, a formalism for describing regular
tree languages. Main topic of this thesis is a new algorithm for converting a
regular tree expression to a pushdown automaton recognizing trees in their
linear postfix notation. Resulting pushdown automaton is real-time height-
deterministic, i.e., it can always be determinised. The algorithm for conversion
is an adaptation of Glushkov’s algorithm for converting a regular expression
to a nondeterministic finite automaton. C++ implementation of the algorithm
is attached as an extension of Automata Library.

Keywords Glushkov’s automaton, regular tree expression, pushdown auto-
maton, real-time height-deterministic pushdown automaton
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Introduction

This work contributes to a new algorithmic discipline called Arbology. Ar-
bology research group was founded in 2008 at Czech Technical University in
Prague[arb]. The name arbology comes from a Spanish word arbol, which
means a tree. Arbology discipline focuses on algorithms on trees and uses a
pushdown automaton as a model of computation. An idea of processing a tree
by a pushdown automaton comes from a crucial observation that every tree
can be represented as a string (in what is called a linear notation of a tree).
This method of processing is similiar to what sequential algorithms do while
traversing a tree in linear order.

The inspiration for building arbology algorithms comes from stringology.
In stringology, finite automata are usually used as a model of computation.
In arbology, trees are processed by pushdown automata.

Many algorithms analogous to the stringology ones were created. For
example indexing trees, computing repeats in trees, searching in trees and
last but not least converting regular tree expression to pushdown automaton
by extension of Thompson’s algorithm [JM09, PJM11].

Motivation

Regular tree expressions are a natural formalism for describing a set of trees.
They are analogous to regular (string) expressions in the tree domain. Regular
expression matching is an useful operation in computer science with number
of applications. In string domain, one can describe sets of strings or search
within the text with the use of regular expressions. In tree languages, it
is similar. However, with regular tree expressions one can describe tree-like
structures or search in them. Nice practical examples of tree-like structures are
for instance XML documents or LISP programs. Unlike for strings, the most
famous models of computation for trees are various kinds of tree automata.

There are some related works in tree domain for regular tree matching
problem with tree automaton as a model of computation. This thesis presents
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Introduction

a new systematic approach to the construction of a regular tree expression
matcher by adaptation of Glushkov’s algorithm from strings to trees. Created
determinisable pushdown automaton reads subject trees described by a regular
tree expression in their linear postfix notation. This pushdown automaton has
the property of being real-time height-deterministic. The height-determinism
means that for each run on the same input the height of automata push-
down store is the same in all nondeterministic paths and is predetermined
by the input word. Real-time height-deterministic automata can be always
determinised[NS07] and they accept a subclass of deterministic context-free
languages. Deterministic pushdown automata can recognize the input string
in linear time with respect to the size of input.

This is not the first work on this topic in Arbology research group. Differ-
ent method for converting regular tree expressions to a determinisable push-
down automata was presented in [PJM11].

Organization of the text

This text is structured into multiple chapters.

Introduction provides an insight into the topic. It presents the Arbology
research and the motivation for this thesis.

Chapter 1 defines basic notions in string and tree languages.

Chapter 2 introduces reader to regular tree expressions.

Chapter 3 presents related works in both string and tree domains as well
as related algorithms for the conversion of regular tree expression to
pushdown automaton.

Chapter 4 is the most important part of this work. It shows the process of
creating the algorithm for conversion and presents the algorithm itself
as well as some examples and formal analysis of the method.

Chapter 5 presents the Automata Library (ALIB), a framework for imple-
menting algorithms in formal languages, describes the caveats in imple-
mentation and the process of testing.

Conclusion provides the summary and results of this thesis. It also points
at some interesting problems for future work.

2



Chapter 1

Basic notions

This chapter presents basic notions needed for full definition of regular tree ex-
pressions and their conversion into pushdown automata. Basic definitions for
strings and automata are provided similar to [Mel03, Hol15, ASU86]. Defin-
itions of trees are similar to [CDG+07]. Regular tree expressions are defined
exhaustively in the following chapter.

1.1 Alphabet, Language

Definition 1.1 (Alphabet). Alphabet is a finite non-empty set of symbols
usually denoted by Σ. 4

Definition 1.2 (Word, string). Word or string over alphabet Σ is a finite
sequence of symbols of alphabet. An empty word is denoted by ε. Given a
non-empty word w we can write w = w1w2 . . . wn where wi ∈ Σ. Length of
such word is |w| = n. Length of the empty word is |ε| = 0. 4

Definition 1.3 (Concatenation of words). Let u and v be words over alphabet
Σ. Concatenation operation (denoted by u · v or uv) is appending the word v
to the word u in order to create word uv. 4

Definition 1.4 (Language). Set of all words over alphabet Σ is denoted by
Σ∗. This set always contains the empty word ε. Set L ⊆ Σ∗ is called language
L. 4

Definition 1.5 (Language operations). Let L1 be a language over alphabet
Σ1 and let L2 be a language over alphabet Σ2. Union of L1 and L2 is a
language L consisting of words in both languages, i.e., L = L1 ∪ L2 over
alphabet Σ = Σ1∪Σ2. Concatenation of two languages L1 and L2 is language
L = L1 · L2 = {uv : u ∈ L1, v ∈ L2} over alphabet Σ = Σ1 ∪ Σ2. 4

3



1. Basic notions

Definition 1.6 (Closure of a language). Let L be a language over alphabet Σ.
N-th power of language L is defined as Ln = L ·Ln−1 with base case L0 = {ε}.
Iteration (Kleene star) of L is L∗ =

⋃∞
n=0 L

n. 4

Example 1.1. Let Σ = {a, b, c, d, . . . , z}. The set of all words Σ∗ over this
alphabet is infinite and includes all possible combinations of elements of Σ of
arbitrary length with repetitions.

Let L ⊆ Σ∗ = { int, char, double, float }. Then L is a language consisting
of four words (primitive types of C language). �

1.2 Grammars

Definition 1.7 (Grammar). Grammar is a quadruple G = (N,Σ, P, S), where
N is a finite set of nonterminal symbols, Σ is a finite set of terminal symbols
(Σ ∩N = ∅), P is a set of production rules. It is a finite subset of (N ∪ Σ)∗ ·
N · (N ∪ Σ)∗ × (N ∪ Σ)∗. An element (α, β) ∈ P is written as α → β and is
called a rule. S ∈ N is the start symbol of the grammar. 4

Definition 1.8 (Derivation). Let G = (N,Σ, P, S), x, y ∈ (N ∪ Σ)∗. We
say that x derives y in one step (x ⇒ y), if there exists α → β ∈ P and
γ, δ ∈ (N ∪ Σ)∗ such that x = γαδ, y = γβδ (i.e., γαδ ⇒ γβδ). 4

Definition 1.9 (Derivation). α⇒k β if there exists a sequence α0, α1, . . . , αk

for k ≥ 0 , of k + 1 strings such that α = α0αi−1 ⇒ αi for 1 ≤ i ≤ k , and
αk = β. This sequence is called derivation of string β from string α that has
length k in grammar G. 4

Definition 1.10 (Derivation). Transitive and reflexive closure of relation ⇒:
α⇒∗ β if α⇒i β for some i ≥ 0. 4

Definition 1.11 (Language of grammar). L(G) = {w : w ∈ Σ∗, ∃S ⇒∗ w} is
the language generated by grammar G = (N,Σ, P, S). 4

Definition 1.12 (Classes of grammars). Let G = (N,Σ, P, S). We say that
G is:

0. Unrestricted (type 0), if it satisfies the general grammar definition.

1. Context-sensitive (type 1), if every rule from P is of the form γAδ →
γαδ, where γ, δ ∈ (N ∪ Σ)∗, α ∈ (N ∪ Σ)+, A ∈ N , or the form S → ε
in case that S is not present in the right-hand side of any rule.

2. Context-free (type 2), if every rule is of the form A→ α, where A ∈ N ,
α ∈ (N ∪ Σ)∗.

3. Regular (type 3), if every rule is of the form A → aB or A → a, where
A,B ∈ N , a ∈ Σ, or the form S → ε in case that S is not present in the
right-hand side of any rule. 4

4



1.3. Hierarchy of Languages

1.3 Hierarchy of Languages

Definition 1.13 (Language type). Language is

0. recursively enumerable (type 0), if ∃ unrestricted grammar which gen-
erates it,

1. context-sensitive (type 1), if ∃ context-sensitive grammar which gener-
ates it,

2. context-free (type 2), if ∃ context-free grammar which generates it,

3. regular (type 3), if ∃ regular grammar which generates it. 4

1.4 Regular Languages

Language is regular if there exists a regular grammar generating it. This
type of language can be recognized by finite automata (both deterministic
and nondeterministic) and can be described using regular expressions.

1.4.1 Finite Automaton

A finite automaton is an abstract computational model. Its purpose is to
determine whether an input word belongs to a regular language described by
the finite automaton.

1.4.1.1 Deterministic Finite Automaton

Definition 1.14 (Deterministic finite automaton (DFA)). DFA is a 5-tuple
A = (Q,T, δ, q0, F ), where

• Q is a finite non-empty set of states,

• Σ is a finite set of input symbols (alphabet),

• δ is a state transition function, δ : Q× Σ→ Q,

• q0 ∈ Q is an initial state,

• F ⊆ Q is a set of final states. 4

Definition 1.15 (Configuration of a finite automaton). Configuration of a
DFA is a pair (q, w) ∈ Q×Σ∗. Configuration (q0, w) is the initial configuration
and finally (q, ε) with q ∈ F is the final configuration of the DFA. 4

Definition 1.16 (Move in DFA). Let A = (Q,Σ, δ, q0, F ) be a deterministic
finite automaton. Let `A be a relation over Q×Σ∗ (i.e., subset of (Q×Σ∗)×
(Q × Σ∗)) such that (q, w) `A (p, w′) iff w = aw′ and δ(q, a) = p for some
a ∈ Σ, w ∈ Σ∗. An element of relation `A is called a move in automaton A.

5



1. Basic notions

Astart B C
a

b

a

Figure 1.1: Transition diagram of a DFA.

• `kA is the k-th power of relation `A

• (α0, β0) `KA (αk, βk) if
∃(αi, βi), 0 < i < k : (αi, βi) `A (αi+1, βi+1), 0 ≤ i < k

• `+
A is the transitive closure of relation `A

• `∗A is the transitive and reflexive closure of relation `A

• (q, aw′) `M (p, w′) means ((q, aw′), (p, w′)) ∈`M . 4

Definition 1.17 (Language of DFA). String w ∈ Σ∗ is accepted by a DFA
A = (Q,Σ, δ, q0, F ) if ∃(q0, w) `∗A (q, ε) for some q ∈ F . Language recognized
by automaton A is denoted by L(A) and L(A) = {w : w ∈ Σ∗, ∃q ∈ F :
(q0, w) `∗A (q, ε)}.

String w ∈ L(A) if there exists a sequence of moves from the initial con-
figuration (q0, w) into an accepting configuration (q, ε). 4

Finite automata can be depicted using transition diagrams. Transition
diagram is an oriented graph where states of the automaton corresponds to
nodes and transitions between states corresponds to the edges of the graph.
Value of the edge is the input symbol of the transition. Initial state of the
automaton is the target of the arrow with start label. Final states are drawn
as double circle around the node. Example of this is in figure 1.1.

Example 1.2 (DFA). Consider a language L over an alphabet Σ = {a, b} and
L = {aa, aba, abba, abbba, abbbba, . . .}. Then DFA in figure 1.1 accepts words
from this language. �

1.4.1.2 Nondeterministic Finite Automaton

Definition 1.18 (Nondeterministic Finite Automaton). Nondeterministic fi-
nite automaton (NFA) is a 5-tuple A = (Q,T, δ, q0, F ), where

• Q is a finite non-empty set of states,

• Σ is a finite set of input symbols (alphabet),

• δ is a state transition function, δ : Q× Σ→ P(Q) (powerset of Q),

6



1.4. Regular Languages

• q0 ∈ Q is an initial state,

• F ⊆ Q is a set of final states. 4

Definition 1.19 (Move in NFA). Let A = (Q,Σ, δ, q0, F ) be a nondetermin-
istic finite automaton. Let `A be a relation over Q × Σ∗ (i.e., subset of
(Q×Σ∗)× (Q×Σ∗)) such that (q, w) `A (p, w′) iff w = aw′ and p ∈ δ(q, a) for
some a ∈ Σ, w ∈ Σ∗. An element of relation aA is called a move in automaton
A.

• akA is the k-th power of relation aA.

• a+
A is the transitive closure of relation aA.

• a∗A is the transitive and reflexive closure of relation aA. 4

Definition 1.20 (Language of NFA). Same as definition 1.17, but NFA is
used. 4

Definition 1.21 (NFA with ε-transitions). NFA with ε-transitions is a 5-
tuple A = (Q,Σ, δ, q0, F ), where Q,Σ, q0, F are the same as in the definition
of NFA. Mapping δ is defined as follows: δ : Q× (Σ ∪ {ε}) 7→ P(Q). 4

Definition 1.22 (Move in NFA with ε-transitions). Let A = (Q,Σ, δ, q0, F )
be an NFA with ε-transitions. An element of relation `A⊆ (Q×Σ∗)×(Q×Σ∗)
is called a move in automaton A. If p ∈ δ(q, a), a ∈ Σ ∪ {ε}, then (q, aw) aA
(p, w) for every w ∈ Σ∗. 4

1.4.1.3 Homogeneous Finite Automaton

Definition 1.23 (Set of target states). Let A = (Q,Σ, δ, q0, F ). For any a ∈ Σ
set Q(a) ⊆ Q of target states is defined: Q(a) = {q : q ∈ δ(p, a), p, q ∈ Q}. 4

Definition 1.24 (Homogeneous finite automaton). Let A = (Q,Σ, δ, q0, F )
and Q(a) be the sets of target states ∀a ∈ Σ. If for all pairs of symbols
a, b ∈ Σ, a 6= b holds that Q(a) ∩ Q(b) = ∅, then the automaton A is called
homogeneous. 4

Example 1.3. Automaton A from figure 1.2 is homogeneous because it has
the following disjoint sets of target states:

• Q(a) = {A,C},

• Q(b) = {B},

• Q(d) = {D}. �

7
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Astart B C

D

b

a

d

b

a

a
a

d

Figure 1.2: Homogeneous NFA.

1.4.2 Regular Expression

A regular expression is a formal model for description of regular languages.
Every regular language can be described using regular expression and vice
versa[Kle56].

Definition 1.25 (Regular expression). Regular expression E over alphabet
Σ is defined inductively:

1. ∅, ε and a ∀a ∈ Σ are regular expressions.

2. If E1 and E2 are regular expressions over Σ, then

a) union (E1 + E2),

b) concatenation (E1 · E2 or E1E2),

c) iteration (E∗1)

are also regular expressions over Σ. 4

Definition 1.26 (Language of a regular expression). Language described by
regular expression E (denoted by L(E)) is defined inductively:

1. a) L(∅) = ∅,
b) L(ε) = {ε},
c) L(a) = {a} if a ∈ Σ.

2. a) L(E1 + E2) = L(E1) ∪ L(E2),

b) L(E1 · E2) = L(E1) · L(L2),

c) L(E∗1) = L(E1)∗. 4

Example 1.4. Automaton in example 1.2 accepts a language which can be
expressed by regular expression E = ab∗a. �

8



1.5. Context-free Languages

1.5 Context-free Languages

A language is regular if there exists a regular grammar generating it. This
type of language can be recognized by finite automata (both deterministic and
nondeterministic) and can be described using regular expressions.

1.5.1 Pushdown Automaton

Definition 1.27. Pushdown automaton (PDA) is a 7-tuple (Q,Σ,Γ, δ, q0,
⊥, F ) where

• Q is a finite set of states,

• Σ is a finite input alphabet,

• Γ is a finite set of pushdown store alphabet,

• δ is a transition function (δ : Q× (Σ ∪ {ε})× Γ∗ 7→ Q× Γ∗),

• q0 ∈ Q is the initial state,

• ⊥∈ Γ is the initial pushdown store symbol,

• F ⊆ Q is a set of final states. 4

Definition 1.28 (Configuration of PDA). Configuration of PDA is (q, w, α) ∈
Q × Σ∗ × Γ∗, where q is the current state, w is yet unprocessed part of the
input string and α is the pushdown store content. The initial configuration is
(q0, w,⊥), w ∈ Σ∗. 4

Definition 1.29 (Move in PDA). Let R = (Q,Σ,Γ, δ, q0,⊥, F ) be a PDA. Let
`R be a relation over Q×Σ∗×Γ∗ (i.e., subset of (Q×Σ∗×Γ∗)×(Q×Σ∗×Γ∗))
such that (q, w, βα) `R (p, w′, βγ) iff w = aw′ and (p, γ) ∈ δ(q, a, α) for some
a ∈ Σ ∪ {ε}, w ∈ Σ∗, α, βγ ∈ Γ∗. An element of relation aR is called a move
in automaton R.

• akR is the k-th power of relation aR.

• a+
R is the transitive closure of relation aR.

• a∗R is the transitive and reflexive closure of relation aR. 4

Note. As follows from previous definition, in this thesis, the top of the push-
down store is situated on the right.

Definition 1.30 (Language of PDA). Language accepted by PDA R =
(Q,Σ,Γ, δ, q0,⊥, F ):

1. by transition into a final state: L(R) = {w : w ∈ Σ∗, ∃γ ∈ Γ∗,∃q ∈
F, (q0, w,⊥) `∗ (q, ε, γ)},

9
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2. by empty pushdown store: L(R) = {w : w ∈ Σ∗,∃q ∈ Q, (q0, w,⊥) `∗
(q, ε, ε)}. 4

Definition 1.31 (Deterministic PDA). PDA (Q,Σ,Γ, δ, q0,⊥, F ) is determ-
inistic if:

1. |δ(q, a,Γ)| ≤ 1, ∀q ∈ Q,∀a ∈ (Σ ∪ {ε}), ∀γ ∈ Γ∗,

2. If δ(q, a, α) 6= ∅, γ(q, a, β) 6= ∅ and α 6= β, then α is not a prefix of β and
β is not a prefix of α (i.e., αγ 6= β, α 6= βγ, γ ∈ Γ∗),

3. If δ(q, a, α) 6= ∅, γ(q, ε, β) 6= ∅, then α is not a prefix of β and β is not a
prefix of α (i.e., αγ 6= β, α 6= βγ, γ ∈ Γ∗). 4

Pushdown automaton’s transition diagram can be drawn too with same
principle as for finite automata except for edge labels. Label is now in a
form a | α → β where a is an input symbol, α is a sequence of pushdown
store symbols which will be removed from the top of the pushdown store and
replaced with a sequence β.

1.5.1.1 Real-Time Height-deterministic Pushdown Automaton

Determinisable pushdown automata are classified into following tree groups:

• input-driven pushdown automata,

• visibly pushdown automata[AM04],

• height-deterministic pushdown automata[NS07].

Height-deterministic pushdown automata are a generalization of visibly
pushdown automata. They have better properties than visibly pushdown
automata and describe larger set of languages.

Definition 1.32 (Height-deterministic PDA). Height-deterministic PDA is
such PDA, which on all of its runs on a input w ∈ (Σ ∪ {ε}) leads to same
pushdown store height. 4

Definition 1.33 (Real-time height-deterministic PDA). Real-time height-
deterministic PDA is always determinisable. It is such PDA that is height-
deterministic and for every state holds that its outgoing transitions are either
ε-transitions or non-ε-transitions. 4

10
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1.6 Trees

This section defines basic notions for trees similarly to [JM09, CDG+07] based
on the concepts from graph theory[AU72].

Definition 1.34 (Ranked alphabet). A ranked alphabet F is finite nonempty
set of symbols. Each symbol of this set has a unique arity (or rank) assigned.
Arity is an integer number greater or equal than zero. Arity of a symbol a is
denoted by arity(a). The set of symbols of arity n from alphabet F is denoted
by Fn. Symbols with zero arity are called constants. 4

Note. It is assumed that F contains at least one constant symbol. The arity
of a symbol represents the number of children of the symbol. If there were no
constant symbols in the alphabet F , a tree over F would have no leaf.

Note. If the context is clear, a shorter notation of arity will be used. Symbol
a2 will declare symbol a with arity 2.

Definition 1.35 (Directed graph). A directed graph G is a pair (N,R) where
N is a set of notes and R is a set of lists of edges such that each element R is of
the form ((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N, n ≥ 0. This
element indicates that for node f , there are n edges from f to g1, g2, . . . gn. 4

Definition 1.36 (Path, cycle). A sequence of nodes (f0, f1, . . . , fn), n ≥ 1
is a path of length n from node f0 to node fn. Between i-th and (i + 1)-th
element of a path, there must be an edge. A cycle is such path (f0, f1, . . . , fn),
that starts and ends in the same node, i.e., f0 = fn. 4

Definition 1.37 (DAG). An ordered directed acyclic graph (DAG) is an
ordered directed graph with no cycles. 4

Definition 1.38 (Node degree). An in-degree of a node f is the number of
distinct pairs (g, f) ∈ R, g ∈ N . An out-degree of f is the number of distinct
pairs (f, g) ∈ R, g ∈ N . A node with out-degree 0 is called leaf. 4

Definition 1.39 (Directed tree). A directed tree is rooted and directed tree
t is a DAG t = (N,R) with special node r ∈ N called the root such that

1. r has in-degree 0,

2. all other nodes of t have in-degree 1,

3. there is just one path from the root r to every f ∈ N, f 6= r. 4

Definition 1.40 (Labeled tree). A labelled tree is a tree where every node is
labelled by a symbol a ∈ A (alphabet). 4

Definition 1.41 (Ranked tree). A ranked tree is a labelled tree with labels
from ranked alphabet. Out-degree of a node a ∈ F is arity(a). 4

11
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a2

a2

c0 b1

c0

b1

c0

Figure 1.3: Tree t over ranked alphabet F = {a2, b1, c0}.

Definition 1.42 (Ordered tree). An ordered tree is a tree where direct des-
cendants of a node are ordered. 4

Note. Throughout this work it is understood that all trees are directed, rooted,
labelled, ranked and ordered at the same time.

Example 1.5. Consider a tree t from figure 1.3. This tree is directed, rooted,
labelled, ranked and ordered. The root of a tree is a2 with ordered tuple of
children (a2, b1). Every node is labelled by a symbol from F and has arity. �

1.6.1 Linear Notations of Trees

Trees can also be seen as strings. Postfix and prefix notations are examples
of linear notations. In this work, only postfix notation is focused on.

Definition 1.43. Function root(t) returns the root node of a tree t. 4

Definition 1.44 (Postfix notation of ranked tree). The postfix notation of a
tree t is denoted by post(t). It is defined inductively:

1. post(t) = root(t) if root(t) is also a leaf,

2. post(t) = post(b1) · post(b2) · . . . · post(bn) · root(t), where b1, b2, . . . , bn
are direct descendants of root(t). 4

Notation post(L) is also used where L is a tree language with meaning of
post(L) = {post(t) : t ∈ L}.

Notice that given a tree t and its postfix notation post(t), all subtrees of t
in postfix notation are substrings of post(t). However, not every substring of
a tree in postfix notation is a postfix notation of a subtree.

Example 1.6. Consider tree t from figure 1.3. Postfix notation of a tree t
is post(t) = c0 c0 b1 a2 c0 b1 a2. However, substring c0 b1 a2 of post(t) is not a
linearised subtree of t. �
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Chapter 2

Regular Tree Expressions

Regular tree expressions are a generalization of regular (string) expressions
on trees. There is, however, one issue that needs to be solved. The concat-
enation operation has no relevance on trees therefore the regular tree expres-
sions need to solve this issue by some kind of generalization of this operation
which is called substitution. Regular tree expressions are defined similarly as
in [CDG+07, PJM11].

2.1 Introduction

Tree regular expressions as defined in this thesis are over ranked alphabet
denoted as F . Unlike strings, which can be concatenated only at its ends
(and beginnings), trees can be connected in multiple places. A notion for
regular tree expressions needs to be defined to mark some specific positions
where concatenation and iteration can take place in trees. Those places are
represented by constant symbols (symbols of arity 0) �1,�2, . . .. Set of all such
symbols is usually denoted by K and it is is disjoint from F , i.e., F ∩ K = ∅.
Now, trees over alphabet F ∪ K can be constructed.

Note that there is also different notation of regular tree languages. This
different notation uses only one alphabet, F , and allows the substitution op-
eration on any constant symbol from F [LSZ13]. Both notations are equal in
terms of expressiveness.

2.2 Operations

In this section individual operations on trees are presented. Regular tree
expressions are defined formally using these operations later.
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2.2.1 Substitution

Substitution is an operation that replaces some symbol �i by another tree.
Substitution operation is denoted by t{�1 ← t1,�2 ← t2, . . . ,�n ← tn}. This
means that symbol �i of tree t will be replaced by tree ti.

Substitution operation can be also defined on languages (set of trees). The
semantics of this operation is that �i symbol is substituted by all trees from
language creating a new set of trees.

Definition 2.1 (Tree substitution). The tree substitution is defined by the
following identities:

• �i{�1 ← L1, . . . ,�n ← Ln} = Li, for i = 1, . . . , n,

• a{�1 ← L1, . . . ,�n ← Ln} = {a},∀a ∈ F ∪ K such that arity of a is 0
and a 6= �1, . . . , a 6= �n,

• f(s1, . . . , sn){�1 ← L1, . . . ,�n ← Ln} = {f(t1, . . . tn)|ti ∈ si{�1 ←
L1, . . . ,�n ← Ln}}.

The tree substitution on languages is defined as follows:

L1 · �L2 = {t1 · �t2 : t1 ∈ L1, t2 ∈ L2} 4

Example 2.1. Let F = {a2, b0, c0} and K = {�}. Let t = a2(b0,�) and
L = {a2(b0, c0), c0}. Then t{�← L} = {a2(b0, a2(b0, c0)), a2(b0, c0)}. �

Example 2.2. Let F = {a2, b0, c0} and K = {�}. Let L1 = {a2(b0,�), �}
and L2 = {c0}. Then L1 · �L2 = {a2(b0, c0), c0}. �

2.2.2 Iteration

For the definition of a iteration operator of regular tree expressions, closure
of a regular tree language and sequence of successive iterations need to be
defined.

Definition 2.2 (Iteration of a language). Given a language L, the tree lan-
guage of T (F ∪ K) and element � ∈ K, the sequence Ln,� is defined by the
equalities:

• L0,� = {�},

• Ln+1,� = L · �Ln,�. 4

Now, closure of a regular tree language can be defined.

Definition 2.3 (Closure of a tree language). The closure L∗,� is the union
of Ln,� for all n ≥ 0, i.e., L∗,� =

⋃
n≥0 L

n,�. 4
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From the definitions 2.2 and 2.3 it is more than obvious that {�} ⊆ L∗,�

holds.

Example 2.3. Let F = {a2, b0, c0} and K = {�}. Let L = a2(b0,�), then

L∗,� ={�} ∪
{a2(b0,�)} ∪
{a2(b0,�), a2(b0, a2(b0,�))} ∪
{a2(b0,�), a2(b0, a2(b0,�)), a2(b0, a2(b0, a2(b0,�)))} ∪
. . . �

2.2.3 Alternation

The tree alternation operation of regular tree languages is not different to an
alternation of string languages.

Definition 2.4 (Alternation of tree languages). Given two regular tree lan-
guages L1, L2 of T (F ∪K), the alternation of L1 to L2 is denoted by L1 +L2.
Result of this operator is a set of trees obtained by union of regular tree
languages L1 and L2, i.e., L1 ∪ L2. 4

2.3 Regular Tree Expression

Using operations described in the previous section, regular tree expressions
can be defined.

Definition 2.5 (Regular tree expression). The set RTE(F ,K) of regular tree
expressions over alphabets F and K is the smallest set such that:

• the empty set ∅ is in RTE(F ,K),

• if a ∈ F0 ∪K is a constant, then a ∈ RTE(F ,K),

• if f ∈ Fn has arity n > 0 and E1, . . . , En are regular tree expres-
sions of RTE(F ,K) then f(E1, . . . , En) is a regular tree expression of
RTE(F ,K),

• if E1, E2 are regular tree expressions of RTE(F ,K) then E1 + E2 is a
regular tree expression of RTE(F ,K),

• if E1, E2 are regular tree expressions of RTE(F ,K) and � is and element
of K then E1 · �E2 is a regular tree expression of RTE(F ,K),

• if E is regular tree expression of RTE(F ,K) and � is and element of K
then E∗,� is a regular tree expression of RTE(F ,K). 4
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Definition 2.6. Properties of operations and languages generated by regular
tree expressions are identified by the following equalities:

• L(∅) = ∅,

• L(a) = {a} for a ∈ F0 ∪K,

• L(f(E1, . . . , En)) = {f(s1, . . . , sn) | s1 ∈ L(E1), s2 ∈ L(E2), . . . , sn ∈
L(En)},

• L(E1 + E2) = L(E1) ∪ L(E2),

• L(E1 · �E2) = L(E1){�← L(E2)},

• L(E∗,�) = L(E)∗,�. 4

Example 2.4 (Language of regular tree expression). Let F = {a2, b0, c0} and
K = {�}. Then

a2(b0,�)∗,� · �c0

is a regular tree expression of RTE(F ,K) which denotes the following set of
trees:

{c0, a2(b0, c0), a2(b0, a2(b0, c0)), a2(b0, a2(b0, a2(b0, c0))), . . .}.

Regular tree expressions and the trees can also be written in their syntax
tree form as can be seen in figures 2.1 and 2.2. �

Example 2.5 (List in LISP). Let F = {nil, cons, 0, 1, 2, . . .} where sym-
bol cons has arity 2 and other symbols have arity 0. Furthermore, let K =
{�1,�2}. Then

(cons(�1,�2)∗,�2 · �2nil) · �1(0 + 1 + 2 + . . .)

is the regular tree expressions that denotes the language of LISP-like lists of
integers greater or equal than zero:

{nil, cons(0, nil), cons(0, cons(5, nil)), cons(3, cons(2, cons(1, nil))), . . .}

�
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·�

∗,�

a2

b0 �

c0

Figure 2.1: Syntax tree of the regular tree expression from example 2.4.

c0 a2

b0 c0

a2

b0 a2

b0 c0

a2

b0 a2

b0 a2

b0 c0

. . .

Figure 2.2: Some trees matched by the regular tree expression in example 2.4.
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Chapter 3

Related Works

This chapter presents some related results in the domain of string and tree
languages. Then it shows the conversion between finite tree automata and
context-free grammars. Finally, Glushkov’s algorithm for strings is described
in order to introduce the reader to the principles of the algorithm before it is
adapted for regular tree expressions and pushdown automata.

3.1 Related Works in the String Languages
Domain

In 1943, McCulloch and Pitts presented a paper [MP43] in which they studied
finite state systems (neural nets). Following their ideas, Kleene published a
paper [Kle56] on finite automata and regular expressions where the equivalence
between finite automata and regular expressions is proved. It led to numerous
follow-up papers that deal with conversions between these two useful formal
models.

Several algorithms solving this problem in the string domain exist [Mel03,
ASU86]. At least three of them can be mentioned here: Glushkov’s Al-
gorithm [Glu61], Brzozowski’s Regular Expression Derivatives Algorithm and
Thompson’s Construction Algorithm [Tho68]. It has also been proven that
Thompson’s and Glushkov’s finite automata are similar. Every Glushkov’s
Automaton is hidden inside the corresponding finite automaton created by
Thompson’s algorithm [GPW98].

Brzozowski’s algorithm uses regular expression derivatives in order to cre-
ate finite automaton. The problem with this algorithm is that it can not be
said whether two regular expressions (obtained by derivations) are describing
same language. Hence, there is no guarantee that minimal deterministic auto-
maton is obtained. For every unrecognized equivalence new state is added to
the automaton which can make the state set large. The algorithm in its naive
version can also get stuck in an infinite loop as new derivatives are created
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when equivalence is not recognized. However, as was proved in the original
paper, the algorithm will always terminate if some trivial axioms are applied
to the regular expressions before equivalence tests.

Thompson’s algorithm constructs nondeterministic finite automaton with
ε-transitions for given regular expression. It inductively creates automata for
subexpressions which are then joined into automaton recognizing the language
defined by the expression.

Glushkov’s algorithm will be described later in section 3.4 in detail. This
thesis adapts Glushkov’s algorithm for trees, so the reader might get more
familiar with this method beforehand.

For more detailed descriptions of these algorithms please see either original
papers ([Glu61, Brz64, Tho68]), [Mel03]. Or [Pec14] where these algorithms
are also implemented.

3.2 Related Works in the Tree Languages Domain

With Kleene’s theorem lifted from strings to trees, the research also fol-
lowed to the tree matching. It is proven that regular tree expressions de-
scribe exactly regular tree languages which can be recognized by finite tree
automata[CDG+07].

Kuske and Meinecke published method [KM08] of creating finite tree auto-
mata from regular tree expressions. To achieve this, they adapted partial
derivatives from regular (string) expressions to regular tree expressions. How-
ever, this method does not create pushdown automaton, it creates tree auto-
maton instead.

In 2011, Polách [PJM11, Pol11] presented a method of transforming a reg-
ular tree expression to an equivalent real-time height-deterministic pushdown
automaton. This automaton reads input of ranked or unranked ordered trees
either in postfix or postfix bar notation. The proposed method was inspired
by Thompson’s Algorithm for converting regular (string) expressions to finite
automata. Pushdown automata for subexpressions are recursively created and
then joined into one automaton recognizing the trees described by the expres-
sion. This method yields real-time height-deterministic pushdown automaton
which can be determinised [NS07, PTJM16] however it contains many epsilon
transitions.

The variation of Glushkov’s automaton for regular tree expressions to fi-
nite tree automata conversion was presented in the paper of Laugerotte et
al. [LSZ13]. They defined the Follow, First and Last functions for trees and
proved that they can create tree automaton recognizing the same language us-
ing these functions. The result of this algorithm is homogeneous nondetermin-
istic bottom-up finite tree automaton. Note that bottom-up tree automata can
always be determinised[CDG+07]. They also adapted so called ZPC structure
to trees to make the computation of follow function asymptotically faster.
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3.3 Regular Tree Languages, Context-Free
Grammars and Pushdown Automata

One of the foundation stones of Arbology research is the observation that
every tree can be linearised and the linear form is unique for each tree. At
least ranked or bar notations can be mentioned. Both of these notations has
prefix and postfix versions.

Regular tree languages are, in a sense, subclass of deterministic context-
free languages. When considering linear tree notations, regular tree languages
can be recognized by deterministic pushdown automata. However, this rela-
tion is not true if reversed. Not every deterministic context-free language is
linearised regular tree language. Regular tree languages are proper subclass
of deterministic context-free languages. This was shown by Janoušek and
Melichar [JM09].

Janoušek and Melichar also presented transformation of a bottom-up finite
tree automaton (finite automata define regular tree language) A to context-
free grammar generating L(A) in postfix notation. Having this grammar con-
structed, it is not hard to create a pushdown automaton recognizing linearised
trees from L(A), i.e., post(L(A)). The resulting grammar will be LR(0) if the
given bottom-up tree automaton is deterministic. Note that every bottom-up
tree automaton can be determinised [CDG+07].

The method for transformation of a bottom-up tree automata to an equi-
valent pushdown automata will be shown. Firstly, a context-free grammar
corresponding to the bottom-up tree automaton is created. Next, conversion
from the grammar to a pushdown automaton accepting by empty pushdown
store is shown. Complete method with a proof can be found in [JM09].

Definition 3.1 (FTA to equivalent CFG). Let A = (Q,F,Qf ,∆) be bottom
up finite tree automaton. Then a context-free grammar generating L(A) in
postfix notation with appended right marker a is GA = (N,T, P, S′), where
N = {S′} ∪ {Sq : q ∈ Q}, T = F , and P = {S′ → Sq a: q ∈ Qf} ∪ {Sq →
Sq1Sq2 · · ·Sqna : a(q1, q2, · · · qn)→ q ∈ ∆}. 4

Please note that the right marker a is added for the purpose of accepting
with empty pushdown store in the pushdown automaton corresponding to this
grammar.

Definition 3.2 (CFG into PDA). Let A = (Q,F,Qf ,∆) be bottom up finite
tree automaton and GA = (N,T, P, S′) the corresponding context-free gram-
mar generating trees from L(A) in their postfix notation. The corresponding
pushdown automaton is MA = ({q}, T,G, δ, q,⊥, ∅), where G = Q ∪ {⊥,a}.
Transition function is defined as: δ(q,a,⊥ α) = (q, ε) ∀S′ → α a∈ P and
δ(q, a, α) = (q, A) ∀A→ αa ∈ P, A 6= S′. 4
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Proposition 3.1 (Regular tree languages and CFL). Deterministic context-
free languages are proper superset of languages described by regular tree ex-
pressions in their postfix linear notation.

Corollary 3.1. From proposition 3.1 and Kleene’s theorem for regular tree
languages[CDG+07] it is more than obvious that it is possible to convert reg-
ular tree expression to a pushdown automaton recognizing linearised regular
tree language.

3.4 Glushkov’s Algorithm

In 1961, Victor M. Glushkov presented a method for conversion of regular
(string) expression to finite automaton. This method, nowadays known as
Glushkov’s algorithm or Glushkov’s nondeterministic finite automaton yields a
nondeterministic finite automaton without ε-transitions [Glu61, CZ00, Mel03].

Glushkov’s algorithm also produces quite small automaton in comparison
with Thompson’s algorithm and has no ε-transitions which is advantageous
when simulating. Let n be the number of symbols of the alphabet occur-
ring in the regular expression. Then the resulting Glushkov’s automaton has
exactly n + 1 states and at most n2 transitions. It is also homogeneous,
i.e., all transitions leading to certain state are labelled with the same symbol
(see definition 1.24).

The idea behind this algorithm is simple. Let us consider regular expres-
sion E over alphabet Σ. Every occurrence of symbols from Σ (only symbols,
neither ε nor operators) is subscripted in a way that two distinct occurrences
of the same symbol have different numbers assigned. For example, starting
from E = (a+ ε)bc+ d∗, subscripted regular expression E′ = (a1 + ε)b2c3 + d∗4
is obtained. The set of these subscripted symbols is denoted by Pos(E).

Definition 3.3 (σ mapping). σ maps subscripted symbol from Pos(E) to
corresponding symbol in Σ, i.e., σ : Pos(E) 7→ Σ. For example: Let us
consider a ∈ Σ and a1 ∈ Pos(E). Then σ(a1) = a. 4

Positions (i.e., elements of Pos(E) set) can be used as states of the finite
automaton. These states will then represent up to what symbol the input
string was read. If one symbol ai can appear only after aj , then there will be
transition between states ai and aj .

Before the algorithm is presented, few more functions that are used in the
algorithm are defined.

Definition 3.4 (Pos Set). Let E be a regular expression over alphabet Σ and
E′ its subscripted counterpart. Pos(E) = {xi : σ(xi) ∈ Σ, xi occurs in E′}.
This set contains all the subscripted symbols that occurs in E′. For example,
for E′ = a∗1 + (b2c

∗
3) + ε the set Pos(E) = {a1, b2, c3}.

This function is defined in equation (3.1). 4
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Definition 3.5 (First Set). Let E be a regular expression over alphabet Σ
and E′ its subscripted counterpart. First(E′) = {aj : ajw ∈ L(E′)}, i.e., all
the symbols that can be in first position of some string from the language
denoted by labelled regular expression E.

This function computation is defined in equation (3.2). 4

Definition 3.6 (Last Set). Let E be a regular expression over alphabet Σ
and E′ its subscripted counterpart. Last(E′) = {ai : wai ∈ L(E′)}, i.e., all the
symbols that can be in last position of some string from the language denoted
by labelled regular expression E.

This function computation is defined in equation (3.3). 4

Definition 3.7 (Follow Set). Let E be a regular expression over alphabet Σ
and E′ its subscripted counterpart. Follow(E′, ai) = {aj : uaiajv ∈ L(E′)},
i.e., all the symbols aj that can occur after ai in some string from the language
denoted by labelled regular expression E.

This function computation is defined in equation (3.4). 4

The functions First, Last and Follow can be also defined inductively using
the rules which can be seen in equations (3.1) to (3.4) [CZ00].

Pos(∅) = Pos(ε) = ∅ (3.1)

Pos(a) = {a}
Pos(E1 + E2) = Pos(E1) ∪ Pos(E2)

Pos(E1 · E2) = Pos(E1) ∪ Pos(E2)

Pos(E∗) = Pos(E)

First(∅) = First(ε) = ∅ (3.2)

First(a) = {a}
First(E1 + E2) = First(E1) ∪ First(E2)

First(E1 · E2) =

{
First(E1) if ε /∈ L(E1)

First(E1) ∪ First(E2) if ε ∈ L(E1)

First(E∗) = First(E+) = First(E)
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Last(∅) = Last(ε) = ∅ (3.3)

Last(a) = {a}
Last(E1 + E2) = Last(E1) ∪ Last(E2)

Last(E1 · E2) =

{
Last(E2) if ε /∈ L(E2)

Last(E1) ∪ Last(E2) if ε ∈ L(E2)

Last(E∗) = Last(E+) = Last(E)

Follow(ε, x) = Follow(∅, x) = Follow(a, x) = ∅ (3.4)

Follow(E1 + E2, x,) =

{
Follow(E1, x) if x ∈ Pos(E1)

Follow(E2, x) if x ∈ Pos(E2)

Follow(E1 · E2, x) =


Follow(E1, x) if x ∈ Pos(F ) \ Last(F )

Follow(E1, x) ∪ First(E2) if x ∈ Last(F )

Follow(E2, x) if x ∈ Pos(G)

Follow(E∗, x) = Follow(E+, x)

Follow(E+, x) =

{
Follow(E, x) if x ∈ Pos(E) \ Last(E)

Follow(E, x) ∪ First(F ) if x ∈ Last(E)

Now, everything that is needed for the Glushkov’s algorithm is defined.
Recall that input of this algorithm is a regular expression and it yields a
nondeterministic finite automaton as seen in algorithm 3.1.

Example 3.1 (Construction of Glushkov’s NFA). Let Σ = {a, b, c} and E =
ab∗a+ ac+ (b∗a(ε+ b))∗.

Firstly, the symbol occurrences in the expression E are numbered:

E′ = a1b
∗
2a3 + a4c5 + (b∗6a7(ε+ b8))∗.

Now, sets First(E′), Last(E′) and Follow(E′, ai) ∀ai ∈ Pos(E) are computed.
Notice that ε ∈ L(E).

First(E′) = {a1, a4, b6, a7} Last(E′) = {a3, c5, a7, b8}
Follow(E′, a1) = {b2, a3} Follow(E′, c5) = {}
Follow(E′, b2) = {b2, a3} Follow(E′, b6) = {b6, a7}
Follow(E′, a3) = {} Follow(E′, a7) = {b6, a7, b8}
Follow(E′, a4) = {c5} Follow(E′, b8) = {b6, a7}
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3.4. Glushkov’s Algorithm

Algorithm 3.1: Glushkov’s NFA Construction

Input: Regular expression E over alphabet Σ.
Output: Nondeterministic finite automaton A such that L(A) = L(E).

1. Subscript all the occurrences of symbols of Σ with positive integer
numbers 1, 2, . . . , n. Two distinct occurrences of same symbol must
have different numbers assigned. Denote the subscripted regular
expression by E′.

2. Compute sets Pos(E), First(E′), Follow(E′, a) ∀a ∈ Pos(E) and
Last(E′).

3. Create set of states Q = {q0} ∪ Pos(E) and set of final states
F = Last(E′) ∪ {q0 : ε ∈ L(E)}.

4. δ is defined:

a) ai ∈ δ(q0, σ(ai)) ∀ai ∈ First(E′),

b) bi ∈ δ(ai, σ(bi)) ∀bi ∈ Follow(E′, ai) ∀ai ∈ Pos(E).

5. Resulting automaton A = (Q,Σ, δ, q0, F ).

Construction of a nondeterministic finite automaton is now straightfor-
ward.

A = ({q0, a1, b2, a3, a4, c5, b6, a7, b8}, {a, b, c}, δ, q0, {q0, a3, c5, a7, b8})

The set of transition rules δ is defined by following transitions:

δ(q0, a) = {a1, a4, a7} δ(b2, a) = {a3} δ(b6, a) = {a7} δ(b8, a) = {b6}
δ(q0, b) = {b6} δ(b2, b) = {b2} δ(b6, b) = {b6} δ(b8, b) = {a7}
δ(a1, a) = {a3} δ(a4, c) = {c5} δ(a7, a) = {a7}
δ(a1, b) = {b2} δ(a7, b) = {b6, b8}

Resulting nondeterministic finite automaton A can be seen on figure 3.1.
�
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3. Related Works
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Figure 3.1: Automaton created by algorithm 3.1 in example 3.1.
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Chapter 4

Converting Regular Tree
Expressions to Pushdown

Automata

This chapter presents the method for creating a real-time height-deterministic
pushdown automaton recognizing the postfix notation of trees described by
regular tree expression. Firstly, ideas that are building stones of this method
are presented. Then the algorithm is shown and its properties are formally
discussed. Finally, some complex examples are presented.

4.1 Analysis

Before stating the algorithm itself, some ideas have to be presented and
defined.

Firstly, it is shown how to create a pushdown automaton for a single tree
in postfix notation. There is also a constraint that the automaton should be
determinisable to make the simulations easier because runs of nondeterministic
pushdown automata can not be simulated easily. From previous chapter it is
known that a language of postfix notations of trees from a regular tree language
is a proper subclass of deterministic context-free languages.

Then, ideas how to analyse the structure of a regular tree expression are
described. The regular tree expression identifies a regular tree language.

Finally, a method how to create a pushdown automaton utilizing described
regular tree expression analysis is presented.

4.1.1 Pushdown Automaton For Postfix Notation

The conversion method is expected to create a pushdown automaton recog-
nizing language of linearised trees in postfix notation described by a regular
tree expression. Recall how postfix notation works (see definition 1.44).
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4. Converting RTE to PDA

a3

b1

c0

d1

e0

f0

Figure 4.1: Tree t over alphabet Σ = {a3, b1, c0, d1, e0, f0}.

Notice that in the postfix notation, when a node a occurs, all of its subtrees
and subtrees of nodes on the same level that are to the left of node a (ordered
trees are considered), have already appeared in the string. This comes trivially
from the notation definition.

To illustrate previous sentence, consider tree t from figure 4.1. Postfix
notation of tree t is post(t) = c0 b1 e0 d1 f0 a3. Observe, that in post(t), when
d1 appears, c0 b1 (left sibling of d1 and its subtree) and e0 (subtree of d1)
already appeared.

Observation from previous paragraphs is used to make the tree accepted
by pushdown automaton. Information about what subtrees the automaton
read is stored on the pushdown store. Input symbol is allowed to be processed
only when all of the children subtrees have been read. This is guaranteed by
pushdown store operations. Subtrees can be identified by their root symbol.
Considering the tree t from figure 4.1, a3 is read only when b1 d1 f0 are on
the pushdown store and therefore it is sure that the subtrees of a3 were read.

Now, pushdown store operations are analysed. Basically, the information
about read symbol needs to be stored for later use (to check that subtree was
read). For simplicity, let us now assume that pushdown store alphabet is equal
to the input alphabet set. So when symbol a is read, it is also pushed on the
top of the pushdown store to keep the information. However, before that, all
the symbols representing subtrees of a must be popped as the information is
no longer required and the subtree is now represented by a symbol solely.

This way, it is more than obvious that this is very helpful in determining
whether correct tree was read. When the input is read, on the top of the push-
down store should be symbol corresponding to root(t) and directly underneath
it should be the initial pushdown store symbol. This is trivial observation.

Example 4.1. Let t be a tree t from figure 4.1. Postfix notation of tree t is
post(t) = c0 b1 e0 d1 f0 a3.

To illustrate previous method, let us assume that L = {t}. Pushdown
automaton recognizing trees from L in their linear postfix notation will be
created.

Statements in previous paragraphs imply that transitions must be created
for every symbol of the alphabet of t. Single state pushdown automaton that
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4.1. Analysis

accepts by empty pushdown store is considered. Recall that the top of the
pushdown store is situated on the right. Initial pushdown store symbol is ⊥.

δ(q, c0, ε) = {(q, c0)} (4.1)

δ(q, b1, c0) = {(q, b1)} (4.2)

δ(q, e0, ε) = {(q, e0)} (4.3)

δ(q, d1, e0) = {(q, d1)} (4.4)

δ(q, f0, ε) = {(q, f0)} (4.5)

δ(q, a3, b1 d1 f0) = {(q, a3)} (4.6)

δ(q, ε,⊥ a3) = {(q, ε)} (4.7)

Now, let us explain why the transition rules were created like this. Trans-
ition rules marked by equations (4.1), (4.3) and (4.5) surely work as was
described: Whenever they read a symbol (a constant symbol here), they pop
all the children (constants have no children) and push the input symbol on
the top of the pushdown store. Transition rules marked by equations (4.2)
and (4.4) correspond to input symbols b1 and d1. Again, they pop all children
(c0 and f0 respectively) and push the input symbol on the pushdown store.
The rule equation (4.6) pops all the children (top of the pushdown store is
situated on the right, hence the rightmost children is on the top of the push-
down store) and push a3 on the top of the pushdown store. The last rule,
equation (4.7) only checks whether t was accepted (i.e., the pushdown store
content is ⊥ a3 and cleans the pushdown store contents to accept.

The reader now should see what is happening on the pushdown store,
but let us show the configurations of the pushdown automaton when reading
post(t). Notation `i means that transition rule i from the range of equa-
tions (4.1) to (4.7) is used.

(q, c0 b1 e0 d1 f0 a3, ⊥) `4.1

(q, b1 e0 d1 f0 a3, ⊥ c0) `4.2

(q, e0 d1 f0 a3, ⊥ b1) `4.3

(q, d1 f0 a3, ⊥ b1 e0) `4.4

(q, f0 a3, ⊥ b1 d1) `4.5

(q, a3, ⊥ b1 d1 f0) `4.6

(q, ε, ⊥ a3) `4.7

(q, ε, ε) �
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4. Converting RTE to PDA

4.1.2 Analysing Regular Tree Expression

In the previous subsection, it was assumed that only one tree was processed.
Such problem is easy as pushdown automaton is not even required (it is regular
language because there as only one finite string in it). Now, what if a set of
trees described by regular tree expression (a regular tree language) is required
to be recognized? A regular tree expression is required to be analysed first.

Recall that in Glushkov’s algorithm, the regular (string) expression is ana-
lysed by functions First, Last and Follow. This analysis provides the inform-
ation about which symbols can be matched at the beginning, at the end and
after some symbol respectively. There was also a function Pos that assigned
unique indices to every occurrence of symbols in the regular expression. These
functions need to be adapted for regular tree expressions.

The pushdown automaton recognizes trees in their linearised postfix nota-
tion. Therefore the last symbol of the input string will always be the root of
the tree (trivial observation from definition 1.44). Modified First function will
return a set of symbols that can be root of some tree described by a regular
tree expression. The definition will be given later. Please note that the First
function has nothing to do with a first symbol of string (representing a linear-
ised tree) but rather with the first symbol of a tree, which is in fact a root of
a tree.

The Follow function is little bit trickier. In string, one symbol can be
followed by multiple single symbols. In trees, one symbol is followed by its
children where a number of children depends on the arity of the symbol. Hence
symbol a is followed by a set of tuples of symbols of size arity(a).

Pos function to differentiate between multiple occurrences of the same
symbol is also utilized. The set this function returns contains all the indexed
occurrences of all symbols appearing in a expression. Only symbols of Σ are
indexed. The labels do not really matter, the only constraint is that two
distinct occurrences of the same symbol have different labels.

The equivalent of Last function is not required for trees in postfix notation
it is in fact covered by Follow. It is an open problem whether some adaptation
of this method for another linear notations will utilize this function. However,
it can probably be said that Last function is equivalent to Follow function for
symbols with zero arity, i.e., symbols with no children.

4.1.2.1 Computation of the First Set

Recall that the First function returns set of labelled symbols from Pos that
can be root of any tree described by the regular tree expression.

Based on the definition of the regular tree expressions, First function is
defined inductively.
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4.1. Analysis

First(∅) = ∅
First(a(E1, E2, . . . , En)) = {a}

First(E1 + E2) = First(E1) ∪ First(E2)

First(E1 · �E2) =

{
First(E1) if � /∈ First(E1)

(First(E1) \ {�}) ∪ First(E2) if � ∈ First(E1)

First(E∗) = {�} ∪ First(E) (4.8)

Proposition 4.1 (First function). Function First(E′) from equation (4.8) cor-
rectly returns all occurrences of symbols that can be root of any tree described
by a regular tree expression E.

For a proof of proposition 4.1 see section 4.3.1.

Example 4.2. Let E be a regular tree expression from figure 4.2, then
First(E′) = {b02, a21, a23}. The process of computation is illustrated on fig-
ure 4.3. �

4.1.2.2 Computation of the Follow Set

The Follow function analyses the structure of a regular tree expression. It
computes a set of tuples of symbols which can be direct descendants of a
subscripted symbol from F in a regular tree expression. Recall that in the
Glushkov’s Automaton construction for regular (string) expressions the ana-
logous function returns a set of symbols which could appear after some occur-
rence of symbol in the expression. This is because of the linear structure of
the strings. In the trees, all possible direct descendants tuples are returned.

Based on the definition of the regular tree expressions, the computation
of the Follow function is defined using an algorithm 4.1. The idea behind
algorithm is to maintain so called substitution map while recursively traversing
a regular expression syntax tree. The substitution map contains roots of all
possible trees that can get substituted for each � ∈ K. If � symbol appears
between direct descendants of the symbol for which follow is being computed,
it will get substituted by elements of substitution map for given � symbol.
Note that it is possible that another element of K is present in the substitution
table for �. This happens when the right element of substitution operator is
also K element. So, some preprocessing is required to handle this as is later
shown.

In the algorithm 4.1 function ReplaceConstants is used. This function
takes the substitution map and tuple of children and replaces all symbols
from K in the tuple of children with all possible elements for which the symbol
can get substituted. This however makes the output of the function possibly
exponential as shown later in the thesis.
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·�

·�

∗,�

+

a2

� �

b0

a2

b0 �

b0

Figure 4.2: Regular tree expression E = (a2(�,�) + b0)∗,� · � a2(b0,�) · � b0

{a21, b02, a23}
·�

{a21, b02, a23}
·�

{a21, b02,�}
∗,�

{a21, b02}
+

{a21}
a21

� �

{b02}
b02

{a23}
a23

b04 �

b05

Figure 4.3: Regular tree expression E′ from figure 4.2 when processed with
First function. Symbols in {} are elements of First set for given subexpression.
Those subexpressions which have no elements of First set are not needed for
the computation.
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4.1. Analysis

To illustrate previous paragraphs consider a case when processing a subtree
of regular tree expression a(�1). Also assume that the substitution map looks
like this: {�1 → {b,�2}, �2 → {c}}. Then all possible follow tuples of symbol
a are: {(b), (c)}. The children tuple (c) appeared in the set because symbol
�2 was in the substitution map for �1 symbol, therefore all elements of �2

also belong to �1.

Proposition 4.2 (Follow function). Function Follow(E′, a) correctly returns
a set of tuples representing all possible tuples of direct children of a subscripted
node a.

For a proof of proposition 4.2 see section 4.3.1.

Example 4.3. Let E be a regular tree expression from figure 4.2, then
First(E′) = {b02, d11, a23}. The substitution map for individual nodes of
expression is illustrated on figure 4.4.

Computation of Follow(E′, a21) is shown: By the function definition, the
computation recursively descents to the node a21(�,�) and the computa-
tion takes the if branch where function ReplaceConstants((�,�), subMap)
is called. The substitution map is now as follows: {�→ {a23, a21, b02}}. Now
all possible combinations how to substitute � elements in children tuple (�,�)
are computed. Therefore the result is: {(a23, a23), (a23, a21), (a23, b02),
(a21, a23), (a21, a21), (a21, b02), (b02, a23), (b02, a21), (b02, b02)}.

Follow(E′, a23) = {(b04, b05)}. Follow of symbols b02, b04 and b05 is ∅,
these symbols have zero arity.

�

4.1.3 Pushdown Automaton Construction

In the previous section it is shown how to compute First and Follow sets.
Therefore it is known what symbols are the last to be read (even though we
call the function First, this is because of postfix notation) and what are the
roots of subtrees (direct children) of certain node. We can use this information
to create pushdown automaton transitions.

Single state pushdown automaton that accepts by empty pushdown store
is created. To make this possible, an end-of-string marker a needs to be
appended to the end of input (which is a postfix notation of a tree). This is
necessary as information about what has been read is kept on the pushdown
store and at the same time it tells what is yet to be read. If the pushdown
store is empty (or to be more precise, if only initial pushdown store symbol
and symbol representing root of the tree is on the pushdown store), whole
linearised tree was read. Thus the string is accepted only when the pushdown
store is empty after processing.

Simple definition of ϕ mapping is presented first. It maps a tuple from the
Follow set to a string of pushdown store symbols.
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4. Converting RTE to PDA

Algorithm 4.1: Computation of Follow function.

1 Function Follow(E, a)
2 subMap ← initialize map
3 return FollowRec(E, a, subMap)

4

1 Function FollowRec(E, a, subMap)
2 switch E do
3 case E1 + E2 do
4 return FollowRec(E1, a, subMap) ∪ FollowRec(E2, a,

subMap)

5 end
6 case E1 · �E2 do
7 subMapL← subMap /* copy map */
8 subMapL[�] = First(E2) /* replace mapping for � */
9 return FollowRec(E1, a, subMapL) ∪ FollowRec(E2, a,

subMap)

10 end

11 case E∗,�1 do
12 subMap[�] = subMap[�] ∪ First(E1)
13 return FollowRec(E, a, subMap)

14 end
15 case f(E1, E2, . . . , En) do
16 if a = f then
17 return ReplaceConstants(children, subMap)
18 else
19 ret ← ∅
20 for Ei in E1, E2, . . . , En do
21 ret = ret ∪ FollowRec(Ei, a, subMap)
22 end
23 return ret

24 end

25 end
26 case ∅ do
27 return ∅
28 end

29 end
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�→{}
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�→{b05}
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�→{a21, a23, b02}
+

�→{a21, a23, b02}
a21

�→{a21, a23, b02}
�

�→{a21, a23, b02}
�

�→{a21, a23, b02}
b02

�→{b05}
a23

�→{b05}
b04

�→{b05}
�

�→{}
b05

Figure 4.4: Regular tree expression E′ from figure 4.2 with substitution map-
ping.

Definition 4.1 (ϕ). We define function ϕ : Σn 7→ G∗ (let G be a pushdown
store alphabet), which maps an element (tuple) of Follow(E′, a) to a string of
pushdown store symbols. 4

Example 4.4. Let E′ be a labelled regular tree expression and let a tuple
f = (a1, b2, c3) ∈ Follow(E′, ai). Then ϕ(f) = a1b2c3.

Also σ(a1) = a (recall σ mapping from definition 3.3). �

Mapping δ (automaton transition function) is based on the observations
from previous chapters. It was stated that symbol a can be read only when
all its subtrees were read. So pushdown store operations for symbol a are that
all possible tuples of children are removed from the top of the pushdown store
and symbol corresponding to a is pushed.

Pushdown automaton A recognizing postfix notations of trees described
by a regular tree expression E over F ∪ K is defined in the following way:

• set of states Q is equal only to {q} because single-state automaton is
created,

• alphabet is equal to the non-constant alphabet of E, i.e., F and a sym-
bol,
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4. Converting RTE to PDA

• pushdown store alphabet Γ consists of the initial pushdown store symbol
⊥ and all the elements of Pos(E),

• set of transition rules δ is constructed as follows:

– For all symbols ci ∈ Pos(E), σ(ci) ∈ F0 transition rule (q, ci) is
added to δ(q, σ(ci), ε) set,

– for all symbols ai ∈ Pos(E), σ(ci) /∈ F0 and every f ∈ Follow(E′, ai)
transition rule (q, ai) is added to δ(q, σ(ai), ϕ(f)),

– for all symbols ai ∈ First(E′) transition rule (q, ε) is added to
δ(q,a,⊥ ai) set.

• Resulting automaton A = ({q},F ∪ {a},Γ, δ,⊥, q, {}). Automaton ac-
cepts the string by empty pushdown store. The top of the pushdown
store is situated on the right.

Note that this automaton is neither real-time height-deterministic nor an-
other (known) determinisable subclass of pushdown automata. Real-time
height-deterministic pushdown automata must accept input by entering fi-
nal state after the string was read [NS07, PTJM16]. However, it is trivial to
modify this automaton in the way it accepts by final state. Another state,
f , which is also final state is added. Mapping δ must be altered too. All
the transitions which were created by the First(E′) rule, i.e., the transitions
reading a and checking for correct final pushdown store content, will now lead
to final state f instead of q.

To clarify, let us define the altered pushdown automaton. This time it
will not violate the final state acceptance condition which is mandatory for
real-time height-deterministic pushdown automata.

Pushdown automaton A (with final state) recognizing postfix notations
of trees described by regular tree expression E over alphabet F ∪ K in the
following way:

• set of states is equal to {q, f},

• alphabet is equal to the non-constant alphabet of E, i.e., F and a sym-
bol,

• pushdown store alphabet Γ consists of the initial pushdown store symbol
⊥ and all the elements of Pos(E),

• mapping δ consists of these transitions:

– For all symbols ci ∈ Pos(E), σ(ci) ∈ F0 transition rule (q, ci) is
added to δ(q, σ(ci), ε) set,

– for all symbols ai ∈ Pos(E), σ(ci) /∈ F0 and every f ∈ Follow(E′, ai)
transition rule (q, ai) is added to δ(q, σ(ai), ϕ(f)),
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4.1. Analysis

– for all symbols ai ∈ First(E′) transition rule (f, ε) is added to
δ(q,a,⊥ ai) set.

• Resulting automaton A = ({q, f},F ∪ {a}a,Γ, δ,⊥, q, {f}). Automaton
accepts string by entering final state after the string was read. The top
of the pushdown store is on the right.

Notice that change of pushdown store height for every symbol in input
alphabet is always the same. When reading symbol a, arity(a) symbols are
always popped from the pushdown store exactly 1 symbol is pushed to the
pushdown store. The only exception is for a symbol. In this case, two symbols
are popped and nothing is pushed on the pushdown store. This observation
comes handy later in section 4.3 while discussing if this method yields real-
time height-deterministic pushdown automaton.

Example 4.5. The example with regular tree expression from figure 4.2 is
continued. Sets First and Follow were computed in examples 4.2 and 4.3.

The pushdown automaton A = ({q, f},F∪{a},Γ, δ,⊥, q, {f}) is construc-
ted according to algorithm 4.2. The input alphabet set is equal to {a2, b0, a}
and the pushdown store alphabet is Γ = {⊥, a21, b02, a23, b04, b05}.

Mapping δ is constructed as follows:

δ(q, b0, ε) = {(q, b02), (q, b04), (q, b05)}
δ(q, a2, a23a23) = {(q, a21)} δ(q, a2, a23a21) = {(q, a21)}
δ(q, a2, a23b02) = {(q, a21)} δ(q, a2, a21a23) = {(q, a21)}
δ(q, a2, a21a21) = {(q, a21)} δ(q, a2, a21b02) = {(q, a21)}
δ(q, a2, b02a23) = {(q, a21)} δ(q, a2, b02a21) = {(q, a21)}
δ(q, a2, b02b02) = {(q, a21)}
δ(q, a2, b04b05) = {(q, a23)}
δ(q,a,⊥ a21) = {(f, ε)} δ(q,a,⊥ b02) = {(f, ε)}
δ(q,a,⊥ a23) = {(f, ε)}

�

Example 4.6. Regular tree expression from figure 4.2 describes for instance
following two trees from figure 4.5. Postfix notation of the first tree is b0 b0 a2.
The second tree is linearised as b0 b0 a2 b0 b0 a2 a2 b0 a2.

Now, both these strings (with a marker appended) are accepted by the
automaton. Beware of nondeterminism when simulating run.

The first string is accepted correctly with two ways, either with a21 on
the top or a23 on the top of the pushdown store before reading a. The first
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a2

b0 b0

a2

a2

a2

b0 b0

a2

b0 b0

b0

Figure 4.5: Some trees matched by the regular tree expression from figure 4.2.

possibility comes directly from iteration and then no substitution was made.
The second way is with a23 symbol on the top of the pushdown store. This
happens when � is matched in iteration subtree and then substituted by the
tree with a23 as a root. �

4.1.4 Homogeneous Automaton

Glushkov’s algorithm for regular (string) expressions creates homogeneous fi-
nite automaton (see definition 1.24). There is no such notion defined for
pushdown automata.

Something similar to homogeneity can be observed in the created auto-
maton. Notice that for every pushdown store symbol b (except the initial
symbol) there exists exactly one input symbol a in a way that when symbol b
appears on the top of the pushdown store it is always after a move with input
symbol a was made. Also empty pushdown store can be reached only after a
move that reads symbol a. It is not known yet whether this property can be
regarded as homogeneity and it might be interesting topic for research.

For homogeneous finite automata there exists a theorem about the number
of states obtained after determinisation. Upper bound for number of states
is

∑
a∈Σ(2|Q(a)| − |Σ|+ 1)[Hol15]. It is not known whether something similar

holds also for determinisable pushdown automata.

4.2 Algorithm

Now, algorithm 4.2 converting a regular tree expression into equivalent push-
down automaton is presented. Functions First, Follow and Pos from previous
section are used.

Let us state some theorems about algorithm 4.2.

Theorem 4.1 (Language equivalence). Algorithm 4.2 creates pushdown auto-
maton A such that L(A) = post(L(E)), where E is given regular tree expres-
sion.
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Algorithm 4.2: Glushkov’s hdPDA Construction

Input: Regular tree expression E over alphabet Σ.
Output: Real-time height-deterministic pushdown automaton A such

that L(A) = L(post(E)).

1. Label all the occurrences of symbols of Σ with numbers 1, 2, . . . , n.
Distinct occurrences of the same symbol must have different labels
assigned. Insert all labelled symbols into the PosE set. We denote
labelled expression by E′.

2. Compute sets First(E′) and Follow(E′, a) ∀a ∈ Pos(E) by the
algorithms from previous sections.

3. Create set of states Q = {q, f} and set of final states F = {f}.

4. Let the pushdown store alphabet Γ = {⊥ ∪Pos(E) }.

5. Mapping δ is defined:

a) For all symbols ci ∈ Pos(E), σ(ci) ∈ F0 add the transition
(q, ci) ∈ δ(q, σ(ci), ε),

b) for all symbols ai ∈ Pos(E), σ(ci) /∈ F0 and all tuples
f ∈ Follow(E′, ai) add (q, ai) ∈ δ(q, σ(ai), ϕ(f)),

c) for all symbols ai ∈ First(E′) add (q, ε) ∈ δ(q,a,⊥ ai).

6. Resulting automaton A = (Q,Σ ∪ {a}, G, δ, q, F ) accepts the input
word by final state.

Theorem 4.2 (rhPDA). Algorithm 4.2 creates real-time height-deterministic
pushdown automaton.

Proposition 4.3 (PDA’s transition function size). Automaton created by al-
gorithm 4.2 has transition function exponential in size.

For proofs of theorems 4.1 and 4.2 and proposition 4.3 see section 4.3.

4.3 Formal Analysis

In this section the algorithm is discussed formally. Language equivalence issues
will be addressed and after it is proven that the created pushdown automaton
is real-time height-deterministic. Finally, time and space complexities of the
presented algorithm are shown.
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4.3.1 Language Equivalence

Proposition 4.1 (First function). Function First(E′) from equation (4.8) cor-
rectly returns all occurrences of symbols that can be root of any tree described
by a regular tree expression E.

Proof. This will be proven by induction on the structure of regular tree ex-
pression (see definition 2.5).

Case E = a(E1, E2, . . . , En): This expression is one of the trivial cases.
Only a can be root of a tree represented by E. Note the possibility of a = �.

Case E = ∅: This is second trivial case as there is no tree represented by
this expression.

For next cases, let us assume that the proposition is true for expressions
E1 and E2.

Case E = E1 + E2: From the definition of regular tree expressions, this
expression represents union of roots of trees described by E1 and E2.

Case E = E∗,�1 : From the definition of an iteration element of a regular
tree expression it can be seen that root of such tree can be only root of the
iterated element or the substitution symbol. Therefore only � or elements of
First(E1) can be roots.

Case E = E1 · �E2: This case is the only tricky one and there are two
possibilities. In the first case, suppose that � is not an element of First(E1),
then only First(E1) is returned as no substitution can alter the root of E1. In
the second case, suppose that � is an element of First(E1) then the symbol �

gets substituted by trees from E2. In other words the � is removed from set
First(E1) they are returned all together with roots of E2.

Proposition 4.2 (Follow function). Function Follow(E′, a) correctly returns
a set of tuples representing all possible tuples of direct children of a subscripted
node a.

Proof. Consider all the possibilities that can happen while computing Follow
function for symbol a:

Case 1 (no substitution symbol): a

b1 . . . bn

This case is trivial as no substitution is required, the algorithm correctly
computes (b1, . . . , bn). No substitution happens.
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Case 2a (inside substitution node):

·�

·�

a

� . . .

E2

E1 In this case a symbol is followed by (�, . . .) tuple. It
is easy to observe that � gets substituted for every
symbol from First(E2).

Case 2b (inside substitution node):

·�

·�

E2 a

� . . .

E1
In this case a symbol is again followed by (�, . . .) tuple.
However, the � symbol here will get substituted for
First(E1). This follows directly from definition of reg-
ular tree expressions.

Case 3a (inside iteration node):

·�

∗,�

d

a

� . . .

E1
Symbol a symbol is again followed by (�, . . .) tuple.
From the definition of regular tree expression itera-
tion, the � symbol can get substituted for d (i.e., First
of the iteration element) or by �. If substitution for
� happens it gets again substituted for symbols from
First(E1).

Case 3b (inside iteration node):

∗,�

d

a

� . . .

This case is almost same as the previous one. The
only difference is that the topmost element of substi-
tution not present. Then this � element will remain
and whole expression gets invalid.

There are few more trivial cases following directly from definitions. Other
complex cases are not possible.
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Theorem 4.1 (Language equivalence). Algorithm 4.2 creates pushdown auto-
maton A such that L(A) = post(L(E)), where E is given regular tree expres-
sion.

Proof. The proof consists of two parts: post(L(E)) ⊆ L(A) and L(A) ⊆
post(L(E)).

Case post(L(E)) ⊆ L(A): Or in other words it is proved that the push-
down automaton accepts at least the same set of words as the regular tree
expression describes, i.e., all the linearised words from post(L(E)) are in L(A)
as well. Proof of this case comes directly from the proof of the Follow and
First functions. The functions analysed all possible combinations of parent-
children relations and these were converted to transition function for postfix
notation. When the input string except a symbol is processed, it continues
only if ⊥ f is on the top of the pushdown store where f is an element of First
set. Why this principle of postfix notation processing works was presented in
the beginning of this chapter.

Case L(A) ⊆ post(L(E)): Or in other words it is proven that every word
from L(A) is in post(L(E)) too, i.e., there is no word from L(A) that is
not in post(L(E)). If there is a word from L(A) that is not in post(L(E))
then either the computation of First or Follow functions were wrong or the
transitions created from Follow sets would allow the automaton to accept
something more. The functions First and Follow are proven to be correct.
Third possibility is not possible from the definition of postfix notation and
Follow function. The automaton tracks read subtrees on the pushdown store
encoded by their representants, i.e., by their roots. Representant of a root is
only allowed to be inserted if representants of its children are removed.

Both cases holds hence L(A) = post(L(E)).

4.3.2 Real-Time Height-Deterministic Pushdown Automaton

Theorem 4.2 (rhPDA). Algorithm 4.2 creates real-time height-deterministic
pushdown automaton.

Proof. Recall definition of height-deterministic and real-time pushdown auto-
mata from definition 1.33.

Transition rules of the automaton are always in the form that when an
input symbol a is read, arity(a) symbols are removed from the pushdown
store and one symbol is pushed on the top of the pushdown store. The only
exception is for symbol a which pops two symbols and pushes none. This
guarantees that the pushdown store height is always predetermined for all
nondeterministic paths on an input word. Therefore the automaton fulfils the
conditions height-determinism.

In real-time pushdown automata, all outgoing transitions are allowed to
be only ε-transitions or only symbol transitions. Automaton created by al-
gorithm 4.2 has no ε-transitions, hence is also real-time[NS07].
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4.3.3 Time and Space Complexity

Proposition 4.3 (PDA’s transition function size). Automaton created by al-
gorithm 4.2 has transition function exponential in size.

Proof. Exponential size of the transition mapping comes from the computation
of Follow. Consider a symbol a whose direct descendants are only � symbols,
i.e., a(�,�, . . . ,�) and � is substitutable for some elements from the set S�.
Then, the set of follow tuples of a is equal to the set S�×S�×. . .×S� which has
|S�|arity(a) elements. From algorithm 4.2 it is obvious that for every element
of the set there is one transition in the resulting automaton.

The upper bound for the number of transitions created from the Follow
elements will be

∑
ai∈Pos(E)m(ai)

arity(ai)−s(ai) ≤ |E||E|max(arity(F)) where |E|
is the number of symbol nodes in E, m(ai) is size of substitution map for
symbol ai and s(ai) is the number of children of ai that are from alphabet F .
This size of the transition function for a single symbol is really the worst case
unexpected in practice. It is still unacceptable though. This thesis serves only
as a proof of a concept that such a conversion method based on adaptation
of Glushkov’s algorithm is possible. Another method with better complexity
based for computation of follow will have to be invented.

Several experiments with the size of the transition function after the auto-
maton was determinised were made. It does not seem that determinisation
would help lower the size of a transition mapping.

There are several possibilities how to address the complexity issue in the
future. First idea stands on sharing one pushdown store symbol for several
other ones. In functionReplaceConstants while computing Follow a Cartesian
product is in fact being computed (which makes the complexity bad). It may
be possible to avoid this by using a single pushdown store symbol correspond-
ing to a set of elements from substitution map for � element.

Another way to solve this may be the use of � symbol on the stack. Con-
sider an iteration over � where � gets substituted for some other expression
F . When reading a subexpression F , the automaton may pop corresponding
pushdown store symbols but push a � also to remember what substitutions are
further possible. For an expression E = (a2(�,�)) · � b0 the interesting part
of transition rules for pushdown automaton would look like this: b0 | ε→ b0,
b0 | ε→ �, a2 | ��→ a2, a2 | ��→ �.

Both of these attempts to lower the asymptotic complexity will be a subject
of investigation in the near future.

4.4 Examples

In the end of this complex chapter several regular tree expressions along with
corresponding pushdown automata are shown. All expressions have already
indexed occurrences of symbols from F as the algorithm dictates.
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�1

∗,�2

d11

a22

�2 �1

+

b03 c04

(a) rte.xml

·�1

·�2

∗,�1

∗,�2

a21

�2 �1

b02

c03

(b) rte6.xml

·�

·�

∗,�

d11

�

a22

c03 �

b04

(c) rte7.xml

·�

∗,�

a21

� �

a22

b03 b04

(d) rte4.xml

·�

·�

� a01

b02

(e) rte5.xml

Figure 4.6: Regular tree expressions. Every expression is labelled with name
of corresponding XML file from the folder with examples in implementation.

Example 4.7. Regular tree expression E′ from figure 4.6a is invalid. Symbol
�2 never gets substituted. Hence no pushdown automaton is created. �

Example 4.8. Regular tree expression E′ from figure 4.6b has equivalent
pushdown automaton in figure 4.7a. The expression has following properties:

First(E′) = {a21, b02, c03}
Follow(E′, a21) = {(a21, a21), (a21, b02), (a21, c03), (b02, a21),

(b02, b02), (b02, c03)}
Follow(E′, b02) = Follow(E′, c03) = ∅ �

Example 4.9. Regular tree expression E′ from figure 4.6c has equivalent
pushdown automaton in figure 4.7d. The expression has following properties:

First(E′) ={d11, a22}
Follow(E′, d11) ={(d11), (a22)}
Follow(E′, a22) ={(c03, b04)}
Follow(E′, c03) = Follow(E′, b04) = ∅ �
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qstart

f

a2 | a21a21 → a21

a2 | a21b02 → a21

a2 | a21c03 → a21

a2 | b02a21 → a21

a2 | b02b02 → a21

a2 | b02c03 → a21

b0 | ε→ b02

c0 | ε→ c03

a | ⊥ a21 → ε
a | ⊥ b02 → ε
a | ⊥ c03 → ε

(a) rte6.xml

qstart

f

a2 | a21a21 → a21

a2 | a21a22 → a21

a2 | a22a21 → a21

a2 | a22a22 → a21

a2 | b03b04 → a22

b0 | ε→ b03

b0 | ε→ b04

a | ⊥ a21 → ε
a | ⊥ a22 → ε

(b) rte4.xml

qstart

f

a0 | ε→ a01

b0 | ε→ b02

a | ⊥ a01 → ε

(c) rte5.xml

qstart

f

d1 | d11 → d11

d1 | a22 → d11

a2 | c03b04 → a22

c0 | ε→ c03

b0 | ε→ b04

a | ⊥ d11 → ε
a | ⊥ a22 → ε

(d) rte7.xml

Figure 4.7: Pushdown automata equivalent to those from figure 4.6.

Example 4.10. Regular tree expression E′ from figure 4.6d has equivalent
pushdown automaton in figure 4.7b. The expression has following properties:

First(E′) ={a21, a22}
Follow(E′, a21) ={(a21, a21), (a21, a22), (a22, a21), (a22, a22), }
Follow(E′, a22) ={b03, b04}
Follow(E′, b03) = Follow(E′, b04) = ∅ �

Example 4.11. Regular tree expression E′ from figure 4.6e has equivalent
pushdown automaton in figure 4.7c. The expression has following properties:

First(E′) ={a01}
Follow(E′, a01) = Follow(E′, b02) = ∅ �
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Chapter 5

Implementation

This chapter presents ALIB. Then it describes the process of implementing
the algorithm described in the previous chapter into this library.

5.1 Automata Library

For the implementation, ALIB framework have been chosen. ALIB is a set of
libraries and executables written especially for working with data structures
in the area of formal languages, automata and graphs1. The library is written
in C++ programming language (using C++11 standard).

ALIB started as a idea of Jan Trávńıček2 in 2013 and was introduced
in bachelor’s thesis of Martin Žák [Žák14]. Then, it could only manipulate
with various types of grammars, automata and regular expressions. More
features were implemented since then. In 2014, algorithms for converting
and manipulating with regular languages [Pec14] and pushdown automata
determinisation [Ves14] were added. In 2015, ALIB gained the ability to work
with Arbology data structures (tree automata) [Pla15] and graphs [Ros15].
As of April 2016, ALIB is gaining the ability to benchmark algorithms and
algorithms for LR parsers construction are being implemented.

These were only major changes. Of course, there were also many al-
gorithms implemented when necessary. Now, ALIB contains decent collection
of formal languages algorithms and also many stringology and Arbology al-
gorithms (string or tree searching and indexing, etc.). However, many common
stringology algorithms (e.g. suffix array and many others) are still missing3.

Original goal was to provide sample implementations of algorithms in
formal languages taught in various courses at Czech Technical University at

1This is valid as of April 2016. We always expect more features coming.
2Leader, or to be more accurate, benevolent dictator for life (see wikipedia page of this

term) and main developer of the project.
3Hopefully, ALIB will be released under GPL license soon. Then, you are welcome to

send your patches and implementations of algorithms.
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Prague, Faculty of Information Technology. The algorithms are being writ-
ten with focus on readability so they can be used for teaching purposes. Of
course, the efficiency is not brilliant but asymptotic complexity of implemen-
ted algorithms is preserved. Nowadays, there is also possibility of writing
efficient variations of certain algorithms.

The library also serves for fast implementation of new algorithms because
you usually do not need to implement logic for manipulating with data struc-
tures. ALIB usually already handles this. This is one of the reasons ALIB
was chosen although the data structures for regular tree expressions were not
present and had to be implemented.

The ALIB project is divided into several libraries and executables. The
executables usually serve as an interface to algorithms. Input and output is
mostly done via Extensible Markup Language (XML) files, however there also
exists possibility of creating input in some other, specialized or more human-
friendly, formats for various data structures. For example, strings, regular
expressions and finite automata can be written in human-friendly way.

ALIB follows the pipes and filters design pattern and UNIX philosophy.
The UNIX philosophy for creating executables is that one executable should
do one thing and it should do it properly. Then output of such executable
can be modified using pipes and filters design pattern. One can create input,
filter4 it with executable A and then process its output with executable B to
filter it with executable B.

In ALIB, one executes complex operations (usually) using system pipes.
Complex operation can be for instance conversion of regular expression into
minimal deterministic finite automaton using Glushkov’s algorithm with and
output is given as a transition diagram in PDF format. In order to do that,
one should do the following sequence of operations (note that the following is
just a verbose description of the shell command from figure 5.1):

i) create regular expression from human-readable notation using aconvert
executable,

ii) convert it with Glushkov’s algorithm using aconversion executable,

iii) use adeterminize to create deterministic finite automaton,

iv) remove unnecessary and unreachable states with the help of atrim,

v) minimize the automaton using aminimize executable,

vi) run aconvert executable once again to get dot language[GN00] descrip-
tion of automaton’s transition diagram and

vii) draw the diagram it with dot5 executable.

4By filtering some executable modifying input in some way is understood.
5Please note that dot executable is not part of ALIB project. It is part of graphviz

package, see [GN00].
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$ ./aconvert --regexp_from_string | ./aconversion -t fa -a glushkov \
| ./adeterminize | ./atrim | ./aminimize \
| ./aconvert --automaton_to_dot | dot -Tx11

Figure 5.1: Sample command-line command for converting regular (string)
expression to equivalent minimal deterministic finite automaton.

It is also planned to expose ALIB’s API bindings for some scripting lan-
guage like Python or Ruby. Speed up of filters is expected because XML input
and output (de)serialization in every executable of a complex command is a
considerable slowdown, especially for large data structures. Then, one should
be able to write the sequence of operations without unnecessary serialization
in every step. Of course, it is possible to write complex operations directly as
C++ executable, it is however not so user-friendly.

5.1.1 Parts of Automata Library

As was already said, ALIB consists of several libraries and executables. The
core libraries are the following:

alib2data (Data Structures) contains data structures and basic operations
on them, e.g., automata, grammars or string and trees.

alib2algo (Algorithms) contains implementations of algorithms over data
structures, e.g., automata determinisation or conversions between com-
putation models.

alib2elgo (Efficient Algorithms) contains time efficient implementations of
some algorithms. So far some finite automata transformations like al-
gorithm for removing ε-transitions were added.

alib2common (Common Code Bases) contains several classes needed in other
libraries. It contains sighandlers, wrappers for internal object represent-
ations, exceptions and so on..

alib2raw (Tree and XML) contains algorithms for conversion of any XML
document into tree data structure from ALIB and vice versa.

alib2std (STL Extensions) has various extensions of C++ Standard Template
Library [ISO12], e.g. functions for printing (nested) containers.

alib2str (Data Structures Parse Library) contains string serialisers and pars-
ers for various data structures.

As you can see, the alib2algo and alib2data are the most important parts
for developing new algorithms and data structures respectively. The data
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structure representing regular tree expression is implemented in alib2data
library. The conversion algorithm becomes part of the alib2algo library.

5.2 Changes in Automata Library

ALIB already had support for regular (string) expressions thanks to [Žák14,
Pec14]. This was helpful in implementation because regular tree expres-
sions are quite similar. The project also has support for pushdown auto-
mata operations and creation as well as determinisation of some pushdown
automata subclasses (including real-time height-deterministic pushdown auto-
mata) [Ves14, PTJM16].

5.2.1 Implementation of Regular Tree Expressions

Regular tree expressions are implemented very similarly to regular expressions
in ALIB. They only differ in structure of nodes and alphabet.

Every regular tree expression operator is implemented as a class inheriting
from abstract class rte::FormalRTEElement. Here, by the term formal in
rte::FormalRTEElement, we mean representation that is directly following the
definition, i.e., every alternation has only two elements, left and right. It can
not have form E = E1 +E2 + . . .+En but rather E = E1 +(E2 + . . .+(En−1 +
En)). This is because the implementation of regular (string) expression also
so called unbounded representation (the first example of alternation in the
previous sentence, i.e., alternation or concatenation nodes can have multiple
children). It was decided to keep the naming consistent with implementation
of regular (string) expressions. In the future, some form of unbounded regular
tree expression may be presented.

Hence, following classes representing the regular tree expression were im-
plemented in alib2data/src/rte/formal directory:

1. rte::FormalRTEElement representing abstract element of RTE tree,

2. rte::FormalRTEAlternation representing union node, i.e., E1 + E2,

3. rte::FormalRTEEmpty representing empty expression, i.e., ∅.

4. rte::FormalRTEIteration representing iteration over � ∈ K, i.e., E∗,�,

5. rte::FormalRTESymbol representing symbol, which can has some chil-
dren, i.e., f(E1, E2, . . . , ).

6. rte::FormalRTESubstitution representing substitution over � element,
i.e., E1 ·�E2.

Of course, there is also wrapper class rte::FormalRTE holding the pointer
to the root rte::FormalRTEElement. Both alphabets (F and K) are encapsu-
lated in single class.
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5.2.1.1 XML Format of Regular Tree Expression

ALIB supports serialization and deserialisation of internal data structures into
XML format which is the main communication format between executables.
The XML format of regular tree expressions was chosen in such way that it
would represent syntax tree of regular tree expression.

The name of opening tag for ALIB is FormalRTE. Firstly, as a regular tree
expression is defined with two alphabets, F and K, two alphabets are also in
the XML file. So first child of FormalRTE node is node alphabet containing F .
Next child of FormalRTE node is constantAlphabet which handles K. Children
of alphabet and constantAlphabet nodes are RankedSymbol elements, which
already existed in ALIB.

When both alphabets are specified, an expression starts (on the same level
as alphabets). A regular tree expression consists of several nodes: Alternation,
substitution, iteration and symbol node.

Alternation element is designed as a alternation XML node. It has two
children – left and right operands of alternation, which are also regular tree
expressions.

Substitution elements has two children from definition and also holds an in-
formation about a substitution node. Proposed substitution node for XML
also has two children (left and right operands of the operation). However,
ALIB has limited support for XML attributes which was the original idea
how to store the substitution symbol. This was bypassed by storing the sub-
stitution symbols as first child of substitution node. Left and right operands
of substitution operation were therefore moved to second and third child po-
sitions.

The iteration node (iteration) is similar. It is supposed to have one
child but we also need the information about the substitution element. Same
solution as in substitution node was used.

A symbol node holds a ranked symbol and it has amount of children which
is equal to the arity of the ranked symbol. The symbol node is opened and
RankedSymbol element is inside. If symbol has children then for every child
another symbol is recursively present inside.

Exhaustive example can be found in appendix A. Methods for serializa-
tion and deserialisation of regular tree expressions are implemented in classes
rte::RTEToXMLComposer and rte::RTEFromXMLParser respectively.

5.2.2 Implementation of Conversion Method

The conversion method itself consists of regular tree expression analysis (via
Pos, First and Follow functions) and the construction of a pushdown auto-
maton using these functions. In the following subsections both parts are fo-
cused on.
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5.2.2.1 Algorithms for Regular Tree Expression Analysis

Functions Pos, Follow and First are implemented as recursive functions in
class rte::GlushkovTraversal.

The function Pos traverses a syntax tree of regular tree expression and
assigns to every symbol from F an index. It implements preorder traversal
and assigns numbers from increasing sequence 1 . . . n. Every labelled symbol
is then inserted into the return set as an instance of rte::GlushkovSymbol
class holding a label and a pointer to a tree node (rte::FormalRTEElement).

First function is implemented as a recursive function exactly according to
the equation (4.8). It returns set of rte::GlushkovSymbol.

Function Follow has no specialities in implementation too. It follows the al-
gorithm 4.1 and returns a set of tuples of rte::GlushkovSymbol. Functions
ReplaceConstants and preprocessSubMap in rte::GlushkovTraversal are ad-
ded for preprocessing the substitution map (case when symbol from constant
alphabet maps to another constant symbol or self) and for computation of all
possible follow tuples respectively.

Note that � ∈ K symbol might appear in a follow tuple of some symbol.
As was explained in previous chapter, this is invalid regular tree expression
because elements of K are not part of an input alphabet. In this case exception
(instance of exception::CommonException class) is thrown.

5.2.2.2 Algorithm for Creating Pushdown Automaton

The implementation of the method itself is simple when we have the func-
tions for computing the functions from previous section implemented. Non-
deterministic pushdown automaton (this data structure was already present
in ALIB) is initialized and it is assigned a set of states and alphabet as stated
in algorithm 4.2. As stated before, only automata which do not have � sym-
bols in input alphabet are created.

This method yields nondeterministic pushdown automaton. However, the
automaton fulfils the requirements to be real-time height-deterministic and
can be determinised using the algorithm for real-time height-deterministic
automata[PTJM16]. This algorithm was already implemented in ALIB and
can be invoked using adeterminize executable. The method is implemented in
alib2algo library inside rte::convert::ToPushdownAutomatonGlushkov class.
Call to this method was also registered in already existing aconversion ex-
ecutable as algorithm called glushkovrte. Using aconversion one can then
run the algorithm from command line. Such complex conversion command
might then look like this: $ ./aconversion -t pda -a glushkovrte -i
rte.xml | ./adeterminize.
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5.3 Testing

Every software needs to be tested and this enhancement of ALIB is not dif-
ferent. As this work presents new algorithm, no reference implementation for
output comparison was available. Therefore a set of tests was designed to
cover as much cases as possible. Also unit tests for regular tree expressions
were implemented.

For the testing, it is helpful to use the arun executable from ALIB. This
executable can simulate run of deterministic finite and deterministic pushdown
automata. This can be utilized in checking whether an input string is really
accepted by the created pushdown automaton.

Single test consists of given regular tree expression that is converted to
equivalent deterministic pushdown automaton. Then we analyse the regular
expression by hand and create a script that generates the same language in
its postfix linear form. Words generated by such script (which is in fact
an implementation of context-free grammar) are than read by the pushdown
automaton to check whether they are really accepted by the language. All
words generated by the script must be accepted. The script is implemented in
the Python language. Negative test cases were also added to check whether
the automaton does not accept some word it should not.

The test cases are located in the examples2/rte/tests directory located in
ALIB source tree. For every test the corresponding script for tree generation
is attached.

5.3.1 Results

The test cases revealed several imperfections in the implementation. The
most severe bug was however not in the implementation but in the algorithm
computing the Follow function.

In the Follow function, while processing a substitution node, it was forgot-
ten to forward the not altered substitution map to right subexpression. This
was fortunately discovered in the early stages of this work.

Several other mistakes were also found by the set of test cases, mainly in
implementation of regular tree expressions. However, most of them were not
crucial.
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Conclusion

In this chapter this thesis is summarised, the results and contributions are con-
cluded. Some topics for future work and improving current state of presented
algorithm are presented.

Evaluation of Goals

Several goals were stated in the assignment of this thesis. Firstly, regular tree
expressions and the construction of Glushkov’s automaton were to be studied.
This was fulfilled in chapters 2 and 3.

Next goal was to propose a method constructing a pushdown automaton
accepting a language given by a regular tree expression. This is main contri-
bution of the thesis and chapter 4 is dedicated to this goal. Summary of this
goal is given in next subsection.

The method was also implemented using C++ language and the imple-
mentation is part of the Automata Library, a framework for implementing
algorithms in formal languages. Details can be found in chapter 5.

Contribution of the Thesis

The main goal was to propose an pushdown automaton equivalent to a regular
tree expression. This goal was fulfilled in chapter 4.

Proposed method for regular tree expression matching follows Arbology
principles – a tree is processed in its linear form using (deterministic) push-
down automaton. This automaton is created using principles introduced by
Glushkov’s algorithm for converting regular (string) expressions to finite auto-
mata. Functions from Glushkov’s algorithm analysing a regular expression
were modified for regular tree expressions. Using these functions an algorithm
for creating pushdown automaton accepting linearised postfix notation of trees
was presented. The resulting pushdown automaton is also real-time height-
deterministic which means that it can be always determinised[NS07, PTJM16]
and simulated.
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Future Work

In the time of writing the thesis, interesting problems were opened. Some of
them are interesting to deal with in the future. Firstly, it would be interesting
to see if this method (with slight modifications) can work also with other linear
notations, mainly bar notations. It should be straight forward to modify the
algorithm for prefix ranked notation.

The issue with exponential number of transitions in the resulting pushdown
automaton should also be dealt with. This is caused by exponential number
of follow tuples for some symbol because of the Cartesian product in the
computation. The computation of Follow function is also asymptotically slow
then.

Regular tree expressions also really do not need to be defined over two
disjoint alphabets F and K. Only one alphabet allowing substitution opera-
tion at every constant symbol is also sufficient. The presented method could
be adapted for this notation. Then the problem with invalid regular tree
expressions would disappear.

The question whether homogeneity could be defined also for pushdown
automata was opened.

Arbology group had presented another algorithm for conversion of regular
tree expressions to pushdown automata. It was an adaptation of Thompson’s
conversion method[PJM11]. The algorithm presented in this topic is based on
Glushkov’s method. It would be interesting to see if also Brzozowski’s method
of regular expression derivatives could be adapted for trees.
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Appendix A

RTE XML Format

In this appendix example of XML representation is given. Regular tree ex-
pression containing all possible node types is presented with corresponding
XML representation. The XML representation is described in section 5.2.1.1.

ALIB has no support for Unicode characters. In following XML example,
� symbol is represented by character z.

·�z

∗,�z

a2

�z �z

+

a2

b0 b0

b0

Figure A.1: Regular tree expression E = a2(�z,�z)
∗,�z · �z(a2(b0, b0) + b0)

presented in its syntax tree form. E is defined over alphabets F = {a2, b0}
and K = {�z}.

Listing A.1: XML representation of regular tree expression from figure A.1
with character z representing �z symbol.

<FormalRTE>
<alphabet>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>a</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>2</Unsigned>
</RankedSymbol>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>b</Character></PrimitiveLabel>
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</LabeledSymbol>
<Unsigned>0</Unsigned>
</RankedSymbol>
</alphabet>
<constantAlphabet>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>z</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>0</Unsigned>
</RankedSymbol>
</constantAlphabet>

<substitution>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>z</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>0</Unsigned>
</RankedSymbol>
<iteration>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>z</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>0</Unsigned>
</RankedSymbol>
<symbol>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>a</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>2</Unsigned>
</RankedSymbol>
<symbol>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>z</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>0</Unsigned>
</RankedSymbol>
</symbol>
<symbol>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>z</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>0</Unsigned>
</RankedSymbol>
</symbol>
</symbol>
</iteration>
<alternation>
<symbol>
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<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>a</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>2</Unsigned>
</RankedSymbol>
<symbol>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>b</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>0</Unsigned>
</RankedSymbol>
</symbol>
<symbol>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>b</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>0</Unsigned>
</RankedSymbol>
</symbol>
</symbol>
<symbol>
<RankedSymbol>
<LabeledSymbol>
<PrimitiveLabel><Character>b</Character></PrimitiveLabel>
</LabeledSymbol>
<Unsigned>0</Unsigned>
</RankedSymbol>
</symbol>

</substitution>
</FormalRTE>
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Appendix B

Acronyms

ALIB Automata Library

DFA Deterministic finite automaton

NFA Nondeterministic finite automaton

PDA Pushdown automaton

XML Extensible Markup Language
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Appendix C

Contents of Enclosed CD

readme.txt......................... the file with CD contents description
src....................the directory with source codes of implementation
thesis................................the directory containing the thesis

src.....................................the thesis LATEX source codes
Thesis Pecka Tomas 2016.pdf...............the thesis in PDF format
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