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Abstrakt

Tato prace se zabyva moznymi programovymi prostfedky k ochrané proti
diferencidlni odbérové analyze algoritmu AES-128 na AVR mikrokontroleru.
Implementace nékolika moznych protiopatieni je porovnana s nechranénou
verzi z pohledu bezpecnosti a slozitosti.

Klicéova slova &ifrovani, DPA, dtoky postrannimi kandly, AES-128

Abstract

This work explores possible software countermeasures against differential power
analysis for AES-128 algorithm implemented on an AVR micro-controller. The
implementation of several countermeasures is compared with unprotected ver-
sion in both security and efficiency.

Keywords encryption, DPA, side-channel attacks, AES-128
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Introduction

Cipher design is a never-ending struggle. The perfect cipher is never complete
and for every new one there is a proof-of-concept attack that exploits even
the smallest design or implementation flaw. Advanced Encryption Standard
(AES) described in is considered to be mathematically strong and resist-
ant to cryptanalysis, but its implementation in hardware might create many
vulnerabilities. Side-channel attacks are one of them and they are introduced
in with emphasis on power consumption channel that’s exploited in the
demonstrated attack.

The countermeasures listed in are crucial for any device that could ex-
pose secret information through the side channel. An ordinary AVR
ATMegal63 smart card was used for the implementation of the encryption
algorithm and countermeasures. All considered countermeasures are men-
tioned in the chapter [2| with more detailed description and examples of the
ones that were actually implemented on the smart card. The implementation
details, especially the specifics of the ATMegal63 environment and AVR 8-bit
instruction set, can be found in the chapter

The implementation is evaluated and compared with the original unpro-
tected one using two power consumption models in the last chapter The
software countermeasures usually degrade the performance because they in-
troduce extra operations. This issue is discussed in the chapter as well and
possible solutions are proposed to alleviate the effects of applied countermeas-
ures on both performance and memory consumption.






CHAPTER

Analysis

This chapter introduces the theory that was needed for AES-128 implement-
ation, side-channel attack execution and countermeasure design.

1.1 Side-channel attacks

Side-channel attacks (SCA) exploit information obtained from the physical
implementation of algorithm e.g. power consumption or electromagnetic ra-
diation of circuit during execution. The exposure of the inner state or secret
value stored on a piece of hardware is called leakage and we say that the device
is leaking information.

Side-channel attacks require the attacker to know the implementation de-
tails of attacked algorithm and device specification. This requirement motiv-
ates the manufacturers to hide and obfuscate their design, but it was proved
multiple times that this approach can never lead to truly secure product[I].

There are various side channels that can be exploited:

e Power consumption

It exploits the fact that different operations and even processing of dif-
ferent values draw different amount of current. This side channel will be
described in more detail in Power consumption side channel was
exploited by Kocher in his original paper on differential power analysis
targeting DES implementation[2].

e Electromagnetic field

The circuit emanates the EM signals while it is executing the algorithm.
This side channel is very popular for attacks on contactless cards or in
cases we don’t have direct access to measure the power consumption.

3



1. ANALYSIS

e Time

Duration of the execution is also considered to be a side channel. At-
tacks exploiting this channel are called timing attacks and they are very
successful on algorithms with some degree of data dependency in execu-
tion.

In this work, we are only interested in power consumption side channel.

1.1.1 Power consumption channel

In our work, we use a micro-controller based on CMOS technology. CMOS
power consumption depends on the logic circuit activity e.g. computations,
storing and loading of values. The power consumption is influenced by the
type of operation the circuit is doing and on processed values[3]. When switch-
ing between logical 0 and 1, a short leakage occurs before the value settles and
this leakage is then exploited for differential power analysis.

Simple power analysis (SPA) is the easiest and least powerful of ap-
proaches. The attacker simply measures the power consumption during the
algorithm execution, examines the traces and searches for patterns that would
give away what values were processed. There are cases when this analysis can
succeed because of the nature of the algorithm e.g. square and multiply al-
gorithm in RSA encryption. The square and multiply algorithm leaks the
information whether square or multiply operation is executed in every step
that might even be visible to human eye.

Differential power analysis (DPA) is a more sophisticated method
that makes use of statistics. The measured power consumption for multiple
inputs is compared with chosen power consumption model for all possible val-
ues of the secret key and we choose the value whose modeled consumption
matches the actual one best. In this work, the first order DPA with correla-
tion coefficients (CPA) is used.

High order differential power analysis (HO-DPA) refers to ad-
vanced DPA that might use different data inputs and offsets in the measured
traces. For example, if we know that the secret value is used twice in the
algorithm, we can mount second order DPA, because there are two offsets in
which the value will match our power consumption model for the value[3]. In
case of AES-128 algorithm, the second order DPA could exploit the fact that
the secret key is used for the key expansion and later for encryption.

1.1.1.1 Power consumption models

The measurement on its own is not enough to obtain any information in most
cases and we need a power consumption model. It is a hypothetical model
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1.1. Side-channel attacks

for all possible values we create to make assumptions about the power con-
sumption during the algorithm execution. If our chosen power consumption
model fits the real consumption, it enables us to test all possible key values
and determine which one was probably used, by correlation.

The model must contain the value that we are guessing, that’s why we
examine the attacked design and pick operations that process the secret value
directly e.g. in case of AES-128, we might choose AddRoundKey(0) and Sub-
Bytes from the first round, because the very first AddRoundKey uses the
original secret key while SubBytes from the first round depends only on the
original key and plaintext.

When the attacked operation is chosen, we must select the model of con-
sumption. We expect that when certain value is processed on the device, the
power consumption depends on it and changes accordingly. The following
models were used in the analysis.

Hamming weight sums number of 1s in the binary representation of the
processed value. We collect traces for encryption of 100 plaintext inputs and
we want to get the first byte of the secret key. The resulting model will be a
100 x 256 matrix with hypothetical consumption for all 100 inputs in case of
256 possible values of the byte. Each element of the matrix contains number
of 1s in the result of AddRoundKey(0) and SubBytes operation.

Hamming distance uses number of bits in which two values differ -
Hamming weight of the exclusive OR of the two values. For our AES-128
algorithm, we can compare the value after AddRoundKey(0) with value after
SubBytes.

1.1.1.2 DPA with correlation coefficients

Differential power analysis becomes a powerful tool when combined with cor-
relation coefficients. Most dependencies in power traces that could otherwise
go unnoticed can be revealed by correlation coefficients.

For two sets of data e.g. measured power traces and our consumption
model, correlation shows how much values from one set change when values
from the other one change. Correlation does not imply causation and the two
sets might actually be independent, it only claims that statistically the two
sets appear to be dependent. The degree of correlation can be measured by
correlation coefficients.

The correlation coefficient used for correlation of the two datasets in this



1. ANALYSIS

work is the most common Pearson’s correlation coefficient. 1t is defined as:

X,Y) E[(X - ux)(Y —
pxy = corr(X,Y) = cov(X,Y) _ E( px)(Y — py)]
IXoY oxXOy

where X,Y are random variables with standard deviations ox,ocy and ex-
pected values px, uy. This correlation coefficient is particularly effective for
revealing linear relationship between the two variables. The value of Pearson’s
correlation coefficient lies in the interval [—1; +1], the border cases imply per-
fect direct linear relationship (+1) or perfect inverse linear relationship (—1).
If the value equals 0, there is no linear dependency between the two variables.
For the sake of correlating the power consumption model and real power con-
sumption measurements, we want to find the byte from the 256 possible values
with the highest correlation coefficient output.

The measured traces are represented by matrix of m rows where each row
represents one measurement for different plaintext input. Number of columns
d is defined by the time interval and the precision of measurement depends on
the configuration of our oscilloscope. The time interval should be the smallest
possible or the computation will take considerably more time (there are 256
more correlations to compute for every extra column).

When we correlate columns in matrices:

too to1 0 tonr hoo hoi -+ hooss

tio ti1 - tigr hio hig -+ hizss
traces = . . . ;. model = . . ] . ,

tpo tp1 - tpnr hpo hpy -+ hposs

we obtain the matrix of dimensions 256 x nr:

€0,0 Co,1 o Conr
i C1,0 C1,1 T Cl,nr
correlations = . ) )
C2550 C255,1 " C255nr

The row containing the highest correlation coefficient is our most probable
key byte guess and the column marks the time offset when the value leaked.
Depending on the executed operations, the same value might leak multiple
times, then we would see that multiple high coefficients appear in the same
row.



1.2. AES

1.2 AES

The encryption algorithm used in this implementation is AES-128. The ori-
ginal name of the underlying algorithm of AES is Rijndael and it was designed
by Joan Daemen and Vincent Rijmen. In 2001, Rijndael became the new Ad-
vanced Encryption Standard to be used for encryption of electronic data.
Rijndael and other 14 designs entered the contest for DES successor held by
National Institute of Standards and Technology(NIST) and underwent extens-
ive testing and cryptanalysis. Rijndael was voted the best one of the finalists
because of its resistance to cryptanalysis and efficiency.

The side-channel attacks among other cryptanalysis approaches were also
considered for all finalist designs and their vulnerabilities and possible coun-
termeasures were discussed by Daemen and other experts in [4] and later in
[5]. Daemen suggested complicating the exploitation of correlations through
desynchronisation of the executed operations as software countermeasure and
power consumption randomization by dedicated hardware module. The soft-
ware countermeasures proposed by Daemen will be described later in section
.5

Description of winning AES Rijndael design as presented in [0] is given in
this section and the important fundamental operations are mentioned. Funda-
mental operations used by encryption design determine possible vulnerabilities
that can be exploited.

1.2.1 AES-128 overview

AES is a symmetric block cipher with block size of 128 bits and supported key
lengths of 128, 192 and 256 bits. The original Rijndael cipher could use three
different block sizes - 128, 192 and 256 bits, but this feature was not included
in AES. The key length determines only the length of the expanded key and
total number of rounds, while the rest of the algorithm stays the same for all
lengths.

The input data is divided into 16 byte long blocks sometimes referred to
as state or data path.

Every block is processed separately and according to chosen encryption
mode, it might use initialization vector. For the sake of this work, we only de-
scribe Electronic Codebook (ECB) encryption mode with a single block which
does not need any initialization vector and each data output is independent of
the previous ones, because the smart card implementation only encrypts one
block of data.
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Ao | Ay | Ag | App
Ay | As | Ag | Az
Ag | Ag | Ao | Aws
Az | A7 | A | A

1.3 Mathematical structures and operations

AES design uses relatively small number of fundamental operations. If Rcon,
Rijndael field multiplications and S-box are stored in memory and used as
look-up tables, the algorithm does not contain any arithmetical operations.

1.3.1 Rcon
Operation rcon(i) is defined as:
reon(i) =z tmod 2% 42t + 23 41

The exponentiation is performed in Rijndael finite field GF(2%) with irre-
ducible polynomial 28 + z# + 23 + 2 + 1.

The Rijndael finite field consists of 256 elements and the derived rcon(i)
values for ¢ € [1;256] can be stored in memory as a look-up table to speed-up
the execution. rcon is essential to computation of the S-box. The multiples
of Rijndael field elements are used in MizColumns part of the algorithm.

1.3.2 S-box

S-box is a non-linear transformation defined as:

10001111 0 1
11000111 71 1
11100011 o 0
11110001 T3 0

* +
11111000 T4 0
01111100 5 1
00111110 T4 1
00011111 T7 0

Following example demonstrates computation of an S-box value without
direct usage of matrix multiplication in more human readable format:

8



1.4. Design

1.3.2.0.1 S-box computation example We will get the S-box output
for 0x53.

1. Find the multiplicative inverse of 0x53 in Rijndael finite field using Ex-
tended Euclidean Algorithm.

(0x53)~! = 0xCA
2. The matrix multiplication can be described by the following pseudocode:

= 1100 1010 // s <- 0xCA
1100 1010 // x <— 0xCA

®on
|

for i in 0..3

s =8 << 1 // shift 1 bit left
X = X XOr s

end

return x // Ox8E

3. Xor with 0x63:
0x8E ¢ 0x63 = OxED

Now we have the output:
sbox(0x53) = OxED

The non-linearity of S-box is a good trait for the security of the algorithm,
but it introduces extra steps and memory usage for masking countermeasures.
Any countermeasure that modifies the processed value must convert the S-box
look-up table or algorithm.

1.4 Design

AFES-128 uses 128 bit long key and takes 10 rounds to process one block of
input data. Each round consists of the same sequence of basic operations -
SubBytes, ShiftRows, MizColumns and AddRoundKey. The last round skips
MizColumns step. AddRoundKey uses different round key in every round.
The round keys are derived from the original 128-bit key during KeySchedule
- either all of them before we start to encrypt or one at a time before its
respective round.
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1.4.0.1 KeySchedule

The secret key used in both encryption and decryption is expanded either one
at a time before its respective round or all at once. Every 32bit word of an
expanded key depends on words from the previous round key. The complete
key schedule is illustrated in [1.1}

There are 10 rounds in AES-128, but round keys contain one extra key,
the original one, that’s mixed with plaintext before the first round. It’s named
RoundKey 0.

Roundkey 0/

original Key: Word][0] Word[1] Word[2] Word[3]
fan Key
Schedule
\/ Core
A\
T 5
V
N
\V
Roundkey 1: ’ Word[4] | Word[5] | Word[6] | Word[7] ‘
Roundkey 2-8:
v v v v
Roundkey 9: ’ Word([36] I Word[37] I Word[38] I Word[39] ‘
fan Key
Schedule
\/ Core
A\
T 5
V
N
\V

Roundkey 10: Word[40] Word[41] | Word[42] | Word[43]

Figure 1.1: AES-128 key schedule

The last word of each round key is modified by key schedule core before
it’s exclusive ORed with the first word and used as the first word of the new
round key.

1.4.0.1.1 Key schedule core The picture[l.2]describes the key schedule
core in detail. The input 32bit word is rotated by 8 bits left, S-box trans-
formation is applied on each byte and first byte is exclusive ORed with rcon.

10



1.4. Design

The argument of rcon is derived from the round number. For the first round
i = 2, for next rounds ¢ is always incremented by 1.

byte[0] byte[1] byte[2] byte[3]
byte[3] byte[0] byte[1] byte[2]
Y Y Y Y
S-box S-box S-box S-box
\
rcon(i) }C
v A4 A4 A4
out[0] out[1] ou[2] out[3]

Figure 1.2: Key schedule core

1.4.0.1.2 Used operations and possible vulnerabilities The key sched-
ule routine uses logical operations exclusive OR of two 32bit words and logical
left shift of 32 bit word by one byte. If both S-box and rcon are implemen-
ted as an algorithm instead of in-memory look-up table, it executes several
arithmetical operations in Rijndael finite field - exponentiation with expo-
nents from 1 to 10 in rcon and computation of multiplicative inverse, logical
left shift of 8 bits by one bit and addition in S-Box.

The original key value might be exposed during the expansion or it could
help in execution of high order DPA, but the secret key never changes be-
cause it serves as its identifier, therefore the full expanded key can be stored
in memory and does not need to be computed every time.

1.4.0.2 AddRoundKey

AddRoundKey(i) mixes in the round key for the i-th round using exclusive
OR logical operation. The first execution of AddRoundKey(0) before the first
round is the most vulnerable one. If no countermeasures are applied the whole
original 128-bit key is exposed through the power consumption of the logical
operation or even by loading its bytes into cleared registers.

11
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1.4.0.3 SubBytes

Depending on the implementation, SubBytes executes the whole S-box ele-
ment computation or uses the look-up S-box table stored in the memory. The
first round SubBytes is the easiest one to attack because the processed value
contains only plaintext and the key we are trying to guess.

The following two operations ShiftRows and MixColumns are both part
of the diffusion layer. The diffusion layer does not add any additional secret
information.

1.4.0.4 ShiftRows

The rows in the ShiftRows refer to the rows of the table representation. The
first row is not shifted, the second one is shifted one position left, the third
one is shifted two positions left and the last one three positions left.

By | By | Bs | Bio
Bs | By | Biz | By
Bio | Bia | B2 | Bs
Bis | Bs | By | Bn

1.4.0.5 MixColumns

Unlike ShiftRows the MizColumns operation applies the same transformation
on all columns. The first column of the new block is computed as:

Co 02 03 01 01 By
Ci| (01 02 03 01 . Bs
Cs 01 01 02 03 Big
Cs 03 01 01 02 Bis

The same rule applies on the other three columns. The multiplication is
performed in Rijndael finite field and again we can choose between the al-
gorithm and multiplication look-up tables.

The MizColumns is skipped in the last round of AES.

1.5 Countermeasures

The side-channel attacks are not very frequent compared to other cyberse-
curity threats such as malware infections of user computers, but because of

12



1.5. Countermeasures

the nature of affected devices they pose greater threat if actually executed.
The manufacturers of hardware keys, encryption modules, access cards or pay
cards cannot afford to ignore this threat.

The countermeasures can be hardware or software. Hardware counter-
measures tend to be more powerful, but the device must be already designed
with them and they usually introduce extra cost. Software countermeasures
are employed to heighten the security on devices that lack the hardware ones
or they can complement the hardware ones. Most described countermeasures
are mentioned in [3].

1.5.1 Hiding

Hiding countermeasures attempt to break the link between the processed value
or executed operation and the power consumption. There are multiple ways
how to do that and most of those countermeasures are implemented in hard-
ware. Hiding countermeasures do not change the processed values and they
are insensitive to the algorithm that’s executed on the device.

There are two approaches on how to hide the dependency in power con-
sumption — by randomizing the consumption or making it constant for all op-
erations and all values. Both approaches will cause that the attacker cannot
obtain any exploitable information from his measurement of the consumption.
The perfectly random or constant consumption cannot be achieved, but the
attempts to create the best hiding design can be divided in two categories
according to the dimension they use - time or amplitude.

1.5.1.1 Time

Differential power analysis exploits the fact that the encryption algorithm
operations are executed in the same order and therefore the wanted values
appear at the same offset in the measured traces. That can be avoided by
inserting dummy operations at random points of the execution or by shuffling
the order of the algorithm’s operations.

1.5.1.1.1 Shuffling If there are operations whose execution can be inter-
changed without changing the final output, they can be shuffled. AES-128
always processes one block of data which means there are always 16 bytes
to be exclusive ORed with 16 bytes of the expanded key in AddRoundKey
and 16 bytes to be substituted using S-box in SubBytes. The order of those
two operations cannot be changed, but the order in which the 16 bytes are
processed can be randomized each time.

13



1. ANALYSIS

1.5.1.1.2 Dummy operations We can break the alignment of the power
traces with randomly inserted dummy operations. The total number of dummy
operations must stay the same for each program execution to prevent the tim-
ing attacks.

1.5.1.2 Amplitude

The power consumption can only be exploited if the attacker can measure it.
Hiding the consumption in amplitude means that we manipulate the signal-to-
noise ratio by either increasing the noise or reducing the signal, therefore the
attacker cannot measure the consumption correctly or there is no exploitable
information in it.

1.5.1.2.1 Noise The noise can be added by switching on an unrelated
noise generator built in the device. This generator can do some useful oper-
ations or it can create random signal. The major disadvantage of dedicated
noise generator is the extra power consumption that might be undesirable.

Another way to increase the noise is by executing several operations in
parallel. For this purpose either multiple processor cores can be used or inde-
pendent operations of the algorithm can be executed. In case of AES-128, if
we had 16-bit wide ALU, we could compute two bytes from the block at once
and the attacker would be forced to model the consumption for 26 values of
the two bytes instead of usual 28 for one byte.

1.5.1.2.2 Signal One of the possible countermeasures proposed by Dae-
men in [4] was designing the device with special invertor that would write or
read the inverse of the value that’s actually written or read at the same time.
This would cause the power consumption of the read and write operation al-
ways appear constant for all values.

Designing the device in the way that would draw the same amount for every
operation is not trivial. The attempts are made either to build the cells that
would have constant power consumption or to filter the actual consumption.

1.5.2 Masking

While hiding attempts to hide the link between the processed value and the
consumption, masking modifies the processed value itself. Masking can be
implemented in software much easier than hiding and the masking scheme im-
plementation can be simply changed later if new type of side-channel attack
occurs without the need to change the hardware.

14



1.5. Countermeasures

The main goal of masking schemes is to combine the intermediate value
with mask to change its characteristic power trace. The value is still leaking,
but it’s not the real value and if we choose the mask carefully, the attacker
cannot analyze the measured traces easily.

Up =VOM

The mask m is generated on the device and it should be different for each
execution of the algorithm. The operation o can be an arbitrary operation,
but we have to know its inversion to obtain the original intermediate value
in the end or we have to compute a compensation mask along with the al-
gorithm execution. Depending on the type of the operation, we have to adjust
the executed algorithm. For example if the algorithm contains any non-linear
operations, the usage of the mask must be taken into account so that the final
output does not change.

1.5.2.1 Arithmetic vs. Boolean operation

The type of operation used for the masking is usually determined by the
executed algorithm. When applying a mask we must make sure the operations
that process the transformed value are linear:

f@)+ f(y) = flz+y)
(vpom)+ (vpom) = (v +v2)om

Otherwise the mask would interfere with the calculation and we would not
be able to obtain the desired output after unmasking. If we use more masks
and the algorithm mixes them at some point, we either have to make sure the
mixing cannot remove the masks or we have to choose the masks in a way
that will make such interfering impossible.

Algorithms using arithmetic operations - modular addition and multiplica-
tion, mix in the mask with arithmetic operation and algorithms using Boolean
operations - exclusive OR, use the exclusive OR for masking. There are al-
gorithms that combine both types of operations and they require switching
between the masking types which introduces extra resources and is not very
efficient.

If we use more masks, we might need to compute a compensation mask
that will be applied on the masked output to obtain the actual output.

1.5.2.1.1 Arithmetic The most common arithmetic operations used in
encryption algorithms are modular addition and multiplication:

15



1. ANALYSIS

Um =0+ m (modn); vy, =v-m (modn)

The biggest disadvantage of arithmetic masking with multiplicative masks
is the inability to mask the zero element because of the nature of the operation:

Vm: m-0=0-m=0 < zero element for the -operation

This property would leave all zero values unmasked and could be exploited
by the attacker.

1.5.2.1.2 Boolean The most popular Boolean operation in encryption is
exclusive OR and it is also used for masking;:

Um =0V D m

We will refer to the masking scheme used in our AES implementation as
Boolean, but because the Boolean operation & is the same as arithmetic + in
the Rijndael finite field, it is actually both arithmetic and Boolean.

1.5.2.2 Masking methods

1.5.2.2.1 Blinding Blinding refers to the masking technique used in asym-
metric cryptography e.g. RSA. The arithmetic mask can be applied by addit-
ive or multiplicative operation. In case of RSA, it is used either as message
blinding or exponent blinding. Message blinding masks the message with m®
by multiplication where m is the random mask and e is the public key. Ex-
ponent blinding takes advantage of adding the mask m - ¢(n) that does not
change the output because v*™ (") = y¢(mod n).

Using the masking like this is possible because of the arithmetic nature of
the algorithm.

1.5.2.2.2 Secret sharing The intermediate value v is divided into num-
ber of shares and only when the attacker knows all the shares he can get the
secret value itself. Secret sharing with two shares (m, vy,) is achieved by apply-
ing a mask on the intermediate value v,, = v @& m. Dividing the intermediate
value into more shares increases the security.

Dividing the secret into more shares can even protect it against HO-DPA
— n masks can prevent up to n-th order DPA according to [7].
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1.5. Countermeasures

1.5.2.3 Mask generation and usage

1.5.2.3.1 Random The mask can be generated randomly and then we
have to ensure that the generator we used to obtain the random numbers is
not predictable. If the device has any peripheries or for example temperature
or voltage on components can be measured, we can use the measurements as
a source of entropy and use true random number generator. However mask
generation should not take too long, otherwise, especially in masking schemes
that use multiple random masks, the efficiency of the encryption will drop
significantly.

Random masks in AES implementation mean an extra S-box look-up table
conversion for each used mask, because non-linear S-box operation must fit
the rule:

S-box(v @& m) = S-box(v) & m

S-box conversion itself is very straightforward, but all 256 values have to
be read, modified and written each time it is converted — with the used smart
card AVR ATMegal63’s 8-bit instruction set the S-box conversion means 2
clock cycles for each read and write operation or 3 clock cycles if the look-up
table is stored in the program memory. The exclusive OR operation costs
another extra clock cycle and the loop counter decrement adds another cycle.
Converting one S-box look-up table takes at least 256 * (2 + 1+ 1) = 1024
extra clock cycles. The cost of the S-box conversions for random masks led to
introduction of fixed masks and low entropy masking schemes (LEMS) with
precomputed converted S-boxes stored in memory.

1.5.2.3.2 Fixed The encryption algorithms must balance the security and
performance and randomly generated masks degrade the performance with
repeated conversions of non-linear operations. Precomputing all possible S-
boxes in AES would be possible but for one byte mask, we would need
256 masks x 256 S-box elements = 64KB of memory. For smart cards, 64KB
in extra look-up tables is not the best option because of memory constraints.

The memory and time constraints caused the researchers to look for other
viable options and design lightweight countermeasures against selection of
the most important and powerful attacks. In low entropy masking scheme,
we don’t use the full randomness and instead we select a subset of masks
with good properties, e.g. they don’t cancel out each other during execution.
The small set of possible masks can then be rotated randomly before being
applied. This method called Rotating Sbox Masking (RSM) was implemented
and tested in DPA contest v4 for AES-256 implementation on ATMegal63
smart card[§].
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CHAPTER 2

Design

When designing any countermeasures to be used on such a small device as
smart card, the memory and other constraints must be taken into account,
therefore this chapter introduces the platform of implementation - Atmel
ATMegal63 smart card with customized Simple Operating System for Smart-

card Education (SOSSE).
This chapter also describes the countermeasures designed for protection.

2.1 ATMegal63 smart card

The smart card used for DPA and countermeasures design is AVR ATMegal63
with 24C256 EEPROM. ATMegal63 is not a state of the art technology, but it
is very popular for practical DPA demonstration and software countermeasure
design, because it lacks any hardware protection from DPA, does not produce
much additional noise unrelated to executed instructions and it’s also used in
DPA contest v4 [9].

ATMegal63 described in [I0] is an AVR RISC micro-controller manufac-
tured by Atmel Corporation. The micro-controller is equipped with ALU that
can process 8-bit values, Data bus that’s able to transport 8-bit values, in-
struction set with 130 instructions and RISC architecture described in Figure

21

2.1.1 Data memory

On Harvard architecture, the Program memory and Data address Space is not
shared.

General purpose registers
ATMegal63 uses 32x 8-bit general purpose registers named rO-r31. Those
registers constitute the Register File which is the range $0000-$001F in Data
Address Space and they can be accessed in only one clock cycle.
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Figure 2.1: ATMegal63 RISC architecture

The six highest registers r26-r31 can be used as three 16-bit indirect
address register pointers and one of these extended registers can be used as
address pointer for look-up tables in Flash Program memory.

I/0 registers
The I/O registers $00-$3F can be accessed from $0020-$005F in Data Address
Space. 1/O Space consists of Status register SREG at $3F ($5F), Stack Pointer
High and Low parts at $3E($5E) and $3D($5D) and other I/O registers.

The Stack Pointer points to the first available storing location and it must
be set to point above $60. It should be set by the programmer at the be-
ginning of his main routine and it usually points to RAMEND that marks the
last available address of Data Space. Stack is descending, as Stack Pointer
is decremented by 1 or 2 when 8-bit or 16-bit value is pushed onto it and
incremented by 1 or 2 when it’s popped.

It’s important to limit the depth of nested subroutines calls on AVR micro-
controllers and match all PUSH and POP instructions, because stack underflow
will rewrite the I/O registers under $60, keep Stack Pointer High and Low
parts and Status register in tact(according to AVRStudio Simulator) and con-
tinue to rewrite all registers until it exhausts the Data Address Space. If we
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2.1. ATMegal63 smart card

use too much internal SRAM memory in our code for example for storing look-
up tables and there is not enough space left for stack to grow, they will be
rewritten by stack underflow and the program will not return correct output.

Internal SRAM
Internal SRAM is the main data memory and it starts at $0060 in Data
Address Space. Read and write operations are fast in this memory, but it’s
volatile and its size is limited. Internal SRAM contains the variables of the
executed program and it shares the space with stack as mentioned before.
We cannot use the internal SRAM as storage for multiple look-up tables and
other large data structures - either the program will not run at all if we use
more memory than we have or if we fit in but don’t leave enough space for
the stack, its behavior will not be defined as the resulting stack underflow will
rewrite our variables.

2.1.2 Flash Program memory

The programmable flash memory is where the program instructions are stored.
It’s considerably bigger and it’s non-volatile. If we need to store any large
data structures such as S-box look-up tables, we have to store them in Flash
Program memory. However, storing the data in program memory will cause
that all read and write operations on such data will take one extra clock cycle.

The Program memory is executed with a two stage pipeline - one instruc-
tion is executed while the next one is pre-fetched. This enables the execution
of instructions in every clock cycle. The Program memory is divided in two
sections - the Boot program section and the Application Program section.
Those two sections have separate Boot Lock bits and user can select the level
of protection for these sections. The combination of the bits will determine
the size of the Boot program section and it can be set up to 1024 bytes.

The main difference between the two sections is the ability to execute
Store Program Memory(SPM) instruction as it can rewrite any address in the
Program memory but can only be executed from the Boot program section.
The Boot program section can use the SPM instruction to update both the
Boot and the Application sections but they can only be modified page by
page (128 bytes). This leads us to the realization that the Program memory
can be used for storing additional data that do not fit into SRAM, but those
data must be read-only and must be saved in memory before the program
execution with the rest of the Flash Program memory.

In practice, if we want to place any converted masked S-box look-up tables
into the Program memory, we have to precompute them, mark them with the
PROGMEM macro in C source code and program the AVR Flash memory with
them. In case we generate only one mask randomly, the look-up table will fit
into the SRAM and can be recomputed on every execution of the algorithm,
but if we wanted to use two or more masks scheme, we would quickly use up
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the space in SRAM (each S-box takes 256 bytes from the total 1024 bytes of
SRAM).

For randomly generated multiple masks, we would have to precompute
and save all 256 possible S-box look-up tables which would cost us 64KB in
total and would exceed even the Flash memory limit of ATMegal63. On the
other hand, if we only use a fixed subset of all possible masks, we can fit their
look-up tables in the Flash memory. DPA contest v4 [9] chose this path and
used only subset of 16 masks with desired characteristics.

2.1.3 EEPROM

Additional Electronically Erasable Read-Only Memory [I1] is usually used for
device identification data that do not change frequently. Storing or loading
any data from EEPROM during the algorithm execution would take too much
time - EEPROM is only accessed via data bus unlike SRAM or Flash memory.
Despite being read-only, it can also be rewritten by the program instructions,
but its latency is too high and the size not sufficient for storing big amounts
of data.

2.1.4 Instruction set

Instruction set described completely in [I2] contains 130 instructions, most
of them can be executed in a single clock cycle. One instruction is usually
executed and the next one pre-fetched.

ATMegal63 is designed as RISC load/store architecture where the instruc-
tions are strictly divided in two categories - memory access (load value from
Data space into register or store register content into Data space) and ALU
operations. ALU operations are performed only on registers, never on register
and immediate value.

Total Execution Time of one ALU operation consists of Register Operands
Fetch, ALU Operation Execute and Result Write Back phases described in [10]
and illustrated by Figure

T T2

{
—

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

Figure 2.2: Single Cycle ALU Operation
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2.1. ATMegal63 smart card

If we measure the power consumption of such operation, we can see not
only the consumption of the ALU Operation Execute phase but also change
in register value (number of flipped 1s) during Result Write Back. This fact
leads us to realization that writing the software countermeasures in C language
is not sufficient and we must implement the critical parts in AVR assembly
language.

2.1.4.1 Data transfer instructions

Load and store instruction in Data space take 2 clock cycles and load from
Program memory with LPM instruction takes 3 clock cycles. Loading any data
from Program memory will cost an extra cycle and storing is not used in
practice. In our implementation, the Program memory is used for the original
static S-box look-up table and Rijndael field multiplication look-up tables.

Data space load and store instructions can use either direct or indirect
addressing. Direct addressing loads or stores one byte from or to given address
in Data space, indirect addressing loads or stores one byte from or to address
in Data space pointed by X-,Y- or Z-pointer register.

2.1.4.1.1 Load Loading value from SRAM or Flash memory will expose
the Hamming weight of the value if the destination register Rd was cleared
before the load operation. In order to prevent this leakage, we can precharge
the register with random value before we load the secret value.

2.1.4.1.2 Store Storing the value from register to Data space can either
leak the Hamming weight of the secret value in case the memory was cleared
before storing (this would happen if we initialized the variable with 0x00 and
copied the secret value into it) or it can leak the Hamming distance of the last
stored value and the new one for example the difference between the plaintext
value before adding the round key and after.

2.1.4.2 Logical instructions

AES encryption algorithm with look-up tables does not use many logical oper-
ations. The most frequently used instruction on ATMegal63 platform is EOR.
Instruction EOR executes an exclusive OR on registers Rd, Rr and stores the
result into RA[12]:

Rd < Rd D Rr

There are multiple ways to exploit the EOR instruction. The easiest one
is using the Hamming distance of the two operands that leaks during the
instruction execution:

HD(Rd,Rr) = HW(Rd @ Rr)

23



2. DESIGN

This leakage can be prevented if only one of the operands is known to
the attacker and he cannot use plaintext and key combination in his power
consumption model. If either the plaintext value or key value are masked with
random masks, the Hamming weight of their combination is not visible in the
traces and the power consumption of their exclusive OR is also masked.

Another way to exploit the EOR instruction is by targeting the change of
the destination register. The power consumption depends on number of 1s
that need to be flipped during the write back phase. The difference between
old and new value of register Rd is Rr, which can be exploited for DPA if we
used the operation with the secret key loaded in Rr:

Rd « 1001 0101  plaintext 0x95
Rr < 1010 1010  key OxAA
Rd + 1001 0101 61010 1010
HD(R4,Rd @ Rr) = HW (Rr)

The Hamming weight of the secret key can be leaked with wrong operands
order. Only when we write the code in assembly, we can be absolutely sure
that operands will be used in the right order.

2.2 Used countermeasures

2.2.1 Boolean masking

Masking scheme using Boolean operation can be implemented by exclusive
OR-ing a byte of mask to byte of key or plaintext. For linear operations in
AES, this is very straightforward, but for non-linear S-box substitution done
by SubBytes () converted masked S-box look-up tables must be computed.

2.2.1.1 Single mask

The first attempt to mask the power consumption of AddRoundKey(0) and
SubBytes() was made with one pseudorandomly generated mask. This ap-
proach was successful in masking the Hamming weight of the output of
AddRoundKey (0) —SubBytes () result.

After measuring the power consumption and correlating the traces with
the consumption model based on Hamming weight, none of the 16 bytes was
retrieved successfully and it did not even occur in top 3 guesses. Single mask
scheme worked on Hamming weight model, but was not able to mask the Ham-
ming distance of the value before SubBytes() and after because SubBytes ()
performs substitution:

PPkdm— S-box(pdk) ®m
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2.2. Used countermeasures

where p one byte of plaintext, k one byte of secret key and m is random mask.
The difference between the input and output of unmasked S-box is defined as:

(p®k) D (S-box(p®k))
If we use the same mask for input and output, the difference will be:
(p®kPDm) P (S-box(p® k) &m)

and the single mask will not mask the actual difference done by substitution.

2.2.2 Using different registers

This countermeasure was originally designed to mask the Hamming distance
of S-box substitution when it only used single mask masking scheme. The
original value was stored into register r19 and the output of the look-up
operation for this value was stored into register r24.

This countermeasure prevented the leaking of difference between the old
and new value in register, but was later abandoned because it did not solve the
issue with storing the substituted value back into SRAM. Instead, the flaws
of single mask masking scheme were solved with upgrade to better masking
scheme using input and output masks.

2.2.2.1 Input and output masks

Better way to convert the S-box look-up table that does not leak Hamming
distance of input and output, is generating two distinct masks m_in and m_out.
S-box substitution with two different masks is defined as:

PpE k@ min — S-box(p k) ®m_out

Now the difference between the old value and substituted value changed
to:

(p®k@m_in) & (S-box(p & k) & m_out)

and the difference of S-box substitution is mixed with m_in @& m_out. The
input and output masks must be always distinct, otherwise they would re-
move each other from the equation, and they should have different Hamming
distance each time the algorithm is executed.

2.2.3 Random register precharging

The registers we work with should be handled as if they contain the worst
possible value — 0x00. Previous routines might have cleared the registers and
loading any secret value into cleared register equals leaking the Hamming
distance of the value from 0x00 which is Hamming weight of the value itself.
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The Hamming weight itself does not always give away the contained value but
it can help the attacker to narrow down the list of possible candidates.

To prevent the exposition of loaded value, we precharge the destination
register with random value that will be later overwritten. The leaked Ham-
ming distance is different for each algorithm execution.

Similar countermeasure could be applied to SRAM store instruction, but
it would slow down the algorithm even more and the change in SRAM stored
values did not prove to be as visible as change in register stored values.

2.3 Other countermeasures

There are also masking countermeasures for operations ShiftRows and
MixColumns. These operations are more difficult to analyze because they
don’t work with one byte but with combination of 2 to 4 bytes.

The countermeasures described in this section were designed and con-
sidered but were not implemented either due to their expected inefficiency
or because they targeted parts of algorithm that were not analyzed with used
power consumption models.

2.3.1 ShiftRows

This operation’s leakage depends on implementation of the shifts. The
ShiftRows operation rotates one byte of data from its position in row to
left. For the first row, there is no shift, for the second row the values are
rotated one byte left:

1V

Bi | Bs | Bio | Bis

Figure 2.3: Rotate second row

The value stored originally on By position is defined as:

B; = S-box(k; ® p;)

With applied mask it’s:
By = S-box(k; ©®p;) &m
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The neighbour shifted on By position is defined with applied mask as:

Bs = S-box (ks ® P5) ©m

When the value on position B; changes to Bs, the leaked Hamming dis-
tance will be the Hamming weight of their difference:

HD(B;, Bs) = HW (S-box(k; @& p;) ®m® S-box(ks & p;) ©m)

We can clearly see that the masks on B; will interfere with the mask
on Bs. If we wanted to model the power consumption, we would need to
create the hypothetical consumption for the combination of By and Bs, that’s
216 — 65536 possible combinations, but we would be able to guess two keys at
once. Compared to 228 cost of acquiring two bytes with DPA on operations
that only work with one byte, it’s more difficult.

For the third and fourth row, we should implement the rotation as direct
displacement of two values and avoid the two or three consecutive shifts. This
will lower the number of leaking values and also speed up the execution.

If we wanted to mask the ShiftRows operation, we would need four distinct
random masks for the four values of each row mg, my, mo, m3. Because no mixing
between rows happens in this operations, we can use the same set of 4 masks
on all three rows. The first row does not need to be masked, because it’s not
shifted.

With new masks, the difference between By and Bs would be:

HD(Bl, B5) = HW(S-box (k1 ® p;) ©mp @ S-box(ks O ps) @ m1)

and the masks my and m; would stay in tact. Of course, the Hamming distance
of every pair of masks must change with each execution to keep the consump-
tion random.

This countermeasure was not used in practice because our attack targets
the operations that use only one byte of the key.

2.3.2 MixColumns

The last operation left to analyze and protect is MixColumns. This operation
mixes the values from each column. After ShiftRows, the byte C is defined
as:

C1 = S-box (ks © ps) ©&m

and with MixColumns it changes to:

C1 =01%By+02% Bs+03% Bijg+ 01 % Bis+m
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To shorten the definition, we define S-box; = S-box(k; ® p;), where i is
the position of byte in the block.

C1 = 01%(S-boxo®m)+02x%(S-boxsBm)~+ 03 (S-box;o®m)+ 01 (S-box;5Pm)

First, we will show that the operation MixColumns is linear and the mask
can be easily removed from the output:

C1 = S-boxg + 02 * S-boxs + 03 * S-boxjg + S-boxjs + m+ (024 03) *m +m

C1 = S-boxg + 02 * S-boxs + 03 * S-boxjg + S-boxs + 01 *m

The difference between the original C'; and the new one is defined as:

HD(Ch, C;) = HW (S-box5®mPS-boxoD02xS-box5H03*S-box1oPHS-box15®m)

For the creation of power consumption model based on Hamming distance
of value on specific position, we would need a combination of 4 bytes, which
is 232 = 4294967296 possible values for 4 bytes of the key compared to 4 * 28
with operations using only one byte.

The operation MixColumns is divided into multiple multiplication and ad-
dition operations that can be attacked separately to avoid the combination of
multiple bytes.

To mask this operation, we would use similar masking scheme as ShiftRows,
but it would be applied on columns. Each column would have 4 distinct masks
with random Hamming distance of all pairs for each execution.

2.3.3 Dummy cycles

One of briefly considered but abandoned countermeasure was insertion of
dummy cycles. This is a hiding countermeasure described before and it has
few downsides. Firstly, it adds empty operations that do not contribute to
the algorithm execution and secondly, it can be filtered from the traces with
some pre-processing. With pre-processing, we could fix the misaligned traces
because there would be parts that occur in all traces randomly interleaved
with traces of dummy cycles.

Number of inserted dummy cycles and their total duration must be the
same for every execution, otherwise there would be an opportunity for timing
attack because of different lengths. If the operation in dummy cycles is still
the same, it can be easily detected in the traces because of the repeating pat-
tern.
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Inserting dummy cycles as software countermeasure was not used in the
end because it would degrade the performance significantly and can be inval-
idated by pre-processing the traces.
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CHAPTER 3

Implementation

3.1 Programming languages

The implementation uses two languages — the main language of the project is
C and few important functions are written in AVR assembly language. C code
is more readable when we need to get a grasp of the program functionality,
assembly language enables us to define the executed instructions exactly as
we want them.

3.1.1 C and assembly mixing

With avr-gcc, we can either use the inline assembler functionality in C or
combine C and assembly source codes. Combining C and assembly source
codes enables us to write the whole functions in assembly instead of chunks
of codes inside existing C functions. The combination of C and assembly
code in AVRGCC project is described in Atmel Application Note [13]. Our
implementation only uses calling of assembly routines, passing variables to
assembly and sharing global variables.

The C and assembly code is separated into two different files with exten-
sions . c for C source code and .S for assembly code.

3.1.1.1 Using registers

The convention of avr-gcc dictates certain usage of registers that must be
complied with, otherwise the behavior of code generated by avr-gcc from C
can be unpredictable and incorrect. The complete summary of registers usage
is depicted in table

If we want to use some of the ”call-saved” registers in our assembly routine,
we must push them on stack before working with them and then pop the value
back before we return from the routine. avr-gcc will expect that all ”call-
saved” registers and r0 will stay in tact and r1 will contain 0x00. All the
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other registers are available freely to the assembly code, but their content is
not defined.

Register | Description | Usage in assembly

r0 Temporary | save and restore

rl Zero clear before returning
r2-r17

r28 ”call-saved” | save and restore

r29

r18-r27

r30 ”call-used” | use freely

r31

Table 3.1: Register usage in assembly with avr-gcc

As we can see from table assembly code can use two of three extended
registers freely — X-pointer and Z-pointer.

3.1.1.2 Sharing global variables

Only global variables from C can be made visible to assembly as the rest of
them is defined in local context of their functions. The global variable must
not be declared as static because it makes it invisible to other object files.

uint8_t mask; // in .c .extern mask ; in .S

The value of global variable mask can then be loaded into register r25
accessing the passed address indirectly via extended Y-pointer:

.extern mask ; at 16—bit address 0x0061

Ilds r31, mask+1

Ids r30, mask
Id r25, Z

3.1.1.3 Calling assembly routines from C

The routine called from C code has to be declared in C and assembly as
follows:

// in .c ; in .S
extern void subBytes(void); .global subBytes
subBytes:
routine
ret
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In this example, the function does not take any arguments, therefore we
don’t need to acquire them in assembly. If it accepted any arguments, they
would be passed according to avr-gcc convention.

Arguments in fixed argument list are passed in registers r8-r25. This
range differs in Atmel manual [I3] and Atmel Libc reference manual [14],
however it was tested with AVRStudio4 and the full range r8-r25 is used
before storing the arguments to stack.

Fach argument consumes an even number of registers. The unused byte
in case of one byte values is not touched. If argument does not fit into avail-
able registers, it is passed on the stack. Arguments of function with variable
argument list are also passed on stack but in the right to left order. The order
of assignment is from left to right as depicted in Figure [3.1

extern uint16_t function( uint8_t first, uint16_t second, uint32_t third, ..., uint16_t extra );
r8 -r17
r18 third0
r19 third1
r20 third2
r21 third3 <€«—— Stack Pointer
r22 second0 extra0
r23 second1 extral
r24 first0
r25 -
Register File Stack

Figure 3.1: Parameters mapping

The return value must be stored in the same manner — starting from r25
and maintaining the same byte order as passed arguments.

Passing the real key value as function argument would be source of leakage
generated by the compiler, therefore we declare the variable as global and only
use associated pointer.

33



3. IMPLEMENTATION

3.1.2 avr-gcc compilation and optimization issues

The project in C is compiled to AVR platform executable code using avr-gcc
compiler. The optimization level is set to -0s, the fastest and smallest code
which is good for the efficiency and size of the executable but it might lead to
unwanted changes in the implemented countermeasures.

3.1.2.1 Dummy cycles

One of the affected piece of code was the attempted dummy cycles insertion
that was later abandoned because of reasons stated in chapter Design [2.3.3]
The compiler is very effective in detecting the unnecessary pieces of code and
optimizing them away. The following code is not transferred into machine
code because it modifies a single variable(on top of the iterated variable) that
is not used later in the execution:

uintl6_t cycle; ; generated assembly,

uint8_t i; ; optimization

for(i = 0; i < 20; i++){ ; removed everything
cycle++;

}

If we wanted to force the creation of the variable and all code that modifies
it, we would have to declare it as volatile in C code or implement the dummy
cycle as an assembly routine.

3.1.2.2 Operation EOR

Instruction EOR is not negatively affected by optimization, however its trans-
ition into assembly code causes a major leakage described previously in chapter
Design

The order of operands of EOR enables the leakage in the write back phase
of the instruction execution in ALU, because the order of operands in avr-gcc
generated assembly code does not change according to the order in the original
C code but it rather depends on the destination variable in C.

The behavior of avr-gcc can be observed on the following example of
three different C versions of exclusive-OR operation usage that turned out to
have the exact same assembly code in the end:
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uint8_t mask = 0x55; Idi r24, 0x55
std Y+1, r24

uint8_t key = 0x22; Idi r25, 0x22
std Y, r25
key = key "mask; ldd r25, Y ; load key

Ildd r24, Y+1 ; load mask
eor r24, r25
std Y, r24 ; store key

key = mask”key; Idd r25, Y ; load key
ldd r24, Y+1 ; load mask
eor r24, r25
std Y, r24 ; store key

key "= mask; ldd r25, Y ; load key
Ildd r24, Y+1 ; load mask
eor r24, r25
std Y, r24 ; store key

We cannot count on the compiler that it will transfer our designed coun-
termeasure in C into the same countermeasure in assembly.

Furthermore, we can see that value of the key is loaded directly from
memory pointed by Y-pointer into register r25. The difference between the
old value of r25 and the new one in this example equals 0x00 because of the
previous LDI instruction. This instruction is not used in the real implement-
ation because the key is already stored in memory and loaded into register
from there. The content of register that will load the key value is the same
on each algorithm execution unless some random value was loaded into it.

This issue can be solved with random register precharging;:

.extern precharge ; generated by rand() in C
.extern key

Ids r31, precharge+1
Ids r30, precharge
Id r23, Z

Ids r27, key+1

Ids r26, key
Id r23, X

3.2 Random numbers

ATMegal63 itself does not have internal support for generating random num-
bers with true random number generator. In the designed countermeasures,
only pseudo random numbers are used as an output of standard C function
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rand (). Modulo by 256 is applied on the result of rand() to get it into one
byte range mask.

The random number generator in the AVR version of standard library
avr-libc is the standard linear congruential generator defined in [I5]. For
this platform, RAND_MAX is not defined as the highest 231 —1, but only 2'° -1 =
32767.

The initial seed is not set and it defaults to 1. If we disconnect the smart
card and start again, the state of pseudo random generator will reset and start
from the same initial state.

The linear congruential random number generator from the standard lib-
rary is sufficient for this level of DPA, because it does not aim to exploit the
weaknesses of the generator. If we wanted more randomized mask generation,
we would need a source of entropy available to the smart card such as using
built-in real-time clock or the most noisy bits of ADC. Another possible way
to keep the information about number of reboots would be saving an initial
state into EEPROM and incrementing it on every start-up and using it as new
seed. This would guarantee different numbers in each restart, but it would still
be predictable as we wouldn’t have a way to truly randomize the increments.

3.3 Card firmware

The smart card runs a modified version of Simple Operating System for Smart-
card Education (SOSSE)H The card needs to be re-programmed with a pro-
grammer each time we change the executable. Another possible way to update
the implemented code would be writing the Boot program code that would be
able to update the Application program code section, but using the program-
mer is more straightforward.

The modified version of SOSSE is used and further developed for the pur-
poses of the course Security and Hardware (MI-BHW) taught at Faculty of
Information Technology, Czech Technical University in Prague.

3.3.1 APDU

SOSSE mediates the communication between our custom implemented func-
tions and smart card interface. The communication is implemented using
application protocol data unit (APDU). APDU is the communication unit
between smart card and the reader defined in ISO/IEC 7816 [16]. The com-
munication between the card and reader is divided into APDU command and
APDU response.

"http://www.mbsks.franken.de/sosse/html/index.html
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3.3.1.1 Command

The command is sent by reader to card. The length is at least 4 bytes of man-
datory header containing the instruction class, instruction code and and two
bytes of instruction parameters. The command might contain the body with
length of sent data, data itself and expected maximum length of response data.

The class byte CLA says to what extent the command and response com-
ply with the definition in ISO/TEC 7816 and the format of secure messaging
and the logical channel number. Our CLA is defined as 0x80, the first nibble
says that the structure of command and response is used according to the
definition except for features defined by the second nibble. The second nibble
contains the information about secure messaging in two high bits and about
logical channel number in two low bits. Our second nibble indicates that no
secure messaging and no logical channel is used.

The parameters P1 and P2 might indicate offset for writing, but they are
set to 0x00 in our case and not used.

The instruction byte INS indicates which instruction implemented by the
card we request to be used. Our SOSSE supports several instructions and our
implementation of AES-128 is invoked by 0x60 instruction code.

The length of sent data Lc can be defined as 0, 1 or 3 bytes. One byte length
may contain values from 1 to 255. The maximum data length is indicated by
3 bytes, but the first byte must be set to zero for 3 bytes length, therefore
it can only contain values from 1 to 65535. Zero length is only allowed for 0
byte length.

Our Lc is defined as 0x10 for one 16 byte block of plaintext data to be
encrypted by the card.

The length of expected maximum length of response Le is defined by 0, 1,
2 or 3 bytes. Zero byte length defines zero bytes length of expected response.
One byte defines the length in the range 1 to 256 where 0 means 256. Two
bytes is used if the length of sent data was defined in the command. It’s in the
range 1 to 65536 where 0 means 65536. Three bytes is used when the length
of sent data was not defined in the command. It’s in the range 1 to 65535
with the first byte equal to 0.

Our Le is defined as 0x10 for one 16 byte block of encrypted data returned
by the card.
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3.3.1.2 Response

Sent by card to reader, contains the response data and two bytes SW1-SW2
with command processing status.

The command processing status is the return code that indicates either
success 0x9000 or one of possible errors, e.g. 0x6800 for unsupported in-
struction code and 0x6a00 for unexpected length of the command or of the
expected response.

3.3.2 Instruction 0x60

Our instruction 0x60 encrypts 16 bytes of data from input and returns 16 bytes
on output. We expect that the length always matches 16 bytes and ignore any
extra bytes. The encryption function receives allocated input, output and
key buffers and saves the encrypted block into output. The implementation
of the AES-128 algorithm is described in detail in the following section

3.4 AES-128

The implemented AES-128 function encrypts one block of input using an
embedded key. The operations

3.4.1 Key expansion

The key expansion took place at once before the algorithm execution in early
implementation. It was later replaced with constant array containing the
full expanded key, mainly because the key was not expected to change and
the expansion taking place before each algorithm execution slowed down the
measurement significantly.

The results of the simulation show that each round key except the original
one takes 5386 clock cycles to compute and expandKey () in total takes 55410
clock cycles. The function is still present in the C source code, but it’s never
called.

The clock cycles were measured for implementation that used both S-box
and rcon look-up tables stored in the Program memory, not computed each
time.

3.4.2 Key addition

AddRounKey (round nr) function implements the key addition layer of AES.
The original unprotected key addition simply exclusive-ORed the key with the
plaintext byte after byte.

This function was later rewritten in assembly language using the same
interface. The enhanced AddRoundKeyMasked(round nr) loads the random
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mask_in and random precharge value from the global context. The random
values are generated in C code using the Libc rand () function.

Before loading the round key, the destination register is precharged with
the random precharge value. The register is precharged with the same value
every time we load next byte of the key.

Next step is adding the mask_in value. Instruction EOR is executed with key
value in the destination register and mask in the other one. The value leaking
its Hamming distance during the register write back phase is the mask and
not the key. The masked key byte is then exclusive-ORed with corresponding
byte of plaintext.

3.4.3 SubBytes

The function subBytes() uses one byte of block as index into S-box look-up
table stored in the Program memory and substitutes the byte for the value on
that index.

3.4.3.1 S-box masking

S-box masking implementation is done by function maskSbox() that gener-
ates mask_in and mask_out, iterates over the S-box look-up table and fills in
another look-up table with masked S-box. Masked S-box is created as:

// generate input and output masks
do{

mask_in = rand()%256;
} while( mask_in = 0x00 );

do{
mask_out = rand()%256;

} while( mask_out = 0x00 || mask_out = mask_in );

// fill in the masked S—box

uintle_t i = 0;

for( i = 0; i < 256; i++ ){
sbox_masked [i "mask_in] = sbox(i)"mask_out;

}

The mask_in and mask_out are generated so that they are not same and
do not equal zero. If the input mask equaled zero, the key value would not be
masked at all in key addition operation and the output mask would be applied
in S-box substitution.

If the output mask equaled zero, the key addition would be masked, but
the S-box substitution would do mask removal and the value obtained by S-
box substitution would be the unmasked product of key addition and S-box
substitution. This value would be easily detected by the simplest Hamming
weight consumption model and for the rest of the execution, the values would
stay completely unmasked.
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If the input and output masks equaled each other, we would be using
the single mask masking scheme that was abandoned because of its inability
to mask the Hamming distance between key addition and S-box substitution
product.

These constraints might seem unnecessary and paranoid at first, but if
our random generator had the same probability of generating each number
in range 0 to 255, the probability of generating zero would be 1/256 and
probability that the values will be equal would be 1/65536, assuming that two
consecutive values are not dependent. Then for example, if we allowed the zero
value for the output mask, we would obtain unmasked power traces leaking
the Hamming weight of S-box substitution product once in 256 algorithm
executions. If we measured more traces e.g. 5120, there would be a column
in the measured traces that would contain 20 values directly dependent only
on the plaintext and key while the rest of the values would be fairly random.
If no other column achieved so many correlated values randomly, the correct
key could be retrieved - the correlation coefficient would be probably low but
it would be enough to beat the other key values.

3.4.4 ShiftRows

The function ShiftRows rotates each row to left by zero, one, two or three
bytes. The rotation is done using a temporary variable and moving each
byte directly to its new position instead of byte by byte. This speeds up the
execution.

Function ShiftRows is masked with mask_out Boolean mask.

3.4.5 MixColumns

The multiplication by 02 and 03 polynomials from Rijndael finite field in
MixColumns can be implemented either as function or look-up table. Both
possibilities were examined and look-up tables were used for the final imple-
mentation. Although they take 2 x 256 bytes of additional memory, they speed
up the execution.

Function MixColumns is masked with mask_out Boolean mask.

3.4.6 Removing mask

The output mask is removed at the end of the first round before adding the
first extended round key. The full masking scheme of the first round is depicted
by Figure [3.2

3.4.7 Other rounds

The other rounds are not currently masked by the masking scheme. In early
stages of implementation, all rounds were masked to test whether the output
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Figure 3.2: Masking scheme

will be successfully unmasked at the end of the execution. The output mask is
removed at the end of the first round before SubBytes operation. The second
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SubBytes operation is using the original unmasked S-box.

If we wanted to keep the operation masked, we could remove the output
mask and apply the input mask again at the end of each round. This would
enable us to use the same masked S-box for all rounds and avoid computing
10 different masked S-boxes. Or we would precompute 10 different S-boxes
with previous output mask as the new input mask. Another possibility would
be switching between two S-boxes — mask_in — mask_out and mask_out —
mask_in.

In the final implementation, only the first round is masked because the
attack is not targeted at the rest of them.

3.5 Differential power analysis

The differential power analysis was implemented using Wolfram Mathematica.
The measured traces are loaded and examined visually to determine the best
range for DPA.

3.5.1 Range

The chosen range should be wide enough for the key addition and S-box
substitution in the first round to fit in, but the complexity of later correlation
computation should be taken into account. If we miss the part where the
targeted operations occur, we won’t receive any results for the consumption
model. On the other hand, too wide range will take longer to correlate with
the model.

Figure [3.3] shows the plotted power consumption of one execution of al-
gorithm without key expansion and without any masking scheme applied.
Only five rounds fit into the trace with length of 1 million samples and we can
clearly see that one round is represented by approximately 200000 samples.

For DPA on this unprotected implementation the samples from range
[50000, 150000] were used, which match the beginning of the first round, and
the correct values were successfully acquired for all 16 bytes of the secret key
using the Hamming weight model.

Finding the correct range for DPA starts to be more difficult when the
power consumption is masked because the repeating round patterns tend to
dissolve. If we want to be sure that DPA got the relevant samples, we can
try to set all used masks and precharges to 0x00 and find the range on this
unmasked version or measure the offsets of functions in simulator in clock
cycles and map them to samples. Otherwise, we have to expand the range.

3.5.2 Used models

Two models were used for DPA on the unprotected implementation, on the
implementation using single mask and on the implementation using input and
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Figure 3.3: Traces of algorithm without masking and key expansion

output masks. For the attack on the first round only plaintexts were used,
ciphertexts would be more useful when attacking the last round.

3.5.2.1 Hamming weight

The original DPA of unprotected implementation used the Hamming weight
model and the key was acquired one byte at a time. The hypothetical model
is computed as follows:

1. Generate all 256 possible byte values.

2. Apply AddRoundKey (0) on all pairs of keys x plaintexts.

3. Apply SubBytes() on the combinations of keys and plaintexts.
4. Compute the Hamming weight of each combination.

5. Correlate the resulting matrix with selected number of power traces and
selected range.

6. Search for the highest correlation coefficient in the matrix.

7. The row containing the highest coefficient is the winning key value and
the column marks the offset in trace when the value leaked. This can
occur in more offsets because the Hamming weight will leak multiple
times after SubBytes operation.
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This model was successful in retrieving all bytes of the unprotected im-
plementation with 200 measured plaintext inputs and the range of 100000
samples. The highest scoring key value always scored approximately twice as
high correlation coefficient as the second best one.

This model was not successful against single mask masking scheme any-
more because the value leaking the Hamming weight was already masked.

3.5.2.2 Hamming distance

The Hamming distance model makes a slight change to the computation in
step 4:

1. Generate all 256 possible byte values.

2. Apply AddRoundKey (0) on all pairs of keys x plaintexts.

3. Apply SubBytes() on the combinations of keys and plaintexts.
4. Compute the Hamming distance of previous two operations.

5. Correlate the resulting matrix with selected number of power traces and
selected range.

6. Search for the highest correlation coefficient in the matrix.

7. The row containing the highest coefficient is the winning key value and
the column marks the offset in trace when the value leaked.

This model was able to break the implementation masked by the single
mask masking scheme because of its design flaw - unmasked S-box difference.
The acquired winning key bytes also scored significantly higher correlation
coefficients than other bytes, but the difference wasn’t as high as with the
unprotected implementation. Number of input plaintexts and the range pf
samples was not changed.

When applied on input and output mask masking scheme with register
precharging, this model was not able to acquire any key byte correctly and the
highest correlation coefficients of all bytes were similar. Adding few hundreds
of measured traces was not enough to acquire the key. The real secret key did
not even appear in top three guesses. More about key guessing entropy and
implementation evaluation will be described in the chapter Evaluation
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3.5.3 Used tools

For AES and countermeasures implementation, AVRStudio 4.19 (Build 730)@
with WinAVR, 20100110 [}| tools and GCC compiler were used . The hardware
device hosting the implementation was ATMegal63 smart card.

For measurement of power consumption, Agilent DSO-X 3012A oscillo-
scope was used. The input and output were controlled by SC Power Meas-
urement program. The program uses the linear congruential random number
generator from the standard library and the generated plaintexts sequence is
always the same for each session.

For DPA of measured traces, Wolfram Mathematica 10.3.0.(ﬂ was used.
Although it provides many features that make the DPA implementation easier,
it shows great difficulties in processing larger amounts of data. For the purpose
of quick data visualization, gnuplotE] command line utility was used.

®http://www.atmel.com/tools/studioarchive.aspx
3http://winavr.sourceforge.net
Yhttps://www.wolfram.com/mathematica/
Shttp://www.gnuplot.info
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CHAPTER 4

Evaluation

This chapter will sum up the achievements of DPA and the ability of coun-
termeasures to prevent some of them. The performance of protected im-
plementation is also evaluated and compared with the original unprotected
implementation.

4.1 Aspects of evaluation

When assessing the characteristics of the implemented countermeasures, we
care about both their quality and their efficiency.

4.1.1 Quality

One of the most important quality of DPA is the ability to obtain the secret
key. In case the DPA was able to acquire the correct secret key, we care
about the correlation coefficient that the value received according to the power
consumption model.

4.1.1.1 Guessing entropy

If one or more bytes of the secret key were guessed incorrectly, we want to
determine what rank the correct key received. In the latter case, we need to
examine whether the distance of the correct key from the top is consistent
throughout all bytes or its position appears random.

4.1.1.2 Correlation coefficients

We also care about the correlation coefficient of the winning value and its
distance from the other best scoring values. If the distance is greater, e.g.
the first one scored 0.7 and the second one and the rest only scored less than
0.3, we are more confident that the obtained value is correct. If the first one
scored a smaller (< 0.5) correlation coefficient similar to other top guesses,
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it’s more likely that it’s incorrect. This behavior was observed in the executed
DPA consistently.

4.1.2 Efficiency

In encryption, the security and the speed of implementation must be balanced,
especially if working with devices such as smart cards. If the smart card is
supposed to be used as an entry card into building, the encryption algorithm
implemented on it that processes the challenge-response cannot afford to take
too much time.

4.1.2.1 Clock cycles

To compare the changes in speed of implementations with and without ap-
plied countermeasures, the clock cycle counter in AVRStudio simulator for
ATMegal63 was used.

4.2 Results

4.2.1 Quality
4.2.1.1 Unprotected implementation

First, the unprotected implementation was measured and analyzed. For Ham-
ming weight and Hamming distance models targeting the output of SubBytes
operation in the first round or the difference from AdddRoundKey (0), the res-
ults in Table [4.1] were obtained.

HW HD
Number of inputs 300 300
Range 200000 200000
Correct bytes 16/16 16/16

Average coefficient of #1 | 0.837705 | 0.779386
Average coeflicient of #2 | 0.367906 | 0.313598
Average distance #1-#2 | 0.469799 | 0.465789

Table 4.1: Unprotected implementation quality

Both models were successful in modeling the power consumption and ob-
taining all bytes correctly, but Hamming weight got slightly better correlation
coeflicients of the winning key value on average. After examining the correla-
tion matrix highest coefficients, it was discovered that with Hamming weight
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model the matrix contained multiple high scores of the same byte, meaning
that the value leaked multiple times during the execution. This was caused
by the fact that in ideal case, the output of SubBytes appears in the trace
at least four times, twice right after SubBytes and then twice shortly after at
the beginning of ShiftRows. Hamming distance leakage only happens twice
in total during the SubBytes operation - first when updating the value in
register and then when updating the value in SRAM.

4.2.1.2 Single mask

The single mask masking scheme DPA quality assessment can be seen in Table
The results show that with single mask applied, the Hamming weight
model was no longer successful while the Hamming distance model targeting
the AddRoundKey(0) and SubBytes operations was still able to retrieve all
bytes of the key correctly. The guessing entropy of Hamming weight model
was fairly random and the correct key did not place consistently on similar
rank. The small distance in correlation coefficients of Hamming weight model’s
top two guesses shows that DPA was not able to find any correlated sample
and therefore the highest of all the low coefficients won.

HW HD
Number of inputs 300 300
Range 200000 200000
Correct bytes 0/16 16/16
Average coeflicient of #1 0.302922 | 0.640829
Average coefficient of #2 0.289554 | 0.304652
Average distance #1-#2 0.0133679 | 0.336177
Maximal guessing entropy 244 1
Minimal guessing entropy 9 1
Average guessing entropy 130.812 1

Table 4.2: Single mask masking scheme quality

Originally, two versions of single mask masking scheme existed — one with
S-box output register write back masked by changing the destination registers
in assembly and the one used for this evaluation.

4.2.1.3 Input and output mask

When evaluating the input and output mask masking scheme, neither Ham-
ming weight nor Hamming distance models were successful in obtaining any
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bytes of the secret key and the correct key never appeared on similar position.

Detailed results can be seen in Table [£.3]

HW HD
Number of inputs 300 300
Range 200000 200000
Correct bytes 0/16 0/16
Average coefficient of #1 0.301019 0.298037
Average coefficient of #2 0.292493 0.291232
Average distance #1-#2 0.00852519 | 0.00680513
Maximal guessing entropy 251 230
Minimal guessing entropy 10 44
Average guessing entropy 121.375 138.188

Table 4.3: Input and output masks masking scheme quality

Number of inputs was chosen to be the same as with the previous unpro-
tected and single mask implementations to illustrate the difference in DPA
difficulty.

4.2.2 Efficiency

The number of clock cycles was first measured for unprotected implementa-
tion with all functions in C. The original implementation was compared with
clock cycles measured for the implementation with input and output mask
masking scheme applied. The single mask masking scheme was not added
into measured implementations in Table because it uses almost the same
functions as the input and output mask with the only exception of drawing
only one random mask. This difference was addressed by adding clock cycle
measurement for operation rand () %256 to show its total cycles contribution.
From the measured clock cycles, it’s clearly visible that the masked imple-

mentation runs longer. However, there are functions that were made faster by
rewriting them in assembly - AddRoundKeyMasked (nr) and SubBytesMasked ().
The first one is made faster by omitting longer offset computing in avr-gcc
generated code. avr-gcc compiled code tend to use more general arithmetic
operations for computation of offsets so that the emitted code works in all
cases. We can afford to use more simplistic and straightforward instructions,
e.g. we know that we will always read and write 16 bytes in the routine there-
fore we can use immediate value for the loop and read consecutive bytes from
the memory in one loop.
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The most clock cycles added by the masked implementation are from the
maskSbox () function. This function iterates over 256 values and executes
exclusive-OR twice for each value. Computation of masked S-boxes, as was
discussed in previous chapters, introduces significant memory requirements
and degrades performance, therefore we have to limit the number of computed
masked S-boxes.

Unprotected | 1&0O masks
encrypt () 77,661 103,491
rand () %256 not implemented 1,691
maskSbox () not implemented 9,060
AddRoundKey (nr) 1,063
AddRoundKeyMasked (nr)® | not implemented 229
SubBytes () 357
SubBytesMasked ()6 not implemented 228
ShiftRows () 4,875
MixColumns () 1,293
unmaskText () not implemented 417

Table 4.4: Measured clock cycles

Possible improvements to implementation that would alleviate the added
operations cost could be achieved by rewriting AddRoundKey (nr) in assembly
or switching to fixed set of masks. However, rewriting the functions in as-
sembly makes them incompatible with other platforms while C code can usu-
ally be compiled into machine code without change.

5The function is implemented as an assembly routine, not C function.
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Conclusion

Summary

In this thesis, we’ve described the power side-channel attack, differential power
analysis methods and possible ways to prevent the exploitation of AES-128
encryption implementation on real-life hardware devices. The most discussed
countermeasures against DPA belonged among masking countermeasures and
this work dealt exclusively with the software ones.

A simple masking scheme using single mask was designed, evaluated and
deemed insufficient after introducing better consumption model based on
Hamming distance instead of Hamming weight. This masking scheme’s flaws
were described and a better one superseded it — input and output mask. The
new masking scheme was successful in protecting the secret key values against
first order DPA of operations in the first round of algorithm execution.

Meeting our expectations, the masking scheme in C language was not se-
cure, because we’ve lacked the control of how the values are actually handled
and which instructions are executed by the processor. Compiler-emitted code
did not keep our intended countermeasures intact and it was necessary to
rewrite the most critical functions as AVR assembly routines.

Our final masking scheme is complemented by the suitable language choice.
Other countermeasures were considered, some of them such as random register
precharging were added to the implementation while others were abandoned
because of their inefficiency.

The unprotected, single mask and input and output mask implementations
were evaluated in the last chapter. The DPA analyzed the first round of the
algorithm and focused on the operations AddRoundKey (0) and SubBytes using
both Hamming weight and Hamming distance model of power consumption.
The inevitable performance degradation was illustrated by measured clock
cycles for the final masked implementation. Random number generation and
S-box conversion turned out to add the extra costs the most. On the other
hand, some functions could be optimized by rewriting them completely in
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assembly and giving up on portability.

What the implementation platform lacks the most is a strong random num-
ber generator. ATMegal63 offers very limited options for generating random
numbers and creating a true random generator on this platform is out of scope
of this thesis.

Future work

The design and implementation of the final masking scheme could be fur-
ther improved. Firstly, it could cover ShiftRows and MixColumns operations,
secondly, it also could be extended to more rounds. The possible application
on more rounds was discussed, but because the original attack targeted only
first round and the two specific operations, the countermeasures focused on
them as well.

Extending the masking scheme on all rounds would not degrade the per-
formance as much as the S-box conversion computation, but it was not deemed
necessary because of the DPA used.

The final implementation divides the secret into two shares, which means
it’s effective against the first order DPA. There is definitely space for DPA of
higher orders that can demonstrate the high order DPA abilities.

The tool used for DPA implementation was Wolfram Mathematica, but
when processing large data inputs, it had difficulties with own
memory-management and exporting visualizations. The large data inputs pro-
cessing could be automatized to enable traces larger than 1GB to be correlated
without running out of memory. An interesting option would be processing
the measured 1MB traces, knowing which time offsets are useful for the DPA,
and importing the pre-processed traces into Mathematica instead.
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APPENDIX A

Acronyms

AES Advanced Encryption Standard

APDU Application Protocol Data Unit

CMOS Complementary Metal-Oxide—Semiconductor
DPA Differential Power Analysis

ECB Electronic Codebook

EEPROM Electrically Erasable Programmable Read-Only Memory
GCC GNU Compiler Collection

LEMS Low Entropy Masking Scheme

RISC Reduced Instruction Set Computing

RSM Rotating Sbox Masking

SCA Side-Channel Attack

SOSSE Simple Operating System for Smartcard Education
SPA Simple Power Analysis

SRAM Static Random Access Memory
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APPENDIX B

Contents of enclosed DVD

readme.tXb..oovviin .. the file with DVD contents description
B vttt e e the directory with hex files
AP ettt e the directory with DPA examples
ot o PP the directory of source codes
tfirmware ..................................... card firmware sources

thesisS...oovvvvn.... the directory of IXTEX source codes of the thesis
L= v PO the thesis text directory

Lthesis.pdf ........................... the thesis text in PDF format
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