CzECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

Title: Using Gaussian processes as surrogate models for the CMA evolution strategy
Student: Bc. Nikita Orekhov

Supervisor: doc. Ing. RNDr. Martin Holeria, CSc.

Study Programme: Informatics

Study Branch: Knowledge Engineering

Department: Department of Theoretical Computer Science

Validity: Until the end of winter semester 2017/18

Instructions

Black-box optimization is increasingly important in industrial applications. The state-of-the-art approach to
continuous black-box optimization is the covariance matrix adaptation evolution strategy (CMA-ES). The
disadvantage of evolutionary optimization, frequent evaluations of the objective, is alleviated using
surrogate models.

Get familiar with evolutionary black-box optimization, in particular with CMA-ES [3].

Get familiar with the multimodal benchmark functions described in [5] and incorporate their Matlab
implementation into the BBOB framework employed in [1].

Get familiar with the methods for using Gaussian processes as surrogate models for CMA-ES proposed in
[1,2,4,6-9].

Implement the methods proposed in [2,4,9] using Matlab.

Compare the methods proposed in [1,2,4,6-9] on the benchmark functions described in [5] within the BBOB
framework, using authors’ implementations of the methods proposed in [1,6-8] and your own
implementations of the approaches proposed in [2,4,9].

References

[1] L. Bajer et al. Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless
Testbed. In Companion of GECCO 2015.[2] D.Buche et al. Accelerating evolutionary algorithms with Gaussian process
fitness function models. IEEE Transactions on Systems, Man, and Cybernetics, Part C 35 (2005).[3] N. Hansen. The
CMA Evolution Strategy: A Tutorial. INRIA, 2011.[4] J.W. Kruisselbrink et al. A robust optimization approach using
Kriging metamodels for robustness approximation in the CMA-ES. In CEC 2010.[5] X. Li et al. Benchmark Functions
for CEC’2013 Special Session ...[6] I. Loshchilov et al. Intensive Surrogate Model Exploitation in Self-adaptive
Surrogate-assisted CMA-ES (saACM-ES). In GECCO 2013.[7] J. Lu, et al. An Evolution Strategy Assisted ... In
GECCO 2013.[8] H. Mohammadi et al. EGO and CMA-ES Complementary for Global Optimization. In Learning and
Intelligent Optimization, 2015.[9] H. Ulmer et al. Evolution strategies assisted In CEC 2003.

L.S.

doc. Ing. Jan Janousek, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague February 25, 2016

CzECH TECHNICAL UNIVERSITY IN PRAGUE

FAcuLTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE

Master’s thesis

Using Gaussian processes as surrogate
models for the CMA evolution strategy

Be. Nikita Orekhov

Supervisor: doc. Ing. RNDr. Martin Holena, CSc.

10th May 2016

Acknowledgements

First and foremost I thank my supervisor doc. Ing. RNDr. Martin Holena,
CSc. for his great support and guidance during the entire period of writing
this thesis. Further, I would like to express my appreciation to Ing. Lukas
Bajer for his technical assistance and for many valuable suggestions.

Also, access to computing and storage facilities owned by parties and
projects contributing to the National Grid Infrastructure MetaCentrum, pro-
vided under the programme "Projects of Large Research, Development, and
Innovations Infrastructures" (CESNET LM2015042), is greatly appreciated.

I am especially grateful to Be. Ksenia Shakurova for providing an inex-
haustible source of confidence without which this work would not be possible.
Finally, I thank my parents for the exclusive opportunity to learn so many
things about this world.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 10th May 2016

Czech Technical University in Prague

Faculty of Information Technology

(© 2016 Nikita Orekhov. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of In-
formation Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Orekhov, Nikita. Using Gaussian processes as surrogate models for the CMA
evolution strategy. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2016.

Abstrakt

Tato prace zkoumé efektivitu metod zalozenych na Gaussovskych procesech
v oblasti spojité black-box optimalizace. Tyto metody slouZi jako nahradni
modely pro CMA evolucni strategii. Prace popisuje nékolik nejmodernéjsich
metod a pak srovnava jejich vykon na souboru funkei z CEC’2013.

Klicova slova black-box optimalizace, CMA-ES, Gaussovské procesy, nahradni
modely, srovnavani.

Abstract

This thesis focuses on performance gain investigation for Gaussian process-
based surrogate modeling techniques in the field of continuous black-box op-
timization by means of the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES). We outline several state-of-the-art techniques and experimen-
tally evaluate them within the optimization framework using recently proposed
CEC’2013 benchmarking testbed.

Keywords black-box optimization, CMA-ES, Gaussian processes, surrogate
models, benchmarking.

X

Contents

Introductionl
Mofivafionl o v o 1
Contextl 2
[L Background review| 3
[1.1 Continuous black-box optimization| 3
[1.2 Evolution strategies and CMA-ES| 5
1.3 CMA-ES restart strategies|. 16
[1.4 Surrogate-assisted optimization| 17
[L.5 Gaussian processes|o 19
[1.6 Self-adaptive Surrogate-assisted CMA-ES| 26
2 GP-based surrogates in the context of CMA-ES| 29
[2.1 Gaussian Process Optimization Procedurel 29
............................. 31
[2.3 Robustness Approximationin GP|. 33
2.4 GP ensemblingl 0. 35
EE_EGO-CMAIl o 37
2.6 Surrogate CMA-ES|. 39
|13 Performance analysis| 41
[3.1 Existing framework|. oL 41
B2 CECfunctiond, 45
[3.3 Implementation notes| L. 50
3.4 Experimental setup|. L 51
3.5 Results assessment] oL 52
Conclusionl 63
B1b orap 65

X1

|A Acronyms|

IB_Contents of enclosed CDI

xii

69

71

List of Figures

. I ; ;
Estimation of the C,Sg U covariance matrix on frinear(x) = — 22:1 ;.

Dotted lines indicate that the strategy should move towards the up-

per right corner.|o 9

Three different evolution paths constructed of six steps from dit- |

ferent optimization situations. The lengths of particular steps are |

comparable. The lengths of evolution paths are different in order |

to underline the dynamic step size adjustment strategy,| 13

A GP model approximation of the sinus function f(x) = sin(x) |

using a training set of 8 data points.| 21

Representation of the POI concept applied to the Gaussian process |

approximation model. The gray area on the graph demonstrates the |

probability that the objective value sampled at point ™ is smaller |

than fmind - - - - . . . oL 33

Two different scenarios of the performance representation drawn for |

several algorithm runs.| o o000 45

Al Al

| BEOR] L Ao T . : 3D]] l

plot represents the function landscape of 2 imput variables. Com- |

position functions 1 — 4 are shown under the C'F' abbreviation.| . . 50

Convergence curves (median, first and third quartiles) computed |

from the particular algorithm runs for all feasible combinations ot |

CEC functions f4 — f1o and dimensions n = {2,3,5,10,20}.| 56

Convergence curves (median, first and third quartiles) computed |

from the particular algorithm runs for all feasible combinations ot |

CEC functions f11, fi2 and dimensions n ={2,3,5,10,20}.| 57

Scaled logarithms of the empirical medians (Ar){‘ed) depending on

FEs/D. The graphs show the benchmark results on fi1, fi12, f6 and

f7 averaged over all teasible dimensions.| 59

xiii

3.6 Scaled logarithms of the empirical medians (Al}led) depending on
FEs/D. The graphs show the benchmark results achieved by aver-
aging all tunctions defined in 5D, 10D, 2D and 3D.| 60

3.7 Scaled logarithms of the empirical medians (Arfr‘ed) depending on
FEs/D. The results are summarized over all CEC functions at all

Xiv

List of Tables

[3.1 Estimated global optima values for 5 simple CEC functions.| 47

XV

Introduction

Motivation

Evolutionary computation has been successfully applied to a wide spectrum
of engineering problems. The randomized exploration guided by a set of can-
didate solutions (population) was found resistant against most optimization
obstacles such as noise or multi-modality. On the other hand, the universality
of the evolutionary computation methods allows us to adapt to almost any
optimization problem, e.g. high- or low-dimensional, with or without knowing
prior information.

All these features make evolutionary algorithms (EAs) efficient for black-
box optimization, where we do not know any specific analytic form of the
objective function. This functions can be thought of to be wrapped in a black
box, thereby having unknown properties. For this cases an evaluation of the
objective function remains the only way to optimize the function.

While talking about the black-box optimization it is often implied that
optimization of some objective function can be costly, i.e. the evaluation of the
function takes a significant amount of time and /or money. Usually, it comes to
functions which should be evaluated physically during some experiment: gas
turbine profiles optimization [I] or protein folding stability optimization [2].

But despite its attractiveness, the evolutionary computation has one dis-
tinctive feature: it takes quite much evaluations to explore the function, which
can be infeasible if there is an upper bound to the evaluations amount. This
can be avoided by the introduction of so-called surrogate models, which serve
as a prototype, providing regression-based predictions of the expensive objec-
tive function values. ESs here use the surrogate model as a cheap replacement
to the real function occasionally correcting it as the new evaluations arrive.
Thereby, the main target of modern surrogate-assisted strategies is to fit the
learning process into a given evaluation budget preserving comparable solution
quality.

INTRODUCTION

Context

Today, one of the most promising methods in the field of black-box evolutionary
optimization is the Covariance Matrix Adaptation evolution strategy (CMA-
ES), which was initially introduced in [3]. But as any other ES, CMA-ES
may suffer from insufficient convergence speed where the budget of objective
function evaluations is limited.

Past works on surrogate-assisted optimization showed that utilizing mod-
els based on Gaussian Processes (GP) can lead to a significant acceleration,
compared to the other models, e.g. random forests[4]. The other advantage of
such approaches is the fact that GPs are more stable to over-fitting and don’t
have many hyper-parameters that should be additionally optimized|[5].

It is not surprising that recently there were introduced quite a lot of tech-
niques based on Gaussian processes. Hence, the main goal of this thesis is to
compare several surrogate-modeling methods together in the same benchmark-
ing framework by utilizing a set of test functions from the CEC’2013 Special
Session for multi-modal function optimization [6].

The thesis is divided into three chapters. Chapter 1 introduces the con-
cept of the Covariance Matrix Adaptation ES and Gaussian processes in the
context of black-box optimization. Chapter 2 describes several existing sur-
rogate models which have been chosen for benchmarking. Finally, chapter 3
describes the benchmarking procedure and testbed functions which were cho-
sen for experiments, and discuss the obtained results followed by conclusion
about a performance of the chosen methods.

CHAPTER 1

Background review

This part describes basic concepts which became de-facto standard in the field
of continuous evolutionary optimization. The chapter also defines the most
important objectives which must be taken into account before we can delve
into the topic.

1.1 Continuous black-box optimization

During a continuous optimization process our objective is to optimize (mini-
mize or maximize) function:

f:R"—R.

The function is called black-bor when there is no any assumption about
it’s analytical form. The only things that are typically known about these
functions are dimensionality and variable boundaries. The objective of contin-
uous black-box optimization is thus to find a solution & € R™ which has f(x)
value as good as possible. From this point we consider that the optimization
problem refers to a minimization problem, until stated otherwise.

When assessing optimizer’s performance on some benchmark function it
comes reasonable to use the number of function evaluations as the only cost
criterion and therefore keep this metric as low as possible. Evolution algo-
rithms, however, may slow down the optimization process because of inability
to handle to handle some property of the function to be optimized. This
usually results in a larger amount of objective function evaluations. Here we
describe some of these properties (see [7] for details).

1. BACKGROUND REVIEW

Multi-modality
A local minimum of an unconstrained function f is a real

vector &; € R™ such that there is a neighborhood ¢ with a
center in x; and there is no point @ € R"™ with objective
value smaller than a;:

Ve € e, f(x) > f(x)).

A global minimum is thus a minimum z, on the whole uni-
verse:

Ve € R", f(x) > f(xg).

A function f called multi-modal if it has more than one
(local) optimum. So in this way the optimization process
does not guarantee that the found optimum matches to a
global one. Multi-modal functions have thus much more
complicated landscapes than unimodal functions.

Exponential scaling
This problem is also known in machine learning as the curse

of dimensionality. This phenomena is related to the fact
that the amount of time or memory scales exponentially
with the growing problem dimensionality. It means that for
highly-dimensional problems (>> 100), a lot of optimization
techniques, especially based on full search space coverage,
will become unusable due to extreme time/memory de-
mands.

Separability
Separability is a feature meaning that the n-dimensional

optimum can be obtained by performing n independent
one-dimensional optimizations along each coordinate.
Hence, the curse of dimensionality has no influence on
separable functions because the volume of the search
space will grow linearly with n. Non-separable functions
finding the optimum by one-dimensional searches, and
partially-separable functions allows such searches only for
a certain dimension subset. It is quite obvious that most
state-of-the-art approaches exploit the separability only if
it was detected, i.e. such techniques must employ some
mechanism to identify separate problems.

1.2. Evolution strategies and CMA-ES

Noisiness _
Function f is called noisy if its value is perturbed by some

random variable £, called noise. It can be imagined in two
ways: multiplicative noise: f(z) = f(x)(1+) or additive
noise: f(z) = f(x) + & Optimization of such functions
seems more problematic because the information obtained
from evaluation of the noisy function is less representative
than in the noseless case.

Ill-conditioning
Briefly speaking, the term ill-conditioning refers to a

situation where different variables, or even directions in a
search space show a completely different sensitivity on their
contribution to the resulting function value. In other words,
we call a function ill-conditioned if for points with similar
objective values the minimal displacement that provides a
certain value improvement differs by orders of magnitude.
Ill-conditioned problems often lead to premature conver-
gence.

Dynamic
A function f(x,t) is called dynamic if the obtained objective
value is dependent on the time-step ¢. It means that such
functions are changing in time: it may be a simple shift or
rotation or a complete function replacement. For the sake of
simplicity we do not cover dynamic functions concentrating
only on stationary ones.

Multi-objectiveness
A problem is called multi-objective if there are m objectives

fi(x), i € 1...m, which should be optimized simultane-
ously. Same as dynamic, multi-objective functions will not
be covered by this thesis.

Expensiveness
A function f is called expensive if each evaluation of the

candidate solution x costs certain price in terms of chosen
metric (time or money). The optimization of such functions
becomes quite complicated because the optimizer is being
constrained by the relatively small evaluation budget.

1.2 Evolution strategies and CMA-ES

Evolution strategy is a randomized optimization technique which was initially
introduced by Ingo Rechenberg and Hans-Paul Schwefel in the 1960-s and

1. BACKGROUND REVIEW

1970-s [7] was based on ideas of biological adaptation and evolution. Modern
ES uses primarily selection and mutation as search operators. The latter is
usually performed by sampling a normally-distributed random variable to each
candidate solution. This can be explained in the way that having defined all
variances and covariances, normal distribution has the largest entropy among
all distributions in R™ [§].

The evolution strategies can be divided into several categories according
to its vision of generational change. For example, in a (u + A) strategy there
will be p best out of total p + A individuals selected as a parents for the next
generation and in a ((u, A) - ES) strategy only p < A offsprings are passed to
the next iteration, i.e. parents never survive [7].

The covariance matrix adaptation evolution strategy (CMA-ES) has very
quickly become a standard in the field of evolution strategies generally and
in the continuous black-box optimization in particular. So this section aims
to describe several basic concepts of the CMA-ES algorithm and to provide
reasons which stand for its impressive performance on continuous optimization
benchmarks. For the full description refer to [8] and [9].

1.2.1 Candidate sampling

As in the classic ES, the CMA strategy makes up a new generation of the
candidate solutions by sampling from a multivariate normal distribution. This
can be expressed by the following equation:

2D o m<g>+g(gw<0,c<g>) fork=1,...,7, (1.1)

where
A > 2 is a population size.

wégﬂ) € R" is the k-th offspring in g + 1-th generation.
Symbol ~ denotes the equality between the probability distributions.

m e R” is the mean of the search distribution at g-th iteration
(generation).

o9 € R, is a step-size (standard deviation) at g-th generation.

CU) € R, ,, covariance matrix at generation g.

To express the whole iteration sequence it remains to define how to update
mtD), g6+t and €YY having all candidate solutions sampled.

6

1.2. Evolution strategies and CMA-ES

1.2.2 Selection and recombination

Mean of the new search distribution within a (&, A)-CMA-ES can be calculated
as a weighted average of i best candidate solutions:

m+D szw (g+1) ’ (1.2)

while

Zwi = 1, wy > wy > ... > wy >0, (1.3)

where

@ < A is the parents amount, i.e. the population size for the
ongoing generation.

w; € Ry is the weight coefficients for recombination. For all
w; =1/p equationcalculates the mean of the i selected points.
ac()\ 1 denotes i-th best solution point out of a:(g+1), .. .,:BE\Q—H).
The index 4 : A describes the ¢-th ranked individual and implicates
the inequality f(a:lgjl)) < f(wy (9+1)< ... < f(;c)\g;rl)), where f
is the objective function.

Equation |I.2|implements a selection mechanism called truncation selection. In
addition, a metric called variance effective selection mass will be widely used
in the following sections. This can be calculated with the following equation:

(Il) el 1 2)
’“‘eff‘<||wuz> =l = T (Z) o0

From definition of w; in the equation[I.3|we can conclude that 1 < peg < p and
tef = ¢ when the recombination weights was chosen identically, i.e. w; =1/u
for all i = 1...pu. Usually, pesr = A/4 indicates a reasonable setting of w;. A
typical setting of w; could be proportional to u — i+ 1, and p =~ \/2.

1.2.3 Covariance matrix adaptation

This subsection describes the way how to use the covariance matrix inside
CMA-ES. This involves the method of the initial covariance matrix estimation
as well as adaptation techniques called rank-one-update and rank-p-update that
are suitable for different population sizes. The adaptation procedure itself
can be also enhanced by utilizing dependencies between accomplished steps

7

1. BACKGROUND REVIEW

as described in [[.2.3:4] In the end, all of those strategies will be combined
together in order to obtain a universally-behaving algorithm.

1.2.3.1 Covariance matrix estimation

For the sake of simplicity here we will set up a step size o) = 1. This
insignificant assumption will shift the expression only by a constant factor.
The covariance matrix can be obtained by the following equation:

A

clot) % 3 (mggm _ m(g>) (wggm _ m(g))T' (1.5)
=1

The matrix C/(\QH) is thus an unbiased estimator of C9) (ie. we have that
E<C§g+1)| C(g)> = CU). Note that in this equation C/(\QH) estimates vari-

ances of all sampled points ($§g+1) —m(9). In addition, to obtain "better"
covariance matrix we can employ a wetghted average mechanism similar to one

described in[I.2.2] Thereby, the equation [I.5] now looks like:

Cctl =3 w (mgzg;l) - m(g)> (wz('?qxﬂ) - m(g))T' (1.6)
1=1

The main difference here is that the matrix C’,Sg+1) estimates only selected

(successful) steps while matrix C/(\g ™) estimates variances for all steps before

selection. In other words sampling from a C;(Lg U will tend to reproduce can-
didates based on successful steps which can potentially improve the estimation
quality.

Figure [I.T] demonstrates results of the covariance matrix estimation by the
use of equation [1.6] in the context of minimizing linear function for A = 150,
pu =50 and w; = 1/pu. First picture visualizes a sampling of A = 150 N(0,I)
points. The second one: p = 50 best points interconnected with the mean
value. And the last picture denotes search distribution estimated for the next
generation. Note that the estimation via C,SgH) increases expected variance
in a gradient direction.

1.2.3.2 Rank-p-update

According to [§], to achieve a fast local search (e.g. for competitive performance
on fsphere), the population size must be small. But then in becomes impossible
to estimate a reliable covariance matrix from [I.6] As a workaround to this,
the information from previous generations can be used as well. For example,
after some number of generations, a covariance matrix C can be estimated

8

1.2. Evolution strategies and CMA-ES

,,

Figure 1.1: Estimation of the C/(ﬂH) covariance matrix on fineqr(z) =
— 2?21 x;. Dotted lines indicate that the strategy should move towards the
upper right corner.

from the estimated covariance matrices over all previous iterations [§]. This
can be expressed as:

1 1 4
cluth = — N~ _—_cl+), 1.7
g + 1 ; O'(i)z 14 ()

Such method can already be treated as a reliable estimator for the selected
steps. Obviously, all generations in equation have the same weights. To
provide recent generations with extra weight, a technique called exponential
smoothing was introduced. Assuming C© to be the identity matrix and a
learning rate 0 < ¢, < 1, CY+1) becomes

a 1 nT
= (1-6)CY + e,) wiyl Ny (1.9)
=1

where

¢y is the learning rate for the covariance matrix update. For

¢, = 1 no prior information is adopted and C9+1) = #C’flg“).
g
For ¢, = 0 no learning takes place and CYt) = I. Here

¢y ~ min(1, per/n?) is a reasonable choice.

57 = (o5 - i) jo

This method of the covariance matrix update is called rank-p-update, as the
sum of the products is of rank min(u,n). The sum can even consist of a single
term if p = 1.

The choice of ¢, is important. Values close to zero result in a slow learning
tempo. Otherwise, too large values fail because of covariance matrix degen-

9

1. BACKGROUND REVIEW

eration. Fortunately, an empirical approximation of ¢, =~ pet/n? was found
independent to the function to be optimized.

In the end, supposing a small population size A and fixed evaluation budget
(amount of objective function evaluations) will result in a larger number of
generations and, usually, in a better adaptation of the covariance matrix.

1.2.3.3 Rank-one-update

The approach of the initial covariance matrix estimation was described in
(1.2.3.1]). Now it’s time to review the technique where the covariance matrix is
being updated subsequently as of generations change. This section introduces
the method called rank-one-update, which updates the covariance matrix using
a single selected step for the latest generation.

Consider a method to sample from normal distribution with zero mean.
Then, let vectors yi,...,yg, € R", go > n and let N'(0,1) denote independent
normally distributed random numbers. In such case we get that

90
=1

represents a normally distributed random vector with zero mean and covari-
ance matrix Y 9%, y; yZT . Such vector is obtained by adding line distributions
N(0,1)y;. The singular distribution A'(0, 1)y; ~ N (0, y; y;') generates vector
y; with maximum likelihood among all normal distributions with zero mean.

Now using the conjunction of and slightly shortened with =1
as the only selected step, we obtain a rank-one-update rule with the following
equation:

COH) = (1 — ¢,)C9 4 ¢yTtDyle+D T (1.11)

where

Yo+l — (mg{ff) _ m(g)) /o).

Note that in the right summand is of rank 1 and the maximum likelihood
term for y@t1) to the covariance matrix C9. Thereby the probability of
obtaining the right y(9+1) in next generation increases.

1.2.3.4 Cumulation strategy

Embedding an expression yloth) = (mg‘?;l) - m(9)> / o9 into the covariance

matrix update we discard an information about a sign of the selected steps
because yy! equals to —y — yT. To reuse the sign information a special
technique called cumulation needs to be described [3].

Consider a sequence of successive steps over a number of generations which
is called ewvolution path. This can be expressed as a sum of the consecutive steps

10

1.2. Evolution strategies and CMA-ES

which in its turn referred to as cumulation. The example below illustrates an
evolution path of the distribution mean m constructed by the summation of
three steps:

m(g‘i’l)*m(g) m(g)fm@_l) m(gfl)fm(g_m
+ +

Dc =

a’(g) 0'(9*1) 0’(9*2)

Applying an exponential smoothing from and generalizing the evolution
path for the generation (g + 1) with given pco = 0 we obtain

mt) — m9

pgngl) = (1 - Cc) gg) + Cc(2 - Cc)ueff (9) ’ (1'12>
o\9
where
p£9) € R" is the evolution path at generation g.

¢c 1s the learning rate. According to [§], 1/n < ¢. < 1/y/nis a
reasonable setting.

The factor /c.(2 — ¢.)pesr Was chosen as a normalization constant in order to
achieve

Pt ~ N (0,0) (1.13)
if
mgﬂ) —mW

Vi=1,...,u, pY ~ ~N(0,C). (1.14)

In the end we rewrite rank-one-update of the covariance matrix using the

evolution path p&" U as follows:

COH) = (1 ¢)C@ + ¢;plotVp+)” (1.15)

Setting the ¢; ~ 2/n? was empirically validated and acknowledged as reason-
able in the most cases. Using the evolution path for the update of C' shows
significant performance improvement for small pe.g because of exploiting the
sign information between consecutive steps.

11

1. BACKGROUND REVIEW

1.2.3.5 The final procedure

Finally, the covariance matrix update technique is built by combining and
L 1ol

CU) = (1—¢;—¢,)C@ +¢; plot) g+ T +e, Zw" Y9ty (9“) , (1.16)
I

rank-one update

rank-y update
where
c1 ~2/n?.
¢, ~ min(pe/n?, 1 — c1).

57 = (557) ot

Note that [I.16|can be converted to[L.9)if ¢; = 0 and to[I.15if ¢, = 0. Thereby,
the joint equation combines advantages of both and On the one
hand, the information within single generation is utilized by the rank-u-update,
which is useful for larger populations. On the other hand, the information of
correlations between generations is exploited by using the evolution path for
the rank-one update. This is important if the population size is small.

1.2.4 Step-size adaptation

The covariance matrix adaptation method described in does not handle
step size (i.e. the scale of the distribution) explicitly. The update process
increases (implicitly) step size only in one direction for each selected step
and decreases this step only by discarding old information over exponential
smoothing, 1 — ¢; — ¢,. This ensures that the adaptation of o is very slow "as
is" and additional technique must be introduced.

To better control the step size it is rationally to incorporate already known
to us evolution path technique. The step size adjustment is applied inde-
pendently of the covariance matrix update and therefore is mentioned in the
literature as cumulative step length adaptation (CSA).

The step size is being modified according to the information provided by
the evolution path length. The concept of this method is well explained in
figure If the evolution path is quite short, i.e. the particular steps cancel
each other, it suggests us to decrease the current step size o. Such situation
is shown on the left image. Otherwise, whenever the evolution path is very
long, as shown on the right picture, the same distance can be covered in fewer
amount of prolongated steps. As a consequence to this, the step size should
be increased. Note that figure [1.2] also depicts a situation where particular

12

1.2. Evolution strategies and CMA-ES

e

Figure 1.2: Three different evolution paths constructed of six steps from dif-
ferent optimization situations. The lengths of particular steps are comparable.
The lengths of evolution paths are different in order to underline the dynamic
step size adjustment strategy.

steps are uncorrelated (picture in the middle). This indicates that the step
size length is being chosen adequately.

In order to keep the step size at a reasonable length we need to know
whether and how much it should be changed. To achieve this we compare
the current step size with its expected length under random selection. Under
random selection particular steps are performed independently on their effec-
tiveness and are therefore uncorrelated. So, if the evolution path is happened
to be loner than expected, the step size needs to be increased. Analogically, o
will be decreased if the evolution path is shorter than expected.

Unlike the equation [1.12] a conjugate evolution path must be built here,
because the expected length of the evolution path p. would be dependent on

its direction (especially in case of ill-conditioned objective functions). The
(0)

conjugate evolution path thus (having defined ps’ = 0) reads as follows
_1 (gt _ (9
gg-&-l) = (1 - Ca)pz(rg) + V Co(2 - Co):u'eff C(g) ? %7 (117)
o
where

pf,g) € R" is the conjugate evolution path at iteration g.

co <1 is the learning rate.

V/€o(2 — ¢5) peft is @ normalization constant (as defined in|1.2.3.4)).

C9 2 % go) plo)! B@?" where €W = BODW?*BOT is an

eigendecomposition of C), where B9 is an orthonormal basis
of eigenvectors, and the diagonal elements of the diagonal matrix
D) are square roots of the corresponding positive eigenvalues [S].

13

1. BACKGROUND REVIEW

1
2

For C9) =1, we have C9)~2 =T which converts|1.17|to [1.12| The transfor-

mation C(g)_% re-scales the step m9t) —m(9) within the coordinate system
given by B9, Note that the eigendecomposition applies a rescaling so that
all axes becomes equally sized without being rotated by the overall transfor-
mation which preserves the directions of consecutive steps [§]. All the above

makes the expected length of pf,gH) independent to its direction and for any

sequence of realized covariance matrices pgg N (0,1).

In order to update step size, the actual length of evolution path (||p((,g+1) Ib)

should be compared to its expected length (expectation of the Euclidean norm
of a N'(0,1) distributed random vector) E ||N(0,T)||:

C

In oWt =lnglo) 4 "9
do E[N(0, D)

(Il DI -EIN @D, (118)

where

dy = 1 is a damping parameter which scales the change magni-
tude of Ino(9). Note that this parameter can be used to control
the step size learning speed independently from covariance matrix.

It should be mentioned that for equality of Hp((,g 1) | and E||IN(0,I)] a second
summand of is zero which results in an unchanged (9. Obviously, if the
real evolution path length is bigger than expected: (9 will be increased and

vice versa. Note also that the step size change is unbiased on the log scale,
because E (Ing@*V| ¢9)) = Ing(9),

Assuming that o9 > 0, we can rewrite to
(g+1)
(941 — @ [S [P Il
o = oWexp . (1.19)
(da (EHN(O,DH

1.2.5 Discussion

We widely use CMA-ES as a primary optimization algorithm in several use-
cases (e.g. for performance comparison or as a basement for surrogate mod-
eling) in this thesis. So this subsection aims to sum up several properties
pointing out that this algorithm is a good candidate to lead the optimization
process.

A big advantage of the CMA-ES is the ability to overcome problems typical
for most evolutionary algorithms:

e Inability to properly optimize badly scaled and non-separable problems.
Equation adaptively changes the search distribution in order to han-
dle such functions.

14

1.2. Evolution strategies and CMA-ES

e Need for large population sizes. Using population size can vary
without fear of population degeneration. Small population size leads to
faster convergence rate while huge population helps to escape from local
optima.

e Premature convergence. Presence of adaptive step size control in [I.19]
prevents the algorithm from being stuck at local optima and saves budget
by dynamically adjusting the step size o.

Here we also outline some principles which formed the basis of the algorithm:

Change rates
This term can be referred to as a speed of parameter
change per sampled point. An algorithm has the ability
to independently control this rates for the mean m of the
distribution, the covariance matrix C and the step size o.

Invariance
Invariance should be considered as a fundamental criterion

for any optimization technique. The algorithm invariant to
some property of the search space is characterized by an
identical performance on a set of objective functions defined
by this property. For example, this frees the algorithm
hyper-parameters from being manually tuned according to
some unknown scale of the optimized function.

CMA-ES employs the following sources of invariance:

e Invariance w.r.t. order preserving transformations of
the objective function. CMA-ES in this case relies on
the ranking of the solution candidates.

e Scale invariance if the initial step size 0(®) and mean
m(9 are chosen accordingly.

e Invariance w.r.t. angle preserving transformations (ro-
tation, reflection, translation) if the initial mean value
m(9 is chosen accordingly.

All of the properties described above shows that CMA-ES can be highly com-
petitive on a wide range of benchmark functions. Nevertheless, the algorithm
also suffers from several disadvantages:

15

1. BACKGROUND REVIEW

Computational complexity

This problem is reflected in both time and space complexity.
In order to learn the covariance matrix CMA-ES needs to
store (n? 4+ n)/2 real-valued numbers. The algorithm also
performs an eigendecomposition of the covariance matrix
which time complexity can be roughly expressed as O(n?).
All this limitations may become a challenge even for n
starting from 1000.

Premature convergence
Even with adaptively changing parameters, the CMA-ES
sometimes tends to converge prematurely on multi-modal
functions. But even more interesting the fact that it fails
to find the minimizer on a set of unimodal functions called
HappyCat [10]. The behavior of CMA-ES on such class
is similar to one observed because of exponentially fast
decreasing mutation strength of the step length adaptation.

High FE consumption
The problem can be treated as characteristic of every evo-
lutionary algorithm. This limitation is especially important
when the function to be optimized is costly. Note that this
thesis aims to investigate methods capable of decreasing
such a high consumption of function evaluations.

1.3 CMA-ES restart strategies

The CMA-ES is considered as a local optimizer [§]. So for the case of multi-
modal functions it may end up in a local optima. In order to reduce the
influence of such functions on the resulting solution several CMA-ES restart
strategies were introduced.

1.3.1 IPOP-CMA-ES

In [II] a restart strategy for the CMA-ES called IPOP-CMA-ES with increas-
ing population size was introduced. The resulting algorithm is similar to (u, \)-
CMA-ES and therefore uses standard settings except for the population size.
This parameter is left default for the first run but then becomes repeatedly
increased. The algorithm is interrupted when the stopping criterion is met and
then the independent restart takes place with the population size increased by
the factor of 2. This relation can be described for the given initial population
size Adefault a8 follows:

16

1.4. Surrogate-assisted optimization

A = 2Prestart \ g ot (1.20)

7;restart

where

irestart denotes the current restart number.

1.3.2 BIPOP-CMA-ES

Unlike the previous, a BIPOP-CMA-ES employs two different restart strategies
with increasing and decreasing population size [12]. Each restart strategy takes
into account the remaining budget of the function evaluations and a budget
from the last run (see below). The choice of the strategy is dependent on which
evaluation budget is smaller.

The first scheme is equal to the one described in[I.3.1], where the population
size is being doubled. However, the author introduces several distinctions such
as the increasing scenario can be performed at most nine times (so the largest
population size just not cross the 29 \gefault score). The initial step size oY is
also set to 2 (i.e. 1/5 of the domain width).

The second scheme represents algorithm’s runs with small population size.
It’s update is determined by the equation below:

u[o,1)2
) 1, (1.21)

)\lar

ge

Asmall == LAdefault (7
2>\default

where
U0, 1] denotes uniformly distributed numbers in range [0,1],

AMarge denotes the population size from the last increasing
restart scheme.

In addition, the initial step size ¢© is set to 2 x 10~ 24[0:1],

The restart with small population size is performed only if the remaining
FE budget is smaller than one spent in the last scheme with increasing popu-
lations. The budget of the initial increasing restart is obtained from the first
restart, so the first single run with population size Agefaurt 18 disregarded.

1.4 Surrogate-assisted optimization

In the context of black-box optimization the only source of information comes
from the objective function evaluations. In addition, it often comes that the
object of interest can not be obtained instantly, or can be obtained only limited
number of times. The function representing such problem is called costly while
the problem itself is characterized by available evaluation budget.

17

1. BACKGROUND REVIEW

In order to save the evaluation budget, the real objective function f can be
replaced by its image, an artificial approximation model f . These models also
referred to as the surrogate models or meta-models. Incorporating the surrogate
modeling technique can be used to get a hint where the promising solutions can
be found. But the learning process of such models is still determined by the
real function evaluations. Furthermore, it often comes that the optimization
algorithm (i.e. CMA-ES) "discards" some records about solutions evaluated
some time ago. Of course, there are several reasons to do so, but it is obvious
that in such cases the algorithm loses a part of important information.

There are several major categories of surrogate models based on the incor-
porated regression techniques. Polynomial models, Artificial neural networks,
Support Vector Machines, Gaussian processes and Radial Basis Function-based
methods can be listed among the best known [13]. However, this thesis is aimed
at the investigation of Gaussian processes-based surrogate modeling techniques
only.

In a contrast to pure function optimization, the whole set of evaluated
points (individuals) can be used in order to train a regression model. Never-
theless, every regression model f often takes time to learn the real function
adequately. And still, an approximation can be erroneous and differ from a
real function value. So to prevent the optimizer from being confused by out-
dated or imprecise surrogate model, it still has to be occasionally correctedlﬂ
on the real objective function during the whole optimization process.

1.4.1 Interacting with ESs

A correction of the surrogate model prediction is performed during the core
algorithm’s iterations and on solutions sampled by this algorithm. Generally,
there are two main ways to integrate surrogate model adjustment within ES.
One can proclaim the model as accurate enough and replace the real function
with this model, estimate the global model’s optimum and evaluate in on the
true function. Such method is then called surrogate approach [1]. The other
way consists in a selection of a fraction of individuals at each generation (in
fact, it can be done less frequently). This controlled subset is evaluated on the
real objective function, while the rest is evaluated on its model. This approach
is thus called evolution control (EC) [13].

1.4.1.1 Evolution control

In evolution control a selected set of individuals are evaluated on the true
objective function, the rest on the surrogate model. The usage of the method
grants a certain reduction in cost of the objective function proportional to the

IFor example, the correction of the surrogate model can be done even by re-learning the
model with new solutions added at each iteration.

18

1.5. Gaussian processes

amount of uncontrolled individuals ﬂ [13] suggested to split this category into
the following sub-categories: individual-based and generation-based EC.

By the generation-based it is meant that the entire population is evaluated
on the original objective function only at certain iterations (such iterations
are marked as g,), while for the other (marked as g,,) the surrogate model
evaluation is retained. Note that such kind is especially efficient for paral-
lelization, as the individuals can be evaluated simultaneously. As an example
of generation-based EC application, the following practice can be observed:
the real objective evaluations are performed until the model error drops un-
der a certain threshold. The population then is left uncontrolled for several
iterations [1].

For a population-based strategy the main question stands for: how to select
an appropriate set of candidates to be evaluated on a true objective function.
In case of easy problems some simple control scheme (e.g. randomly selected
individuals or best ones [I]) may be sufficient. However, for multi-modal func-
tions such techniques may get stuck and bypass the whole accelerating poten-
tial. This involves a trade-off between so-called exploration and exploitation
model aspects. This can be explained in a way that the model exploits informa-
tion about the function in order to determine the most promising candidates.
At the same time this function needs to be thoroughly explored to prevent
premature convergence. A technique called probability of improvement can be
a good example of the usage of such trade-off [14].

1.4.1.2 Surrogate approach

In the surrogate approach an optimization algorithm uses the surrogate model
to predict the global optimum. The predicted optimum thus represents an
ideal candidate to be evaluated on the real function. The result is the incor-
porated to the model resulting in an improved approximation ability. This
kind of surrogate model is incorporated e.g. in efficient global optimization
(EGO) [15]. Note that the surrogate approach is also a subject to exploration-
exploitation trade-off. The performance of surrogate approach methods may
overcome evolution controlled ones, especially if the model already possesses
all necessary points to provide accurate estimations near the global optimum.
On the other hand, such approaches is difficult to parallelize as it proceeds
sequentially from one estimated optimum to another.

1.5 Gaussian processes

Gaussian process appears to be quite interesting technique which can be em-
ployed in the context of costly black-box optimization as the objective function

20f course, this assumption is true only if the model approximation is accurate enough.

19

1. BACKGROUND REVIEW

approximation model. The popularity of such models has increased signif-
icantly in the recent years. So in this section there we describe the main
features of the Gaussian process, its pros and cons and, in particular, the GP
based approximation technique, so-called Gaussian process regression. In this
thesis we use the interpretation of the Gaussian processes, as defined in [5].

1.5.1 Description

A Gaussian process is a generalization of the Gaussian probability distri-
bution. But whereas the probability distribution is aimed to describe vari-
ables or vectors, a random process describes functions. For example, writing
X ~ GP(m, k) means that the random function X is distributed over the Gaus-
sian distribution with mean m and covariance function k. Informally, this can
be imagined in a way that the GP represents distribution over all suitable
functions. The properties of such functions is determined by the covariance
function. And, as many covariance functions are possible, the Gaussian process
behavior can be flexibly set up.

The other way is to interpret an objective function as an unknown scalar
function of a point & € R"™ in a n-dimensional space. Then, evaluating of a
such function on a set of solution points Xy = {@1,...,xy} will result in the
set of function values ty = {t1,...,tn}, where Vi = 1,..., N, t; = f(x;).
In other words, an input for the Gaussian processes is a training set D of N
data points with corresponding function values at those points. The training
set thus can be read as follows:

D={(zit;) |i=1,...,n} = (X,t).

An introduction of point z and corresponding function value f(z) can be
treated as a point of certainty to the distribution. In other words, this will
eliminate functions which properties are inconsistent with the structure given
by evaluations. So the problem of learning in the context of Gaussian processes
is a problem of finding a suitable combination of properties for the chosen co-
variance function. Note that the resulting model and its characteristics can be
well interpreted.

1.5.2 Gaussian process regression

Unlike the classification, the main objective of the regression is to provide
predictions for function values (which is of continuous quantities) at a given
point. So the objective of a Gaussian process regression or Kriging is to predict
function value ty1 at a new point & y41.

Gaussian processes use a probabilistic model where the given vector of
function values ty is a sample from a joint multivariate Gaussian distribu-
tion with probability density p(tn|Xn). Analogically, a sought-for vector
tn+1 is assumed to be a sample from the distribution with probability density

20

1.5. Gaussian processes

— target
O data
- - model
‘‘‘‘‘‘ std.deviation

-2
0.8 -0.6 -0.4 -0.2

(=]

0.2 0.4 0.6 0.8

Figure 1.3: A GP model approximation of the sinus function f(z) = sin(z)
using a training set of 8 data points.

p(tn,tn+1 | XN, xn+1). Thus, the dimensionality of the probability density
(N + 1) here equals to the amount of points and is independent from the
dimensionality of the search space (n in this case).

A figure demonstrates how an example 1-dimensional function f(z) =
sin(x) can be optimized by using Gaussian process with a given training set
of points. Weakly-dotted lines show a standard deviation for the approximated
graph areas. Note that the scantily explored segments have higher standard
deviation than well explored ones [14].

Applying a conditional probability rule we get that the probability density
for tn 41, given X1 data points and ¢y function values, stands for [1]:

p(tni1| Xny1)

p(tn|XnN) (1.22)

pny1 | Xni1,tn) =

According to the equation above the probability density for the new function
value comes from a univariate Gaussian distribution [I].

The next step is to express the equation [[.22] using a distribution mean

and standard deviation. A denominator (and similarly a numerator) reads as:

21

1. BACKGROUND REVIEW

exp(- %t%C;,ltN)

p(tn|XnN) =
V@)™ det(Cw)

, (1.23)

where

C'y is the covariance matrix of the Gaussian distribution
for N solution points.

The covariance matrix represents our prior assumptions about the objective
function. This matrix is constructed through the covariance function k for
each pair of solution points. The covariance function represents the covariance
between pairs of random variables:

cov (f(mp), f(mq)) = k(zp, x,).

Note that the covariance between outputs is characterized by the function of
inputs.

Here we list examples of the covariance functions. The first one, so-called
squared exponential (SE) function can be expressed as follows:

1
kse(zp, wq) = exp(- 5”3313 - quQ)- (1.24)

In [], the isotropic Matérn covariance function Afj ..., (7) is introduced with
parameter v set to 5/2. Thus, the resulting function has the following form:

v= \/57' 57‘2 \/57’
kMai)érQn(r) = ‘7}2” (1 + e + 32 exp| —) (1.25)

where
r = |z, — x4| is the maximal size of neighborhood.

Having defined the covariance matrix for N points we can extend C for (N+1)-
th point by the following expression:

Cy K) , (1.26)

Crni1 = < kT &k

where

k = k(xnyy1,Xn) is an N-dimensional real vector of co-
variances between the new point and already known from D,

k= k(xnt1,ZN+1) is a variance of the new point.

Note that the exact definitions of k and x depends on the covariance function
to be chosen.

22

1.5. Gaussian processes

In the end, by combining all those equations together we obtain a final
expression for the desired function value [1]:

(1.27)

(tn41 — pn41)?
ptn+1 | Xny1,tn) o< exp| — ,

2
20} N1
where

UN+1 = k:TCK,ltN is the predictive mean.

2

_ To—17 - _r .
Oty =k — k> Cy k is the predictive variance.

1.5.3 Hyper-parameter estimation

The Gaussian processes are able to specify prior information (such as smooth-
ness or characteristic length-scale, etc.) about the function to be modeled into
the covariance matrix structure. This can be done by incorporating the hyper-
parameters into the covariance function. Thus, the described above squared
exponential covariance function can be rewritten as follows:

2 lzzp — 4|12 2
kSE(CUp, Ty, 0) = O'f exXp| — T + Un(;pq, (128)

where
6= {UJ%, l,02} is the input set of hyper-parameters.
0}20 is the signal variance.
[is the characteristic length-scale.
02 is the noise variance.

Varying this parameters we can affect the approximation behavior. For exam-
ple, considering the objective function to be noisy, we can model the covariance
function with certain (increased) value of o2. We can also model the difference
between strength of noise and signal by manipulating 0]20 and o2. The 0]20 pa-
rameter also scales the exponent output. In the end, changing the length-scale
parameter [will result in a scaled "x-axis".

The covariance function is often defined by some set of hyper-parameters
which should be properly estimated in order to obtain a well-behaving model.
Of course, the set can be specified by the user but a more robust way is to
estimate it via the maximum likelihood approach or to cross-validate those
parameters. Below we briefly review both methods.

23

1. BACKGROUND REVIEW

1.5.3.1 Maximum likelihood

This method aims to maximize the given function values ty under a mul-
tivariate Gaussian with zero mean and covariance matrix Cy, {Cn}i; =
ksg(xi, x;,0). For the computation of this metric we use so-called log-likelihood
instead. The term and it’s derivatives w.r.t. € can be expressed as [I]:

L = log p(tn|Xn,0)

1
= 5 (log det Cn + t%C’;,ltN + Nlog 277) and

oL 1
5 = 5(NONCRtN —trace(FN)>,

where

_ —-190CyN
Iy =Cy 5

Note that this approach requires time O(n?) in order to compute the inversion
of the covariance matrix.

There is no guarantee that the landscape of the likelihood function is uni-
modal. Otherwise, it was shown to be multi-modal in case of GP with several
covariation functions [16]. This means that an employment of the global op-
timization technique may yield better results. However, local maxims here
interpret the data in a different way. In case of the model employing SE
covariance function the possible solutions can be viewed as:

e a function having complicated landscape but a low or zero noise, or
e a function with a simple structure and a severe noise.

So in case of multiple optima one would consider comparing several solu-
tions according to their posterior probabilities. However, for a training set of
sufficient size, certain optimum will tend to have much bigger probability than
the others and a comparison may not be necessary. But in this case one should
care not to end up in a local optima.

1.5.3.2 Cross-validation

Using the equation[I.22]the predictive log probability for the extracted training
sample 7 and the hyper-parameter set @ can be expressed as follows [5]:

1 —u)? 1
log p(t; | X,t_;,0) = —Elog of - ilog 2, (1.29)

where

t; denotes all points except t;. Note that mean p; and vari-

2 are also computed w.r.t. the i-extracted training set.

ance o;

24

1.5. Gaussian processes

The equation above can then be generalized to compute leave-one-out (LOO)
probability:

n
Lroo(X,t,0) = Zlog p(ti | X,t_4,0). (1.30)
i=1
Having u; and 02-2 computed, we obtain a performance estimation which can
then be optimized w.r.t. model hyper-parameters. This can be performed by
computing the Lyoo partial derivatives and applying the conjugate gradient
optimization [5]. The computational expense of the cross validation method
thus stands for O(n3) which is similar to likelihood approach.
It is interesting to note that the likelihood method tells the probability
given by the assumptions of the model, while the CV approach estimates the
predictive probability regardless of the model assumptions were fulfilled [5].

1.5.4 Merit functions

Using the surrogate model to find the global optimum one exploits model’s
knowledge regarding the unknown objective function. However, it can po-
tentially prevent the optimization algorithm from convergence to an optimal
solution due to unexplored regions that were incorrectly modeled. To protect
the model from making such predictions there is a need for some mechanism
which cares about the exploration of new regions in the solution space. Hence,
the merit functions were introduced precisely for this reason: they incorporate
both exploration and exploitation patterns into the model’s decision-making
mechanism. In the context of Gaussian processes the merit functions fyr often
exploit the model’s standard deviation as a measure of uncertainty about its
predictions[14]. An example merit function may have the following form:

fu(@) = f(x) — aoy(), (1.31)
where
a > 0 balances between the exploration and exploitation.
Note that this notation is designed for the minimization problems, so in case

of maximization o must be negative.

1.5.5 Summary

The main advantages of the Gaussian Process ability to approximate function
can be outlined as follows [I]:

e it does not require any hard-to-estimate predefined structure,

e it approximates rather complicated function landscapes such as discon-
tinuity, multi-modality or non-smoothness,

25

1. BACKGROUND REVIEW

e it provides set of meaningful hyper-parameters and includes a theoretical
framework to efficiently optimize them,

e it can utilize some important information from the supervisor optimiza-
tion algorithm.

As for drawbacks, using the GP assumes quite high computational de-
mands. The time complexity scales O(n3) with the training setﬂ and only
O(n) with the problem dimension [I].

The described method has a big potential, especially in its applicability to
work in a conjunction with the CMA-ES as a surrogate model. In the next
chapter we will pay more attention to employment of different GP derivatives
into the CMA evolution strategy.

1.6 Self-adaptive Surrogate-assisted CMA-ES

In this section a we describe a method called self-adaptive surrogate-assisted
CMA-ES (**ACM-ES-k), which is, however, not based on the Gaussian pro-
cesses. Nevertheless, this approach is present among the list of methods that
should be investigated, so we give a brief method description here and then
move on to the next chapter.

The technique is based on the early approach to make a surrogate-assisted
CMA-ES invariant to both rank-preserving transformations of f and to orthog-
onal transformations of the search space, called ACM-ES [I7]. This method
employs the concept of ordinal regression models based on SVM which pro-
vides only rankings of the points evaluated on the model in order to achieve the
mentioned invariance properties|7]. This method has been later improved in
[18] enabling to adapt the model hyper-parameters in an on-line manner. The
described technique brings further improvements by means of more intensive
exploitation of the model, using much larger population size while operat-
ing on surrogate and preserving original population size on the real objective
function. The strategy’s fundamentals can be found in [19].

The **ACM-ES-k algorithm combines two following optimization proce-
dures:

1. Optimization of the objective function f using so-called CMA-ES #1,
assisted by a surrogate model f with a @ set of hyper-parameters.

2. Optimization of the surrogate model error Err(@) given by 0 set of hyper-
parameters and using CMA-ES #2.

In both cases the original CMA-ES operations to update the variables remained
unchanged. However, every iteration now consists of the following steps. First,

3The most demanding operation here is caused by the computations of inverse Cl.

26

1.6. Self-adaptive Surrogate-assisted CMA-ES

the surrogate model f is built and optimized for n iterations. Then, the real
objective function f is optimized for 1 iteration. After that, the model error
Err(0) is estimated and the number of generations 7 is adjusted. In the end,
the model hyper-parameters are optimized and the 6 is chosen for the next
iteration.

1.6.1 Objective function optimization procedure

During this procedure the method employs a generation-based EC scheme and
builds a model f after a sufficient gstq+ number of generations. The surrogate
employed here is built using Ranking SVM so that the model predicts only the
ordering of the test points, providing an invariance w.r.t. the rank-preserving
transformations of the objective function. In addition, the second invariance
property (invariance w.r.t. orthogonal transformations) is preserved using the
transformation applied to every (training and so testing) point x:

& —)2

(x — m'9)). (1.32)

When the surrogate model is built, the second optimization procedure takes
place. In this case the CMA-ES optimizes the model for a given number of
generations 1. According to [I8], n is adjusted by a linear function inversely
proportional to a global model error Err(€). The global error is constructed
(with a certain relaxation) from local error on A most recent points from an
archive D by the following way:

Dl |P|
Brr(6) = 1 |z>|—1 Z D wiglp (1.33)
=1 j=i+1

where

1 s true if f violates the ordering of pair (i,7) given by
[V
the real objective function f.

wj ; defines the weights of such violations.

1.6.2 Surrogate error optimization procedure

This procedure is done in the end of every main CMA-ES iteration, where
an additional CMA-ES #2 performs one optimization iteration for the model
hyper-parameters. Here, the algorithm samples Ay, different points in a space
of hyper-parameters and builds Ay, surrogate models. Then, those models are
evaluated using the Err(@) metric and pihyp = [Anyp/2]) best performing are
used to update the CMA-ES #2 internal variables. The resulting mean of
the hyper-parameter distribution is used to obtain 8 for the next iteration of

*ACM-ES-k.

27

1. BACKGROUND REVIEW

All the above makes the algorithm handle its internals almost indepen-
dently, which enables the user to specify nothing except the range of hyper-
parameters.

1.6.3 Model exploitation

To intensify the model exploitation (in case if the model provides reasonably
good approximations, i.e. when the Err(@) ~ 0) the author suggests to esti-
mate a separate local covariance matrix Ci,. constructed from a much larger
number of points (in order of 10%). Using Ci, instead of the original C from
CMA-ES usually results in a quicker learning of the appropriate function land-
scape which leads to a faster convergence. However, if it is determined that
the model is not accurate enough, the influence of the Cj, is limited by the
learning rate in order to prevent a possible degradation of C.

In this case, the optimization of f is done with the population size A =
ExAdefauls and the number of parents is chosen as p1 = ky fidefault, Where ky > 1
and k, > 1 are adjusted w.r.t. the model error.

28

CHAPTER 2

GP-based surrogates in the
context of CMA-ES

This chapter aims to describe several state-of-the-art surrogate modeling tech-
niques based on the Gaussian process regression. Those techniques are used in
the context of CMA-ES. This can be for example the exploitation of the uncer-
tainty measure in order to maintain a global model behavior[I4] or an attempt
to the decrease the computational complexity of training Gaussian process by
employing an ensemble of simpler models instead of the single global model[20].
In this way, we describe such techniques in this chapter.

2.1 Gaussian Process Optimization Procedure

The technique presented here uses the methodology of merit functions to ad-
dress the problem of exploration vs. exploitation. The Gaussian Process Op-
timization Procedure described below may perform quite efficient on the stan-
dard test functions. It’s ability to solve complex optimization problems was
also shown on a real-world problem of optimization of compressor profile (for
the detailed description of both method and experiment refer to [I]).

2.1.1 Model settings

This technique uses already described, but slightly modified SE covariance
function from equation [1.28] The local version of such function reads:

29

2. GP-BASED SURROGATES IN THE CONTEXT OF CMA-ES

1 (Tpi — q4)°
ksg(zp, ¢g4) = 61 exp| — B Z — + 02 + opgB3, (2.1)

i=1 (
where

hyper-parameter o introduces an additional offset of the
resulting values from zero.

In addition, the variance vector x can now be expressed as:

Kk =01+ 0+ 03.

2.1.2 Hyper-parameter estimation

The author of the technique introduces a separate method for the log-likelihood
maximization. This is in fact a combination of the CMA-ES and a quasi-
Newton gradient (BFGS) method. The CMA strategy is always used for the
first computation of the likelihood in order to obtain a global optimum. Then,
after additional points is added to the training set, a fast local method (in
this case BFGS coupled with line search by golden section) is applied to keep
settings up-to-date. To prevent being trapped in a possible local optima, every
10 runs of the local method was followed by one run of the corrective CMA-ES.

In addition, the author suggests several modifications to be put on the
data: function values in the training set are normalized to be in range [0, 1]
and decision variables to be in [-1, 1]. The hyper-parameters are in turn being
constrained to the following bounds:

916[1031] ,
926[] 3
936[10910 2
€|

€[1072,10], fori=1,...,n.

As the ratios of the parameter bounds are quite big, an operation with log-
values instead of a real hyper-parameters should be considered. Note also that
if the computation of the inverse covariance matrix fails too often, a rise of the
A3 lower bound can resolve the issue.

2.1.3 Procedure description

The optimization procedure described here is initially based on the surrogate
approach. It considers the presence of initial set of training points. Every itera-
tion the GP model is constructed using those points and the hyper-parameters
are optimized. Then, an optimization algorithm searches for the model’s global

30

2.2. POI MAES

minims using several merit functions (discussed in . In the end, the ob-
tained optima are evaluated on the real function and added to the archive.

Author suggests to equip the model with 4 merit functions with « values
set to 0,1,2,4 resp. Here, setting « to 0 enforces the complete exploitation of
the model knowledge. By contrast, setting a = 4 pushes the optimizer onto
the unexplored regions.

Next, as the Gaussian processes require quite a lot of computations to train,
it may be beneficial to restrict several points from being included in the training
set. However, in this case one should not forget about the presentability of the
particular training points. In order to keep a reasonable precision, the author
suggests to form D with N¢ points closest to P®! in the feature space and
with Vg most recently evaluated points. In addition, to reflect the spread of
points one should restrict searching space near the xP®*. It can be done by
specifying the diagonal d of the search hypercube.

2.2 POI MAES

The GP surrogate models are known to provide a variance values as an uncer-
tainty measure for selecting promising individuals. However, it is not always
clear when the exploration- or exploitation-oriented behavior should be pre-
ferred. Hence, the authors of this technique refined the selection process and
introduced a metric that is able to assess the individual according to his ability
to improve currently the best solution. The authors refer to this technique as
Probability of improvement model-assisted evolution strategy (POI MAES).

The full description of the technique presented here can be found in [14].
Here, the authors use a standard GP framework, particularly the SE covariance
function with n 4 2 hyper-parameters optimized by the likelihood maximiza-
tion:

n 2
k(xy, 24, 0) = Glexp<—;zw> + Gpgbo. (2.2)
i=1 i

The authors incorporate the model into the (u, A)-CMA scheme, which is
done via so-called pre-selection method. Hence, the initialization phase goes
as usual: population creation, archive creation and the initial training of the
model. The concept of the approach requires the algorithm to be modified
at the generation loop. At the beginning of each iteration a Ape > A new
individuals are sampled from u parents and evaluated on the surrogate model
by a certain evaluation criterion. Then, A best ranked offsprings are selected,
evaluated on the objective function and added to the Archive. In the end, the
surrogate becomes updated. The key aspect of the method is that the pre-
selection criterion must represent the quality of individual w.r.t. a exploration-
exploitation trade-off (i.e. has the same purpose as the merit functions from
1.5.4]).

31

2. GP-BASED SURROGATES IN THE CONTEXT OF CMA-ES

The authors name 2 pre-selection criteria used in his paper:

e Mean of model prediction (MMP).

e Probability of improvement (POI).

2.2.0.1 Mean of model prediction

The idea of this metric is rather straightforward. The Ap;e individuals are being
evaluated using the mean of GP prediction distribution. Then, the A best
candidates are selected according to their values. The surrogate model is thus
used to directly replace the real objective function. However, such criterion
have very serious disadvantage: in case of multi-modal functions points with
high predicted values may mislead the optimizer to false optima, neglecting
the whole effort.

2.2.0.2 Probability of improvement

This metric does not require to specify any additional hyper-parameter and
hence, is considered to be more promising. The idea of the POI metric is clearly
shown in the figure For any given solution vector @ the model gives the
uncertainty as a normally-distributed random variable Y (z with mean ¢(x) and
standard deviation o(x). Then, having fyin = min(¢y,...,¢tx as the current
best obtained function value we define some number 7' so that T < fiin-
Hence, the probability of improvement simply stands for the probability that
Y () < T and can be computed as follows:

POI(z) — (T_t(x)> (2.3)

o(x)

where
® is the normal cumulative distribution function.

Areas with high POI value have big probability to sample a point with value
better than fi,;,. Having the standard deviation in the denominator means
that the model tends to explore areas with relatively small number of evalu-
ated points. Also, regions with model prediction () < fmin Will have the
POI metric close to zero, which encourages the model to search somewhere
else. Therefore, the incorporation of the POI metric makes the model to pre-
fer unexplored regions which may be useful while dealing with multi-modal
functions.

The assumption above was also experimentally confirmed by the author of
the technique. There, the use of POI led to the best results among the criteria
to be investigated on the multi-modal functions. However, as the POI tends
to sample preferably at unexplored regions, it was outperformed by the MMP

32

2.3. Robustness Approximation in GP

25+

O data
---- model
2 Gaussian dist
of model output
15+ \
m—— .
1+ N\ [} g
t(x*) N by R4
N 7 = 7
f N ee? N’
min
05+
0 |-
05 1 1 1 1 1 1 1 |
-08 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8

*

X

Figure 2.1: Representation of the POI concept applied to the Gaussian process
approximation model. The gray area on the graph demonstrates the probabil-
ity that the objective value sampled at point x* is smaller than fii,.

in case of unimodal functions. Both methods, however, performed better than
a standalone CMA-ES.

2.3 Robustness Approximation in GP

The authors of this technique addresses the problem of interconnecting CMA-
ES with GP meta-models to find robust solutions. The approach described
below directly utilizes the covariance matrix from the CMA evolution strategy
in a way that does improve the prediction accuracy without much additional
computational cost. It also introduces a special way to select promising solu-
tions from the archive. More details can be found in [21].

2.3.1 Robustness approximations

Finding robust solutions is especially important in the context of costly op-
timization. One can imagine a robustness approximation as an attempt to
approximate function values within noisy or imprecise environment, e.g. due
to readout imprecision or perturbations in design variables. The difficulty
in such situation is the fact that noisy approximation require an additional
neighboring points to be evaluated as well. Considering surrogate-assisted
optimization it becomes extremely important to make precise predictions for
noisy problems as it requires a certain trade-off between limiting the noise and
reducing the evaluations amount.

33

2. GP-BASED SURROGATES IN THE CONTEXT OF CMA-ES

2.3.2 Surrogate specification

Following the most straightforward way to obtain a required covariance matrix
the author uses an isotropic SE covariance function variant from the equation
1L.25

k(xy, x4,0) = exp (=0 ||z, — x4]). (2.4)

The use of function which have only one inner hyper-parameter 6 is dictated
by high computational demand as the robustness approximations here require
construction of several local meta-models (see below). For the same reason
the author persuades to use grid search using logarithmically scaled grid on
the interval [107°°, 10°] as a method to tune the hyper-parameter. The author
also claims that such settings were found to perform reasonably well.

2.3.3 Integration with CMA-ES

The integration process is again performed in every CMA iteration. The
robustness approximation is obtained in the way that the local (i.e. model
trained only on certain training points) GP model fk is trained for every fresh
individual x;. Representative training sets for such models are often within
the hypercube [z, — o¢,), + 0¢] in order to handle an uncertainty of the input
space.

2.3.3.1 Representatives selection

To fulfill the model with certain training points a selection mechanism must
be introduced. The method below attempts to choose niyyig pairs (x,t) from
the archive A to shape a training set D. If the sufficient amount of points
is not found, the method also returns a set Xcang = {®1,...,2;} of length
I = Nyerig — |D|. The points from X anq are then evaluated on the real objective
function and added to both A and D.

The difficulty of selecting points from the archive is that a set of points
needs to be well spread (e.g. to avoid numerical problems with C' creation) on
the region of interest (hypercube). In addition, the hypercube selection may
be infeasible for highly-dimensional problems as the required amount of points
will be unavailable in most regions.

The author of this technique proposes to use a Latin hypercube sampling
(LHS) method to obtain the required dataset. First of all, the required niqig
reference points are generated via the LHS and stored in the reference set R.
Then, for every point in R, the closest point from A is assigned. An important
note here is that this point from R must be the closest one to the other point
as well. If this is the case, the the archive point is added to the training set,
otherwise such point is admitted a good candidate for sampling and added to
Xcand- When all points from the archive are assigned, we select an assigned
pair (archive point, reference point) of points which are the most distant to

34

2.4. GP ensembling

each other. Such behavior ensures that the archive is always updated at the
region which needs extra representatives the most.

2.3.3.2 Exploitation of the the supervisor covariance matrix

The author also suggests to exploit the covariance matrix adapted by the su-
pervisor optimizer to improve the meta-models approximation quality. As the
matrix learned by the CMA-ES represents the local quadratic approximation
of the objective function, it seems reasonable to equip local models with such
information.

The supervised matrix can be utilized in a way that substitutes distance
metric inside the covariance function k£ with the Mahalanobis distance. So the
covariance function now has the following form:

—-1/2

k(xp, xq,0) = exp (=0 () — wq)TC(g) (zp — @q)). (2.5)

The experiments conducted by the authors of the approach showed that the al-
gorithms using Mahalanobis distance metric may provide better more accurate
approximations of the local landscape than the Euclidean distance. However,
the difference in metrics did not noticeably improved the overall performance.

2.4 GP ensembling

The approach described below aims to cover one of the most disappointing
problems of the Gaussian processes - high computational demand - by the
means of ensembling techniques. The proposed solution adopts an ensemble of
local Gaussian process models sharing the same input parameters. Afterwards,
the author ensures that such technique can provide reliable fitness prediction
and uncertainty estimation [20].

The usage of the GP framework in this method is quite standard. The only
difference is that the author introduces squared exponential covariance func-
tion with a vector @ € R™ of hyper-parameters, where n is the dimensionality
of points to be sampled. The modified function reads:

k(p, @q,0) = exp (=) 0 |lzp, — z1i]). (2.6)
i=1

Here, the specified hyper-parameters are optimized by the log-likelihood max-
imization.
2.4.1 Ensembling scheme

It was demonstrated that the uncertainty information exploitation can main-
tain the ability to globally optimize the objective functions. However, the main
obstacle for training GP models which show global search ability is the need

35

2. GP-BASED SURROGATES IN THE CONTEXT OF CMA-ES

for computing the inverse covariance matrix which restricts one to unpleasant
O(N?) scaling rate, where N stands for the amount of points in the training
set.

To resolve this problem, [20] has proposed to use an ensemble of local
GP models. Those models are constructed using N, closest points to every
individual in the current iteration. But in a contrary to local models from
here the ensemble shares the same deterministic function (usually, constant [3)
and the set of hyper-parameters.

To be able to use shared parameters properly, several terms must be gen-
eralized for multiple GP models. Hence, the changes affect the log-likelihood
computing and the estimated values of 5 and o. Those variables (except the
likelihood) now have the arithmetical mean form, as shown below:

L

Il
-

)

<

~—~
[\)
\]

~—

-
I
—

@
Il
-
> |
o
N

.
Il
A

Q>
[}

Il
-
>~

o
©
S~—

.
Il
—

where

A is the number of offsprings in the current generation.

Consider a computational effort of training standard GP model to be O(N3).
Hence, the cost of training of such ensembles becomes O(N3)). Note that
in this case N = N, x A\, which gives us a quite significant speed-up (in
terms of model-caused computations). Generally, the described approach can
be treated as simplified global GP model, considering though the correlation
effect only of N, closest points for each offspring.

2.4.2 Model incorporation

The incorporation process is rather straightforward. The initial setting done
at the beginning of the algorithm are set by the following way:

e Sample and evaluate initial archive of 11 x D training points using LHS
method.

e Initialize y = 5, A = 25, C;, = 6 and search from the current best
solution.

The other settings of the algorithm were left default.

36

2.5. EGO-CMA

2.4.3 Prescreen strategies

Unlike the strategies described in[I.4]the author uses several so-called prescreen
strategies to effectively select and evaluate promising individuals. Below we
briefly describe those.

Best selection
The best selection (BS) strategy chooses C,, individuals
with the best predicted fitness value and evaluates them on
the real objective function.

Clustering technique

The clustering technique (CT) splits the whole offsprings
into C), clusters. Then, it selects individuals closest to each
cluster centroid and evaluates them.

Lower confidence bound
The lower confidence bound (LCB) strategy computes a
separate metric called confidence bound for every indi-
vidual as t), = t — 25. The individuals marked for costly
evaluation are selected from ones having the best LCB value.

The remaining 2 strategies are made using combinations of the techniques
described above. Hence, in CTBS strategy the individuals with best fitness
predictions in appropriate clusters are evaluated. Analogically, in CTLCB
strategy we select an individual with the best LCB value for each cluster.

In the end, experiments on author’s benchmark have shown that the best
results (especially for multi-modal functions) were achieved by the CTLCB
strategy.

2.5 EGO-CMA

In this section, an attempt to combine the CMA-ES and an Efficient Global
Optimization is made. The key aspect of this approach is to exploit EGO’s
high initial performance and, consequently, switch to more robust (and slow)
CMA-ES at the region found by EGO. So in this section the both strategies will
be briefly specified as well as the steps required to combine both strategies and
metrics used to detect the switch point. We also give a brief description of the
EGO algorithm here. To find out more about the EGO approach mentioned
here, refer to [I5]. Also, refer to [22] for the complete description of the
surrogate.

37

2. GP-BASED SURROGATES IN THE CONTEXT OF CMA-ES

2.5.1 Efficient global optimization

The efficient global optimization approach also uses the concept of surrogate-
assisted optimization to deal with expensive multi-modal problems. The prin-
ciple of such algorithm is (compared to to use the uncertainty inforAmation
v(x) obtained from the model to balance visiting either attractive (low f(«)) or
unexplored (large v(x) value) regions. One can conclude that using Gaussian
process meta-models is a good candidate to participate in EGO as it directly
provides an uncertainty measure by means of the predicted variance. To keep
the surrogate-model up-to-date it is being retrained as the new "balanced"
point becomes evaluated on the real objective function.

2.5.2 Combining EGO and CMA

The optimization algorithm described here is quite unique as it does not af-
fect the insides of the CMA-ES iterations but provides advantageous starting
parameters so that the convergence rate is (hopefully) being accelerated. The
motivation is explained in a way that EGO becomes especially efficient in the
early stage (diversification) of the optimization process but loses the pace in
the later phases. The CMA strategy is expected to steadily converge (how-
ever, with a lower speed) to the optimum and hence is efficient during the
intensification phase.

2.5.2.1 Turning point selection

The provided EGO-CMA algorithm initially explores the search space with
EGO, then, as the switch occurs, it is being replaced by the CMA-ES in order
to converge to optimum. The switch point is suggested to perform if the best
observed function value fP*! did not improved for at least 0.1 x budget of
function evaluations and if one of the following conditions is met:

e (0.5 x budget evaluations has been spent, or

o BT < 0.01 x (fB5 — fbest), where ET stands for the average of the
maximum expected improvement over the last 5 iterations, while fgg%
and fPet are the best function values obtained in the initial design of

experiments (DoE) phase and the current best value respectively.

When the switch point detected, a point with the best function value be-
comes a starting point for the CMA-ES, in other words m(®) = gbest,
addition, the CMA strategy obtains the trained Kriging model as an approxi-
mation to the true objective function.

In

2.5.2.2 The transfer of control

Now we set up the covariance matrix C(?) and the step size o(®). First of all
the second order Taylor expansion is performed on the GP objective function

38

2.6. Surrogate CMA-ES

approximation at point 2% to obtain the function representation:

1
fH(w) — m(mbest)+vm(mbest)T(m_mbes‘c)+ Q(m_mbest)H(m_mbest)‘ (2.10)
The initial covariance matrix for the CMA strategy is then set to the inverse
of the Hessian of the Kriging mean at point P*s':

cO=H" (2.11)

Note that if the H matrix is not positively definite we need to force the convex-
ification of fg. Hence, the eigendecomposition (H = BD?B7") is performed
so that the negative eigenvalues in D? are substituted by the 1076, In ad-
dition, the author suggests to improve the condition number of the resulting
matrix by adding a positive value to the main diagonal of the Hessian matrix.

Considering that CMA-ES optimizes a spherical function g(t) inside the
t-space (t = DB™(x — %)), we express the average initial step length as a
distance to optimum x7;:

ovn—0.5 = ||DBT(m — x%)|, (2.12)
where

v/n—0.5 is an expectation of the x? random variable, n
stands for dimensionality of the input vector.

Finally, by the minimization of fz we obtain an optimum approximation xf
and hence, using the equation [2.12] an initial step length as:

0(0) _ HDBTH_I(:DbeSt)Vm(:BbeSt) H

2.13
n — 0.5 ()

2.6 Surrogate CMA-ES

In [4], several methods were proposed in order to optimize costly black-box
functions. The paper included methods based on Random forests and Gaussian
processes. However, we omit methods based on the Random forests as it is
beyond the scope of this thesis and focus only on the GP-based approach.

2.6.1 Covariance matrix for GP

The authors define a matrix Ky € RY*YN of N training points which contains
covariances for all pairs of points in training set:

{KN}Z'J:k(.’.Ui,iBj,O), fOT‘ i,jzl,...,N

This approach employs the Matérn covariance function, as described in [1.5.2]

39

2. GP-BASED SURROGATES IN THE CONTEXT OF CMA-ES

The covariance matrix C)y is constructed as:
Cy =Ky + 031 (2.14)

The remainder parameters are quite similar to ones explained in the equa-
tion The described model obtains the hyper-parameter set 0 = {0]20, l,0%}
tuned by using the maximum-likelihood method.

2.6.2 Model employment

The described method uses generation-based evolution control strategy to in-
corporate the model into the CMA-ES. The author also reported that the
experiments with analogous method with generation-based EC were not suc-
cessful.

The integration process of the GP is quite straightforward. The only
changed point of the original CMA-ES is the sampling and fitness-evaluation
part at every generation. Whenever the ongoing generation is marked as
original-evaluated and the whole population is evaluated on the expensive
objective function. The pairs (x,y) are then added to so-called archive A,
containing only points evaluated on the real function. The archive is used to
select (if possible) nrpq promising solutions to shape a training set D. Here,
promising means that those points are not farther from the CMA mean value
m(9) than r. The training set selection process can be defined as follows:

D {(z y) e A| (M9 —2)Te@CO P(m@ _z) <), (2.15)
where

C9 is the CMA-ES covariance matrix at generation g.

When there is enough points to create a training set, the GP model is trained
on D and the next generation is marked as model-evaluated and every fitness
evaluation during such generation is simply made on the model. An important
notice here is that there is no model-provided fitness evaluation smaller (better)
than the best from 4. And in case that there is not enough points, the process
is repeated at the next generation, which is, in its turn, marked as original-
evaluated.

40

CHAPTER

Performance analysis

Here we analyze the performance of the models described in the previous chap-
ter. First of all, we describe the framework created to perform surrogate model
benchmarking and discuss our contribution: embedding of the new benchmark-
ing testbed. In the end we outline the experimental setup for all methods to
be investigated and discuss the obtained results.

3.1 Existing framework

In this section we describe a framework used to benchmark the surrogate mod-
els. This is in fact a combination of two smaller sub-frameworks from differ-
ent sources ensuring algorithms integration, flexible experiment initialization,
CPU time allocation and handling the whole benchmarking procedure includ-
ing some post-processing tools. Below we briefly describe both frameworks.

3.1.1 Surrogate CMA-ES framework

This part of the global framework was created in order to provide a composi-
tion interface to the domain of the surrogate-assisted black-box optimization.
It is implemented using the Matlab ecosystem and the Statistics and Machine
Learning toolbox [23]. The framework uses CMA-ES as a base optimizer and
several kinds of surrogate models. The CMA-ES source code was originally
obtained from [§] and then transformed to the S-CMA-ES version from [4],
allowing easy modification and further development of the mentioned tech-
nique. However, this framework also supports an integration of the surrogate
techniques based on the original CMA-ES and written in Matlab. For details
concerning operation with this software refer to [24]. An important notice here
is that the framework uses the supplied benchmarking testbed to assess the
desired methods. The testbed and its content will be outlined later in [3.1.2]

41

3. PERFORMANCE ANALYSIS

3.1.1.1 Optimizer structure

In order to run experiments we need to create an optimizer (optimization
algorithm with integral surrogate model) object with the following structure:

1. fitfun: a fitness function used to evaluate the algorithm. This function
must provide the following interface:

y = fitness(x, varargin)

2. xstart: an algorithm initial point. This point also determines the prob-
lem dimension n.

3. inopts, SurrogateOptions: structures with configuration variables passed
directly to the algorithms. inopts adjusts the CMA-ES settings while
the SurrogateOptions is an optional structure which determines initial
settings for the desired surrogate model.

In the end of the experiment the following parameters can be obtained
from the framework:

e xmin: a search point with the minimum obtained fitness value.
e fmin: a function value of xmin, i.e. fitfun(xmin) = fmin.

e counteval: the number of function evaluations spent by the algorithm
run.

e y_eval: numeric matrix with the best objective values at the first column
and the respective function evaluation number in the second column.

3.1.1.2 Running the experiment

The framework provides a functionality to initialize experiments, which result-
ing produces a group of tasks determined by the objective function, dimen-
sionality and other possible options (e.g. surrogate model distance metric).
Combinations of those parameters are then encoded as unique task_id and
the tasks can then be run as a separate Matlab process on the local machine
or be submitted to the Czech national computational cluster Metacentrum.

In order to run some task on the local machine (or on the Metacentrum
front-end node) one can use the function metacentrum_task_matlab() which
has the following syntax:

42

3.1. Existing framework

metacentrum_task_matlab(exp_id, exppath_short, task_id, varargin)

where
exp_id denotes the experiment unique name.

exppath_short specifies the path to the experiment direc-
tory.

task_id is the mentioned unique number representing
desired function and dimensionality.

varargin is the optional argument passed to the optimizer
instance.

In order to use the computational power of the Metacentrum and to gain
the benefit of parallel computation one can call script metacentrum_master_template.sh
from shell with the following parameters:

metacentrum_master_template.sh EXPID META_QUEUE [ID1] [ID2]...
where

EXPID is the unique experiment name (analogous to exp_id
above).

META_QUEUE is the name of the Metacentrum queue with
possible values as 2h, 4h, 1d, 2d, etc. The meaning of this
parameter is the upper bound to the algorithm’s expected
computational time.

[ID1] [ID2] are the optional arguments representing a
certain task_id to be run. If there are no id given, the
whole set of tasks will be submitted for computation.

Note that tasks submitted for Metacentrum do not require the Matlab license
because of being compiled using the Matlab Compiler Runtime (MCR).

3.1.2 BBOB framework

To run experiments within the surrogate CMA-ES framework one should also
ensure the presence of the black-box optimization benchmarking (BBOB)
testbed. This testbed is a source of benchmarking functions of many kinds. It
handles the whole interaction between the optimizer and the black-box func-
tion including logging of the results. However, the aim of this thesis is to
measure the performance on the other benchmark testbed. Thus, we de-
scribe only general ideas of the BBOB framework, as the desired functions

43

3. PERFORMANCE ANALYSIS

still need to be introduced into the BBOB framework. One can obtain the
full description of the framework itself and functions related to it from [25] or
http://coco.gforge.inria.fr/l

3.1.2.1 Concepts of the framework

The core concepts of the BBOB framework can be outlined as follows:

44

e An algorithm operating in the search space of dimensionality 2, 3, 5, 10,

20 or 40. However, the dimensionality 40 is optional and can be omitted.

The search domain is defined everywhere in R™ and have the global op-
timum in [—5, 5]". In addition, most functions present in the framework
have their global optima in [—4, 4]™, which can be considered a reasonable
setting for the initial search point.

Indication of the testbed to be used. Different algorithms may perform
well on a certain kind of benchmark functions and fail on the others.
The whole testbed is divided into 2 main categories containing either
noisy and noiseless functions. The noiseless testbed has the 24 functions
divided into the following subcategories: separable functions, functions
with low or moderate conditioning, functions with high conditioning and
unimodal, multi-modal functions with adequate global structure and, in
the end, multi-modal functions with weak global structure. The noisy
testbed contains 30 functions divided into the following subcategories:
functions with moderate noise, functions with severe noise, highly multi-
modal functions with severe noise. Note here that most functions in the
BBOB framework are in fact unimodal.

The final function precision (Af = 107%) in order to effectively detect
global optimum breakthrough and to set up the termination criteria.

The algorithm’s performance is determined over a several trials (i.e. tri-
als with fixed function and dimensionality) in order to obtain a sta-
tistically significant measures. The performance is evaluated over the
Ntrials = 15 trials. Note, that the number of trial is also used to
initialize the seed for the random number generator determining some
special benchmark parameters.

Different measurement scenarios are possible in order to evaluate the al-
gorithm performance. Two basic scenarios are shown in the figure [3.1]
Results obtained by the fix-cost (vertical) view can be interpreted in
a way that the algorithm converges faster/slower for the certain bud-
get of function evaluations. The results obtained by the fixed-target
(horizontal) view can be used to conclude how much one algorithm is
faster /slower than the other in terms of time required to converge to a
certain distance from the optimum.

http://coco.gforge.inria.fr/

3.2. CEC functions

Vertical View

Figure 3.1: Two different scenarios of the performance representation drawn
for several algorithm runs.

3.2 CEC functions

In this section we give a brief description of the functions which are used to
measure the performance of the methods described in chapter [2] Unlike the
testbed mentioned in [3.1.2] we conduct our experiments on a different set of
benchmark functions, introduced on the special session for multi-modal func-
tion optimization during the Congress of Evolutionary Computation (CEC) in
2013. In order to define an explicit name we refer to those functions as CEC
functions. To obtain a complete description of the functions being used and
overall benchmark capabilities refer to [6].

In the end of the section we also specify necessary actions, which should be
performed in order to incorporate desired functions into the BBOB framework.
The resulting implementation of the CEC functions is compatible with an
existing BBOB test suite and so can be subsequently treated as an integral
part of this framework.

3.2.1 Testbed description

The mentioned benchmarking testbed includes totally 12 different functions.
Note also that all the functions listed here are, unlike the BBOB, multi-modal.
However, the testbed is designed in a way that the dimensionality and variable
ranges are specific for a particular function. The dimensionality is always a
subset of (1, 2, 3, 5, 10, 20), while the variable ranges can widely differ. Also,
all the functions are formulated as the maximization problems.

An important note here is the fact that the existing BBOB framework
does not accept 1D problems, which prevents several CEC functions from
participation in the benchmarking procedure. Hence, we will not describe
such functions in the future, focusing only on 9 multi-dimensional variants.

45

3. PERFORMANCE ANALYSIS

These are 5 standard functions (f4 to fg) and 4 so-called composition functions

(fo — fi2)-

The following part aims to review standard functions only. However, af-
ter the description of the composition procedure in [3.2.1.2] we return to the
remaining 4 functions in [3.:2.1.3]

3.2.1.1 Standard functions
The basic CEC functions are described in the following way:
e f4: Himmelblau (2D) - Fig.
falz,y) =200 — (2* +y — 11)2 — (x +y* — 7)%

The Himmelblau function, which is in fact an inverted Himmelblau[6],
has 4 global optima with no local optima, as shown in the figure [3.2a]
The input variables x and y are in range [—6, 6].

o f5: Six-Hump Camel Back (2D) - Fig. |3.2b

f5(z,y) = —4((4 —2.12% + x;>$2 +ay + (4y° — 4)y2).

The function has both 2 global and 2 local optima, while the input vari-
ables are bounded to: z € [-1.9,1.9], y € [-1.1,1.1].

e fs: Shubert (2D, 3D) - Fig. [3.2c

fo(m) = —ﬂij COS((J + z; +j)-

=1 j=1

This function is an inverted Shubert function, where there are N3™ global
optima divided into 3" groups. The variables are constrained to: x; €
[-10,10], fori=1,...,n.

e f7: Vincent (2D, 3D) - Fig. [3.2d
1~
fr(x) = - ; sm(lO log(wi)).

The inverted Vincent function has 6™ global optima, but, unlike the reg-
ular distances between optima in fg, f7 employs vastly different spacings
between them. In addition, it does not have any local optima. The input
variables varies in range [0.25, 10] for every dimension.

46

3.2. CEC functions

Function instance
Function number | Dimensionality | Optimum value

f4 2D 200.0

£5 2D 1.03163

6 2D 186.731
3D 2709.0935
2D

f7 D 1.0

£8 2D -2.0

Table 3.1: Estimated global optima values for 5 simple CEC functions.
e f3: Modified Rastrigin - all global optima (2D) - Fig.

fa(x) = — z": <10 +9 cos(27rkixi)).

=1

This version of the Rastrigin function is modified in a way that it has
[1; k; global optima without any local one. The figure shows an fg
example given by k = (3,4), which results in 12 global optima. All the
input variables are in range [0, 1].

In addition, the authors estimated global optima values for every simple bench-
mark function. These values can be obtained from the table 3.1}

3.2.1.2 Composition process

Here we present the general idea of constructing the multi-modal composition
functions. A n-dimensional composition function can be obtained as a combi-
nation of simple functions f from some pool of basic composition units. All
the functions taken from this pool can be either shifted in space, transformed
by some linear transformation matrix or used as it is. The authors propose
the basic pool to be consisted of the following functions ﬂ

e Sphere function,

Griewank function,

Rastrigin function,

Weierstrass function,

Expanded Griewank plus Rosenbrock function (EF8F2).

4For the sake of brevity we do not give exact definitions of those functions, since the
complete description is available in [6]

47

3. PERFORMANCE ANALYSIS

Note that the pool of basic used to obtain a composite may be of the same
type but with different properties and parameters.

Now we define a composition function CF; as a weighted aggregation of m
functions as follows:

m

CFj(@) = w; (fi((a: — o))/ N\ - M) + biasi) L (3.1)

=1

where

fi denotes the normalization of the i-th basic function.
w; is the corresponding function weight.
0; is the new shifted optimum.

Ai is a parameter used to stretch (A\; > 1) or to compress
(A < 1) the function.

M, is the linear transformation (rotation) matrix.

Each composition function has two bias parameters. The former, bias;, de-
fines the function value offset for each pool function and thus denotes which
optimum is the global one. The later, fgias, determines the global optimum
function value. The authors set both parameters to zero in order to obtain a
function with several global optima all with the fitness values equal to zero.
The function weights w; are obtained by the three-stage computation proce-
dure defined as:

DTk — Oi,k)2
w; = exp(— =k 902), (3.2)
w;, if w; = max(w;)
w; = 10) (3.3)
w;(1—max(w;)™) otherwise
w; :wi/(Zw]), (3.4)
j=1
where
2

o? controls the coverage range of each pool function. The

i
authors recommend to use small values to provide narrow

coverage ranges.

In the end, to obtain a better mixture of the pool functions the authors define
the following normalization scheme:

_c fi(z)

| fhaxl
max

fi(z) (3.5)

48

3.2. CEC functions

where

C = 2000 is a predefined constant.

fi.. is estimated wusing fl. =fi((x*/\)M;) with
x* =15,5,...,5].

3.2.1.3 Composition functions

Finally, we define remaining 4 composition functions as follows:
e fo: CF1 (2D) - Fig. 3.2

The composition function 1 uses 6 pool functions (2 different versions
of each Griewank, Weierstrass and Sphere functions) resulting in a 6
global optima bounded to the optimization hypercube [-5,5]. During the
composition following parameter set was used:

o =1, where 1 is a unit vector,
A=]1, 1, 8, 8, 1/5, 1/5],
M, =1, Vi=1,...,m.

e fi0: CF2 (2D) - Fig.

The composition function 2 consists of 8 pool functions combined in
the way similar to CF1, but using Rastrigin, Weierstrass, Griewank and
Sphere functions. The input variable bounds and special parameters
were left unchanged, except the A adjusted to [1, 1, 10, 10, 1/10, 1/10,
1/7,1/7].

e fi1: CF3 (2D, 3D, 5D, 10D) - Fig. 3.2

The CF 3 consists of 6 pool functions (x2 EF8F2, x2 Weierstrass, x2
Griewank) in the optimization same box. The parameter o was set to |1,
1,2,2,2,2] and A to [1/4, 1/10, 2, 1, 2, 5]. As M; were chosen different
linear transformation matrices with condition number one.

e fi2: CF4 (3D, 5D, 10D, 20D) - Fig. 3.2i

The CF 4 is based on the combination of 8 pool functions (x2 Rastrigin,
x2 EF8F2, x2 Weierstrass, x2 Griewank) in the same optimization box.
The parameter o was set to [1, 1, 1, 1, 1, 2, 2, 2] and X to [4, 1, 4, 1,
1/10, 1/5, 1/10, 1/40]. As M, were chosen different linear transforma-
tion matrices with condition number one. Note that the 2D version of
this function from figure [3.21] is only referential as we do not measure
performance on this function for dimensions lower than 3 [6].

49

Lb s e -
H H

T

3. PERFORMANCE ANALYSIS
= ‘ ‘ v t‘("

- .

(a) Himmelblau (b) Six-Hump Camel Back (c) Shubert

FYTVTIENY.

j;\”*’!!vV,"‘/!.\' T

dih

EIR IR

(e) Modified Rastrigin (f) CF 1

ke

=W
- W"M"

200

B3 o853 o8 .
ERERRERE

(g) CF 2 (h) CF 3 (i) CF 4

Figure 3.2: Plots of 9 multi-dimensional CEC functions used to extend the
BBOB framework. All the functions are drawn in 3D so that each plot repre-
sents the function landscape of 2 input variables. Composition functions 1 — 4
are shown under the CF abbreviation.

3.3 Implementation notes

In this section we give several brief notes to our contributions to the frameworks
mentioned above. We integrated 9 mentioned above CEC functions into the
BBOB framework. We based our implementation on the source code obtained
from the authors of the paper. Hence, the original source code is available at
https://github.com/mikeagn/CEC2013. Several key changes have been made
in order to satisfy the BBOB requirements. Below we briefly describe our
contribution to this field.

The most obvious correction concerns the fact that the CEC functions
were designed as maximization problems. To handle this we transform the

20

https://github.com/mikeagn/CEC2013

3.4. Experimental setup

maximization task to the minimization using the following equation:

max(f(x)) = —min(—f(x)). (3.6)

Hence, every value obtained by the evaluation of the target CEC function is
then multiplied by the -1.

Next, the variable bounds vary for different functions and are not generally
consistent with the framework structure. The BBOB constrains the optimizer
in range [—5, 5]™ [25], hence, to overcome this issue we rescale the former search
space so it agrees with the given function constraints. Consider the original
domain is constrained to the range [I, u|, I,u € R™ and the function expects
the candidate solution @ to be in the new range [lhew, Unew|, Inews Unew € R™.
Then, every solution @ is rescaled according to the following equation:

Wi l W1 .
Tnewi = (T; — li)M, Vi=1,...,n. (3.7)
U; — li
In our case Il = —5 and u = 5, so the equation can be rewritten as:
1 .
Tnew; = E(:}:Z —5)(Unewi — lnewi), Vi=1,...,n. (3.8)

We also implemented several GP-based surrogate methods using Mat-
lab. Our implementations are based on the original CMA-ES source code
(Matlab version 3.62) obtained from https://www.lri.fr/ hansen/cmaes_
inmatlab.html. We also used the Matlab’s fitrgp framework in order to
train Gaussian process regression models. During the implementation of the
Robustness CMA-ES described in[2.3| we partially reused the source codes from
the author’s website (http://natcomp.liacs.nl).

3.4 Experimental setup

In this section we define the way how we conduct the experiments. But first
of all, there is a trouble that must be outlined before we proceed. By the time
of acquaintance to this work the whole set of surrogate-modeling techniques
was expected to be investigated and benchmarked. However, it turned to
be impossible since the implementations of most methods did not simply exist
while the others approaches had certain troubles with the stabilityﬂ After sev-
eral unsuccessful attempts to fix the issues it was decided to exclude unstable
methods and concentrate on the implementation of the claimed ones. Unfor-
tunately, this idea turned out to be a challenge too. Due to a time consuming
understanding of the domain we haven’t managed to finish the implementa-
tion of the GPOP approach. Finally, we selected all the reliably performing

5By the stability we mean the presence of critical errors in the obtained code.

51

https://www.lri.fr/~hansen/cmaes_inmatlab.html
https://www.lri.fr/~hansen/cmaes_inmatlab.html
http://natcomp.liacs.nl

3. PERFORMANCE ANALYSIS

methods and compared them between each other and, in addition, with the
surrogate-free CMA-ES. As a consequence, we examined the following set of
methods: S-CMA-ES[4], **ACM-ES-k[19], POI MAES|14], Robust CMA|2T]
and the classic CMA-ES[S].

Below we outline settings used to measure the performance of the men-
tioned techniques. Since every surrogate approach performs within the CMA-
ES environment, it is reasonable to unify it’s settings for all methods to achieve
more accurate results. The final settings used for the benchmarking reads as:

e CMA-ES (described in

As a consequence to the integration into the framework described in
we follow the CMA-ES settings taken from [4]. More precisely, we use
the Matlab version of the IPOP-CMA-ES with the number of restarts
= 4, IncPopSize = 2, Ogtart = %, A = 4+ |3 logn] and setting the
remaining parameters to it’s defaults|25].

e S-CMA-ES (described in

In our experiments we used the S-CMA-ES with the following parame-
ters: the distance r = 8, the covariance function k:;;igfn

starting values (02,1, UJ%) =log (0.01,2,0.5), norig was set to [0.1X].

was used with

e **ACM-ES-k (described in [1.6)

The mentioned algorithm does not require to explicitly set any special
hyper-parameter.

e POI MAES (described in [2.2)

We set the A\pre = 3 and the amount of points to train the model to 2.

e Robust CMA (described in [2.3)

For the Robust CMA we left the niiz to be equal to 2n while the m
parameter was set to 10.

3.5 Results assessment

In this thesis we compared the performance of two recently proposed surrogate-
modeling techniques against two different existing approaches. All the methods
have been described in 2l The experiments were performed on the whole
set of benchmarking functions from [6], employed by the author within the
larger BBOB framework. In this thesis we use the idea from [26]@ to obtain
aggregated results suitable for comparison. We first describe this concept and
then return to the assessment.

5This paper was submitted to the PPSN 2016 and was in fact unpublished during the
whole period of writing this thesis.

02

3.5. Results assessment

3.5.1 Representation tools

In order to get insights of the actual algorithm convergence speed we exploit the
algorithm’s distance from the global optimum given by the budget of available
function evaluations. The use of such representation enables us to determine
if the optimum was reached and how far from this was the algorithm in the
opposite case. The simple distance Ay from the optimum given by the fixed
FEs budget b may be explained in terms of BBOB notation [25] as:

A?” = fOpt - fl[;estv (39)
where

fopt is the function’s global optimum.

fé’est depicts the best objective value found during b
evaluations.

Example outputs obtained by application of the described method are shown
in the figure 3:3 and 3:4l According to the BBOB specification we rerun every
method for Ntrials = 15 times in order to obtain statistically significant re-
sults [25]. Hence, every technique is identified by the empirical median A?ed
(solid lines) and the space between the first and third quartiles (translucent
area). Note that the figures mentioned above use logarithmic y-axis to distin-
guish the orders of magnitude while converging to the optimum. This simple
method lets us register whether the algorithm has reached the optimum within
the specified precision.

The method described above, however, does not allow to average results
over a certain combination of functions, dimensions, etc. To allow better
comparisons we employ the scaled logarithm of the Ay, where the budget b is
normalized by the dimensionality of the search space n. Note also that for the
sake of convenience we reassign the term D (which can be sometimes treated
as training set size) to be equal to n. So, we compute the desired logarithm
Aljfg from medians A?ed over Ntrials trials:

IOgAmed _ AMIN
lo _ _
ATE = A?A‘{X—A}{IN logyo(1/1073) 4 log;(107%, (3.10)

where

A?AIN and A?AAX are the lowest and the biggest log A}ned
values obtained by the methods being studied for the par-
ticular benchmark function f, dimension D and normalized
budget b = 250 FEs/D.

93

3. PERFORMANCE ANALYSIS

The described method can then be used to obtain aggregated performance
measure for any combination of function and dimensionality. However, we
cannot directly determine if the algorithm has actually reached the optimum.

Plots from figures 36 describe the mentioned metric. Note that we
employ only medians here.

3.5.2 Discussion

We have compared performance of the CMA-ES, S-CMA-ES, **ACM-ES-k
with the POI MAES and Robust CMA-ES. The comparison is done in a two-
stage manner. During the first phase we analyze the algorithm’s convergence
rates and outline speed-up potential w.r.t. a standalone CMA-ES. Note that in
the first stage we analyze the results obtained from independent experiments
on our benchmarks. In the second phase we concentrate on the comparison of
surrogate modeling techniques by aggregating the results only over functions
or dimensions. We also present the CMA-ES results for convenience. In the
end we discuss the global performance by aggregating over the entire CEC
testbed.

3.5.2.1 Comparison using independent experiments

The performance shown on the particular CEC functions and dimensions is
caught by the figures and Note that we referred to the ** ACM-ES-
k as s*-ACM-ES for all figures. In can be seen that the methods from [4]
and [19] show the best performance on the majority of benchmark functions.
Those methods converge steadily, reaching the global optimum in most cases
and providing a significantly accelerate the classic CMA-ES. However, for f7
in 3D (**ACM-ES) or fi2 in 5D the models may stumble and mislead the
optimizer converging to the false optima ﬂ The methods does not noticeably
speed up the CMA-ES showing comparable performance for fs in both 2D
and 3D. From the graphs mentioned above we conclude that the S-CMA-ES
and **ACM-ES methods can be considered as direct competitors. However,
we cannot currently nominate the winner because the both methods often end
up in a global optima and show comparable convergence curves. Nevertheless,
the S-CMA-ES converge in the earlier stages of the experiment and often has
lower interquartile ranges (colored areas) which may indicate a more stable
behavior.

The methods implemented by the author of the thesis haven’t shown such
high performance rates as the algorithms above. Unfortunately, these tech-
niques led to a deceleration of the CMA-ES convergence speed in most cases.
In addition, the global optimum remains undiscovered in most cases for Robust
CMA and (except f7, f1 and f5) for POI MAES. However, in case of more com-
plicated fg where the other approaches get stuck, POI MAES clearly becomes

"According to the first quartiles we can still observe the occasional upturns

o4

3.5. Results assessment

the best performing method. Also, this method was shown to outperform
the classic CMA-ES on 20 dimensional fijo which may indicate the ability to
effectively replace CMA-ES for higher dimensions.

The Robust CMA method was recognized as the worst performing algo-
rithm. It has so low convergence speed that it has never reached the fiarget
during the experiments. This can be interpreted in a way that the benchmark
functions were initially designed to be noiseless. On the other hand, the de-
scribed method expects the objective function to be noisy and hence, provides
every fitness prediction with multiple objective evaluations within the range
close to the desired point. However, while the most methods become confused
on the fg and degrade at the local optima the Robust CMA-ES converges faster
and, which is more interesting, with an invariable speed. We hence treat such
behavior as a sign of robustness appeared even on noiseless problems. How-
ever, to make an unambiguous assertion one should additionally investigate
the robustness approximations on the benchmark of noisy functions.

3.5.2.2 Experiments aggregation

In this section we have combined the results from our experiments through the
certain function or/and dimension. Hence, the figure depicts the results
aggregated over different dimensions for every suitable function. Note that
description of the averaging technique is given earlier in subsection .
Next, we averaged the results of the methods for every dimension over all
functions. The aggregated graphs can be obtained from the figure 3.6l In
the end we have combined all the experiments conducted on the CEC testbed
together in the single graph shown in the figure [3.7]

Using the combined results we can conclude that S-CMA-ES and **ACM-
ES have the fastest convergence rates for the majority of functions and di-
mensions. However, it should be noted that the S-CMA-ES is the fastest at
the beginning of the experiment (till approx. 75FEs/D). In the middle phase
(approx. 75—125FEs/D) the algorithm slows down (e.g. for functions fi1, fi2
and dimensions higher than 2) and often gets stuck at some false optimum for
a while. But, despite that, the algorithm often converges to a global optimum
clearly outperforming a classic CMA-ES.

According to the aggregated results it becomes clear that the **ACM-ES
performs slightly worse, but still at the comparable level. It converges fast at
the beginning (however, not so fast) but does not have such strongly marked
stagnation period (especially for fi; and for dimensions 5 and 10) which makes
the algorithm the fastest at the middle phase. However, the algorithm reaches
the global optimum less frequently, which is relevant for functions f7, fis.

In reference to POl MAES we say that it shows comparable (but always
slower convergence) performance to the classic CMA-ES. We can see that for
low-dimensional problems POI MAES finally converges (at 250 FEs/D) close
to the other algorithms (outperforming CMA-ES and **ACM-ES for 3D). We

95

3. PERFORMANCE ANALYSIS

f10(2D)

= S-CMA-ES
m— s*-ACM-ES
== POl MAES
=== Robust CMA
= CMA-ES

0 50 100 150 200 250 300 350 400 450 500
fa(2D) number of function evaluations fs(2D)
102
1
1072
1074
1078 I ! 1 1 1075k i L " . 3
0 100 200 300 400 500 0 100 200 300 400 500
fs (2D) fs (3D)
103 3
102F
101
1t
10
-2
10 3
_ 9
107 7 8
10—4 i L i L 6 i " s "
0 100 200 300 400 500 0 150 300 450 600 750

f7(3D)

500 0 150 300 450 600 750

fa(2D) fo (2D)

102
1
1072
107
107°

] : i . 1078] i : :
0 100 200 300 400 500 0 100 200 300 400 500

Figure 3.3: Convergence curves (median, first and third quartiles) computed
from the particular algorithm runs for all feasible combinations of CEC func-
tions fy — fio and dimensions n = {2, 3,5,10,20}.

56

e to optimum

C

distan

3.5. Results assessment

" £ (2D)
10 T T T T T T T
== S-CMA-ES
102} — st ACM-ES
1t = POl MAES
=== Robust CMA
1072 = CMA-ES
107
108
107 I] 5 i i L] 1 1
0 50 100 150 200 250 300 350 400 450 500
fu (3D) number of functi%B 4evaluations Fu (5D)

102 L
1t
1072
1074
1076
1078t : : : : 1078 ! : : i
0 150 300 450 600 750 0 250 500 750 1000 1250
10° _fu(100)
102 |
1t
1072 L
10*4 |
10—5 |
1078 H ! ! ! L i ! :
0 500 1000 1500 2000 2500 0 150 300 450 600 750
[12(5D) [12(10D)
104 T T T T T T
10%f 102}

10*2 L
10—4 L
10*6 L

. : 10t :
750 1000 1250 0 500

10*2 L
10*4 L
10*5 L

1078 . \
0 250 500

\
\

1000 1500 2000 2500

12 (20D)

0 1000 2000 3000 4000 5000

Figure 3.4: Convergence curves (median, first and third quartiles) computed
from the particular algorithm runs for all feasible combinations of CEC func-
tions f11, fi2 and dimensions n = {2,3,5, 10,20}.

57

3. PERFORMANCE ANALYSIS

also observed an interesting case when the POI MAES outperformed CMA-ES
on 20-dimensional fio. We address such behavior to the fact that POI-based
approach tends to explore areas with high model uncertainties which is useful
for multi-modal problems|[14], especially in case of high dimensionality, where
the classic CMA-ES is not capable to learn the sufficient landscape area. Also,
slower convergence rates may be explained by the fact that the model requires
more time to move from exploration phase to exploitation.

We also believe that the POI metric itself can be used to speed up the CMA-
ES technique, because of a reasonable utilization of the uncertainty criterion
without introducing any new hyper-parameters [14]. However, one can consider
the method described in to be not flexible enough. The issue is that the
model selects 2\ most recent evaluated points for training. A better strategy
for the selection of a reasonable training set may be required in order to obtain
better performing algorithm.

o8

3.5. Results assessment

== S-CMA-ES

— c*.ACM-ES

= POl MAES
=== Robust CMA
= CMA-ES

0 25 50 75 100 125 150 175 200 225 250

number of function evaluations/n

250 250

Figure 3.5: Scaled logarithms of the empirical medians (A?ed) depending on
FEs/D. The graphs show the benchmark results on fi1, fi2, f¢ and f7 averaged
over all feasible dimensions.

99

3. PERFORMANCE ANALYSIS

0 T T T T T T T T T
e S-CMA-ES
— g* ACM-ES
-2r = PO| MAES
== Robust CMA
2 = CMA-ES
g 4t
<]
_6 -
-8k 1 1 1 1 1 1 L 1 1
0 25 50 75 100 125 150 175 200 225 250
number of function evaluations/ n
10D
0 T

0 25 50 75 100 125 150 175 200 225 250

0 50 100 150 200 250 0 50 100 150 200 250

Figure 3.6: Scaled logarithms of the empirical medians (A;I’ed) depending on
FEs/D. The graphs show the benchmark results achieved by averaging all
functions defined in 5D, 10D, 2D and 3D.

60

3.5. Results assessment

0 ==S-CMA-ES |
==s*-ACM-ES
==PO| MAES
== Robust CMA

-1r ==CMA-ES
-2F
-3F
g
—
<
-4F
-5F
_6 -
-7F
0 25 50 75 100 125 150 175 200 225 250

number of function evaluations/n

Figure 3.7: Scaled logarithms of the empirical medians (Al}“ed) depending on
FEs/D. The results are summarized over all CEC functions at all dimensions.

61

Conclusion

In this thesis we have reviewed several state-of-the-art surrogate modeling ap-
proaches to continuous black box optimization. All those approaches, based on
the concept of Gaussian processes, were used to replace the expensive objec-
tive function evaluations into the CMA evolution strategy. Subsequently, we
have selected several existing methods for the performance comparison. Un-
fortunately, we haven’t managed to employ all the existing methods because
of insufficient implementation quality. In addition, we have also implemented
several methods from the list mentioned above and compared them to the
already existing ones.

For the benchmarking purpose we have implemented the testbed from [6]
within the surrogate-modeling [4] and benchmarking [25] frameworks. As a
result, we have compared 5 approaches: primary CMA-ES [8] without any
surrogate model, S-CMA-ES [4], **ACM-ES [19], POI MAES [14] and Robust-
ness approximation CMA-ES [21].

During the experiments it was shown that the best performing approach
for small evaluation budgets (~75FEs/D) appears to be S-CMA-ES, clearly
outperforming the standard CMA-ES in most cases. However, it is being
outperformed by the **ACM-ES-k for budgets of size 75—125FEs/D. For the
larger evaluation budgets the former approach again performed the best. The
POI MAES technique has shown a slightly worse performance comparing to
CMA-ES with rare improvements. However, we believe that the method can
be further enhanced by introducing a new selection strategy. The last method
has shown inadequate performance in our experiments. We also remark that
the method was designed to perform in noisy environment. However, as the
experiments on noisy benchmarks were beyond the scope of this thesis, we
cannot uniquely state that the method is not suitable for surrogate-assisted
black box optimization.

63

1]

2]

3]

4]

[5]

(6]

7]

18]

Bibliography

Biiche, D.; Schraudolph, N. N.; Koumoutsakos, P. Accelerating evolu-
tionary algorithms with Gaussian process fitness function models. IEEFE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, volume 35, no. 2, 2005: pp. 183-194.

Chaput, J. C.; Szostak, J. W. Evolutionary optimization of a nonbiological
ATP binding protein for improved folding stability. Chemistry € biology,
volume 11, no. 6, 2004: pp. 865-874.

Hansen, N.; Ostermeier, A. Adapting arbitrary normal mutation distribu-
tions in evolution strategies: The covariance matrix adaptation. In Evolu-
tionary Computation, 1996., Proceedings of IEEE International Confer-
ence on, IEEE, 1996, pp. 312-317.

Bajer, L.; Pitra, Z.; Holena, M. Benchmarking gaussian processes and
random forests surrogate models on the BBOB noiseless testbed. In Pro-
ceedings of the Companion Publication of the 2015 Annual Conference on
Genetic and Evolutionary Computation, ACM, 2015, pp. 1143-1150.

Rasmussen, C. E.; Williams, C. K. Gaussian Processes for Machine Learn-
ing. the MIT Press, 2006, ISBN 026218253X.

Li, X.; Engelbrecht, A.; Epitropakis, M. G. Benchmark functions for
CEC’2013 special session and competition on niching methods for multi-
modal function optimization.

LOSHCHILOV, 1. G. Surrogate-Assisted Evolutionary Algorithms. Disser-
tation thesis, Ecole Doctorale d’Informatique, ED 427, Université Paris
Sud 11, 2013.

Hansen, N. The CMA evolution strategy: a comparing review. In Towards
a new evolutionary computation, Springer, 2006, pp. 75-102.

65

BIBLIOGRAPHY

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

66

Hansen, N.; Ros, R.; Mauny, N.; et al. PSO Facing Non-Separable and
[1I-Conditioned Problems. [Research Report]|, 2008.

Beyer, H.-G.; Finck, S. HappyCat—A Simple Function Class Where Well-
Known Direct Search Algorithms Do Fail. In Parallel Problem Solving
from Nature-PPSN XII, Springer, 2012, pp. 367-376.

Auger, A.; Hansen, N. A restart CMA evolution strategy with increas-
ing population size. In FEvolutionary Computation, 2005. The 2005 IEEE
Congress on, volume 2, IEEE, 2005, pp. 1769-1776.

Hansen, N. Benchmarking a Bl-population CMA-ES on the BBOB-2009
function testbed. In Proceedings of the 11th Annual Conference Compan-

ion on Genetic and Evolutionary Computation Conference: Late Breaking
Papers, ACM, 2009, pp. 2389-2396.

Jin, Y. A comprehensive survey of fitness approximation in evolutionary
computation. Soft computing, volume 9, no. 1, 2005: pp. 3-12.

Ulmer, H.; Streichert, F.; Zell, A. Evolution strategies assisted by Gaus-
sian processes with improved preselection criterion. In Evolutionary Com-
putation, 2003. CEC’03. The 2008 Congress on, volume 1, IEEE, 2003,
pp- 692-699.

Jones, D. R.; Schonlau, M.; Welch, W. J. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, volume 13,
no. 4, 1998: pp. 455-492.

MacKay, D. J. Introduction to Gaussian processes. NATO ASI Series F
Computer and Systems Sciences, volume 168, 1998: pp. 133-166.

Loshchilov, I.; Schoenauer, M.; Sebag, M. Comparison-based optimizers
need comparison-based surrogates. In Parallel Problem Solving from Na-
ture, PPSN XI, Springer, 2010, pp. 364-373.

Loshchilov, I.; Schoenauer, M.; Sebag, M. Self-adaptive surrogate-assisted
covariance matrix adaptation evolution strategy. In Proceedings of the
14th annual conference on Genetic and evolutionary computation, ACM,
2012, pp. 321-328.

Loshchilov, I.; Schoenauer, M.; Sebag, M. Intensive surrogate model ex-
ploitation in self-adaptive surrogate-assisted cma-es (saacm-es). In Pro-
ceedings of the 15th annual conference on Genetic and evolutionary com-
putation, ACM, 2013, pp. 439-446.

Lu, J.; Li, B.; Jin, Y. An evolution strategy assisted by an ensemble of lo-
cal gaussian process models. In Proceedings of the 15th annual conference
on Genetic and evolutionary computation, ACM, 2013, pp. 447-454.

Bibliography

[21]

[22]

23]

[24]

[25]

[26]

Kruisselbrink, J. W.; Emmerich, M.; Deutz, A. H.; et al. A robust opti-
mization approach using Kriging metamodels for robustness approxima-
tion in the CMA-ES. In FEvolutionary Computation (CEC), 2010 IEEE
Congress on, IEEE, 2010, pp. 1-8.

Mohammadi, H.; Le Riche, R.; Touboul, E. Making EGO and CMA-
ES Complementary for Global Optimization. In Learning and Intelligent
Optimization, volume 8994, Springer, 2015, pp. 287-292.

The Mathworks Inc., Natick, Massachusetts. MATLAB wversion
8.0.0.267246 (R2015b). 2015.

Bajer, Lukas and Pitra, Zbynék. S-CMA-ES framework tutorial. [Cited
2016-5-5]. Available from: https://github.com/bajeluk/surrogate-
cmaes

Hansen, N.; Auger, A.; Finck, S.; et al. Real-parameter black-box opti-
mization benchmarking 2010: Experimental setup. INRIA, 2010, <inria-
00462481 >.

Bajer, L.; Pitra, Z.; Holena, M. Doubly Trained Evolution Control for the
Surrogate CMA-ES, submitted to PPSN 2016.

67

https://github.com/bajeluk/surrogate-cmaes
https://github.com/bajeluk/surrogate-cmaes

APPENDIX A

Acronyms

BBOB Black box optimization benchmarking
CEC Congress on evolutionary computation
CF Composition function

CMA-ES Covariance matrix adaptation evolution strategy
CSA Cumulative step length adaptation

EC Evolution control

ES Evolutionary strategy

EGO Efficient global optimization

FE (Objective) function evaluation

GP Gaussian process

GPR Gaussian process regression

LHE Latin hypercube sampling

LCB Lower confidence bound

MAES Model-assisted evolution strategy
MCR Matlab compiler runtime

MMP Mean of model prediction

POI Probability of improvement

SE Squared exponential (covariance function)

SVM Support vector machines

69

APPENDIX B

Contents of enclosed CD

readme . tXto the file with CD contents description
ST e et et e e the directory of source codes
tsurrogate—cmaes the directory of the framework source codes

thesis............... the directory of IXTEX source codes of the thesis
L=< v the thesis text directory
tthesis.pdf the thesis text in PDF format

thesis.psooviiiiiiiiiiiiiii i the thesis text in PS format

	Introduction
	Motivation
	Context

	Background review
	Continuous black-box optimization
	Evolution strategies and CMA-ES
	CMA-ES restart strategies
	Surrogate-assisted optimization
	Gaussian processes
	Self-adaptive Surrogate-assisted CMA-ES

	GP-based surrogates in the context of CMA-ES
	Gaussian Process Optimization Procedure
	POI MAES
	Robustness Approximation in GP
	GP ensembling
	EGO-CMA
	Surrogate CMA-ES

	Performance analysis
	Existing framework
	CEC functions
	Implementation notes
	Experimental setup
	Results assessment

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

