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Abstrakt

Tato práce se zabývá problémem překladu programovaćıho jazyka Scheme do
nativńıho kódu a zkoumá možnost vytvořeńı nové předńı části překladače pro
jazyk Scheme s využit́ım LLVM. Dále předkládá návrh tohoto překladače a
jeho základńı implementaci otestovanou na několika ukázkových programech.
Nakonec hodnot́ı výkon přeložených programů v jazyce Scheme ve srovnáńı
s již existuj́ıćımi překladači a interprety.

Kĺıčová slova Scheme, LLVM, dynamický jazyk, překladač, běhové prostřed́ı

Abstract

This thesis analyzes the problem of compiling the Scheme programming lan-
guage to native code and explores the possibility of building a new Scheme
compiler frontend using the LLVM framework. It proposes a design of the
frontend and presents a prototype implementation of it, tested on various
example programs. It also evaluates performance of the compiled Scheme
programs in comparison with other existing compilers and interpreters of the
same language.

Keywords Scheme, LLVM, dynamic language, compiler, runtime system
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Introduction

Scheme is a functional programming language from the Lisp family, invented
during the 1970s by Gerald J. Sussman and Guy L. Steele. In its nature, it is
an implementation of an ”Extended Lambda Calculus”.[1]

As such, there are many implementations of Scheme today. Because of its
minimalist design and high extensibility (system of macros that can be used
to define new syntax), there are also many dialects.

Typically, Scheme programs are interpreted directly from source code, or
dynamically compiled using a JIT compiler. There are also implementations
of Scheme capable of translating the input source code into C.1 However, at
the time of writing, there is no working Scheme compiler that would generate
native code directly (without the intermediate step of compiling to C) and use
the LLVM framework to do it, although similar project exists for Common
Lisp.2

Goal of the thesis

The objective of this thesis is to design and implement such a compiler along
with a runtime environment for the language. The LLVM framework will
assist us in generating native code for any of the targets it already supports.
All we have to do is provide a frontend which will translate Scheme into the
LLVM internal representation (IR) and also a library that can interact with
the generated code and provide core functionality such as memory allocation,
error handling but also compiler invocation (to support dynamic evaluation
and translation of code).

1CHICKEN Scheme – available from https://www.call-cc.org/
2Clasp – available from https://github.com/drmeister/clasp
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Introduction

Structure of the thesis

In chapter 1, we give an overview of the LLVM compiler framework, we dis-
cuss properties of the Scheme language and we analyze the main challenges
associated with translation of Scheme into the LLVM assembly (IR).

Chapter 2 contains a detailed description of the compiler and runtime
system design we propose.

Chapter 3 gives us an insight into some of the implementation details, im-
plementation problems and their solution. It also shows the project’s structure
and its current status.

In the last chapter, we outline the various tests and sample programs we
have used during implementation and we also evaluate performance of our
Scheme implementation.
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Chapter 1

Analysis

1.1 LLVM compiler framework

1.1.1 Overview

LLVM is a collection of libraries and tools that make it easy to build compilers,
optimizers, Just-In-Time code generators, and many other compiler-related
programs. LLVM uses a single, language-independent virtual instruction set
both as an offline code representation (to communicate code between compiler
phases and to run-time systems) and as the compiler internal representation
(to analyze and transform programs).[2]

Today, LLVM is becoming a popular platform for implementing new pro-
gramming languages as well as porting the existing ones to use it. One of
the most notable examples is the Clang frontend with a single unified parser
for C, Objective C, C++ and Objective C++.[3] Among other projects using
LLVM there is Rubinius (Ruby with Just-in-time compiler), Julia (a new dy-
namic language for technical computing) or Rust (safe, concurrent systems
programming language).[4]

The advantage of using LLVM is that when we want to implement a new
compiler for our language of choice, all we have to do is to provide a frontend
which translates the language into the LLVM platform independent internal
representation (IR). Then we can apply a series of optimizations and trans-
formations to the code (already implemented to work on the LLVM IR). As
the last step, we simply choose a backend that converts the optimized code
to assembly of the particular machine architecture. That means we have just
ported the high level language to multiple platforms at once.

Conversely, we can extend LLVM with a new backend and suddenly all
the languages already compiling to LLVM IR are also able to compile to our
newly supported machine code.

This is the full realization of the classical compiler model consisting of in-
dependent frontends, a common optimizer in the middle and backends. LLVM
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1. Analysis

really tried to make this theoretical model work and it succeeded.[5]

It is also relatively well documented and the codebase is comprehensible
for newcomer developers, which is why we have decided to use it for a Scheme
compiler.

The LLVM project has grown considerably since its conception and we
will be using only parts of it. Namely the library for IR generation, the
target-independent optimizer, static and just-in-time compiler (for native code
generation).

For the static compilation, there is a tool called llc (LLVM system com-
piler) which takes the IR as input and emits native code in the form of text
(assembly) or binary (native object files).

There is also an LLVM linker (lld) but it is still in its early stages of
development, so we will use clang linker instead.

The generation of IR and JIT compilation will be handled by the LLVM’s
C++ API.[6][7]

1.1.2 LLVM Intermediate Representation

Now let us look more closely at the LLVM assembly language. It is a Static
Single Assignment (SSA) based representation that provides type safety, low-
level operations, flexibility, and the capability of representing high-level lan-
guages cleanly. It is the common code representation used throughout all
phases of the LLVM compilation strategy.[8]

There are three different forms of the language: an in-memory compiler IR,
an on-disk bitcode representation (suitable for fast loading by a JIT compiler),
and a human readable assembly language representation.

We can use the textual representation as a debug output of our compiler,
while the bitcode is suitable for piping the IR output from the frontend to the
llc tool which then converts it to a native object file for us. The in-memory
form of the assembly is represented by a set of C++ objects which can be
generated conveniently with the help of LLVM API.

So, the frontend we are going to design and implement, will use this API
to create the whole program representation in memory and then LLVM will
be able to convert it to any of the remaining forms.

In the LLVM IR, the basic compilation unit is called Module. That
roughly corresponds to a notion of one source file which is to be compiled to
one object file. A module consists of global variables, global constants and
global functions with local variables. There is also a symbol table containing
those functions and globals we choose to be visible to other modules. In the
C++ API, functions, variables and constants have their corresponding classes
which are all derived from a base class Value. For that reason, we will refer to
them as values. Identifiers prefixed with @ are used for the globals, whereas
identifiers of locals start with %.[8]

4



1.1. LLVM compiler framework

Global variables and constants are always represented by a pointer to a
memory location. Local variables can hold a value directly or they can also
point to memory. In that case, it is either memory holding a previously
declared/defined global or a memory location at the current function’s stack
frame, which we can allocate using the alloca instruction.

Local variables have to be in the SSA form. That means each variable
is assigned exactly once and has to be defined before it is used. The LLVM
IR handles definition and assignment in one step: Each instruction assigns its
result to a new variable. Even the store instruction has a return value but it
has no meaning and must not be used.

If we want to generate code which extensively operates on local variables
and we would like to describe those operations more naturally, without the
restrictions imposed by SSA, we can use stack variables made by alloca and
operate on them with load and store. Assignment through store is not
limited because the pointer itself does not change. That sort of code is not the
most efficient. LLVM can, however, optimize it later by mapping in-memory
variables to available CPU registers.

Every value in LLVM IR has a type. There are single value types (i1, i8,
i32, double), pointer types, array types, structure types, function types, etc.
We can use casts to convert between them.

To represent integers, for example, we use the numeric i<num> types,
where num determines their bit width and can be anything between 1 (boolean)
and 223 − 1.[8] In practice, we will use powers of two. For floating point num-
bers there are types half, float, double, fp128, . . . of different widths. Strings
are constructed similarly as in the C language – with arrays of i8 (equivalent
to char). There is one important difference between C and LLVM – integer
values have no sign. Instead it is the operations that interpret their oper-
ands as either signed or unsigned. That means we have multiple variants of
comparison instruction (icmp).

Generally, there are all the instructions we would expect from a real hard-
ware instruction set. However, this instruction set is more high-level and also
typed as we have already mentioned. For example, there is one instruction
which handles function calls including the passing of arguments. You cannot
push arguments manually onto the stack (in fact, there are no push and pop
instructions) or place them in registers (which registers?) as that would be
platform dependent. Instead you provide the arguments as operands to the
instruction, along with a function pointer which holds information about the
return and argument types, plus a selected calling convention.

LLVM defines several calling conventions:

• The C calling convention (compatible with C),

which supports functions with a fixed or variable number of arguments.

• The fast calling convention,

5



1. Analysis

which attempts to make calls as fast as possible.

• The cold calling convention,

which attempts to make code in the caller as efficient as possible under
the assumption that the call is not commonly executed.

• and others . . .

Apart from calling conventions there are all sorts of function and vari-
able attributes that can be used for a very low-level control. That includes
linkage types (internal, external, weak, . . . ), visibility styles (default, hidden,
protected), DLL storage classes (dllimport, dllexport), exception handling at-
tributes, tail call flags (which tell LLVM whether to perform a tail call optim-
ization), alignment specifiers and so on.

Example code written in the LLVM IR

%s t r u c t . I R S t r i n g = type { i 32 , i32 , [ 15 x i 8 ] }
%s t r u c t . IR Type = type { i 3 2 }
%s t r u c t . IR Cons = type { i 32 , %s t r u c t . IR Type ∗ , %s t r u c t . IR Type∗ }
%s t r u c t . I R I n t = type { i 32 , i 6 4 }
%s t r u c t . I R F l o a t = type { i 32 , doub l e }
%s t r u c t . IR Symbol = type { i 32 , i32 , [ 1 x i 8 ] }
%s t r u c t . IR Func = type { i 32 , i32 , %s t r u c t . IR Type∗ ( i32 , . . . ) ∗ }
%s t r u c t . IR Vec = type { i 32 , i32 , [ 1 x %s t r u c t . IR Type ∗ ] }

@igc = con s t an t %s t r u c t . I R S t r i n g {
i 3 2 3 , i 3 2 4 , [ 15 x i 8 ] c” example s t r i n g \00”

} , a l i g n 4

@n i l = con s t an t %s t r u c t . IR Type { i 3 2 2 } , a l i g n 4

@ c e l l = con s t an t %s t r u c t . IR Cons {
i 3 2 7 ,
%s t r u c t . IR Type∗ b i t c a s t (% s t r u c t . I R S t r i n g ∗ @igc to %s t r u c t . IR Type ∗) ,
%s t r u c t . IR Type∗ @n i l
} , a l i g n 8

@gvar = g l o b a l %s t r u c t . IR Type∗ nu l l , a l i g n 8
@glob = common g l o b a l i 3 2 0 , a l i g n 4
@ex i t c od e = i n t e r n a l g l o b a l i 3 2 0 , a l i g n 4

d e f i n e vo i d @func ( ) #0 {
e n t r y :
%t = a l l o c a %s t r u c t . IR Type , a l i g n 4
%i = a l l o c a %s t r u c t . I R I n t , a l i g n 8
%f l = a l l o c a %s t r u c t . IR F l oa t , a l i g n 8
%s t r = a l l o c a %s t r u c t . I R S t r i n g , a l i g n 4
%sym = a l l o c a %s t r u c t . IR Symbol , a l i g n 4
%c = a l l o c a %s t r u c t . IR Cons , a l i g n 8
%fn = a l l o c a %s t r u c t . IR Func , a l i g n 8
%v = a l l o c a %s t r u c t . IR Vec , a l i g n 8
%l o c = a l l o c a i32 , a l i g n 4
%pc = a l l o c a %s t r u c t . IR Cons ∗ , a l i g n 8
%tag = a l l o c a i32 , a l i g n 4
s t o r e i 3 2 1 , i 3 2∗ %loc , a l i g n 4
%0 = load i32 , i 3 2∗ %loc , a l i g n 4
%add = add nsw i 32 %0, 1
s t o r e i 3 2 %add , i 3 2 ∗ %loc , a l i g n 4
%1 = load i32 , i 3 2∗ %loc , a l i g n 4
%add1 = add nsw i 32 %1, 1
s t o r e i 3 2 %add1 , i 3 2∗ @glob , a l i g n 4
%2 = load %s t r u c t . IR Type ∗ , %s t r u c t . IR Type∗∗ @gvar , a l i g n 8
%tag2 = ge t e l emen t p t r inbounds %s t r u c t . IR Type , %s t r u c t . IR Type∗ %2, i 3 2 0 , i 3 2 0
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1.1. LLVM compiler framework

%3 = load i32 , i 3 2∗ %tag2 , a l i g n 4
s t o r e i 3 2 %3, i 3 2∗ %tag , a l i g n 4
r e t vo i d

}

d e f i n e i 3 2 @main ( i 3 2 %argc , i 8 ∗∗ %argv ) #0 {
e n t r y :
%r e t v a l = a l l o c a i32 , a l i g n 4
%argc . addr = a l l o c a i32 , a l i g n 4
%argv . addr = a l l o c a i 8 ∗∗ , a l i g n 8
s t o r e i 3 2 0 , i 3 2∗ %r e t v a l
s t o r e i 3 2 %argc , i 3 2∗ %argc . addr , a l i g n 4
s t o r e i 8 ∗∗ %argv , i 8 ∗∗∗ %argv . addr , a l i g n 8
%0 = load i32 , i 3 2∗ %argc . addr , a l i g n 4
%cmp = icmp ne i 3 2 %0, 2
br i 1 %cmp , l a b e l %i f . then , l a b e l %i f . end

i f . then :
s t o r e i 3 2 1 , i 3 2∗ %r e t v a l
br l a b e l %r e t u r n

i f . end :
%1 = load i32 , i 3 2∗ @ex i t code , a l i g n 4
s t o r e i 3 2 %1, i 3 2∗ %r e t v a l
br l a b e l %r e t u r n

r e t u r n :
%2 = load i32 , i 3 2∗ %r e t v a l
r e t i 3 2 %2

}

As we can see, it is quite verbose. Luckily, we don’t have to write such
code by hand. There is the C++ API for that purpose. Furthermore, if we
are not comfortable with the LLVM assembly at first, or we are unsure as to
what particular instructions to choose for our application and how to properly
generate them with the API, we can write the same code we want to obtain,
in any language LLVM already supports (C, for example). Then compile it to
the intermediate representation (clang can do that given a special command
line option) and at last use the llc tool with the ”-march cpp” option. This
way, LLVM selects the cpp backend and that backend converts IR to the exact
LLVM C++ API calls needed to generate the given code. In other words, it
can generate parts of the compiler for us as long as we can describe what the
result should be in any of the supported high-level languages. This kind of
feature is quite unique.

While the cpp backend is useful, it still produces code that is not the most
concise. LLVM is still evolving and there is a class IRBuilder which is not
used in the llc output. It is, however, used in the ”Kaleidoscope: Implementing
a Language with LLVM” tutorial [7] and we can see that it is more convenient
to generate instructions with its help. One of the advantages of IRBuilder
is that it maintains an insertion point within the module currently being
generated. We can just set the insertion point to a particular basic block
and then start generating instructions via the builder. They are going to be
appended to the chosen block automatically. We can choose a different basic
block at any time – instructions do not have to be generated sequentially.
There are even methods for saving and restoring the current insertion point
(useful when generating nested functions for example).
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1. Analysis

1.1.3 LLVM compiler

Generating the LLVM assembly is the most important part. After that, native
code generation is practically for free. Again, with the help of C++ API, we
can setup the whole backend compilation phase: choose the target architec-
ture, relocation model (whether to emit position dependent or independent –
relocatable code), the output format, etc.

For static compilation, we will use the ready-made llc. Otherwise, when
there is need to dynamically generate new code at runtime and execute it
immediately (JIT compilation), we can programmatically setup the backend
to perform the same translation with one difference: output is not dumped to
a file but instead it is made accessible from memory directly.

The compiled module behaves like a newly loaded dynamic library on
which we can perform symbol lookup. So, when we ask for a symbol associated
with particular function, a pointer to that function is returned to us and it
is ready to be called. Additionally we control the way our new dynamically
compiled module can perform its own symbol resolution when it depends on
any previously compiled code or data (either JITted or from a native library).
In the tutorial [7], this is solved by loading every new compiled module to the
address space of the compiler application, so all the symbols compiled so far
are immediately available to both compiler and every compiled module.

1.2 Compiling the Scheme language

Scheme is a functional programming language that follows a minimalist design
philosophy specifying a small standard core with powerful tools for language
extension. Along with Common Lisp, it is one of the main dialects of Lisp.
The principal design ideas of languages from the Lisp family are based on
Lambda calculus [9]

1.2.1 Basic properties [10]

Syntax

The syntax of Scheme is very simple. Both code and data are described in the
same way – using atoms and lists (the language is homoiconic). List is just a
collection of atoms or other lists, enclosed in parentheses.

In the following example, we define a global binding between the foo sym-
bol and number 1. Then we define a function named bar which takes one
argument x and returns its sum with the value of foo. Finally, we call the
function with number 2 as its argument.

( d e f i n e foo 1)
( d e f i n e ( bar x ) (+ x foo ) )
( bar 2)

8



1.2. Compiling the Scheme language

Generally, there are definitions and expressions in Scheme. They can be
implemented either as special built-in language constructs (like define, if,
quote), as syntactic macros derived from other constructs, or as functions.
We can see that even arithmetic operators are simple functions, so any arith-
metic expression will be written in a prefix form, essentially.

In-memory representation

The natural representation of Scheme code and data is a linked list. That list
is composed of the so called cons cells and atomic values. Each cons cell has
two slots:

1. car (containing a pointer to the list element)

2. cdr (containing a pointer to the rest of the list)

Figure 1.1: Scheme list memory layout

The car slot can point to an
atom (number, string, symbol, . . . )
or another cons cell (nested list).
The cdr slot usually points to cons
cell or null (marking the end of
list). It can also point to atom,
however, forming a special type of
list, the dotted list (because in the
source text, it has a dot in between
the last two elements).

For code, the linked list would be useful if we were to implement an AST
interpreter. In that case, the linked list itself could serve as AST and we would
interpret it easily by recursive traversal.

However, we are going to generate LLVM IR from Scheme code and for
that purpose we will probably need a custom AST which can be decorated
with more information.

Functions

Functions are a first-class object in Scheme. That means, we can manipulate
with them like with the rest of built-in types. We can assign functions to
variables, pass them as arguments to other functions or return them from
functions. We can also create anonymous lambda functions.

Lexical scope

Unlike earlier Lisps, Scheme is lexically scoped: All possible variable bindings
in a program can be analyzed by reading the text of the program without
consideration of the contexts in which it may be called.[9] That means all the

9



1. Analysis

bindings can be statically determined during compilation which is convenient
when we want to write a compiler instead of an interpreter. Symbolic refer-
ences are resolved and all that is left are anonymous values (globals or locals)
with the corresponding pointers to them (instead of the original names). How-
ever, we need to preserve names of at least the global values so that we can
refer to them from other separately compiled programs. This becomes an
issue when we want to support library functions implemented in Scheme or
compilation of new code at runtime.

Tail recursion

While Scheme has the means to write ordinary iteration using the do ex-
pression, it is preferable to use recursion (in accordance with the functional
paradigm). Because Scheme puts emphasis on recursive functions it requires
the compiled programs to perform tail call optimization. That means the res-
ulting code supports a special type of call which does not return back to the
caller function (in case the call was the last instruction followed only by re-
turn instruction) and furthermore the called function reuses the caller’s stack
frame. That allows for efficient iteration through recursion which uses con-
stant stack space as opposed to linear stack space with regard to the number
of calls.

LLVM supports tail call optimization but the support varies depending
on the calling convention. The classic C calling convention cannot be optim-
ized due to architectural reasons, fast calling convention can, but it does not
support variadic functions. There are also two specialized calling conventions
developed for Haskell and Erlang but they have worse overall performance
(they make even regular calls more expensive).[8]

However, LLVM can also perform tail call elimination which means it takes
a recursive function, analyzes it and transforms it to direct iteration if possible.
Therefore, there is no actual call in the resulting assembly. That should be the
preferred way if we want to generate as fast code as possible while adhering
to the language specification.

Type system

Scheme is a dynamically typed language. Each object has its one implicit
type (integer, float, string, symbol, function, . . . ) but variables and function
arguments (generally all identifiers bound to those objects) do not. The type
of an identifier is dynamic in a sense that any number of objects with different
types can be bound to the same identifier throughout its lifetime (one at a
time, of course).

That means there are no type annotations in a Scheme program. When
we define a function which takes a certain number of arguments, they can
be arguments of any type. In order to be able to work with the arguments,

10
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there has to be a way to query their types. Alternatively, we can make an
assumption about the type and just pass the variable to another function.
Eventually, some form of type checking has to be done, however. For that
purpose, every object contains runtime type information and most of the type
checking is handled no sooner than the program is running.

On the other hand, in some special cases the compiler can infer types using
control flow analysis. It can observe the actual arguments passed to functions
in our compiled program and specialize the calls (or even inline them). That
could be desirable for arithmetic functions which should be optimized for
speed.

For example, if we prove by the analysis that an instance of a call to +
function always operates on integers only, we can call a specialized implement-
ation that doesn’t do type checking or even emit a simple add instruction.
Another example is a call to function through a function object obtained from
a variable (or function argument). Without the control flow analysis, destin-
ation of the call would certainly have to be resolved at runtime, but we can
examine all variants determined by the actual usage in the code and perhaps
emit several versions of the function which makes this indirect call, with each
call resolved to the particular destination.

As LLVM was designed with statically typed languages in mind [5], we
have to work around this. All the Scheme objects will be modeled as tagged
structures and variables will point to those structures.

So, each type has a unique ID and each structure has a tag (as its first
element) containing that ID. By looking at that tag, we can tell types of the
structures apart. In the C language, we would then probably use union to
access each type representation conveniently. In LLVM, there are no unions,
so we simply use type casts.

1.2.2 Features [10]

Closures

When we define a function in Scheme, a local scope is created that has access
to the function arguments but also to all variables defined in parent scopes.
This is intuitive and the majority of programming languages work in a similar
way.

When we compare Scheme with C, we can see that C functions can also
access variables from the outer parent scope. That scope is always the global
scope, however. We do not allow nested functions. This has a clear advant-
age: All the variables accessed by a function are either local (that includes
arguments – both are saved in the current stack-frame) or global (saved in the
program’s data section – available at all times).

In Scheme, it is more complicated. First-class functions can and often are
defined inside other functions (lambda functions are almost always used in this
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way) and that means a function can potentially access variables which are not
local nor global. In the C terms, that means we have to somehow access not
only our own stack frame but also the stack frame of the function in which
our function was defined and possibly even this function’s parent frame.

When a function behaves in this way (accesses variables defined inside or
passed to other functions) we say it has a closure (and that closure contains
captured variables). In practice, it means we have to store a context pointer
to the function object. That context pointer points to the frame of the parent
function and it will be passed to our function every time it is called (which can
be in a different context). We must understand that there can be multiple
function objects for the same function but with different context pointers.
This can be demonstrated on a simple example:

( d e f i n e ( fn−f a c t o r y y )
( lambda ( x ) (+ x y ) ) )

Each time we call fn-factory with a specific y, it returns a new function object
with a context pointing to that particular value of y. Now we have to think
about where all the versions of y are actually stored. Clearly, it cannot be
the stack frame of fn-factory since that is valid only until we return from
the function. We have to take care of all local variables (or arguments) that
should outlive their respective function call execution time. Solution to this
issue is presented in section 2.1.4.

Dynamic calls

Scheme function calls resemble the application operation in Lambda calculus.
There is a list of expressions, we take the first one and apply the rest on it.

When a compiler processes such a call, it immediately knows how many
function arguments there are, and it may or may not know which particular
function is to be called. That leads to a direct or an indirect call. We can
imagine how both of these calls would look like in C and it will be the same in
LLVM IR. The function signature is known and the function pointer is either
a constant or a variable.

There is, however, a more general way to call functions in Scheme – using
apply (which itself is a function). We give apply the function we want to call
and a list of arguments. Now the whole argument list is probably a variable
(otherwise we would not use apply in the first place) and that complicates
things for the compiler.

As we have mentioned before, LLVM has a call instruction which takes
arguments as operands and we have to know how many there are, at compil-
ation time. Not even variadic functions can help us. Although they can take
variable number of arguments, at call site we have to enumerate them. There
are several ways to work around this restriction [11]:
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1. Choose a large enough maximum number of arguments and implement
apply using a switch with cases for every number up to the limit.

2. Implement apply in assembly (for every target CPU we want to support).

3. Use a universal signature for all functions (always pass a pointer to an
array of the actual arguments which is stored elsewhere).

The third approach seems to be the most reasonable although it means
we give up the possibility of passing arguments in registers (so there is a per-
formance cost). Limiting the maximum length of a list usable in the apply
function is not a good idea and if we were to implement parts of the language
in the target assembly, we would lose the advantage of LLVM’s platform inde-
pendence. The ideal solution would be to extend LLVM itself with this new
functionality but that is beyond the scope of this project.

Details of the proposed solution (based on the third approach) follow in
section 2.1.4.

Dynamic compilation

One of the defining features of Scheme which we have already mentioned is
its homoiconicity. Both code and data are expressed by the same syntactic
form – lists. Due to this property, we can write programs which dynamically
construct new code as data. This can be achieved very elegantly using the
core language functions (cons or list):

( d e f i n e c od e a s d a t a ( l i s t ’ lambda ( l i s t ’ x ) ( l i s t ’∗ ’ x ’ x ) ) )

In this example, code as data refers to a data list which can be interpreted as
a simple lambda function that implements square operation.

To actually run this code, we need to evaluate it first. Scheme has a
function eval which does exactly that. It takes the data we want to convert
to code and a namespace object. The namespace provides an environment
in which bindings exist and therefore symbolic references can be resolved.
We can, for example, call the make-base-namespace function which returns a
fresh environment populated with bindings to basic library functions. That
namespace can be passed to eval and if the evaluated code makes any new
definitions, the namespace will be updated with the associated bindings.

To support this mechanism, our LLVM compiler has to be accessible
from the runtime library and it should implement just-in-time compilation
of Scheme data. The namespace object corresponds to environment object
used by the compiler for static symbol resolution (described in section 2.1.3)
but in case of dynamic compilation at runtime, it is independent and can be
reused across multiple calls to eval. For more information, refer to section
2.2.3.
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1.2.3 Memory management [12]

The majority of Scheme objects is allocated on the heap and accessed through
pointers (maybe with the exception of primitive types such as numbers which
can fit into the pointer itself). The language was not designed with manual
memory management in mind, so you typically create an object, then use it
for a while assuming it is accessible as long as needed but after you are done
with it, you do not free its allocated resources explicitly. Instead, there is an
automated garbage collector which tracks references to objects and when it
finds out there are no references to a particular object, it can safely delete it.

There are many strategies used for garbage collection.[13] Generally, they
must provide a mechanism to distinguish live objects (with at least one ref-
erence pointing to them) from the dead ones (with no references left). That
can be accomplished by scanning pointers in the running program.

Allocated objects typically form a recurrent tree hierarchy. One object can
point to other objects. Primitive types such as numbers and symbols (pointing
to nothing else) represent the leafs of this object tree. For garbage collector,
however, roots are the most important, because the pointer scanning starts
there (before scanning the trees completely by recursion).

Where are the roots located? Typically on the stack (we must scan all the
active function stack frames), in CPU registers, and in the data section where
globals are defined.

The last question remains: How do we recognize what is and what is not a
pointer? The garbage collector can either guess (pointers are typically aligned,
they have a certain minimum address, and so on . . . ) or we can provide it
with additional information.

LLVM has support for garbage collectors.[14] You must provide your own
implementation of a chosen strategy but it can assist in generating code that
guarantees proper interoperability. For example, you can generate stack maps
in LLVM (containing the necessary metadata for an informed root scanning)
or emit read/write barrier intrinsic instructions (needed for the more complex
GC algorithms).

Another option is to use the Boehm-Demers-Weiser conservative garbage
collector [15] which does not require any compiler support (it is originally in-
tended is a malloc/free or new/delete replacement for C/C++). This collector
is available as a dynamic library and we can just link it to our runtime and
implement object allocation with its help.

If we wanted to use our own GC, the implementation of pointer scanning
would be platform dependent (accessing registers and stack directly is only
possible in assembly), so using the GC library certainly is a simpler option.
The only major disadvantage of the conservative collector is that it treats
everything that looks like a pointer as a real pointer which may result in
occasional leaks, although the authors claim it is unlikely that this will result
in a leak that grows over time.[16]
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Chapter 2

Design

2.1 Compiler

2.1.1 Lexical analysis

We start with lexical analysis like we would in any other compiler. Scheme is
a particularly simple and elegant language, so this layer of the compiler will
be quite basic.

We need to design a tokenizer which will read the input source code and
give us a sequence of tokens. Each of the tokens has a type and optionally an
additional parameter.

There is a total of six token types. We list them in table 2.1. Numer-
ical types, each with its value, String type with text value, Symbol type
with name which is used to refer to Scheme objects, Keyword type with the
particular keyword specified and a special Error type used to indicate invalid
tokens such as unterminated string literal.

Table 2.1: Token types

Type Integer Float String Symbol Keyword Error

Param. value value value name name –

This is the list of keywords:

(, ), #t, #f, null, define, lambda, quote, if, let, ’, and, or

The tokenizer skips white-space characters and lines starting with ”;”
(comments). Then it expects a token. Each token is terminated by a white-
space character or the right parenthesis keyword. Integer numbers consist
exclusively of digits and an optional sign, floating point numbers consist of
digits, sign and a decimal point. Strings are enclosed in double quotes and
support C-like escape sequences (\n, \t, \", . . . ). All unquoted strings not
corresponding to the aforementioned types are either keywords or symbols.
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In our compiler we will refer to the tokenizer as Reader. The Reader
behaves like an input stream. We specify the input and then we can query
next token and current token repeatedly. That means it has an internal
state corresponding to current position in the source.

We define three different Reader types:

1. FileReader that reads from input file stream

2. StringReader that reads directly from a given string

3. ListReader that reads from already compiled Scheme data

FileReader is used when we want to compile source code located in a
text file. StringReader processes in-memory string given from a command
line argument for example. ListReader is needed for runtime code evaluation
– when we convert Scheme data to Scheme source code and subsequently
compile it using our frontend and LLVM JIT (see 2.2.3).

Lpar Rpar Quote

StrEnd RestEnd

Empty

(
) '

 \s

Comment

;

String

"

Rest

[^()'"\s;]\n

 [^\n]

 "

 [^"]

 [)\s]

 [^)\s]

Figure 2.1: Token reader automaton (simplified)

Both FileReader and StringReader read its input one character at a time
and process the characters using a finite state automaton 2.1. ListReader,
however, works with a potentially nested atom/list tree-like structure loaded
recursively from memory. There is no need to identify tokens from characters
but rather convert runtime types to their corresponding token types. A stack
is used to process elements loaded from the program’s memory.

As a first step, we push the root of the data expression onto the stack.
Each time the next token is queried, the top element is popped and examined.
If it is an atom, we simply return the correct token type. In case of list we
traverse its elements, push them in reverse order with a special ”end-of-list”
marker at the beginning and return the ”(” keyword. When the EOL marker
is reached, we return the closing ”)”.
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2.1.2 Syntax analysis

Using the Reader we get a higher level representation of the source code con-
sisting of lexical tokens which we can now use as terminal symbols in the
language grammar.

Our variant of Scheme is based on the following grammar:

prog = form { form }
form = ”(” de f ”)” | exp r | ”(” ” r e q u i r e ” s t r ”)”
de f = ” d e f i n e ” sym exp r

| ” d e f i n e ” ”(” sym s ym l i s t ”)” body
exp r = atom | ”(” c a l l s y n ”)” | ” ’” data
c a l l s y n = ” lambda” ”(” s ym l i s t ”)” body

| ” quote ” data
| ” i f ” exp r exp r exp r
| ” l e t ” ”(” b i n d l i s t ”)” body
| ”and” { exp r }
| ” or ” { exp r }
| exp r { exp r }

atom = s t r | sym | i n t | f l o a t | t r u e | f a l s e | n u l l
s ym l i s t = { sym }
b i n d l i s t = { ”(” sym expr ”)” }
data = atom | ( ”(” l i s t ”)” ) | ” ’” data
l i s t = { data }
body = { form }

We use a recursive descent parser to generate abstract syntax tree from the
tokens. Each node in the AST then corresponds to one particular language
construct.

A scheme program is a sequence of forms, where each form is either defin-
ition or expression.

Definition

There are two types of definitions. The first one is used to define a binding
between symbol and expression. With the second one, we can create named
functions. It is actually a syntactic shortcut equivalent to the definition of
binding between symbol and lambda function.

The two AST nodes created from definitions are ScmDefineVarSyntax
and ScmDefineFuncSyntax. ScmDefineVarSyntax node is a parent of two
other nodes representing a symbol name and the expression bound to the
symbol. ScmDefineFuncSyntax node has three children nodes: function name,
argument list and body list (because the body is a list of forms).

Expression

Expression can be atomic (string, symbol, number, boolean, null), it can be a
function call, data (quoted atom or list) or a special construct such as lambda,
if, let, and, or.
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All non-atomic expressions are essentially lists. If the first element of the
list is a keyword, the list has a special meaning. Otherwise it is a function
call. The only exception is a quoted list (preceded by ’ keyword) or any list
nested in other quoted list. Those lists represent data.

AST nodes for atoms are quite straightforward. String, symbol, integer
and float nodes are named after the corresponding token types and contain
the numeric values, string values and symbol names.

ScmLambdaSyntax node represents an anonymous lambda function defin-
ition. It points to argument list and body list nodes but has no name.

ScmQuoteSyntax points to the data node (list or atom).
ScmIfSyntax points to condition expression, then expression and else

expression.
ScmLetSyntax points to binding list (sequence of local binding defini-

tions) and body list.
We also have nodes for logical and and or expressions.
Lists are constructed with ScmCons nodes, each pointing to car and cdr

nodes. There are two special types of lists:

1. Symlist that can contain only symbols (function argument names)

2. Bindlist that contains symbol – expression pairs (used to define bind-
ings for the local scope of body)

All the node types inherit from a base type ScmObj. Graph 2.2 shows
the hierarchy.

The parser can reveal syntax errors such as unterminated lists, unexpected
tokens in special lists, missing list elements. It further ensures that the last
form of each body is an expression. We cannot permit let expressions or
function bodies with definitions only. They must always return something.

More kinds of errors are handled by the semantic analysis pass.
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llscm::ScmObj

llscm::ScmArg

llscm::ScmCall

llscm::ScmCons

llscm::ScmDefineSyntax

llscm::ScmExpr

llscm::ScmFalse

llscm::ScmFloat

llscm::ScmFunc

llscm::ScmInt

llscm::ScmLit

llscm::ScmNull

llscm::ScmProg

llscm::ScmTrue

llscm::ScmInlineCall

llscm::ScmDefineFuncSyntax

llscm::ScmDefineVarSyntax

llscm::ScmAndSyntax

llscm::ScmIfSyntax

llscm::ScmLambdaSyntax

llscm::ScmLetSyntax

llscm::ScmOrSyntax

llscm::ScmQuoteSyntax

llscm::ScmRef

llscm::ScmStr

llscm::ScmSym

Figure 2.2: Simplified inheritance graph of the AST node types
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2.1.3 Semantic analysis and AST transformation

With the AST generated, we can traverse it and perform a limited semantic
validation as well as transformation aimed at simplification of the AST before
code generation.

For example, all the ScmDefineFuncSyntax nodes are decomposed to
ScmDefineVarSyntax and ScmLambdaSyntax like this:

( d e f i n e ( foo x y ) (+ x y ) ) => ( d e f i n e foo ( lambda ( x y ) (+ x y ) ) )

Furthermore, lambda functions have to be named (by a unique identifier),
their definitions moved to separate forms and symbolic references added at
the original location of the in-place definition. For example:

(map ( lambda ( x ) (∗ x 2) ) l s t )
=>

( d e f i n e lambda#0 ( lambda ( x ) (∗ x 2 ) ) )
(map lambda#0 l s t )

We call this phase of translation the compile-time evaluation. Each node
of the AST has its CT Eval method whose purpose is to recursively call
CT Eval on its children and then return either itself or a modified version of
itself. That is exactly what is happening in the two examples. Additionally,
the second example, where we create a new definition, shows that we need to
have access to the whole program representation (ScmProg node with the
list of forms) in order to extend it at the top level.

What is even more important is the mechanism used to resolve symbolic
references. That is the main task of semantic analysis. When we find a
definition in the AST, it means we’re supposed to create a new symbol –
expression binding at a specific scope. Then, each time we see the symbol
declared in that definition, we can link it to the actual expression. For that
purpose, we use environments.

Compile-time evaluation of each AST node takes place in an environment.
At first, we create a global top-level environment (ScmEnvironment object)
and populate it with symbol bindings to externally available runtime functions.
Internally, the ScmEnvironment contains a map of symbols (keys) and AST
nodes (values). Some of the nodes are not attached to our tree yet (the external
functions). The environment also contains a pointer to the ScmProg node
(so that lambda definitions can be moved) and optional pointers to parent
environment and context (function that uses this environment as its local
scope).

As we recursively call CT Eval starting from the root of the AST, we
pass around the environment, so it can be updated each time a definition is
encountered. However, not all definitions are global. When a definition is
located inside a function, the binding is valid in the body of that function
only. Similarly, local bindings are created for each let block. For that reason,
CT Eval methods of functions and let blocks handle the creation of new
environments.
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Each new environment beside the global one must have a parent. The
parent environment is always the one which was passed to CT Eval where
we currently set up the new child environment. So, when we evaluate a global
function, for example, we create a new environment whose parent is the global
environment and pass that local environment to the function body’s CT Eval.
It is automatically local because when a symbol lookup occurs, we search for
the binding in the current environment and its parents (not children). In fact,
the environment does not even have a reference to its children.

When CT Eval is called on a symbol (ScmSym), the symbol lookup
takes place. We query the current environment for the object bound to the
symbol. It can return another symbol when multiple bindings are chained. In
that case, we want to resolve that symbol as well. If the program consists of

( d e f i n e a 1)
( d e f i n e b a )
( d e f i n e c b )
(+ c 2)

and we ask for the binding of c, we get number 1. Each resolved symbol is
replaced by a reference node (ScmRef) which contains name of the symbol,
pointer to the referenced object and a relative position of the referenced object
with respect to the symbol location. The relative position is defined as the
number of parent environments (only those belonging to functions) which were
traversed before we have found the referenced object.

( d e f i n e x )
( d e f i n e ( foo c )

( lambda ( b )
( lambda ( a )

(+ a b c x ) ) ) )

In the example above, object bound to a has a relative position 0 because
it is the innermost function’s argument (a is bound to a special node ScmArg
– the actual expression bound to argument varies at runtime).

Position of b is 1 (it is defined one level up) and position of c is 2 (ana-
logous). We need this information because references with a position greater
than zero are captured in a closure and closure data access requires special
support in the code generator (see 2.1.4). Note that the position of x is not 3.
Global variables (defined in the top-level environment) are assigned a special
position value (a negative number).

To sum it up, referenced objects can be either global (position < 0), local
(position = 0) or captured (position > 0).

The main benefit of having ScmRef nodes is that the compiler will not
be confused by redefinitions of the same symbol name. This works because
we create bindings and resolve them in one pass as we sequentially traverse
the code (in the form of AST). So, if there is one definition of foo after which
several references to foo follow and then we discover a redefinition of the same
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symbol, all of the previous references will have already been resolved and only
then we modify the environment for any future references.

There is one special case we have to handle: forward references. There
are times when forward references can be avoided by changing order of the
source expressions and definitions. However, in some cases that is not pos-
sible. Take for example two functions which call each other. In Scheme, there
is no dedicated construct for function declaration, so instead of solving the
problem like we would in C/C++, the compiler must detect forward references
implicitly.

When we encounter symbol which is not bound to any object yet, instead
of immediately raising an undefined symbol error, we just make a ScmRef
pointing to nothing and we save a pointer to it (along with a pointer to the
current environment), in a special table located in the top-level environment.
In that table, we can later look up that reference by symbol name when the
symbol gets defined, rerun symbol resolution and update that reference before
deleting the corresponding table entry.

With this resolution system in place, we can of course detect references to
undefined symbols (those that remain in the forward reference table after the
whole AST has been processed) and report error to the user.

Another important function of semantic analysis is to annotate the AST
with useful information for the code generator. Information such as the pos-
ition of referenced objects, described above. Furthermore we need to distin-
guish between direct and indirect calls.

In Scheme, function is a first-class object which we can suspect just by
looking at the grammar. This is the structure of a function call:

”(” exp r { exp r } ”)”

In general case it means the first element of a list is an arbitrary expression that
should evaluate to a function object at runtime. A function object which takes
the specified number of arguments obtained after evaluation of the following
list expressions.

When we process the function call by CT Eval, we can examine the first
element. In most cases, it will just be a reference to function (its name or
alias) which means we can mark the call as direct. Direct calls have the
advantage that we can check whether the number of arguments matches the
function signature, at compilation time. However, it is also possible the first
expression is another function call, conditional expression, etc. In that case,
the final function object is unknown at compilation time. The value of the
expression could depend on runtime variables or we might not get any function
object at all. This kind of call is indirect. We must first obtain a return value
from the evaluated expression and then perform runtime checks to make sure
we can safely execute the call using information from the function object.

While processing definitions, we also create AST nodes for user defined
functions (ScmFunc). Each node contains information about the expected
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number of arguments, then a list of argument names, list of bodies and two
important flags, has closure and passing closure. The first flag simply indic-
ates whether this function has captured any objects from surrounding envir-
onments. The second flag is useful when we have nested closures and need
to pass closure context from an outer function through a middle function to
particular inner function. This mechanism is described closely in 2.1.4.

For a complete closure support, it is sometimes necessary that local ob-
jects defined inside functions or arguments passed to them outlive the func-
tion execution itself. That can be solved by placing captured objects on the
heap instead of the function’s stack frame. For this purpose, we have the
heap local idx map in the ScmFunc object. When symbolic references are
resolved and we encounter a captured object, we assign index to it using the
map. That index will be used to locate the symbol within a heap array (see
2.1.4).

ScmFunc nodes are also used for external functions (from runtime or
other library). They don’t contain bodies or argument names and serve as
declarations provided by the top-level environment.

Additionally, we can subclass ScmFunc and create nodes for specific func-
tions that are either explicitly called or inlined when possible, using a special-
ized code. That way we can get more efficient code in some cases.

On the AST, we could also perform basic optimization passes such as
constant folding or dead code elimination but since we are using the LLVM
framework as backend, it would be redundant. LLVM has all these optimiza-
tions (and more) already implemented at the IR level (see 2.1.4).

At this point we have gathered enough information to proceed with code
generation.
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Table 2.2: Type structures

Length [B] LLVM type Label Note

scm type

4 i32 tag

scm int

4 i32 tag

8 i64 value

scm float

4 i32 tag

8 double value

scm str / scm sym

4 i32 tag

4 i32 length number of characters

≥ 1 [1 x i8] string zero terminated,
[1 x i8] array actually
has length+1 elements,
not 1

scm cons

4 i32 tag

arch. specific scm type* car both car and cdr point
to any type

arch. specific scm type* cdr after reading the tar-
get’s tag, we can cast
it to the right structure
type

scm func

4 i32 tag

4 i32 argc number of arguments

arch. specific scm type* (scm type*, ...)* fnptr ptr to implementation

arch. specific scm type* (scm type**)* wrfnptr ptr to a wrapper func-
tion receiving array of
arguments

arch. specific scm type** ctxptr ptr to captured vari-
ables (or null, if there
is no closure)

scm vec

4 i32 tag

4 i32 size number of elements

≥ 0 [1 x scm type*] elems elements of the vector
(actual length of the
array varies)
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2.1.4 Code generation

In the code generation phase we take full advantage of the LLVM API which
allows us to easily transform AST nodes to code and data expressed by the
intermediate representation (IR).

We traverse the whole tree recursively and generate code for each node.
We also save the generated LLVM Values back to the nodes, so that when
we process ScmRef nodes we can determine what code they are referring to
without performing any additional lookup.

Types

First, we have to define our types. Scheme is dynamically typed which means
that any variable can hold any type. Because each type has a different size
(and in case of strings and symbols, that size has no constant limit), it would
be impractical to store them by value. So, instead, variables will point to the
values represented by tagged structures. Each type has its unique tag which
we store in the first structure field so we could later use it for runtime type
inspection.

LLVM does not name structure members. Instead, it uses numerical in-
dices and instruction getelementptr (GEP) for access. Table 2.2 summarizes
the layout of type structures.

Note that for strings, vectors and symbols we use static array declared
as [1 x type] just to express that the contents of the array are stored inside
the structure. When defining particular constants of these types, the array is
declared according to the actual length that is needed ([length x type]). On
the other hand, values created at runtime are always allocated dynamically
and the correct length is stored alongside the array regardless of the declared
type.

Constants

Constants are generated as globals with internal linkage (equivalent of static
in C). We tell LLVM to create a constant expression of a given type (one
of our structures) and initialize a new global constant with it. This way,
we can create constant numbers, strings, symbols and even quoted lists – we
just recursively initialize scm cons structures with constant pointers to globals
representing the current list element and the rest of the list (another scm cons

structure). We need to be able to cast these constant pointers to scm type*.
That can be done in LLVM with the ConstantExpr::getCast method.

Entry point

Our compiler should support creation of standalone executables as well as
libraries. It will be configurable, so that we can choose one of the desired
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compilation modes.

When building the standalone executable, there has to be a main function
(as per convention) which is going to be called by the operating system when
it loads our application. It has the signature we know from C:

i n t main ( i n t argc , cha r ∗∗ a rgv ) ;

We can write an equivalent declaration in LLVM IR like so:

d e c l a r e i 3 2 @main ( i 3 2 %argc , i 8 ∗∗ %argv )

All the code generated from top-level Scheme expressions will then be
placed into the main function. The same holds for top-level Scheme definitions
(symbol – expression binding) because the bound expression does not have to
be always constant. The defined symbol is translated to a global variable and
we put all the code needed for its initialization into main.

In case of libraries, there is no entry point typically. We just export a
set of functions for others to use. However, as we have just explained how
Scheme definitions work, it is clear we need to support initialization code
even in libraries. Where to put it if not to main?

The answer is we create a custom init function and then a special LLVM
global array llvm.global ctors which contains pointers to functions we want
to execute at library load [8]. Ultimately, LLVM will use this information to
generate platform specific code/data for invoking these functions (e.g. .ctors
section in Linux ELF executable [17]).

There is one special case when we don’t want a standalone executable but
also don’t need library initialization – when we dynamically compile a new
expression using eval. In this case, it is desirable to emit only one ”anonym-
ous” function with a unique ID which will be called by the JIT compiler right
after it is generated.

If expression

Now we introduce conditional code flow using the if expression. In Scheme,
it is represented by a list starting with the if keyword, followed by then ex-
pression (executed if the condition is satisfied) and else expression (executed
otherwise).

( i f condition then else )

Unlike if/else block in C, this if has a return value. It returns the result of
the one expression that gets chosen depending on the condition.

LLVM IR uses basic blocks to model instruction flow. Example function
containing if expression (figure 2.3) starts with the entry basic block where
the code for condition evaluation is placed.

Result of the condition expression is an arbitrary object. We examine
whether that object is #f (false – tag ID equal to 0) and then generate
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entry:
 %0 = call %scm_type* @scm_get_arg_vector(i32 %argc, i8** %argv)
 store %scm_type* %0, %scm_type** @scm_argv
 %scm_read = call %scm_type* @scm_read()
 store %scm_type* %scm_read, %scm_type** @a
 %1 = load %scm_type*, %scm_type** @a
 %2 = getelementptr %scm_type, %scm_type* %1, i32 0, i32 0
 %3 = load i32, i32* %2
 %4 = icmp ne i32 %3, 0
 br i1 %4, label %then, label %else

T F

then: 
 %scm_string_append = call %scm_type* 
... @scm_string_append(%scm_type* @0, %scm_type* @1)
 br label %merge

else: 
 %scm_string_append1 = call %scm_type* 
... @scm_string_append(%scm_type* @2, %scm_type* @3)
 br label %merge

merge: 
 %ifres = phi %scm_type* [ %scm_string_append, %then ], [
... %scm_string_append1, %else ]
 %scm_display = call %scm_type* @scm_display(%scm_type* %ifres)
 %5 = load i32, i32* @exit_code
 ret i32 %5

Figure 2.3: If expression in LLVM IR

conditional branch instruction br which takes a boolean (i1 ) value and jumps
to one of the specified basic blocks – then or else.

Note that each basic block in LLVM must end with either a branch in-
struction or a return instruction, even if the branch is unconditional.[8] That
can be seen in our example. Both then and else blocks branch to the merge
block. In the merge block, we have to ”choose” the correct result of the if ex-
pression. Because LLVM uses SSA and each instruction automatically creates
a new variable, there are two versions of the value we should return, one for
each branch. To obtain the final value, LLVM uses the phi pseudo-instruction
which is a kind of conditional assignment.

%x0 = ph i %type [ %x1 , %branch x1 ] , [ %x2 , %branch x2 ]

In essence, it says ”take the value x1 if we have come from branch x1 or the
value x2 if we have come from branch x2 and assign it to x0 ”. Both values
have to be of the same type (we will cast pointers to scm type* when needed).

Logical operators [18]

1. ( and expr . . . )

• If no exprs are provided, then result is #t.
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• If a single expr is provided, then it is in tail position, so the results
of the and expression are the results of the expr.

• Otherwise, the first expr is evaluated. If it produces #f, the result
of the and expression is #f. Otherwise, the result is the same as
an and expression with the remaining exprs in tail position with
respect to the original and form.

2. ( o r expr . . . )

• If no exprs are provided, then result is #f.

• If a single expr is provided, then it is in tail position, so the results
of the or expression are the results of the expr.

• Otherwise, the first expr is evaluated. If it produces a value other
than #f, that result is the result of the or expression. Otherwise,
the result is the same as an or expression with the remaining exprs
in tail position with respect to the original or form.

Example of and expression transformed into IR is shown in figure 2.4.
As we can see, it corresponds to nested if expressions. We recursively repeat
these steps starting from the first expression:

1. Evaluate the expression

2. Compare the result with #f (0) using the equality operator (icmp eq)

3. If the condition is satisfied (expression evaluates to #f), return #f

4. If this is the last expression, return its value.

5. Otherwise proceed to the next expression and repeat from step 1.

The IR code of or expression is analogous. We just use non-equality
operator (icmp ne) instead of equality operator and return value of the first
expression which is not #f (if there is such an expression) or #f.

Functions and closures

We have seen there are two types of functions in Scheme: anonymous lambda
functions and named functions. After the compile-time evaluation we have
reduced these types to the second case (lambdas are given a name and a
separate definition).

Beside this criterion, we can still classify functions based on whether they
have captured variables (closures) or not. This property reflects in the gener-
ated code at multiple places.
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entry:
 %0 = call %scm_type* @scm_get_arg_vector(i32 %argc, i8** %argv)
 store %scm_type* %0, %scm_type** @scm_argv
 %1 = load i32, i32* getelementptr inbounds (%scm_int, %scm_int* @0, i32 0,
... i32 0)
 %2 = icmp eq i32 %1, 0
 br i1 %2, label %then, label %else

T F

then: 
 br label %merge.7

else: 
 %3 = load i32, i32* getelementptr inbounds (%scm_int, %scm_int* @2, i32 0,
... i32 0)
 %4 = icmp eq i32 %3, 0
 br i1 %4, label %then1, label %else.2

T F

merge.7: 
 %ifres8 = phi %scm_type* [ @1, %then ], [ %ifres6, %merge.5 ]
 %7 = load i32, i32* @exit_code
 ret i32 %7

then1: 
 br label %merge.5

else.2: 
 %5 = load i32, i32* getelementptr inbounds (%scm_int, %scm_int* @4, i32 0,
... i32 0)
 %6 = icmp eq i32 %5, 0
 br i1 %6, label %then3, label %else.4

T F

merge.5: 
 %ifres6 = phi %scm_type* [ @3, %then1 ], [ %ifres, %merge ]
 br label %merge.7

then3: 
 br label %merge

else.4: 
 br label %merge

merge: 
 %ifres = phi %scm_type* [ @5, %then3 ], [ @6, %else.4 ]
 br label %merge.5

Figure 2.4: And expression in LLVM IR

First, when we declare a function, we construct its type (signature) based
on the arguments it should take. They always have the same generic type
(scm type*) but each function may take different number of arguments: either
fixed or variable. LLVM supports the varargs flag used to specify this function
type property. Additionally, if the function has a closure (that information is
present in the ScmFunc AST node), we add an extra hidden argument used
to pass a context pointer to the function. Via this context pointer, we are
able to access all the captured variables.

After declaring the function using the type we have just generated, we
proceed with code generation of the function body. However, before actually
executing the expressions located inside the body, each function with variables
(or arguments) that will be captured (by another function with closure) has
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to allocate heap storage for those variables (because captured variables may
outlive the defining function execution time). Captured variables defined loc-
ally will be placed onto the heap directly, function arguments will be copied
to it from their original location (we don’t have to know whether it is stack
or registers, LLVM abstracts that away from us).

The heap allocation itself is handled by a call to runtime. We just pass
the number of variables we wish to store plus 1 (explained bellow) to the
corresponding function which then gives us a pointer to the allocated space.
It is this very pointer that we later store in function objects as context and
pass it as the last hidden argument when calling those objects.

Layout of the heap storage is shown on the following example:

( d e f i n e ( foo x 1 x 2 )
( d e f i n e ( bar y 1 y 2 )

( d e f i n e ( baz z 1 z 2 )
( l i s t (+ x 1 y 1 z 1 ) (+ x 2 y 2 z 2 ) ) )

baz )
bar )

( ( ( foo 1 0) 2 1) 3 2)

When foo is called (with arguments 1, 0), heap storage is allocated for x 1
and x 2, their values are copied there and then the function returns a new
function object with a pointer to bar implementation and a context pointer
to foo’s heap storage. Now we have a function object with closure which is
immediately called with arguments 2, 1 and its own context pointer as the
last hidden argument. The bar function must allocate heap storage for its
arguments but also for the context pointer it received (because baz will access
variables not only from bar but also from foo). That is why we always reserve
the first element of heap storage array (at index 0) to the parent context
pointer.

The memory layout is shown in figure 2.5. Now, the bar function returns
a function object pointing to the implementation of baz and to the new heap
storage. When it is called with arguments 3, 2 and the corresponding context
pointer, baz can access all the values of x *, y *, z * because we know from
the semantic analysis, where they are located. Local variables z 1, z 2 can be
found in the current function’s frame, captured variables y 1, y 2 are one level
up through the context pointer (received as last argument), so a pseudocode
for accessing them would look like this: ctxptr[1], ctxptr[2]. Finally,
variables x 1, x 2 can be reached via the parent context pointer we have
previously placed into the bar ’s heap storage: ctxptr[0][1], ctxptr[0][2].
This mechanism will of course work for any number of nested closures.

As we can see, unlike function frames the lifetime of heap storage arrays is
not limited. The garbage collector will eventually free the allocated resources
but that won’t happen before all the associated function objects are also freed.

All the function objects contain not one, but two function pointers. The
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Figure 2.5: Heap storage layout

first one points to the implementation which can be called directly when we
know the number of arguments at compilation time. To properly support the
Scheme apply function, we add another pointer to a special wrapper function
that takes only one argument – pointer to an array of the actual arguments we
need to pass. The only purpose of the wrapper is to take the first n elements
of the argument array (where n is the number of arguments) and pass them
to the implementation. If n is not constant (variadic function), we read the
array until we reach a null pointer. That null pointer will always be added
at the call site because at runtime we don’t have the information whether a
target function is variadic or not.

To avoid further indirections, each function has its own wrapper. They
are quite short, so we can afford the cost of additional space. We prefer speed.
That is why we provide two ways of calling each function instead of just using
the universal calling convention (with a pointer to argument array) alone.

So, we generate all the necessary code to support closures, then the func-
tion wrapper, and at last we can generate the function body by recursively
calling the code generator on all the expressions found in the body list. We
save the return value of the last expression and generate ret instruction to
actually return the value (when the function is called). The code generator
returns the function itself (as LLVM Function object).

Definitions

When we encounter a definition (ScmDefineVarSyntax) in the AST, it
means we have assigned a symbolic name to an expression (or a function),
but since all the symbolic references are already resolved in the semantic ana-
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lysis, is there any code that needs to be generated?

The answer is yes, because definitions also affect scope of the defined ex-
pressions. When we write a top-level definition, we expect the bound expres-
sion to be available globally. In case of functions, that is already the case but
let’s say we want to bind a result of some calculation to a specific name. That
means the calculation will be performed in the body of an entry point function
(main or library init) and the result has to be stored in a global variable.

So, for each global expression definition, we create a global variable, gen-
erate its initializer (evaluation of the expression) and set up the corresponding
AST node, so that it refers to the global variable location instead of the ori-
ginal expression value because that would only be local to the function where
it was evaluated.

Local expression definitions usually don’t require any additional code. We
already have the expression value and it is local to the function where it is
evaluated. There is one exception: When the value is captured in a closure,
we need to copy it to the function’s heap storage. In the semantic analysis
we have obtained all the information we need to do so: the heap array index
assigned to the value and the current function pointer where the heap storage
code is already generated, so we can refer to the array pointer.

The same applies to definitions inside the let expression. They are always
local but of course the defined values can be captured in closures sometimes.

References

The simplest case of reference is a reference to local variable (located in the
stack frame of corresponding function). We have the ScmRef node pointing
to AST node of the referenced value whose LLVM Value is already generated,
so we just return that Value, because we are in the same scope.

When dealing with a reference to heap variable (captured by a closure),
we instead generate code for indirect access through the context pointer. We
just need access to AST node of the function where our referenced value is
located – that is where we have stored the heap array indices (heap local idx
map). Context pointer, on the other hand, is associated with the function
where we have found the reference itself. The resulting sequence of array
indices is formed by k − 1 zeros and the last index found in heap local idx
of the referenced value, where k is the relative position as defined in section
2.1.3.

Different code is needed for function references. A function object repres-
entation needs to be generated. That means a structure containing the right
type ID, the expected number of arguments, two function pointers and a con-
text pointer. If there is no context pointer (ordinary function), the structure
can be defined as a global constant. However, if the function has a closure,
the context pointer always has to refer to the current function’s heap storage
(which can be different with every function call) and because the storage is dy-
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namically allocated, the whole function object needs to be created at runtime.
So, instead of generating a reference to global constant, we generate a call to
runtime function alloc func and pass the correct arguments to it (all constant
at compilation time except the context pointer).

The last special case is a reference to global variable. LLVM Values of
globals are actually pointers to program’s data section, so when we define a
global variable, the original Value is replaced by a pointer to Value. That
means we have to generate load instruction now.

Function calls

Code for direct calls is simple. First, we take the given symbolic reference
to function (ScmRef) but we don’t generate the whole function structure –
only the raw function pointer (contained in the referenced object) is needed.
Then we generate code for evaluation of arguments. The LLVM Values cor-
responding to the resulting argument values will be passed as operands to call
instruction along with the function pointer.

In case the called function has a closure, we also pass the current function’s
heap storage pointer to the call (as a last argument). We know it must be
the current function’s heap storage. If it weren’t, it would mean we got the
function reference from some other context but that leads to an indirect call.

Additionally, if the called function is variadic, a null pointer is passed as
the last argument.

Indirect calls begin with evaluation of the function reference. This time
we are not sure it actually refers to a function, so we have to generate code
that returns the whole Scheme object. The object is always a structure with
a tag, so the next code inspects its type:

First it compares the tag with function type ID. If there is a different tag,
we call a runtime function that will signal an error. Otherwise we can cast the
structure to function object and look at its expected number of arguments.
That will be compared against the given number (constant at the call site). In
case the numbers do not match, we call another runtime error function. Only
now we can safely invoke the indirect call by extracting function and context
pointers from the obtained object. Arguments are processed the same way as
before (with the direct call) and the context pointer is also passed as the last
argument. We can pass it even if the target function doesn’t have a closure.
In that case the context is null. Because we use C calling convention where
the caller is responsible for cleaning up arguments from the stack, all extra
arguments will be just ignored.[8]
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Optimizations

LLVM supports a wide range of IR optimizations [19] such as:

• Basic Alias Analysis

A basic alias analysis pass that implements identities (two different glob-
als cannot alias, etc), but does no stateful analysis.

• Combine redundant instructions (peephole optimiz.)

Combine instructions to form fewer, simple instructions. This pass does
not modify the CFG. This pass is where algebraic simplification happens.

• Reassociate expressions

This pass reassociates commutative expressions in an order that is de-
signed to promote better constant propagation, etc.

• Global Value Numbering (common subexpression elimination)

This pass performs global value numbering to eliminate fully and par-
tially redundant instructions. It also performs redundant load elimina-
tion.

• Simple constant propagation

This pass implements constant propagation and merging. It looks for
instructions involving only constant operands and replaces them with a
constant value instead of an instruction.

• Interprocedural constant propagation

This pass implements an extremely simple interprocedural constant propaga-
tion pass.

• Merge Duplicate Global Constants

Merges duplicate global constants together into a single constant that is
shared.

• Simplify the CFG (control flow graph)

Performs dead code elimination and basic block merging.

• Tail Call Elimination

This file transforms calls of the current function (self recursion) followed
by a return instruction with a branch to the entry of the function, cre-
ating a loop.

• Promote Memory to Register

This file promotes memory references to be register references. It pro-
motes alloca instructions which only have loads and stores as uses.
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• Dead Instruction Elimination

Dead instruction elimination performs a single pass over the function,
removing instructions that are obviously dead.

• Dead Code Elimination

Dead code elimination is similar to dead instruction elimination, but it
rechecks instructions that were used by removed instructions to see if
they are newly dead.

• Function Integration/Inlining

Bottom-up inlining of functions into callees.

• Unroll loops

This pass implements a simple loop unroller.

We could use many of these optimization passes. However, the question is
how successful they would be given that our code is composed mostly of se-
quences of calls and conditional branches. For example, the constant propaga-
tion will work on integral types or floating point types only. Not on our general
Scheme number type which is actually a structure. That means we need to
perform some sort of type inference first in order to generate more specialized
code and subsequently leverage the power of LLVM optimizations designed
for statically typed code.

There is one important optimization for Scheme that works regardless of
types – the tail call elimination. Because we usually use recursion instead of
iteration in Scheme, we want it to be as efficient as possible. LLVM will help
us with that – it transforms all the self-recursive tail calls to jumps, effectively
converting recursion to direct iteration.

2.1.5 Modules

When we compile a program, there should be a way for the compiler to auto-
matically resolve external function (or global variable) references. The core
Scheme functions which will be implemented in C++ will also be enumerated
in a header file (runtime.h) and we can generate a list of their names for the
compiler (using a pre-build script) or hardcode it in its source.

However, parts of the runtime library could certainly be implemented in
Scheme and we can of course compile additional libraries. Because there are
no header files in Scheme, we need to devise a way of storing the equivalent
metadata in the compiled binaries.

Our situation is simplified as Scheme is a dynamically typed language.
That means a function signature does not specify types of its arguments or the
return value. We only need to store function names, the number of arguments
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of each function and the names of global variables, to be able to reconstruct
all the declarations in LLVM IR.

To implement this, we can just design a custom format and store the
information as an array of structures into a special global variable. When we
later compile a program that depends on library functions, we load the library,
read contents of this metadata array and compose a list of available functions
and globals from it.

The runtime library will be automatically loaded during every compilation.
If our Scheme program wishes to use functions from an additional library, it
has to inform the compiler by using the ( require ” lib path ”) statement. The
library path is relative to the current working directory or the directory where
our executable is stored (both locations will be searched).

Although this solves the problem of missing headers, linking still has to be
done manually as our compiler produces object files only. The compiler could
of course call the linker for us, but this approach is more flexible until we
develop an extended interface which is able to pass all the necessary options.
Our implementation will only pass basic options to the llc compiler.

On the other hand, when we compile code dynamically by calling eval and
we evaluate a require statement, the target library is actually linked to our
running application, so that we could use the library functions next time we
invoke the JIT compiler.

2.2 Runtime System

To actually run any of the programs built by our compiler we will of course
need a runtime library that will provide a set of core functions (implemented
in C/C++) and an interface to the compiler (for eval support). It will also
manage memory and handle runtime errors.

2.2.1 Core functions

Among the core functions written in C/C++ are:

• Arithmetic operators: +, -, *, /, =, >

All these functions have to inspect the given objects, determine their
type and operate on the raw values inside them (float or integer value
inside a structure). They can receive both integer and floating point
operands mixed. When at least one operand is float, the result is also
float. Otherwise it is integer.

• Printing functions: display, print

Functions that print out textual representation of various objects. The
print function represents objects verbatim – in the way they were written
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in the source code. For example a string "two\nlines" is printed exactly
as it is – with the quotes and the newline escape sequence. When we
call display on it, we get

two

lines

• Function for obtaining command line arguments

We have to take the command line arguments given to us by the oper-
ating system and wrap them in Scheme compatible objects.

• Functions for list creation and manipulation: cons, list, car, cdr

These functions operate on the internal linked-list representation.

• Functions that test the type of an object: null?, eof-object?, . . .

• Comparison functions: eq?, equal?

The eq? function compares pointers. If they are the same, it means we
have two references to the same object – in that case eq? returns #t.
To compare objects by value (recursively), we use equal?. We can say
that two objects are equal if they have the same type and value. In case
of lists, the same must hold for each element.

• The apply function

When we call apply on a function and a list of arguments, it needs to
copy elements of that list into an array and pass the array to a function
wrapper of the target function we want to call.

• The read function

This function reads user input (from stdin) and parses it as Scheme data
(atoms, lists). For that purpose it can reuse the FileReader tokenizer
described in section 2.1.1 which reads from an input stream.

• File operations: open-input-file, close-input-port, read-line, . . .

Apart from accessing standard input and output, we would like to be
able to work with files. For that purpose we define the scm file type
which is just another tagged structure, this time wrapping the native
file handle. Then we implement a standard set of functions capable
of opening files, closing them, reading their content and writing new
content. All these functions will use scm file and other Scheme types
on the outside, while working with native file operations inside.

37



2. Design

• String operations: string=?, string-append, string-replace, . . .

Because string types are atomic in Scheme, we can manipulate with
their representation be means of native functions only. Common func-
tions such as string comparison, string appending, string splitting, and
replacing of substrings can be implemented.

2.2.2 Memory management

The runtime system is responsible for object allocation as well as garbage
collection. We have chosen the Boehm-Demers-Weiser conservative garbage
collector for this task. Our objects are in fact structures representing the
Scheme values.

There will be a dedicated allocation function for each Scheme type (and
also the closure heap storage), serving as a constructor of sorts. Scheme
integer is constructed using a native int64 t, Scheme float constructor will
take a double, string and symbol constructor an array of chars, and so on.
In each constructor, we determine the exact amount of space needed for the
structure (constant for all types except strings, symbols and vectors – they
have a variable number of characters/elements) and then we actually allocate
the memory using the GC MALLOC function.

Each memory block allocated this way will be freed automatically by the
collector, when it discovers there are no references left to that particular block.

The garbage collector library also supports C++ objects with non-trivial
destructors. That is convenient because we have the namespace (scm nspace)
type which encapsulates compiler environment (ScmEnv). The namespace is
a first class Scheme object, therefore garbage collected, whereas the memory
management of ScmEnv is deterministic, at least when it is run from the
context of static compiler that will be written in plain C++ – without garbage
collection.

So, when we create an instance of C++ class in a garbage collected struc-
ture, we need to ensure all the class members’ destructors are called when
the collection occurs. To implement this, we just inherit from the gc cleanup

class provided by the GC library.

2.2.3 Just-in-time compilation

To be able to dynamically add new code to a running application and to allow
that code to interact with other parts of the program, we maintain an envir-
onment (ScmEnv) across multiple compilations. Scheme provides a function
make-base-namespace which creates such an environment encapsulated in the
namespace object and populates it with runtime library function references.

There is always one namespace that is marked as current. We can use
function current-namespace to get its current value or set a new one.
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The current namespace is global, so we can access it from everywhere.
Certainly, we could just have a global binding like this:

( d e f i n e ns (make−base−namespace ) )

That namespace can be passed to any eval function in our program. More
accurately, we can evaluate new code in the environment provided by that
namespace. However, what if we want even the evaluated code to see this
definition? Maybe we would like to call eval inside eval using the same en-
vironment. Evidently, the ns symbol does not exist within the environment
(it is only a name we have given it outside) and evaluating the exact same
definition would only create a new independent environment. And yet, we
can call current-namespace in the evaluated code which will indeed give us
access to the original environment given that we have previously set it as the
current.

This way, we can implement a REPL (read-eval-print loop) in Scheme
using eval on the user input which itself may contain another eval. All the
code will share the same environment nevertheless.

The eval function itself uses ListReader tokenizer (section 2.1.1) on the
given expression (first argument), initializes parser on top of that, parses the
expression, performs compile time evaluation in the given environment (second
argument), sets the correct build type and expression name, runs the LLVM
IR code generator and at last the LLVM JIT. The JIT is set up to perform
various optimizations and to generate native code (in memory).

After the native code is generated, new symbols become available in our
program – namely the symbol corresponding to our expression. We look up its
address and then simply call that address after casting it to the right function
type.

We also perform an environment cleanup before the next eval call – all the
new symbol bindings left in the environment have to be marked as external
and their pointers to LLVM Values reset.

2.2.4 Error handling

Because Scheme is dynamically typed, not all the necessary type checks can
be performed at compilation time. We need to handle runtime errors such as
invalid types of arguments passed to a function, wrong number of arguments
given to an indirectly called function, or even an invalid call of object which
is not a function.

Additionally, when we call the compiler via eval, all of the compiler’s errors
need to be propagated as well.

How should we react to these errors? The most straightforward approach
is to terminate the program after displaying an appropriate error message. We
assume these runtime errors should not occur if the program is well-formed.
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Therefore, when they do occur, it means the programmer should fix his im-
plementation.

Of course, there are times when we would like to handle an error in a differ-
ent way, possibly continuing execution of the application afterwards. Scheme
has a support for exceptions for that purpose. However, its exception system
is built on top of continuations [10] and it is more flexible than the exception
support provided by LLVM.

In LLVM we can model the traditional try and catch blocks as well as
the throw operation which unwinds the stack until it hits the frame where
we have placed a try block. From that frame, execution control is passed
to the corresponding catch.[20] On the other hand, Scheme relies on the
continuation passing style and the exception handler is just another function
which we transfer control to when the exception is raised. That means we
don’t have to always unwind stack before the handler is invoked and therefore
the exceptions are continuable [21] (in the sense that execution can continue
anywhere since we don’t lose the stack frames between ”try” and ”throw”).

The continuation passing style is not directly supported in LLVM – every
function ends with a return statement, so we cannot choose explicitly where
the execution will continue. This behavior can be emulated but we still do
not have a direct control over function stack frames.

To keep the initial implementation simple, we choose not to implement
exceptions. In case of runtime errors, program termination is sufficient most
of the times. Of course, the exception system is also intended for user defined
errors, so a complete implementation of Scheme should certainly support it.
We are implementing just a subset of the language, however.
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Chapter 3

Implementation

3.1 Choice of language and build tools

We have chosen C++ as the implementation language of our compiler and
runtime library. The main reason for this decision is that LLVM framework
itself is written in C++ (C++11, to be exact) and while there are various
unofficial bindings of LLVM API to other languages (and also official bindings
to C, LLVM-C[22]), it would be less practical to choose any of them because
we want the compiler to be directly accessible from runtime.

Let’s say we would write the compiler in a higher level language like Ruby,
for example, or we would even like to implement a self-hosting compiler. That
can certainly be done (except there are no LLVM bindings to our Scheme yet),
but at the same time the runtime library has to be a native application with
core functions that the target language relies on and which cannot be written
in Scheme itself. The natural choice for a runtime library is C or C++ (for
efficiency), and if we expect the runtime to be frequently calling the compiler,
we should make their interoperability as simple as possible: We write both
the runtime and the compiler in the same language. We choose C++ because
the LLVM-C interface is not complete.[23]

Because LLVM is written in modern C++ and relies on the latest lan-
guage and standard library features, we have an opportunity to also use these
features in our code. That means we take full advantage of STL containers,
custom template functions and classes (including variadic templates), lambda
functions, smart pointers, template metaprogramming, etc.

Our project is compiled using the clang compiler (also built on top of
LLVM) and Makefiles are generated by CMake3 which is integrated into the
JetBrains CLion IDE4.

3https://cmake.org/
4https://www.jetbrains.com/clion/
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3.2 Project structure

llscheme.................project config files, README, LICENCE, etc.
bin....................................................executables

Debug.............................................debug version
Release..........................................release version

build....................................out-of-tree build directory
include.......................................compiler header files

elfio ................................... library for ELF parsing
linenoise ................................... line editing library
optionparser.................command line argument parser lib.
runtime.....................................runtime header files

src............................................compiler source files
runtime.....................................runtime source files
test..................................................unit tests

test.........................................post-build test scripts
lls programs.........................Scheme example programs

lib.................................Scheme example libraries

Figure 3.1: Project directory structure (see the enclosed CD)

3.2.1 Used libraries

Apart from LLVM framework and GC library, we use these additional libraries:

• ELFIO5

A C++ header-only library for reading and generating ELF files.
We can load the Scheme metadata using this library (see 3.3.3).

• Linenoise6

An alternative to the GNU Readline library written in C, providing
support for user input with line editing capabilities (terminal control
sequences, history, autocompletion, . . . ). We use it to implement the
Scheme REPL.

• The Lean Mean C++ Option Parser7

A freestanding header-only C++ library for command line argument
parsing. It supports the short and long option formats of getopt, get-
opt long and getopt long only but has a more convenient interface. It

5http://elfio.sourceforge.net/
6https://github.com/antirez/linenoise
7http://optionparser.sourceforge.net/
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allows you to access arguments directly by their name, rather than loop-
ing through all of them sequentially.

• Boost.Filesystem8

A C++ library for accessing and manipulating files and directories. It
is used in our compiler to perform a library lookup necessary before
loading the library and reading its metadata.

3.2.2 Source and header files

llscheme

src

ast.cpp...............AST implementation (ScmObj hierarchy)
ast visitor.cpp..........................AST visitor base class
codegen.cpp..............LLVM IR code generator (AST visitor)
driver.cpp.............standalone compiler interface (schemec)
environment.cpp.................ScmEnv class implementation
fs helpers.cpp...................library lookup implementation
libmetainfo.cpp ........... library metadata loading and storing
lib reader.cpp ..................metadata extraction from ELF
parser.cpp.......................Scheme parser implementation
reader.cpp....................Scheme tokenizer implementation
runtime...............................runtime library (llscmrt)

error.cpp................... runtime error handling functions
memory.cpp......................memory allocation functions
readlinestream.cpp............custom istream for user input
runtime.cpp..........................core language functions
scmlib.scm............additional functions written in Scheme

Figure 3.2: Source files

Each source file has its corresponding header under llscheme/include

containing class and function declarations plus implementation of template
functions. However, there are also header files without source files (fig. 3.3).

The any ptr class is used as a return type of AST visitor methods, so
we could implement multiple visitor classes that work with various types.
We use this wrapper for convenience only. It provides automatic conversion
from an arbitrary pointer type to any ptr (via template constructor) and the
any ptr cast operator for converting the pointer back to its original type.

The internal.hpp header contains implementation of variadic functions
which are exposed to Scheme through two types of wrappers: the first supports
C variadic calling convention, the second takes a pointer to argument array.

8http://www.boost.org/doc/libs/1_60_0/libs/filesystem/doc/index.htm

43

http://www.boost.org/doc/libs/1_60_0/libs/filesystem/doc/index.htm


3. Implementation

llscheme

include

any ptr.hpp.........................wrapper class around void*

common.hpp........................common preprocessor macros
debug.hpp ............................macro for debug messages
runtime

internal.hpp......................internal runtime functions
meta.hpp................. metaprogramming magic (see 3.3.1)
scmjit.hpp............................LLVM JIT for Scheme
types.hpp...........Scheme type tags: enum and string array

Figure 3.3: Header files

To abstract away this difference, the wrappers pass two lambda functions into
the internal implementation: first arg and next arg. As their names suggest,
first arg returns the first argument, whereas calling next arg repeatedly yields
the rest of them. Note that there are no indirect calls after the code is compiled
with optimizations. The internal functions are declared as inline, so there will
actually be two versions of each function generated (inlined to both wrappers).

The ScmJIT class defined in scmjit.hpp is a modified version of LLVM
JIT used in the Kaleidoscope tutorial [7]. It provides methods for adding
and removing individual LLVM Modules and a method for symbol lookup.
When a module is added to the JIT, it is compiled in memory and its symbols
become available.

The Scheme type tags are defined in types.hpp. We use X Macros to
automatically generate a Tag enum and an array of strings (used for error
messages) from one list of type tag names:

#def ine TYPES DEF(T) T(FALSE) , T(TRUE) , T(NIL ) , T( INT ) , T(FLOAT) , \
T(STR) , T(SYM) , T(CONS) , T(FUNC) , T(VEC) , T(NSPACE) , T(EOF) , T( FILE )

#def ine T STR(name) ”S ” #name
#def ine T ENUM(name) S ##name

enum Tag {
TYPES DEF(T ENUM)

} ;

s t a t i c const char ∗ TagName [ ] = {
TYPES DEF(T STR)

} ;
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3.3 Implementation details

3.3.1 Automatic function wrapper generation

As discussed in section 2.1.4, each function has a wrapper that allows us to call
it with a variable number of arguments where the exact number is not known
at compilation time (so we can apply a Scheme list of arguments to function).
When we implement a function in Scheme, our compiler’s code generator emits
this wrapper for us. On the other hand, when a Scheme function is written
in C++, its wrapper should be defined in the C++ source as well.

To avoid writing all the wrappers manually, we use a generic template
function that can be instantiated with the needed number of arguments and
the corresponding inner function as many times as needed. This is possible
thanks to variadic templates (since C++11).

template<typename>
s t r u c t Arguments ;

template<i n t . . . i dx>
s t r u c t Arguments<RangeElems<i d x ...>> {

template<typename T, T ∗ func>
i n l i n e s t a t i c s cm type t ∗ a r g l w r a pp e r ( s cm type t ∗∗ a r g l i s t ) {

re tu rn f unc ( a r g l i s t [ i d x ] . . . ) ;
} ;

} ;

So, how does it actually work? Here we can see a template structure Argu-
ments with its partial specialization taking a parameter pack of ints. Inside
the structure, there is a static inline method which takes the argument array
arg list and calls the func function (obtained as a template parameter) with
arguments taken from the array. If the idx parameter pack contains integers
from 0 to n, arg list[idx]... translates to arg list[0], arg list[1],

..., arg list[n].
Because we don’t want to enumerate all the indices from zero up to the

function’s arity minus one every time we instantiate a version of the wrapper,
we use a compile-time range:

template<i n t . . . Elems>
s t r u c t RangeElems{

typedef RangeElems<Elems . . . > t ype ;
} ;
// (1 ) r e c u r s i v e t emp la t e
template<i n t Le f t , i n t Next , i n t . . . Elems>
s t r u c t GetRange : GetRange<Le f t −1, Next+1, Elems . . . , Next> {} ;

// (2 ) p a r t i a l s p e c i a l i z a t i o n to end the r e c u r s i o n
template<i n t Next , i n t . . . Elems>
s t r u c t GetRange<0, Next , Elems . . . > : RangeElems<Elems . . . > {} ;

template<i n t End>
s t r u c t Range : GetRange<End , 0> {} ;
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Using template metaprogramming, we recursively define a type alias of
RangeElems containing all the indices as template parameter pack. We can
demonstrate on an example, how the C++ compiler deduces the given type:

1. Let’s say we start with Range<3> type.

2. That type inherits from GetRange<3, 0>,

matching template (1): Left = 3, Next = 0, Elems is empty.

3. GetRange<3, 0> inherits from GetRange<2, 1, 0>,

matching template (1): Left = 2, Next = 1, Elems = 0.

4. GetRange<2, 1, 0> inherits from GetRange<1, 2, 0, 1>,

matching template (1): Left = 1, Next = 2, Elems = 0, 1.

5. GetRange<1, 2, 0, 1> inherits from GetRange<0, 3, 0, 1, 2>

matching template (2): Left = 0, Next = 3, Elems = 0, 1, 2.

6. GetRange<0, 3, 0, 1, 2> inherits from RangeElems<0, 1, 2>,

which defines alias type for itself.

That means Arguments<typename Range<3>::type> translates to
Arguments<RangeElems<0, 1, 2>>

To make all this even simpler to use, we provide the following helper code:

template<i n t C> // Template a l i a s
us ing Argc = Arguments<typename Range<C> : : type >;

template<typename R, typename . . . Args> // Compile−t ime e x p r e s s i o n
c on s t e xp r i n t a r i t y (R( Args . . . ) ) { // Takes a f u n c t i o n

re tu rn s i z e o f . . . ( Args ) ; // Retu rns i t s number o f arguments
}

#def ine SCM ARGLIST WRAPPER( f ) \
s cm type t ∗ a r g l ##f ( s cm type t ∗∗ a r g l i s t ) { \

re tu rn Argc<a r i t y ( f )> : : a r g l w r appe r<d e c l t y p e ( f ) , &f>( a r g l i s t ) ; \
}

The SCM ARGLIST WRAPPER macro (which takes a name of the
function we want to wrap) seemingly creates another wrapper around the
template static method, but that method will actually be inlined. We do this
to give an appropriate name to the wrapper and also to be able to declare it
in the extern ”C” block. Template functions cannot have C linkage because
they rely on C++ symbol name mangling.
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3.3.2 Helper functions for code generation

In the LLVM IR code generator, we use various helper functions to avoid code
repetition and to reduce the amount of boiler-plate code needed to generate
functions, basic blocks and instructions. One of these functions is intended
for if/else expression generation and it is used not only for the Scheme if but
also for the logical expressions (and, or) as well as object type checking when
performing indirect calls. It is defined as such:

template<typename F1 , typename F2 , typename F3>
Value ∗ g e n I f E l s e ( F1 cond expr , F2 then exp r , F3 e l s e e x p r ) {

// Get v a l u e o f the c o n d i t i o n e x p r e s s i o n
Value ∗ c ond va l = cond exp r ( ) ;
// Get c u r r e n t f u n c t i o n
Funct i on ∗ f unc = b u i l d e r . G e t I n s e r tB l o c k ()−>ge tPa r en t ( ) ;

// Crea te the n e c e s s a r y b a s i c b l ock s , a t t a ch ” then ” b l o ck to func .
Bas i cB lock ∗ then bb = Bas i cB lock : : C rea te ( contex t , ” then ” , func ) ;
Bas i cB lock ∗ e l s e b b = Bas i cB lock : : C rea te ( contex t , ” e l s e ” ) ;
Bas i cB lock ∗ merge bb = Bas i cB lock : : C rea te ( contex t , ”merge” ) ;

// Genera te c o n d i t i o n a l branch
b u i l d e r . CreateCondBr ( cond va l , then bb , e l s e b b ) ;

// Genera te body o f ” then ” b l o ck
b u i l d e r . S e t I n s e r t P o i n t ( then bb ) ;
Value ∗ t h e n v a l = th en e xp r ( ) ;
b u i l d e r . CreateBr ( merge bb ) ;
then bb = b u i l d e r . G e t I n s e r tB l o c k ( ) ;

// Genera te body o f ” e l s e ” b l o ck a f t e r a t t a c h i n g i t to func .
func−>g e tB a s i cB l o c k L i s t ( ) . push back ( e l s e b b ) ;
b u i l d e r . S e t I n s e r t P o i n t ( e l s e b b ) ;
Value ∗ e l s e v a l = e l s e e x p r ( ) ;
b u i l d e r . CreateBr ( merge bb ) ;
e l s e b b = b u i l d e r . G e t I n s e r tB l o c k ( ) ;

// Attach the ”merge” b l o ck
func−>g e tB a s i cB l o c k L i s t ( ) . push back ( merge bb ) ;

// Crea te PHI node
b u i l d e r . S e t I n s e r t P o i n t ( merge bb ) ;
PHINode ∗ ph i = b u i l d e r . CreatePHI ( t h en va l−>getType ( ) , 2 , ” i f r e s ” ) ;
phi−>addIncoming ( t h en va l , then bb ) ;
phi−>addIncoming ( e l s e v a l , e l s e b b ) ;

re tu rn ph i ;
}

This is a generic if/else expression taking three lambda functions that will
be called in order, generating code for the condition, ”then” block and ”else”
block. They have to be called in the right context so that the IRBuilder
insertion point is set to the correct basic block.
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3.3.3 Extracting the metadata from shared object files

When we build a Scheme library, our compiler generates metadata containing
the names and signatures of exported functions (names of global variables
can be added in the future). This information is stored in a global byte array
named llscheme metainfo which consists of a sequence of FunctionInfo
structures.

s t r u c t a t t r i b u t e ( ( p a c k e d ) ) Fun c t i o n I n f o {
i n t 3 2 t a rgc ; // Number o f f u n c t i o n arguments
char name [ 1 ] ; // Name o f the f u n c t i o n ( nu l l−t e rm ina t ed )

vo id ∗ operator new( s t d : : s i z e t s , vo id ∗ p , i n t 3 2 t n l en ) ;

// D i s a b l e d e f a u l t new
vo id ∗ operator new( s t d : : s i z e t s ) = de le te ;
vo id ∗ operator new( s t d : : s i z e t s , vo id ∗ p ) = de le te ;

F un c t i o n I n f o ( i n t 3 2 t argc , const char ∗ name ) ;

s t a t i c s i z e t s i z e ( s i z e t n l en ) ;

s i z e t s i z e ( ) ;
} ;

The structures are allocated using an overloaded placement new operator
which takes sizeof(FunctionInfo) implicitly, pointer to the location where
the structure should be placed (our metadata array) and the length of our
function name. We do this, because each structure should contain the whole
function name, therefore its size is not what the compiler infers from sizeof
operator – we must add the corresponding string length:

vo id ∗ Fun c t i o n I n f o : : operator new( s i z e t s , vo id ∗p , i n t 3 2 t n l en ) {
// A l l o c a t e enough space f o r v a r i a b l e l e n g t h f u n c t i o n name
s i z e t s i z e = s ;
s i z e += n l en ∗ s i z e o f ( char ) ;
re tu rn : : operator new( s i z e , p ) ;

}

At the end of llscheme metainfo array, there is always an empty entry
with argc and name[0] set to 0.

In order to refer to library functions from other Scheme programs, the
compiler has to load the metainfo array. In case of runtime library (which
is partly written in Scheme), this happens automatically. Other libraries are
loaded on demand via the require statement.

At first, we wanted to access the array by simply linking (dynamically)
each library before the compilation. The compiler would use LLVM’s equi-
valent of the Unix dlopen function to load all the library symbols including

llscheme metainfo . Unfortunately, this didn’t work for the runtime lib-
rary because it also contains the compiler. These two programs share portions
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of code (statically compiled into both of them) so they cannot be linked to-
gether without errors (multiple definitions etc.)

This problem could be solved by moving the compiler to a separate shared
library that would be linked to a standalone executable as well as the runtime
library. On the other hand, the whole process of linking seems a little redund-
ant when the only thing we need is the contents of one array. That is why
we have decided to use a custom loader which only parses the ELF library
symbol table and gives us a pointer to the metainfo array.

Instead of parsing ELFs manually, we use the ELFIO library:

s t r u c t L ibReade r : : Impl {
ELFIO : : e l f i o r e a d e r ;
ELFIO : : s e c t i o n ∗ dynsym ;

} ;

bool L ibReade r : : l o ad ( const s t r i n g & l ibname ) {
i f ( ! impl−>r e a d e r . l o ad ( l i bname ) ) {

re tu rn f a l s e ;
}

E l f H a l f sec num = impl−>r e a d e r . s e c t i o n s . s i z e ( ) ;
f o r ( u i n t 3 2 t i = 0 ; i < sec num ; ++i ) {

s e c t i o n ∗ s e c = impl−>r e a d e r . s e c t i o n s [ i ] ;
i f ( sec−>g e t t y p e ( ) == SHT DYNSYM) {

impl−>dynsym = sec ;
break ;

}
}
re tu rn t rue ;

}

vo id ∗ L ibReade r : : getAddressOfSymbol ( const s t r i n g & symname ) {
const s ymb o l s e c t i o n a c c e s s o r symbo ls ( impl−>r eade r , impl−>dynsym ) ;

f o r ( u i n t 3 2 t j = 0 ; j < symbo ls . get symbo l s num ( ) ; ++j ) {
s t r i n g name ; E l f 64 Add r v a l u e ; E l f Xword s i z e ;
u i n t 8 t b ind ; u i n t 8 t type ;
E l f H a l f s e c t i o n i n d e x ; u i n t 8 t o t h e r ;

symbo ls . g e t s ymbo l ( j , name , va lue , s i z e , b ind ,
type , s e c t i o n i n d e x , o t h e r ) ;

i f ( name == symname ) { // This i s our symbol
s e c t i o n ∗ da t a s e c = impl−>r e a d e r . s e c t i o n s [ s e c t i o n i n d e x ] ;
i n t 6 4 t o f f s e t = va l u e − da ta s e c−>g e t a d d r e s s ( ) ;
const char ∗ data = da ta s e c−>g e t d a t a ( ) + o f f s e t ;

re tu rn ( vo id ∗) data ;
}

}
re tu rn n u l l p t r ;

}
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3.3.4 Garbage collected objects and smart pointers

Another interesting problem is the interoperation between garbage collected
objects created by the Scheme runtime (such as the namespace object) and
C++ objects used by the compiler (ScmEnv inside the namespace). When
working with the compiler objects, we often use shared pointers (shared ptr)
which implement automatic reference counting. This approach certainly sim-
plifies memory management but how do we manage an instance of ScmEnv
(the compiler environment) that was created as part of the Scheme namespace
structure?

As we have already mentioned in section 2.2.2, the GC library provides a
class gc cleanup which can be used for C++ objects whose destructors need to
be called during garbage collection. This is accomplished through inheritance
but we don’t want all of the instances to be collectable. GC should manage
only C++ objects inside Scheme objects. Furthermore, we sometimes need a
shared pointer to a garbage collected C++ object. All this can be implemented
quite elegantly using templates:

// Wrapper c l a s s f o r o b j e c t s t ha t a r e
// to be a u t oma t i c a l l y garbage c o l l e c t e d .
template<c l a s s C>
c l a s s GCed : pub l i c C, pub l i c v i r t u a l gc c l e anup {

s t a t i c s t d : : s e t<GCed<C>∗> i n s t a n c e s ;
s t a t i c s t d : : s h a r e d p t r<bool> anchor ;

pub l i c :
// Con s t r u c t o r pa s s th rough
template<typename . . . Args>
GCed( Args &&.. . a r g s ) : C( s td : : fo rward<Args>( a r g s ) . . . ) , g c c l e anup ( ) {

i n s t a n c e s . i n s e r t ( t h i s ) ;
}
v i r t u a l ˜GCed ( ) {

i n s t a n c e s . e r a s e ( t h i s ) ;
}

s t d : : s h a r e d p t r<C> ge tSha r edPt r ( ) {
// We use the s h a r e d p t r a l i a s i n g c o n s t r u c t o r
// to ge t someth ing l i k e ” s h a r e d f r om t h i s ( )”
// f o r an o b j e c t managed by the Boehm ’ s GC
re tu rn s t d : : s h a r e d p t r<C>(anchor , t h i s ) ;

}

// I f the GC doesn ’ t d e l e t e a l l o f the i n s t a n c e s
// We can s t i l l c a l l t h i s manual c l e anup at e x i t
s t a t i c vo id c l eanup ( ) {

f o r ( auto ob j : i n s t a n c e s ) {
de le te ob j ;

}
}

} ;
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Then we can use the GCed class like this:

s t r u c t s cm nspace t {
i n t 3 2 t tag ;
GCed<ScmEnv> ∗ env ;

} ;

// the macro expands to s cm type t ∗ scm make base nspace ( )
DEF WITH WRAPPER( scm make base nspace ) {

// We c a l l the c o n s t r u c t o r the same way
// we would w i thout the wrapper c l a s s
GCed<ScmEnv> ∗ env = new GCed<ScmEnv>( n u l l p t r ) ;
. . .

re tu rn a l l o c n s p a c e ( env ) ;
}

The GCed<ScmEnv> inherits all the ScmEnv’s methods but we can also
call getSharedPtr() on it, which returns shared ptr<ScmEnv>. A shared
pointer to a garbage collected object cannot be created in a regular way. We
cannot use make shared – that way the object would be deleted as soon as
the reference count became zero. Calling the shared ptr constructor on an
existing pointer would also cause trouble. The object deletion code invoked
when the pointer goes out of scope would be invalid. Even if we provided
a custom deallocator, we don’t want the object to be freed when our shared
pointer is deleted.

While there is no way of directly controlling the pointer’s reference count,
we can use a little trick – the shared ptr’s aliasing constructor :

template< c l a s s Y >
s h a r e d p t r ( const s h a r e d p t r<Y>& r , e l emen t t yp e ∗ p t r ) ;

”The aliasing constructor: constructs a shared ptr which shares ownership
information with r, but holds an unrelated and unmanaged pointer ptr. Even
if this shared ptr is the last of the group to go out of scope, it will call the
destructor for the object originally managed by r. However, calling get() on
this will always return a copy of ptr. It is the responsibility of the programmer
to make sure that this ptr remains valid as long as this shared ptr exists, such
as in the typical use cases where ptr is a member of the object managed by r
or is an alias (e.g., downcast) of r.get().”[24]

So, this certainly isn’t the typical use case. Our shared pointer r is a static
shared ptr to bool (named anchor) which only serves as a placeholder in the
alias constructor. This way we create a shared ptr pointing to our GCed
object but sharing ownership with anchor, that is the reference count is at
least two and we know the last shared ptr to go will be the anchor (because
it is static). Documentation says that we have to make sure the unmanaged
pointer is valid as long as r (anchor in our case), but we know the pointer is
valid until the garbage collector frees our object, and that does not happen
before the pointer itself is erased, exactly as we need.
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3.3.5 Line editing functionality and user input parsing

We have an implementation of Scheme REPL in Scheme. To make it more
interactive, linenoise library is used for processing user input. This gives us
line editing capabilities such as those we find in interactive shells. Now the
question is: How do we parse the user input and convert it to a Scheme data
structure?

We already have the StringReader tokenizer but how do we tell where
the string starts and where it ends? While we could use this tokenizer, it
would limit us to one line input only (if we said that newline is the end of
string).

A better way is to implement a custom input stream which will read the
user input line by line into a buffer (using linenoise), while we take individual
characters from it using our FileReader. That way, each next line is read
only if the input parser expects another token (when we have an incomplete
list or string).

The FileReader’s constructor expects a reference to C++ istream and
we can construct istream with a custom streambuf that overrides virtual
method underflow (called when we read from the stream):

s t r eambuf : : i n t t y p e r e a d l i n e b u f : : unde r f l ow ( ) {
i f ( gp t r ( ) < egp t r ( ) ) {

re tu rn t r a i t s t y p e : : t o i n t t y p e (∗ gp t r ( ) ) ;
}
i n t base = 0 , s t a r t = 0 ;

i f ( eback ( ) == &bu f f e r [ base ] ) {
s i z e t d i f f = egp t r ( ) − &bu f f e r [ base ] ;
s i z e t put back = d i f f < put back max ? d i f f : put back max ;

memmove(& b u f f e r [ base ] , e gp t r ( ) − put back , put back ) ;
b u f f e r . r e s i z e ( put back ) ;
s t a r t += put back ;

}
e l s e { b u f f e r . r e s i z e ( 0 ) ; }

char ∗ l i n e = l i n e n o i s e ( prompt . c s t r ( ) ) ;
prompt = ”” ;
i f ( ! l i n e ) {

re tu rn t r a i t s t y p e : : e o f ( ) ;
}
l i n e n o i s eH i s t o r yA d d ( l i n e ) ;
s i z e t n = s t r l e n ( l i n e ) ;

b u f f e r . i n s e r t ( b u f f e r . b eg i n ( ) + s t a r t , l i n e , l i n e + n ) ;
b u f f e r . push back ( ’ \n ’ ) ;
n++;
f r e e ( l i n e ) ;
s e t g (& b u f f e r [ base ] , &b u f f e r [ s t a r t ] , &b u f f e r [ s t a r t ] + n ) ;
re tu rn t r a i t s t y p e : : t o i n t t y p e (∗ gp t r ( ) ) ;

}
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3.3. Implementation details

3.3.6 Runtime library initialization and cleanup

When a compiled Scheme application is executed, the OS linker loads our
runtime library, which is written partly in C++ and partly in Scheme. As
we have discussed, each Scheme library can have a constructor function init
whose pointer is placed in the global constructors array. We want to perform
initialization at the C++ level as well. For that purpose, we can declare a
static global instance of a class and place the necessary code in that class’
constructor. The only downside to this approach is that if we have multiple
static objects like this, there is no defined order in which their constructors
will be called.

Still, we define a class LibSetup with its global instance and use it for
initialization and also for cleanup (destructor is called at program exit):

L ibSetup : : L ibSetup ( ) {
// I n i t random seed
s r and ( ( u i n t 3 2 t ) t ime ( n u l l p t r ) ) ;
// I n i t a b s o l u t e path to c u r r e n t work ing d i r e c t o r y
// and add i t to s e a r c h path ( f o r l i b r a r y lookup )
initCWDPath ( ) ;

}

L ibSetup : : ˜ L ibSetup ( ) {
// De l e t e C++ ob j e c t s t ha t weren ’ t garbage c o l l e c t e d ye t
mem cleanup ( ) ;

}

s t a t i c L ibSetup l i b s e t u p ;

Apart from setting up random seed and search path, we need to initialize
the JIT before its first use. However, since it may never be used, we don’t
want to do this in the static object’s constructor every time. Instead, we can
lazy load the JIT initialization class by declaring it static local:

I n i t J I T : : I n i t J I T ( ) {
I n i t i a l i z e N a t i v e T a r g e t ( ) ;
I n i t i a l i z e N a t i v e T a r g e t A smP r i n t e r ( ) ;
I n i t i a l i z eN a t i v eT a r g e tA smPa r s e r ( ) ;
j i t = make unique<ScmJIT>() ;

}

ScmJIT ∗ I n i t J I T : : ge tJ IT ( ) {
re tu rn j i t . ge t ( ) ;

}

s t a t i c ScmJIT ∗ getJ IT ( ) {
s t a t i c I n i t J I T j i t o b j ;
re tu rn j i t o b j . ge tJ IT ( ) ;

}

Now, each time we want to use the JIT, we call the free-standing getJIT
function. The constructor of InitJIT is called only the first time, however.
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3. Implementation

3.4 Implementation status

We have implemented a strictly functional subset of Scheme: All variables are
immutable, functions do not have side effects, iteration has to be expressed
by recursion. For an overview of the particular language constructs and func-
tions implemented, refer to README.md in the project’s source tree and
to the example programs located at llscheme/test/lls programs. Every
implemented feature is demonstrated there on an example.

Among the major language features that are missing are exceptions, con-
tinuations, macros and the set! function. Also, the only data structure im-
plemented is a list. Vectors are supported partly (command-line arguments
are stored in a vector that can be read from Scheme).

We also haven’t implemented any type inference algorithm yet.
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Chapter 4

Testing

4.1 Correctness

We use a set of automated regression tests (written in Ruby) which compare
compiler output (parser’s debug and error messages) with the expected result
of various basic example programs (valid and invalid):

• empty program

• incomplete string

• incomplete list

• incomplete definition

• invalid function definition

• invalid variable name in definition

• missing expression in definition

• incomplete argument list

• invalid expression in argument list

• incomplete binding list

• invalid expression in binding list

• incomplete body

• empty quote

• incomplete quote

• empty lambda

• incomplete lambda

• empty if

• missing then expression in if

• missing else expression in if

• empty list

• incomplete function call

• invalid keyword at first list position

• definition inside expression

• atom

• quoted keyword

• quoted list

• function call

• nested function call

• if expression

• nested if expression

• lambda function

• passing lambda function in a call

• calling lambda function in place

• function definition (long form)

• function definition (short form)

• variable definition

• let expression

• let inside if

• closure inside closure

Consistency of the generated code is checked by the LLVM function verifier
and a set of custom assertions placed in our code. We also have several unit
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4. Testing

tests verifying the functionality of individual C++ classes.
The runtime behavior of compiled programs is tested manually (that could

be improved in the future). However, the runtime library (as well as compiler)
is compiled with the clang address sanitizer (in case of debug build), so we
can detect memory management problems including memory leaks.

Example and test programs written in Scheme can be found in README
and the llscheme/test/lls programs directory:

• apply – testing the apply function

• closure – testing simple and nested closures

• cmdargs – processing the command line arguments

• eval – testing the eval function

• fwdref – testing forward references

• hellow – ”Hello world!”

• map – testing the map function

• mulmat – testing matrix multiplication

• plus – testing addition

• redef – testing redefinition of variables and functions

• repl – read-eval-print loop

• sat – randomized SAT solver

4.2 Performance

To test performance of our Scheme implementation, we have generated a set
of random matrix pairs of different dimensions and multiplied them using a
naive matrix multiplication algorithm. The source code of the algorithm was
compiled to a native executable (by our compiler) before the computation.
We have also run the same test in the Racket9 and Guile10 interpreters for
comparison (see table 4.1).

As we can see, our implementation is quite fast on small input (there is no
compilation overhead at the start). It also appears that llscheme is slightly
faster than others when doing floating point arithmetic but we only use fixed
size doubles (other versions of Scheme usually implement arbitrary-precision
arithmetic). Overall, Racket (which probably performs JIT compilation and

9https://racket-lang.org/
10http://www.gnu.org/software/guile/
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4.2. Performance

Table 4.1: Performance test results

Pairs Dimensions
Time [s]

llscheme Racket Guile

Integer matrices

10000 3 × 3 0.205 0.469 1.390

10000 10 × 10 5.367 2.377 16.750

100 100 × 100 162.336 19.608 60.138

Real number matrices

10000 3 × 3 0.283 0.734 1.777

10000 10 × 10 5.720 6.360 21.220

100 100 × 100 170.972 27.628 88.042

optimization) is faster. Our implementation loses even to Guile when the
algorithm processes large 100 × 100 matrices. We suspect this is caused by
an inefficient garbage collection strategy (mark&sweep pauses caused by the
GC library). This could be improved by custom implementation of a more
sophisticated GC method (e.g. generational garbage collector).
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Conclusion

Summary

In this thesis, we have analyzed properties of the LLVM internal representation
and of the Scheme programming language. Then we have successfully devised
a way of translating Scheme into LLVM IR.

For that purpose we have designed and implemented a compiler frontend
capable of generating native executables (standalone programs, libraries and
dynamically compiled expressions) from Scheme source code. We have also
designed and implemented a runtime environment for the language.

Our implementation of Scheme supports:

• global and local definitions

• conditional expressions (if)

• tail recursion

• first-class functions, named or anonymous (lambda)

• closures (single level or nested)

• local variables (using the let block)

• list operations (cons, car, cdr, . . . )

• numerical, logical, string and I/O operations

• dynamic code evaluation (eval function)

• dynamic calls (apply function)

• modules (implemented as native libraries with custom metadata)
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Conclusion

We have verified correctness of the implementation using automated unit
and regression tests and by compiling and running a set of sample programs.

We have also assessed performance of the compiled programs and discussed
how it could be improved.

Future work

There are many language features we could add in the future: arbitrary-
precision arithmetic, macros, exceptions, continuations, compound data types
and mutable variables to name a few.

We should also focus on optimization techniques specific to dynamically
typed languages, which are not implemented in LLVM. Type analysis and
inference appears to be the most important step towards generating more
efficient code that can be further improved by traditional optimization passes
usually used for statically typed code. Runtime tracing and JIT compilation
could also be used to identify further optimization opportunities and to emit
faster specialized code respectively.

Garbage collection should also be improved, preferably by replacing the
GC library with our own custom solution that can leverage runtime type
information and that is incremental if possible.

Another idea would be to add foreign function interface (FFI) for simple
interaction with C library functions, access the LLVM API this way and im-
plement a self-hosting compiler (written in our Scheme and compiled by it).
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Appendix A

Acronyms

API Application programming interface

AST Abstract syntax tree

CFG Control flow graph

CPU Central processing unit

ELF Executable and Linkable Format

EOL End of list

FFI Foreign function interface

GC Garbage collector

GEP Get element pointer

I/O Input/output

IDE Integrated development environment

IR Intermediate representation

JIT Just-in-time (compiler)

REPL Read-eval-print loop

STL Standard Template Library
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Appendix B

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

llscheme.............project config files, README, LICENCE, etc.
bin.................................................executables

Debug..........................................debug version
Release.......................................release version

build.................................out-of-tree build directory
include....................................compiler header files

elfio ................................ library for ELF parsing
linenoise ................................ line editing library
optionparser..............command line argument parser lib.
runtime..................................runtime header files

src.........................................compiler source files
runtime..................................runtime source files
test...............................................unit tests

test......................................post-build test scripts
lls programs......................Scheme example programs

lib..............................Scheme example libraries
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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