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Abstrakt

Tato práce se zabývá studiem vlastností několika populárních algoritmů shluko-
vací analýzy, např. DBSCAN, K-means, Biclustering a dalších pro astro-
nomické účely. V práci se také zkoumají metody redukce dimenzionality a
algoritmus LOF pro detekci odlehlých hodnot. Porovnání výkonnosti metod
je zajištěno prostřednictvím experimentů na sadě snímků spekter z observa-
toře Ondřejova. Metody, které vykázaly nejlepší výsledky, jsou pak otestovány
na větším archivu spekter získaných s teleskopu LAMOST. Výsledky experi-
mentů jsou důkladně analyzovány.

Klíčová slova Učení bez učitele, Shluková analýza, Astroinformatika, Data
mining, Astronomická spektroskopie, Big Data, Apache Spark

Abstract

In this thesis we examine popular clustering algorithms such as DBSCAN,
Biclustering, K-means, etc., on the task of spectra clustering. In addition,
we investigate several dimensionality reduction approaches and the algorithm
LOF for the outliers detection. We conduct our experiment in order to resolve
the problem of spectra clustering. We select the most promising methods ac-
cording to their performance on the Ondřejov dataset and then apply them
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on the larger LAMOST dataset. Next, we implement framework which incor-
porates mentioned algorithms including our implementation of LOF adapted
for Apache Spark. Finally, we discuss obtained results.

Keywords Unsupervised learning, Cluster analysis, Astroinformatics, Data
mining, Astronomical spectroscopy, Big Data, Apache Spark
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Introduction

Motivation

Nowadays a tempo of collecting data is extremely high. This is especially evi-
dent in astronomy, where daily different observatories (state and private) col-
lect petabytes of information, for example spectra and images of stars, quasars,
galaxies, etc. But the biggest part of data is multidimensional radio data cubes
(4D data cubes). The problem is that the data acquisition speed is not com-
mensurate with the speed of processing this data. Some public databases are
studied inside out by many researchers, but the most of databases are not
available to the public and there is no much capabilities to explore them.

One of the issues of working with spectra is efficient classification of them.
There are some pipelines that can roughly distribute objects between some big
groups - stars with clearly distinguishable levels of brightness, galaxies, etc.
These pipelines are not exact and usually cannot identify correctly unusual
group representatives. These pipelines use previously computed templates
of known types of stars and use some statistics to match spectra with the most
similar template. At the same time stars and quasars have different pipelines
and so on. That’s why astronomers still have to classify them manually. Also
while most telescopes observe certain objects, some unknown objects and arte-
facts can get recorded. Of course some noise will be also present.

Sometimes astronomers spot objects, that are not similar to any known
groups - some new types of celestial objects.

Goal of the work

The goal of this work is to explore unsupervised algorithms and techniques
that can be used for accurate grouping objects of similar types, for identifying
scientifically interesting group’s outliers that can be recognized as a new type
of astronomical objects and for eliminating bad data.
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Introduction

This work will describe the process of analyzing and choosing clustering
methods and methods for data dimensionality reduction. Then we will discuss
results of experiments with partially labeled Ondřejov dataset and attempts to
find out the most useful parameters by reducing feature space and apply cho-
sen methods on the world’s largest spectroscopic survey of Chinese telescope
LAMOST [2]. The entire information about datasets is provided in section
about data analysis 1.1 in the first chapter.
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Chapter 1

Analysis

Unsupervised learning is a big part of machine learning and it’s main goal is to
solve task of inferring a function that would be able to describe hidden struc-
ture from unlabeled data. Since we have no information about labels, there is
no error or reward signal to evaluate a potential solution. This distinguishes
unsupervised learning from supervised learning.

This chapter contains description of the assigned task, which includes data
analysis, comparison of clustering methods, data dimensionality reduction
methods and techniques for searching outliers.

1.1 Data analysis

In this section we will give a definition of spectrum and the physical meaning
of its curve, specificity of presenting data in astronomy and then description
of datasets that are used in this work.

1.1.1 Spectrum definition and peculiarities

Spectrum obtained from detectors is an array of values of electromagnetic
radiation intensity for every distinct wavelength (frequency point). Spectrum
can have some peculiarities, which are essential to understand physical features
of the celestial objects. Usually the majority of information contains in spectra
lines – absorption lines, rarely emission lines or some kind of their mixture.
Some simple examples of how stellar spectra can look like are presented in
figure below 1.1.

There are some issues that are commonly encountered while attempting to
use machine learning for spectra:

• The clusters would not be balanced because some types of objects are
much more common than others. Furthermore, some clusters can contain
just few stars while the others - thousands or even more. For example,
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1. Analysis

Figure 1.1: Spectrum with pure absorption line (left) and spectrum with one
emission line (right). Source: http://physics.muni.cz/~ssa/archive/.

frequent stars are Be stars, because Ondřejov telescope was focused to
observe Be stars for last 50 years (the electronic CCD detectors are used
for last 15 year).

• Feature vector is very high-dimensional. It contains hundreds or thou-
sands of points of spectrum’s curve, so we would experiment with some
limited areas of spectra, for example with some of the Balmer series
as Hα

1. The reason of choosing this part of spectrum is firstly that most
of the observations from Ondřejov dataset contain exactly this area and
also that a lot of interesting objects have emission in Hα. For example,
the classical Be stars are defined as a non-supergiant B stars whose spec-
trum has (or had at some time) one or more Balmer lines in emission [3].

• Continuum normalization is needed to perform on the data. This nor-
malization smooths bending of the whole spectra line to be horizontal
(transform values to be about value 1), which means value of emission
peak would be more than one and absorption would be less than one.
Thus, profile of spectra would be identically scaled. Some emissions still
can be very prominent – significantly higher than one. At the same time
stars of the same type can have same geometry of emission but different
values of emission peak.

As it was said before, there are some pipelines for classification of celestial
objects, but they use some set of previously computed templates of known
types of stars. Although they don’t provide all needed information, for example
identification of unusual objects, etc.

1The Balmer series or Balmer lines in atomic physics describe the spectral line emissions
of the hydrogen atom
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1.1. Data analysis

1.1.2 Data format

Flexible Image Transport System (FITS) is an open standard digital file format.
It is highly used in astronomy as it can store almost every type of data [4].
FITS is useful for storage, transmission and processing of scientific and other
images. Unlike many image formats, FITS is designed specifically for scientific
data and hence includes many provisions for describing photometric and spatial
calibration information, together with image origin metadata [5].

FITS file consists of two parts. The first one is a human-readable ASCII
header with image metadata. However, a major feature of the FITS format is
that any interested user can examine the headers. Each FITS file’s header con-
tains ASCII card images 2 that carry keyword/value pairs interleaved between
data blocks. The second part of the FITS file is one or several extensions and
each of these contains a data object in binary form. So it is possible to store
several variants of image in the same file.

In general FITS files contain spectra (one spectra in its own FITS file)
as an array of intensities for particular wavelengths. Values of wavelength
for these intensities can be computed using reference point and difference given
in metadata of a file. Also every spectra differs from the other in given grid
of wavelengths. At the same time the unsupervised learning analysis uses
intensities of particular wavelengths as features, which means we require same
values of wavelengths (wavelength grid) for all spectra we analyze. Which in
its turn means that data must be right and left cropped to smallest range and
also scaled to the same intervals of intensities, i.e. reduced to the same grid.
All these conversions are performed in preprocessing phase.

1.1.3 Description of datasets

This part will give common information on datasets used in this work and
assignment of each of them. Different telescopes have different technical fea-
tures, that’s why datasets contain data that differ in observational features
(e.g., depth, spatial coverage, resolution and spectral resolution).

Ondřejov dataset

This dataset is the archive provided by the Stellar department of the Astro-
nomical Institute of the Czech Academy of Sciences. The spectra were obtained
with a spectrograph of Ondřejov Observatory 2m Perek telescope.

It contains about seventeen thousand of spectra [6]. Part of them is ma-
nually divided to several groups so that’s why this dataset is used for primary
testing and verifying algorithms’ efficiency. There are groups of normal spectra,
spectra with some problems (damaged, etc) and non-sorted. The damaged
spectra are frames with some instrumental artefacts like spectrograph error or

2Card image is an archaic term for a character string, usually 80 characters in length,
that was, or could be, contained on a single punched card.
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1. Analysis

blur frame, etc. These spectra were immediately excluded from the testing
set because of its negative influence on learning abilities of the algorithms.
There is no scientific interest in training algorithms on set with priory noisy
samples because it would be hard to obtain a good result. Also some spectra
were excluded during the preprocessing, which scales spectra to the same grid
of intensities.

Dataset of LAMOST telescope

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is a
project of the National Astronomical Observatories of the Chinese Academy of
Sciences. The scientific goal of LAMOST focuses on the extra-galactic obser-
vation, structure and evolution of the Galaxy and multi-wave identification [2].

The data set of LAMOST data release one (DR1) used in this work in-
cludes spectra of the pilot survey and spectra of the first year of the regular
spectroscopic survey. This dataset has already been published for the public.
The DR1 totally contains 2,204,860 spectra, including 717,660 spectra of pilot
survey and 1,487,200 spectra of regular survey. In addition, they calculate the
atmospheric parameters of 1,085,404 stars, which becomes the largest stellar
spectral parameters catalog in the world at present. The spectra from that
dataset were processed by pipelines. This process spread spectra between some
common groups (stars, quasars, galaxies, etc.) [7]. This pipeline is far from
absolute accuracy but knowledge obtained from pipeline will be used to isolate
stars from other objects (for more information see description of experiments
on LAMOST dataset 3.3).

Data release 3 (DR3) - the last full release of the LAMOST spectral survey,
containing 5,755,126 spectra and 2,667 plates in total. The current archive
(DR4) is an additional release to DR3 contains further more than one million
of spectra [8]. All of them are automatically processed by pipelines.

1.2 Clustering techniques

Common technique in unsupervised learning is a cluster analysis. It groups
objects of similar kinds into categories and sorts different objects into groups
by their degree of association. Cluster analysis itself is not one specific algo-
rithm but the general task to be solved. It can be achieved by various algo-
rithms that differ significantly in their notion of what constitutes a clusters and
how to efficiently find them. Cluster analysis can be seen as iterative process
of knowledge discovery. This section will describe clustering algorithms and
taxonomy of them, methods of dimensionality reduction, manifold learning
techniques and method for finding the outliers in data.
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1.2. Clustering techniques

1.2.1 Taxonomy of clustering techniques

Categorization of the clustering algorithms is neither simple nor canonical [9].
We will mention only the most important and commonly used categorizations.
Flat vs. hierarchical clustering

Flat clustering creates a set of internally coherent clusters, which are
clearly different [1]. This type of clustering does not provide explicit
information about how should clusters relate to each other. The key
point of this clustering is a requirement of input parameter - the number
k of clusters. Choise of this parameter is usually a guess based on domain
information or previous experiments. Hierarchical clustering creates a
so-called dendrogram or tree of clusters (see figure 1.2). In other words
it creates the hierarchy of relationships between clusters. This method
does not need cluster number as input because it can have different
stopping criterion for example the number of iterations.

Figure 1.2: Typical example of hierarcical clustering: dendrogram (left) and
view of clusters (rigth).

Partitional and non-partitional clustering
Algorithms that belong to partitional clustering perform a so-called hard
assignment that means each object will be a member of only one cluster.
The second type – non-partitional clustering - performs soft clustering
(or fuzzy clustering). This approach assigns point to more than one
cluster using a membership function [10]. Visualization of the difference
between partitional and non-partitional clustering is given in figure 1.3.
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1. Analysis

Figure 1.3: Example of partitional (left image) and non-partitional (right im-
age) clustering.

One-way clustering vs. multi-dimensional clustering

In most cases input data is a data matrix of the size n ×m. One-way
clustering algorithms perform clustering along only one dimension of this
matrix. Multi-dimensional clustering performs simultaneous clustering
along multiple dimensions [11]. This simultaneous clustering usually pre-
formed along two dimensions. This approach has many advantages. For
example, it demonstrates the ability to find relationships between clus-
ters along all dimensions. Also it can act implicit dimensionality reduc-
tion and perform well with sparse data matrix [9]. Two-dimensional clus-
tering is often called biclustering or co-clustering (for details see 1.2.2.4).

Basis of the cluster model definition

This view to taxonomy distinguishes several common types of clustering
algorithms [12]:

• connectivity-based clustering is also known as hierarchical cluste-
ring, builds models based on distance connectivity;

• centroid-based clustering (K-Means, etc.) represents each cluster
by a single mean vector;

• distribution-based clustering (Gaussian mixture models, etc.) es-
tablishes clusters using statistical distributions;

• density-based clustering (DBSCAN, etc.) defines clusters as con-
nected dense regions;

• other algorithms, for example: BSAS (basic sequential algorithmic
scheme), Biclustering.

8



1.2. Clustering techniques

1.2.2 Selected clustering algorithms

This section describes in details techniques that are considered in this work,
comparison of these methods and possibility of using them.

Also taking into consideration peculiarity of the problem, we can identify
the following sticking points:

• Flat types of clustering are complicated because we don’t have any idea
of how many clusters can be in dataset (especially in LAMOST dataset).
These types of algorithms would require tuning of appropriate number
of clusters.

• Stars of the same type can have very different value of emission peak (see
subsection 1.1.1), that’s why similar stars can be defined as different, for
example by connectivity-based algorithms, which use simple Euclidean
distance as measure.

• Density-based algorithms’ tuning is complicated because of non-balanced
data (for details see description of DBSCAN 1.2.2.2).

1.2.2.1 K-means

K-means is a commonly known flat clustering algorithm. It aims at separation
of n observations to a certain number of clusters (assume k clusters) fixed
a priori. The classic K-means clustering algorithm finds cluster centroids that
minimize the distance between data points and the nearest centroid [13], usu-
ally within-cluster sum of squares (or inertia) used for this purposes. It is
defined in such way

J =

k∑
j=0

n∑
i=1

||x(j)i − cj ||
2 , (1.1)

where ||x(j)i − cj || is a chosen measure between a data point x(j)i and clus-
ter center cj [14]. A drawback is that this definition of distance makes the
assumption that clusters are convex and isotropic, which is not always the
case. It hardly detects elongated clusters or manifolds with irregular shapes.
Usually Euclidean distances is used as a distance measure. But it tends to
be inflated in very high-dimensional spaces, which is true in our case. That’s
why K-means is usually used with some dimensionality reduction methods like
PCA, LLE, etc.

K-means starts with selecting as initial clusters’ centers named the seeds
from some randomly chosen objects. There is another method for seeds ini-
tializing called k-means++ (see section 2.1.1).
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1. Analysis

Mini-batch K-Means
Mini-batch K-Means is a variant of K-means that yields excellent cluster-

ing results with low computation cost on large data [15]. This method uses
so-called mini-batches - set of randomly chosen points in space. Mini-batches
of defined size are re-selected in each training iteration. This decreases amount
of required computations. In each iteration for each sample the assigned cen-
troid is updated by taking the streaming average of the sample and all previous
samples assigned to that centroid. This has the effect of decreasing the rate
of change for a centroid over time. Surely results will differ from K-means but
only slightly. Also mini-batch variant converges faster than K-means [16].

1.2.2.2 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is
a clustering algorithm, which creates clusters based on high and low densi-
ty areas. Obtained clusters can have almost any shape (not only convex).
The DBSCAN relies on a density-based notion, which is designed to discover
clusters of an arbitrary shape [17]. A cluster is seen as a set of core samples
(samples in areas of high density) and a set of non-core samples. Each core
sample is close to another core sample and non-core samples are also close to
a core sample.

Figure 1.4: Minimum required number of point m is set to three. Point A
and the other red points are core points, because at least three points surround
them are in an ε radius. Points B and C are not core points but are reachable
from A (via other core points) and thus belong to the cluster as well. Point N
is a noise point because it is more distant than ε.

Process of clusters forming is controlled by two parameters: the distance ε
and the minimum number of samples required to form cluster m. Figure 1.4
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1.2. Clustering techniques

shows an example of the cluster, got from DBSCAN algorithm with minimum
required number of point m is set to three.

Algorithm starts with an arbitrary starting point that has not been visited
and then recursively takes a core sample, finding all of its core sample neighbors
N . Then algorithm finds all of the neighbors of N that are also core samples
and so on. Set of non-core samples, intuitively, are on the fringes of a cluster
because they are close to core samples. Further, any cluster has at least m
points in it, following the definition of a core sample. For any sample that is
not a core sample, and does have a distance higher than ε to any core sample,
it is considered as outlier by the algorithm.

Time complexity of DBSCAN depends on a number of visits of each point
of the dataset that possibly happens several times (e.g., as candidates to differ-
ent clusters). Practically, the time complexity is mostly governed by the num-
ber of the nearest neighbor search queries. DBSCAN executes exactly one
such query for each point. The best option is to use some indexing structure.
Then the average run time complexity of a single region query is O(log n) [17].
Further, if distance ε is chosen in a meaningful way, complexity O(n log n)
can be achieved. The worst case is when no acceleration index is used and
the distance ε is big enough, so that many points lie within. In this case
the time complexity will reach O(n2). The memory complexity is O(n2) if dis-
tance matrix is used. In some non-matrix based implementations the memory
complexity can be reduced to O(n).

The algorithm has such advantages:

• DBSCAN does not require specified number of clusters;

• algorithm can find arbitrarily shaped clusters, it can even find a cluster
completely surrounded by (but not connected to) a different cluster;

• algorithm has a notion of noise, and is robust to outliers.

It has to be also said that DBSCAN is designed for use with databases
that can accelerate region queries, e.g. using an R*-tree [17]. This accelerates
overall computation time. On the other side, the algorithm depends on several
things that can cause unsatisfactory results:

• DBSCAN requires only two parameters, but if data are not well under-
stood, selection of suitable parameters can be very difficult.

• DBSCAN is not completely deterministic 3. Usually it is not sensitive
to the ordering of points but, occasionally, if the ordering of the points
is changed, points occurring on the edge of two different clusters might
swap cluster membership. Although sets of core points will be the same,
non-core points can belong to different clusters.

3Some deterministic implementations exist [18], but in general, algorithm can not be
called deterministic.

11
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• The quality of DBSCAN depends on the distance measure used for
finding neighborhoods. Especially for high-dimensional data, commonly
used Euclidean distance can be rendered almost useless due to the so-
called "curse of dimensionality". However, this effect is present in any
algorithm based on Euclidean distance.

• DBSCAN cannot cluster datasets well with large differences in densities
since the combination of the distance ε and the required samples’ number
m cannot then be chosen right for all clusters. This means that some
big clusters can be simply separated to smaller clusters because of small
required number of samples. On the other side, bigger minimum number
can cause ignoring of independence of very small clusters, etc.

1.2.2.3 Affinity propagation

Affinity propagation identifies the representative examples (exemplars) within
the dataset by exchanging real-valued messages between all data points [19].
The dataset is then described by a small number of exemplars, which are iden-
tified as the most representative. The messages sent between pairs represent
the suitability for one sample to be the exemplar of the other, which is updated
in response to the values from other pairs. This updates happen iteratively
until convergence. Hence the final clustering is given (for example see figure
1.5).

Affinity Propagation is interesting as it chooses the number of clusters
based on the provided data. There are two important parameters: the prefer-
ence, which controls how many exemplars are used, and the damping factor.

The main drawback of Affinity Propagation is its complexity. The algo-
rithm has a time complexity of the order O(N2T ), where N is the number of
samples and T is the number of iterations until convergence. Further, if a dense
similarity matrix is used, the memory complexity is O(N2). But it is reducible
if a sparse similarity matrix is applied. This makes affinity propagation more
appropriate for small or medium datasets.

Initially, all nodes are considered as exemplars. If no prior knowledge about
favored exemplars is available, then the same preference value can be assigned
to all nodes. The magnitude can be used to control cluster granularity. For
each node i and each candidate exemplar k affinity propagation computes the
responsibility r(i, k), which indicates how well k suits for i as an exemplar (see
equation 1.2) and the availability a(i, k) reflects the evidence that i should
choose k as an exemplar [19] (see equation 1.3).

r(i, k)← s(i, k)−max[a(i, k̃) + s(i, k̃), ∀k̃ 6= k] (1.2)

a(i, k)← min[0, r(k, k) +
∑

ĩ 6∈{i,k}

max(0, r(̃i, k))] (1.3)
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1.2. Clustering techniques

Figure 1.5: Example of affinity propagation resulting clusters.

1.2.2.4 Biclustering

The main goal of Biclustering, also known as co-clustering or block clustering,
is to find biclusters (co-clusters) instead of simple clusters. A co-cluster or
bicluster is a group of objects and features that are inter-related. The features
in a co-cluster are the attributes used for choosing the objects to put in that
co-cluster 4. This means that algorithms simultaneously cluster rows and
columns of a data matrix. These clusters of the rows and columns are known as
biclusters. Each determines a submatrix of the original data matrix with some
desired properties.

There are many different approaches for biclustering. The most interesting
of them use K-means as a strategy [9]. The complexity of the biclustering
problem depends on the exact problem formulation and particularly on the
merit function used to evaluate the quality of a given bicluster.

Different biclustering algorithms have different definitions of bicluster:

• constant values, in other words a constant bicluster (is suitable for the tidy
data but not for noisy data);

• constant rows, or constant columns algorithm will use variance of values
and normalization;

4For example, in the analysis of DNA microarrays this means to find submatrices com-
posed of subgroups of genes and subgroups of conditions, where the genes of a submatrix
exhibit highly correlated activities for every condition in the same submatrix [9].
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• unusually high or low values;

• sub-matrices with low variance;

• correlated rows or columns 5.

Biclustering algorithms also differ in how rows and columns may be as-
signed to biclusters, which leads to different bicluster structures. Block di-
agonal or checkerboard structures occur when rows and columns are divided
into partitions. The first type occurs after rearranging the rows and columns
of the data matrix, when each row and each column belongs to exactly one bi-
cluster. The second type occurs in data, when each row belongs to all column
clusters, and each column belongs to all row clusters.

1.2.2.5 Hierarchical clustering

Hierarchical clustering is a method of cluster analysis, which used to build
a hierarchy of relationships between the clusters. The strategies of hierarchical
clustering generally fall into two types:

1. Agglomerative ("bottom up" approach): each observation starts in its
own cluster and pairs of clusters are merged as one moves up the hierarchy-
.

2. Divisive ("top down" approach): starts with all objects in one cluster and
subdividing them into smaller pieces. Divisive methods are not generally
available and are rarely applied [21].

In general, the time complexity of hierarchical clustering is too high for large
datasets: O(n3) for agglomerative clustering and O(2n) for divisive clustering
with an exhaustive search. However, for some special cases optimal efficient
agglomerative methods with time complexity O(n2) are known. This type
of clustering because of its time complexity it less suitable for our issue.

1.2.2.6 Birch

Birch (Balanced Iterative Reducing and Clustering using Hierarchies) is an un-
supervised data mining algorithm used to perform hierarchical clustering over
particularly large data-sets. The advantage of BIRCH is its ability to in-
crementally and dynamically cluster incoming multi-dimensional metric data
points to try to produce the best clustering quality with the available resources
(i. e., available memory and time constraints) [22]. In most cases, BIRCH
only requires a single scan of the database. For the given data Birch builds

5In Cheng and Churchs’ theorem a bicluster is defined as a subset of rows and columns
with almost same score. The similarity score is used to measure the coherence of the rows
and columns [20]
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a tree called the Characteristic Feature Tree (CFT). The data are essentially
lossy compressed to a set of Characteristic Feature Nodes (CF Nodes). The
CF Nodes have a number of subclusters called Characteristic Feature subclus-
ters. These CF Subclusters located in the non-terminal CF Nodes can have CF
Nodes as children. The CF Subclusters hold the necessary information for clus-
tering which prevents the need to store the entire input data in memory. This
information includes:

• number of samples in a subcluster,

• linear sum - a n-dimensional vector holding the sum of all samples,

• squared sum - sum of the squared Euclidean norm of all samples,

• centroids which help to avoid recalculation,

• squared norm of the centroids.

Characteristic Feature Tree is a height-balanced tree with two parameters:
branching factor and threshold [22]. The threshold limits the distance between
the entering sample and the existing subclusters. The branching factor limits
the number of subclusters in a node.

Since Birch reduces input data to subclusters (stored in leaves of Charac-
teristic Feature Tree), it can be seen as a version of data reduction method.
Among the disadvantages of Birch there is a bad scalability to high dimensional
data.

1.3 Dimensionality reduction methods

Dimensionality reduction or dimension reduction is the process of reducing
the number of considered variables. It can be divided into feature selection
and feature extraction [23].

Feature selection approaches try to find a subset of the original variables
(also called features or attributes). There are three strategies: filter (e.g.
information gain), wrapper (e.g. search guided by accuracy) and embedded
(features are selected to add or be removed while building the model based
on the prediction errors) approaches.

Feature selection techniques should be strictly distinguished from feature
extraction. Feature extraction creates new features from functions of the origi-
nal features, whereas feature selection returns a subset of the original features.
Feature selection techniques are often used in domains where there are many
features and comparatively few samples (or data points). So in our work we
will consider only feature extraction methods.

As said before, feature extraction transforms the data from the high-
dimensional space to a space of fewer dimensions. Methods for data trans-
formation are linear, as in principal component analysis (PCA), or non-linear.
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All methods differ in complexity and recommended usages (different algorithms
work differently on the same data). Further follow descriptions of some dimen-
sionality reduction methods (linear and non-linear):

• Principal component analysis (PCA),

• Locally Linear Embedding (LLE),

• t-distributed Stochastic Neighbor Embedding (t-SNE),

• Multidimensional scaling (MDS),

• Isomap (Isometric Mapping) Embedding,

• Spectral Embedding.

1.3.1 PCA

This technique is common linear technique for dimensionality reduction. It
seeks way to decompose a dataset into a linear combination of a small number
of principal components. This transformation is defined in such a way that the
first principal component has the largest possible variance (that is, accounts
for as much of the variability in the data as possible), and each succeeding
component in turn has the highest variance possible under the constraint that
it is orthogonal to the preceding components.

PCA is equivalent to finding a best-fit linear subspace to the entire dataset,
such that the variance of the data projection into a subspace is maximized.
Over last two decades, the PCA has been applied to a wide range of spectral
classification problems [24].

1.3.2 LLE

LLE also begins by finding a set of the nearest neighbors of each point. It then
computes a set of weights for each point that best describe the point as a linear
combination of its neighbors. Finally, it uses an eigenvector-based optimization
technique to find the low-dimensional embedding of points, such that each
point is still described with the same linear combination of its neighbors [25].

In other words it’s seeks to find low-dimensional projection of data set
that best preserves geometry of local neighborhoods within a data. LLE can
be thought of as a non-linear generalization of PCA [24].

LLE tends to handle non-uniform sample densities poorly because there
is no fixed unit to prevent the weights from drifting as various regions differ
in sample densities. LLE has no internal model.
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1.3. Dimensionality reduction methods

1.3.3 t-SNE

t-distributed stochastic neighbor embedding (t-SNE) is a machine learning al-
gorithm for dimensionality reduction developed by Laurens van der Maaten
and Geoffrey Hinton (2008). It is a nonlinear dimensionality reduction tech-
nique that is particularly well suited for embedding high-dimensional data
into a space of two or three dimensions. Specifically, it models each high-
dimensional object by a two- or three-dimensional point in such a way that sim-
ilar objects are modeled by nearby points and dissimilar objects are modeled
by distant points [26].

The t-SNE algorithm comprises two main stages. First, t-SNE constructs
a probability distribution over pairs of high-dimensional objects in such a way
that similar objects have a high probability of being picked, whilst dissimilar
points have an infinitesimal probability of being picked. Second, t-SNE defines
a similar probability distribution over the points in the low-dimensional map,
and it minimizes the Kullback–Leibler divergence between the two distribu-
tions with respect to the locations of the points in the map.

1.3.4 MDS

Multidimensional scaling (MDS) seeks a low-dimensional representation of the
data in which the distances respect well the distances in the original high-
dimensional space. In general, is a technique used for analyzing similarity or
dissimilarity data. MDS attempts to model similarity or dissimilarity data as
distances in a geometric spaces [25].

There are three types of MDS algorithm: classical, which is basically iden-
tical to PCA, metric and non-metric. In metric MDS, the input similarity
matrix arises from a metric. Then the distances between two output points
are set to be as close as possible to the similarity/dissimilarity data. Non-
metric version of the algorithm is trying to hold the order of the distances,
and hence seeks for a monotonic relationship between the distances in the
embedded space and the similarities(dissimilarities).

1.3.5 Isomap

Isometric Mapping is one of the earliest approaches to manifold learning.
Isomap can be viewed as an extension of Multi-dimensional Scaling (MDS) or
Kernel PCA [16]. Isomap seeks a lower-dimensional embedding which main-
tains geodesic distances between all points.

1.3.6 Spectral Embedding

Spectral Embedding (also known as Laplacian Eigenmaps) builds a graph in-
corporating neighborhood information of the dataset. A low dimensional rep-
resentation of the data are computed using notion of the Laplacian of the
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graph [27]. The generated graph can be considered as a discrete approxima-
tion of the low dimensional manifold in the high dimensional space. Minimiza-
tion of a cost function based on the graph guarantees that the closest points
mapped close to each other in the low dimensional space and local distances
are preserved.

1.4 Outliers detection

In statistics an outlier is an observation point that is distant from other obser-
vations. In data mining and machine learning outliers are often called points
of noise - points that do not belong to any cluster.

Outlier detection aims to detect objects which behave in an unexpected
way or have abnormal properties. It can find rare, unknown, or bad data. For
example an outlier may indicate an experimental error. The used techniques
are commonly divided into six methods, i.e., distribution, depth, distance,
clustering, density and deviation based methods.

Usually clustering do not identify outliers as some special points but dis-
tribute them among all or by some clusters. Unsupervised anomaly detection
techniques detect anomalies in an unlabeled test dataset under the assump-
tion that the majority of the instances in the dataset are normal by looking
for instances that seem to fit least to the remainder of the dataset.

The approach processes the data as a static distribution, pinpoints the
most remote points, and flags them as potential outliers [28].

In our work we will consider only local outlier factor algorithms for outliers
searching.

1.4.1 Local outlier factor

Local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig,
Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000. These algo-
rithms are used to find anomalous data points by measuring the local deviation
of a given data point with respect to its neighbors [29].

LOF is based on a concept of a local density so it shares some ideas
with DBSCAN and OPTICS such as the core distance and the reachability
distance. These distances are used for local density estimation and locality
is given by k nearest neighbours. The main idea is to compare local density
of an object to the local densities of its neighbours so algorithm can identify
areas with similar density and points with significantly lower density than their
neighbours. These points are named outliers.

The local density is estimated by the typical distance at which a point can
be "reached" from its neighbors. The definition of reachability distance used
in LOF is an additional measure to produce more stable results within clusters.
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1.4. Outliers detection

One of the key notions for LOF is the k-distance defined in such way:
for any k > 0 the k-distance of object p is the distance d(p, o) between p and
an object o ∈ D such that:

• for at least k objects o′ ∈ D p it holds that d(p, o′) ≤ d(p, o);

• for at most k − 1 objects o′ ∈ D p it holds that d(p, o′) < d(p, o).

Simply put this means the distance of the object p to the k-th nearest
neighbor, but set of the k nearest neighbor (Nk(p)) includes all objects at
this distance, so it can contain more than k objects. Using k-distance the
reachability distance can be defined as

reach-distancek(p, o) = max(k-distance(o), d(p, o)) (1.4)

In another words the reachability distance of an object p from o is the true
distance between the two objects but at least the k-distance of o. Figure 1.6
illustrates the idea of reachability distance with k = 4.

Then the local reachability density of object p is defined as

lrdk(p) = 1/


∑

o∈Nk(p)

reach-distancek(p, o)

|Nk(p)|

 (1.5)

that is the inverse of the average reachability distance of the object p from its
neighbors. Note that it is not the average reachability of the neighbors from p
(which by definition would be the k-distance(p)), but the distance at which
it can be "reached" from its neighbors. With duplicate points this value can
become infinite.

The (local) outlier factor of p is defined as

LOFk(p) =

∑
o∈Nk(p)

lrdk(0)
lrdk(p)

|Nk(p)|
(1.6)

The outlier factor of object p captures the degree according to which we
call p an outlier. It is the average of the ratio of the local reachability density
of p and those of p’s MinPts-nearest neighbors. A value of approximately 1 in-
dicates that the object is comparable to its neighbors (and thus not an outlier).
A value below 1 indicates a denser region (inliers), while values significantly
larger than 1 indicate outliers.
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Figure 1.6: reach-dist(p1,o) and reach-dist(p2,o), for k=4

Local approach gives LOF an ability to identify outliers in a dataset that
would not be outliers in another area of the dataset. For example points that
are near to a very dense cluster might be an outlier or vice versa a point within
a sparse cluster might not be an outlier.

The algorithm can be applied in many contexts. It has experimentally been
shown to work very well in numerous setups, often outperforming the competi-
tors, for example in network intrusion detection and on processed classification
benchmark data [30].

The problem may arise while interpreting result of the algorithm. There
is no clear rule for calling point an outlier. In some datasets and setups
(with strong local fluctuations) a values of more than 1 could still be an
inlier. These differences can also occur within a dataset due to the locality
of the method. There are some improved extensions of LOF like Local Outlier
Probability (LoOP) - a method using inexpensive local statistics to become
less sensitive to the choice of the parameter k having resulting values scaled
range of [0:1], etc.

1.5 Clustering validity methods

Clustering algorithms define clusters, that are not known a priori. Indepen-
dently of the clustering method, that requires some kind of special appropri-
ate evaluation [31]. The issues of clustering result validation (like number of
clusters in dataset, fitting of resulting scheme and searching for a better parti-
tioning) are the subjects of methods’ discussion. They aim at the quantitative
evaluation of the results of the clustering algorithms and are known under the
general term cluster validity methods.
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The main subject of cluster validity is finding out partitioning (optimal
clustering scheme) that best fits the underlying data.

In general all clustering algorithms search for clusters which members are
most close to each other (have the highest degree of similarity) and at the same
time well separated. In most cases algorithms’ evaluations conducted on 2D
or 3D datasets that fit better for human visual verification. For datasets
with high dimensionality (more then three) it is difficult to make any kind
of visualization, that’s why dimensionality reduction techniques can be used.

Behavior of clustering algorithms depends on:

• the features of data

• the input parameters values

The first point is about geometry of data and density distribution of clus-
ters. As for the second point, it can be for example the issue of choosing
cluster number for K-means clustering. In figure 1.7 is shown difference bet-
ween results of same K-means applied with different input parameter number
of clusters. This should visualize that unsuitable input parameters can lead
any (even suitable) algorithm to inappropriate outcome.

Figure 1.7: Resulting clusters after application K-means with input parameter
number of clusters set to a) three and b) four clusters.

In general terms there are three approaches to probe clustering quality.
The first approach is based on external criteria, which means we use previ-
ously known structure that is imposed on data and reflects our assumptions
about clustering structure of the dataset. The second approach is based on in-
ternal criteria. This approach means that we evaluate results of the clustering
by quantities that contains in data vectors themselves. In other words we use
algorithms’ optimization criterion such as proximity matrix, etc. The last ap-
proach is based on so-called relative criteria. The basic idea of this approach
is to compare results with another clustering schemes obtained from same
clustering algorithm but using another input parameters.
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1.5.1 External criteria

In most cases user-based evaluation can cost much, so some benchmarks with
a good level of inter-judge agreement can be used as surrogate for human
judgment. Some criterion can evaluate how much clustering scheme fit a gold
standard. This subsection will describe some types of external criteria.

Purity

This is a simple and transparent type of criteria. To compute it each cluster
is assigned to the class which is the most frequent in it and then just says the
number of correctly assigned object divided by n. Formally it can be written
as

purity(Ω,Γ) =
1

n

∑
k

max
j
|wj ∩ cj | (1.7)

where Ω = w1, w2, . . . , wk is the set of clusters and Γ = c1, c2, . . . , cJ is the set
of classes.

Purity has values from 0 to 1 where bad clustering has values close to 0
and perfect clustering is closer to 1. Big value of purity does not necessary
mean good clustering. Sometimes big number of clusters gives a priori better
results for example if algorithm will assign one object to its own cluster. Thus,
purity criterion can’t be used to trade off the quality of the clustering against
number of clusters.

Figure 1.8: Purity is an external criterion for evaluation of clustering scheme
quality. The major class and the number of members of this class in each
cluster is: X, k (cluster 1); ◦, 4 (cluster 2); �, 3 (cluster 3). Then purity is
(1/17) ∗ (5 + 4 + 3) ≈ 0.71 [1]

Normalized Mutual Information (NMI)

NMI has advantages over purity because it allows us to make a trade-off
between quality and number of clusters. Contrary to inertia 1.1, MI-based
measures require the knowledge of the ground truth classes while almost never
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available in practice or requires manual assignment by human annotators (as
in the supervised learning setting). It can be defined as

NMI(Ω,Γ) =
I(Ω,Γ)

[H(Ω) +H(Γ)]/2
(1.8)

where I is a mutual information that measures mutual dependence between
the two variables

I(Ω; Γ) =
∑
k

∑
j

P (ωk ∩ cj) log
P (ωk ∩ cj)
P (ωk)P (cj)

(1.9)

and H is the entropy

H(Ω) = −
∑
k

P (ωk) logPωk (1.10)

and where P (ωk) and P (cj) are the probabilities of an object being in a
ωk, cj , and P (ωk ∩ cj) is a probability of an object being in their intersection.

The particular form of the denominator is chosen because [H(Ω)+H(Γ)]/2
is the tight upper bound on mutual information I(Ω; Γ). Thus, NMI is always
a number between 0 and 1.

Mutual information and also the normalized mutual information are not
adjusted w.r.t probability and will tend to increase as the number of different
labels (clusters) increases, regardless of the actual amount of “mutual infor-
mation” between the label assignments. The equation from Vinh, Epps, and
Bailey (2009) can be used for obtaining the expected value for the mutual
information. In this equation, ai = |Ui| (the number of elements in Ui) and
bj = |Vj | (the number of elements in Vj). This expected value between two
clusterings U and V is describes as

E[I(U, V )] =
R∑
i=1

C∑
j=1

min(ai,bj)∑
nij=max(ai+bj−N,0)

nij
N
log

(
N.nij
aibj

)
×

ai!bj !(N − ai)!(N − bj)!
N !nij !(ai − nij)!(bj − nij)!(N − ai − bj + nij)!

As suggested by Hubert and Arabie (1985), the general form of a similarity
index corrected for chance is given by Adjusted Mutual Information:

AMI =
I(U, V )− EI(, V )

max(H(U), H(V ))− E[I(U, V )]
, (1.11)

which is upper-bounded by 1 and equals 0 when the index equals its expected
value.
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Rand Index (RI)

This criteria shows an alternative for information theoretic interpretation. This
approach is to view a clustering scheme as a series of decisions for each of the
N(N − 1)/2 pairs of objects in the collection. We expect that two objects
will be assigned to the same cluster if they are similar. In this way we define
True Positive (TP) decision assigns two similar objects to the same cluster,
a True Negative (TN) decision assigns two dissimilar documents to different
clusters. There are two types of errors we can commit: a False Positive (FP)
decision assigns two dissimilar documents to the same cluster and a False
Negative(FN) decision assigns two similar documents to different clusters.

The Rand index (RI) measures the percentage of decisions that are cor-
rect. That means this metric is simply accuracy measure (used for example
in the evaluation of the classification tasks) and it will be

RI =
TP + TN

TP + FP + TN + FN
(1.12)

The negative side of this criteria is a fact that Rand Index gives equal
weight to false positive and false negative decisions, but in some kind of tasks
separating similar objects is worse than putting dissimilar objects to the same
cluster [1]. For explicit penalizing false negative decisions we can use so-called
F measure.

F-measure

F measure is a harmonic mean of two measures called precision and recall,
where precision is a percentage of positive predictions that are correct

P =
TP

TP + FP
(1.13)

and recall is a percentage of positive labeled objects that were predicted as
positive

R =
TP

TP + FN
(1.14)

F-measure that is harmonic mean of that two metrics will be defined as

Fβ =
(β2 + 1)PR

β2P +R
(1.15)

where β is a constant, that we can use to penalize false negatives more strongly
than false positives by selecting its value > 1, thus giving more weight to recall
[1].

Homogeneity, Completeness and V-measure

A clustering result satisfies homogeneity if all of its clusters contain only data
points which are members of a single class. Meanwhile a clustering result sa-
tisfies completeness if all the data points that are members of a given class
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are elements of the same cluster. The homogeneity and completeness are in
some ways opposed: increasing the homogeneity of a clustering solution often
results in decreasing its completeness. For example two degenerate clustering
solutions can happen. To start with, assigning every data point into a single
cluster guarantees perfect completeness. However, this cluster would be as
inhomogeneous as possible, since all classes are united. Another solution sug-
gests to assign each data point to a distinct cluster. This guarantees perfect
homogeneity — each cluster trivially contains only members of a single class.
However, completeness will be very low.

V-measure is an entropy-based measure which explicitly measures how suc-
cessfully the criteria of homogeneity and completeness have been satisfied.
V-measure is the harmonic mean of distinct homogeneity and completeness
scores[32], just as precision and recall are commonly combined into F-measure
[33].

If we assume a data set comprising N data points, and two partitions of
these: a set of classes, C = ci|i = 1, ..., n and a set of clusters, K = ki|1, ...,m,
then homogeneity and completeness scores are formally given by:

h = 1− H(C|K)

H(C)
(1.16)

c = 1− H(K|C)

H(K)
(1.17)

whereH(C|K) is the conditional entropy of the classes given the cluster assign-
ments. With n the total number of samples, nc and nk the number of samples
respectively belonging to class c and cluster k, and finally nc,k the number
of samples from class c assigned to cluster k, conditional entropy is given by

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

nc,k
n

log

(
nc,k
nk

)
(1.18)

and entropy of the classes H(C) is given by

H(C) = −
|C|∑
c=1

nc
n

log
(nc
n

)
(1.19)

While V-measure is the weighted harmonic mean of homogeneity and com-
pleteness, it can be defined as

Vβ =
(1 + β) · h · c

(β · h) + c
(1.20)

Same as F-measure, if β is greater than 1 completeness is weighted more
strongly, and if β is less than 1, homogeneity would be weighted more strongly.
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1.5.2 Internal criteria

Typically clustering algorithm must formalize the goal of achieving high simi-
larity between objects in same cluster and low similarity between objects from
different clusters. This is the internal criteria for clustering quality. Common
variants are minimization of average squared distance of objects from their
cluster centers, minimization of the loss in mutual information between the
input data matrix and its approximation based on clustering, minimization
of Renyi’s entropy, etc [9].

1.5.3 Relative criteria

While constructing an index for evaluation of clustering and selection of an
optimal clustering scheme we have two main criteria [9]:

1. Compactness, the members of each cluster should be as close to each
other as possible. A common measure of compactness is the variance,
which should be minimized.

2. Separation, the clusters themselves should be widely spaced. There are
three common approaches measuring the distance between two different
clusters:

• Single linkage: It measures the distance between the closest mem-
bers of the clusters.

• Complete linkage: It measures the distance between the most dis-
tant members.

• Comparison of centroids: It measures the distance between the cen-
ters of the clusters

There will be described some popular indices: C-index and Silhouette co-
efficient.

C-index

Assume that p is the number of all pairs of samples that are located in the
same cluster. S will be the sum of the distances between samples in those
pairs. Then we find p of all pairs in dataset with the smallest distances (then
Smin will be the sum of them) and p of them with the biggest ( Smax will be
the sum of them).

Then C-index is defined as

C =
S − Smin

Smax − Smin
(1.21)

From that equation it follows, that if more pairs of samples with the small
distances are in the same cluster, the numerator is smaller. That means that
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1.5. Clustering validity methods

value of C-index will be also small, thus, better clustering scheme [9]. The
form of denominator is chosen for normalization, causing normalized values
of C ∈ [0, 1].

This parameter is generally higher for convex clusters than other concepts
of clusters, such as density based clusters like those obtained through DBSCAN
algorithm.

Silhouette coefficient

Silhouette coefficient is close in meaning to C-index such that it is also internal
criteria, which gives us interpretation and validation of consistency within
clusters [16]. For every sample i it is defined as

si =
bi − ai

max(ai, bi)
(1.22)

where:

• ai - the mean distance between a sample and all other points in the same
class;

• bi - the mean distance between a sample and all other points in the next
nearest cluster;

what causes values in range of [-1;1], where negative values mean bad clus-
tering and positive values mean good clustering. The average si over all data
of a cluster is a measure of how tightly grouped all the data in the cluster are.
The Silhouette Coefficient is generally higher for convex clusters than other
concepts of clusters, such as density-based clusters like those obtained through
DBSCAN.
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Chapter 2

Implementation and used
technologies

As the main goal of this work is to study the effectiveness of different unsu-
pervised methods for applying in astronomy, exactly for spectra studying, we
tried to cover as much methods as possible. This chapter contains information
about:

• used libraries and technologies,

• implemented algorithms (sequential and parallelized),

• tools used for post-processing.

2.1 Scikit-learn

Python open source library scikit-learn contains simple and efficient tools
for data mining and data analysis reusable in various contexts, also built
on NumPy, SciPy and matplotlib Python libraries [34]. This library was the
main tool used in this work. Further, we will describe algorithms, techniques
and indexes that has some implementation features in scikit-learn library.

2.1.1 Method for initializing centroids - K-means++

Traditionally, K-means (and also Mini-batch K-means) algorithm starts with
k arbitrary centers, typically chosen randomly. Each point is then assigned to
the nearest center, and each center is recomputed as the center of mass of all
points assigned to it [35]. The last two steps are repeated until stabilization.

K-means++ is an initializing method that chooses centers at random from
the data points, but assigns weights to the data points according to their
squared distance squared to the closest center already chosen.
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2. Implementation and used technologies

Choosing centers in this way is both fast and simple, and it already achieves
guarantees that k-means cannot [35]. This combined algorithm is also called
k-means++.

This is one of the proposed methods for K-means and Mini-batch K-means
in scikit-learn. As we show in the experiments, this method helps to signifi-
cantly reduce computation time.

2.1.2 Adaptation of cluster validity indexes

For the result estimation we used several criteria described in section 1.5.
Among them are: purity, inertia, homogeneity, completeness, v-measure, rand
index, mutual information and silhouette coefficient.

Should be also mentioned that for cluster validation we have used Adjusted
Mutual Information instead of Normalized Mutual Information and adjusted
variant of Rand Index that is defined in a similar way as Adjusted Mutual
Information (see 1.5.1).

Purity is not provided in scikit-learn. This validity index was implemented
in Python within our framework (see 2.3).

2.1.3 Biclustering implementations

Biclustering algorithms simultaneously cluster rows and columns of a data
matrix. So, in our case, this method could help us to find the similarity be-
tween spectra based on subsequences of intensities that have some correlation
between them. In other words this method helps to find out spectra that are
similar in different sub-arrays of intensities (belong to same row bicluster).

We have tested two biclustering algorithms, provided by scikit-learn libra-
ry: Spectral Biclustering (Kluger, 2003) and Spectral Co-Clustering (Dhillon,
2001).

Co-Clustering algorithm finds biclusters with values higher than in cor-
responding rows and columns. It creates biclustering, where each row and
each column belongs to exactly one bicluster [36], so we can ask algorithms
to find the exact number of biclusters, which after rearranging would appear
at diagonal of matrix. The algorithm treats the input data matrix as a bi-
partite graph: the rows and columns of the matrix correspond to the two sets
of vertices and each entry corresponds to an edge between a row and a column.
The goal of the algorithm is to approximate the normalized cut of this graph to
find heavy subgraphs. An approximate solution to the optimal normalized cut
may be found via the generalized eigenvalue decomposition of the Laplacian
of the graph. When input matrix A has size m× n, Laplacian matrix has the
size of (m + n) × (m + n). More efficient is to use the initial matrix, so it
should be normalized as:

An = R−
1
2AC−

1
2
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2.2. Apache Spark and MetaCentrum

where R is the diagonal matrix with entry i equal to
∑

j Aij and C is the di-
agonal matrix with entry j equal to

∑
iAij . The singular value decomposition

An = UΣV > provides the partitions of the rows and columns of A. A subset
of the left singular vectors gives the row partitions, and a subset of the right
singular vectors gives the column partitions. These singular vectors provide
the desired information.

Spectral Biclustering creates biclusters assuming that data matrix contains
some hidden checkboard structure. That’s why the rows and columns may
be partitioned to biclusters, which entries are approximately constant in the
Cartesian product of row clusters and column clusters.

This method uses different types of normalization:

• Bi-stochastization makes both rows and columns sum to the same con-
stant by repeated row and column normalization until convergence;

• Log normalization (log-interactions): takes logarithm of data matrix as
Lij = logAij . Defining column mean as Li· = 1

m

∑m
i=1 Lij ,similarly row

mean L·j , and overall mean L·· = 1
mn

∑n
i=1

∑m
j=1 Lij , we then can define

final matrix as Kij = Lij − Li· − L·j + L··

This biclustering makes a separation where each row belongs to all column
biclusters and each column belongs to all row biclusters.

2.2 Apache Spark and MetaCentrum

MetaCentrum project is an activity of the CESNET association. It operates
and manages distributed computing infrastructure consisting of computing and
storage resources owned by CESNET as well as those of co-operative academic
centers within the Czech Republic. MetaCentrum is responsible for building
the National Grid and its integration to related international activities [37].
Users registered in MetaCentrum get free access to a wide range of application
software and utilities such as Matlab, Maple or Hadoop.

Hadoop is a well-known open-source framework for distributed storage and
processing of large volumes of data. Hadoop is especially useful for processes,
which involve a MapReduce algorithm.

Apache Spark is a fast and general engine for large-scale data processing
working with Hadoop Distributed File System (HDFS). HDFS is the primary
distributed storage used by Hadoop applications. A HDFS cluster primarily
consists of a NameNode that manages the file system metadata and DataNodes
that store the actual data.

We decided that Apache Spark would be appropriate for parallel compu-
tations of big data from LAMOST dataset. Apache Spark provides API for
several languages: Scala, SparkR, Java and Python, this simplifies integration
to our framework. It also contains scalable machine learning library MLlib.
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2. Implementation and used technologies

Unfortunately, MLlib contains only few clustering algorithms, among them are
k-means and Gaussian mixtures (GMM) [38]. Also on servers with Hadoop is
prohibited to have more than 220 files in one directory [39]. This limit along
with another causes (see subsection "Experiments on LAMOST Dataset" 3.3)
forced us to reduce test group of LAMOST dataset.

2.3 Implementations

We implemented framework that includes several algorithms for clustering and
dimensionality reduction from scikit-learn library to facilitate a test process.
It also contains our own implementation of purity score and two variants of
local outlier factor - sequential and parallel adapted for Apache Spark.

Purity
Implemented framework contains sequential algorithm for computing purity
score in Python according to description given in 1.5.1. Purity score is an
external index, so as an input it requires not only assigned clusters but true
classes of samples.

Local Outlier Factor algorithms
Local outlier factor (described in 1.4.1) is an algorithm that has several main
stages of computing :

1. initializing: this step can be expensive on computation time if the nor-
malization is conducted;

2. computing of local outlier factor for every object:

a) k distance computing: computation time depends on the compu-
tation time of distance function. Using precomputed distances can
reduce time but would be expensive on memory in case of a big
dataset;

b) computing of reachability distances: time cost depends on input
parameter k;

c) local reachability density: computation time depends on the close-
ness of objects in space (set of the k nearest neighbor (Nk(p)) can
contain more than k objects)

d) computing of local outlier factor using ratio arrays of the nearest
neighbors depends also on size of Nk(p).

The most expensive step in terms of computational time is the computing
of distances the between elements, so total time complexity is O(n2). The main
problem of algorithm parallelization for Spark is the necessity of storing many
information on every cluster since the distances between every pair of samples
must be calculated.
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2.4. Post-processing

2.4 Post-processing

Post-processing phase includes cluster validation and visualization of clusters.
Cluster validity methods are applied if ground truth classes are given. Output
also contains a cluster assignments for all samples.

Output clusters are visualized with libraries matplotlib and plotly. Also for
several visualizations we used program SPLAT-VO - a powerful graphical tool
for displaying, comparing, modifying and analyzing astronomical spectra, as
well as searching and retrieving spectra from services around the world using
Virtual Observatory (VO) protocols and services [40].

33





Chapter 3

Experiments and discussion

The main complication of unsupervised learning is a hard verification of results.
In our case this mean visual validation of clusters and outliers which is time-
consuming 6. Generally there is no other way to verify results but to do it
manually. That’s why small labeled group of Ondřejov spectra was the first
testing group for us. All details will be fully described below, but generally
experiments were carried out in this stages:

• experiments on a small part of data from Ondřejov (testing set) with
verification using criteria described in 1.5,

• experiments on all data from Ondřejov with manual verification of result,

• experiments on data from LAMOST.

This chapter contains a description of the whole experiments and discussion
of obtained results. For the sake of briefness we provide only most important
results’ visualizations. The whole experiments output – almost all images and
estimations of experiments are given in attachment of enclosed CD.

3.1 Experiments on labeled part of Ondřejov
dataset

Telescope of Ondřejov observatory is already nearly half a century focused on
observation Be stars. Some of these observations were unified to catalog of stars
with sets of their spectra. That’s why Ondřejov dataset contains a small group
of spectra that were manually labeled, this means exact w.r.t. astronomy. So
there is a group of 1726 spectra separated to 5 groups. We must notice that
the last group contains spectra of stars, which some way evolved in time.

6Should be noticed, that visual validation was conducted on random chosen exemplars.
We tried to take the most different spectra from all parts of datasets.
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3. Experiments and discussion

significant single peak - pure
emission

double emissions

pure absorption absorption line with an emission

Figure 3.1: Samples of groups 1-4 from labeled Ondřejov dataset in two
variants: whole spectrum and zoom in area near Hα line (Source: http:
//physics.muni.cz/~ssa/archive/)

Many of them have absorptions or absorptions with emission, so strictly
speaking it is not a fully independent group of spectra. The 5th group have
arisen by cataloging of stars, which demonstrated some radical changes, so
visually changed their class. Exemplars of the first four groups are represented
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3.1. Experiments on labeled part of Ondřejov dataset

in figure 3.1. The number of samples in every group is 178, 172, 1188, 56, 132
respectively, percentage of every group of spectra is: 1st group - 10.3 %; 2nd
group - 9.9 %, 3rd group - 68.8 %, 4th group - 3.3 %, 5th group - 7.7 %. This
groups can be identified as spectra with:

1. significant peak without double emission,

2. double emission,

3. absorption,

4. absorption with emission,

5. chaos in emission (time evolving objects).

This spectra (further named as testing set) were used for the initial testing
of the algorithms because this testing set provides information for clusters’
evaluations. We have applied some common clustering algorithms and used
several criteria, described in 1.5. Also we have used several methods of dimen-
sionality reductions to define the most appropriate for this kind of data.

3.1.1 Clustering algorithms

Applied algorithms were selected to cover the greatest variety of techniques.
Among them are: K-means, Mini-batch K-means, Affinity Propagation, Bi-
clustering and DBSCAN.

3.1.1.1 K-means and Mini-batch K-means

A typical problem of K-means algorithm is non-balanced data and as we
can determine clusters are not located separately in space (w.r.t. geomet-
ric distances – Euclidean distance). Another important point is initial seeding
of centroids, because random seeding can take elements in immediate close-
ness. While K-means tend to stuck in local minimum, random seeding can
lead to poor results. Initial seeding has also influence on time. Exists several
methods for initial seeding, that can improve results. We tested K-means and
Mini-batch K-means with random seeding, K-means++ seeding (see section
2.1.1) and initial seeds obtained from PCA components.

K-means algorithms haven’t shown good ability to cluster this type of data.
Best K-means run (with random initial seed) have formed five clusters with
quantitative distribution close to reality (92, 200, 181, 3, 1250), but some
of them (especially bigger cluster) are mixture of spectra with emission and
spectra with absorption in Hα. At the same time PCA, that provides li-
near transformation of data and give information about initial seeding, usually
demonstrated three almost empty clusters and two big, which caused high

37



3. Experiments and discussion

T
able

3.1:
T
he

results
ofK

-m
eans

and
M
ini-batch

K
-m

eans
testing

on
m
ore

appropriate
found

param
eters.

G
reen

cells
indicate

the
best

runs
ofalgorithm

s.
Y
ellow

cells
indicates

the
deceptive

m
easured

results
(deceptive

w
.r.t.

the
w
hole

result
ofthe

run)

m
eth

od
in
it

p
aram

eters
tim

e
p
u
rity

in
ertia

h
om

o
com

p
l

v-m
eas

A
R
I

A
M
I

silh
seed:

k-m
eans+

+
3.16s

0.805
29824

0.374
0.632

0.470
0.593

0.372
0.768

seed:
random

3.51s
0.849

40165
0.591

0.686
0.635

0.838
0.590

0.661
K
-M

eans
5
clusters

200
iterations

seed:
P
C
A
-based

0.71s
0.743

89878
0.138

0.637
0.227

0.187
0.135

0.929
seed:

random
,

batch
size:

20
0.25s

0.823
248457

0.622
0.676

0.648
0.850

0.620
0.626

seed:
random

,
batch

size:
45

0.30s
0.859

197649
0.614

0.674
0.643

0.847
0.612

0.645
5

clusters
seed:

k-m
eans+

+
,

batch
size:

45
0.23s

0.851
204032

0.641
0.658

0.649
0.878

0.640
0.542

seed:
random

,
batch

size:
45

0.27s
0.814

199919
0.603

0.701
0.648

0.845
0.602

0.618

seed:
k-m

eans+
+
,

batch
size:

45
0.26s

0.843
200608

0.606
0.703

0.651
0.848

0.605
0.666

seed:
P
C
A
-based

batch
size:

45
0.23s

0.804
563741

0.514
0.492

0.503
0.592

0.490
0.397

M
ini-batch
K
-M

eans
4

clusters
seed:

P
C
A
-based

batch
size:

90
0.30s

0.843
334061

0.612
0.514

0.559
0.421

0.512
0.305

38



3.1. Experiments on labeled part of Ondřejov dataset

silhouette coefficient. Giving a hint about similarity between the groups four
and five didn’t improved results.

Mini-batch K-means shows by contrast a better result – it can be easily
seen from results table - and a better quantitative distribution: for example
with batch size 45 algorithms creates cluster of 1254, 95, 139, 193, 45 samples
respectively. Also Mini-batch is faster by several orders of magnitude. This is
explained by using mini-batches. Smaller size of mini-batch influences compu-
tation time positively. This only can be violated by some kind of additional
improved stop criteria like a number of iteration without improvement, etc.

Using not random seeds for initializing centroids together with stop criteria
described above, we can reduce computation time, what is seen for Mini-Batch
with configuration with initial seed got from K-means++ and batch size equals
45. With this configuration algorithm runs faster than with same configuration
but with random initializing. Also it was faster than algorithm with batch size
20.

The source of the imprecision of the clustering scheme obtained with K -
means and Mini-batch K-means is the fact that from the point of view of al-
gorithm samples with high emission peak are more distant from entire single-
emission group that samples with some kind of small double emission peak,
etc. Also the implementation provided by the scikit-learn library is adjusted
to Euclidean distance. Using other metrics is allowed, but requires big mem-
ory overhead [34]. That’s why these algorithms were excluded from further
experiments.

3.1.1.2 Affinity propagation

All tests conducted with affinity propagation algorithm didn’t give acceptable
results. The main disadvantage of this method was a formation of the enor-
mous number of clusters (more than hundred). Whereas purity and homo-
geneity almost reached maximum value all other indexes were very low. High
purity and homogeneity is explained just by the large number of clusters. Also
computation time was several times longer (configuration with 200 iterations
takes about 11 seconds). We decided to exclude this method from further
experiments.

3.1.1.3 Biclustering

In our research we tried a different usage of both Spectral Co-clustering and
Spectral Biclustering algorithms described in 2.1.3 to reach the best clustering
scheme. Figure 3.2 shows an initial state of the testing set.
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3. Experiments and discussion

Figure 3.2: The initial view of data in testing set. The columns are wavelengths
and each row is the spectrum itself. The colors reflect values of intensities.
Most of all intensities have value about 1 because of the normalization, which
is displayed as red color. It is seen that some spectra have higher values of
emission (yellow and green spots).

From testing we made a conclusion, that both algorithms have shown tend
to create one bigger cluster with all values around 1 and several smaller clusters
with the extremely high emission peaks’ values compared to the first cluster.
The disadvantage of this clustering is in fact, that spectra with small emis-
sion peak and spectra with absorption are put into the same cluster (same
as with K-means). Example figure 3.3 represents a view of this whole big
cluster and figure 3.4 represents some random chosen spectra to show the dif-
ference between spectra put in that cluster (result obtained from the Spectral
Biclustering algorithm with input configuration (5, 8)). This happens when
naive configurations are used, such as attempt to obtain exactly 5 clusters. As
number of biclusters is not enough for algorithm, it prefers to isolate some far
different spectra with great value of emission to separating spectra which have
"small" value difference in one small area. Example of this far different spectra
is the spectra with an emission peak in both Hα (∼6560 angstroms) and a He I
6678A line (∼6678 angstroms, example of this spectrum is presented in figure
3.5). These spectra are separated to the particular group from spectra with
only one standard peak in Hα and in term of astronomy they are the outliers,
because this type of spectra usually belongs to very hot star.
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3.1. Experiments on labeled part of Ondřejov dataset

Figure 3.3: The view of the whole mixed cluster of spectra with
small values of emission (blue spots) and absorption (yellow
spots)

Figure 3.4: Comparison of some random chosen spectra from the mixed cluster.
It can be easily seen that some spectra have emission peak and some spectra
have absorption.
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3. Experiments and discussion

Table 3.2: Spectral Biclustering results

number of
biclusterstime purity homo compl v-meas ARI AMI silhouette row columns

0.94s 0.804 0.373 0.631 0.469 0.592 0.371 0.777 5 5
1.11s 0.804 0.373 0.631 0.469 0.592 0.371 0.773 5 10
1.10s 0.841 0.584 0.655 0.618 0.829 0.582 0.612 7 8
1.06s 0.849 0.616 0.633 0.625 0.846 0.613 0.614 8 8
1.12s 0.849 0.617 0.634 0.625 0.846 0.614 0.589 9 9
1.11s 0.874 0.656 0.647 0.651 0.851 0.644 0.647 10 6
1.11s 0.886 0.692 0.626 0.657 0.865 0.622 0.574 12 6
1.17s 0.884 0.707 0.442 0.544 0.430 0.437 0.340 14 6

Table 3.3: Spectral Co-clustering results. Input parameter of bicluster number
is not the same as output bicluster number, because it implies number of
diagonal clusters.

input
# of

biclusters

time purity homo-
genity

complet-
ness

v-
measure ARI AMI silhu

output
biclusters
number

row column
7 0.41s 0.800 0.318 0.565 0.407 0.544 0.316 0.782 5 5
10 0.38s 0.791 0.389 0.370 0.379 0.410 0.367 0.346 6 8
13 0.44s 0.808 0.443 0.378 0.408 0.424 0.374 0.299 7 10
17 0.52s 0.799 0.427 0.245 0.312 0.191 0.241 0.152 11 13

Table 3.2 contains result of Spectral Biclustering with different input con-
figuration. In that table bi-stochastic normalization of Spectral Biclustering
(Kluger, 2003) is not represented among others due to lack of any signifi-
cant differences in effectiveness compared to log normalization of the same
algorithm. From this table it is seen, that simple increasing of amount of bi-
clusters can improve results. Also it is seen, that number of column biclusters
have less impact than number of row bicluster. The best found configuration
of Spectral Biclustering is (10, 6), which is confirmed by visual comparison
of clusters (see 3.5). This clustering scheme is such that most of absorption
spectra are in the particular group and spectra with emissions are divided by
height of peak, etc.
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3.1. Experiments on labeled part of Ondřejov dataset

Figure 3.5: Result clusters (6 of 10) of Spectral Biclustering with configuration
(10,6) on testing set. There are 5 spectra of each cluster on images (and only
single spectrum with emission in helium line). Other 4 clusters are simply
spectra with emission peak of different values of heights, etc.
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3. Experiments and discussion

Spectral Co-clustering usually also formed one big cluster with absorption
and small emission peaks. Best result according to validity indexes 3.3 is the
one with 7 diagonal clusters (5 row and 5 column output biclusters). The
most interesting clustering scheme was obtained with input number of biclus-
ters equaled 17: some clusters contained mixture of spectra with absorption
together with spectra with double peak emission, but all of emissions and
absorptions had almost the same width.

In our work we also tried to find subsequences of attributes that can repre-
sent physical feature of object. Biclustering have demonstrated the ability not
only to cluster spectra with some kind of logic, but also gave us the informa-
tion about connections and correlations between every wavelength. In most
cases wavelengths were divided in such way: the biggest bicluster contains all
wavelengths except diapason ∼ 6560− 6580, other biclusters contain parts of
this diapason, i.e. it distinguishes the areas where emission and absorption
lines usually appear.

Although results of Spectral Co-clustering does not seem convincing enough
to continue experiments with it.

3.1.1.4 DBSCAN

DBSCAN algorithms can use any type of measure for nearest neighbors search.
We tried two different measures: classic euclidean distance and cosine distance.
Euclidean distance have shown better results, so we will start with describing
clustering schemes obtained with cosine distance. Cosine distance is a term
signifying the complement to cosine similarity in positive space.

Cosine similarity is a measure of similarity between two vectors of an inner
product space that measures the cosine of the angle between them. Cosine
similarity applied in positive space gives values bounded in [0, 1]. Results
obtained from external and internal validity criteria are given in the table 3.4.

Estimation of density-based techniques like DBSCAN does not need such
parameters as inertia, because does not consider distance as connectivity or
centroid-based algorithms do (detail in section 1.2.2.2). But this algorithm
defines number of clusters itself, so this would be important for our study.
Also the Silhouette Coefficient is generally higher for convex clusters than other
concepts of clusters, such as clusters obtained through DBSCAN. Later we will
discuss results of DBSCAN more detailed. But it should be mentioned, that
high silhouette coefficient values is deceptive with respect to formed clusters.
Also it can be seen from table, that not only silhouette coefficient but high
purity can be obtained with bad formed clusters.
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ε,m Config. Time Purity Hom. Coml. V-meas. ARI AMI Silh. No Nc

1.2;20 20.46s 0.800 0.526 0.610 0.565 0.703 0.523 0.050 502 6
1.0;20 18.06s 0.744 0.438 0.485 0.460 0.506 0.435 0.068 605 5
1.2;35 19.58s 0.727 0.408 0.640 0.499 0.604 0.408 0.407 630 2

Euclidean
distance

1.5;50 21.86s 0.761 0.466 0.763 0.578 0.714 0.465 0.483 555 2
0.01;50 7.70s 0.749 0.154 0.595 0.245 0.215 0.152 0.852 19 3
0.05;30 7.78s 0.743 0.138 0.642 0.227 0.187 0.136 0.922 3 3
0.05;50 7.53s 0.743 0.138 0.642 0.227 0.187 0.136 0.922 3 3
0.005;10 7.58s 0.749 0.158 0.576 0.248 0.227 0.156 0.918 26 3

Cosine
distance

0.005;50 7.70s 0.761 0.193 0.580 0.290 0.281 0.191 0.847 54 3

Table 3.4: Results of DBSCAN using euclidean distance and cosine distance.
No and Nc are the number of outliers and clusters respectively. Green cells
indicate best result for measure. Yellow cells of Silhouette coefficient for DB-
SCAN with cosine distance is used to show deceptive high values.

We tested different configurations of DBSCAN using cosine distance, but
this method has not shown to be a useful tool for this kind of research. Prob-
ably best configuration (ε = 0.005 and m = 50) was interesting just because
it segregated familiar mixed group and frequent high emissions and named
54 outliers. Disadvantage is that outliers are often noisy spectra, asymmetric
double emission or extremely high peak.

With the euclidean distance we obtained better results. Furthermore with
configuration ε = 1.2 and m = 20) we obtained well formed clusters, where ab-
sorptions were segregated to two different clusters. So no mixing of absorption
and emission spectra were noticed. Exemplar of obtained clusters are shown
in figure 3.6

Most of outliers here are spectra with very high emissions, that were not
included to any cluster because of great distance along axes that describes Hα

(∼6560 angstroms) emission line. Another outliers are very noisy spectra with
absorption in Hα.

45



3. Experiments and discussion

Figure 3.6: Result clusters of DBSCAN with configuration ε = 1.2 andm = 20
(using euclidean distance). 10 random exemplars of each cluster is presented
for clusters contains spectra: with narrow absorption; with absorptions; with
not high double peak; with small emission; with pure emissions.
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3.2. Experiments on the entire Ondřejov dataset

3.1.1.5 Birch

Version of Scikit-learn library provided on MetaCentrum does not contain
any implementation of Birch algorithm. That’s why we decided to focus on
the other clustering methods, that have proved effectiveness (like DBSCAN
and Spectra Biclustering).

3.1.2 Dimensionality reduction

With respect to characteristics of data we applied several methods of dimen-
sionality reduction (LLE, Isomap, PCA and MDS) to find the most appropriate
for this spectra data. We evaluated results by using them as input data for
algorithms and by visual control since we have truth labels of samples.

Although linear local embedding demonstrated good performance as a tool
while classification of SLOAN galaxy spectra [24], we could not achieve same
good results. This is due to the difference between data. Galaxies usually
has different shape of the spectrum and also experiments on SLOAN were
conducted with smaller feature space.

Unfortunately we could not achieve visible improvements of clutering with
any of the methods on the testing dataset. Mostly we obtained linear place-
ment of samples and few detached samples. Also due to time and resources
constraints we have no ability to implement parallel algorithm for dimensio-
nality reduction or apply them to bigger datasets sequentially (overall time
complexity of most algorithm is O(n2) or O(n2 log n) [16]).

3.2 Experiments on the entire Ondřejov dataset

With respect to found information about how would algorithms work on such a
data we tested DBSCAN and Spectral Biclustering on whole Ondřejov dataset.

3.2.1 DBSCAN

As DBSCAN uses two input parameters - distance ε and minimum number
for cluster m, we tried to predict appropriate parameters for entire Ondřejov
dataset. As number of element of specific groups (like spectra with pure ab-
sorption, etc.) will be larger for larger dataset, some types of objects like nova
7 can still be rare. Distance ε has another properties. As it is a distance in
space between elements and DBSCAN uses simple euclidean distance, then we
suggested, that distances in entire dataset should be about the same value.
We applied different configurations of this parameters and stay with ε = 3.0
and m = 15 (output clustering contain 7 clusters and about 1400 outliers).

7Nova usually has emissions in wider range.
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3. Experiments and discussion

Figure 3.7: DBSCAN (ε = 3.0 and m = 15) result clusters of entire Ondřejov
dataset. First image shows "mixed" cluster of spectra with small emissions
and absorptions. Last image is an example of well separated cluster.
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Exemplars of clusters obtained with ε = 3.0 and m = 15 are shown in
figure 3.7. Obtained outliers are generally:

• spectra with high emission not related to any of the clusters;

• spectra of nova stars;

• noise or device artefact;

• asymmetrical double emission.

Setting larger m have led to forming less clusters, big number of outliers
(although there are interesting exemplar between them) and one big cluster
with spectra with absorption or small emissions. Smaller ε caused distribution
of samples to more clusters and more outliers appeared. We checked smaller
clusters and discovered, that most of them contains spectra of only few similar
stars. So bigger number of clusters can interesting as it can be used to observe
evolving of the objects. Since the object belongs to several clusters, it has
changed somehow, e.g. an emission has appeared. On the other side bigger
number of outliers is an outcome of excluding some spectra with emission from
clusters, which contains them when value of ε is larger. At the same time this
configuration didn’t save us from "big mixed" cluster problem.

3.2.2 Spectral Biclustering

Figure 3.8: Defected spectra example found by using Spectral Biclustering.
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During tests on labeled testing set of Ondřejov dataset Spectral Biclustering
demonstrated ability to divide troubled "mixed" cluster and form sufficiently
useful clusters. Although tests on entire Ondřejov dataset shows that in more
variety and noisy dataset Spectral Biclustering is not same precise.

With the best found configuration (14, 7) algorithm is able to segregate
some interesting objects, such as novas, asymmetric double emission or spectra
with several emissions to separate clusters. Examples of obtained clusters are
given in figure 3.9. Further all clusters which contain single spectrum are
obviously malfunction (see figure 3.8). This type of defect most likely causes
by numeric error that appears during continuum normalization (see 1.1.1),
which is method based on lest square density fitting [41].

Spectral Biclustering also could not divide spectra with absorption and
spectra with small emission. Algorithm also put some noisy absorption spectra
to the same cluster. Nevertheless, this algorithm was able to form groups of
unusual objects that are similar to each other.

1) 2)

3) 4)

Figure 3.9: Examples of clusters obtained by Spectral Biclustering (14, 7).
There are 1) novas, 2) asymmetric extremely high double peak, 3) several high
emission lines, 4) "mixed" cluster of spectra with absorptions and emissions
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3.3 Experiments on LAMOST dataset

The original intentions of the studying LAMOST data were to apply methods
which appeared useful on previous testing to the whole LAMOST dataset.
However we faced with several problems, that forced us to focus on local prob-
lems.

First there is a limit of allowed file number on MetaCentrum servers, that
make us use only a part of LAMOST dataset for experiments. We decided to
choose spectra, that were labeled as stars by LAMOST pipelines. The reason
for this was the fact that Ondřejov dataset basically contains only spectra of
stars: Ondřejov telescope is focused to observe primarily Be stars.

To keep the purity of the experiment, spectra were cropped toHα area same
as spectra from Ondřejov dataset. Because of lower resolution of LAMOST
telescope, there are only 546 points in Hα area. Thereby feature space for
LAMOST data is almost four time smaller.

Also the Spark server by MetaCentrum provides old versions of some li-
braries, so integration of our framework was complicated. Then due to much
memory consuming data and algorithms we had to reduce the size of testing
subset. At final, we had about 100 thousands randomly chosen spectra. Also
due to a lack of time there is no chance to implement all algorithms.

In our research the main problem was also to estimate results correctly.
Estimation means saying if algorithms gave us truly results w.r.t. astronomical
and physical definitions, what requires visual inspection. Because of no powers
to proceed results verification on big data of LAMOST dataset, we decided to
focus not on clustering but on outlier detection. For this purpose we used local
outlier factor algorithm, that was described in subsection 1.4.1.

In general we applied two algorithms: Spectral Biclustering and LOF (in
parallel). We will describe obtained results in this part.

LOF experiments
LOF is algorithm for finding outliers based on local density of samples. It
was already said (see section 2.3) this algorithms makes a decision based on
input parameter k used later to compute k-distances, reachability distances,
etc. Then we call sample an outlier if it’s local outlier factor is more than some
threshold t(usually set to 1), but as it was said in section 1.4.1, value of this
threshold can be different with different configurations, etc.

So we tried to determine this threshold by fixing value of k. We chose
k = 15. First we set threshold t to 1, as it is define in classic algorithm
description and then gradually increased the threshold. We found that more
than 99% of spectra have t in range of less than 3. Little part of data has t
even more that 30. Among observed outliers are spectra with:

• extreme falls and rises of values (we don’t say emission and absorptions
in this case, because this extreme values are obviously defects) or several
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3. Experiments and discussion

emissions or absorptions with high values, places not in Hα, see figure
3.10;

• smooth continuum and single (or double) emission, placed not in Hα

region, see figure 3.11;

• noisy horizontal continuum without any emission or absorption (or al-
most imperceptible), see figure 3.13,

• chaotic spectra, see figure 3.12.

Decreasing of k led to getting more spectra that visually doesn’t have
emission or absorption. The explanation lies in fact, that LOF assigns scores
according to local density depending on k-neighborhood. While all values of
these spectra lies in small range, more probable they will be neighbors only to
each other with relatively small k.

Figure 3.10: Extreme falls and rises of values(even less than zero) or several
emissions or absorptions with high values.
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Figure 3.11: Smooth continuum and single (or double) emission placed not in
Hα.

Figure 3.12: several chaotic emissions/absorptions of different width.
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Figure 3.13: Noisy (in zoom) horizontal continuum without any emission or
absorption (or almost imperceptible). We call it noisy, because deviations are
almost same throughout spectrum.

LOF algorithm was parallelized for Apache Spark. Computation time for
single launch for our testing subset was approximately 3 hours. Almost the
same result was obtained by sequential algorithm. This comes from the fact
that Apache Spark is not well-suited for such amount of data. It is designed
for computation on large data, which in our case might be several millions of
spectra.

Biclustering
Biclustering also was used on LAMOST data. But due to absence of the
parallel algorithm designed for Spark test were conducted on a subset of about
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3.3. Experiments on LAMOST dataset

100 thousands spectra only. Results obtained from Biclustering algorithm
unfortunately were worse, than expected. Every applied configuration resulted
in several very small clusters and one big, that contained almost 99% of all
spectra. Some clusters were formed from actually similar spectra (see figure
3.14), but dividing this clusters from each other contraries the desired results.
Also although the big cluster mostly contains spectra with absorption it is not
pure cluster, because many outliers (from the point of view of the clusters) are
found there.

Figure 3.14: Biclustering on LAMOST: examples of small almost consistence
clusters (we can see on the left bottom picture a cluster which is obviously not
fully consistent

We verified single-element clusters (see figure 3.15) for distinctive features
and found several spectra that are obviously damaged. Also it is probable,
that some spectra belong to objects that can not be identified just by range of
wavelengths, that we tested.
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3. Experiments and discussion

Figure 3.15: Biclustering on LAMOST: examples of single element clusters.
Several obviously defected spectra (with leaps of values) are found. Bottom
images are interesting as such shapes of spectra can be explained by the fact,
that this spectra do not belong to star, but to quasar of galaxy of another
object, that has major emission/absorption in different area.

An explanation of why algorithm did not demonstrated same good results
as on previous datasets could be imbalance of the shape of input matrix. Test
were conducted on about 100 thousands of spectra. On the other side, while
the Ondřejov dataset contains spectra with almost two thousands of points in
to Hα, LAMOST spectra have lower resolution, that’s why spectra cropped to
Hα area have only 584 points. And initially this method of biclustering was
proposed for data with thousands of features[42].

3.4 Discussion

We attempted to adapt local outlier factor algorithm for Apache Spark, but we
can not provide the true assessment of the algorithms’ effectiveness. Firstly,
Spark is obviously designed for Big Data researches, so in our case that should
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be minimum several millions of spectra. For testing with small data amount
such as we had there is no any reducing of computation time. On the con-
trary, time spend for resending data, synchronization, etc., leads to unneces-
sary waste of time.

On the other side we clarified the behavior of several methods (DBSCAN,
Spectral Biclustering, LOF, etc.) on this kind of data and can make some con-
clusions. Firstly, Density-based DBCSAN was less effective on entire Ondře-
jov dataset, than on small consistent subset. We expect that adaptation
of DBSCAN algorithm with respect to the peculiarities of the spectra might
increase the efficiency.

Secondly, Spectral Biclustering is useful enough tool for clustering spectra,
but it fast looses accuracy when data are too miscellaneous. This happens
because this method expects checkboard structure of data. Such structure is
more noticeable in Ondřejov data, so Spectral Biclustering works well on them.
But LAMOST data are more varied. Also spectra from the test set from
LAMOST are marked as stars by pipeline, but there is no confidence, that
all of them are stars indeed. Furthermore we found several spectra, which
are likely to be part of spectra of quasars or galaxy. These spectra can be
also just damaged. Also we should take into consideration that our dataset
of LAMOST contained lower dimensional feature space.

On the other side density-based method LOF shows good results in search-
ing outliers even on LAMOST dataset. It allowed us to find the group of out-
liers. While some are them are likely instrumental artefacts, another part
of them includes spectra that are obviously non-damaged. These spectra may
be interesting for astronomers. We can conclude that methods using local
density rates (used in LOF) are more appropriate for LAMOST data. Also all
algorithms are able at least to detect damaged spectra, which is also useful for
improving existing pipelines effectiveness.
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Conclusion

In this thesis we examined different methods of unsupervised learning to figure
out and understand capabilities of them in exploration of spectral data. We
tested chosen methods on the Ondřejov dataset and on the LAMOST dataset
and then discuss results. DBSCAN and Spectral Biclustering turn to be the
most promising methods for spectra clustering. Also density based algorithm
LOF has proved an ability to detect outliers in big datasets. This algorithms
can be improved and then used for astronomical issues such as clustering,
searching non-usual objects or even improving classification pipelines.

We also implemented some parallel algorithms for Spark and purity index
(in Python) for our research. We combined some algorithms of the cluster
analysis from scikit-learn library and our implementations of the Purity Score
and Spectral Clustering to a single framework to simplify testing process.

For future work we would like to improve results obtained with Spectral
Biclustering, DBSCAN and LOF by combining their features. Then we would
like to apply reduction methods to LAMOST dataset (possibly adapt dimen-
sionality reduction algorithms for Apache Spark). Also we would like to set
our implementations for VO-Cloud environment(also named after its first ap-
plication VO-KOREL [39]).
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Appendix A
Acronyms

LAMOST Large Sky Area Multi-Object Fiber Spectroscopic Telescope

CCD Charge-Coupled Device

FITS Flexible Image Transport System

ASCII American standard code for information interchange

DR1 Data release one

DBSCAN Density-Based Spatial Clustering of Applications with Noise

BSAS Basic Sequential Algorithmic Scheme

Birch Balanced Iterative Reducing and Clustering using Hierarchies

CFT Characteristic Feature Tree

PCA Principal Component Analysis

LLE Locally Linear Embedding

t-SNE t-distributed Stochastic Neighbor Embedding

MDS Multidimensional scaling

LOF Local outlier factor

OPTICS Ordering points to identify the clustering structure

NMI Normalized Mutual Information

RI Rand Index

HDFS Hadoop Distributed File System

API Application programming interface
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GMM Gaussian Mixture Model
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Appendix B

Contents of enclosed CD

readme.txt........................ the file with CD contents description
src........................................the directory of source codes

vocloud_unsupervised...................... implementation sources
thesis...............the directory of LATEX source codes of the thesis

text...........................................the thesis text directory
thesis.pdf ........................... the thesis text in PDF format
thesis.ps .............................. the thesis text in PS format
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