
L.S.

doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 19, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Effective implementation of state-of-the-art variants of the ACB compression method for
the ExCom library

 Student: Bc. Adam Léhar

 Supervisor: Ing. Radomír Polách

 Study Programme: Informatics

 Study Branch: System Programming

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2016/17

Instructions

Research the current ACB compression method implementation in the ExCom library [1].
Research structures for indexing context and content.
Choose appropriate structures for indexing context and content and implement them with consideration to
ACB compression method requirements.
Create effective implementation of the ACB compression method using these structures.
Experiment with ACB compression method variants given by the supervisor.
Test and compare new and previous implementations of ACB compression methods for speed and
compression ratio.

References

[1] ExCom. Retrieved from http://www.stringology.org/projects/ExCom/

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Effective implementation of state-of-the-art

variants of the ACB compression method

for the ExCom library

Bc. Adam Léhar

Supervisor: Ing. Radomı́r Polách

6th May 2016

Acknowledgements

I would like to thank to my supervisor, Ing. Radomı́r Polách, for the idea
and his helpful advice regarding this thesis. I would also like to thank to my
family for their support during the whole study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Pardubice on 6th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Adam Léhar. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Léhar, Adam. Effective implementation of state-of-the-art variants of the
ACB compression method for the ExCom library. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2016.

Abstrakt

Tato práce se zabývá analýzou algoritmu ACB a návrhem nových struktur pro
indexováńı contextu a contentu s ohledem na vylepšeńı kompresńıho poměru.
V této práci jsou navržena tři vylepšeńı, která jsou implementována a ověřena
experimentálńım měřeńım. Jedno z těchto vylepšeńı, které vedlo ke zlepšeńı
kompresńıho poměru, je přidáno do knihovny kompresńıch algoritmů ExCom.

Kĺıčová slova algoritmus ACB, komprese, dekomprese, kompresńı poměr,
knihovna ExCom

Abstract

This thesis deals with analysis the ACB algorithm and design new structures
for indexing context and content to improve the compression ratio. In this
thesis are design three improvements that are implemented and verified by
experimental measurement. One of these improvements, which improved the
compression ratio, is included to the compression library ExCom.

Keywords ACB algorithm, compression, decompression, compression ratio,
ExCom library

ix

Contents

Introduction 1

Motivation . 1

Main goals . 1

ExCom library . 2

Thesis organization . 2

1 Algorithm ACB 5

1.1 Definitions . 5

1.2 Description . 7

1.3 Compression . 7

1.4 Decompression . 12

2 Previous implementations 19

2.1 George Buyanovsky . 19

2.2 Martin Děcký . 19

2.3 Filip Šimek . 20

2.4 Lukáš Cerman . 20

2.5 Michal Valach . 20

2.6 Implementations comparison 20

3 Analysis 23

3.1 Data structures . 23

3.2 Triplets . 27

3.3 Arithmetic coding . 29

3.4 Dictionary mode . 30

3.5 New improvements . 31

4 Implementation 35

4.1 Module for ExCom library . 35

4.2 Object Model . 37

xi

4.3 Main compression and decompression logic 38
4.4 Balanced binary search tree with Rank & Select 41
4.5 Storage of data . 44
4.6 Arithmetic module . 46

5 Experimental measurement 49
5.1 Compression corpus . 49
5.2 Performance experiments . 52

Conclusion 65
Future work . 65

Bibliography 67

A Acronyms 69

B Building the ExCom library 71

C User manual 73

D Contents of enclosed CD 75

xii

List of Figures

1.1 Sliding window used by ACB algorithm 7

4.1 Class diagram of ACB2 module for ExCom library 37

5.1 Compression time of different variants ACB algorithm for Canter-
bury corpus . 61

5.2 Decompression time of different variants ACB algorithm for Can-
terbury corpus . 62

5.3 Compression time of different variants ACB algorithm for Calgary
corpus . 62

5.4 Decompression time of different variants ACB algorithm for Cal-
gary corpus . 63

xiii

List of Tables

2.1 Compression ratios of previous implmentations ACB algorithm for
Calgary corpus . 21

5.1 Calgary corpus file description . 50
5.2 Canterbury corpus file description 50
5.3 Prague corpus file description . 51
5.4 Compression ratios of different variants ACB algorithm for Can-

terbury corpus . 52
5.5 Compression ratios of different variants ACB algorithm for Calgary

corpus . 53
5.6 Compression ratios of different variants ACB algorithm for Prague

corpus . 54
5.7 Compression ratios of index shifting variant for Canterbury corpus 55
5.8 Compression ratios of index shifting variant for Calgary corpus . . 56
5.9 Compression ratios of different number of bits to encode different

between best content and best context for Canterbury corpus . . . 57
5.10 Compression ratios of different number of bits to encode different

between best content and best context for Calgary corpus 57
5.11 Compression ratios of different number of bits to encode number

of copy bytes from best content for Canterbury corpus 58
5.12 Compression ratios of different number of bits to encode number

of copy bytes from best content for Calgary corpus 59
5.13 Compression ratios of different dictionary size for Canterbury corpus 59
5.14 Compression ratios of different dictionary size for Calgary corpus . 60

xv

List of Algorithms

1.1 ACB compression . 8
1.2 ACB decompression . 13
3.3 Rank . 27
3.4 Select . 27

xvii

Introduction

Motivation

In modern technologies and computers is technology moving forward every
day. Not only processing power is growing. Amount of generated and pro-
cessed data is growing too. These data have to be stored somewhere.

In present days a huge amount of data is processed and stored in cloud.
This puts a large memory demands on the data center, where these data
is stored. Storing huge amount of data is expensive, it is advantageous to
minimize amount of data to store.

One way to solve the problem with growing an amount of data that have
to be store is decrease their amount without loss any information. One of the
options can be lossless compression.

There are a lot of compression algorithms with difference principles. Stat-
istical methods are Huffman coding, arithmetic coding, etc. Dictionary based
methods are LZ77, LZ78, etc. Context methods are PPM, DCA, ACB, etc.
All these compression methods has same characteristic. Size of output data is
smaller than size of input data. After inverse transformation is output data
identical with original data.

In the future an amount of data will be growing faster than nowadays.
Data compression will be significant part of data storing.

Main goals

The main goal this master thesis is research structures for indexing context
and content. The compression ratio can be improvement.

This thesis follow master thesis Efficient implementation of ACB compres-
sion algorithm for ExCom library [11] published by Michal Valach in 2011.

Outcome this thesis will be analysis of improvement original algorithm
ACB published by George Buyanovsky. Main goal is decrease compression

1

Introduction

ratio. This improvements will be implemented in C++ and integrated to
compression library ExCom [10]. Experimental measurement compare results
previous and new implemented version of algorithms in ExCom library.

ExCom library

Compression library ExCom [10] was developed by Filip Šimek in his master
thesis Data compression library [9]. This compression library was extended
by Jakub Řezńıček in his master thesis Corpus for comparing compression
methods and an extension of a excom library [7]. Published licence of this
library is GNU LGPL version 3.

Compression library ExCom (Extensible Compression Library) is gcc lib-
rary of collected data compression algorithms. The idea behind is to have one
source of data compression algorithms together with benchmarking environ-
ment.

Main benefit this library is identically interface for experiments and having
access to the other algorithms implemented in this library. In the case different
implementations of algorithms with different interface is problem to compare
results measured on this implementations.

The ExCom library is well designed for extensions by new implemented
algorithms. The library is implemented in C++ programming language for
its speed reasons and it is prepared to be used in multi-threaded programs.
The library has a built-in mechanism used for IO operations available for
many types of streams and time measurement mechanism with microseconds
precision.

Thesis organization

Introduction explain motivation why is important to use the lossless compres-
sion. There are described main goals this master thesis and introduced to
compression library ExCom.

Chapter 1 describes compression algorithm ACB. This chapter explains
main idea this algorithm, show compression and decompression process on
practical examples.

Chapter 2 describes previous implementation of ACB algorithm with their
advantages and disadvantages.

Chapter 3 analyse compression algorithm ACB. This chapter describes
data structures for store context-content pairs. End of this chapter describes
new variants of algorithm which will be implemented in this thesis.

Chapter 4 describes algorithm implementation include new variants of al-
gorithm. This chapter describes data model and integration new implemented
module to compression library ExCom.

2

Thesis organization

Chapter 5 show results of experimental measurements. This chapter com-
pare results new implemented variants of ACB algorithm with previous im-
plementation of ACB algorithm in ExCom library.

Conclusion evaluate outcome of this master thesis.

3

Chapter 1

Algorithm ACB

1.1 Definitions

Definition 1.1 (Alphabet)
Alphabet is a finite set of symbols.

Definition 1.2 (Symbol)
A symbol is an atomic element of an alphabet.

Definition 1.3 (String)
String is a sequence of symbols from alphabet.

Definition 1.4 (Empty string)
Empty string is the string with zero length. Empty string is denoted as ε.

Definition 1.5 (Code word)
Codeword is a sequence of bits.

Definition 1.6 (Code)
Code K is a triple K = (S, C, f), where:

• S is a finite set of source units,

• C is a finite set of codewords (code units),

• f is an injective mapping S 7→ C+.

∀a1, a2 ∈ S, a1 6= a2 ⇒ f(a1) 6= f(a2)

Definition 1.7 (Compression)
Data compression is a process which tries to find a different representation of
original data intending to reduce the number of bits needed to represent the
data.

5

1. Algorithm ACB

Definition 1.8 (Decompression)
Data decompression is a process complementary to data compression which ap-
plies transformation, inverse to that used in data compression, to compressed
data.

Definition 1.9 (Lossless compression method)
Lossless compression method is a compression method whose output after de-
compression of compressed data is always exactly the same as the original
data because compressed data retains all necessary information to restore the
original data.

Definition 1.10 (Lossy compression)
Lossy compression method is a compression method whose output after decom-
pression of compressed data may not be exactly the same as the original data
because some information carried by the original data is claimed unimportant
and is lost during compression.

Definition 1.11 (Compression ratio)
Compression ratio is a ratio between compressed data size and original (un-
compressed) input data size obtained from the following equation.

compression ratio =
compressed data size

uncompressed data size

Definition 1.12 (Context)
Every character ci in the input text can be represented as a position in the
text. Any substring α in the left vicinity from position in this text is called
context.

Definition 1.13 (Content)
Every character ci in the input text can be represented as a position in the
text. Any substring β in the right vicinity (including ci) is called content.

Definition 1.14 (Longest common prefix)
The length of the longest common prefix of two strings A[0..m) and B[0..n) is
the largest integer l ≤ min{m,n} such that A[0..l) = B[0..l).

Definition 1.15 (Corpus)
A corpus is a set of various files, used for benchmarking compression methods.

Definition 1.16 (Grandparent of node)
Grandparent of node is the parent of its parent, if it exists.

Definition 1.17 (Uncle of node)
If the parent of node is a left child of its parent, then the uncle is the right
child of the grandparent. If the parent of node is a right child of its parent,
then the uncle is the left child of the grandparent.

6

1.2. Description

Figure 1.1: Sliding window used by ACB algorithm

1.2 Description

Compression algorithm ACB is context based compression method. This al-
gorithm is based on properties of natural languages. In natural language is
occurrence of next symbol dependent on context of text. The same words will
probably have similar context.

ACB algorithm used adaptive dictionary. Both of encoder and decoder
build the same dictionary dependent on actually processed character. Each
item in the dictionary is represented by context-content pair. This algorithm
used sliding window, show at figure 1.2, similar as algorithm LZ77 [13]. Left
section of sliding window which contains processed text is called context.
Right section of sliding window which contains raw text is called content.
All items in the dictionary are lexicographically sorted by context. Charac-
ters in context are compared from right to left. Characters in content are
lexicographically compared from left to right.

During every shift by one character of sliding window is created new
context-content pair which is inserted to the dictionary.

Compression output and decompression input are triplets of numbers.
These numbers represented difference between best content and best context,
number of characters copy from the best content and value of next encoded
character.

1.3 Compression

Compression starts with empty dictionary, in every algorithm iteration is in-
serted at least one context-content pair to the dictionary. Sliding windows
starts with empty context. Context is all raw text.

Every algorithm iteration contains these four steps:

1. Find the best matching context for current context.

2. Find the best matching content for current content.

7

1. Algorithm ACB

Algorithm 1.1 ACB compression

1: i← 0
2: while i < sizeOfFile do
3: cx ← position of the best matching context for current context
4: cn ← position of the best matching content for current content
5: l← common length of the best matching content and current content
6: b← first non matching symbol of current content
7: OUTPUT (cn − cx, l, b)
8: for j ← 0 to l do
9: DictionaryInsert(i+ j)

10: end for
11: i← i+ l + 1
12: end while

3. Generate output triplet (d,l,b).

4. Insert new context-content pairs to the dictionary.

First step is finding the best matching context for current context in sliding
window in all dictionary. Contexts are lexicographically compared character
by character from right to left. When the best context is found, its position
in sequence ordered by context is calculated.

Second step is finding the best matching content for current content in
sliding window. Surrounding around the best context is scanning. Size of this
surrounding is defined by number of bits using to encode difference between
best content and best context. When the best content is found, its position
in sequence ordered by context is calculated.

Third step is generating output triplet of numbers. First number repres-
ented difference of positions between best content and best context. Second
number represented number of characters from left which are identically in
the best content and current content in sliding window. Third number rep-
resented value of next character in sliding window content which did not copy
from the best content.

Fourth step is shifting sliding window about number of character copy
from the best content increasing by one. Every shift sliding window by one
character generate context-content pair which is inserted to the dictionary.

Algorithm finish when current content in sliding window is empty string.

1.3.1 Compression example

For example I took the text alf eats alfalfa.

Step 1 First step starts on the beginning of the test. The dictionary is
empty. The best context and the best content are not exist because the dic-

8

1.3. Compression

tionary is empty. Difference between best content and best context will encode
by 0. Number of copy characters from the best content is 0, next character is
a. New context-content pair will insert to the dictionary.

|alf eats alfalfa

(0,0,a)

0 ε|a

Step 2 Second step starts shifting sliding window by one character. In the
dictionary is one context-content pair. The best context and the best content
are at index 0. Number of identical characters in the best content and current
content in sliding window is 0. Because none characters from the best content
are copy, it is not significant to know difference between best content and best
context. This different will encode by 0. New context-content pair will insert
to position 1 in the dictionary.

a|lf eats alfalfa

(0,0,l)

0 ε|al
1 a|l

Step 3 In third step the dictionary contains two context-content pairs. The
best context found on position 1, the best content found on position 0. Dif-
ference between best content and best context is -1. Number of identical
characters in the best content and current content in sliding window is 0. Be-
cause none characters from the best content are copy, difference will encode
by 0. New context-content pair will insert to position 2 in the dictionary.

al|f eats alfalfa

(0,0,f)

0 ε|alf
1 a|lf

2 al|f

Step 4 Fourth step is the same as third step.

alf| eats alfalfa

9

1. Algorithm ACB

(0,0,)

0 ε|alf
1 a|lf

2 alf|

3 al|f

Step 5 Fifth step is the same as previous step.

alf |eats alfalfa

(0,0,e)

0 ε|alf e

1 alf |e

2 a|lf e

3 alf| e

4 al|f e

Step 6 In sixth step the best context found on position 3, the best content
found on position 0. Difference between best content and best context is -3.
Number of identical characters in the best content and current content in slid-
ing window is 1. This character a will skip, in output triplet will encode next
character t. The dictionary will be contains two new context-content pairs on
positions 4 and 3.

alf e|ats alfalfa

(-3,1,t)

0 ε|alf eat

1 alf |eat

2 a|lf eat

3 alf ea|t

4 alf e|at

5 alf| eat

6 al|f eat

Step 7 In seventh step the best context found on position 6, the best con-
tent found on position 3. None identical character is in the best content and
current content in sliding window. To the dictionary will insert on context-
content pair to position 7.

10

1.3. Compression

alf eat|s alfalfa

(0,0,s)

0 ε|alf eats

1 alf |eats

2 a|lf eats

3 alf ea|ts

4 alf e|ats

5 alf| eats

6 al|f eats

7 alf eat|s

Step 8 In eight step the best context found on position 7, the best content
found on position 5. Encoded difference between best content and best con-
text in output triplet is -2. Number of copy characters from the best content
is 1. Next character in output triplet is a. The dictionary will be contains
two new context-content pairs on positions 8 and 2.

alf eats| alfalfa

(-2,1,a)

0 ε|alf eats a

1 alf |eats a

2 alf eats |a

3 a|lf eats a

4 alf ea|ts a

5 alf e|ats a

6 alf| eats a

7 al|f eats a

8 alf eats| a

9 alf eat|s a

Step 9 In ninth step are the best context and the best content on position 3.
Number of copy characters is 2, next character is a. The dictionary will be
contains three new context-content pairs on positions 4, 10 and 8.

alf eats a|lfalfa

(0,2,a)

11

1. Algorithm ACB

0 ε|alf eats alfa

1 alf |eats alfa

2 alf eats |alfa

3 a|lf eats alfa

4 alf eats a|lfa

5 alf ea|ts alfa

6 alf e|ats alfa

7 alf| eats alfa

8 alf eats alf|a

9 al|f eats alfa

10 alf eats al|fa

11 alf eats| alfa

12 alf eat|s alfa

Step 10 In tenth step the best context found on position 5, the best content
found on position 4. Number of identically characters in the best content and
current content in sliding window is 3. The last identical character is on the
last position of raw text. In output triplet is encoded next character from raw
text because number of copy bytes will be only 2. Last character from raw
text a will encode as next character. None context-content pair will insert to
the dictionary on the end of compression.

alf eats alfa|lfa

(-1,2,a)

Result Result is 10 triplets: (0,0,a) (0,0,l) (0,0,f) (0,0,) (0,0,e)
(-3,1,t) (0,0,s) (-2,1,a) (0,2,a) (-1,2,a).

1.4 Decompression

Decompression starts with empty dictionary, in every algorithm iteration is
inserted at least one context-content pair to the dictionary. Left section of
sliding window, called context, always contain processed text. Right section
of sliding window, called content, is prepare for copy new characters form the
dictionary and encoded information.

Every algorithm iteration contains these five steps:

1. Read input triplet (d,l,b).

2. Find the best matching context for current context.

3. Find the best matching content by difference d from input triple.

12

1.4. Decompression

Algorithm 1.2 ACB decompression

1: i← 0
2: while !EOF do
3: d← read difference between best content and best context from triplet
4: l← read number of copy symbols from triplet
5: b← read next symbol from triplet
6: cx ← position of the best matching context for current context
7: cn ← d+ cx
8: for j ← 0 to l − 1 do
9: OUTPUT Copy(cn + j)

10: DictionaryInsert(i+ j)
11: end for
12: i← i+ l
13: OUTPUT b
14: DictionaryInsert(i)
15: i← i+ 1
16: end while

4. Copy l+1 characters to output.

5. Insert new context-content pairs to the dictionary.

First step is loading input triplet contains difference between best content
and best context, number of copy bytes from the best content and value of
next character from raw text.

Second step is finding the best matching context for current context in
sliding window. This process is same as process in compression.

Third step is finding the best matching content. Position of the best
content is calculated from position of the best context and difference between
best content and best context loaded from input triplet.

Forth step is copying l characters form the best content to output. Value
of character b from input triplet is copy to output text too.

Fifth step is shifting sliding window about number of character copy from
the best content increasing by one. Every shift sliding window by one character
generate context-content pair which is inserted to the dictionary.

Algorithm finish when none triplet is on input.

1.4.1 Decompression example

For example I took this text encoded text: (0,0,a) (0,0,l) (0,0,f) (0,0,)
(0,0,e) (-3,1,t) (0,0,s) (-2,1,a) (0,2,a) (-1,2,a).

13

1. Algorithm ACB

Step 1 First step starts with empty output text. The dictionary is empty.
Number of copy characters from the best content is zero, the best context and
the best content are insignificant. Next character a from input triplet will
copy to output text. New context-content pair will insert to the dictionary.

(0,0,a)

a|

0 ε|a

Step 2 In second step is the same situation as in first step. Next character
l from input triplet will copy to output text. New context-content pair will
insert to position 1 in the dictionary.

(0,0,l)

al|

0 ε|al
1 a|l

Step 3 In third step is the same situation as in previous step. Next char-
acter f from input triplet will copy to output text. New context-content pair
will insert to position 2 in the dictionary.

(0,0,f)

alf|

0 ε|alf
1 a|lf

2 al|f

Step 4 In fourth step is the same situation as in previous step. Next char-
acter from input triplet will copy to output text. New context-content pair
will insert to position 2 in the dictionary.

(0,0,)

alf |

14

1.4. Decompression

0 ε|alf
1 a|lf

2 alf|

3 al|f

Step 5 In fifth step is the same situation as in previous step. Next charac-
ter e from input triplet will copy to output text. New context-content pair
will insert to position 1 in the dictionary.

(0,0,e)

alf e|

0 ε|alf e

1 alf |e

2 a|lf e

3 alf| e

4 al|f e

Step 6 In sixth step is copying 1 character from the best content to output
text. Find the best matching context with current context in sliding window.
The best context found at position 3. Difference between best content and
best context from input triplet is -3. Calculating position of the best content
is 0. First character of this content is a. This character will copy to output
text together with next character from input triplet t. The dictionary will be
contains two new context-content pairs on positions 4 and 3.

(-3,1,t)

alf eat|

0 ε|alf eat

1 alf |eat

2 a|lf eat

3 alf ea|t

4 alf e|at

5 alf| eat

6 al|f eat

Step 7 In seventh step is copy none characters from the best content. Next
character s from input triplet will copy to output text. New context-content
pair will insert to position 7 in the dictionary.

15

1. Algorithm ACB

(0,0,s)

alf eats|

0 ε|alf eats

1 alf |eats

2 a|lf eats

3 alf ea|ts

4 alf e|ats

5 alf| eats

6 al|f eats

7 alf eat|s

Step 8 In eight step is copying 1 character from the best content to output
text. The best context found at position 7. Difference between best con-
tent and best context from input triplet is -2. Calculating position of the
best content is 5. First character of this content is . This character will
copy to output text together with next character from input triplet a. The
dictionary will be contains two new context-content pairs on positions 8 and 2.

(-2,1,a)

alf eats a|

0 ε|alf eats a

1 alf |eats a

2 alf eats |a

3 a|lf eats a

4 alf ea|ts a

5 alf e|ats a

6 alf| eats a

7 al|f eats a

8 alf eats| a

9 alf eat|s a

Step 9 In ninth step are copying 2 character from the best content to out-
put text. The best context found at position 7. Best content is at the same
position. First two characters of this content are lf. These characters will
copy to output text together with next character from input triplet a. The
dictionary will be contains three new context-content pairs on positions 4, 10
and 8.

(0,2,a)

16

1.4. Decompression

alf eats alfa|

0 ε|alf eats alfa

1 alf |eats alfa

2 alf eats |alfa

3 a|lf eats alfa

4 alf eats a|lfa

5 alf ea|ts alfa

6 alf e|ats alfa

7 alf| eats alfa

8 alf eats alf|a

9 al|f eats alfa

10 alf eats al|fa

11 alf eats| alfa

12 alf eat|s alfa

Step 10 In last step are copying 2 character from the best content to output
text too. The best context found at position 5. The best content is at posi-
tion 4. First two characters of this content are lf. These characters will copy to
output text together with next character from input triplet a. None context-
content pairs will insert to the dictionary because decompression is at the end.

(-1,2,a)

Result Result is the text alf eats alfalfa.

17

Chapter 2

Previous implementations

In this chapter are describe previous implementations of ACB algorithm. To
compare preview implementations I relied on master thesis Efficient imple-
mentation of ACB compression algorithm for ExCom library [11] published
by Michal Valach in 2011. This thesis follow thesis published by Michal Valach,
details and implementations usage are describe in the master thesis [11].

2.1 George Buyanovsky

George Buyanovsky is creator of original ACB algorithm. Algorithm was
present in 1994 only in Russian. Publication also included implementation
which is not distributed under free licence but only as MS-DOS executable.

The source code by George Buyanovsky has more variants, one of them
he described in Description of acb published in comp.compression [3] in 1996.
This publication describe some features of algorithm. The most important
feature is using arithmetic coding before write data to output stream.

Together with the released application a README file are known this
capabilities: the program can compress more files together, maximal memory
consumption during compression and decompression is 16MB, maximal size
of input file is 64MB.

2.2 Martin Děcký

Next implementation of ACB algorithm published Martin Děcký in 2006 as
a proof of concept project in class at Faculty of Mathematics and Physics
at Charles University in Prague [5]. Source code is written in C++ and
distributed under the GNU GPL license.

Implementation use three variants of triplets. First variant encoding differ-
ence, number of symbols and new symbol. Second variant encoding difference

19

2. Previous implementations

and number of symbols. Third variant encoding only new byte. Each triplet
is extend by two flags which define one of this triplet variant.

2.3 Filip Šimek

Filip Šimek is creator of the first ACB implementation distributed with Ex-
Com library [10] as part of his master thesis Data compression library [9].

The dictionary is implemented as array of pointers. The dictionary is
deleted every time if the new block of data is read, dictionary cannot be used
for compression next block of data. Triplets are not encoded yet. Numbers
are only writing to output stream, range is limit by number of bits for each
number.

2.4 Lukáš Cerman

Lukáš Cerman is a creator of another implementation in his bachelor thesis
Acb compression algorithm [4] in 2003. It was implemented in C in Microsoft
Visual Studio.

The dictionary is partially store as hash table, partially as simple array.
For triplets encoding use Huffman coding [6]. There are three variants of
triplets. The implementation also contains basic support for the context files.

2.5 Michal Valach

Michal Valach is creator of the actual implementation of ACB algorithm in
ExCom compression library [10]. This implementation is part of them master
thesis Efficient implementation of ACB compression algorithm for ExCom
library [11].

In this implementation the dictionary is represent by B+ tree. For output
data using two variants of triplet. If none symbol is copy, encode 0 and
new symbol. Otherwise encode difference, number of copy symbols and new
symbol.

For triplets encoding use Huffman coding or arithmetic coding. Both vari-
ants using three different alphabets, each alphabet for one part of triplet. This
feature decrease compression ration.

2.6 Implementations comparison

Compare compression ration this algorithms 2.1 is from master thesis Efficient
implementation of ACB compression algorithm for ExCom library [11] by
Michal Valach.

20

2.6. Implementations comparison

Table 2.1: Compression ratios of previous implmentations ACB algorithm for
Calgary corpus

Compression ratio [-]

File Buyanovsky Cerman Děcký Šimek Valach

bib 0.241 0.307 1.879 0.566 0.304
book1 0.290 0.374 2.159 0.735 0.373
book2 0.242 0.316 - 0.618 0.324
geo 0.570 0.658 3.946 1.004 0.650
news 0.290 0.359 - 0.681 0.359
obj1 0.438 0.522 3.436 0.804 0.510
obj2 0.275 - - 0.546 0.357
paper1 0.293 0.362 2.413 0.618 0.357
paper2 0.293 0.364 2.401 0.648 0.360
pic 0.093 0.113 - - 0.114
progc 0.291 0.358 2.414 0.599 0.352
progl 0.188 0.243 1.559 0.403 0.242
progp 0.188 0.238 1.591 0.407 0.237
transdfgg 0.161 0.206 1.305 0.405 0.206

Experimental measure use Calgary corpus. The compression ratios for
some files are not listed because the compression was unable to end in a
reasonable time.

The implementation by George Buyanovsky is the best for all files. The
difference between implementation of George Buyanovsky and implementation
of Michal Valach is approximately 5%. The implementation by Lukáš Cerman
gives similar results as the implementation by Michal Valach. The other two
implementations is not achieved such high quality results.

21

Chapter 3

Analysis

This chapter contains analysis data structures for effective implementation
compression algorithm ACB, analysis effective storing data in memory and
their encoding before store. This implementation use adaptive arithmetic cod-
ing. Finally this chapter describe new data structure for the best compression
ration of ACB algorithm.

3.1 Data structures

Data structure for ACB algorithm is selected for fast context searching. Chap-
ter 1 describe requirement fast searching. The best context is search during
encoding every symbol.

During encoding every symbol is searching the best matching content for
current content in surrounding of the best context. The surrounding of the
best context is limited by number of bits using to encode different between
best content and best context. Data structure can be selected with respect to
these properties.

Using data structure can have fast insert operation of new item. After each
encoding symbol have to be insert new context-content pair to the dictionary.
This operation is describe in chapter 1.

These requirements most convenient search trees. Next parts of this chapter
binary search tree and its balance variant red-black tree. Finally this chapter
describe extension this search trees by statistical methods rank & select which
compute item position in search tree and search item on concrete position in
search tree.

3.1.1 Binary search tree

In this definition of binary search tree are all inserted item unique. Otherwise
can be change inequalities.

23

3. Analysis

Binary search tree is build from nodes. Each node can have maximal two
children. In each leaf and inner node is save key. All keys in left sub-tree are
lower than key in current node. All keys in right sub-tree are greater then key
in current node.

Binary search thee enable three basic operations: insert new key to binary
search tree, select node define by concrete key and delete node define by
concrete key. All these operations have in average case asymptotic complexity
O(log n), in the worst case have asymptotic complexity O(n), n is number of
nodes in binary search tree. Binary search tree is not balanced, the worst case
of binary search tree is linear list with n items.

Dictionary of ACB algorithm use only two operations: insert and delete.
Operation delete is not use because dictionary in ACB algorithm by definition
is not allow delete item by item. Dictionary can be delete only all in one step
and replace by new empty dictionary.

Insert item to binary search tree Insert new item to binary search tree
is realize by add new leaf to binary search tree. In the beginning it can search
location to add new leaf. All properties of binary search tree have to be
preserved. All keys in left sub-tree are lower than key in current node. All
keys in right sub-tree are greater then key in current node. Each node can
have maximal two children.

During search location to add new leaf is binary search tree traverse from
root to leaf. In each node is decide if new key is lower or greater than key in
current node. If the new key is lower than key in current node than recursive
continue to left sub-tree. Otherwise recursive continue to right sub-tree. This
action is repeat until sub-tree is not exist. In this case is insert new leaf instead
of this sub-tree. This case terminate insertion process, all properties are true.

Search item in binary search tree Operation to search item in binary
search tree is similar to operation search location to add new leaf. This oper-
ation is base on properties binary search tree.

During search operation is binary search tree traverse from root to leaf. In
each node is decide if searched key is lower, greater or equal to key in current
node. If the searched key is equal to the current key, search node found. If
the searched key is lower than the current key than recursive continue to left
sub-tree. If the searched key is greater than the current key than recursive
continue to right sub-tree. If the sub-tree is not exist, search key is not in
binary search tree.

3.1.2 Red-Black tree

Reference for this section is lecture Balanced BSTs - AVL and RB Trees [8].

24

3.1. Data structures

Red-black tree is binary search tree extend by balance. Tree balancing
guarantee maximal height of search tree. Operations insert search and delete
can be compute faster.

Red-black tree is balance to i.e. black depth. Black depth is defined as
the number of black nodes on the path from the root to leaf. As a contrary to
AVL tree balance to sub-tree height is red-black tree less balance. Red-black
tree need fewer rotations, its better for often insert operations.

Implemented ACB algorithm use red-black tree because encoding each
symbol insert new context-content pair do the dictionary. Insert operations
to search tree are very often.

Because red-black tree is balance, insert and search operations have com-
plexity βlogn, 1 ≤ β < 2, n is number of items in red-black tree.

Red-black tree properties Red-black tree meet all the requirements bin-
ary search tree. Properties of red-black tree are extend by this properties:

• Each node is either red or black.

• The root of the tree is black.

• Each leaf is black NULL.

• A red node has both its children black.

• All leaves have the same black depth.

Rotations Red-black tree using four variant of rotation to guarantee bal-
ance the search tree. These rotations are: left rotation, right rotation, left-
right rotation and right-left rotation.

Left rotation During left rotation node x is replace by its right sub-
tree, node x is its left sub-tree. Left sub-tree of node x.right after rotation is
right sub-tree node x.

Right rotation During right rotation node x is replace by its left sub-
tree, node x is its right sub-tree. Right sub-tree of node x.left after rotation
is left sub-tree node x.

Left-right rotation Left-right rotation is compose of left rotation around
node x.left and right rotation around node x.

Right-left rotation Right-left rotation is compose of right rotation
around node x.right and left rotation around node x.

25

3. Analysis

Insert item to red-black tree Insert item do red-black tree is identically
to insert item to binary search tree. Original black NULL node is replace
by new node. This new node is coloured to red. Finally it is necessary to
maintain properties of red-black tree.

There are four case to solve the violation red-black tree properties.

Coloured node to black In the case if parent of current node is not
exist than only coloured current node to black. All red-black properties are
true.

Coloured parent and uncle to black, grandparent to red In the
case if parent and uncle are red than coloured parent and uncle to black,
coloured grandparent to red. Grandparent is actually red, its can violate red-
black properties. This problem solve recursion property check to grandparent.

Right or left rotation around grandparent In the case if parent is
red and uncle is black or not exist then separate two variants.

The current node is left child of its parent, parent is left child of grand-
parent. In this case use right rotation around grandparent.

The current node is right child of its parent, parent is right child of grand-
parent. In this case use left rotation around grandparent.

Right-left or left-right rotation around grandparent In the case
if parent is red and uncle is black or not exist then separate two variants.

The current node is right child of its parent, parent is left child of grand-
parent. In this case use right-left rotation around grandparent.

The current node is left child of its parent, parent is right child of grand-
parent. In this case use left-right rotation around grandparent.

Search item in red-black tree Search item in red-black tree is identically
to search item in binary search tree. Advantage of red-black tree is asymptotic
complexity which is in the worst case O(log n) in contrast O(n) in binary search
tree.

3.1.3 Order statistical tree

Order statistical tree is extension binary search tree or balance red-black tree.
Order statistical tree contain two new statistical function rank and select.

Asymptotic complexity for both rank and select operations is O(log n) for
red-black tree, n is number of items in search tree.

Each node in binary search tree or red-black tree is extend by integer
variable which contains size of sub-tree. This information is necessary for

26

3.2. Triplets

calculate rank and select operation in logarithmic time. Sub-tree size in update
each insert item to sub-tree.

Algorithm ACB use functions rank and select for calculate position of the
best context and the best content in sequence ordered by contexts. These pos-
itions are used for encoding difference between best content and best context.

Rank Function rank find position of item in order sequence.

Algorithm 3.3 Rank

Require: node
Ensure: ranking
1: ranking ← 0
2: while node != NULL do
3: if node is right child its parent then
4: ranking = ranking + sub-tree size of parent left child + 1
5: end if
6: node← parent of node
7: end while
8: return ranking

Select Function find item on nth position in order sequence.

Algorithm 3.4 Select

Require: searchRank
Ensure: node
1: node← root of search tree
2: actualRank ← left sub-tree size
3: while searchRank != actualRank do
4: if searchRank < actualRank then
5: node← left child of node
6: else if
7: then node← right child of node
8: searchRank ← searchRank − actualRank − 1
9: end if

10: actualRank ← left sub-tree size
11: end while
12: return node

3.2 Triplets

Algorithm ACB using three numbers for store information about compress
data. First number represented difference of positions between best content

27

3. Analysis

and best context. Second number represented number of characters from left
which are identically in the best content and current content. Third number
represented value of next character in current content which did not copy from
the best content.

This is three numbers used by George Buyanovsky in original ACB al-
gorithm to store all required informations for data decompression.

There are more variants to effective store this informations to minimization
memory requirements.

Encoding three numbers (d, l, b)

This variant using always all three numbers. Compression ratio is depend
on number of bits use to encode particular numbers. The fewer bits are used,
the less memory are required. On the other hand, fewer bits can retain smaller
amount of information.

Character d represented difference between best content and best context.
The best context is search in all dictionary. The best content is search only
in limited surrounding of the best context. This surrounding is limited by
number of bits to encoding this different. When its use a less bits may not be
found as good context and consequently will not be copy as many symbols as
it could be when using more bits.

Character l represented number of symbols copy from the best content.
The more bits will be used to store this information, the more symbols can be
copy.

Character b represented value of next symbol which did not copy from
current content. For this information is always used 8 bits.

Encoding three numbers or two numbers (l, d, b) or (l, b)

This variant is different by previous variant only in special cases when can
be used only two numbers. In this variant decoder have to decided if process
three numbers or two numbers.

Three numbers is using in case if number of copy bytes from the best
content is at least one. In this case is procedure identical as encoding three
numbers whenever.

Two numbers is using in case if none symbol is copy from the best con-
tent. In this case information about difference between best content and best
context is irrelevant. The best content will never be used.

First information which is encoding is number of copy symbols. This
number decide if actual token contain three number or two numbers.

Encoding two numbers or one number (d, b) or (b)

This variant encoding two numbers or one number. Always is used 1 bit
flag to determination how numbers can be decode.

28

3.3. Arithmetic coding

Two numbers is using in case if number of copy bytes from the best content
is at least one. In this case first number represented difference between best
context and best context, second number represented value of next symbol
which did not copy from current content.

One number represented value of next symbol which did not copy from
current content is using in case if none symbol is copy from the best content.

Number of copy symbols from the best content have to compute both
encoder and decoder. This variant is used for experiment describe in chap-
ter 3.5.2.

3.3 Arithmetic coding

Output of compression algorithm ACB is sequence of numbers. This numbers
have to be store to memory. Storing raw numbers to memory is inefficient,
numbers can be compress by other algorithm. Arithmetic coding is good
algorithm to compress numbers.

Details about arithmetic coding are published in Arithmetic coding for
data compression [12].

For store raw numbers is use always same number of bits, arithmetic coding
use different number of bits for different numbers. For numbers that occur
more often, it is used a smaller number of bits than the number that occur
less frequently.

Arithmetic coding encode input data to real number in interval [0; 1).
With increasing size of input data is needed to use a real number with greater
precision because differences is decreases.

During compression a decompression is using the dictionary with different
probability of symbols. This probabilities are using to calculate cumulative
probability of symbols and range for each symbol.

In the beginning of compression is used interval [0; 1). During the com-
pression interval is reduce. In each iteration one symbol with its interval in the
dictionary is selected. Lower and upper bounds of encoded interval are recal-
culated with using symbol interval. After last algorithm iteration is interval
on output. Result is any number for this interval.

Encoded date have to be complete information about end of decompres-
sion. This information can be represented as special symbol at the end of
input data. It can be also added to result number of compressed numbers.

Decompression is similar procedure as a compression.

3.3.1 Static arithmetic coding

Static variant of arithmetic coding is based on previously known probabil-
ity distribution of symbols. Dictionary is build from this distribution before
compression, during compression dictionary is not update.

The same dictionary have to known both encoder and decoder.

29

3. Analysis

3.3.2 Adaptive arithmetic coding

Adaptive variant of arithmetic coding is based on dictionary update depending
on input data. It is not important to know probability distribution of symbols
before compression and decompression. In each iteration new symbol is insert
to the dictionary, symbols probabilities are recalculated. Next iteration used
different probabilities than current iteration.

Dictionary is build encoder as same as decoder. Decoder insert to the
dictionary actually decoded symbol.

Adaptive model is suitable to use on unknown data. It is also numbers on
output of ACB algorithm.

3.4 Dictionary mode

Algorithm ACB inserting new context-content pair to the dictionary after
compression each symbol. Size of the dictionary directly proportional to size
of input data.

3.4.1 Stream mode

Original algorithm published by George Buyanovsky using for compression all
input data only one dictionary. Advantage of one dictionary for all compres-
sion is occurrence all contexts in the dictionary, algorithm will find the best of
them. Similar input data in all input file use this fact but variable input data
in input file did not use this fact a lot. This data will use recently inserted
content-context pairs most frequently, advantage will not apply.

Huge dictionary is very memory consumption. Inserting and searching in
huge dictionary is more time consuming than inserting and searching in small
dictionary because these operations are logarithmically dependent on size of
dictionary.

3.4.2 Block mode

Next variant is limited size of dictionary. Advantage of this variant is limited
memory need to store the dictionary. Disadvantage of this variant is limited
number of contexts in the dictionary. In the dictionary can not be store
the best context. This is limitation only for similar input data in all input
file. Variable input data in input file is not limited because this data will
use recently inserted content-context pairs most frequently. This pairs will be
always in the dictionary.

There is more variant to solve maximal size of the dictionary.

30

3.5. New improvements

Use one dictionary forever In this case if the dictionary reaches the max-
imal size than new context-content pairs will not be inserting. Compression
and decompression will be using this dictionary forever.

There is a risk a big decreasing compressing ratio because new context-
content pairs will not be inserting.

Immediately dictionary delete, building new dictionary In this case
if the dictionary reaches the maximal size than will delete immediately. New
dictionary will be building. This dictionary will be using for compression and
decompression.

New context-content pair will always insert to the dictionary. A big de-
creasing compressing ratio will not be there. After delete old dictionary new
dictionary is empty. None context and content will not find in the dictionary.

Monitoring compression radio, dictionary delete when compressing
ratio decrease This variant is combination of previews to variants. New
context-content pairs is insert to the dictionary while dictionary has not max-
imal size. After than starts compression ration monitoring during compression
next symbols. When compression ration decrease below certain threshold than
the dictionary will delete. New dictionary will build.

While input data is similar than current context and content in similar to
contexts and contents in the dictionary. Compression ratio is invariable. When
input data is variable than context and content is not found. Compression
ration is decreasing, old dictionary is delete and new dictionary is build. New
context-content pairs is inserting to the dictionary.

Main goal of this variant is smaller number of dictionary deletions during
similar input data. New dictionary is building after change of input data.

3.5 New improvements

3.5.1 Subtracting LCP from number of copy symbols

Original algorithm ACB published by George Buyanovsky in each iteration of
compression search the best context in all dictionary and the best content in
limited surrounding of the best context. This limit is depend on number of
bits use to encode difference between best content and best context. In each
iteration of decompression search the best context. Position of the best content
is calculate form distance between best content and best context loading form
input. Finally some bits from the best content are copy to output.

One variant to improvement compression ratio is in each iteration of com-
pression search the best content and the second best content. From the best
content and the second best content calculate LCP (longest common prefix).
To output is now encode number of copy symbols from the best content minus

31

3. Analysis

LCP instead of only number of copy symbols from the best content. Amount
of this information is limited by number of bits use for encoding this inform-
ation. This variant allow copy more symbols from the best context. This
number is increasing by value of LCP.

For encoding output is using three or two numbers, this is describe in chap-
ter 3.2. Its require to number of copy symbols have to be grater than zero
if some symbols are copy. This is solution this problem. The best content
is content which LCP with current content is the biggest. If more contents
have same LCP with current content, the the best content is content on the
smallest position. The second best content is content which LCP with current
content is the biggest and this content is lexicographically smaller than the
best content. Because the best content is lexicographically smaller content
with the best LCP to current content, LCP of the best content and the second
best content is always at least one smaller than number of copy symbols from
the best content. Number of copy symbols form the best content minus LCP
of the best content and the second best content is always grater than zero.

In each iteration of decompression is search the best context. Position of
the best content is calculated from difference between best content and best
context load from input. The second best content is search identical procedure
as search the second best content during compression. LCP of the best content
and the second best content is calculated. If number of copy symbols form
the best content is grater than 0 then number of copy symbols is increasing
by value of LCP.

This variant allow copy more symbols from the best content, numbers of
bits to encode this information is constant.

3.5.2 Number of copy symbols is equal to value of LCP

Original algorithm ACB published by George Buyanovsky using three num-
bers to store all needed informations: difference between best content and
best context, number of copy symbols from the best content and value of next
symbol from current content. This information need fixed memory size.

One variant to improvement compression ratio is store less informations.
Remaining informations can by calculated during both compression and de-
compression.

This variant searching the best content and the second best content identic-
ally as searching the best content and the second best content in previous
variant. LCP of the best content and the second best content is computing.
LCP is always at least one lower than number of symbols which can be copy
form the best content.

Because LCP is always lower than number of symbols which can be copy
form the best content then its can be copy from the best content only number
of symbols equal to value of LCP. Nothing information will lose.

32

3.5. New improvements

Copy number of symbols equal to value of LCP allow did not encode
information about number of copy symbols from the best content. In each
iteration of both compression and decompression LCP will be calculating and
number of symbols equal to value of LCP will copy from the best content to
output. Disadvantage this variant is copy at least one less number of copy
symbols than number of copy symbols in original variant of algorithm.

For output is using two number or one number. It is describe in chap-
ter 3.2.

3.5.3 Index shifting

Next variant to improvement compression ratio is use index shifting for greater
similarity between best content and current content.

In each iteration is search the best context and the best content. Different
between best content and best context is use in decompression to find the best
content.

This information can be used to index shifting in next iteration too and
search the best content in shift surrounding. Now is encoding to output 8−3 =
5 if the best context is at position 3 and the best content is at position 8. In
next iteration now is encoding to output 9− 5 = 4 if the best context is 2 and
the best content is 9. Information from last iteration that difference between
best content and best context is 7 can be used to approach values in actual
iteration. It will be encoding 9− 7− 5 = −3, information to next iteration is
9− 7 = 2.

In next iteration the best content in not search in surrounding of the best
context but in surrounding of the best context shift by difference between best
content and best context from last iteration. It can be grater chance to find
better content here if there was the best content in last iteration.

This variant is base on copy more symbols from the best content. This
variant can be apply to all previous variants of algorithm ACB.

33

Chapter 4

Implementation

Compression library ExCom [10] is written in C++ language. This module
for ExCom library is written in C++ too.

For module development was using OS Linux and C++ IDE QtCreator.
This IDE chose for syntax highlighting and intelligent code completion.

4.1 Module for ExCom library

Compression library ExCom [10] contain module for each algorithm. This
library is easy extensible by new module contain new algorithm. New module
extends class CompModule which integrate new module to library. This class
manage OI operations and control algorithm properties by input parameters.

Each new module have to implement these functions: connectIOModule,
setOperation, setParameter, getValue, checkConnection and run.

4.1.1 connectIOModule

This function manage connection to input and output stream. Class IOReader
read data form input stream, class IOWriter write data to output stream.

After initialize these class is using only this classes to read input data and
write output data.

IOReader The class IOReader allow read data from input stream byte by
byte using function int readByte(). Data form input stream can be read
by bites using function int readNBits(unsigned int n, unsigned long

*data). This function can read 1 to 32 bits together. Data from input stream
can by read by blocks of bytes using function int readBlock(unsigned char

*dest, unsigned long len).

IOWriter The class IOWriter allow write data to output stream byte by
byte using function int writeByte(unsigned char value). Data to output

35

4. Implementation

stream can be write by bites using function int writeNBits(unsigned int

n, unsigned long value). This function can write 1 to 32 bits together.
Data to output stream can be write by blocks of bytes using function unsigned

int writeBlock(const unsigned char *data, unsigned long len).

4.1.2 setOperation

This function only set flag by value of parameter set by user when program
starts if compression or decompression operation will be run.

4.1.3 setParameter

Algorithms implemented in ExCom library are managed by parameters set by
user when program starts.

Parameters for each algorithm are defined in header file excom.h. These
parameters can user set when program starts and manage properties of al-
gorithm.

This function parse input parameters and assign that to class variables.
There are validate values of input parameters. If value is not correct than
function return error code EXCOM ERR PARAM.

This algorithm contain five parameters to manage algorithm properties.
When program starts parameters can be set by this characters:

• maximal dictionary size - s,

• maximal context length - x,

• maximal content length - n,

• number of bits to encode difference between content and context - d,

• number of bits to encode number of symbols copy from best content - c.

4.1.4 getValue

This function return value of variable assign to concrete parameter.

4.1.5 checkConnection

This function check correct connection to input and output stream. If check
failed than function return error code EXCOM ERR CHAIN.

4.1.6 run

This function starts computing compression or decompression. This function
is call after assign input and output stream and after set all parameters.

36

4.2. Object Model

Figure 4.1: Class diagram of ACB2 module for ExCom library

4.2 Object Model

Design of ACB module is based on principles object oriented programming.
The module consists fix classes. Each class is responsible for specific function-
ality. Class diagram is shown in figure 4.2.

acb2 This class contains basic logic of compression algorithm ACB. There
is dictionary (BinarySearchTree), storage of data (DataStorage) and arith-
metic coder (ArithCoderExCom). This class manage compression and decom-
pression.

DataStorage In this class is store raw text and informations (triplets) for
decompression. Triplets will compress by arithmetic coder yet. This class
comparing contexts and contents, computing LCP of contents.

Triplet This class is data structure for store informations required to de-
compression.

37

4. Implementation

BinarySearchTree This class is dictionary for ACB algorithm. During
compression and decompression is building binary search tree to store context-
content pairs. This class searching the best context, the best content and the
second best content. Each node of binary search tree is class NodeBST.

NodeBST This class represent single node of binary search tree. In each
node is store index to raw data which is situated in class DataStorage.

ArithCoderExCom This class is interface for arithmetic coder. Arith-
metic coder is module of ExCom library. This class offer simple using this
arithmetic coder.

4.3 Main compression and decompression logic

Main compression and decompression logic is contained in source file acb2.cpp
and header file acb2.hpp.

These files contain class CompAcb2. Class CompAcb2 extends class Comp-

Module. This class have to be extend by each module integrated to compress
library ExCom. This class contains methods managing input and output
data, parsing parameters from user and start compression and decompression
procedure.

Class CompAcb2 contains private variables of type pointer to class IO-

Reader a IOWriter. This classes manage read data from input stream and
write data to output stream. This class contains also five integer variables.
In this variables are store value of parameters affected properties compression
algorithm.

Algorithm parameters Compression algorithm have to run compression
and decompression procedure with same parameters. When starts compres-
sion, user can set any of parameter to different value. If parameter is not set
than default value will use. Default values are chosen for optimal compression
ratio for the expected data.

When starts compression, parameters set by user are discard. Parameters
decompression have to be same as parameters to compression. This value
have to be store during compression and load before decompression. Value of
parameters are store to the beginning of compressed file using function void

writeHeader() and load from this file using function void readHeader().
Number of bits using to store this informations is depend on range of this
values. Maximal dictionary size use 4B, maximal context length and maximal
content length use 2B, maximal different between best context and best con-
tent use 1B, maximal number of copy symbols from the best content use 1B
too.

38

4.3. Main compression and decompression logic

Compression and decompression This module contains 3 variants of
ACB algorithm. These variants are detail describe in chapter 3.5. First vari-
ant is original version of ACB algorithm published by George Buyanovsky.
Second variant (mark V1) contain improvement Subtracting LCP from num-
ber of copy symbols, third variant (mark V2) contain improvement Number
of copy symbols is equal to value of LCP. Functions managing all compres-
sion logic are int compress(), int compressV1() and int compressV2().
Functions for decompression are int decompress(), int decompressV1()

and int decompressV2().

In the beginning of compression parameters of algorithm are writing to
output stream by function writeHeader(). After that is creating store of data
DataStorage and dictionary BinarySearchTree. Input file is reading byte by
byte and storing to DataStorage. After that input data is transformed to
triplets. This is main part of all compression. Finally triplets are compress
by arithmetic coder.

In the beginning of decompression parameters of algorithm are reading
from input stream by function readHeader(). After that is creating store
of data DataStorage and dictionary BinarySearchTree. Arithmetic coder
decompress triplets from input stream. After that triplets are transformed to
raw data. This is main part of all decompression. Finally raw data are write
to output stream byte by byte.

Transform raw data to triplets For transformation input data to triplets
is using function void bytesToTriplets(BinarySearchTree *dictionary,

DataStorage *dataStorage) and other variants of this function with mark
V1 and V2. These functions are slightly different depending on the implemen-
ted improvements.

Basic version of this function processing input data byte by byte. In each
iteration is searching the best context and the best content in the dictionary.
Positions of the best context and the best content are compute by function
rank returning position in ordered sequence. If the best content exist than
number of copy bytes from the best content is calculated. If at least one
byte is copy than three numbers are copy: different between best content and
best context, number of copy bytes from the best content and value of next
byte from current content. Otherwise different between best content and best
context is encode as 0. None information is lose, for arithmetic coder is zero
better then other numbers.

Case of variant V1 (Subtracting LCP from number of copy symbols) is
similar to previous variant. In each iteration is searching the second best
content yet. If the second best content exist than LCP of the best content
and the second best content is calculate. If at least one byte is copy from the
best content than encoding number of copy bytes from the best content minus
LCP of the best content and the second best content instead of number of

39

4. Implementation

copy bytes from the best content.

Case of variant V2 (Number of copy symbols is equal to value of LCP) is
similar to variant V1. In each iteration is calculated LCP of the best content
and second the best content too. Number of copy bytes from the best content
is equal to value of LCP. Information about number of copy bytes from the
best content is not encoded now. Instead of is set flag means copy at least one
byte from the best content.

Transform triplets to raw data For transformation triplets to output
is using function void tripletsToBytes(BinarySearchTree *dictionary,

DataStorage *dataStorage) and other variants of this function with mark
V1 and V2. These functions are slightly different depending on the implemen-
ted improvements.

Basic version of this function processing triplets one by one. In each iter-
ation difference between best content and best context, number of copy bytes
prom the best content and value of next byte from current content is load-
ing form current triplet. If number of copy bytes from the best content is
grater then one than the best context is searching. After that position of the
best content is computing. From the best content is copying bytes to output.
Number of copy bytes is defined by number load from current triplet. Each
copy byte is insert to the dictionary immediately. Finally is copying next byte
loaded form current triplet to output. This byte is insert to the dictionary
too.

Case of variant V1 (Subtracting LCP from number of copy symbols) is
similar to previous variant. In each iteration is searching the second best
content yet. If the second best content exist than LCP of the best content
and the second best content is calculate. If at least one byte is copy from the
best content than number of copy bytes is increasing by LCP value.

If in case of variant V2 (Number of copy symbols is equal to value of LCP)
is set flag means copy at least one byte from the best content than searching
the best content and the second best content. LCP of the best content and the
second best content is calculate. Number of copy bytes from the best content
to output is equal to value of LCP.

Arithmetic coding Function void tripletsToArith(DataStorage *da-

taStorage) is used to encoding triplets by arithmetic coding. This function
is used to original variant of algorithm and variant V1 (Subtracting LCP from
number of copy symbols).

In the beginning the encoder ArithEncoder is created. In each iteration
by triplets is encoding next byte from current content and number of copy
bytes. If number of copy bytes if grater then zero than different between
content and context is encoding too. Different between content and context
is increasing by half value of maximal range. This number never be negative.

40

4.4. Balanced binary search tree with Rank & Select

In case of variant V2 (Number of copy symbols is equal to value of LCP)
is number of copy bytes replace by 1 bit flag means copy at least one byte.
This flag is important for decoder to distinguish meaning next number.

Function void arithToTriplets(DataStorage *dataStorage) is used
to decoding triplets by arithmetic coding. This function is used to original
variant of algorithm and variant V1 (Subtracting LCP from number of copy
symbols).

In the beginning the decoder ArithDecoder is created. While end of data
in not found than decode next byte from current content and number of copy
bytes. If number of copy bytes if grater then zero than different between
content and context is decoding too. Different between content and context
is decreasing by half value of maximal range to give original value.

In case of variant V2 (Number of copy symbols is equal to value of LCP)
is decoding 1 bit flag instead of number of copy bytes. This flag is important
to distinguish meaning next number.

4.4 Balanced binary search tree with Rank &
Select

Dictionary consists of balanced binary tree with statistical methods rank and
select is contained in source files BinarySearchTree.cpp a NodeBST.cpp and
in header files BinarySearchTree.hpp a NodeBST.hpp.

Files BianarySearchTree.cpp and BinarySearchTree.hpp contains class
BinarySearchTree. This class is base of dictionary. This class contains sev-
eral private variables: pointer to binary search tree root type of NodeBST,
pointer to storage of data DataStorage, maximal dictionary size and max-
imal different between best content and best context.

Files NodeBST.cpp and NodeBST.hpp contains class NodeBST. This class
represent single nodes of binary search tree. This class contains private vari-
able which store informations about parent, left sub-tree, right sub-tree, pre-
decessor and successor in order sequence. There is store index to raw data,
size if sub-tree using by statistical functions rank and select and node color
using by balanced red-black tree.

Insert item to dictionary One of few major properties of dictionary is
insert new context-content pairs to the dictionary. Class BinarySearchTree

contains function void insertItem(int contextContentIndex). Input para-
meter of this function is index to raw data which define boundary between
context and content. This index is using for comparing context and content.

If the dictionary is empty than newly created node of class NodeBST is now
root of search tree. After that function to repair tree balancing is call. If in
the previous step has reached maximum size dictionary than all dictionary
is deleted and processed is similar as process with empty dictionary. If the

41

4. Implementation

dictionary is not full yet than function insertNode(contextContentIndex,

dataStorage) is call to root of search tree.

Inserting new context-content pair is managed by singed nodes NodeBST.
In the beginning the right place is searching recursively node by node from
root to leaf. If insert context is smaller then current context process continue
to left sub-tree, otherwise process continue to right sub-tree. If search context
is equal to current context than nothing will be insert to the dictionary.

After finding the right place new node is join to the search tree. Point-
ers to parent and child are initialized, sub-tree size are recalculated up to
root. Finally pointers to predecessor and successor are recalculated. In
red-black tree variant of search tree the function to check tree balancing
repairRBProperties() is call.

Binary search tree balancing Balanced binary search tree is implemented
as red-black tree. Red-black tree is implemented extending class NodeBST. In
this class in implemented private helper function NodeBST* getGrandparent()

and NodeBST* getUncle() for search special nodes. This functions returning
found node or NULL if node did not exist. There are implemented func-
tion for four rotations: NodeBST* rotateRight(), NodeBST* rotateLeft(),
NodeBST* rotateLeftRight(), NodeBST* rotateRightLeft(). Main func-
tion is void repairRBProperties(). This function is manage rotations on
unbalance search tree.

Function for individually rotations are implemented as describe chap-
ter 3.1.2. Function void repairRBProperties() is always call to new inser-
ted node. Function iterate over particular cases violate red-black properties.
Solution of each violation is describe in chapter 3.1.2. This function can be
call recursively to root unlit tree is not balance.

Search the best context Class BinarySearchTree contains function Node-

BST* searchBest(int searchedContextContentIndex) used to search the
best context. Input parameter of this function is index to raw data. Function
return pointer to node NodeBST which context is the most similar to search
context or NULL if dictionary is empty. If dictionary is not empty function
search(searchedContextContentIndex, true) is called to root of search
tree.

Class NodeBST contains function NodeBST* search(int searchContext-

ContentIndex, bool approximately). This function searching recursively
from root to leaf context which is the most similar to search context. In each
iteration is compare search context and current context. If search context is
equal to current context than this node is result. If current node is leaf and
current context is not equal to search context than result is one of two nearest
nodes which context is more similar to search context.

42

4.4. Balanced binary search tree with Rank & Select

Search the best content Class BinarySearchTree contains two functions
to search the best content. One of them search the lexicographically most
similar content to search content. Second of them search content with smaller
index and also has the maximal LCP with search content.

Function for searching lexicographically most similar content is NodeBST*
searchContent(NodeBST *contextNode, int contextContentIndex. This
function starts at same position as position of the best content. This function
searching content in surrounding defined by number of bits using to encode
different between best context and best content. This function return content
the most similar to search content.

Function for searching content with smaller index and also has the max-
imal LCP with search content is NodeBST* searchContentMinimal(NodeBST

*contextNode, int contextContentIndex. This function is remember the
best content and value of LCP with search content. If current LCP is grater
then remember LCP than remember content is replace by current content.
If current LCP is equal to remember LCP than content is remember content
is replace by current content only if current content has lower index then
remember content. Finally function return remember content.

Search the second best content Class BinarySearchTree contains func-
tion NodeBST* searchContentTwoBestMinimal(NodeBST *context, Node-

BST *content, int bytePositionLimit) using for search the second best
content. The second best content is content which is the lexicographically
most similar to the best content and its index is lower then index of the best
content. This definition of the second best content is used to easier design
new improvements of ACB algorithm.

The second best content is searching in identically surrounding of the best
context as searching the best content. Result is content satisfy the definition
or NULL if that content did not exist.

Search the best content during decompression During compression
and decompression are different input informations. During compression is
known all raw data. During decompression is knows only processed data
and additional informations using to decompression next bytes. Compression
procedure using part data which is not known during decompression. On the
other hand decompression procedure knows different between best content and
best context which was calculate during compression. Using this different may
be calculated position of the best content.

Function NodeBST* getContentByOffset(NodeBST *contextNode, int

offset) from class BinarySearchTree return the best content. Input para-
meters of this functions are the best context and offset to shift index. Search-
ing is only traversing neighbours nodes by offset distance.

43

4. Implementation

Rank & Select Functions rank and select are statistical functions provide
additional informations of nodes binary search tree. Function rank return
node position in sequence order by the best context. Function select return
nth node in this sequence. Detail information about this functions are describe
in chapter 3.1.3.

Class BinarySearchTree contains function int rank(NodeBST *node).
This function traversal nodes of binary search tree from original node to root.
In each iteration calculate rank of original node. If current node is right child
its parent than result is increase by size of left sub-tree its parent.

Class BinarySearchTree contains function NodeBST* select(int rank).
This function traversal nodes of binary search tree from root to leaf. In each
iteration calculate rank of current node and compare it with search rank. If
rank of current node is equal to search rank this node is return. If search rank
is lower then current rank than continue to left sub-tree. Otherwise continue
to right sub-tree and search rank is decreased by current rank plus one.

4.5 Storage of data

Storage of all data needed for compression and decompression is contained in
source files DataStorage.cpp and Triplets.cpp and in header files Data-

Storage.hpp and Triplets.

Files Triplets.cpp and Triplets.hpp contain class Triplets. This class
is using for store three numbers of informations needed for decompression.
These numbers represented different between best content and best context,
number of bytes copy from the best content and value of next byte from
current content.

Files DataStorage.cpp and DataStorage.hpp contain class DataStorage.
In private variable are store array of raw data and its size, array of triplets
and its count. There are store input parameters needed to true compare con-
texts and contents. These parameters are maximal context length, maximal
content length, maximal difference between best content and best context and
maximal number of bytes which can be copy from the best content.

Adding and getting raw data and triplets For managing arrays of raw
data and triplets are implemented functions loading and storing this data.
New item is insert always to end of array. Any item from array can be taken.

Function int addByte(unsigned char byte) is using to add new byte to
raw data, function int addTriplet(int contextContentDiff, int same-

BytesCount, unsigned char newByte) is using to add new triplet. This
functions manage dynamic allocated memory.

Function unsigned char getByte(int position) is using to get byte
from raw data, function Triplet getTriplet(int position) is using to get

44

4.5. Storage of data

triplet. Both function return item at a given position if this item exists.
Otherwise return zero or triplet of zeros.

Context comparison Algorithm ACB comparing context lexicographically
from right to left. All raw data in store in class DataStorage. Context is
defined by index to this raw data. Context start at position defined by index
minus one.

Class DataStorage contains function int compareContext(int actual-

ContextContentIndex, int BSTContextContentIndex) used to compare con-
texts. Input parameters this function are indexes to raw data. Function return
1 if first context is greater than second context. Function return -1 if first con-
text is lower then second context. If both contexts are equal function return
0.

Raw data is compare byte by byte from starts positions to left. Comparison
finished when bytes are different or maximal context length is exceeded.

Class DataStorage contains function int compareContextSimilarity(

int actualContextContentIndex, int contextContentIndexA, int con-

textContentIndexB) using for choice lexicographically more similar context.
Function return 0 if both contexts are equal. Function return 1 if context A
is lexicographically more similar to search context then content B. Otherwise
function return -1.

Content comparison Algorithm ACB comparing content lexicographically
from left to right. All raw data in store in class DataStorage. Content is
defined by index to this raw data. Context start at position defined by index.

Class DataStorage contains function int int contextContentIndexA,

int contextContentIndexB using to compare contents. Input parameters
this function are indexes to raw data. Function return 1 if content A is greater
than content B. Function return -1 if content A is lower then content B. If
both contents are equal function return 0.

Raw data is compare byte by byte from starts positions. Comparison
finished when bytes are different or maximal content length is exceeded.

Class DataStorage contains function int compareContentSimilarity(-

int actualContextContentIndex, int contextContentIndexA, int con-

textContentIndexB) using for choice lexicographically more similar content.
Function return 0 if both contents are equal. Function return 1 if content A
is lexicographically more similar to search content then content B. Otherwise
function return -1.

Contents common length Algorithm ACB after found the best context
have to calculate number of identically bytes in the best content and current
content from start this contents. This number is equal to number of bytes
which can be copy from the best content.

45

4. Implementation

Class DataStorage contains function int contentMatchCount(int act-

ualContextContentIndex, int BSTContextContentIndex, int lcp = 0)

using this comparison. Contents are compare lexicographically byte by byte
until are not different. Maximal number of compare bytes is limited by max-
imal content length or maximal number of bits use to encode number of bytes
copy from the best content.

This function has variable parameter int lcp = 0. This parameter is
used by new variant of ACB algorithm. If value of parameter is greater then
zero than can be compare more bytes. Limit define by number of bits use to
encode number of copy bytes is increase by this parameter. It is due to the
fact that this value is subtracted from the number of copy bytes form the best
content.

LCP calculation New variant of ACB algorithm require calculation LCP
of the best content and the second best content.

Class DataStorage contains function int contentLcp(int contextCon-

tentIndexA, int contextContentIndexB) using for LCP calculation. This
function is similar to function for compare contents common length. This
function return number of identically bytes in both contents.

4.6 Arithmetic module

Input of compression procedure in sequence of bytes, output of compression
procedure is sequence of numbers. Input of decompression procedure is se-
quence of numbers, output of decompression procedure is sequence of bytes.
Store numbers to memory is ineffective. It is convenient compress this numbers
with other algorithm designed to compression numbers. In his implementation
is used adaptive arithmetic coding.

Compression library ExCom [10] contains module for arithmetic coding.
For more simple usage this module is implemented interface for this module.
This module interface is contained in source file ArithCoderExCom.cpp and
header file ArithCoderExCom.hpp.

Files ArithCoderExCom.cpp and ArithCoderExCom.hpp contain class Ari-
thEncoder using for encoding numbers by arithmetic coder and class Arith-
Decoder using for decoding this number by arithmetic coder.

Adaptive arithmetic coding using dictionary with probabilities of occur-
rence for each symbol. The greater probability of a given symbol, the less bits
will be used for its encoding. Algorithm ACB write to output stream triplet
of numbers. Each number has different meaning and different probabilities of
occurrence. There are using three different alphabets each for one number.
Arithmetic coding achieves better compression ratio.

46

4.6. Arithmetic module

Module for arithmetic coding from ExCom library allow to use more dif-
ferent dictionaries together. Each dictionary is define by size of alphabet.
During encoding and decoding each number is choice just one dictionary.

4.6.1 Arithmetic encoder

Class ArithEncoder is used as interface to arithmetic coding module from
ExCom library. In private variables are store pointer to arithmetic coder and
pointers to each alphabets.

In constructor is created arithmetic coder for output stream to write en-
coded data. Here are set size of alphabets by input parameters.

In arithmetic coding have to be marked end of data for decoder. Otherwise
it is not possible to know end of data. The marker is realize by using one
higher size of alphabet for encoding next bytes for current content. Number
256 means end of data.

Functions void encodeDifference(int symbol), void encodeCopy(int

symbol), void encodeByte(int symbol) and void encodeFlag(int sym-

bol) is using for encoding numbers using the appropriate alphabet. Function
void flush() is using to write marker to output stream.

4.6.2 Arithmetic decoder

Class ArithDecoder is used as interface to arithmetic encoding module from
ExCom library. In private variables are store pointer to arithmetic coder and
pointers to each alphabets.

In constructor is created arithmetic decoder for input stream to read en-
coded data. Here are set size of alphabets by input parameters.

Functions int decodeDifference(), int decodeCopy(), int decode-

Byte() and int decodeFlag() is using for decoding numbers using the ap-
propriate alphabet. Function bool isEof() is using to read marker from
input stream. When it was read the last number yet return true, otherwise
return false.

47

Chapter 5

Experimental measurement

In chapter 2 are describe previous implementations of ACB algorithm. At
the end of this chapter is table 2.1 contain comparison compression ratios the
algorithms. The best compression ration has original implementation of ACB
algorithm by George Buyanovsky, the second best is ACB algorithm from
ExCom library [10] implemented by Michal Valach [11]. Different variants of
ACB algorithm implemented in this thesis are compared with implementation
by Michal Valach.

This chapter are describe experimental measurements and results. There
are compare compression ratio and computing speed of three variants of ACB
algorithm implemented in this thesis.

The testing platform included the AMD E-350 Processor with 1.60 GHz
(64-bit architecture) and 4 GB DDR3 RAM. The operating system was Zorin
OS 10 (based on Ubuntu 15.04) with 3.9.0-58-generic linux kernel version.
ExCom library and all implemented methods were compiled with gcc 4.9.2.

All experimental measurements were performed on Canterbury Corpus,
Calgary Corpus and Prague Corpus.

5.1 Compression corpus

Compression corpus is a set of various files, used for evaluating different com-
pression algorithms. Main advantages of using corpus is content of various file
that examine various properties of the tested algorithms.

5.1.1 Calgary Corpus

The Calgary Corpus was founded by Ian Witten, Tim Bell and John Cleary at
University of Calgary in 1987. It was firstly published in their paper Modeling
For Text Compression [2] in 1989. It consists of 18 files (9 different types) with
total size 3,266,560 bytes. This files are describe in table 5.1.

49

5. Experimental measurement

Table 5.1: Calgary corpus file description

File name Size [B] Description

bib 111,261 bibliographic references
book1 768,771 english text
book2 610,856 english text
geo 102,400 geophysical data
news 377,109 news articles
obj1 21,504 executable code
obj2 246,814 executable code
paper1 53,161 english text
paper2 82,199 english text
paper3 46,526 english text
paper4 13,286 english text
paper5 11,954 english text
paper6 38,105 english text
pic 513,216 bitmap black and white picture
progc 39,611 C source code
progl 71,646 Lisp source code
progp 49,379 Pascal source code
trans 93,695 transcript of a terminal session

5.1.2 Canterbury Corpus

The Canterbury Corpus was published by Ross Arnold and Tim Bell [1] in
1997. This corpus consists of 11 distinct files of a total size 2,810,784 bytes,
this files are describe in table 5.2. The corpus collection was also designed to
satisfy the following conditions: the files should be all public domain and the
total size should not be bigger than necessary to ensure the useful distribution.

Table 5.2: Canterbury corpus file description

File name Size [B] Description

alice29.txt 152,089 nnglish text
asyoulik.txt 125,179 Shakespeare
cp.html 24,603 HTML source code
fields.c 11,150 C source code
grammar.lsp 3,721 LISP source code
kennedy.xls 1029,744 Excel spreadsheet
lcet10.txt 426,754 technical writing
plrabn12.txt 481,861 poetry
ptt5 513,216 CCITT test set
sum 38,240 SPARC Executable
xargs.1 4,227 GNU manual page

50

5.1. Compression corpus

Table 5.3: Prague corpus file description

File name Size [B] Description

abbot 349,055 binary file
age 137,216 spreedsheet
bovary 2,202,291 german text
collapse 2,871 JavaScript source code
compress 111,646 HTML source code
corilis 1,262,483 graphics
cyprus 555,986 XML data
drkonqi 111,056 binary file
emission 2,498,560 database file
firewrks 1,440,054 audio file
flower 10,287,665 audio file
gtkprint 37,560 binary file
handler 11,873 Java source code
higrowth 129,536 spreedsheet
hungary 3,705,107 XML file
libc06 48,120 binary file
lusiadas 625,664 portuguese text
lzfindmt 22,922 C source code
mailflder 43,732 Python source code
mirror 90,968 binary file
modern 388,909 swedish text
nightsht 14,751,763 graphics
render 15,984 C++ source code
thunder 3,172,048 audio file
ultima 1,073,079 english text
usstate 8,251 Java source code
venus 13,432,142 graphics
wnvcrdt 328,550 database file
w01vett 1,381,141 database file
xmlevent 7,542 PHP source code

5.1.3 Prague Corpus

Prague Corpus was published by Jakub Řezńıček in his master thesis Corpus
for comparing compression methods and an extension of a ExCom library [7]
in 2010. This corpus consists of 30 files from 8 categories of a total archive
size 58,265,600 bytes. This files are describe in table 5.3.

51

5. Experimental measurement

Table 5.4: Compression ratios of different variants ACB algorithm for Can-
terbury corpus

Compression ratio [-]
File Valach Léhar Léhar V1 Léhar V2

alice29.txt 0.338 0.354 0.333 0.503
asyoulik.txt 0.380 0.398 0.376 0.565
cp.html 0.353 0.366 0.348 0.508
fields.c 0.307 0.319 0.310 0.530
grammar.lsp 0.396 0.406 0.392 0.565
kennedy.xls 0.199 0.228 0.292 0.422
lcet10.txt 0.297 0.313 0.294 0.452
plrabn12.txt 0.364 0.382 0.363 0.544
ptt5 0.112 0.124 0.119 0.165
sum 0.362 0.380 0.370 0.579
xargs.1 0.474 0.489 0.470 0.665

5.2 Performance experiments

5.2.1 Comparison implemented variants ACB algorithm

In this section are comparing 4 different implementations of the algorithm
ACB. First implementation is ACB algorithm from ExCom library implemen-
ted by Michal Valach. The second implementation is original implementation
from this thesis. The third implementation is variant V1 (Subtracting LCP
from number of copy symbols) of algorithm from this thesis. The last imple-
mentation is variant V2 (Number of copy symbols is equal to value of LCP)
of algorithm from this thesis. Three variants of algorithm from this thesis are
describe in chapter 3.5

All four implementations were tested on Canterbury Corpus, Calgary Cor-
pus and Prague Corpus. All algorithms were measured with same input para-
meters.

Results measure on Calgary Corpus are in table 5.4. The best of new
implementations is variant V1 (Subtracting LCP from number of copy sym-
bols). Only on one file (kennedy.xls) has better compression ration original
variant of algorithm. Variant V2 (Number of copy symbols is equal to value of
LCP) is not compute as good results as other variants. Comparing to imple-
mentation by Michal Valach has variant V1 better compression ratio on 7 files
from 11 files. The bigger different of compression ration is on file kennedy.xls,
implementation by Michal Valach is better then variant V1 about 10%.

Results measure on Canterbury Corpus are in table 5.5. The best of new
implementations is variant V1 (Subtracting LCP from number of copy sym-
bols). This variant has the best compression ration on all files. Variant V2
(Number of copy symbols is equal to value of LCP) is not compute as good

52

5.2. Performance experiments

Table 5.5: Compression ratios of different variants ACB algorithm for Calgary
corpus

Compression ratio [-]
File Valach Léhar Léhar V1 Léhar V2

bib 0.301 0.315 0.298 0.476
book1 0.360 0.378 0.354 0.514
book2 0.316 0.321 0.302 0.460
geo 0.660 0.691 0.685 0.879
news 0.354 0.370 0.350 0.540
obj1 0.532 0.543 0.531 0.754
obj2 0.359 0.373 0.360 0.562
paper1 0.357 0.374 0.355 0.558
paper2 0.356 0.372 0.351 0.536
paper3 0.396 0.414 0.391 0.587
paper4 0.447 0.465 0.443 0.635
paper5 0.458 0.476 0.454 0.653
paper6 0.366 0.381 0.362 0.569
pic 0.112 0.124 0.119 0.165
progc 0.358 0.372 0.356 0.571
progl 0.242 0.250 0.237 0.402
progp 0.238 0.246 0.235 0.414
trans 0.207 0.214 0.204 0.401

results as other variants. Comparing to implementation by Michal Valach has
variant V1 better compression ratio on 15 files from 18 files. The bigger dif-
ferent of compression ration is on file geo, implementation by Michal Valach
is better then variant V1 about 2.5%.

Results measure on Prague Corpus are in table 5.6. The best of new im-
plementations is variant V1 (Subtracting LCP from number of copy symbols).
Only on one file (firewrks) has better compression ration variant V2 (Num-
ber of copy symbols is equal to value of LCP). Variant V2 (Number of copy
symbols is equal to value of LCP) is not compute as good results as other
variants. Comparing to implementation by Michal Valach has variant V1 bet-
ter compression ratio on 13 files from 28 files, on 2 files was the compression
ratio same. For compression of file firewrks is the best algorithm variant 2,
only this algorithm has compression ration smaller then one.

The best compression ratio has variant V1 (Subtracting LCP from number
of copy symbols) of algorithm implemented in this master thesis. The best
results were measure on Canterbury Corpus and Calgary Corpus. Main ad-
vantage of this variant is opportunity to copy more bytes from the best context
with same number of bits using to encode this information. The second best
is implementation of ACB algorithm by Michal Valach. Variant V2 (Number

53

5. Experimental measurement

Table 5.6: Compression ratios of different variants ACB algorithm for Prague
corpus

Compression ratio [-]
File Valach Léhar Léhar V1 Léhar V2

abbot 0.990 0.970 0.968 0.946
age 0.456 0.472 0.465 0.684
bovary 0.303 0.302 0.284 0.394
collapse 0.454 0.462 0.450 0.654
compress 0.197 0.205 0.195 0.339
corilis 0.543 0.537 0.519 0.635
cyprus 0.029 0.033 0.031 0.098
drkonqi 0.380 0.394 0.385 0.586
emission 0.116 0.125 0.123 0.242
firewrks 1.009 1.007 1.005 0.947
flower 0.517 0.494 0.475 0.660
gtkprint 0.326 0.339 0.333 0.510
handler 0.264 0.272 0.264 0.438
higrowth 0.424 0.449 0.446 0.658
hungary 0.024 0.024 0.023 0.080
libc06 0.376 0.394 0.387 0.605
lusiadas 0.316 0.336 0.324 0.469
lzfindmt 0.231 0.239 0.231 0.437
mailflder 0.225 0.235 0.225 0.389
mirror 0.426 0.442 0.431 0.624
modern 0.362 0.380 0.357 0.524
nightsht 0.876 0.949 0.932 0.991
render 0.263 0.271 0.262 0.454
thunder 0.767 0.824 0.817 0.926
ultima 0.706 0.692 0.675 0.715
usstate 0.280 0.289 0.278 0.415
venus 0.771 0.777 0.744 0.832
wnvcrdt 0.046 0.054 0.051 0.089
w01vett 0.050 0.057 0.053 0.121
xmlevent 0.318 0.328 0.320 0.514

54

5.2. Performance experiments

of copy symbols is equal to value of LCP) unfulfilled expectations. From the
best content is not copy enough bytes to get better compression ration but
average compression ration about 0.53 is not poor.

5.2.2 Index shifting

Main idea of this variant of algorithm describe in chapter 3.5.3 is found better
context for current content. This variant is searching the best content in
surrounding of the best context shifted by different between best content and
best context from last iteration. It is likely that there will be found the better
context than in normal surrounding of the best context when to be found here
in last iteration.

Results were measure for all three new implemented variants of ACB al-
gorithm. Results measure on Canterbury Corpus are in table 5.7, results
measure on Calgary Corpus are in table 5.8.

The results for all files on both corpora are almost identical. It is not
depend of variant of algorithm. Specifically variant without index shifting
always has better compression ratio of 1-3% then variant with index shifting.

The idea about occurrence better content in shift surrounding was not
confirmed. Better context were found in normal surrounding than shift sur-
rounding.

This variant of algorithm will not use later because its not improve com-
pression ratio.

Table 5.7: Compression ratios of index shifting variant for Canterbury corpus

Compression ratio [-]
Léhar Léhar V1 Léhar V2

File orig. shift orig. shift orig. shift

alice29.txt 0.354 0.375 0.333 0.354 0.503 0.516
asyoulik.txt 0.398 0.422 0.376 0.398 0.565 0.577
cp.html 0.366 0.385 0.348 0.367 0.508 0.518
fields.c 0.319 0.333 0.310 0.324 0.530 0.547
grammar.lsp 0.406 0.425 0.392 0.410 0.565 0.577
kennedy.xls 0.228 0.242 0.292 0.278 0.422 0.435
lcet10.txt 0.313 0.334 0.294 0.314 0.452 0.464
plrabn12.txt 0.382 0.407 0.363 0.385 0.544 0.555
ptt5 0.124 0.130 0.119 0.126 0.165 0.165
sum 0.380 0.397 0.370 0.388 0.579 0.586
xargs.1 0.489 0.510 0.470 0.491 0.665 0.680

55

5. Experimental measurement

Table 5.8: Compression ratios of index shifting variant for Calgary corpus

Compression ratio [-]
Léhar Léhar V1 Léhar V2

File orig. shift orig. shift orig. shift

bib 0.315 0.334 0.298 0.317 0.476 0.487
book1 0.378 0.402 0.354 0.376 0.514 0.525
book2 0.321 0.342 0.302 0.322 0.460 0.472
geo 0.691 0.698 0.685 0.692 0.879 0.879
news 0.370 0.393 0.350 0.371 0.540 0.550
obj1 0.543 0.557 0.531 0.546 0.754 0.757
obj2 0.373 0.391 0.360 0.378 0.562 0.572
paper1 0.374 0.397 0.355 0.378 0.558 0.572
paper2 0.372 0.396 0.351 0.375 0.536 0.551
paper3 0.414 0.440 0.391 0.416 0.587 0.601
paper4 0.465 0.493 0.443 0.471 0.635 0.651
paper5 0.476 0.500 0.454 0.479 0.653 0.668
paper6 0.381 0.406 0.362 0.384 0.569 0.584
pic 0.124 0.130 0.119 0.126 0.165 0.165
progc 0.372 0.393 0.356 0.377 0.571 0.584
progl 0.250 0.265 0.237 0.252 0.402 0.413
progp 0.246 0.261 0.235 0.249 0.414 0.424
trans 0.214 0.227 0.204 0.217 0.401 0.406

5.2.3 Number of bits to encode difference

Number of bits using to encode difference between best content and best con-
text define size of surrounding of the best context to search the best content.
The greater number of these bits, the greater probability to found better con-
tent.

The fewer number of these bits, the smaller input alphabet of arithmetic
coder. Smaller number of symbols in input alphabet allow better compression
ratio of arithmetic coder.

The goal is to find a compromise for the best compression ratio.

Results measure on Canterbury Corpus are in table 5.9. Number of bits
to better compression ratio is highly dependent on input file. In average case
is the best using 10 bits to encode difference between best content and best
context on Canterbury Corpus.

Results measure on Calgary Corpus are in table 5.10. In average case is the
best using 8 bits to encode difference between best content and best context
on Calgary Corpus.

Find the optimal number of bits to encode difference between best content
and best context is very difficult. The best boundary between competing
demands is highly dependent on input file.

56

5.2. Performance experiments

Table 5.9: Compression ratios of different number of bits to encode different
between best content and best context for Canterbury corpus

Compression ratio [-]
Number of bits

File 4 6 8 10

alice29.txt 0.352 0.340 0.333 0.333
asyoulik.txt 0.397 0.384 0.376 0.375
cp.html 0.342 0.342 0.348 0.353
fields.c 0.307 0.309 0.310 0.317
grammar.lsp 0.382 0.386 0.392 0.400
kennedy.xls 0.260 0.279 0.292 0.215
lcet10.txt 0.314 0.302 0.294 0.290
plrabn12.txt 0.390 0.374 0.363 0.358
ptt5 0.119 0.119 0.119 0.118
sum 0.370 0.369 0.370 0.371
xargs.1 0.456 0.461 0.470 0.480

Table 5.10: Compression ratios of different number of bits to encode different
between best content and best context for Calgary corpus

Compression ratio [-]
Number of bits

File 4 6 8 10

bib 0.310 0.302 0.298 0.297
book1 0.380 0.364 0.354 0.350
book2 0.320 0.309 0.302 0.298
geo 0.670 0.680 0.685 0.666
news 0.362 0.355 0.350 0.348
obj1 0.514 0.520 0.531 0.546
obj2 0.362 0.359 0.360 0.360
paper1 0.363 0.356 0.355 0.357
paper2 0.367 0.357 0.351 0.353
paper3 0.402 0.394 0.391 0.394
paper4 0.440 0.440 0.443 0.450
paper5 0.449 0.450 0.454 0.462
paper6 0.369 0.364 0.362 0.366
pic 0.119 0.119 0.119 0.118
progc 0.361 0.355 0.356 0.361
progl 0.243 0.239 0.237 0.238
progp 0.239 0.235 0.235 0.238
trans 0.207 0.204 0.204 0.206

57

5. Experimental measurement

Table 5.11: Compression ratios of different number of bits to encode number
of copy bytes from best content for Canterbury corpus

Compression ratio [-]
Number of bits

File 4 6 8 10

alice29.txt 0.332 0.332 0.333 0.337
asyoulik.txt 0.375 0.374 0.376 0.380
cp.html 0.350 0.344 0.348 0.360
fields.c 0.309 0.303 0.310 0.326
grammar.lsp 0.377 0.376 0.392 0.422
kennedy.xls 0.291 0.291 0.292 0.294
lcet10.txt 0.295 0.293 0.294 0.296
plrabn12.txt 0.362 0.362 0.363 0.366
ptt5 0.139 0.125 0.119 0.120
sum 0.384 0.370 0.370 0.378
xargs.1 0.449 0.453 0.470 0.502

5.2.4 Number of bits to encode copy

Number of bytes which can be copy from the best content is defined by number
of bits using to encode this information. The greater number of these bits,
the more bytes can be copy from the best content.

The fewer number of these bits, the smaller input alphabet of arithmetic
coder. Smaller number of symbols in input alphabet allow better compression
ratio of arithmetic coder.

The goal is to find a compromise for the best compression ratio.

Results measure on Canterbury Corpus are in table 5.11, results measure
on Calgary Corpus are in table 5.12.

Compression ratio is not very dependent on the number of bit using to
encode number of bytes copy from the best content. Different of compression
ratio is about 1% dependent on input file.

5.2.5 Maximal size of dictionary

The most memory consumption of compression and decompression is store of
dictionary. Dictionary size is linear dependent on size of input file.

One of the variant to reduce memory consumption of ACB algorithm is
limited maximal size of dictionary. This variant is describe in chapter 3.4.2.

Effect of maximal dictionary size were measure for variant V1 (Subtracting
LCP from number of copy symbols) which has the best compression ratio of all
new implemented variants. Maximum size of dictionary was vote with respect
to size of files. Measure results are comparing to unlimited dictionary size.

58

5.2. Performance experiments

Table 5.12: Compression ratios of different number of bits to encode number
of copy bytes from best content for Calgary corpus

Compression ratio [-]
Number of bits

File 4 6 8 10

bib 0.302 0.297 0.298 0.302
book1 0.354 0.354 0.354 0.357
book2 0.303 0.302 0.302 0.304
geo 0.685 0.683 0.685 0.692
news 0.356 0.350 0.350 0.352
obj1 0.542 0.529 0.531 0.546
obj2 0.369 0.361 0.360 0.363
paper1 0.355 0.352 0.355 0.362
paper2 0.349 0.349 0.351 0.357
paper3 0.388 0.388 0.391 0.400
paper4 0.433 0.435 0.443 0.462
paper5 0.444 0.445 0.454 0.474
paper6 0.362 0.359 0.362 0.371
pic 0.139 0.125 0.119 0.120
progc 0.357 0.353 0.356 0.365
progl 0.246 0.239 0.237 0.243
progp 0.246 0.236 0.235 0.241
trans 0.221 0.207 0.204 0.208

Table 5.13: Compression ratios of different dictionary size for Canterbury
corpus

Compression ratio [-]
Dictionary size

File 1,000 2,000 5,000 10,000 ∞
alice29.txt 0.544 0.507 0.461 0.429 0.333
asyoulik.txt 0.567 0.532 0.491 0.463 0.376
cp.html 0.525 0.481 0.429 0.393 0.348
fields.c 0.434 0.386 0.350 0.320 0.310
grammar.lsp 0.438 0.406 - - 0.392
kennedy.xls 0.215 0.212 0.203 0.197 0.292
lcet10.txt 0.544 0.503 0.453 0.419 0.294
plrabn12.txt 0.577 0.547 0.508 0.480 0.363
ptt5 0.115 0.114 0.114 0.116 0.119
sum 0.468 0.451 0.428 0.379 0.370
xargs.1 0.576 0.524 - - 0.470

59

5. Experimental measurement

Table 5.14: Compression ratios of different dictionary size for Calgary corpus

Compression ratio [-]
Dictionary size

File 1,000 2,000 5,000 10,000 ∞
bib 0.564 0.517 0.459 0.418 0.298
book1 0.588 0.555 0.513 0.483 0.354
book2 0.543 0.503 0.455 0.423 0.302
geo 0.746 0.731 0.719 0.708 0.685
news 0.606 0.558 0.503 0.469 0.350
obj1 0.572 0.553 0.533 0.524 0.531
obj2 0.488 0.446 0.407 0.389 0.360
paper1 0.557 0.509 0.463 0.431 0.355
paper2 0.556 0.515 0.467 0.436 0.351
paper3 0.573 0.535 0.492 0.459 0.391
paper4 0.570 0.533 0.489 0.462 0.443
paper5 0.572 0.534 0.498 0.471 0.454
paper6 0.543 0.499 0.455 0.426 0.362
pic 0.115 0.114 0.114 0.116 0.119
progc 0.523 0.484 0.438 0.404 0.356
progl 0.401 0.351 0.293 0.271 0.237
progp 0.412 0.361 0.290 0.267 0.235
trans 0.490 0.433 0.359 0.297 0.204

Compression ratio of files with smaller size then maximal dictionary size
in not published. This compression ratio is identically as compression ratio
unlimited dictionary size.

Results measure on Canterbury Corpus are in table 5.13, results measure
on Calgary Corpus are in table 5.14.

On almost all files is better compression ratio with larger maximal dic-
tionary size. In bigger dictionary is found the best context more similar to
current context than is more probability to found the best content more similar
to current content and can be copy more bytes.

In some cases is not better compression ration with larger maximal dic-
tionary size. If current compression text is not dependent on its context it can
be found more similar content to current content in smaller dictionary with
only newest context-content pairs. Searching of the best content is limited to
surrounding of the best context.

Even in cases of very limited memory (1000 context-content pairs in dic-
tionary) algorithm does not have wrong compression ratio.

60

5.2. Performance experiments

10 ms

100 ms

1 s

10 s

100 s

1000 s

alice29.txt

asyoulik.txt

cp.htm
l

fields.c

gram
m

ar.lsp

kennedy.xls

lcet10.txt

plrabn12.txt

ptt5
sum

xargs.1

C
o
m

p
re

ss
io

n
 t

im
e

File name

Compression time of different variants ACB algorithm for Canterbury Corpus

Valach
Léhar

Léhar V1

Léhar V2
Léhar V1 - RB tree

Figure 5.1: Compression time of different variants ACB algorithm for Canter-
bury corpus

5.2.6 Compression and decompression time

Main goal this master thesis is achieve the best possible compression ratio.
Computing speed is also important too. There is measure compression and
decompression times.

Compression and decompression time is measure for all variants of al-
gorithm implemented in this thesis. For variant V1 (Subtracting LCP from
number of copy symbols) with the best compression ratio is measure version
with red-black tree instead of binary search tree on Canterbury Corpus.

Results measure compression time on Canterbury Corpus are in graph on
figure 5.2.6, decompression times of this files are in graph on figure 5.2.6. Res-
ults measure compression time on Calgary Corpus are in graph on figure 5.2.6,
decompression times of this files are in graph on figure 5.2.6.

The best compression times were measure for actual implementation of
ACB algorithm in ExCom library implemented by Michal Valach. Original
implementation in this thesis is about 2-3x slower. Variant V1 (Subtracting
LCP from number of copy symbols) implemented in this thesis is about 3-
5x slower then implementation by M. Valach, variant V2 (Number of copy
symbols is equal to value of LCP) is about 8-10x slower then implementation
by M. Valach.

61

5. Experimental measurement

10 ms

100 ms

1 s

10 s

100 s

1000 s

alice29.txt

asyoulik.txt

cp.htm
l

fields.c

gram
m

ar.lsp

kennedy.xls

lcet10.txt

plrabn12.txt

ptt5
sum

xargs.1

D
e
co

m
p

re
ss

io
n
 t

im
e

File name

Decompression time of different variants ACB algorithm for Canterbury Corpus

Valach
Léhar

Léhar V1

Léhar V2
Léhar V1 - RB tree

Figure 5.2: Decompression time of different variants ACB algorithm for Can-
terbury corpus

100 ms

1 s

10 s

bib
book1

book2

geo
news

obj1
obj2

paper1

paper2

paper3

paper4

paper5

paper6

pic
progc

progl

progp

trans

C
o
m

p
re

ss
io

n
 t

im
e

File name

Compression time of different variants ACB algorithm for Calgary Corpus

Valach
Léhar

Léhar V1

Léhar V2

Figure 5.3: Compression time of different variants ACB algorithm for Calgary
corpus

62

5.2. Performance experiments

100 ms

1 s

10 s

bib
book1

book2

geo
news

obj1
obj2

paper1

paper2

paper3

paper4

paper5

paper6

pic
progc

progl

progp

trans

D
e
co

m
p

re
ss

io
n
 t

im
e

File name

Decompression time of different variants ACB algorithm for Calgary Corpus

Valach
Léhar

Léhar V1

Léhar V2

Figure 5.4: Decompression time of different variants ACB algorithm for Cal-
gary corpus

Decompression times for implementation by M. Valach, original imple-
mentation in this thesis and variation V2 of this algorithm is about 2x faster
then compression times. Decompression times variant V1 of this algorithm is
about 1.2-1.5x faster then compression times.

For possible improvements of computing speed was added version with
replacing binary search tree in dictionary by its balance variant red-black
tree. This version is not applicable because computing times was increasing.
Algorithm ACB using the same insert and search operation in dictionary.
Insert operation is much more time consuming due tree balancing.

Compression ratio was improved at the expense of speed. Overtime calcu-
lation time is constant with file size. In real usage this algorithm depends on
the priority compression ratio and computing speed.

63

Conclusion

The main goal this master thesis was research structures for indexing context
and content. The compression ratio should be improvement.

Outcome this thesis is analysis of improvement original algorithm ACB
published by G. Buyanovsky. This improvements were implemented in C++
and integrated to compression library ExCom.

This master thesis contain three improvements: Subtracting LCP from
number of copy symbols, Number of copy symbols is equal to value of LCP,
Index shifting.

Improvement Subtracting LCP from number of copy symbols has improved
compression ratio of actual ACB implementation in ExCom library implemen-
ted by M. Valach. Compression ratio of original implementation by G. Buyan-
ovsky has not improved.

The other improvements not improved compression but also has good com-
pression ratio.

Newly implemented algorithm to ExCom library has better compression
ration then actual implementation. The computing time is about 3-5x slower
then computing time of actual implementation.

Future work

The main goal of extending this master thesis is improving computing time of
new variant Subtracting LCP from number of copy symbols of ACB algorithm.
It would be very well decrease computing time to values as implementation of
ACB algorithm by M. Valach.

To improvement the compression ratio could be achieved by replacing ac-
tual arithmetic coder with high-quality arithmetic coder. Algorithm imple-
mented in this thesis using arithmetic coder from ExCom library which do
not reach optimal compression ratio.

65

Bibliography

[1] Arnold, R.; Bell, T. A corpus for the evaluation of lossless compression al-
gorithms. In Data Compression Conference, 1997. DCC’97. Proceedings,
IEEE, 1997, pp. 201–210.

[2] Bell, T.; Witten, I. H.; Cleary, J. G. Modeling for text compression. ACM
Computing Surveys (CSUR), volume 21, no. 4, 1989: pp. 557–591.

[3] Buyanovsky, G. Description of acb published in comp.compression
[ONLINE]. Aug 1996. Available from: http://www.cbloom.com/news/
bygeorge.html

[4] Cerman, L. Acb compression algorithm. Czech Technical University in
Prague, Jan. 2003.

[5] Decky, M. Associative coder of buyanovsky [ONLINE]. 2006. Available
from: http://http://projects.decky.cz/ACB/

[6] Huffman, D. A.; et al. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, volume 40, no. 9, 1952: pp.
1098–1101.

[7] Reznicek, J. Corpus for comparing compression methods and an extension
of a excom library. Master’s thesis, Czech Technical University in Prague,
May 2010.

[8] Scholtzova, J.; Trvdik, P. Balanced BSTs - AVL and RB Trees. 2014.

[9] Simek, F. Data compression library. Master’s thesis, Czech Technical Uni-
versity in Prague, May 2009.

[10] Simek, F.; Reznicek, J. ExCom library [ONLINE]. 2009–2010. Available
from: http://www.stringology.org/projects/ExCom/

67

http://www.cbloom.com/news/bygeorge.html
http://www.cbloom.com/news/bygeorge.html
http://http://projects.decky.cz/ACB/
http://www.stringology.org/projects/ExCom/

Bibliography

[11] Valach, M. Efficient implementation of ACB compression algorithm for
ExCom library. Master’s thesis, Czech Technical University in Prague,
May 2011.

[12] Witten, I. H.; Neal, R. M.; Cleary, J. G. Arithmetic coding for data
compression. Communications of the ACM, volume 30, no. 6, 1987: pp.
520–540.

[13] Ziv, J.; Lempel, A. A universal algorithm for sequential data compression.
IEEE Transactions on information theory, volume 23, no. 3, 1977: pp.
337–343.

68

Appendix A

Acronyms

ACB Associative Coder of Buyanovsky

AVL Adelson-Velsky and Landis

BST Binary Search Tree

CCITT Consultative Committee for International Telephony and Telegraphy

EOF End Of File

ExCom Extensible Compression Library

GNU GNU’s Not Unix

GPL General Public License

HTML HyperText Markup Language

IDE Integrated Development Environment

IO Input/Output

LGPL Lesser General Public License

LZ77 Lempel-Ziv compression method from 1977

LZ78 Lempel-Ziv compression method from 1978

LCP Longest Common Prefix

PDF Portable Document Format

PHP PHP Hypertext Preprocessor

PPM Prediction by Partial Matching

RB Red-Black

69

A. Acronyms

SPARC Scalable Processor ARChitecture

XML Extensible Markup Language

70

Appendix B

Building the ExCom library

The source code of ExCom library is placed on enclosed CD in the directory
/excom. The source code is built using the GNU build system by following
instructions.

1. Apply autotools

autoreconf -i -s -f

This command should be executed from the root directory of the source
tree. It will run all necessary autotools programs in correct order. As a
result, it will create a script called configure.

2. Run configure

mkdir bin

cd bin

../configure -C --enable-perf-measure

Although the configure script can be run from the directory where it
resides, it’s wise to create a distinct build directory to separate the
source files from the object files.

The configure process can be customized by setting environment vari-
ables or by passing parameters to the script. The list of all variables
and parameters can be obtained by running configure --help.

3. Make the library

make

This command should recursively enter all directories, and build the
library and programs. By default, both static and dynamic version of
the library is built.

71

Appendix C

User manual

This appendix describes usage of ExCom library. Console application app

is located in bin/src/app after building the ExCom library. Application
contains many parameters for controlling it, each compression method can
include new parameters.

Algorithm ACB implemented in this thesis is included in ExCom library
as acb2 module.

To list all available parameters can be used command ./app --help:

Usage: ./app [options]

where options may be:

-d, --decompress decompress input file (default is compress)

-e, --except=<path> path to exceptions’ file (required for DCA,

ignored for other)

-f, --ignore-first don’t count first run to the overall timing

The first run may be way off because of

empty cache

-h, --help print this help

-i, --input=<path> path to the input file

-m, --method=<met> select method <met>, use ? for a list

-o, --output=<path> path to the output file

-p, --param=<prm> <prm> is a comma separated list of

parameters of the method, use ? for a list

-q, --quiet don’t output anything except errors

-r, --repeat=<T> repeat the process T times

-t, --timing measure time spent by the process

To list all existing methods can be used command ./app -m ?:

Supported compression methods:

copy Just copies input to output

acb Associative coder of Buyanovsky

73

C. User manual

acb2 Associative coder of Buyanovsky (version 2)

arith Arithmetic coding

bwt Burrows-Wheeler transform

dca Data compression using antidictionaries

dhuff Dynamic Huffman coding

integer Integer compression methods

lz77 Lempel-Ziv compression method from 1977

lz78 Lempel-Ziv compression method from 1978

lzap Variant of LZW based on LZMW by Storer from 1988

lzmw Lempel-Ziv-Miller-Wegman, variant of LZW from 1985

lzss Lempel-Ziv-Storer-Szymanski comp. method from 1982

lzw Lempel-Ziv-Welch compression method from 1984

lzy Variant of LZW by Dan Bernstein

mtf Move-to-front transform

ppm Prediction by partial matching

rle_n RLE-N compression method

sfano Shannon-Fano coding

shuff Static Huffman coding

To list all available parameters for ACB2 method can be used command
./app -m acb2 -p ?:

Parameters available for compression method ’acb2’:

s=<N> Dictionary size (N >= 100). Default value is INFINITY.

x=<N> Context length (2 <= N <= 1024). Default value is 32.

n=<N> Content length (2 <= N <= 1024). Default value is 512.

d=<N> Difference #bits (2 <= N <= 16). Default value is 8.

c=<N> Copy bytes #bits (2 <= N <= 16). Default value is 8.

74

Appendix D

Contents of enclosed CD

readme.txt the file with CD contents description
corpus.............................. the directory with corpus archives
excom.................the directory with source codes of ExCom library
src.........the directory with source codes of new ACB implementation
text..................................... the directory with thesis text

DP Lehar Adam 2016.pdf..............the thesis text in PDF format
src...................the directory with LATEX source codes of thesis

75

	Pages from DP_Lehar_Adam_2016.pdf
	DP_Lehar_Adam_2016
	Introduction
	Motivation
	Main goals
	ExCom library
	Thesis organization

	Algorithm ACB
	Definitions
	Description
	Compression
	Decompression

	Previous implementations
	George Buyanovsky
	Martin Decký
	Filip Šimek
	Lukáš Cerman
	Michal Valach
	Implementations comparison

	Analysis
	Data structures
	Triplets
	Arithmetic coding
	Dictionary mode
	New improvements

	Implementation
	Module for ExCom library
	Object Model
	Main compression and decompression logic
	Balanced binary search tree with Rank & Select
	Storage of data
	Arithmetic module

	Experimental measurement
	Compression corpus
	Performance experiments

	Conclusion
	Future work

	Bibliography
	Acronyms
	Building the ExCom library
	User manual
	Contents of enclosed CD

