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Abstrakt

V práci jsou představeny dva nové algoritmy pro vyhledáváńı ve stromech
— sousměrný algoritmus (založený na algoritmu Morris–Pratt) a algoritmus
na principu mrtvých zón. Algoritmy naleznou všechny výskyty daného stro-
mového vzorku, které odpov́ıdaj́ı vstupńımu stromu. Vzorek i vstupńı strom
jsou použity v linearizované podobě. Algoritmy použ́ıvaj́ı podobné principy
jako jejich řetězcové alternativy, které jsou podle potřeby modifikované. Ve-
likost pomocné struktury, která je zkonstruovaná pro sousměrný algoritmus,
je lineárńı vzhledem k velikosti vzorku. Algoritmus na principu mrtvých
zón použ́ıvá dvě pomocné struktury, jedna je opět lineárńı vzhledem k ve-
likosti vzorku a druhá je lineárńı vzhledem k velikosti abecedy. Algoritmy
jsou porovnány s doposud nejvýkonněǰśımi existuj́ıćımi algoritmy, které jsou
založeny na konečných stromových automatech, stringpath vyhledáváńı a s
protisměrným algoritmem pro vyhledáváńı ve stromech. Měřeńı ukazuj́ı, že
dopředný algoritmus pro vyhledáváńı ve stromech tyto algoritmy výkonem
překonává a algoritmus na principu mrtvých zón je s nimi srovnatelný. Jejich
časová složitost je z teoretického úhlu pohledu o něco horš́ı než u jejich řetězco-
vých alternativ ale předpokládá se, že bude dále vylepšena. Pro sousměrný
algoritmu může být během samotného vyhledáváńı počet porovnáńı symbol̊u
v nejlepš́ım př́ıpadě lineárńı a v př́ıpadě algoritmu na principu mrtvých zón
dokonce sub-lineárńı.

Kĺıčová slova vyhledáváńı ve stromech, sousměrné vyhledáváńı, protisměrné
vyhledáváńı, stromy, arbologie, Knuth-Morris-Pratt, vyhledáváńı na principu
mrtvých zón

ix





Abstract

A new Forward (Morris–Pratt–like) and a new Dead-zone tree pattern match-
ing algorithms for ordered trees are presented. The algorithms find all occur-
rences of a single given tree pattern which match an input tree. They make
use of linearisations of both the given pattern and the input tree. The al-
gorithms use modified but similar approaches to their string equivalents. The
size of the data structure constructed for the Forward tree pattern matching
algorithm is linear in the size of the pattern tree. The Dead-zone tree pattern
matching algorithm is using two data structures of sizes linear in the size of
the alphabet and pattern tree, respectively. Algorithms were compared with
best performing previously existing algorithms based on a (non-linearised)
tree pattern matching using finite tree automata, stringpath matchers, and
a Backward tree pattern matching algorithm. Measurements show that the
Forward tree pattern matching algorithm outperforms these for single pattern
matching and the Dead-zone tree pattern matching algorithm is comparable.
Their time complexity properties are from the teoretical point of view de-
creased in coparison to their string equivalentsbut it is expected to improve.
During matching, the number of symbol comparisons can be even linear in
the size of the input tree in the best case in case of the Forward tree pat-
tern matching algorithm and even sub-linear in case of the Dead-zone pattern
matching algorithm.

Keywords tree pattern matching, backward pattern matching, forward pat-
tern matching, trees, arbology, Knuth-Morris-Pratt, dead-zone matching
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Introduction

This work belongs to a new algorithmic discipline called Arbology. The Ar-
bology research group was set up in 2008 at Czech Technical University in
Prague. The name Arbology is inspired by a Spanish word “Arbol” — the
tree. The main point of interest of this group is applying the well-known
stringology algorithms to trees; which is in fact possible since trees can be
represented as string [1]. Stringology is a traditional discipline which deals
with string processing. A lot of efficient algorithms for many basic tasks were
developed already – for example pattern matching or compression. Therefore,
the effort to apply these algorithms (with some care) to trees represented as
strings sounds very reasonable.

The goal of my thesis is to find some way how to apply quiet recent Dead-
zone algorithm to trees. The Dead-zone algorithm is using very elegant idea of
minimizing the size of a live-zone (zone where an occurrence of a pattern can
start) faster than traditional backward pattern matching algorithms. Every
match attempt bring some information where an occurrence of a pattern can’t
start in a subject. In essence it is a framework into which you can plug
any pattern matching algorithm. The better and efficient the algorithm, the
quicker the progressing of live-zones minimization. It works with the naive
pattern matching algorithm as well. Of course, there are still other approaches
like Knuth–Morris–Pratt, Boyer–Moore and a other well-known algorithms.

The very immediate predecessor of my work is the article Backward Linear-
ised Tree Pattern Matching published in LATA 2015 [2]. A Boyer–Moore-like
algorithm for trees defined there and it is actually the first half of the solution
of the Dead-zone algorithm. The second part — some forward pattern match-
ing algorithm — must be defined and it is therefore a sub-goal of this thesis.
Putting these two halves together is then straightforward. It will be somewhat
technical but it is straightforward. Of course, details will be discussed later.

1





Chapter 1

Basic Notion

1.1 Alphabet, string

An alphabet is a finite nonempty set of symbols. A ranked alphabet is a finite
nonempty set of symbols each of which has a unique nonnegative arity (or
rank). Given a ranked alphabet A, the arity of a symbol a ∈ A is denoted
Arity(a). The set of symbols of arity p is denoted by Ap. Elements of arity
0, 1, 2, . . . , p are called nullary (constants), unary, binary, . . ., p-ary symbols,
respectively. I assume that A contains at least one constant. In the examples
I use numbers at the end of identifiers for a short declaration of symbols with
arity. For instance, a2 is a short declaration of a binary symbol a. I use |A|
notation for the size of set A.

A string x is a sequence of i symbols s1s2s3 . . . si from a given alphabet,
where i is the size of the string. A sequence of zero symbols is called the empty
string. The empty string is denoted by symbol ε. [2]

1.2 Tree, tree patterns

Based on concepts and notations from graph theory [3]:

An graph G is a pair (N,R), where N is a set of nodes and R is a set of
edges such that each element of R is of the form (f, g), where f, g ∈ N . This
element will indicate that, for node f , there is an edge between node f and
node g.

A directed graph G is a graph, where each element of R of the form (f, g)
indicates that, there is an edge leaving node f and entering node g. This edge
is ordered from f to g. An undirected graph G is a graph in which no such
ordering of edges is given.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node
f0 to node fn if there is an edge which leaves node fi−1 and enters node fi
for 1 ≤ i ≤ n. A labelling of an ordered graph G = (N,R) is a mapping of N

3



1. Basic Notion

into a set of labels. In the examples we use af for a short declaration of node
f labelled by symbol a.

A directed graph is connected if there exists a path from fu to fv for each
pair of nodes (fu, fv), u 6= v, of the graph.

A cycle is a path (f0, f1, . . . , fn) in which f0 = fn.
Given a node f of a directed graph, its out-degree is the number of distinct

pairs (f, g) ∈ R, where g ∈ N . By analogy, the in-degree of node f is the
number of distinct pairs (g, f) ∈ R, where g ∈ N .

A tree is a connected directed graph without any cycle. The tree is assumed
to have at least one node. A rooted tree t is a tree with a special node r ∈ N ,
called the root.

The rooted tree t can be also defined by following:

(1) r ∈ N (root) has in-degree 0,

(2) all other nodes of t have in-degree 1,

(3) there is just one path from the root r to every f ∈ N , where f 6= r.

Nodes of a tree with out-degree 0 are called leaves.
A labelled and rooted tree is a tree with the additional property: (4) every

node f ∈ N is labelled by a symbol a ∈ A, where A is an alphabet.
A node g is a direct descendant of node f if a pair (f, g) ∈ R.
An ordered, labelled and rooted tree is a labelled and rooted tree where

direct descendants of a node f are ordered.
A ordered, ranked, labelled and rooted tree is a labelled and rooted tree

labelled by symbols from a ranked alphabet and where the out-degree of a
node f labelled by symbol a ∈ A equals Arity(a). Nodes labelled by nullary
symbols (constants) are leaves.

Throughout the text shorthand ranked tree will be used in context of
ordered, ranked, labelled and rooted tree and unranked tree in context of
ordered, labelled and rooted tree.

1.3 Linear notations and their properties

The prefix notation pref(t) of a ranked tree t is defined as follows:

1. pref(a) = a0 if a is a leaf,

2. pref(t) = an pref(b1) pref(b2) . . . pref(bn), where a is the root of tree
t, n = Arity(a) and b1, b2, . . . bn are direct descendants of a.

The prefix bar notation pref bar(t) of a unranked tree t is defined as
follows:

1. pref bar(a) = a ↑ if a is a leaf,

2. pref bar(t) = a pref bar(b1) pref bar(b2) . . . pref bar(bn) ↑, where a
is the root of tree t and b1, b2, . . . bn are direct descendants of a.

The postfix notation post(t) of a ranked tree t is defined as follows:

4



1.3. Linear notations and their properties

a05

a03 a14 a07

a22 a16

a21

(a) Tree t1r over a ranked alphabet

a5

a3 a4 a7

a2 a6

a1

(b) Tree t1u over an unranked alphabet

Figure 1.1: Tree t1r from Examples 1.3.1 and 1.3.2

1. post(a) = a0 if a is a leaf,

2. post(t) = post(b1) post(b2) . . . post(bn) an, where a is the root of tree t,
n = Arity(a) and b1, b2, . . . bn are direct descendants of a.

The postfix bar notation post bar(t) of a unranked tree t is defined as
follows:

1. post bar(a) = a ↑ if a is a leaf,

2. post bar(t) = a post bar(b1) post bar(b2) . . . post bar(bn) ↑, where a is
the root of tree t and b1, b2, . . . bn are direct descendants of a.

Let w = a1a2 . . . am, m ≥ 1, be a string over a ranked alphabet A. Then,
the arity checksum ac(w) = arity(a1) + arity(a2) + . . .+ arity(am)−m+1=∑m

i=1 arity(ai) − m + 1. Let pref(T ) and w be a tree T in prefix notation
and a substring of pref(T ), respectively. Then, w is the prefix notation of a
subtree of T , if and only if ac(w) = 0, and ac(w1) ≥ 1 for each proper prefix
w1 of w (i.e. w = w1x, x 6= ε) [4].

Example 1.3.1. Consider a ranked alphabet A = {a2, a1, a0}. Consider an
ordered, ranked, labelled and rooted tree t1r = ({a21, a22, a03, a14, a05, a16,
a07}, Rt1r) over alphabet A, where Rt1r = {(a21, a22), (a21, a16), (a22, a03),
(a22, a14), (a14, a05), (a16, a07)}. Tree t1r in prefix notation is pref(t1r) =
a2 a2 a0 a1 a0 a1 a0. Trees can be represented graphically, as is done for tree
t1r in Figure 1.1a.

Example 1.3.2. Consider an unranked alphabet A = {a}. Consider an
ordered, labelled and rooted tree t1u = ({a1, a2, a3, a4, a5, a6, a7}, Rt1u)
over an alphabet A, where Rt1u = {(a1, a2), (a1, a6), (a2, a3), (a2, a4), (a4, a5),
(a6, a7)}. Tree t1u in prefix bar notation is pref bar(t1u) = a a a ↑ a a ↑ ↑
↑ a a ↑ ↑ ↑. The tree t1u is illustrated in Figure 1.1b.

Example 1.3.3. As another example; Consider a ranked alphabet A = {a4,
a0, b0}. Consider an ordered, ranked, labelled, rooted, and directed tree t2r =
({a41, a42, a43, a04, b05, a06, a07, a08, b09, a010, a011, a012, b013}, Rt2r) over an
alphabet A, where Rt2r is a set of the following ordered pairs:

5



1. Basic Notion

a04 b05 a06 a07

a43 a08 b09 a010

a42 a011 a012 b013

a41

Figure 1.2: Tree t2r from Example 1.3.3

Rt2r = {(a41, a42), (a41, a011), (a41, a012), (a41, b013), (a42, a43), (a42, a08),
(a42, b09), (a42, a010), (a43, a04), (a43, b05), (a43, a06), (a43, a07)}.

Prefix notation of tree t2r is pref(t2r) = a41a42a43a04b05a06a07a08b09a010a011
a012b013. Tree t2r is illustrated in Figure 1.2.

The height of a tree t, denoted by Height(t), is defined as the length of the
longest path leading from the root of t to a leaf of t. [2]

1.4 Subtree and pattern

A subtree (a complete subtree) of a tree t = (N,R) is any tree t′ = (N ′, R′)
such that:

1. N ′ is nonempty subset of N ,

2. R′ = (N ′ ×N ′) ∩R, and

3. No node of N \N ′ is a descendant of a node in N ′.

To define a tree pattern, a special wild-card symbol S 6∈ A, Arity(S) = 0 is
used, which serves as a placeholder for any subtree. A tree pattern is defined
as a labelled ordered tree over an alphabet A∪ {S}. We will assume that the
tree pattern contains at least one node labelled by a symbol from A. A tree
pattern containing at least one symbol S will be called a tree template.

A tree pattern p with k ≥ 0 occurrences of the symbol S matches a subject
tree t at node n if there exist subtrees t1, t2, . . . , tk (not necessarily the same)
of t such that the tree p′, obtained from p by substituting the subtree ti for the
i-th occurrence of S in p, i = 1, 2, . . . , k, is equal to the subtree of ts rooted
at n. Tree ts is the matched subtree of tree T .

Let a tree pattern p match a subject tree t at node n and let m be the
number of nodes in the matched subtree ts. Let i be the index of node n in
pref(t) = a1a2 . . . aiai+1 . . . ai+m−1ai+m . . . . An occurrence of tree pattern p
in subject tree t is a pair (i, i +m). The pair (i, i +m) is also an occurrence
of substring pref(ts) in string pref(t).

6



1.4. Subtree and pattern

a04

a02 a13

a21

(a) Subtree p1r from Ex-
ample 1.4.1

S4

S2 a13

a21

(b) Tree pattern p2r from Ex-
ample 1.4.1

X4

X2 a13

a21

(c) Tree pattern p3r from Ex-
ample 1.4.1

Figure 1.3: Subtree, tree pattern, and nonlinear tree pattern (Example 1.4.1)

The nonlinear tree pattern also uses another special wild-card symbols
X,Y, · · · , not in alphabet A. These symbols serve as placeholders for specific
subtrees. Every occurrence of a symbol X, Y , · · · in a nonlinear tree pattern
is matched with the same subtree. A nonlinear tree pattern has to contain
at least one symbol from A. A nonlinear tree pattern which contains at least
two equal nonlinear variables will be called a nonlinear tree template.

A nonlinear tree pattern np with k ≥ 2 occurrences of a nonlinear variable
X matches a subject tree t at node n if there exists a subtree tX of the tree
t and subtrees t1, t2, . . . , tm (not necessarily the same) of the tree t such that
the tree np′, obtained from np by substituting the subtree tX for the i-th,
1 ≤ i ≤ k, occurrences of X in np, and by substituting the subtree ti for the
i-th occurrence of S in p, i = 1, 2, . . . ,m, is equal to the subtree of t rooted at
n.

Example 1.4.1. Consider a ranked tree t1r = ({a21, a22, a03, a14, a05, a16,
a07}, R1r) from Example 1.3.1, which is illustrated in Figure 1.1a.

Consider a subtree p1r over an alphabet A, p1r = ({a21, a02, a13, a04},
Rp1r). Subtree p1r in prefix notation is pref(p1r) = a2 a0 a1 a0 and Rp1r =
{((a21, a02), (a21, a13)), ((a13, a04))}.

Consider a tree pattern p2r over an alphabet A ∪ {S}, p2r = ({a21, S2,
a13, S4}, Rp2r). Tree pattern p2r in prefix notation is pref(p2r) = a2 S a1 S
and Rp2r = {(a21, S2), (a21, a13), (a13, S4)}.

Consider a nonlinear tree pattern p3r over an alphabet A∪ {S,X}, p3r =
({a21, X2, a13, X4}, Rp3r). Nonlinear tree pattern p2r in prefix notation is
pref(p2r) = a2 X a1 X and Rp2r = {(a21,X2), (a21, a13), (a13,X4)}.

Tree patterns p1r, p2r and p3r are illustrated in Figure 1.3. Tree pattern
p1r occurs once in tree t1r — it matches at node 2 of t1r. Tree pattern p2r
occurs twice in t1r — it matches at nodes 1 and 2 of t1r. Tree pattern p3r
occurs once in t1r — it matches at nodes 2 of t1r. [2]
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Chapter 2

String Pattern Matching

Approaches

Let me provide some basic overview of string patter matching.

The algorithms used in this thesis are just modifications of well-known al-
gorithms that are usually used for string processing. The Dead-zone algorithm
itself was originally designed for strings as well.

2.1 Introduction

String pattern matching is one of the subjects of study of Stringology. The
name Stringology was coined in 1984 by computer scientist Zvi Galil for the
issue of algorithms and data structures used for string processing. [5]

The classification of pattern matching problems is very complex. This
classification could be found in [6]. There are several classifications of pat-
tern matching algorithms. One classification method splits algorithms into
Backward and Forward pattern matching algorithms. To be precise, there is
a bidirectional algorithm too — the Dead-zone algorithm.

2.2 Backward string pattern matching algorithm

The symbols of the pattern and the text are compared in opposite direction to
the shifting of the pattern in the backward string pattern matching. Matching
time with the basic backward pattern matching algorithm is O(m ∗ n), where
m is the size of the pattern and n is the size of the subject. No preprocessing
of the pattern nor subject is needed. The basic backward pattern matching al-
gorithm is a common base for many modifications which make it more efficient
in practise.

Instead of a shift by 1 (as per line 11 of Algorithm 1), lager shifts can often
be made. The length of shift depends on used heuristic.
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2. String Pattern Matching Approaches

Name: Basic backward pattern matching.
Input: A string text of size n and a string pattern of size m.
Output: Locations of the pattern in the text.

1 begin

2 i := 0
3 while i < n−m do

4 j := m
5 while j > 0 and pattern [j] = text [i+ j] do
6 j := j − 1
7 end

8 if j = 0 then

9 OUTPUT (i+ 1)
10 end

11 i := i+ 1 {Length of the shift.}

12 end

13 end

Algorithm 1: Basic backward string pattern matching algorithm.

TEXT

PATTERN ✲
shift of pattern

✛ comparison of symbols
Figure 2.1: Graphical outline of algorithm 1

The algorithm 1 is modified for each heuristics by replacing statement on
line 11. by some different statement.

For my thesis only the Bad character shift heuristic is important.

2.2.1 Bad character shift

This heuristic for larger shifts is used in the Boyer-Moore-Horspool algorithm
[7]. Computing the length of the shift is based on one symbol aligned to the
end of the pattern. This shift, a simplification of the one used by the original
Boyer-Moore algorithm, has turned out to perform very well in practice.

The length of the shift is computed using the symbol aligned to the last
symbol of the pattern. The shifts are stored in a bad character shift table.

Definition 2.2.1. Let pattern[1..m] be over an alphabet A. The bad charac-
ter shift table BCS is defined as follows BCS[a] = min({m}∪{j|pattern[m−
j] = a and j > 1}) for each a ∈ A.

Example 2.2.1. Consider a pattern p4 = a2a1a0a1a0 over an alphabet A =
{a3, a2, a1, a0}. The BCS[a3] = 5, BCS[a2] = 4, BCS[a1] = 1, BCS[a0] =
2.
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2.3. Forward string pattern matching algorithms

Backward string matching algorithm with bad character shift is obtained
by replacing statement on line 11 of algorithm 1 by statement:

11 i := i+BCS[text[i+m]].

The complexity of matching when the bad character shift is used is still
O(m ∗ n) and the preprocessing time (construction of the bad character shift
table) is O(m + |A|), where m is the size of the pattern, n is the size of the
subject, and |A| is the size of the alphabet. The size of the bad character shift
table is Θ(|A|).

2.2.2 Match shift

The match shift is performed when an occurrence is found. The pattern is
shifted so that it is aligned using the longest nontrivial border.

Definition 2.2.2. Let pattern[1..m] be over an alphabet A. The match shift
MS = m− length(Border(pattern)).

2.3 Forward string pattern matching algorithms

In this case, the symbols of the pattern and the text are compared in the same
direction as is the direction of shifting of the pattern. Time complexity is also
the same as in case of Forward pattern matching algorithm — O(m∗n), where
m is the size of the pattern and n is the size of the subject.

The basic forward pattern matching algorithm is in essence the same as
Naive algorithm for string pattern matching generally. For shift of length 1 as
on line 11 of algorithm 2 we get the Naive algorithm. Longer shifts are also
possible. It depends on the used heuristic.

2.3.1 Knuth–Morris–Pratt

This algorithm uses a precomputed table to determine the length of shift. The
table stores an information about the longest prefixes that are also suffixes for
all suffixes or better — borders of all suffixes.

Definition 2.3.1. Let x ∈ A∗ be a string of length n. If border of length β
is found, then x[1..β] = x[n− β +1..n]. So, border u of string x is any proper
prefix of x that equals a suffix of x.

Example 2.3.1. See Figure 2.2. Consider an attempt at a left position j, that
is when the window is positioned on the text factor y[j..j +m− 1]. Assume
that the first mismatch occurs between x[i] and y[i+j] with 0 < i < m. Then,
x[0..i − 1] = y[j..i + j − 1] = u and a = x[i] 6= y[i+ j] = b. [8]
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2. String Pattern Matching Approaches

Name: Basic forward pattern matching.
Input: A string text of size n and a string pattern of size m.
Output: Locations of the pattern in the text.

1 begin

2 i := 0
3 while i <= n−m do

4 j := 0
5 while j < m and pattern [j + 1] = text [i+ j + 1] do
6 j := j + 1
7 end

8 if j = m then

9 OUTPUT (i+ 1)
10 end

11 i := i+ 1 {Length of the shift.}

12 end

13 end

Algorithm 2: Basic forward string pattern matching algorithm.

j i+ j

y u b

x u a

x v c

Figure 2.2: Shift in the Knuth–Morris–Pratt algorithm

Shift is based on expectation that a prefix v of the pattern matches some
suffix of the u of the text. If we want to avoid another immediate mismatch,
the character following the prefix v in the pattern must be different from a.
The longest such a prefix v is called the border of u. [8]

Now, see algorithms 3 and 4.

Preprocessing function takes O(m) time in respect to the size m of the
pattern. It is one time process before searching phase itself.

The searching phase of Knuth–Morris–Pratt algorithm has time complex-
ity O(m + n). The algorithm makes at most 2n − 1 comparisons during the
search phase. [9, 8].

2.4 Dead-zone string pattern matching algorithm

Dead-zone algorithm works on the principle of limiting possible range of in-
dexes in the subject where the beginnings of occurrences of the pattern can be.
Dead-zone algorithm uses two important terms — dead-zone and live-zone.
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2.4. Dead-zone string pattern matching algorithm

Name: Preprocessing function for Knuth–Morris–Pratt
Input: A string p (pattern) of size m.
Output: Table of integers kmpNext representing shifts

1 begin

2 i := 0
3 j = kmpNext[0] = −1
4 while i < m do

5 while j > −1 and p[i] 6= p[j] do
6 j := kmpNext[j]
7 end

8 i := i+ 1
9 j := j + 1

10 if p[i] = p[j] then
11 kmpNext[i] := kmpNext[j]
12 end

13 else

14 kmpNext[i] := j
15 end

16 end

17 end

Algorithm 3: Preprocessing function for Knuth–Morris–Pratt.

Name: Knuth–Morris–Pratt matching function
Input: A string p (pattern) of size m, a string s (text) of size n and

kmpNext array (result of preprocessing).
Output: A list of matches.

1 begin

2 i := j := 0
3 while j < n do

4 while i > −1 and p[i] 6= s[j] do
5 i := kmpNext[i]
6 end

7 i := i+ 1
8 j := j + 1
9 if i ≥ m then

10 OUTPUT (j − i)
11 i := kmpNext[i]

12 end

13 end

14 end

Algorithm 4: Knuth–Morris–Pratt matching function (different represent-
ation than algorithm 2.
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2. String Pattern Matching Approaches

Definition 2.4.1. Range of indexes in the subject where it is still possible to
find the beginnings of occurrences of the pattern is called a live-zone.

Definition 2.4.2. The range of indexes in the subject where it is not possible
to find the beginnings of occurrences of the pattern is called a dead-zone.

Name: Dead-zone abstract matcher
Input: A string p (pattern) of size m, a string s (text) of size n and

the boundary of live zone live low and live high.
Output: A list of matches.

1 begin

2 Procedure dzmat(live low, live high)
3 if live low ≥ live high then

4 return

5 end

6 j := ⌊(live low + live high)/2⌋
7 i := 0
8 while (i < m) and (p[i] = s[j + i]) do
9 i := i+ 1

10 end

11 if i = m then

12 OUTPUT (j)
13 end

14 if i < m then

15 return

16 end

17 new dead left := j − shift left(i, j) + 1
18 new dead right := j + shift right(i, j)
19 dzmat(live low, new dead left)
20 dzmat(new dead right+ 1, live high)

21 end

Algorithm 5: Dead-zone abstract matching function.

The Dead-zone algorithm could be implemented as a simple “abstract”
recursive algorithm. See algorithm 5.

Let m be the length of the pattern and let n be the length of the subject.
At the beginning, live-zone is the range of indexes from the beginning of the
subject to the index n−m+1. The first invocation of dzmat is dzmat(0, n−
m+ 1).

The rule is simple: Occurrence cannot be found on indexes too close to
the end of the subject where the pattern would overflow the subject.

In the next step pick some position in the live-zone and try to found an
occurrence. Regardless whether it fails, the dead-zone will emerge in the tested
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2.4. Dead-zone string pattern matching algorithm

area. This process generates two smaller live-zone and they are processed
recursively.

The algorithm 5 is presented as a “framework”. It just defines how to
manipulate with dead-zones (and live-zones respectively). Shifting heuristics is
hidden in the functions shift left() and shift right(). These functions could
be both the naive shifts by 1 or some heuristic of Backward or Forward pattern
matching algorithms. Of course, every implementation should aim to the
longest possible shifts. The faster the dead-zone grows the better performance
the dzmat algorithm gets. [10]

Please, note some important things about algorithm 5:
Algorithm as presented works for string where the first symbol has index 0.
This is simplified version. The original version presented in [10] is using

so called mapping functions to generalize order of symbols comparison while
checking for occurrence. If you are interested in details, see the original article
[10].

2.4.1 Example of dzmat algorithm’s execution

Let me provide some example of dzmat algorithm’s execution for better un-
derstanding. Example comes from [10].

Example 2.4.1. Searching the pattern p = ”abracadabra” of size m = 11
in the subject s = ”The quick brown fox jumped over the lazy dog” of size
n = 44 with shifts based on Horspool’s algorithm.

1. First invocation with a live-zone [0, 34). Match attempt at 17:

The quick brown fox jumped over the lazy dog

abracadabra

There is mismatch at i = 0. Left/right shift by 11/11. New dead-zone
is [7, 28). Two live-zones will be [0, 7) and [28, 34).

2. Invoked with live-zone [0, 7) — the left one. Match attempt at 3:

The quick brown fox jumped over the lazy dog

abracadabra

There is mismatch at i = 0. Left/right shift by 11/11. New dead-
zone is [−7, 14). Two live-zones will be [0,−7) (will be skipped by first
condition) and [14, 7) (will be skipped too).

3. Invoked with live-zone [28, 34) — the right one. Match attempt at 31:

The quick brown fox jumped over the lazy dog

abracadabra
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2. String Pattern Matching Approaches

There is mismatch at i = 0. Left/right shift by 11/4. New dead-zone is
[21, 35). Two live-zones will be [28, 21) (will be skipped by first condi-
tion) and [35, 34) (will be skipped too).
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Chapter 3

Tree Pattern Matching

The tree pattern matching is a similar problem to the string pattern matching.
Trees can be represented in linear notation — i.e. as strings. An interesting
fact is that is not necessary to build linear representation explicitly. It can be
obtained by sequential tree traversal “on fly”. The patterns in linear notation
are represented by substrings of trees in the linear notation. They can contain
“gaps” given by a special wild-card symbol S, which serves as a placeholder
for any subtree.

The string pattern matching algorithm couldn’t be used as is. The wild-
card symbol S doesn’t represent simple linear sequence. It represents subtree
and matched subtrees may be possibly nested. The wild-card symbol S need
some special care. Also, the tree pattern matching problem is more complex
than the string version of this problem. There is at most n2 distinct substrings
of string of size n, whereas there is at most 2n−1 + n distinct tree patterns
which match a tree of size n. [2]

There are some relevant previous results on the field of tree pattern match-
ing problems. Many of them use some kind of tree automata. If you are
interested in details, see chapter Introduction in [2].

3.1 Backward Tree Pattern Matching

Examples, definitions and core ideas in this section are used from [2].
This method sees the tree pattern matching problem as matching of con-

nected subgraphs in trees. The basic idea of backward tree pattern matching
for tree patterns is the same as in the string case: moving the pattern in one
direction and matching symbols of tree pattern and subject tree in the oppos-
ite direction. Wild-card S occurrences must be handled in a special way. A
prefix ranked bar notation of the tree is used for the purpose of extending of
shifts.

Definition 3.1.1. The prefix ranked bar notation pref ranked bar(t) of a
tree t is defined as follows:
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3. Tree Pattern Matching

1. pref ranked bar(S) = S ↑S

2. pref ranked bar(a) = a0 ↑0 if a is a leaf,

3. pref ranked bar(t) = an pref ranked bar(b1) pref ranked bar(b2) . . .
pref ranked bar(bn) ↑n, where a is the root of the tree t, n = Arity(a)
and b1, b2, . . . bn are direct descendants of a.

Definition 3.1.2. Let ↑n, where n ≥ 0 be bar symbols of arity n. The bar
set A↑ is the set of all bar symbol ↑n.

3.1.1 Bad character shift table

Definition 3.1.3. Let pattern[1..m] be a pref ranked bar notation of a tree
pattern p over an alphabetA. The bad character shift table BCS(pattern[1..m])
for backward tree pattern matching is defined for each a ∈ A:
BCS(pattern[1..m])[a] = min(

{m} ∪ {j : pattern[m− j] = a and m > j > 0} ∪

{j +Arity(a) ∗ 2 : pattern[m− j] = S and m > j > 0 and a 6∈ A↑} ∪

{j − 1 : pattern[m− j] = S and m > j > 1 and a ∈ A↑})

The wild-card S is not in shift table BCS because this symbol cannot
occur in the subject tree.

Items of the BCS table are computed as the minimum value from four
formulas shown in Definition 3.1.3 where the formulas are separated by the
union operation.

The first formula makes sure that the shift is not longer than the size of
the pattern m. The size of a subtree hidden in wild-card S is considered as
the smallest possible one, i.e. 2: one nullary symbol a0 ↑0.

The second formula defines the minimal safe shift for symbols that occur
in the pattern. The minimal safe shift for a symbol a is the distance j of the
closest occurrence of the symbol a from the end of the pattern. Wild-card
symbol S is considered to correspond to the smallest possible subtree again.

The third and fourth formulas define the shift for cases when a symbol a is
expected to be in a subtree te that corresponds to wild-card S. The location
of the last wild-card S from the end of the pattern is used to define the base
shift length j and this shift can be prolonged by some number depending on
the arity of the symbol a, see the second part of the definition. The smallest
subtree te that contains the symbol a is rooted by a and its direct descendants
are nullary symbols b0. For each symbol b0 in the subtree te there is also one
symbol ↑0. The base shift j is then prolonged by 2 ∗ Arity(a). Any symbol
from the set A↑ can occur as the last symbol of a subtree te, i.e. it can be
matched with ↑S. Therefore, the base shift of each bar is shortened by 1, see
fourth part of the definition. The shift cannot be zero and in that case the
base shift is not shortened. Note that this case would occur only for pattern
S ↑S.
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3.1. Backward Tree Pattern Matching

See Example 3.1.1.

Example 3.1.1. Consider a tree pattern p3r in prefix ranked bar notation
pref ranked bar(p3r) = a2 a1 S ↑S ↑1 a1 a0 ↑0 ↑1 ↑2 over an alphabet A =
{a3, a2, a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S}. Algorithm 3.1.1 constructs the following
items of the BCS table.
BCS[a3] = min({10} ∪ ∅ ∪ {13}) = 10, BCS[a2] = min({10} ∪ {9} ∪ {11}) = 9, BCS[a1] =

min({10} ∪ {4, 8} ∪ {9}) = 4, BCS[a0] = min({10} ∪ {3} ∪ {7}) = 3,

BCS[↑3] = min({10} ∪ ∅ ∪ {6}) = 6, BCS[↑2] = min({10} ∪ ∅ ∪ {6}) = 6,

BCS[↑1] = min({10} ∪ {1, 5} ∪ {6}) = 1, BCS[↑0] = min({10} ∪ {2} ∪ {6}) = 2.

BCS table is constructed by algorithm 6. Firstly, algorithm finds the
location of the last wild-card S. Then, the BCS table for all symbols of the
alphabet is initialised to the size of the pattern. The length of the shift for all
symbols of the alphabet is possibly shortened with the use of the information
on the position of the last wild-card S. The arity of symbols is used to make
this part of the shift function longer according to Definition 3.1.3. Finally,
the length of the shift is again possibly shortened by the actual positions of
symbols in the pattern.

3.1.2 Subtree jump table

The backward tree pattern matching algorithm uses operation “skip subtree”
corresponding to the wild-card symbol S. Comparing symbols (labels) every
time is very time consuming and inefficient. There is another one structure
that works as optimisation of this operation. The structure is called SJT or
subtree jump table.

The SJT structure contains two kinds of positions for each subtree r of
a tree t. The first kind of position is the position of the first symbol of the
subtree r in pref ranked bar(r) notation in the pref ranked bar(t) notation
of the tree t as an index and the position one after the last symbol of the
subtree r in pref ranked bar(r) notation as a value. The second one is the
position of the last symbol of the subtree r in pref ranked bar(r) notation
in the pref ranked bar(t) notation of the tree t as an index and the position
one before the first symbol of the subtree r in pref ranked bar(r) notation
as a value. SJT structure has the same size as the pref ranked bar notation
and it is constructed by algorithm 7.

Definition 3.1.4. Let t and pref ranked bar(t) of length n be a tree and its
prefix ranked bar notation, respectively. A subtree jump table
SJT (pref ranked bar(t)) is defined as a mapping from set of integers {1..n}
into a set of integers {0..n+1}. If pref ranked bar(t) [i..j] is the prefix ranked
bar notation of a subtree of tree t, then SJT (pref ranked bar(t))[i] = j + 1
and SJT (pref ranked bar(t))[j] = i− 1, 1 ≤ i < j ≤ n.
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3. Tree Pattern Matching

Name: ConstructBCS
Input: Tree pattern in prefix ranked bar notation

pref ranked bar(pattern) of size m over alphabet A of the
subject tree.

Output: The bad character shift table
BCS(pref ranked bar(pattern)).

1 begin

2 s := m
3 for i := 1 to m do

4 if pref ranked bar(pattern)[i] = S then s = m− i;
5 end

6 foreach x ∈ A do BCS [x] = m;
7 foreach x ∈ A do

8 if x 6∈ A↑ then shift := s+ Arity(x) ∗ 2;
9 else if s >= 2 then shift := s− 1;

10 else shift := s;
11 if BCS [x] > shift then BCS [x] := shift ;

12 end

13 for i := 1 to m− 1 do

14 if pref ranked bar(pattern)[i] 6∈ {S, ↑S} and
BCS [pref ranked bar(pattern)[i]] > (m− i) then
BCS [pref ranked bar(pattern)[i]] := m− i ;

15 end

16 end

Algorithm 6: Construction of BCS table

Example 3.1.2. Consider a tree t2r and its representation in prefix ranked
bar notation pref ranked bar(t2r) = a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2
over alphabet A = {a3, a2, a1, a0, ↑3, ↑2, ↑1, ↑0}. A visualisation presented in
Table 3.1 is of the SJT (pref ranked bar(t2r)).

3.1.3 Backward linearised tree pattern matching algorithm

The backward tree pattern matching algorithm is an extension of the string
backward pattern matching algorithm shown as an algorithm 1.

The modification of the string backward matching algorithm is based on
the principle that the algorithm performs also tests for wild-cards S in the
pattern. The modification is in line 10 of algorithm 8, where a part of the
subject tree representing a subtree is skipped when a wild-card S, represented
as S ↑S, is processed. Also, two indexes, one to the pattern and the other one
to the text, are needed because subtrees (which need to be skipped) are often
longer than two symbols.
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3.1. Backward Tree Pattern Matching

Name: ConstructSJT
Input: Tree t in prefix notation pref ranked bar(t) of length n, index

of current node rootIndex default is 1, reference to an empty
subtree jump table SJT (pref ranked bar(t)) of length n

Output: index exitIndex, subtree jump table
SJT (pref ranked bar(t))

1 begin

2 index := rootIndex+ 1
3 for i = 1 to Arity(pref ranked bar(t)[rootIndex]) do
4 index :=

ConstructSJT (pref ranked bar(t), index, SJT (pref ranked bar(t)))
5 end

6 index := index+ 1
7 SJT (pref ranked bar(t))[rootIndex] = index
8 SJT (pref ranked bar(t))[index− 1] = rootIndex− 1
9 return index

10 end

Algorithm 7: Construction of subtree jump table

Table 3.1: Subtree jumping table SJT (pref ranked bar(t2r)) of tree t2r

1 2 3 4 5 6 7 8 9 10 11 12 13 14
a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2
15 8 5 2 7 4 1 14 11 8 13 10 7 0

Example 3.1.3. Consider a tree pattern p4r in the prefix ranked bar notation
pref ranked bar(p4r) = a2 S ↑S S ↑S ↑2 over an alphabet A = {a3, a2,
a1, a0, S, ↑3, ↑2, ↑1, ↑0, ↑S} and a tree t2r in the prefix ranked bar notation
pref ranked bar (t2r) = a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 over an
alphabet A = {a3, a2, a1, a0, ↑3, ↑2, ↑1, ↑0}. The BCS[a3] = 6, BCS[a2] = 5,
BCS[a1] = 4, BCS[a0] = 2, BCS[↑3] = 1, BCS[↑2] = 1, BCS[↑1] = 1,
BCS[↑0] = 1. A run of algorithm 8 is depicted in Table 3.2. Longer subtrees
in place of wild-cards S are denoted by S→ ←S.

The run of algorithm 8 for Example 3.1.3 starts at position 6 of the
pref ranked bar(t2r). Mismatch of ↑2 and ↑0 results in subsequent shift by
1 symbol to align ↑0 with position of the end of the last wild-card S in the
pref ranked bar(p4r). The algorithm recognises pattern match on positions
2 to 7 and shift is by 1 symbol to align ↑2 again with the end of the last wild-
card S in pref ranked bar(p4r). Mismatch of ↑ 2 and a2 results in a shift by 5
symbol where a2 is not only aligned with a2 but also with position closes to the
end of the pattern where a2 can be as a part of the last wild-card S. Another
match is recognised and the shift is by 1 symbol where another occurrence
is recognised and subsequent shift is to outside of the pref ranked bar(t2r)
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3. Tree Pattern Matching

Name: BackwardLTPM.
Input: The subject tree in pref ranked bar(subject) notation of size

n, the tree pattern in pref ranked bar(pattern) notation of
size m, SJT (pref ranked bar(subject)), and
BCS(pref ranked bar(pattern)).

Output: Locations of occurrences of the pattern pattern in the tree
subject.

1 begin

2 i := 0
3 while i <= (n−m) do
4 j := m
5 position := i+ j
6 while j > 0 and position > 0 do

7 if pref ranked bar(subject)[position ] =
pref ranked bar(pattern)[j] then

8 position := position − 1
9 else if pref ranked bar(pattern)[j] = ↑S and

pref ranked bar(subject)[position ] ∈ A↑ then

10 position := SJT (pref ranked bar(subject))[position ]
11 j = j − 1 {Subtree skip}

12 else break;
13 j := j − 1

14 end

15 if j = 0 then output(position + 1);
16 i := i+ BCS [pref ranked bar(subject)[i+m]]

17 end

18 end

Algorithm 8: Backward tree pattern matching algorithm

Table 3.2: Trace of the run of algorithm 8 for subject tree t2r and tree pattern
p4r

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a2 a2 a0 ↑0 a0 ↑0 ↑2 a2 a0 ↑0 a0 ↑0 ↑2 ↑2 pref ranked bar(t2r)

14 6 2 2 2 2 6 6 2 2 2 2 6 14 subtree sizes(t2r)

↑2 ↑0 6= ↑2, shift = 1

a2 S→ ←S S→ ←S ↑2 match, shift = 1

↑2 a2 6= ↑0, shift = 5

a2 S→ ←S S→ ←S ↑2 match, shift = 1

a2 S→ ←S S→ ←S ↑2 match, shift = 1
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3.1. Backward Tree Pattern Matching

resulting in the end of the run of the algorithm 8.

3.1.4 Analysis

The BCS table is the only data structure needed for the algorithm and its size
is Θ(A), where A is the alphabet size. The preprocessing time is O(m+A),
where m is the pattern length and A is the alphabet size.

Backward string pattern matching is known to perform sublinear number
of comparisons of symbols on average. The modification to backward tree pat-
tern matching requires the input tree to be read in prefix ranked bar notation.
However, the algorithm still performs Ω( n

m
) comparisons of symbols, where n

is the size of the input subject tree and m is the size of the given tree pattern
and O(n ∗m) comparisons of symbols as in the case of the backward string
pattern matching. The lengths of the shifts depend on the position of the last
wild-card S in the pattern p – the closer to the end of the pattern the last
occurrence of symbol S is, the longer are the shifts performed.
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Chapter 4

Solution Introduction

In this chapter, I will provide explanation and outline of the steps leading to
satisfy goals of this Thesis.

4.1 Backward pattern matching directions

There is an important fact about backward pattern matching algorithm that
wasn’t explained yet and in not noticeable from algorithm 1.

The core idea of backward pattern matching algorithm is use of different
directions of matching and shifting the pattern. Usually, it doesn’t matter if
the pattern is being shifted to the left with matching direction to the right or
other way round. The modification of algorithm 1 is straightforward and the
heuristics are working in opposite direction with small changes — some kind
of inversion.

4.2 Two-anchor problem

Details about Dead-zone algorithm are provided in section 2.4 or see the ori-
ginal paper [10].

Dead-zone algorithm is trying to optimise a number of necessary match
attempts to minimum. It uses so called live-zones. The live-zone is an area
where it is possible to find the start of the pattern’s occurrence. The opposite
term to the live-zone is a dead-zone. The dead-zone is an area where it is not
possible to find the start of the pattern’s occurrence. As the dead-zones are
growing, the live-zones are shrinking.

The speed of growing of the dead-zones is affected by the left and right
shifts of the pattern. This is obvious from algorithm 5. Longer shifts means
smaller live-zone and smaller live-zone reduces number of necessary match at-
tempts. Obviously, the algorithm’s efficiency strongly depends on the quality
of shift functions.
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4. Solution Introduction

↓ Match attempt Initial dead-zone

Subject a b XXXXXXXX

Pattern → Matching direction

Shifts a b

Figure 4.1: Two anchored Dead-zone

The Dead-zone algorithm typically uses some heuristic from forward or
backward pattern matching algorithms as shift function. One of the original
ideas in Dead-zone algorithm is using bad-character shift. See illustration on
figure 4.1. If mismatch occurs while current match attempt (right direction),
the algorithm performs a shift to the left according to the bad-character shift
table. At the same moment the algorithm uses an inverse version of the bad-
character shift table to make the shift to the right. As an anchor for the
second shift the algorithm uses the end of the pattern.

So, the original Dead-zone algorithm makes two shifts in opposite direc-
tions but based on the (same, in principle) heuristics. These shifts are using
two anchors — the beginning and the end of the pattern. It is possible to use
this idea in exact string matching problem. Anyway, the same is complicated
in trees with wild-card symbol S. The pattern is essentially “elastic”. There
is no easy way how to transpose the shift and subsequent dead-zone from the
end of the pattern to the beginning of the pattern.

4.3 One-anchor solution

As I explained in previous section 4.2, the rest of the text will only focus
on description of an algorithm that is using only one anchor for shifts. The
beginning of the match attempt is chosen, though the end can be chosen as
well.

The solution is based on two algorithms, one forward and one backward.
Consider matching direction from the left to the right. Some forward pattern
matching algorithms (pattern is shifted and matched in the same direction)
provides the shift to the right based on its heuristics. Some backward pattern
matching algorithm (pattern is shifted and matched in opposite directions)
provides the shift to the left. The both algorithms need only one anchor as a
base of their shifts.

There is one disadvantage. In preprocessing phase is necessary to compute
two auxiliary structures for two different shift functions. On the other hand,
there are still a lot of advantages. This concept is still framework, so it doesn’t
matter which algorithm is used exactly. There is good chance to keep efficiency
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4.4. A “Battle plan”

↓ Match attempt Initial dead-zone

Subject a XXXXXXXX

Pattern → Matching direction

Shift FPM a → Pattern moving direction

Shift BPM a ← Pattern moving direction

Figure 4.2: One anchored Dead-zone

of Dead-zone algorithm on trees. And finally, this is the way leading to the
solution. See small demonstration on figure 4.2.

4.4 A “Battle plan”

Let me summarize the facts. Dead-zone algorithm for linearised trees, as de-
signed in this thesis, needs one backward and one forward pattern matching
algorithm. The backward one was introduced in the article Linearised Back-
ward Tree Pattern Matching [2]. At this moment there is no forward matching
algorithm for linearised trees. So, the first step is to design some suitable for-
ward tree pattern matching algorithm. After that, things can be put together
and Dead-zone algorithm for trees can be designed, hence Thesis goals will be
satisfied.
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Chapter 5

Forward Tree Pattern Matching

Let me to introduce a Forward linearised tree pattern matching algorithm that
will be used in tree version of Dead-zone algorithm.

5.1 Basic idea

The algorithm is inspired by Knuth–Morris–Pratt algorithm for strings. Basic
explanation of Knuth–Morris–Pratt algorithm is provided in section 2.3.1.

Knuth–Morris–Pratt algorithm has a heuristic based on borders (see defin-
ition 2.3.1). The algorithm’s auxiliary structure is called a border array. In
algorithms 3 and 4 is border array represented by array kmpNext.

5.1.1 Simplification

Algorithms 3 and 4 represent the Knuth–Morris–Pratt algorithm. They are
able to avoid another immediate mismatch and they actually use so called
tagged border. If you are interested in details, see [8].

For better illustration, I would like to show more naive variant of prepro-
cessing function. It represents “raw” border array construction and it turns
Knuth–Morris–Pratt algorithm to Morris–Pratt algorithm. See algorithm 9
(originally comes from [11]).

5.1.2 Explanation

Note that algorithm in this example indexes string from 0. All tree pattern
matching algorithms are indexed from 1.

Example 5.1.1. Consider pattern p = ABACABDE. Table 5.1 shows the
result of algorithm’s 9 invocation on pattern p.
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5. Forward Tree Pattern Matching

Name: Preprocessing function for Morris–Pratt
Input: A string p (pattern) of size m.
Output: Table of integers ba

1 begin

2 len := 0
3 i := 1
4 ba[0] := 0
5 while i < m do

6 if p[i] = p[len] then
7 len := len+ 1
8 ba[i] := len
9 i := i+ 1

10 end

11 else

12 if len 6= 0 then

13 len := ba[len− 1]
14 end

15 else

16 ba[i] := 0
17 i := i+ 1

18 end

19 end

20 end

21 end

Algorithm 9: preprocessing function for Morris–Pratt.

Table 5.1: Result of Morris–Pratt preprocessing function on pattern from
example 5.1.1

0 1 2 3 4 5 6 7

A B A C A B D E

0 0 1 0 1 2 0 0
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5.2. Theoretical background

Table 5.2: Visualisation of shifts based on border array

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
subject D A A B A C A B F G D D E D
match attempt A B A C A B D E
next attempt A B A C A B D E

Example 5.1.2. Consider a pattern p from example 5.1.1 and a subject s =
DAABACABFGDDED. Table 5.2 shows the execution of Morris–Pratt
algorithm – match attempts and shifts based on border array.

Let me explain how the shifts based on border array work. See examples
5.1.1 and 5.1.2.

The table 5.2 shows a mismatch at index 8. The longest matching sequence
is at index 7 and it corresponds to an index 5 in pattern. The table 5.1 shows
for a mismatch at index 5 a value 2. This value represent the length of the
border and the index of the next attempt in the pattern.

The next attempt starts with a comparison at next position in the subject
and at position 2 in the pattern. It is not necessary to compare symbols on
indexes 0 and 1 — they will match anyway. And this is what the border array
encodes. Border array is just an auxiliary data structure which provides the
answer in constant time (after preprocessing phase, of course).

If one wants to design Morris–Pratt–like algorithm for trees, one needs to
define a mechanism that is similar to borders and border arrays.

5.2 Theoretical background

This algorithm must work together with the backward tree pattern matching
algorithm introduced in section 3.1. Naturally, the algorithms must be com-
patible at lowest level. They must share the same linearization mechanism
and used notation. So, see the important definitions 3.1.1 and 3.1.2 in section
3.1.

Also, It needs the Subtree jump table (section 3.1.2).

5.3 Linearised tree border

Linearised tree border is substitution of string borders for Morris–Pratt–like
algorithm on trees.

Definition 5.3.1. The relation matches is recursively defined for strings S1

and S2 where S1 = pref ranked bar(p), hence the whole pattern, and a factor
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5. Forward Tree Pattern Matching

the whole pattern of S2:

S1 = xS′
1 S2 = xS′

2 and S′
1 matches S′

2,
S1 = SS′

1 S2 = SS′
2 and S′

1 matches S′
2,

S1 = x1...xmS′
1 S2 = SS′

2 and ac(x1...xm) = 0
and ∀k, 1 < k < n, ac(x1...xk) 6≥ 0
and S′

1 matches S′
2,

S1 = SS′
1 S2 = x1...xmS′

2 and ac(x1...xm) = 0
and ∀k, 1 < k < n, ac(x1...xk) 6≥ 0
and S′

1 matches S′
2,

S1 = SS′
1 S2 = x1...xm and ac(x1...xm) > 0

and ∀k, 1 < k < n, ac(x1...xk) 6= 0,
S1 = ε or S2 = ε

Definition 5.3.2. Consider a pattern in pref ranked bar() notation. The
linearised tree border array β contains values:

β[i] = i−min(j : pattern matches pattern[j..i+ j − 1])

The linearised tree border array is constructed by algorithm 11. The rela-
tion matches is determined by algorithm 10.

The basic idea is the same as in case of strings. If the mismatch occurs
after several symbol comparisons, the linearised tree border allows to skip the
part of subject where it is sure that the pattern can’t start. The shift function
is designed in a way that it even shifts between subtrees.

Example 5.3.1. Consider a tree pattern p and its prefix ranked bar notation
pref ranked bar(p) = a2 a2 a0 ↑0 a2 S ↑S a1 a0 ↑0 ↑1 ↑2 ↑2 a0 ↑0 ↑2. Table
5.3 shows the array of linearised tree border values for pattern p.

5.4 Forward linearised tree pattern matching

algorithm

At this point, it is possible to define Forward linearised tree pattern matching
algorithm. The algorithm 12 is just straightforward modification of common
pattern matching algorithm with Morris–Pratt style heuristics. The algorithm
must additionally also handle wild-card symbol S.

The algorithm uses one pointer into the pattern (j) and two pointers into
the subject (i and offset). The pointer i holds position of the current attempt
and offset holds the position of currently compared symbol. Pointer offset is
needed due to the “elasticity” of the pattern. While loop at line 3 ensures that
the whole subject will be scanned. While loop at line 6 represents a current
match attempt. Tests (if and else-if) at lines 7 and 11 perform comparison of
a single symbol. There are two variants, one for an alphabet symbol (line 7)
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5.5. Proof

Name: Matches
Input: A string p (pattern) of size m, subtree jump table sjt as a

vector of integers and integers offset and stop (the length of
tested match).

Output: Boolean value
1 begin

2 i := 1
3 while offset ≤ stop and i ≤ m do

4 if p[i] = p[offset ] then
5 i := i+ 1
6 offset := offset +1

7 end

8 else if p[i] = S or p[offset ] = S then

9 i := sjt[i]
10 offset := sjt[offset ]
11

12 end

13 else

14 return false
15 end

16 end

17 return true

18 end

Algorithm 10: Linearised tree border — procedure matches.

and one for a wild-card symbol S (line 11). In the case of comparison of the
wild-card symbol S is necessary to skip the whole subtree in the subject using
SJT (line 12) and skip the wild-card symbol S (a pair S↑S) itself (line 13).
Break in else branch (line 16) ends current match attempt in addition to the
guard in the respective while. After that (line 19) there are only two options.
There was or was not a match. A match is detected and reported (lines 19
and 20). In both cases, the shift is performed according to the border array
values.

5.5 Proof

Theorem 5.5.1. Given a tree pattern p in prefix ranked bar notation (result
of pref ranked bar()) and shift table ba(p) constructed by algorithm 11 and
algorithm 12 correctly computes the locations of all occurrences of the pattern
p in an input tree t.

Proof. The forward tree pattern matching algorithm is an extension of the
Morris–Pratt string pattern matching algorithm. It is to be proved that shift-

33



5. Forward Tree Pattern Matching

Name: Compute linearised tree border array
Input: A string p (pattern) of size m, subtree jump table sjt as a

vector of integers.
Output: Table of integers ba

1 begin

2 ba is a vector of length m initialised to 0
3 ba[0] := −1
4 for i := 1 to i ≤ m do

5 min := i
6 for j := 2 to j ≤ i do
7 if matches(p, sjt, stop = i, offset = j) then
8 min = j − 1
9 break

10 end

11 end

12 ba[i] := i−min

13 end

14 end

Algorithm 11: Linearised tree border — compute border array.

Table 5.3: Array for linearised tree border from example 5.3.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a2 a2 a0 ↑0 a2 S ↑S a1 a0 ↑0 ↑1 ↑2 ↑2 a0 ↑0 ↑2

-1 0 1 0 0 1 2 3 3 4 5 6 7 8 9 10 11

ing using ba(p) cannot skip any occurrences of the tree pattern p. Assume that
the match attempt was able to match first j−1 symbols of the pattern, there-
fore the shift according to the linearised tree border array is j − ba[j − 1]− 1.
Assume that there is a shorter shift by i symbols where there is another occur-
rence. Formally for i it holds that 0 < i < j−ba(p)[j−1]−1. It must therefore
be possible to match a factor of the pattern – p[i..j] with the pattern itself.
However according to the definitions 5.3.2 and 5.3.1, the shift for j correctly
matched symbols is derived from tests whether the factors of the pattern –
p[k..j], where 0 < k < j, matches the pattern itself. It must also hold that
i ≤ k since ba(p)[j − 1] ≥ 0. Therefore p[i..j] was already tried whether it
matches the pattern itself and since the shift is minimal possible it is clear
that the p[i..j] didn’t match the pattern itself, hence there are no occurrences
on shorter shift.
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5.5. Proof

Name: ForwardLTPM.
Input: The subject tree in pref ranked bar(subject) notation of size

n, the tree pattern in pref ranked bar(pattern) notation of
size m, SJT (pref ranked bar(subject)), and
BA(pref ranked bar(pattern)).

Output: Locations of occurrences of the pattern pattern in the tree
subject.

1 begin

2 i := 1
3 while i ≤ n−m+ 1 do

4 offset := i
5 j := 1
6 while j ≤ m and offset ≤ n do

7 if pattern[j] = subject[offset ] then
8 j := j + 1
9 offset := offset +1

10 end

11 else if pattern[j] = S then

12 offset := sjt[offset ]
13 j := j + 2

14 end

15 else

16 break

17 end

18 end

19 if j > m then

20 OUTPUT (i)
21 end

22 i := i+ j − ba[j − 1]− 1

23 end

24 end

Algorithm 12: Forward tree pattern matching algorithm
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5. Forward Tree Pattern Matching

Table 5.4: Result of preprocessing function (algorithm 11) on the pattern p
from example 5.6.1.

0 1 2 3 4 5 6 7 8 9 10 11 12

a2 a0 ↑0 a2 S ↑S a1 a0 ↑0 ↑1 ↑2 ↑2
-1 0 0 0 1 2 3 3 4 5 6 7 8

Table 5.5: Trace of the run of algorithm 12 for the subject s and the pattern
p from example 5.6.1.

id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a2 a0 ↑0 a2 a2 a0 ↑0 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2

1 a2 a0 ↑0 a2 S ↑S a1 a0 ↑0 ↑1 ↑2 ↑2
2 a2 a0 ↑0 a2 S ↑S a1 a0 ↑0 ↑1 ↑2 ↑2
3 a2
4 a2
5 a2

5.6 Example

Example 5.6.1. Consider a pattern p and a subject s with their respective
representations in prefix ranked bar notation pref ranked bar(p) = a2 a0 ↑0
a2 S ↑S a1 a0 ↑0 ↑1 ↑2 ↑2 and pref ranked bar(s) = a2 a0 ↑0 a2 a2 a0 ↑0
a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2. Table 5.4 shows the result of
preprocessing — the linearised tree border array. Table 5.5 show the trace of
the matching function’s run. Explanation:

1. match, j = 13, shift by 13− ba[13 − 1]− 1 = 4 to position 5

2. match, j = 13, shift by 13− ba[13 − 1]− 1 = 4 to position 9

3. a2 6= a0, j = 1, shift by 1− ba[1− 1]− 1 = 1 to position 10

4. a2 6= ↑0, j = 1, shift by 1− ba[1− 1]− 1 = 1 to position 11

5. a2 6= a1, j = 1, shift by 1− ba[1−1]−1 = 1 to position 12, but it breaks
condition i ≤ n−m+ 1 because 22− 12 + 1 = 11 and 12 > 11

5.7 Time complexity

Consider a pattern of length m and a subject of length n. The time complex-
ity of Forward linearised tree pattern matching algorithm is O(m3 + m ∗ n)
including both preprocessing and matching itself.
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5.7. Time complexity

Relation matches from definition 5.3.1 could be verified in O(m) time
where m is the length of the pattern. Computation of linearised tree border
takes O(m2) tests (verifications of relation matches). Thus, it is O(m3) for
preprocessing phase.

Matching itself takes O(m ∗ n) time. The linear time complexity is not
reached because of the behavior of wild-card symbols S. Anyway, the real
case is expected to be better. The number of symbol comparisons is linear in
the size of the input tree in the best case.
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Chapter 6

Dead-zone

The Dead-zone linearised tree pattern matching algorithm will be introduced
in this chapter. This algorithm is the main goal of the thesis.

6.1 Introduction

This objective is actually straightforward. It is just about “gluing” the forward
and backward tree pattern matching together.

The Dead-zone algorithm was described in section 2.4. It uses a recurs-
ive procedure dzmat (algorithm 5). The dzmat procedure is able to try a
single match attempt and then make a left and right shift according to some
heuristics. After the shifts, the area of possible occurrences of the pattern is
restricted and the algorithm is a little bit closer to finishing the searching in
the whole subject.

The main idea is described in the chapter 4 — Solution introduction. In
the case of string pattern matching problem it is possible to use one heuristics
in one direction and the “inversed” form of heuristic’s function in the opposite
direction. This is possible because string has fixed length and translation of
dead-zone computed according to the end of the pattern is easily projectable
to the beginning of the pattern. In terminology of this thesis: it has two
anchors. (Details in section 4.2.)

In the case of the tree pattern matching, the patterns are elastics. The
patterns have the beginning fixed but it is not possible to use the dead-zone
computed according to the end position of the pattern. Thus, the solution
must rely on one anchor. There must be one heuristic in one direction and
second heuristic in the opposite direction. To be precise, it is necessary to have
one forward and one backward tree pattern matching algorithm. (Details in
section 4.3.)

The Backward linearised tree pattern matching algorithm exists and was
introduces in [2]. Important details are discussed in the section 3.1.
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6. Dead-zone

The Forward linearised tree pattern matching algorithm is important gain
of this thesis and Morris–Pratt–like algorithm for linearised trees is introduced
in chapter 5.

There is the last step. It is necessary to modify the common form of dzmat
recursive procedure.

6.2 Theoretical background

This algorithm uses a lot of previously introduced techniques. It must be
compatible at lowest level with forward and backward tree pattern matching
algorithm. They share the same linearization mechanism and used notation.
See definitions 3.1.1 and 3.1.2 in section 3.1.

It needs Subtree jump table as well (section 3.1.2).

6.3 Dead-zone linearised tree pattern matching

algorithm

The modification of dzmat recursive algorithm (algorithm 5) is straightfor-
ward.

It is necessary to modify the part representing a single match attempt.
This part needs to deal with wild-card symbol S.

The second modification is necessary in the part where the shifts are per-
formed. Shift functions defined by forward and backward tree pattern match-
ing algorithms are used instead of the “anonymous” functions shift left and
shift right for simplicity.

See algorithm 13.
Wild-card symbol S is handled by a while loop starting at line 9. The

necessary modification is in the same fashion as in the Forward linearised tree
pattern matching algorithm. The algorithm keeps matching until a mismatch
is found (handled by else at line 18). It matches an alphabet symbol (if at
line 10) or wild-card symbol S (else-if at line 14). In the case of testing
of wild-card symbol S it is necessary to skip whole subtree of subject using
SJT (line 15). The two pointers into the subject must be used because of
the “elastic” behavior as in the case of the Forward linearised tree pattern
matching algorithm (see explanation in section 5.4). After the break in else
branch at line 19 which ends the current match attempt the prospective match
is handled by if at line 22.

The second modification is present at lines 25 and 26. The “abstract”
shift functions are replaced by shift functions from appropriate forward and
backward algorithms. However with a presence of another shifting heuristics
the algorithm can be modified to use them.

The proof of the algorithm correctness is not necessary in this case. Cor-
rectness of shift left() i.e. shift function of Backward linearised tree pattern
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6.3. Dead-zone linearised tree pattern matching algorithm

Name: Dead-zone linearised tree pattern algorithm
Input: The subject tree in pref ranked bar(subject) notation of size

n, the tree pattern in pref ranked bar(pattern) notation of
size m, SJT (pref ranked bar(subject)),
BCS(pref ranked bar(pattern) and
BA(pref ranked bar(pattern)).

Output: Locations of occurrences of the pattern pattern in the tree
subject.

1 begin

2 Procedure dztpmrec(low, high)
3 if low ≥ high then

4 return

5 end

6 j := ⌊(low + high)/2⌋
7 offset := j
8 i := 1
9 while i ≤ m do

10 if pattern[i] = subject[offset ] then
11 i := i+ 1
12 offset := offset +1

13 end

14 else if pattern[i] = S then

15 offset = SJT [offset ]
16 i := i+ 2

17 end

18 else

19 break

20 end

21 end

22 if i > m then

23 OUTPUT (j)
24 end

25 new dead left := j −BCS[j] + 1
26 new dead right := j + i−BA[i− 1]− 1
27 dztpmrec(low, new dead left)
28 dztpmrec(new dead right, high)

29 end

Algorithm 13: Dead-zone linearised tree pattern matching — recursive
function.
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6. Dead-zone

matching algorithm was proved in [2] and correctness of shift right() i.e. shift
function of Forward linearised tree pattern matching algorithm was proved in
section 5.5.

6.4 Example

Please, read the explanation points in example 6.4.1 carefully. The visualisa-
tion shows informations that may not be clear from algorithm itself.

Example 6.4.1. Consider a pattern p and a subject s with their respective
representations in prefix ranked bar notation pref ranked bar(p) = a2 a0 ↑0
a2 S ↑S a1 a0 ↑0 ↑1 ↑2 ↑2 and pref ranked bar(s) = a2 a0 ↑0 a2 a2 a0 ↑0 a2 a0
↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2. Both are the same input as in example
5.6.1. Table 6.1 shows the bad character shift table. Table 6.21 shows the
linearised tree border. Table 6.3 show the trace of the matching function’s
run. Explanation:

1. Initial dead-zone from n−m− 1 = 22− 12 + 2 to n.

2. First invocation with low = 1, high = 12, match attempt at position 6,
miss.

3. BLTPM shift to position 6, FLTPM to position 7, DZ grows by index 6.

4. Invocation with low = 1, high = 6, match attempt at position 3, miss.

5. BLTPM shift to position 2, FLTPM to position 4, DZ grows by index 3.

6. Invocation with low = 1, high = 2, match attempt at position 1, match.

7. BLTPM shift to position -1, FLTPM to position 5, DZ grows by indexes
1–4. Anyway, the invocation with low = 4 and high = 6 is prepared on
stack and it will be executed!

8. Invocation with low = 4, high = 6, match attempt at position 5, match.

9. BLTPM shift to position 3, FLTPM to position 9, DZ grows by indexes
7–8. Anyway, the invocation with low = 7 and high = 12 is prepared
on stack and it will be executed!

10. Invocation with low = 7, high = 12, match attempt at position 9, miss.

11. BLTPM shift to position 9, FLTPM to position 10, DZ grows by index
9.

12. Invocation with low = 7, high = 9, match attempt at position 8, miss.
This invocation is redundant.

13. BLTPM shift to position 6, FLTPM to position 11, DZ grows by index
10.

14. Invocation with low = 10, high = 12, match attempt at position 11,
miss.

1Please note that this table as the same as table 5.4. This copy should improve readab-
ility of example.
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6.5. Time complexity

Table 6.1: Result of preprocessing function (algorithm 6) on the pattern p
from example 6.4.1.

a0 a1 a2 ↑0 ↑1 ↑2
1 4 3 2 7 9

Table 6.2: Result of preprocessing function (algorithm 11) on the pattern p
from example 6.4.1.

0 1 2 3 4 5 6 7 8 9 10 11 12

a2 a0 ↑0 a2 S ↑S a1 a0 ↑0 ↑1 ↑2 ↑2
-1 0 0 0 1 2 3 3 4 5 6 7 8

Table 6.3: Trace of the run of algorithm 13 for the subject s and the pattern
p from example 6.4.1.

id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 a2 a0 ↑0 a2 a2 a0 ↑0 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2
2 a2
3 a2 a0 ↑0 a2 a2 a0 ↑0 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2
4 a2
5 a2 a0 ↑0 a2 a2 a0 ↑0 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2
6 a2 a0 ↑0 a2 S ↑S a1 a0 ↑0 ↑1 ↑2 ↑2
7 a2 a0 ↑0 a2 a2 a0 ↑0 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2
8 a2 a0 ↑0 a2 S ↑S a1 a0 ↑0 ↑1 ↑2 ↑2
9 a2 a0 ↑0 a2 a2 a0 ↑0 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2
10 a2
11 a2 a0 ↑0 a2 a2 a0 ↑0 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2
12 a2 a0 ↑0
13 a2 a0 ↑0 a2 a2 a0 ↑0 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2
14 a2
15 a2 a0 ↑0 a2 a2 a0 ↑0 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 ↑2 a1 a0 ↑0 ↑1 ↑2 ↑2

15. BLTPM shift to position 8, FLTPM to position 12, DZ grows by index
11. Whole text was marked as dead-zone.

6.5 Time complexity

Consider a pattern of length m and a subject of length n. The time complexity
of Dead-zone linearised tree pattern matching algorithm is O(m ∗ |A|+m3 +
m ∗ n) including both preprocessing and matching itself.
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6. Dead-zone

The addends m ∗ |A| and m3 represent preprocessing phase of Backward
and Forward linearised tree pattern matching algorithms, respectively. See
sections 3.1.4 and 5.7 for details.

O(m∗n) time is the matching phase itself. This phase is not linear because
of the behavior of wild-card symbol S. Again, the real case should be better.
The number of symbol comparisons is even sub-linear in the size of the input
tree in the best case.
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Chapter 7

Implementation Details

Let me describe some aspects of implementation and clarify some implement-
ation decisions.

7.1 Implementation language

As implementation language was chosen Java. My professional opinion is that
Java is one of the worst possible option. Anyway, the choice has reasonable
justification and the justification is the existence of Forest FIRE toolkit.

The Forward linearised tree pattern matching algorithm has a time com-
plexity that is comparable to the Backward linearised tree pattern matching
algorithm which behaves well in practise. So the value of time complexity
itself is insufficient to get image about algorithm’s quality. I need some real
data sets and some other algorithms to compare. The Forest FIRE toolkit
gives me both.

7.2 Forest FIRE

Forest FIRE toolkit and accompanying FIRE Wood GUI was introduced in
[12]. This toolkit already implemented many tree pattern matching algorithms
and constructions of automata used in them. E.g. algorithms like DFRTA
(deterministic frontier-to-root (bottom-up) tree automaton) or an algorithm
based on Aho-Corasick automaton. The original version of toolkit did not
contain linearisation of both the pattern tree and the subject tree. The toolkit
was extended with linearisation of them for Backward linearised tree pattern
matching algorithm [2].

Also, the original implementation of Backward linearised tree pattern
matching algorithm was added as well so it is present in Forest FIRE toolkit.
My work is based on this extended version.
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7. Implementation Details

Forest FIRE contains a rich data set for testing purposes. This data set was
obtained by taking the Mono project’s X86 instruction set grammar and, for
each grammar production, taking the tree in the production’s right hand side,
and replacing any nonterminal occurrences by wild-card symbol occurrences.
The resulting pattern set consists of 460 tree patterns of varying sizes. [2]

Personally I perceive this toolkit imperfect in many ways. It has a too
rich object design. Even the most basic operations have resulted in the walk
trough deep structure of inherited classes. Adding new algorithm involves into
many copy&paste operations during programming. Files defining data sets
has unnecessarily complicated structure. There is no direct mechanism for
data selection, result evaluation, debugging and so on.

Regardless Forest FIRE toolkit is a good choose for the testing purposes.

7.3 Implementation

Every implemented algorithm is represented by its own class that implements
interface IMatcher. Instance is constructed with a set of patterns. Interface
prescribes method match that takes one subject. The method should edit the
given tree and mark it with so called annotations.

An annotation comes from Forest FIRE toolkit and it is incompatible with
typical approach. There is a “translation” mechanism—method annotateTree
that takes tree and a set of matches and annotates the tree. This mechanism
is very important because it allows to write algorithms in much more readable
and portable form.

All auxiliary calculations and structures of algorithm are realised as private
members of appropriate class.

No additional requirements are imposed to implementation inside of Forest
FIRE toolkit.

7.4 Implemented algorithms

I extended Forest FIRE toolkit by two new algorithms.

ClassKMPMatcher2 is implementation of Morris–Pratt–like Forward lin-
earised tree pattern matching algorithm. The algorithm’s logic is implemented
in private method matchKMP () and it corresponds to algorithm 12.

The necessary auxiliary structure — linearised tree border array — is
computed in private method computeBA() (algorithm 11). The method is
called in constructor because the object is constructed for some set of pat-

2Algorithm itself is variation to Morris–Pratt string pattern matching algorithm. Knuth–
Morris–Pratt in the name of class and methods comes from earlier phase of design. This
details was unclear at the beginning. It is a little bit misleading. I know it but I hope that
it is just trifle.
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7.4. Implemented algorithms

terns. The method needs algorithm 10 that is implemented by private method
ba matches().

Class DZMatcher is an implementation of Dead-zone linearised tree pat-
tern matching algorithm. The algorithm’s logic is implemented by private re-
cursive method dz rec() and it corresponds to algorithm 13. First invocation
of recursive algorithm is done by private method matchDZ(). The necessary
auxiliary structures — the linearised tree border array and the bad character
shift table — are taken from KMPMatcher and from BTPMatcher. Class
BTPMatcher is an implementation of the Backward linearised tree pattern
matching algorithm and it comes from [2]. The algorithms for auxiliary struc-
tures are obtained by copy&paste method from the original classes. 3

Both matchers use prefix ranked bar notation.
I also designed conceptually same algorithms for prefix ranked notation.

The conversion itself is straightforward and it was already present in the
toolkit. The Forward linearised tree pattern matching algorithm can process
prefix ranked notation with only trivial changes. The Backward linearised tree
pattern matching algorithm for prefix ranked notation already exists in the
Forest FIRE toolkit. And the Dead-zone linearised tree pattern matching al-
gorithm is again only compilation of the two previously mentioned algorithms.

Classes PrefixDZMatcher and PrefixKMPMatcher represent version
of DZMatcher and KMPMatcher for prefix ranked notation. The different
classes are necessary due to different alphabet type.

3It is not important to achieve a pure object design. Copy&paste of necessary pieces of
code is absolutely sufficient.
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Chapter 8

Measurements

This chapter contains report about algorithms performance.

8.1 Data

Forest FIRE toolkit contains a pattern set consisting of 460 tree patterns of
varying sizes. There are also two subject tree sets. A set of 150 trees of
approximately 500 nodes each and a set of 500 trees of approximately 150
nodes each. This data set was obtained by taking the Mono project’s X86
instruction set grammar.

The pattern set was previously used for benchmarking Forest FIRE toolkit
itself. [2]

Some other details are provided in section 7.2.

8.2 Compared algorithms

I compared my Forward and Dead-zone linearised tree pattern matching al-
gorithms with the Backward linearised tree pattern matching algorithm. It
is the closest competitor because it also uses the linearisation mechanism.
The algorithms are compared in both available notations: prefix ranked bar
notation and an prefix ranked notation.

The algorithms and their variants (2 ∗ 3 = 6) are also compared with
DFRTA (deterministic frontier-to-root (bottom-up) tree automaton) algorithm
and with an algorithm based on Aho-Corasick automaton. These two al-
gorithms are notation independent.

8.3 Setup

All test runs were conducted on a computer with Intel Core i7 at 2.1 GHz
(with Turbo Boost technology up to 3.3 GHz) with 4MB cache and 16 GB of
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8. Measurements
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Figure 8.1: Distributions of times for the compared algorithms — prefix
ranked bar notation, 500 trees data set.

RAM running Debian GNU/Linux 8 “Jessie” using OpenJDK Java in version
7.

8.4 Results

The results are presented in pictures 8.1, 8.2, 8.3, 8.4 as boxplots on logar-
ithmic scale.

The figures show that Morris–Pratt–like Forward linearised tree pattern
matching algorithm outperforms the best algorithms using typical approaches.
It even outperforms the Backward linearised tree pattern matching algorithm
based on linearisation mechanism.

The Dead-zone linearised tree pattern matching algorithm has slightly
worse performance than Backward linearised tree pattern matching algorithm.
The algorithm uses the same shift functions. So without any further en-
hancements the Dead-zone algorithm should be comparable or better than the
Morris–Pratt–like Forward linearised tree pattern matching algorithm. But it
is not. I found one performance trouble in the current implementation of the
dead-zone idea and I think that it is the reason. See Conclusion for details.
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8.4. Results
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Figure 8.2: Distributions of times for the compared algorithms — prefix nota-
tion, 500 trees data set.
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Figure 8.3: Distributions of times for the compared algorithms — prefix
ranked bar notation, 150 trees data set.
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8. Measurements
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Figure 8.4: Distributions of times for the compared algorithms — prefix nota-
tion, 150 trees data set.
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Conclusion

At this point is necessary to evaluate the thesis’s goals.

The main goal was to adapt the Dead-zone algorithm for pattern matching
problem for trees. It was shown in the chapter 4 that it is necessary to use
some Forward and Backward tree pattern matching algorithm together. The
Backward one exists and was introduced in [2].

Therefore the first step was to design the Forward linearised tree pattern
matching algorithm. This algorithm was introduced in the chapter 5. It is
a modification of the Morris–Pratt string pattern matching algorithm with
shifts based on string borders and border arrays. The analogy of borders
for trees was introduced in the same chapter. With borders for linearised
trees, the shift function behaves in the same way as in case of string pattern
matching. A major success is that this algorithm significantly outperforms
the best currently known algorithms.

With the Morris–Pratt–like algorithm it was possible to design the Dead-
zone algorithm itself. This algorithm is a modification of the string pattern
matching algorithm’s version. It was necessary to use the matching loop that
is characteristic for the tree pattern matching problem and to use the shift
functions from previously mentioned algorithms.

Unfortunately, the linearised tree pattern matching version of Dead-zone
algorithm — in current state — is not a significant breakthrough.

I experienced performance issues arising in the original Dead-zone al-
gorithm. The algorithm splits currently explored live-zone to two smaller
areas an recursively goes into them. The both recursive calls, to the left and
to the right, are prepared within the call stack at the same time. The re-
cursive invocation on the left live-zone could generate shift that will increase
dead-zone so much that it affects the right live-zone. The invocation on the
original right live-zone actually than may explore in fact a dead-zone because
it has out-dated information about dead and live zones. Probability of this
happening increases with decreasing distances between consecutive live-zones.
It means a lot of unnecessary match attempts. It is a serious impact to the
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Conclusion

algorithm’s performance.
The main goal of thesis was clearly fulfilled. The Dead-zone algorithm

was design. The algorithm works satisfactorily despite the issues in original
design. Also another algorithm that improves the current state-of-the-art was
presented in this thesis as a step towards the Dead-zone algorithm.

Finally, let me talk about the future work. I have two more ideas how to
improve both algorithms.

The Forward linearised tree pattern matching algorithm is inspired by
Morris–Pratt algorithm. There is well known improvement of this algorithm
on strings and it is what makes the Knuth–Morris–Pratt algorithm. An im-
provement could be achieved by applying the same idea to the Morris–Pratt–
like algorithm.

The second idea concerns to the Dead-zone algorithm. Previously men-
tioned performance issue has — in my opinion — easy solution. Every invoc-
ation could return its knowledge about the right most boundary of a current
dead-zone. The information will be aggregated as a maximum and passed to
the following recursive invocation. This modification guarantees the elimina-
tion of match attempt duplicities.

A similar improvement was presented by the authors of the original Dead-
zone algorithm. In their case it lead to a significant speedup and something
similar should happen in case of trees. The original algorithm was implemen-
ted since it is a algorithm’s base version.
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Appendix A

Acronyms

PM Pattern Matching

BCS Bad character shift

SJT Subtree jump table

GUI Graphical user interface
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Appendix B

Contents of enclosed CD

bare...................................Git bare repositories of projects
src.......................................the directory of source codes

masters thesis..... the directory of LATEX source codes of the thesis
forestfirewood............................ implementation sources

DP Oburka Robin.pdf....................the thesis text in PDF format
DP Oburka Robin.ps.......................the thesis text in PS format
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