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Abstract
The inspiration for this bachelor thesis is
an industrial customer who wants to equip
his factory with unmanned ground vehi-
cles that will transport material within
the factory. Lifelong localization is a part
of the field of mobile robotics that ad-
dresses this challenge, as it deals with
a mobile robot that has to operate in
an environment that dynamically changes
over time. The algorithm has to be able
not only to deal with the dynamics, but
at the same time it has to work online and
keep the memory used in certain bounds.

The goal of this thesis is to make the fu-
ture implementation easier by providing a
solid overview of the topic, bearing the in-
dustrial application in mind. Besides the
research of the literature, several experi-
ments both on the hardware and software
side were conducted.

The results of the experiments allow
us to evaluate the hardware and software
that could be used and the outcome of the
literature suggests approaches to follow.
Altogether, the thesis addresses the key
factors of lifelong localization and summa-
rizes them, so they could be used easily
for the future industrial application.

Keywords: lifelong localization,
persistent localization, lifelong SLAM,
collective SLAM, UGV

Supervisor: Ing. Vladimír Smutný,
Ph.D.

Abstrakt
Inspirací pro tuto bakalářskou práci je
zákazník z průmyslu, který plánuje vy-
bavit svou továrnu průmyslovými vozíky
určenými k přepravování materiálu uvnitř
továrny. Celoživotní určování polohy mo-
bilního robota je část mobilní robotiky,
která řeší tento problém, neboť se zabývá
činností mobilního robota v dynamicky
se měnícím prostředí. Algoritmus celoži-
votního určování polohy musí nejen umět
pracovat s dynamikou prostředí, ale záro-
veň musí pracovat online a s omezeným
využitím paměti.

Cílem této práce je poskytnout solidní
shrnutí tématu celoživotní lokalizace mo-
bilního robota za účelem usnadnění bu-
doucí implementace v továrně. Vedle prů-
zkumu literatury bylo provedeno několik
experimentů jak s hardwarem tak se soft-
warem, opět v kontextu budoucí průmys-
lové aplikace.

Výsledky experimentů nám umožňují
zhodnotit vhodnost použití specifického
hardwaru a softwaru, výstup ze studia
literatury pak navrhuje směry, kterými
by se mohla budoucí aplikace vydat. Cel-
kově se práce zaměřuje na klíčové faktory
celoživotního určování polohy mobilního
robota a shrnuje je tak, aby byly snadno
použitelné pro budoucí implementaci prů-
myslových vozíků v továrně.

Klíčová slova: celoživotní lokalizace,
celoživotní současná lokalizace a
mapování, kolektivní lokalizace,
průmyslové vozíky

Překlad názvu: Celoživotní určování
polohy mobilního robotu
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Chapter 1
Introduction

The world of mobile robotics is extremely dependent on the robots’ ability
to localize, navigate and map in an environment, as only then they can be
truly autonomous. This has been a research topic for a few decades. The
problem of lifelong localization addresses the ability of a mobile robot to work
in an environment that dynamically changes over time, which is basically any
real-world environment. At the same time, the algorithm has to work online
and preserve the memory used.

An example of such a dynamic environment can be a factory. The inspira-
tion for this thesis is an industrial customer who wants to equip their factory
with unmanned ground vehicles (UGV) that will transport material within it.
Implementing such a system requires understanding the challenge of lifelong
localization of a mobile robot.

The goal of this thesis is to make the future implementation of the UGVs
easier by going through the available literature and suggesting approaches
to follow. As the application of the thesis has to be reliable and robust, we
want to rely on proven techniques and approaches and not to reinvent the
wheel by building our own algorithms entirely from scratch. The objective
of this thesis is to provide future researchers with a comprehensive overview
they can build the solution on. In addition to theoretical research we also
conducted several experiments, having examined qualities of both hardware
(mainly sensors) and software that could be used.

During the work on this thesis we slightly digressed from the initial guide-
lines, as we had decided to put the main emphasis on the research of literature
and conducting basic, yet contributing experiments.

The work is organized as follows: Chapter 2 describes the future factory
application and examines key aspects of UGVs - sensors and safety standards.
Chapter 3 provides a mathematical description of the problem and introduces
the main methods used to deal with it. The state-of-the-art algorithms for
lifelong localization suitable for our application are described in Chapter 4.
As the future application of mobile robots in the factory would be more
efficient if more robots were used, we devoted Chapter 5 to the topic of
cooperation of several mobile robots on one task. Finally, Chapter 6 describes
our experiments, including details about the hardware and software used.
Chapter 7 summarizes the whole thesis and evaluates the results.
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Chapter 2
Unmanned Ground Vehicles in Industry

For many years, factories and warehouses have been equipped with au-
tonomous vehicles. Nevertheless, these self-driving vehicles are not truly
autonomous, as they ordinarily use wire technologies (wires providing the
vehicle with a signal, located in the floor), tapes on the ground (which have
a different color than the floor, thus a light sensor can be used to follow the
tape) or magnets for navigation.

This kind of navigation that relies on physical indicators tends to be
failure-prone in the long-term aspect - typically the easier the installation of
the indicators is, the more often problems appear. At the same time it lacks
flexibility in terms of obstacle avoidance, because there are only pre-defined
paths - if an obstacle appears on its trajectory, it has to stop. Moreover,
crossings may cause trouble as well. Furthermore, if the arrangement in
the factory changes, it may require costly changes. Here, unlike the case of
failures, the easier the installation of the indicator is, the cheaper the changes
are. Hence, usage of these technologies is quite double-edged.

Thus, the industrial applications today and in the future will rely on
combination of various sensors that can scan the entire environment of the
vehicle continuously, enabling the vehicle to localize and navigate regardless
of the changes and unexpected incidents that may appear. These vehicles are
then flexible and can be used in different environments.

2.1 Our Application

This bachelor thesis should help with the implementation of unmanned ground
vehicles (UGV) in a factory for transporting materials between different places.
The UGV will be equipped with a basic map of the factory or a simple learning
process consisting of several tele-operated journeys through the factory will
be used. Then, in the everyday lifelong operation in a changing environment,
an omnidirectional camera will be used for sensing the environment and local-
ization in the order of meters. A LIDAR will be responsible for localization
in the order of centimeters and simultaneous navigation and mapping. The
localization, navigation and mapping based on LIDAR data is the topic our
thesis will focus on.

3



2. Unmanned Ground Vehicles in Industry .........................
2.2 Sensing the Environment

Bearing in mind the focus of this thesis, obtaining precise data about the
surroundings of our robot is essential. There are several ways for a mobile
robot to sense its environment.

In this section we briefly describe various sensor types for mobile robots
and their classification, as well as basic characteristics, advantages and dis-
advantages of using each of them. Finally, we clarify what sensors we have
chosen and why.

2.2.1 Classification

There are several ways of classifying sensors and the methods of sensing
the environment. The following paragraphs do not cover all sensors and
methods of measurement, we only focus on some of them. One of the basic
classification criteria is the emission of energy..Passive sensors do not emit any energy to get an information about

the environment, they rely on suitable physical characteristics of the
environment. Examples: camera, gyroscope, odometry, compass, GPS..Active sensors detect energy they themselves emit. Examples: LIDAR,
sonar.

We can also divide the sensors in two categories regarding the relativity
of measured data - absolute and relative sensors. However, most often both
absolute and relative position measurement methods are used simultaneously
since each of them has its advantages and disadvantages..Absolute sensors provide us with absolute measurement data, e. g. dis-

tance to an obstacle. LIDAR, camera, GPS and others are part of this
group. This family of sensors can be further divided as follows..Time-of-flight (TOF) based sensing devices send a pulse and

measure the time t it takes to travel to an obstacle (where it is
reflected) and back to the sensor. With the knowledge of the speed
of the pulse propagation v and using the very basic physics we get
the distance d:

d = v
t

2 . (2.1)

There are several sensors based on this method that differ in the
type of the pulse.. Sonar uses an ultrasound pulse. These sensors usually reach

up to 20 m with accuracy about 40 mm. It works poorly when
detecting non-monolithic objects, sloping surfaces or thin items.
Still, some approaches [1] use sonar as one of their sensors.. LIDAR sends laser pulses (wavelength 600 - 1000 nm). The
range can be as long as 100 meters with accuracy around 30 mm

4



............................... 2.2. Sensing the Environment

and resolution 0.5◦ to 5◦. The measurement ray is very thin,
thus it is quite precise. It only experiences problems with very
low-reflectance materials and at the edges of objects. However,
it is very expensive. Despite this fact, it is broadly used in
many SLAM applications, such as [2], [3], [4].. Recently, the start-up Sewio Networks1 introduced a solution
using ultra-wide band radio technology that should provide its
customers with precise real-time indoor location. As it received
an investment of 1 M$, we expect further development of their
product that could potentially be used in our application..Global positioning system (GPS) is based on measuring dis-

tances from specialized satellites, where at least three, respectively
four, satellites are necessary to determine position, respectively
position and altitude. Although it has plenty of applications, it
is not really well-suited for the world of mobile robotics, as the
GPS signal may be low in some environments and the orientation
of a robot can be determined only if the robot moves.. Australia-based company Locata2 presented GPS-like new po-

sitioning technology. It is not GPS-dependent and should serve
in cases where GPS is erroneous. Locata uses a network of
ground-based transmitters that covers an area with strong radio
signal3..Vision sensors provide us with a huge amount of information, yet

are quite affordable. Different types of cameras (omnidirectional,
stereo, depth) can for example detect obstacles, recognize paths
or road signs. However, the excessive amount of data can easily
overwhelm the ability of an algorithm to work online. The papers
[4], [5] used cameras as one of their sensors.. Landmark navigation is based on landmarks that should be easily
distinguished by the robot’s sensors because of their location, size,
colors or other characteristics. They can even provide the mobile
robot with extra information using e.g. QR codes or barcodes.
Landmarks’ position is in most cases known by the robot beforehand
(before the localization process). One example of an approach that
uses landmarks is [5]..Relative sensors give us measurement data that is relative to previous

measurements or an initial value. The examples of relative sensing
methods include odometry and inertial navigation..Odometry measures wheels rotation with the use of encoders in

order to estimate the relative change of position. Sometimes it
1http://www.sewio.net/
2http://www.locata.com/
3More about the technology to be found at http://www.locata.com/wp-

content/uploads/2014/07/Locata-Technology-Brief-v8-July-2014-Final1.pdf
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2. Unmanned Ground Vehicles in Industry .........................
may work surprisingly well, nevertheless, if the surface is slippery,
significant errors may occur. Typically, in all approaches where it
is used, odometry does not play the primary role but usually has
more of a "supportive" purpose.. Inertial navigation uses gyroscopes and accelerometers which
measure the velocity of rotation and acceleration. Integrating these
measurements, we obtain the position. The measured value usually
has an offset. Since it is being integrated, the offset error grows.
Therefore, the inertial navigation is not very suitable for long-time
usage.

2.2.2 Our Choice

As we have already mentioned in Section 2.1, the core of the localization
process in our application will be taken care of by an omnidirectional camera
and a LIDAR. These two sensors will be supported by odometry and inertial
navigation.

This work focuses on the localization, navigation and mapping based on
LIDAR. We have chosen this sensor because of the fact that it is used very
often in similar applications and it is highly accurate. When searching for
the right one, we looked at SICK products. SICK is one of the oldest and
leading manufacturers of LIDARs for civil applications in the world. The
company provides its customers with sensors and application solutions for
safety of people and prevention of damages.

For the purpose of this thesis, the SICK LMS 111 was used, because it was
available to be borrowed from the CIIRC4. The sensor is described in detail
in the Section 6.1.2.

Some researchers (for example [4]) were able to perform SLAM using
only the LIDAR. However, as the environment in the factory can be quite
monolithic, the robot might experience difficulties when localizing itself, since
the laser data could be insufficiently determinative. This is why we want to
use also a camera in our future application.

2.2.3 Experiment: SICK S300

There are two important product groups for our application in its portfolio
- security laser scanners (such as SICK S300) and 2D laser scanners (such
as SICK LMS 111). At first glance, both of these groups seem to be alike -
both use the time-of-flight principle of distance measurement. However, their
applications are different.

Whilst the 2D laser scanners just measure their surroundings, the safety
laser scanners have important security aspects. One can define "protective
fields" within the surroundings of the sensor and if an object or person
enters that area, a safety laser scanner stops a subsystem device that could
potentially collide with an intruder.

4Czech Institute of Informatics, Robotics and Cybernetics, https://www.ciirc.cvut.cz/
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................................... 2.3. Safety Standards

The goal of our experiment was to find out whether we can obtain the laser
measurement data from a safety laser scanner that is working simultaneously
in the safety-mode, since we need this data for the localization and navigation
of the mobile robot, while guaranteeing the safety function as well.

For our experiment we borrowed a SICK 30B- 3011BA from the local SICK
representative. The device operating instructions [6] gave us information about
the system interface. Four pins serve as the RS-422 interface for outputting
measured data (RxD-, RxD+, TxD- and TxD+). Using a RS-232/RS-485
converter and a serial port to USB converter on the hardware side and Mtty5

terminal on the software side we were able to display the raw data.
Thanks to the Telegram Listing Standard documentation [7] for the SICK

300 scanners we identified the format of the output measured data (see
Table 2.1). With the help of CDS6 the baud-rate on the RS-422 interface can
be configured to the values of 9600 Baud to 500 kBaud. If the baud rate is
set to 500 kBaud, the S300 sensor is able to transfer the measured data of
every second scan in real time.

For our application, we need to receive data continuously. If such a mode is
chosen, the telegram structure is following: 8 data bits, 1 stop bit, no parity
bit.

Telegram header Administration data Measured data CRC
4 bytes 6 bytes 1094 bytes 2 bytes

Table 2.1: RS-422 telegram structure for continuous data output

. Telegram header - 0x− 00000000. Administration data - 0x0000 for continuous output, 2 bytes for size of
telegram and 2 bytes as coordination flag and device address.Measured data - including configurable contour. CRC - 16 bit, formed according to x16 + x12 + x6 + 1 polynomial

These findings allow us to use just the safety laser scanner in the future
application. That is not only more convenient in terms of construction,
mounting and wiring, but also less expensive, since we do not have to equip
the vehicle with two costly sensors.

2.3 Safety Standards

Safety should be kept in mind in all robotics applications, and especially in
the mobile ones. That is why we worked with the official standards: The
European Standard EN 1525:1997 (Safety of industrial trucks - Driverless

5https://www.netburner.com/learn/serial-terminal
6Configuration & Diagnostic Software, provided by SICK, available online:

https://www.sick.com/us/en/downloads/software.
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2. Unmanned Ground Vehicles in Industry .........................
trucks and their systems) and its Czech version ČSN EN 1525 (Bezpečnost
motorových vozíků - Vozíky bez řidiče a jejich systémy, [8]). These standards
deal with all vehicles that were build to move autonomously without a driver.

Primarily, the industrial trucks have to be able to detect a person in their
trajectory. Several conditions are to be met, for our application the following
are the most crurial ones:. the vehicle has to be able to detect a person within at least the whole

width of the vehicle in all directions of movement,. it has to detect a cylindrical item (diameter 200 mm and length 600 mm)
lying perpendicularly to the trajectory, anywhere in the environment of
the vehicle,. it has to detect a cylindrical item (diameter 70 mm and height 400 mm)
standing on the ground, anywhere in the environment of the vehicle.

We have to take these rules into consideration for example when choosing
the laser resolution.

8



Chapter 3
Localization of Mobile Robot

The localization of a mobile robot is one of the fundamental challenges in
mobile robotics. The mobile robot has to know where it is before it starts
performing an action. Robot localization is a problem of determining a robot’s
pose within a known map of an environment or determining its pose relatively
to its initial position.

3.1 The SLAM Problem

According to [9], the Simultaneous Localization and Mapping (SLAM) is
generally regarded as one of the most important problems in the pursuit of
building truly autonomous mobile robots. SLAM, as its name suggests, deals
with navigating a robot within an unknown environment, trying to localize
the robot within the environment and mapping the environment at the same
time. The complexity lies in the fact that to make a robust localization of
the robot, it has to have an accurate map of its environment, however, to
obtain such a map, it has to know its position correctly (a chicken-and-egg
problem).

3.1.1 Mathematical Formulation

Since sensors are not noise-free, a probabilistic approach for formulating and
solving the SLAM problem is common, as it can model the uncertainties
formally.

The two probably most comprehensive publications of the last two decades
in the field of robotics and mobile robotics [10] and [9] define the online
SLAM as follows:

p(xt,m|z1:t, u1:t) (3.1)

where xt is the robot’s position at time t, m is the map of the environment,
z1:t are measurements and u1:t are control inputs. The second form of SLAM
problem is so called full SLAM - in this case the posterior is estimated over
the entire robot’s path:

p(x1:t,m|z1:t, u1:t) . (3.2)

9



3. Localization of Mobile Robot..............................
Some papers (such as [11], [12]) also include the initial position of the robot
x0:

p(xt,m|z1:t, u1:t, x0) . (3.3)

But since x0 can be chosen arbitrarily [12], it does not really make a difference.
According to [12], the SLAM process and its formulation 3.3 can be modeled

by a Dynamic Bayesian Network as shown in the Figure 3.1. Those elements
that are represented by squares in the picture stand for observed variables
(u1 : ut, z1 : zt), the round ones represent hidden variables (x1 : xt,m).

Figure 3.1: SLAM process as dynamic Bayesian network, drawn on the basis of
[12, Fig. 4, p. 2]

The edges that lead to x circles represent the transition model (sometimes
referred to also as motion model or vehicle model) that expresses the prob-
ability of a robot being at position xt given the fact that it got there from
position xt−1, having measured odometry information ut, that is:

p(xt|xt−1, ut) . (3.4)

The edges that lead to z squares represent the observation model that
expresses the probability of measuring an observation zt given the fact that
robot is located at position xt in the map m, that is:

p(zt|xt,m) . (3.5)

This representation of the SLAM problem is suitable for filtering approaches
[12] that handle the SLAM problem that are described in the Section 3.4.

Having defined the transition and observation model in Equations 3.4, 3.5,
we can according to [11] write down the recursive equations that give the
solution to the Equation 3.3:
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............................... 3.2. Dynamics of Environment

p(xt,m|z1:t, u1:t, x0) = p(z1:t|xt,m) p(xt,m|z1:t−1, u1:t, x0)
p(z1:t|z1:t−1, u1:t)

(3.6)

p(xt,m|z1:t−1, u1:t, x0) =
∫
p(xt|xt−1, ut)× p(x1:t−1,m|z1:t−1, u1:t−1, x0)dxk−1

(3.7)

3.2 Dynamics of Environment

Most SLAM approaches deal with a static environment, despite the fact that
vast majority of real-world environments are dynamic. Not all objects in
a dynamic environment have to be dynamic (that is changing its position over
time). In general, we can see three kinds of objects regarding their dynamics
in an environment.. Static objects - this group contains objects that do not change their

location over time, such as columns, walls or big machines in factories.. Semi-static objects - these object seldom change their location. This
group includes furniture, boxes, pallets, shelves in warehouses, and so
on..Dynamic objects - objects that move all the time or very often, for
example cars, carts, people, goods.

Sometimes it may be hard to tell the static and semi-static objects apart (e. g.
a wall can be removed). Nevertheless, it is extremely important to consider
the dynamics of the environment, mainly for the localization and mapping
over longer periods of time, as the omitting of the dynamics might lead to
inconsistent observations (and in most cases would lead to it), ruining the
process of localization and mapping.

3.2.1 Representation of Dynamic Objects

In order to be able to model the dynamic environments, it is necessary to map
both the occupied space and the free space properly. If it were not possible
to model the free space, it would not be possible to represent for example
a removal of an obstacle.

Over time, several ways of dealing with the dynamics of the environment
arose:. treating dynamic objects as outliers,. separating the static and the dynamic world (= building two maps),. object-centered representation of the dynamics (this approach is based

on the idea that occupancy is caused by objects),. simultaneous representation of the environment in different times,
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3. Localization of Mobile Robot..............................
. feasibility grids - an approach where a dual sensor model is used to

distinguish between static and moving objects,.mapping using experiences - environment is represented by a set of expe-
riences, where each experience is a sequence of observations connected
by visual odometry.

However, according to the research of the state-of-the-art approaches, the
most effective methods for modeling the dynamics are the following.

Dynamic Occupancy Grids. Presented by Meyer-Delius et al., 2012, the
dynamic occupancy grid approach is a generalization of occupancy grids (or
voxels in case of 3D environments) that expects the environment to change
in time. The occupancy grids (or voxels) are small squares (cubes), into
which the area is divided. Each square (cube) is either occupied or free. The
dynamic occupancy grids are depicted in the middle part of the Figure 3.2.
This mapping approach was used in [3]. It is considered a convenient way
of representing an environment for local navigation and obstacle avoidance
by [13].

NDT Maps. Normal distribution transformation (NDT) maps work with
an environment that is, similarly as in the case of dynamic occupancy grids,
divided into voxels. The difference is, that each voxel is represented not by
one of two possible values (occupied, free), but by a normal distribution,
which provides more information. For an illustration of NDT map see the
right part of Figure 3.2. Einhorn & Gross [4] used a hybrid form of NDT
maps for their approach.

Figure 3.2: The left picture represents the structure of an environment. The
middle picture shows the environment from the left picture mapped by Dynamic
Occupancy Grids, where the black squares stand for occupied ones and the
white ones for the free ones. The picture in the right shows the NDT mapping
approach of the first picture. Figure from [4, Fig. 1, p. 29]

3.3 Lifelong Localization

We speak about lifelong localization when a robot works in an environment
for a longer period of time, over which the environment changes. In order to
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localize itself and map the environment correctly, it has to continuously take
into account the changes that occur. The following terms are also used when
speaking about lifelong localization - lifelong SLAM, persistent localization.

As mentioned before, lifelong localization is way more complex than local-
ization in a static environment. A lifelong SLAM algorithm has to be able
to continuously update the map of the environment, having preserved the
memory used and the computational time required. Furthermore, for vast
majority of applications, the algorithm has to work online.

3.3.1 Mathematical Formulation

Tipaldi et al. [3] defined the lifelong SLAM problem in this way:

p(x1:t,mt|z1:t, u1:t−1,m0, x0) (3.8)

where xt is the robot’s position at time t, mt is the map configuration at time
t, m0 stands for lifelong map, x0 for initial position and z1:t and u1:t again
for measurements and controls.

3.3.2 Initial Map and Our Application

In our industrial application we assume that we will always provide the robot
with an initial map of the environment. Not because the mobile robot would
not be able to create such a map, but because the map provides a higher level
of "user-friendliness" for an operator in the factory. Once an initial map is
available, the operator can easily give the robot instructions such as where to
start, where to go or even what path to choose. This is why we tend to work
with an initial map M of the environment, which means that the equation for
our SLAM application will have the following form (based on the Equation
3.8):

p(x1:t,mt|z1:t, u1:t−1,m0, x0,M) . (3.9)

It is worth mentioning that the initial map M has a different structure
than the maps mt. Whilst M will most probably be a CAD-based map or
another geometric representation of the environment, the nature of mt maps
will be probabilistic.

In the context of our industrial application, the Equation 3.9 represents
a routine "optimal" operation where everything goes well. However, the
real-life scenarios are never optimal - system breakdowns, robot running out
of battery or others. After such an error the robot may appear in another
location and the definition of SLAM problem (3.9) changes to

p(x1:t,mt|z1:t, u1:t−1,M, x0,mt−1) (3.10)

where all symbols have the same meaning as above and mt−1 represents the
last known-map. Often the new initial position x0 may be unknown.

Similar situations happen when a robot is moved away from the factory for
maintenance. In the period ∆t where it is away, the environment can change

13



3. Localization of Mobile Robot..............................
significantly, as the ∆t may be high. Therefore, the mobile robot has to deal
with not only the big changes of locations of dynamic objects, but also with
significant changes in the group of semi-static objects.

3.4 Main SLAM Approaches

In 2008, Siciliano & Khatib [9] observed three main SLAM paradigms1 which
are source of the majority of SLAM algorithms:. Extended Kalman Filters (EKF),. Particle Methods, and.Graph-Based techniques.

However, thanks to deep research of the SLAM problem in past years,
many new approaches have appeared and not all of them could fit in some of
the above-mentioned categories. It is impossible to say that one approach
is better than the other, despite [15] presented a way to compare SLAM
algorithms (even with different outputs). In the following subsections, we
will briefly look at the three main paradigms.

3.4.1 Extended Kalman Filters (EKF)

EKF were introduced already in mid 1980s. Together with the particle
methods, EKF belong to the group of Bayes filters [16]. The estimated
position of a robot and the state of the environment is represented by one
state vector. Uncertainties of these approximations are stored in a covariance
matrix. During the movement of the robot in the environment, both the state
vector and the covariance matrix grow and are updated using the extended
Kalman filter.

According to [11], the EKF approach tries to find the solution to SLAM
problem by finding an adequate representation for the transition model
(Equation 3.4) and observation model (Equation 3.5). Using the state-space
representation with Gaussian noise is said to be the representation that is used
most often. The transition model p(xt|xt−1, ut) is described in the following
form:

xt = f(xt−1, ut) + vt (3.11)

where vt is Gaussian noise and function f represents the mobile robot’s
kinematics. The description of the observation model p(zt|xt,m) has the
following form:

z(t) = h(xt,m) + wt (3.12)
1Some papers (such as [1], [14]) then started to follow this classification in their description

of the SLAM problem.
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................................3.4. Main SLAM Approaches

where wt is Gaussian noise and function f represents the observations.
Once this state-space model is built, "standard EKF methods" (for example
in [10, p. 48]) can be used to compute the probability distribution which is
a solution to the Equation 3.3.

As the dimension of covariance matrix grows quadratically, some approaches
propose dividing the map of the environment into submaps.

3.4.2 Particle Methods

Particle methods are based on particle filters - implementation of Bayes filters.
In a way, each particle represents a guess of the real state of the environment
[9]. Since [2], one of the state-of-the-art approaches we describe in the Chapter
4, is based on the particle methods (to be more specific, on a modification
of it), we refer the reader to the Section 4.1.1. Another modification of the
particle approach was used for example in [3].

3.4.3 Graph-based SLAM

Graph-based approaches model the SLAM problem in the form of a graph
that consists of vertices that are connected by edges. This group of methods
cover bigger environments (maps) more efficiently [14] than EKF, since the
update time of the graph is constant and memory use is linear, whilst the
covariance matrix of EKF SLAM grows quadratically.

During the research of literature, we found two approaches towards the
graph-based SLAM. In the first one, used by [17] or [4], the vertices in the
graph represent only the robot positions. In the second one, described in [9]
and [12], the vertices represent both robot positions and landmarks in the
environment. Since the first approach is used by one of the state-of-the-art
work (Einhorn & Gross [4]) that we describe in the Section 4.2, we will here
focus only on the description provided in [9] and [12].

Vertices and Edges

Vertices of the graph represent landmarks in the environment li and robot
locations2 xt at time t. Edges of the graph can connect either two vertices of
robot locations xt, xt+1 or a landmark li and location xt. In the case when
two locations are connected, an information about odometry representing the
movement from xt to xt+1 is encoded in this edge. If the edge connects a
location and a landmark it means that the landmark li was seen from the
location xt.

Building the Graph

The process of building a graph is illustrated in the Figure 3.3. For each step,
the illustrations on the white background represent the real world and those

2The term "positions" is used also - this is why is the graph sometimes called "pose-graph",
such as in [4].
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on the light-blue (gray) background represent the graph...1. At time t = 1 the robot sees from its position x1 a landmark l1, thus

vertices x1 and l1 become connected with an edge representing the
measurement...2. At time t = 2 the robot is located in the position x2, thus a new vertex
x2 emerges. This vertex is connected with vertex x1 by edge representing
the odometry information read during the movement. At the same time,
the robot sees again the landmark l1 and also landmarks l2 and l3 - the
respective edges are thus constructed...3. At time t = 4, after a few more steps, the robot gets through the location
x3 to the location x4, having observed landmarks l1, l2, l3, l4 and l5 during
the whole motion.

Figure 3.3: Proces of building a graph, drawn on the basis of [9, Fig. 37.4a-c, p.
878]

Matrix Representation

Since each edge of the graph connects no more than 2 vertices, we can
represent the graph using matrix Ω with dimension n × n, where n is the
number of all vertices in the graph. In other words n is the sum of number
of robot locations xt and observed landmarks li, in the case of our example
n = 4 + 5 = 9.

The elements in the matrix appear gradually, as the robot moves and
explores new landmarks. If an edge exists between the ith and jth object in
the graph, an element appears at the positions Ω(i, j) and Ω(j, i). All Ω(i, i)
elements appears in the matrix as an ith object appears in the graph.
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For now we will only use symbols to represent the elements that appear in
the matrix according to Figure 3.3: � for the first step (t = 1), 4 for the
second step (t = 2) and ♦ for the third step (t = 4). With respect to this
notation we can now look at how the matrix Ω was being created during the
process in the example.

Ω =



x1 x2 x3 x4 l1 l2 l3 l4 l5

x1 � 4 0 0 � 0 0 0 0
x2 4 4 ♦ 0 4 4 4 0 0
x3 0 ♦ ♦ ♦ 0 0 ♦ ♦ 0
x4 0 0 ♦ ♦ 0 0 0 ♦ ♦
l1 � 4 0 0 � 0 0 0 0
l2 0 4 0 0 0 4 0 0 0
l3 0 4 ♦ 0 0 0 4 0 0
l4 0 0 ♦ ♦ 0 0 0 ♦ 0
l5 0 0 0 ♦ 0 0 0 0 ♦


Graph Optimization

Once a graph is built, it has to be optimized. The authors of [9] state that
the Equation 3.1 can be further factorized in the following form:

log p(xt,m|z1:t, u1:t) = k+
∑
t

log p(xt|xt−1, u1:t)︸ ︷︷ ︸
ξ

+
∑
t

log p(zt|xt,m)︸ ︷︷ ︸
ζ

(3.13)

where k is a real constant, ξ represents the transition model and ζ represents
the observation model.

With respect to the factorization 3.13, [9] formulates SLAM as the following
optimization problem:

X∗
T ,m

∗ = argmin
XT ,m

log p(xt,m|z1:t, u1:t) . (3.14)

3.5 Convex and Nonlinear Optimization

A mathematical optimization problem can be defined according to [18] and
[19] as follows.

Mathematical optimization. The problem of mathematical optimization
(or just problem of optimization) has the following form:

minimize function f(x)
with subject to functions gi(x) ≤ bi, i = 1, . . . ,m, (3.15)

where:. the function f(x) : Rn → R is the objective function to be minimized
over the variable x,
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3. Localization of Mobile Robot..............................
. the vector x = (x1, . . . , xn) is the optimization variable,. the functions gi(x) : Rn → R, i = 1, . . . ,m are the inequality constraint

functions , and. the constants bi, i = 1, . . . ,m are the bounds for the constraints.

The solution to the optimization problem is a vector x∗, if the following
condition is met: f0(z) ≥ f0(x∗) for any z where g1(z) ≤ b1, . . . , bm(z) ≤ bm.

Convex optimization. An optimization problem (as defined in 3.15) is
convex, if the functions f, g1, . . . , gm : Rn → R are convex, which means they
satisfy

h(αx+ βy) ≤ αh(x) + βh(y) (3.16)

for all x, y ∈ Rn and all α, β ∈ R and α+ β = 1, α ≥ 0, β ≥ 0.

Nonlinear optimization. An optimization problem (as defined in 3.15) is
nonlinear, if the functions f, g1, . . . , gm : Rn → R are not linear, but not
known to be convex.

Solving convex optimization problems is easier than solving nonlinear ones,
since in the case of convex functions in convex sets any local minimum is
a global minimum (for proof see [19, p. 135]). We do not have any efficient
way of solving nonlinear problems and even problems that seem easy usually
turn into a big challenge.

In the context of the SLAM problem and application our thesis deals
with: using a camera for the rough estimation (in the order of meters) of
our position in the factory and then using a LIDAR for the more precise
localization is an approach that simplifies a complex nonlinear optimization
problem to a simpler convex one.
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Chapter 4
State of the Art Techniques

Researchers all around the world have been dealing with the SLAM challenge
for over two decades1. As the methods of probabilistic robotics were being
developed, the research of SLAM was getting deeper and deeper. The scientists
had to deal with high computational complexity and memory used. The first
solutions were suitable only for offline localization and mapping. After solving
the problem of being online, the ability to work in dynamic environments
became one of the priorities2.

In the following chapter we provide the readers with a selection of two
state-of-the-art approaches in the lifelong SLAM problem. Having in mind the
focus of this work and its future application, we focused on SLAM approaches
that deal with indoor, ground and wheeled robots. The choice of the methods
was based on research of literature and consultation with experts in the field.

4.1 Improved Techniques for Grid Mapping With
Rao-Blackwellized Particle Filters

The first technique we chose as the state-of-the-art one by Grisetti, Stachniss
& Burgard [2] comes from the University of Freiburg, from the team of
Wolfram Burgard, well-known and often-cited expert in the field of mobile
robot navigation. He is listed as author in some other papers we worked with
- [3]. What is more, this paper and also other work by these authors are
source for several approaches ([20], [21], [22]) that deal with the challenge of
collective SLAM, which is the topic of Chapter 5.

The Rao-Blackwellized particle filters (RBPF) are one of the particle
filter approaches to the SLAM problem. In the case of RBPF each particle
represents a specific map of the environment. However, the RBPF technique
faces two major challenges:..1. it requires a big amount of particles to create a precise map of the

environment, therefore a way to reduce it has to be found, and
1However, according to [11] the problem of simultaneous localization and mapping

appeared for the very first time in 1986 in IEEE Robotics and Automation Conference.
Nevertheless, the term SLAM was firstly used in 1995.

2We listed some of the approaches that may represent the dynamics of environments
back in Section 3.2.1.
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4. State of the Art Techniques ................................2. correct particles can be unintentionally removed during resampling (the
literature refers to this phenomenon also as the particle depletion prob-
lem), consequently a method that would enable to have the ability to
learn on one hand, but avoid removing correct particles on the other
hand has to be introduced.

This paper deals successfully with both of them. The first problem is solved
by proposal distribution and the second by an adaptive resampling
technique. We will look deeper into both of these techniques in Sections 4.1.2
and 4.1.3, but firstly, let us have a closer look at how the RBPFs work in
general.

4.1.1 RBPF-based SLAM

The mathematical formulation of SLAM (Equation 3.2) can be factorized in
the following way:

p(x1:t,m|z1:t, u1:t) = p(m|x1:t, z1:t) p(x1:t|z1:t, u1:t−1) . (4.1)

The first factor represents the estimation of the map based on the trajectory
of the robot, while the second factor stands for the estimation of the robot’s
trajectory. Because we know x1:t and z1:t, the first factor can be computed
analytically.3

An effective way to find the value of the second factor is to use a particle
filter, where each particle represents a potential trajectory. The paper presents
a particle-filter algorithm that works with sensors measurements and odometry
data in order to update the set of samples representing the path of the robot.
Briefly, the algorithm works like this:..1. Sampling - based on the previous generation of particles a new gen-

eration of particles is gained. The previous generation is a result of
sampling from a proposal distribution π, which is in most cases based
on odometry...2. Weighting - each particle gets its individual weight depending on how
well they suit the target distribution...3. Resampling - particles are "re-drawn" according to their weights, at
the end of this step they all have the same weight...4. Map estimation - as we mentioned, each particle represents a potential
trajectory. In this step a predicted map is computed for every particle
according to formula p(m|x1:t, z1:t).

4.1.2 Proposal Distribution

In the first step of the particle-filter algorithm we were talking about a proposal
distribution π. It is without surprise that the better the proposal distribution

3The method to construct a map based on known poses was presented in 1986 in [23].
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is (that is, the more it resembles the actual distribution), the better the filter
works.

Most of particle approaches use odometry motion model as the source of
this proposal distribution π. However, if the robot is equipped with a sensor
that is notably more precise than the model based on odometry (for example
a SICK laser range finder), we can use the sensor measurement data for
building the next generation of the particles efficiently. If the sensor is used,
the likelihood functions are very peaked, therefore we can focus only on
regions with high observation likelihood, that leads to a much more precise
proposal distribution π and thus significantly less samples.

Furthermore, in most cases the likelihood functions have only one maximum
(according to the authors). Consequently we can focus the sampling only on
the area around this maximum and significantly reduce the computational
time.

4.1.3 Adaptive Resampling Technique

In the resampling step, the particles of low importance w are exchanged for
new particles of higher weight. This is important because it reduces the
number of particles. However, during this reduction important samples may
also be removed. Thus, a way to make a decision whether to remove a particle
or not has to be found.

If all particles were representing the target distribution, they would all
have the same value. In contrary, the more poorly they represent the target
distribution, the higher their variance is. This is the background idea for the
following decision making formula:

2∑N
i=1(wi)2

< N (4.2)

where N is the number of particles and wi is the weight of particle i. If the
inequality is true, the resampling process starts.

4.1.4 Algorithm

The algorithm of this technique can be briefly described in the following steps,
for deeper information, look at [2, p. 38]...1. Using the previous robot’s pose xt−1 and odometry information ut−1 an

initial guess for the robot’s pose x∗
t is obtained...2. Using the most recent map mt−1 a scan-matching process is executed

around the initial guess x∗
t . As a result of the scan-matching we get x̃t...3. If the scan-matching is successful, a set of sampling points is created in

the region of the x̃t. These points allow us to compute the parameters
of the proposal distribution...4. The new proposal distribution is the source of the robot’s new pose xt.
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4. State of the Art Techniques ................................5. The weights w are updated...6. Using the measurement zt and pose xt, a new map is created...7. Finally, the N (see Equation 4.2) is computed to decide whether or not
the resampling will be executed.

4.1.5 Experiments

Series of experiments both in indoor and outdoor environments were conducted
using several real robots equipped with SICK laser measurement systems and
PLS laser rangefinders.

The experiments resulted in consistent maps with a resolution of 1 cm. The
authors compare their algorithms with approaches of other groups and also
demonstrate the effects of their improved proposal distribution and threshold
for resampling, which are quite imposing.

4.1.6 Conclusion

The paper is very well-written and informative, as it also contains information
about complexity of different operations and describes the structure of the
algorithm used. Since the maps, the raw data files and the implementation of
their approach are available online4, it should be possible to use this approach
in our application in the future. What is more, an open-source implementation
of this technique is also available in the ROS, more information to be found
in the Section 6.5.1.

4.2 Generic NDT Mapping in Dynamic
Environments and Its Application for Lifelong
SLAM

Einhorn & Gross presented a paper [4] that is one of the newest we have
worked with as it was published in 2015. Like the first state-of-the-art
technique, it comes from Germany, this time from the Ilmenau University of
Technology.

The most significant contribution of this paper is that this approach is able
to generate both 2D and 3D maps (without any changes to the algorithms) in
a way that it does not matter what kind of sensor the robot is equipped with.
This is achieved thanks to the usage of normal distribution transform mapping
combined with occupancy mapping. The mapping process is further modified
so it can handle free space and dynamically moving objects effectively. This
advanced mapping technique is then used in a graph-based SLAM approach
suitable for online and lifelong usage.

4https://svn.openslam.org/data/svn/gmapping/
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4.2.1 Generic Mapping Approach

The authors introduced a novel approach towards mapping that combines
NDT maps and occupancy grid maps in a way that they are able to model the
free space. This map is called hybrid NDT occupancy maps and is depicted
in the right part of Figure 4.1. The whole environment is partitioned into
discrete voxels - cells. All cells are managed in a 2d-tree5, which makes it
unnecessary to distinguish between 2D and 3D maps. Furthermore, the tree
structure allows for creating maps with resolution that can be modified.

Figure 4.1: The structure of an environment in the left, NDT map in the middle
and hybrid NDT occupancy map in the right, figure from [4, Fig. 1 d), p. 29]

Each of these cells is then characterized by two parameters: normal distri-
bution N and occupancy value oc. The normal distribution N (µc,Σc), where
µc ∈ Rd is the mean and Σc ∈ Rd×Rd is the covariance matrix, characterizes
an object covered by the corresponding cell in the environment. The occu-
pancy value oc represents the probability whether the cell is occupied or not -
oc = p(c = occupied). If we combine these two, we get the final probability
distribution representing objects in the cell:

oc N (µc,Σc) . (4.3)

The above-described methods make this approach suitable for generating
both 2D and 3D maps. In this paper, the independence on the type of sensor
used is ensured by presenting various "sensors frontends" for different sensors6.
All these frontends produce output data in the same format, thus the mapping
process is the same for all the sensors.

Updating the Map

Initially, we assume that the state of all cells is unknown and the parameters
are set as follows:

oc = 0.5
µc →∞

5The d in the upper index stands for the dimension, therefore we obtain an oct-tree
structure for 3D maps and quad-tree structure for 2D maps. In the case of three (two)
dimensions each cell is then subdivided into eight (four) "sub-cells".

6As an example, frontend for Microsoft Kinect sensor is described - [4, p. 32].
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and the uniform distribution is used for the unknown (and empty) cells. The
update process is run every time a new range measurement is available. Firstly,
the cell that was "hit" by the measurement has to be identified. Secondly, we
update the parameters µc, Σc of the Gaussian in the cell. The third task is
to update the oc.

In general, when updating the parameters, the previous values7 µc(t-1),
Σc(t-1) and the number of updates λ(t-1) are taken into consideration as the
following formulas show:

µc(t) = αµc(t-1) + (1− α)x
Σc(t) = αΣc(t-1) + α(1− α)(µc(t-1)− x)(µc(t-1)− x)ᵀ

λ(t) = λ(t-1) + 1 ,

where
α = λ

λ+ 1 . (4.4)

The formula 4.4 for α was designed in the above-described way in order to
suit the lifelong application and in order to be able to adapt to the changing
environment. This approach makes sure that the newer measurements have
higher weights than the older ones.

However, not only the cell which is deepest in the 2d tree has to be updated.
The update has to be recursively propagated along the ray of the sensor
measurement to its parent cells.

Detection and Tracking of Moving Objects

Another major contribution of this work is the implementation of a system
for detecting and tracking moving objects to their SLAM algorithm. The
previous section provided us with a way to update map based on the dynamics
of the environment, as the mapping approach updates the map continuously
and can model free space. Nevertheless, there are still some situations when
this approach may cause inconsistencies in the map.

Imagine the following situation: a robot, equipped with a sensor that has
a narrow field of view, is moving in an environment. A person (or any other
dynamic object) appears in its field of view. As long as the person moves
within the field of view, all cells are updated correctly. But, when the person
(or the robot) moves in such way that the previous position of the person is
no longer in the field of view of the robot’s sensor, the algorithm is unable
to update the cell as free and thus the map is incorrect as it contains extra
objects. Therefore, when planning the route, the algorithm plans a route that
unnecessarily avoids obstacles that do not exist and the algorithm is slower.

The authors presented a way to deal with this problem. Besides the
previously-defined occupancy value oc they define also the static occupancy
value sc that represents the probability whether the cell is occupied statically.
Unlike the oc, sc represents the long-term occupancy state and thus is updated

7The oc is updated in a more complex way and we do not mention the rule here. It can
be found in [4, p. 31]

24



....4.2. Generic NDT Mapping in Dynamic Environments and Its Application for Lifelong SLAM

more slowly than the oc, however, the update formula [4, Eq. 13, p. 33] is
similar.

The usage of the combination of oc and sc then allows to track moving
objects (that are approximated by a normal distribution) and even to predict
their movement. This results in solving the problem described above.

4.2.2 Graph-based SLAM

The mapping approach described above is then used in a graph-based SLAM.
In the Section 3.4.3 we noted that during our research of literature we found
two different approaches towards graph-based SLAM. The case when both
robot positions and landmarks are represented by the vertices in the graph
was described back there, now we are going to describe the case when only
the robot positions are represented by the vertices.

The robot positions are represented as vertices of the graph. The sensors
and odometry measurements represent constraints between two consecutive
positions and are encoded by edges in the graph.

In this paper, the graph-based SLAM process is composed of two parts:
SLAM front-end and SLAM back-end. These terms are used also by [17]. The
SLAM front-end process is basically about building the graph and it can be
further divided into 4 sub-processes: graph generation, loop-closure detection,
map registration and fusion of vertices. All this is depicted in Figure 4.2.

Figure 4.2: Process of mapping, drawn on the basis of [4, Fig. 7]

SLAM front-end.Graph Generation Each vertex of the graph contains a small NDT
map fragment of the whole map of the environment. The robot odometry
is necessary in the mapping process. Odometry is not error-free, and
the error gets bigger the longer distance is travelled. To deal with this
problem, authors defined a specific threshold for the error. Once the
threshold is exceeded, a new map fragment is started. As the new
fragment is created, a new vertex is added to the graph and is connected
with the previous vertex, having the odometry information encoded in
the edge.. Loop-closure Detection The work [24] defines loop-closure as "identi-
fying a place observed previously but not very recently". The authors use
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a χ2 test to determine whether two maps of consecutive vertices overlap
significantly. If the test turns out positive, a special loop-closure edge is
added into the graph. The optimization process (SLAM back-end) takes
care of potentially incorrect loop-closures..Map Registration When merging two NDT maps, the goal is to
minimize the distance between their normal distributions. The fact
that the NDT maps are organized as 2d-trees allows to perform the map
registration not at the finest level of detail, therefore the process can
be accelerated. Then, a second registration at the finest level can be
executed.. Fusion of Vertices For the lifelong usage of an algorithm, both the
memory required and the computational time necessary must not grow.
However, as the robot works continuously in the environment, new
vertices with new map fragments are added and the size of the graph
is increasing. This is why the fusion of vertices, whose map fragments
represent the same part of the environment, is necessary.

When two vertices are fused, the information stored in the newer one is
transformed to the original one and all the neighbors of the newer one
are connected to the original one. This ensures that the graph is reduced
by at least one edge and one vertex, during each fusion. At the same
time, the fact that we transform the information from the newer one to
the older one makes sure that the most recent state of the environment
will be represented in the graph.

Once a new vertex with a new map fragment is added, the process repeats.

SLAM back-end

The robot positions x1, x2, . . . , xn are represented as vertices v1, v2, . . . , vn in
the graph. Two consecutive positions xi, xj are tied together in the real world
by odometry measurements and sensor data. These limitations (often referred
to as "constraints" in literature) are in the graph encoded in the specific edges
of the graph. As the paper [4] says, "each constraint between two vertices
vi and vj is represented by a transformation δji that describes the pose xj
as seen from xi and a corresponding information matrix Ωji". The SLAM
problem is then handled by solving the following optimization problem:

X∗ = argmin
X

∑
i,j

e(xi, xj , δji)T Ωji e(xi, xj , δji) (4.5)

where e(xi, xj , δji) represents the error function which tells us how well the
guesses of positions xi, xj fit the constraint given by δji (other symbols were
explained above the equation).

The back-end of the SLAM process is responsible for the optimization of
the graph that is given by Equation 4.5. There are several ways to tackle
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it. One of the most commonly used is the g2o8, "an open-source framework
for graph optimization" [4], as it was used not only by the authors of this
state-of-the-art technique, but also by others. The output of this optimization
process is the robot’s trajectory of the highest likelihood.

4.2.3 Experiments

Several experiments using different sensors were conducted in [4]: a robot
equipped with a Microsoft Kinect sensor in a home environment (8 × 5m)
and a robot with a laser range finder in an office building (80× 35m). All
key aspects of good SLAM approach were taken into consideration when
evaluating the results of the experiments:.Online - Using a machine equipped with Intel Core i7 CPU (2.7 GHz),

this approach is able to generate a new map every 0.5 − 1s, which is
sufficient for online usage.. Lifelong - The ability of the algorithm to work lifelong was also tested
by using guide robots equipped with a laser range finder only. The fact
that a successful lifelong SLAM can be tackled using only the laser range
finder is quite an interesting piece of information for our application.
The lifelong-focused experiments were conducted for 2 days. The results
show that the number of edges become more or less constant after some
time..Dynamics - The results of the experiments show that this technique is
able to deal both with highly dynamic objects and semi-static objects.
According to the paper, it successfully detects persons moving in the
environment without any inconsistencies in the map. The algorithm is
also robust against changes in the environment, which was tested by
moving furniture in the home environment while the robot was performing
the mapping.

4.2.4 Conclusion

In general, the concept of NDT maps seems to be applicable. One of the
benefits we see is that the amount of data does not grow - if we know the
size of the whole environment and if we limit the size of the smallest cell, we
get an upper boundary for the memory required.

4.3 Other Approaches

In this section we briefly look at three SLAM approaches we ran into during the
research of literature that were somehow interesting, although not necessarily
for their applicability to our challenge.

8https://openslam.org/g2o.html
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4.3.1 Biologicaly Inspired SLAM

This SLAM approach is based on the idea that animals, for example mice,
are able to localize and navigate in the environment throughout their lives -
in other words they perform lifelong SLAM. And truly, their surroundings
are dynamic - another animals live in it, weather and seasons change and so
on. This idea resulted in presenting the RatSLAM algorithm which was used
by [1] and others.

RatSLAM models part of rodent hippocampus9. The RatSLAM consists
of three elements: pose cells, local view cells and experience map. Combined
together, we can obtain the complete state (x, y, θ) of a robot within 3D
environment.

These authors have presented their lifelong SLAM method at autonomous
robot performing mock deliveries, which is in a way a similar application to
ours. The results of the experiments performed were quite successful - the
robot was active for 37 h totally, having travelled 40 km and autonomously
recharged itself 23 times. In this time, it completed 1142 of 1143 delivery
task with success. As the environment for the experiments, real-life setting of
a busy office building was used. The robot had a laser sensor (240◦), 8 sonar
sensors and also a camera (360◦ × 120◦), which was facing in the direction of
the robot’s movement.

An interesting thought was brought up in this paper - whether the accuracy
of a map is the key factor. Its Cartesian accuracy is important for SLAM,
but the authors consider it secondary in the tasks of navigation from one
place to another, which is the case of our industrial application as well. For
UGVs traveling among several places in a factory, the map which is created
during this process is not important. The key metric is whether the robot
reaches its target destination or not. The experiments in this paper show
that reliable navigation to various locations can be accomplished successfully
without acquiring highly accurate maps.

SLAM as a Research Topic in Neuroscience

The above-mentioned approach is neither the first nor the last that takes the
inspiration from biology. In fact, we may expect more nature-based techniques
to appear in the future, as the professors in psychology and neuroscience
M.-B. Moser, E. I. Moser & J. O’Keefe shared the Nobel Prize in Physiology
or Medicine in 201410 for the discovery of the brain’s positioning system. It
is no surprise that an article by these authors was one of the references in [1].

9Hippocampus is a part of the brain which is located in the medial temporal lobe.
Being part of the limbic system, it is important for spatial orientation and navigation and
"transforming" information from the short-term to the long-term memory.

10The studies of spatial maps forming in brain go back to the first half of the 20th century.
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4.3.2 Prediction-based SLAM

Chang [13] presented a novel approach towards the SLAM problem that
examines the environment carefully and looks for a pattern in it. Based
on this exploration it predicts what the environment is like in areas it has
not explored yet, using patterns from already explored areas. Since some
environments where mobile robots work may have a repetitive structure (such
as office buildings, factories, shopping malls), the localization and mapping
process can be successfully accelerated.

4.3.3 tinySLAM

Having less than 200 lines of code, this algorithm was designed by Steux &
Hamzaoui [25] to be as minimalistic as possible, yet delivering satisfactory
results. It uses laser scan data and odometry in a particle filter.
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Chapter 5
Collective SLAM

As mentioned in Section 2.1, this thesis should help with the implementation
of unmanned ground vehicles (UGV) in a factory for transporting objects
between different places. The first level of improvement is to use more robots,
so more objects can be moved and the logistics can be more efficient. However,
even bigger improvements come when more robots cooperate, especially
sharing information while performing a task. The more robots move through
the factory, the more often the map of the environment is updated, thus it
has higher accuracy. Furthermore, when for example an aisle is suddenly
impossible to go through, the robot that senses it can inform the others. The
other robots then avoid this and choose an obstacle-free path instead.

In the literature, such a cooperation is called collective SLAM (C-SLAM),
multi-robot SLAM, collaborative SLAM, multi-vehicle SLAM and others. In
this thesis we will mostly use the term C-SLAM.

A very brief description of C-SLAM is as follows: several mobile robots are
moving in an environment, each building its local map of the environment
and trying to localize within it. Once the robots know their relative poses,
they can merge their local maps into one global map.

The advantages that are brought by using C-SLAM instead of SLAM
include higher accuracy stemming from the redundancy of data. A collective
robotic system is typically more robust to failures (as distributed system
are in general). However these advantages on one side mean significantly
increased complexity on the other side.

In this chapter we will look at the mathematical description of C-SLAM,
the main challenges connected with it will be discussed and several approaches
described, based on the research of literature. For deeper insights into this
topic we can recommend work by Saeedi et al. [24] who have recently published
an extensive and in-depth survey on the problem of multiple-robot SLAM.

5.1 Our Application Versus Literature

Our mobile robots (UGVs transporting objects between several places in the
factory) will work there for a long period of time and, furthermore, will be
equipped with an initial map of the environment. From our lifelong point
of view, we see the main contribution of using multiple robots naturally in
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expanded transportation capacity, but particularly in increased ability to
reflect the changes in the dynamic environment.

On the contrary, the majority of literature focusing on the C-SLAM topic
sees its main advantages in faster exploration of an area. This difference
between our application and the literature has to be reflected in the design
of our future algorithms. During this chapter we sometimes refer the readers
to this section, to keep these differences in mind.

5.2 Mathematical Formulation

To start simple, let us first denote a mathematical formulation of the C-SLAM
problem for two robots only. Imagine that two robots are performing SLAM
in an environment. Without loss of generality we can label the first robot
r(1) and the second r(2).

As defined in the Equation 3.3, the SLAM problem for the robot r(1) is
defined as follows:

p
(
x

(1)
t ,m(1)

∣∣∣ z(1)
1:t , u

(1)
1:t , x

(1)
0

)
(5.1)

and for the robot r(2) in a similar way:

p
(
x

(2)
t ,m(2)

∣∣∣ z(2)
1:t , u

(2)
1:t , x

(2)
0

)
(5.2)

where the symbols in the equation respect the notation from Section 3.1.1
with the extension of upper indexes (1) and (2) that assign the symbols to the
first and second robot.

Now, let the robots work cooperatively on the SLAM problem - in other
words let them work on the same map by putting

m(1) = m(2) = m . (5.3)

Then, we can join the equations 5.1 and 5.2 as [24, Eg. 7, p. 4] did in order
to obtain the equation for two-robot SLAM:
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Figure 5.1 depicts the two-robot SLAM situation. The same as in the
Figure 3.1, squares represent observed variables and circles represent hidden
ones.

Now we can move from the simple example of two robots to an example
with n robots: r(1), r(2), . . . r(n). It is obvious that the equation describing
the SLAM problem for the robot r(i) will have the following form:

p
(
x

(i)
t ,m

(i)
∣∣∣ z(i)

1:t, u
(i)
1:t, x

(i)
0

)
. (5.5)

Using this equation we can finally form the equation for the multi-robot
SLAM problem:

p (~xt,m | ~z1:t, ~u1:t, ~x0) , (5.6)

where
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Figure 5.1: Two-robot SLAM process as dynamic Bayesian network, drawn on
the basis of [24, Fig. 1, p. 5] and [20, Fig. 2, p. 2]

. ~xt = (x(1)
t , x

(2)
t , . . . , x

(n)
t ) is the vector of all robots’ positions at time t,.m is the map of the environment,. ~z1:t = (z(1)

1:t , z
(2)
1:t , . . . , z

(n)
1:t ) is the vector of all robots’ measurements,. ~u1:t = (u(1)

1:t , u
(2)
1:t , . . . , u

(n)
1:t ) is the vector of all robots’ control inputs, and. ~x0 = (x(1)

0 , x
(2)
0 , . . . , x

(n)
0 ) is the vector of all robots’ initial positions.

5.3 Main Challenges

The C-SLAM brings many advantages to the world of localization and map-
ping. However, a bigger number of robots also means increased complexity
and many other challenges that do not have to be dealt with in the single-
robot SLAM. Carlone et al. [21] listed 5 main challenges and Saeedi et al. [24]
even 10. Below, some of them are discussed, both in general and in the
context of our future industrial application1.

The overall challenges arising from multiple-robot operation such as task
allocation, formation and coordination of movement [24] and others have to
be taken into account as well, however they are not described here, as they
are not that relevant to the subject of this thesis.

1See Sections 2.1 and 5.1.
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5.3.1 Initial and Relative Positions

There are two possible cases: either the initial positions of the robots are
known, or they are unknown. The first scenario is much easier than the
second one, however the latter is the more common one.

In the context of our application, we probably might know the initial
positions of the robots at the beginning of the process. But we have to take
into account the fact that all the robots will not always be in the working
state - a robot might be moved away for maintenance or because of a failure.
When returned back to the process of transporting objects, it will not know
the positions of the others, thus we have to deal with the initial positions as
unknowns.

5.3.2 Map Merging and Fusion

The problem of map merging is strongly connected with the challenge of
initial and relative positions. Rone & Benz-Tvi [26] presented four ways of
map merging, which differ in computation complexity and state knowledge,
as the Figure 5.2 shows.

Figure 5.2: Various ways of map merging, drawn on the basis of [26, Fig. 10, p.
5]

If we know the relative positions of the robots with high accuracy, a relative
transformation matrix, representing the transformation from the first robot’s
map to the second one’s, can be constructed and consequently the global
map can be built. Unlike the case of correspondence, we do not need the
individual maps to overlap.

Having known the initial positions of the robot is in a way similar approach
to map merging as the above-mentioned one. However the task of computing
the robots’ current positions based on their initial positions is not trivial.

The relative position of robots can also be computed when two robots
"meet" (when one robot is detected within range of another robot’s sensor).
This meeting is referred to as a rendezvous. When a rendezvous happens,
the robots are able to compute their relative positions necessary for the map
merging.

If we have very low or zero knowledge of the relative positions of individual
robots, we can use correspondence that merges overlapping maps based on
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the similarities in them. The drawback of this approach is the necessity of
maps to overlap and the high computational complexity.

5.3.3 Communication Issues

A group of robots can cooperate only if the robots can communicate with
each other, which is possible only when tools for reliable data sharing are
available. The survey [24] stated four questions related to this challenge,
which are answered in the following paragraphs...1. What kind of data is shared?..2. How is the data shared?..3. Where is the data processed?..4. How is the data processed?

What Kind of Data Is Shared

There are two types of data that can be shared when performing a multi-robot
task. The first way is to share the raw data (all sensor and odometry data).
This approach requires the communication channel to be able to reliably
carry large amounts of data. Also, we need more computational power to
process all the data. When these conditions are met, we benefit from higher
flexibility that the larger amount of data brings. An approach that shares
the raw data was presented by Howard [20].

The other approach is to share data that is already processed - for example
local maps. The amount of data to be shared is significantly smaller, as well
as the computational complexity. One of the approaches that share processed
data is for example work by Saeedi et al. [27].

Regarding our application, sharing of raw data does not make much sense,
as the robots will be working in an environment with limited size - the
communication channel would be overwhelmed by the amount of similar data.
As a matter of fact, the information that the working area is limited should
allow us to divide it into discrete cells2. Then the robots in the environment
would only share information about cells whose state significantly differs from
the state stored in a lifelong global map (shared among all robots) - let us
call them update data. To use this approach, we would need to know the
locations of all robots within the map with a very high accuracy, since even
a small deviation would result in severe inconsistencies.

How Is the Data Shared

The channel for communication among robots has to be reliable, accessible by
all robots and apparently wireless. An economic and reasonable solution is
to use an existing communication infrastructure which the robots can easily

2This could be done for example by combining NDT maps and occupancy grid maps -
the approach by [4] described in Section 4.2.1.
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use and connect to. In our case that could be for example a Wi-Fi network
in the factory. But as the Wi-Fi network is meant to be used mainly for
other purposes than transferring data between robots, the amount of data
transferred would have to be low. If the only data shared via the Wi-Fi were
the update data mentioned in the previous paragraph, we assume that the
Wi-Fi network could be used, without getting overwhelmed.

The case of an error in the communication channel should not be destructive
to the whole C-SLAM process. Especially not in our application, where the
shared information are not the cornerstone of the whole application, but
rather an "icing on the cake" improving the whole process.

Where Is the Data Processed

Rone and Ben-Tzvi [26] introduced basic classification of multi-robot systems
based on their architecture: they can be centralized, hierarchical or decentral-
ized. The centralized approach requires one specific robot or another subject
to be responsible for the task. The hierarchical architecture is inspired by
the arrangement of military units [16]. In the decentralized approach the
computation of the task is distributed among more robots. If we combine
parts of these three architectures, we will create a hybrid architecture.

Because we expect the robots to be moved away for maintenance, for our
application we would probably choose the centralized architecture where
the responsible unit is not a robot, but a computer located somewhere in
the factory. This unit would be responsible for carrying the global map of
the environment. Although the responsible unit would be dependent on the
mobile robots, we do not want this dependency to be mutual, as an error in
the unit would collapse the whole system, which is undesirable.

How Is the Data Processed

Once all the data is successfully transferred among the robots and ready
to be processed, the challenge of how to process it appears. A very brief
introduction to C-SLAM approaches in general is located in Section 5.4.

5.3.4 Dynamics of the Environment

The algorithms for C-SLAM should be able to deal with dynamics in the
environment. It is quite obvious, since any environment where more than one
robot performs an activity is a dynamic one, because it contains the other
robots - dynamic objects. The C-SLAM algorithms are typically based on
one-robot SLAM algorithms, thus using an algorithm suitable for dealing
with a dynamic environment as the base should be a sufficient condition to
ensure stability in dynamic environments.
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5.3.5 Computational Complexity

The redundancy of data is the main reason of increased computational
complexity of C-SLAM algorithms in comparison with SLAM algorithms.
The complexity is strongly dependent on the number of robots and the size
of the map has an effect as well. Thus, when processing data from several
robots, an efficient way to do so has to be found in order to make it possible
for the algorithm to work online.

5.4 Approaches

The C-SLAM approaches and algorithms are based on the SLAM algorithms
for one robot [24], but they have to deal with new challenges stemming from
the presence of multiple robots which were described in the previous section.

The same as in the case of single-robot SLAM, some authors use EKF
or other filters, such as Sparse Extended Information Filter used by Thurn
& Liu [28].

Also the particle filters are used very often, especially RBPF3, despite the
fact that they are quite challenging because of the amount of data carried -
each robot has one map hypothesis for one particle. Some of the C-SLAM
approaches based on the RBPF [21] follow Grisetti, Stachniss & Burgard [2],
whose work we have chosen as the state-of-the-art approach and described
it in Section 4.1. Other works that follow a single-robot RBPF approach
include for example [20], [22] or [13].

3Rao-Blackwellized Particle Filters, for description see Section 4.1.1.
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Chapter 6
Experimental Setup and Experiments

In this section we describe both the background (experimental setup) and
the process (experiment) of measuring real-life data that will be used for
the design and testing of a lifelong SLAM algorithm. We explain what
software and hardware we used and why, and we also suggest a specific Robot
Operating System (ROS) packages that can be used.

6.1 Hardware

Regarding our future industrial application, the robot and the sensors are the
hardware elements that have to be taken into consideration. In this thesis,
we focus on the LIDAR.

Figure 6.1: Mobile robot Pioneer 3-AT, figure from [29]

6.1.1 Pioneer 3-AT

So far we only have a rough idea of what kind of wheeled mobile robots
(UGVs) will be used in our industrial application in the future. But for
the purpose of designing, implementing and testing the lifelong algorithm,
basically any wheeled mobile robot can be used. For our experiments we have
chosen Pioneer 3-AT, as it was available from the CIIRC. The robot is in the
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Figure 6.1. The Pioneer family of robots is used by many researchers, such
as [2], [30], [31], [5], [1], [32], which means that variety of reliable software
tools are available, including the Robot Operating System (ROS), which is
the subject of Section 6.2.

The Pioneer 3-AT is a four-wheeled mobile robot produced and delivered by
Adept Mobilerobots company1. Its steering is achieved by applying different
velocities for each side pair of the wheels - so called skid-steer locomotion.
This type of movement negatively affects the odometry.

According to its datasheet [29] it should be able to go as fast as 0.8 m s−1

and should be able to run on battery power for up to 4 h. It has a built-in
security feature - rear and front bumpers located slightly above the floor that
automatically stop the motion of the robot when they hit an obstacle.

6.1.2 SICK LMS111

Unlike the mobile robot, the choice of sensors to use is crucial. It determines
the characteristics of the data used as inputs for the algorithms of localization,
navigation and mapping. We have already discussed the sensors in general in
the Section 2.2 and we introduced some arguments why we have chosen the
laser range finder SICK LMS111 in the Section 2.2.2. Now we are going to
look at the sensor in detail.

Figure 6.2: Laser range finder SICK LMS111, figure from [33]

1http://www.mobilerobots.com/Mobile_Robots.aspx
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Figure 6.3: LMS 111: operating range diagram, figure from [33]

LMS111 is a high-performance highly robust sensor. In our experiments we
used the type LMS111-10100, which is designed to work also in an outdoor
environment. However, in the future application the indoor variant of this
sensor (LMS111-10000) will be used. Regardless of the ability to work outdoors
(ensured by functions such as heating and wider interval of permissible
operating temperature), all the other key parameters are equal for the outdoor
and indoor versions of the LMS111 sensor.

The basic technical details of LMS111-10100 are shown in the Table 6.1,
more to be found in [33]. For the diagram of the operating range, see
Figure 6.3. Regarding safety, the device is part of the laser class 1, thus it is
eye-safe.

Aperture angle 270◦

Operating range 0.5 m to 20 m, maximum 50 m
Angular resolution 0.25◦ / 0.5◦

Scanning frequency 25 Hz / 50 Hz

Errors of measurement systematic error ± 30 mm with
± 15 mm of statistical error

Interfaces
Serial (RS-232) - 9.6 kBaud to 115.2 kBaud
Ethernet - 10/100 Mbit/s
CAN bus

Operating voltage 10.8 V to 30 V DC
Power consumption 8 W
Weight and dimensions 1.1 kg, 105 × 102 × 162 mm

Table 6.1: The technical specification of LMS111-10100
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Operating Principle

The LMS111 is a 2D laser measurement sensor2 that scans its surroundings.
Using a laser diode and a rotating mirror, it emits infrared laser pulses with
a wavelength of 905 nm. It measures reflected laser pulses within the angular
range of 270◦.

The scanning distance range is dependent on the object’s reflectivity - we
can detect objects that are as far as 50 m, but only in optimal conditions.
In order to reliably detect an object with a reflectivity of 10 %, the distance
between the object and the sensor cannot be bigger than 18 m.

Once the pulse hits an object, it is reflected back to the sensor, where it
is detected by a photodiode. Then, the distance of the object is measured
based on the time of flight and according to Equation 2.1. The operating
principle is shown in the Figure 6.4.

Figure 6.4: LMS111: operating principle, figure from [33, p. 23]

Beam Diameter and Minimum Object Size

The size of the laser beam is dependent on the distance from the sensor, as the
Figure 6.5 shows. This affects the minimum object size that can be detected.
For a successful detection of an object, the object has to be bigger than the
diameter of the laser beam - the beam has to be incident on it totally. If this
condition is not met, the object cannot reflect the whole energy of the laser
and consequently the measurement can be lost.

The diameter of the beam d [mm] in the distance l [mm] is:

d = 8 mm + l × 0.015 rad . (6.1)

2This is where the abbreviation LMS in its name comes from.
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Figure 6.5: LMS111: beam diameter, figure from [33, p. 28]

The distance between two consecutive measurements k [mm] is also distance-
dependent and further dependent on the angular resolution ∆ω [rad]:

k = l ×∆ω . (6.2)

Using Equations 6.1 and 6.2 we get the formula for the minimum object
size smin [mm] that can be reliably detected at the distance l [mm] with the
angular resolution ∆ω [rad]:

smin(l,∆ω) = d+ k = 8 mm + l × (0.015 rad + ∆ω) . (6.3)

Communication Interface

We communicate with the sensor through the Robot Operating System via the
Ethernet interface. However, there are two more ways how to send telegrams
via terminal program to the LMS100 sensor - ASCII or Binary. Both ways
are more or less equivalent and the sensors answers in the same "language"
which was used to talk to it. It is all covered in detail in [34].

Overall, these kind of sensors are often used for the SLAM challenge, for
example in [2], [3], [4]. Although alternative sensors exist and at the same
time the SICK sensors are expensive, we have decided to choose these anyway
because of their robustness, reliability, deep documentation and available
support.

6.2 Software

Robot Operating System (ROS) is an open-source software framework for
robotics. Not only does it provide engineers and programmers with packages,
tools, drivers, libraries and other features that make the development of
a robot application easier and can save many developer hours, there is also
a big community around it - conferences (ROSCon), forums, tutorials and
others.

The ROS has been around since 2007 [35], but its popularity has started
to grow just in the last few years, maybe due to its rapid development -
a new distribution was sometimes released even twice a year which made
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its usage complicated. The pace of releasing new versions is getting slower3,
however, during the months we worked on this thesis, we were considering
three different distributions. In the beginning, Indigo was suggested by the
authors of the ROS framework as the most stable way, later Jade became
the recommended distribution and recently a new distribution Kinetic was
released. Eventually, we have chosen Jade for our work and used it on a laptop
with Ubuntu 14.04.

There are many other frameworks for robotics software, Kramer & Scheutz
[37] compared 11 of them back in 2007. However, ROS is probably the
most popular nowadays as it "probably has hundreds of thousands of ac-
tive users" [38]. Nevertheless, some developers still prefer to build their
applications from scratch, so it fits their needs perfectly.

6.2.1 How ROS Works

The ROS is well-structured so it could provide its users and contributors
with the desired level of abstraction. The whole structure is outlined in the
Figure 6.6, its basic elements are: packages, nodes, topics, messages and
services..Packages are units of ROS software that represent a useful piece of

software4. Packages consist of nodes, usually of many nodes..Nodes are executables that perform computation [39]. For the com-
munication between nodes messages are used, which can be transferred
using either topics or services..Master makes it possible for nodes to "see" each other and it also

provides the name registration [40]..Parameter server is a part of the master and basically stores all
the data..Messages are just structured information data that travels between

nodes. There are different types of messages for different data. A type
of message can be composed of other message types..Topics are elements that nodes can publish to or subscribe to. More
than one node can publish to a topic and also subscribe to a topic. The
topics and the publisher/subscriber architecture are an elegant way to
share data among nodes.. Services represent another way of how nodes can get information. Ser-
vices are provided by nodes. When a node wants to "use" the service, it
has to send a specific request message to it, and then it receives a reply
message.

3As of 25. May 2016, the ROS community plans to release a new version in May of each
year. [36]

4Currently over 1,000 packages for the Jade distribution is available to be downloaded
from http://www.ros.org/browse/list.php
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Figure 6.6: The communication within the ROS structure

6.2.2 Used Packages

The fact that ROS is quite popular and thus has a lot of developers and users
is double-edged, as there are always several ways (sometimes even too many
ways) how to reach a single goal. In the following paragraphs we present
and recommend the packages we used with success for our experiments. We
also share the ROS commands that we used in order to make the potential
reimplementation easier.

ROSARIA

The ROSARIA package [41] is one of the essential packages as it connects the
ROS with the Pioneer 3-AT and other Adept MobileRobots. It enables access
to all the important data from the mobile robot, such as odometry information
that is being published to the /RosAria/pose topic. It is subscribed to the
/cmd_vel topic, therefore it receives velocity commands (via this topic) that
control the motion of the robot. The documentation also describes a way to
connect the laser and get its data, however, after some struggling we decided
to use another package for that task.

We use the following command to run the ROSARIA node.

rosrun rosaria RosAria

Once the RosAria node is running, we can read the odometry information
easily.

rostopic echo /RosAria/pose
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Teleop_twist_keyboard

The ROSARIA package also provides a way to tele-operate the robot which is
however not very useful, as only 4 types of movement commands can be used
(forwards, backwards, spin right, spin left). This is why we have chosen the
teleop_twist_keyboard package[42] for the control of the robot’s movement.
The motion is controlled using only 9 keys, which makes the control very
simple, yet sufficient for our experiments.

The following command is used to run this node.

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

LMS1xx

This node [43] allows us to connect the ROS with a SICK LMS 1xx laser and
to get (read) its laser data that is published to the /scan topic.

Firstly, we have to define the IP address of the Ethernet port of the com-
puter running ROS to be the same as the IP address of the sensor5. Then,
we can connect to the laser. Once the LMS1xxx node is running, we can read
the laser-scan data easily.

sudo ifconfig eth0 10.10.20.1 netmask 255.255.255.0
rosrun lms1xx LMS1xx_node _host:=10.10.20.181
rostopic echo /scan

Rviz

The rostopic echo command is not a very elegant way to look at data, as it
just causes it to print to the terminal. It is much better to visualize the data,
which we did using the rviz package [44]. The package provides advanced
3D visualizations for anything that happens in the ROS topics. After the
package is launched, which is done easily with a simple command rviz, we
just define the topics we want to display. An example of the visualization
output can be found in the Figure 6.11.

Rosbag

The rosbag package [45] enables recording any data that is published to any
topic and then also to play back this data. This comes in handy particularly
when designing and algorithm. The user measures real-life data just once
and then he can play it back in order to test the algorithm, so he does not
have to physically run the robot every time he wants to try the algorithm.

To record the odometry data from the /RosAria/pose topic and the laser
scan data from the /scan topic and to save them into file recording_test we

5Or vice versa - to define the IP address of the sensor to be the same as the IP address of
the Ethernet port, this can be done using the Configuration & Diagnostic Software provided
by SICK.
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used the following command.

rosbag record -O recording_test /RosAria/pose /scan

6.3 Experimental Setup

Having explained the hardware and software used for our experiment, we can
proceed further to the description of the experimental setup. The overall
structure of the setting of both hardware and software can be found in the
Figure 6.7. The photo of the robot we actually used is depicted in the
Figure 6.8. Since the robot is also used by other research groups, there is
a large number of sensors mounted on it. As we mentioned several times, we
were using data from the LIDAR only.

Figure 6.7: The setting of our experiment: the blue rectangle in the LAPTOP
rectangle stands for the ROS, the lines 1© to 4© represent ROS topics and
messages transferred via them: 1©, 2© represent the odometry information in the
topic /RosAria/pose, 3©, 4© represent the laser scan data in the topic /scan, and
finally the lines 5© to 9© represent the ROS packages that connect the hardware
and the data.
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6.4 Experiments

The goal of the experiments we performed was to evaluate the hardware and
software that could be used either for the future industrial application or for
its development. We have already described one experiment in Section 2.2.3,
which we conducted in order to explore the possibilities of using the laser
sensor SICK S300 for both safety and measurement purposes.

In this section we describe the experiments conducted using mobile robot
Pioneer 3-AT, laser range finger SICK LMS111 and the Robot Operating
System on the software side. The objective was to gather odometry and laser
data from real-world environment which could be used for further research.

Figure 6.8: Photo of our experimental setting

6.4.1 Measured Data Format

Odometry Data

The odometry information is in the ROS published at the RosAria/pose topic
in nav_msgs/Odometry file format. Its structure is depicted in the Figure 6.9.
The rate at which the odometry information is published is 10 Hz [41].

Laser Data

The data from the laser range finder SICK LMS111 are publied at the
/scan topic in ROS in sensor_msgs/LaserScan format. The structure of
this format is shown in the Figure 6.10. The frequency of publishing is
set when configuring the laser scan, in our case it is 5 Hz. The example of
data published from the hall in the BLOX office building is depicted in the
Figure 6.11.
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Figure 6.9: Structure of odometry data, based on [46]

Figure 6.10: Structure of laser data, based on [47]
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6.4.2 Measuring Real-Life Data in Office Building

The measurements were taken in the office building BLOX in Prague 6, where
the CIIRC is currently situated. Despite that corridors in office buildings
are not very dynamic, we have tested the motion control of the robot and
the behavior of the laser - how it registers its surroundings with some basic
changes in the environment, such as people walking by or opening and closing
of doors.

We conducted several trial rides in the corridors and eventually recorded
two of them for a future use. The first one was a 96 s loop ride in quite
a uniform environment. The second one was 270 s long and it was again
looped. During the second run the laser observed opening and closing doors,
walking persons, walls made of glass and the whole surrounding of the path
was bit more irregular. The print screen of the vizualization of the laser
"view" in the rviz and the place, from which it was taken, are depicted in the
Figures 6.11 and 6.12.

The gather data are saved in bag6 file format (BLOX_1.bag, BLOX_2.bag)
and are part of the enclosed CD7. The Figures 6.13 and 6.14 shows examples of
one message being published on topic /RosAria/pose and /scan, respectively.
The general structure of this data was described in the previous section.

6bag files are produced by the rosbag package described in Section 6.2.2.
7See Appendix A.

50



..................................... 6.4. Experiments

Figure 6.11: Print screen of visualization of laser data in rviz

Figure 6.12: The position in which the Figure 6.11 was taken
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Figure 6.13: Example of odometry data published at /RosAria/pose topic

Figure 6.14: Example of laser data published at /scan topic
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6.5 SLAM Algorithms Available in ROS

As the simultaneous localization and mapping is a popular research topic in
the world of mobile robotics, it is no surprise that the ROS offers packages that
deal with this challenge. Over time the following packages appeared: gmap-
ping, hector_slam, LagoSLAM, coreslam, tinySLAM, karto, vslam, rgbdslam,
stereo_slam and others.

Back in 2013, Santos et al. [14] compared 5 SLAM algorithms8 available
in ROS9 in both simulations and real-world environments using an Arduino
Based robot and laser range finder. The created maps were compared with
the actual environment using the k-nearest neighbor approach. The lifelong
aspect was taken into consideration, as the CPU load was measured and
evaluated. All five algorithms produced consistent maps in simulations as
well as in the real-world settings.

We mentioned that the ROS is developing fast and new distributions have
been appearing up to twice a year. Therefore it is without big surprise
that for the distribution of ROS we used (Jade), only three SLAM packages
are available: gmapping, hector_slam and stereo_slam. Though the future
industrial application will probably need a custom-made lifelong SLAM
algorithm, we might use these open-source algorithms for initial experiments,
therefore we provide a brief description of them.

6.5.1 Gmapping

According to [14], gmapping [48] is the most used SLAM package available
in ROS worldwide. It is an open-source implementation of [2], which was
described in the Section 4.1.

6.5.2 Hector_slam

Hector_slam [49] estimates the pose based on scan matching. It is able to
work online and does not use the odometry information. In the tests conducted
by [14], hector_slam together with gmapping had the best results. Both
algorithms have also had reasonably low and comparable CPU requirements.

6.5.3 Stereo_slam

Stereo_slam [50] uses only one stereo camera, thus it is not very interesting for
our approach. It addresses the SLAM problem with the graph-optimization
approach.

8hector_slam, gmapping, karto, coreslam and LagoSLAM
9At that time, Fuerte was the distribution used.

53



54



Chapter 7
Conclusion

Throughout this thesis we were examining the topic of lifelong localization
of mobile robot in the context of a future implementation of UGVs for
transporting materials in a factory.

In the Chapter 2 we described key aspects of UGVs in industry with focus
on sensors. The reasons for choosing laser range finder as the main sensor
for out application were explained. We also conducted an experiment with
safety laser scanner SICK S300 whose results show that the sensor is able to
fulfil both safety and measurement purposes. Therefore we do not have to
equip the UGVs with two costly sensors.

The Chapter 3 focused on the formal description of lifelong localization and
related topics. The Chapter 4 was devoted to the state-of-the-art algorithms
suitable for solving our problem. Works [2] and [4] were both described in
detail. The first approach that builds on RBPF is used widely by the mobile
robotics community and is available online for download. One of the assets
of the second work lies in their hybrid NDT mapping approach, which gives
an upper boundary for the memory required, which is one of the key factors
of lifelong localization.

Collective SLAM, the topic of Chapter 5, deals with cooperation of more
mobile robots on a task. The main issues that have to be considered were
discussed, again with accent on our future application, since the differences
between the literature and our challenge are in the case of C-SLAM quite
significant.

Finally, the Chapter 6 describes the experiments we conducted. Used
hardware and software is described closely and its usability for the future
application is evaluated. The ROS strengthens its position in the mobile
robotics community, we suggest to use it at least for further experiments and
testing of algorithms. On the hardware side, the laser range finder SICK
LMS111 seems to be applicable. In order to collect real-world data for further
research, we conducted experiments in an office building, having used mobile
robot Pioneer 3-AT (it will not be used in the factory, though). The collected
data are described briefly and can be found on the CD.

Although we digressed a bit from the initial guidelines by putting the main
emphasis on the research of literature, we believe this thesis is a contribution,
as it should save hours of research of the implementation team.
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Appendix A
Contents of Enclosed CD

/
data

BLOX_1.bag .............first set of measured data
BLOX_2.bag .............second set of measured data

documentation
LMS111_operating.pdf...digital version of [1]
LMS111_telegram.pdf....digital version of [34]
S300_operating.pdf.....digital version of [7]
S300_telegram.pdf ...... digital version of [8]

thesis
thesis_kaposvary.pdf ..digital version of this thesis
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