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26th May 2016





Acknowledgements

Foremost, I would like to express my deepest gratitude to my supervisor Mgr. Petr
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Abstrakt

Ćılem této práce je vytvořeńı systému, který je schopen poskytnout odpovědi na otázky
zadané v přirozeném jazyce. Jelikož otázky týkaj́ıćı se konkrétńıch fakt̊u maj́ı obvykle
jednoduchou strukturu obsahuj́ıćı jednu nebo dvě entity a několik relaćı mezi nimi
a odpověd́ı, nab́ıźı se použit́ı strukturovaných databáźı jako možný zdroj odpověd́ı.
Relace, které jsou stavebńım kamenem pro dotazy do těchto databáźı, jsou vybrány z
relaćı nacházej́ıćıch se v okoĺı entit obsažených v otázce. Několik typ̊u skórováńı a řazeńı
těchto relaćı nebo sekvenćı relaćı je navrženo a porovnáno v této práci. Finálńı imple-
mentace bude součást́ı YodaQA systému a výsledky p̊uvodńıho řešeńı budou provnány
s novým př́ıstupem.

Kĺıčová slova Odpov́ıdáńı na otázky, Strukturovaná databáze znalost́ı, Zpracováńı
přirozeného jazyka, YodaQA, Freebase, Neuronové śıtě

Abstract

The aim of this thesis is to create a system capable of providing the answers to a
factoid question in the natural language. Since the factoid questions usually have a
simple structure consisting of one or two entities and a few relations between them and
between the entity and the answer, it is suitable to use a structured knowledge base as
an answer source. The relations forming a query for the knowledge base will be selected
from the relation neighbourhood of the entities contained in the question. Several types
of ranking those relations or sequences of the relations are introduced and compared.
The final implementation will be a part of the YodaQA system and the original and the
final performance will be compared.

Keywords Question Answering, Structured Knowledge Base, Natural Language Pro-
cessing, YodaQA, Freebase, Neural Networks

ix





Contents

Introduction 1

Goals 3

1 Question answering system 5
1.1 Types of the questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 IBM Watson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 YodaQA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Question analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Answer producing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Answer analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.4 Answer scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Analysis and Related work 11
2.1 Knowledge bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Graph databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Freebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Wikidata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Problem specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 More Accurate Question Answering on Freebase . . . . . . . . . . 15
2.3.2 Semantic Parsing via Staged Query Graph Generation: Question

Answering with Knowledge Base . . . . . . . . . . . . . . . . . . . 17
2.3.3 Enhancing Freebase Question Answering Using Textual Evidence . 19
2.3.4 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 YodaQA approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Implementation 23
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



3.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Entity linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Neighborhood exploring . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Generating gold standard . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Dataset for dot product based scoring . . . . . . . . . . . . . . . . 29
3.2.2 Dataset for neural network based scoring . . . . . . . . . . . . . . 30

3.3 Extending original YodaQA approach . . . . . . . . . . . . . . . . . . . . 31
3.4 Generating candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Dot product based selection . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Neural network based selection . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . 35
3.6.2 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.3 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Final answer producing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7.1 Scoring API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7.2 Answer scoring and merging . . . . . . . . . . . . . . . . . . . . . . 37

4 Experiments 39
4.1 Dataset experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Empty gold standard of the paths . . . . . . . . . . . . . . . . . . 39
4.1.2 Gold standard reduction . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Property blacklist . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Dot product based scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Neural network based scoring . . . . . . . . . . . . . . . . . . . . . . . . . 45

Conclusion 49

Bibliography 51

A Acronyms 55

B Property blacklist 57

C Contents of enclosed CD 59

xii



List of Figures

2.1 Basic RDF statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Modified RDF statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Simple query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 WHERE statement with CVT node . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Pipeline structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Three basic query structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Querying property label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Querying second level property . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Non-siamese convolutional neural network . . . . . . . . . . . . . . . . . . . . 36
3.6 Non-siamese recurrent neural network . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Learning curves for the dot product based model . . . . . . . . . . . . . . . . 45
4.2 F1 score dependence on the answer score threshold . . . . . . . . . . . . . . . 47

xiii





List of Tables

2.1 Aqqu results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Stagg results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 DeepQA results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 YodaQA results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Empty gold standard paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Blacklisted properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Original approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Original approach + entity linking . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 moviesD with entity linking, movies question excluded . . . . . . . . . . . . . 44
4.6 Extended approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Dot product based scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Model comparison using the WQME and WQMER datasets . . . . . . . . . . 46
4.9 Neural network based scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.10 Relation matching comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.11 F1 comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.1 Blacklisted properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xv





Introduction

Searching for information is a very common and important task. The search engines such
as Google, Bing, etc. can be used for obtaining articles containing information relevant
to the given search query. People typically type a question or selected keywords and a
search engine returns a list of the articles sorted by their relevance. This is convenient
when someone looks for the complex information. For example, if users want all the
information about one particular actor, they want to read whole article.

On the other hand, sometimes users want to know one specific fact, such as the age
of an actor. In this case, they need to go through the articles returned by the search
engine a look the fact up. Sometimes, the requested fact could be shown in an article
snippet. With a growing number of pages in the the world wide web, the process of
finding exact information in a list of the articles could become difficult task.

Question answering (QA) system, on the other hand, returns in ideal case only the
exact information which is an answer to the given question. Some search engines provide
this feature in addition to the search results for some subset of questions. The typical
search engine query consists of only keywords as people usually do not want to type full
question, whereas question answering system expects full question as an input. This
makes the QA system more suitable for cases where the voice is used as an input.

The question answering is often implemented as a part of the smart assistants. The
examples of such assistants are Microsoft Cortana, Apple Siri and Google Now. These
services provide additional functionalities besides pure question answering such as adding
reminders, sending messages, etc. Since the input is usually a user voice, the natural
language sentences need to be processed for every task the same way as they need to be
processed during the question answering task.
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Goals

The goal of the thesis is to enhance the YodaQA question answering performance using
the structured knowledge bases. This is one the possible approaches (beside full text
search in unstructured text) to produce answers for given questions. In the beginning
of the thesis, it is necessary to understand the question answering process from question
as an input to final answer as an output.

Next important step is to get to know current state of art solutions and implement
own approach of generating answers from the structured knowledge bases.

The implemented solution is a part of the YodaQA system and it is also important
to analyse current approach of the system in order to improve it.
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Chapter 1

Question answering system

A question answering system is, in general, a software, which accepts question in natural
language and as its output it provides an answer. In comparison with the search engines,
this requires an additional step, which is finding the relevant information in the articles or
in other sources of information. In comparison with the querying structured information
sources, the database queries need to be in strict structured format. However, the
natural language questions can be written in numerous ways which makes it difficult for
computers to process them and find the right answer.

1.1 Types of the questions

The question types can be divided into several categories, based on the range of covered
topic:

1. Open domain

2. Domain specific

The open domain question answering system should be able to answer a question
from various topics such as history, film, science, literature, etc. On the other hand,
domain specific system is specialized into one topic which makes question answering
process easier because of the limited range of the questions.

The question can be also divided into the categories according to the answer types.
There are multiple levels of a answer types that can be distinguished. At this point, we
focus on the top level answer types which could be following:

1. Description

2. Opinion

3. Summary

4. Factoid
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1. Question answering system

The questions in the categories description, opinion and summary usually have an
answer consisting of more sentences, while the factoid questions can be answered using
a few words. The example of the description question can be: What does the building
look like? Opinion question: What is the author’s opinion about political situation in
the article? Summary question: What is the book about?

The factoid questions are more straightforward and usually can be answered un-
ambiguously. For example: Who is the president of the USA? or Who played Severus
Snape in Harry Potter movie? Unlike the description, opinion and summary questions,
the factoid questions do not require full text understanding and returning a text para-
graph based on a knowledge from the original text. However, the answer can be exact
part of the original text or the field in database.

The factoid questions can be further divided into yes/no, list and other questions.
The answers to the yes/no questions cannot be typically directly obtained as a knowledge
base query. For example, in order to answer the question Did Daniel Radcliffe star in
Harry Potter movies? one need to get all the actors who starred in Harry Potter and
find whether any of their names match with Daniel Radcliffe.

The answers to the list questions, however, can be directly obtained from the know-
ledge base. Additionally the question answering system needs to recognize that multiple
answers are requested.

1.2 IBM Watson

IBM Watson is a computer capable of the questions answering task. It was specialized
into the Jeopardy! quiz questions. These are in fact the factoid questions but the
structure of the questions is quite different. The questions do not typically start with
the question word and may consist of multiple sentences. For example, the regular
factoid question such as Who is the president of the USA? could have quiz-like format
Say name of the current USA president.

In 2011, Watson won the Jeopardy! competition against the human opponents.
Thanks to this event, the question answering task has become even more popular and
future QA systems was inspired by Watson’s architecture.

1.3 YodaQA

YodaQA is a question answering system which focuses on the open domain factoid
questions. The acronym stands for “Yet anOther Deep Answering pipeline”. The devel-
opment began in 2014 by Petr Baudǐs[1] and it has been under the development since.
It is an open source project with the source codes available at github1. It also provides
live demo2 where anyone can test its capabilities.

1https://github.com/brmson/yodaqa
2http://live.ailao.eu/
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1.3. YodaQA

The system is built in Java using the Apache Unstructured Information Management
Architecture (UIMA) framework[2], which helps to store annotations generated during
different parts of the pipeline. The separation also makes us to easily use multiple CPU
cores for different parts of the question answering process.

The process beginning with a input question and ending with a final answer can be
divided into four basic parts:

1. Question analysis - segmentation, lemmatization, POS (part of speech) tagging,
finding concept, clues, LAT, SV, . . .

2. Answer producing - finding passages from corpus, querying knowledge bases
(predicting query properties)

3. Answer analysis - answer types, answer features

4. Answer scoring - ranking answers from all sources

The following subsections describe each phase in detail.

1.3.1 Question analysis

The first step that is needed to be done is the tokenization. It simply splits the sentence
or sentences into individual words which can be consequently processed in further steps.

The next step takes individual words and makes a part of speech tag for each one of
them. It identifies word categories such as noun, adjective, verb or adverb. These tags
are used for example for identifying entities or clues.

The lemmatization step finds a base form of the words. For some words, it needs
to take context into account in order to determine proper base form. For example, the
word “bark” can be a verb with base form “to bark” (meaning: A dog is barking.) or it
can be a noun with base form “bark” (meaning: The tree has a thick bark.)

The focus of the questions is identified by several rules based on the information
obtained in the previous step of the question analysis. The focus is the point in the
question, telling what the answer is about. The focus word is also the place where
we can place the answer. For example, in the question Who played Sheldon Cooper in
The Big Bang Theory?, the word “who” indicates that the focus is “person”. It can be
replaced with the answer resulting in the sentence Jim Parsons play Sheldon Cooper in
The Big Bang Theory.

The lexical answer type (LAT) is used to determine a type of the answer. It is usually
a focus with an exception when focus is a question word. In that case, it needs to be
transformed to the concept word according to the predefined rules. For example: who
→ person, where → location, when → time, etc.

The entity linking is an important step for the thesis. The goal of this subtask is to
find all entities mentioned in the question and link them to the appropriate Wikipedia
topics. The entity candidates are drawn from the clues (question keywords), n-grams,
fuzzy search and labels from Wikipedia links (crosswikis). The candidates are then

7



1. Question answering system

sorted by their probability estimated using a logistic regression. Features, such as entity
origin, edit distance and relatedness to the question, are the inputs to the classifier.

1.3.2 Answer producing

Answers can be produced from two different sources which are the unstructured English
Wikipedia text and the structured knowledge bases.

• The unstructured search[1] uses articles from the English Wikipedia. The
article typically have an entity label as its title and the first paragraph contains
a description or a summary of the given entity. The search process itself can be
divided into four categories:

– Title-in-clue search tries to find match between the question clues and the
article titles. The clues could be entities, SVs, LATs, noun phrases described
in previous subsection.

– Full-text search searches for a clue in the title and in the article text. The
individual sentences are marked as the passages and sent to the passage ana-
lysis.

– Document search is similar to previous one, but only the document text is
searched and the titles are considered as potential answers.

– Concept search is similar to the first one, but the exact match between the
article title (or alias) and the question clue is required.

• Structured search is the main focus of this thesis and will be discussed later
in more detailed way. The goal is to use a structured knowledge base (Freebase,
DBpedia, Wikidata) as a source of the answers. The task is to build a query in
SPARQL (SPARQL Protocol and RDF Query Language) which will be executed
against the knowledge base.

1.3.3 Answer analysis

This step takes the candidate answers and generates various features, which will be used
for the answer scoring. The important feature is the one that tells whether the question
LAT matches the answer type. It is called type coercion. For example, in the question
Who plays Marge in The Simpsons?, the LAT derived from the question word “who” is
person and the answer type of the correct answer “Julie Kavner” is a actor which can
be generalized to a person using Wordnet[3] links. Since both the question LAT and the
answer type are a person, this step generates perfect type coercion.

The answer LATs are generated in several ways. Answers have quantity LAT if they
contains a number. The type generated by the Named entity recognizer (NER) is used
as the LAT if available. These types are: person, time, organization, location, money,
percentage and date. The answers generated from the unstructured text use DBpedia
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1.3. YodaQA

ontology to generate LAT whereas the answers form the structured knowledge bases use
the property name.

Another feature is telling whether there is an overlap between the question clues and
the answer.

1.3.4 Answer scoring

This step takes all candidate answers and computes a score for each of them, telling the
possibility of an answer being the correct one. The classification is done using gradient-
boosted decision forest consisting of 200 trees.

An input for the classifier are the features listed in the previous subsection plus a few
additional ones. If the same answer was generated multiples times, all its instances are
merged into one and the number of these instances is used as a feature. The questions
are also classified into 6 classes which are used as the features. These categories are
description, entity, abbreviation, human, number and location.

For each feature, two more values are generated. The first value is the normalized
value of the corresponding feature over the full answer set in a way, that the mean of
the distribution of the values has a mean equal to 0 and a standard deviation equal to
1. The second one is a binary value which tells whether the corresponding feature was
set or not.

9





Chapter 2

Analysis and Related work

This chapter analyses the possibilities of the question answering using structured know-
ledge bases. The first section describes a knowledge base structure and principles as
well as the comparison of the different kinds of them. The very next sections describes
current approaches of the structured query generation. Finally, the last section analyses
current approach of YodaQA system and possibilities of improvement.

2.1 Knowledge bases

The knowledge base (KB) is a storage of the information. In computer science, it requires
the data to be in a machine readable format. The idea is to be able to create a query
which can be used for data retrieval. The knowledge base is usually implemented as a
graph database where information is stored as nodes and edges.

2.1.1 Graph databases

The graph database is a NoSQL data store which uses the graph structure for storing
information instead of the tables as in case of relational databases. This approach
aims to domains where there are many relationships between the individual entries in
the database. The relational databases store connections between the entries in different
tables as foreign keys. The keys refer to the primary keys in another table. It means that
the relationship needs to be computed at the query time which can be computationally
expensive.

Graph databases consist of three main construction elements:

• Node - representation of the entity (analogical to the row in relation DB)

• Property - information about the node

• Edge - relation between two nodes or the node and the property
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2. Analysis and Related work

The largest subset of the graph databases are RDF[4] databases. The RDF acronym
stands for Resource Description Framework. It is the only standardized structure among
the NoSQL solutions[5]. Like in the graph databases, the data are stored in the triplets
which represent the object–predicate–subject structure. For example, the statement
Suzanne Collins wrote the Hunger Games. can be graphically represented as shown in
the Figure 2.1.

"Hunger games" "Suzanne Collins"
witten_by

Figure 2.1: Basic RDF statement

The example sentence is basic RDF statement, where “Hunger Games” is a subject,
“written by” is a predicate and “Suzanne Colling” an object. The predicate can be
also called property name. These property names can either connect two resources or a
resource and an atomic value. In the previous example, the Hunger Games is the resource
node and Suzanne Collins is the atomic value. The resources can have set of properties
(predicates) leading to the other resources or atomic values, but the properties cannot
lead from the atomic values. If we need to add some properties to Suzanne Collins we
would need to modify the example in a way shown in the Figure 2.2.

"Hunger games" resource_id
witten_by

"Suzanne Collins"
name

"American"
nationality

"August 10, 1962"

born date

Figure 2.2: Modified RDF statement

The replacement of the atomic value with a resource node allows to add multiple
properties to that node (properties name and born date were added for illustration).
The resource node has now an unique ID instead of the author’s name as label. Note
that the node labelled “Hunger Games” should also have the unique ID instead of this
label. This is for the simplicity of the example and the proper identification is shown on
the other resource node.

In order to have unique identifications across knowledge bases from different sources
and authors, RDF comes with XML name spaces. These name spaces point into the
specific vocabularies of the property names or the node IDs. The written by property
name, for example, could look like myns:written by if the myns prefix is defined, for
instance, in the following way:

<?xml:namespace ns="http://mydomain.org/ns/" prefix="myns" ?>

12



2.1. Knowledge bases

For querying data from the RDF database, there is a strong standardized language
called SPARQL (SPARQL Protocol and RDF Query Language). The syntax of this
language is very similar to the SQL syntax. There are two essential keywords same
as in a SQL query (SELECT, WHERE). Since there are no tables in RDF databases, the
keyword FROM is not usually necessary to be present in a query. However, it can be used
for specifying the RDF graph.

It is usual for the query to begin with a prefix specification. It simplifies the rest of
the query because we do not have to write full name space URI. Then, it is followed by
the SELECT <variables> WHERE { <conditions> }.

PREFIX ns: <http://rdf.freebase.com/ns/>

SELECT ?director WHERE {

ns:m.12345 ns:film.film.directed_by ?director .

}

Figure 2.3: Simple query

The Figure 2.3 shows an example of a simple SPARQL query. It tries to retrieve a
node connected to the node with ID m.12345 by the relation film.film.directed by.
If the node with given ID was a film, the query would return its director (if it was stored
in the knowledge graph). Note that the node ID and the property (relation) are prefixed
with the namespace prefix, specifying the Freebase schema.

As shown in the Figure 2.3, the query structure corresponds with the RDF triplets.
It means that the lines of the query also describe subject – predicate – object structure.
The variable with the same names are mapped to the same object. The mapping is
helpful when constructing a more complex query. For example (Figure 2.4), if we want
to obtain a node that is connected to another one using two properties, we would need
to pass those two lines into WHERE block of the query.

?film film.film.starring ?meta .

?meta film.performance.character ns:m.12345 .

Figure 2.4: WHERE statement with CVT node

The middle node marked as meta is also called Compound Value Type (CVT) and it
interacts with another properties which describes the relationship between given entities
(in this case, additional properties could be for instance, an actor, start date, end date,
etc.).

For purpose of this thesis, one more query element is worth mentioning. We can
specify a filter condition to select only subset of the results. The typical example
is that we want only those nodes, which have a English label (FILTER(LANGMATCHES
(LANG(?label),"en"))).

13



2. Analysis and Related work

2.1.2 DBpedia

DBpedia[6] aims to create a structured graph from Wikipedia. Although Wikipedia
stores the information mostly in an unstructured way, some important data are stored
in the infoboxes. The infoboxes are tables shown in top right corner of the Wikipedia
articles and they show basic information about the entity described in the article. These
infoboxes also contains metadata which can be used for the automatic processing of these
pieces of information and storing them into the structured knowledge base.

Thanks to the automatic process of importing data from the Wikipedia to the DB-
pedia, the data are updated several times per a year. The data are stored in the RDF
triplets and can be queried with SPARQL. This is the main advantage in comparison
with the Wikipedia, where only the full text searches can be performed.

The DBpedia ontology is created by a community as well as the mappings between
the information stored in the Wikipedia infoboxes and the RDF triplets described by
the ontology. The mapping solves several issues such as different names for the same
properties in the infoboxes.

2.1.3 Freebase

Freebase[7] is a community based knowledge base. It was launched in 2007 by Metaweb
Technologies company. The company was acquired by Google later in 2010. Its goal
was to create a structured knowledge base with the information gathered from multiple
sources with community help in adding new data and maintaining already stored content.

It is similar project to DBpedia with some major differences.

• The information is imported by the community instead of automatic import from
wikipedia infoboxes. (It is also possible for some bots to automatically import
information but it is not the only way.)

• The information comes from multiple source in addition to the Wikipedia, such as
MusicBrainz or TVRage.

Thanks to the additional sources, the Freebase offers better topic coverage than the
DBpedia. Unfortunately, it is no longer under development as Google decided to shut it
down. The official retirement was on June 30, 2015, but the Freebase API was functional
until May 1, 2016 (approximately). Company now offers Google Knowledge Graph API
which can be used for searching for the entities according to the labels. There are also
available Freebase RDF dumps which can be imported in a custom endpoint.

2.1.4 Wikidata

Since the end of the Freebase, Google has suggested to use Wikidata[8] as its successor.
The Wikidata was launched by Wikimedia foundation in 2012. Its goal is to store the
information in the structured way to help other projects including Wikipedia or the
question answering systems. Using the structured information about the entities could
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be used for the construction of Wikipedia infoboxes. It is the exact opposite approach
to DBpedia approach, where the structured information is built from the infoboxes.

The Wikidata stores the data origin or citation beside the actual information. This
is the main reason why the Freebase is not directly imported into the Wikidata as the
Freebase provides mostly the Wikipedia page as a source of the information according to
the post on the official Freebase Google Plus page. Instead of importing whole Freebase,
Google provides a mapping between the entity IDs where it is possible.

2.2 Problem specification

The problem of the answering questions using the structured knowledge bases can be
described as a transformation of the natural language question to the specific logical form
or the query in the specific language which can be used for retrieving the information.
In the RDF knowledge bases, it means to find the correct relations (properties) which
“leads” to the answer entity. It also requires to find the topic entity which is mentioned in
the question where the property path should begins. More about this topic is discussed
in the Chapter 3.

2.3 Related work

Next three subsections describe in detail three most recent articles about the question
answering using the structured knowledge bases. All three articles (More Accurate Ques-
tion Answering on Freebase[9], Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base[10] and Enhancing Freebase Question An-
swering Using Textual Evidence[11]) have similar approach, in which they all explore all
possible property paths and rank them.

2.3.1 More Accurate Question Answering on Freebase

More Accurate Question Answering on Freebase[9] article describes the process of trans-
forming a natural language question to a SPARQL query. The system that the article
describes is called Aqqu. This process is divided into four steps: Entity identification,
Template matching, Relation matching and Ranking.

Entity identification

This step tries to find the entity mentions in the input question and maps them to the
nodes in the knowledge base. Even if the word or sequence of words in a sentence is
correctly annotated as an entity, there could be several possibilities how to map it to
the knowledge base node (e.g. people with the same name).

The words in the question are tagged by the Stanford Parser[12]. For the entity
identification, tags NN (noun) and NNP (proper noun) are important. The entity can-
didates are generated from every subsequence of words from the question in a way that
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the subsequence of length one must be tagged NN and any subsequence must not split
the words tagged NNP. The subsequences are then mapped to the entity titles or ali-
ases. For this, the CrossWiki dataset[13] is used. This dataset also provides scores
for the specific entity given the label. If the entity is not in the dataset, the score is
computed relatively to the score of the best entity given the label.

Template matching

There are three types of the templates to be matched:

1. Single property between the topic entity node and the answer entity node

2. Two properties connected with a CVT node between the topic node and the answer
node

3. Two properties connected with a CVT node between the topic node and the answer
node plus one addition property from the CVT to another entity mention in the
question (if possible)

All these relations can be obtained using the SPARQL. For each entity in the ques-
tion, all relations which are associated with the entity node are found. If some of those
relations leads to the CVT node, it is expanded same way as the entity node.

To generate third type of the template, each entity is expanded and all CVT nodes
found are stored in a list along with the corresponding entity. Then the lists are inter-
sected according to the CVT node.

Relation matching

This step computes the metrics to help to determine which query candidate generated
during the template matching is the relevant one to the question.

• Literal matches - number of words from the relations that are also contained in
the question

• Derivation matches - number of pairs (one token from relations, one token from
question) which can be matched using WordNet derivations

• Synonym matches - number of pairs which are considered a synonym according to
the distance of word2vec word embeddings.

• Context matches - number of precomputed indicator words for the relation con-
necting two entities.

Additionally, the answer type matching is done in order to check whether the answer
provided by the relation has the same type which is requested in the question. This is
done using the handcrafted rules which take as an input the question word and the most
common types of entities into which the relation leads.
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Ranking

Two types of ranking were introduced in the article: pointwise and pairwise. The
pointwise ranking is a typical approach where the score is assigned to each candidate
and then they are sorted accordingly. The pairwise ranking, however, estimates for each
pair of the candidates, which one of them should be ranked higher. Because it does
not guarantees anti-symmetry and transitivity, final ranking is done by the number of
“wins” for each candidate.

The classifiers used for ranking use the features generated in the entity identification
and the relation matching phases. The first ranked property path is used for retrieving
final answers. The final results are demonstrated on Free917 and WebQuestions datasets.
They have 267 and 2032 questions in testing split respectively. The result are shown in
table 2.1.

Table 2.1: Aqqu results

Free917 (accuracy) WebQuestions (average F1 )

65.9 % 49.4 %

2.3.2 Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base

This article[10] describes the system called STAGG which generates a query graph from
the natural language question. The individual steps of the process are: Linking Topic
Entity, Identifying Core Inferential Chain, Augmenting Constraints & Aggregations and
Learning.

Linking Topic Entity

Since the whole process is considered as a graph construction, there is an empty graph in
the beginning. The first action needed to be done is to add a node representing the topic
entity. The system called S-MART[14] is used for linking entities. For each entity from
the knowledge base, the list of possible forms is created using the Wikipedia redirect
table and the other sources. Every subsequence of words is then used as a candidate to
be matched to the entity form in a lexicon. The score is based on frequency of given
entity in the lexicon.

Identifying Core Inferential Chain

The candidate graph now contains one node representing the entity. Next step is to
add one or more predicates leading from the entity node. Maximum number of added
predicates is two. This corresponds to the template matching step in the previous article.
The only difference is that there is no “third” relation (in this step) as it was in template
3 in the previous article. There is only a direct sequence of the properties possibly leading
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to the node which should be the answer node. This sequence is called core inferential
chain.

Augmenting Constraints & Aggregations

Given the core inferential chain containing one CVT node, it can be further enriched
by additional nodes. It reduces the number of possible answers (incorrect ones) which
can be accessed using this graph. One of the possible additional nodes could be another
entity mentioned in the question (analogical approach to the template 3 in previous
article). Another option is to add the aggregation nodes (like argmax). These nodes are
added only if a certain word mapped to the node is present in the sentence. The rules
for mapping words to the aggregation nodes are taken from the handcrafted list.

Learning

In the learning step, the reward function is introduced, which tells whether the generated
query graph is correct or not. Several features are used for training the model:

From the entity linking step, the score of the entity is used as a feature. For measuring
quality of the core inferential chain, the convolutional neural network (CNN) is used.
The network accepts letter trigram vectors as an input. The trigrams are constructed
from each word with additional word boundary. These vectors are projected using a
convolutional layer followed by a max pooling. The final vector is an output from a feed
forward layer. Two models, each containing two networks with described structure, are
learned.

1. First one is used to compare the input question (with the entities replaced using
the token “< e >”) and the representation of the inferential chain (the sequence
of predicates).

2. Second one is used to compare the sequence of predicates concatenated with the
entity name and the input question.

Both models use two neural networks which have fixed length vector as an output.
To measure the similarity, the distance function (cosine) is used.

For each constraint node, the percentage of the words from the entity occurring in
the question, is used as a feature. For aggregations, the features tell whether some word
from the handcrafted list appeared in the question.

Using the described features, one layer network model is used for the final ranking.
The benchmark is done on the WebQuestions dataset. The results are shown in the
Table 2.2.

Table 2.2: Stagg results

Precision Recall F1

WebQuestions 52.8 % 60.7 % 52.5 %
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2.3.3 Enhancing Freebase Question Answering Using Textual
Evidence

Enhancing Freebase Question Answering Using Textual Evidence[11] article employs
some concepts used in the previous articles as well, but in general, the approach have
many differences.

Question decomposition

The main difference is that the question is not processed as a whole, but it is decomposed
into the subquestions instead. Then the subquestions can be answered using a single
relation. This decomposition is done using the syntactic-based patterns. The individual
questions are answered separately and the intersection of the answer sets is taken as the
final answer set.

S-MART[14] is used for the entity linking as well as in the previous article and up
to 5 top entities are used as the candidates.

Relation extraction

For every subquestion, one relation needs to be retrieved. The multi-channel convolution
neural network is used for this purpose (MCCNN). As an input into this network, two
types of the features are used:

1. Syntactic level features - it is the shortest path between the entity and the question
word (for example the path for the question Who did shaq first play for is “← dobj
– play – nsubj →”). This path is represented as a sequence of the word vectors,
dependency labels and the directions.

2. Sentence level features - it is simply the question with the entity and the question
word removed.

Each type of the features is then pushed into the separate channel of the neural
network. Each channel uses convolutional layer which produces a feature vector and
those two vector are then concatenated. This vector is then used as an input into
the softmax classifier which produces a vector with length same as the number of the
predefined relations. Each field of the vector tells the probability of the corresponding
relation.

Learning

For every question, a vector consisting of 1 for the correct relations and 0 for the incorrect
ones is constructed as a gold standard. The predicted vector of the relations contains the
corresponding probabilities. The loss function is a cross entropy between those vectors
for the individual questions summed over all questions.
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Using the linked entities and the extracted relations, another classifier (Support
Vector Machine – SVM) is used to select the correct combination of the entity and the
relation to obtain the answer. The classifier uses following features as an input.

• Score of the predicted entity

• Text overlap with the entity name

• Count of the relation phrase occurrences in the entity description (relation phrase
is extracted as a syntactic level feature)

• Score of the relation

• Sum of the tf-idf metric of the question words. The documents are created for
each relation separately, where each document consists of the questions from the
training dataset, which have the relation in the entity neighbourhood.

• Answer type - whether the question word matches the answer entity type

• Occurrences of the last fragment of the relation in the question

The scores for the training dataset is done in the following way. All predicted entities
and relations are paired with the corresponding question. If both entity and relation are
correct, they are assigned with score 3. If only one them is correct, score 2 is assigned.
If both are incorrect, score 1 is assigned.

Refinement

A refinement step tries to reduces the candidate answers generated from the relations
obtained in the previous steps. For each topic entity, the article regarding this entity
is found. Each sentence containing any of the candidate answers is stored into the list.
The words form the question and from the evidence sentences are then paired. The
occurrences of those pairs are used as a feature for the refinement model. The answer
generated from the relations and the gold standard answers are used for the training.

The evaluation is done using the WebQuestions dataset. The results are separated
according to the part of the system which were used: J - joint inference (selection of the
correct combination of entity and property), R - refinement. The results are shown in
the table 2.3.

Table 2.3: DeepQA results

Precision Recall F1

DeepQA 44.8 % 53.7 % 44.1 %
DeepJQA 48.0 % 56.9 % 47.1 %
DeepRQA 50.2 % 53.2 % 47.0 %
DeepJRQA 53.1 % 65.0 % 53.3 %
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2.3.4 Results comparison

The Table 2.4 summarizes and compares result from all three articles on WebQuestions
dataset.

Table 2.4: Results comparison

Precision Recall F1

Aqqu – 65.9 % 49.4 %
STAGG 52.8 % 60.7 % 52.5 %

DeepJRQA 53.1 % 65.0 % 53.3 %

2.4 YodaQA approach

Current YodaQA approach for retrieving answer from the structured knowledge base
uses a different approach than the previous articles. The train split of the WebQuestions
dataset is used to train a model as well as in the described articles. To train the model,
firstly, the gold standard of the paths needs to be generated from the question – answer
pairs. Even though, this step requires the entities in the question to be identified,
the entity linking process is not applied. Instead, the list of Freebase keys, which are
distributed with the WebQuestions dataset is used for each question. The Freebase key
is a human readable ID which uniquely identifies the entity.

Using these IDs, all properties for each entity can be explored. If the answer is found
after exploring first level property, the node it leads into is not expanded anymore.
Otherwise, the exploring continues until two property levels are explored. For each
question, all property sequences leading to the answer node are stored as a property
path gold standard.

Once the gold standard is generated, it can be used for a model training. In this
case, a multi-label linear classifier is used (logistic regression) to predict the relation
paths. The model takes LATs and SV generated during question analysis as an input.
The outputs are the probabilities of the individual paths. Top N paths (usually 15) are
used for retrieving the answers from Freebase. This approach allows prediction of only
those paths which were included in the training dataset.

Table 2.5: YodaQA results

ACC @ 1 AP-recall MRR

Train 49.8 % 66.9 % 0.558
Test 39.7 % 60.3 % 0.464

The table 2.5 shows results of the YodaQA pipeline using this approach. The evalu-
ation of the YodaQA pipeline uses different metrics than the ones used in the previous
articles. The metrics are: accuracy at 1, AP recall and MRR.
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Chapter 3

Implementation

This chapter describes the implementation of own approach of generating answers to the
questions in natural language from the structured knowledge base. This implementation
is a part of the YodaQA pipeline. This chapter is divided into several sections. At the
beginning, the dataset needs to be generated because it will be used in all others parts of
the chapter. Simple extension based on the current YodaQA approach is then described
in order to be comparable with the other efforts. Next two sections describe a the dot
product based approach for the relation scoring and a scoring using neural networks
respectively.

3.1 Overview

The answering questions using the structured knowledge bases is beside retrieving the
answers from the unstructured sources one of the approaches for retrieving the answers
in the YodaQA system. The part of the system which produces the answers (from an
arbitrary source) depends on the question analysis part, where the entity linking step
is done. The Figure 3.1 illustrates relevant components of the pipeline as well as the
services called from the pipeline components.

The figure does not contains all YodaQA components. It only aims to those parts
of the system, which are essential or developed in this work. The part developed in this
thesis is in the middle of the image labelled Answer producing including the Scoring-API.

The image shows three important segments of YodaQA: Question analysis, Answer
producing and answer merging/scoring. They all uses a CAS (common analysis sys-
tem/structure) for storing multiple annotations. The components illustrated as a cloud
shape are those parts of the system which are implemented in Python and communicate
with the base Java application over the REST API. This separation is made for two
reasons:

1. The required libraries are in Python and it would be impossible or very difficult
to simulate the same behaviour in Java code.
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Figure 3.1: Pipeline structure

2. The module requires a significant amount of resources (typically RAM) and that
is the reason it is more convenient to move it to another physical machine.

3.1.1 Dataset

All models were trained using the WebQuestions dataset introduced in the Semantic
Parsing on Freebase from Question-Answer Pairs article[15]. The question candidates
used for building the dataset were obtained using Google Suggest API. Random 100
thousand questions out of 1 million candidates were submitted to Amazon Mechanical
turk, where users were asked to answer those questions using only entities found in
Freebase page of the question topic entity.

The final dataset contains 5,810 questions, 3,778 in the training split and 2,032 in the
testing split. Originally provided dataset3 contains only a natural language questions,
a list of the answers and the URL to Freebase page. The modified dataset stored in
Brmson Github repository4 adds some additional information such as the question IDs
and introduces different splits. Beside the topic-based splits, more fine-grained splits are
included. The original train split is divided into three separated ones:

1. Devtest – used for the development e.g. feature selection (189 questions)

2. Val – used for the model validation and tuning (755 questions)

3. Trainmodel – used for the actual model training (2834 questions)

Since the devtest split is not used in this work separately, it is combined with the val
split into the validation split with size of 944 questions.

3http://www-nlp.stanford.edu/software/sempre/
4https://github.com/brmson/dataset-factoid-webquestions

24



3.1. Overview

The mentioned Github repository contains a branch named “movies”. It is the
WebQuestions dataset extended by the moviesE dataset5 (moviesE already contains
a subset of questions from WebQuestions dataset, those are not added again). This
extended dataset is also be used in this work.

The repository contains additional data related to the questions. Some of them are
part of this work and they are discussed in following sections.

3.1.2 Entity linking

The entity linking used in this work is already implemented in YodaQA question analysis
part of the pipeline. Its development was not part of this thesis.

First of all, the entity candidates are generated. These candidates are called clues
and they are generated from several question annotations. These annotations (some of
them described in the first chapter) are: Lexical Answer Type, Named Entity, Subject,
Selection Verb and Token Constituents.

Once the clues are extracted, they need to be linked to the Wikipedia articles. This
is done using CrossWiki Search and Fuzzy Search6.

• CrossWiki Search approach was inspired by [9] and [13] articles. It uses a
dictionary7 which contains a string s, Wikipedia URL u and a probability of the
URL given the string on every line: P (U = u|S = s). This dictionary was built
using multiple sources such as Wikipedia titles and anchor text from Wikipedia
links (both internal and external).

This file is then loaded into a SQLite database. In order to make the queries fast,
an index is created on the label column. This speeds up the query significantly
from 14s to 0.02s. YodaQA then can ask for the entity label and ID using REST
API.

• Fuzzy Search was inspired by [16] article. Its goal is to find the correct entity
even if the label is not spelled properly. At the beginning, a sorted list of labels
is made. The label is then found in the list using binary search. The Levenshtein
distance is computed in every string comparison during the binary search process.
If it is lower than a certain threshold, it is considered as a match. Alternative
Python implementation PyPy is used to speed the queries up.

Once the clues are mapped to the canonical labels and/or Wikipedia pages IDs,
the search process is then repeated on the n-gram clues. This is a special type of clue
generated considering all tokens from the sentence. Then 2, 3 and 4-grams of those
tokens are made and sent to the label lookup service. If some of these clues cover some
of the shorter ones, it is dropped.

Finally, linked clues are called concepts and only 5 with the highest score are used
in the following steps (unless different number is specified in the system property).

5https://github.com/brmson/dataset-factoid-movies
6https://github.com/brmson/label-lookup
7http://nlp.stanford.edu/data/crosswikis-data.tar.bz2/dictionary.bz2
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3.1.3 Neighborhood exploring

In the Section 2.2, the problem of answering questions from the structured knowledge
bases was described as a finding “path” of the relations from the topic entity node to
the answer entity node. This subsection describes the process in more detail.

As the gold answers to the questions from the dataset were generated using Freebase,
we use Freebase as an answer source as well. The answers from the gold standard could
be found in the mentioned knowledge base with two main exceptions: Some of the
questions can have some answers containing typos or incomplete information. Some
questions can have slightly different answers in more recent Freebase dumps than they
had when the dataset was generated.

The task consists of two significant parts. The first one of them is the entity linking
and it was described in the previous subsection. The second one is called relation match-
ing. In this step, we try to identify the correct relations or sequence of relations. In a
graph theory, the entities are nodes, the relations are edges and the correct sequence of
relations is the path from topic entity to the answer entity.

The answer node is the object we want to find. We need to establish a path that
is likely to lead to this node. Given the entities provided in WebQuestions dataset, the
answer nodes can be reached using a single relation in 55 % questions from the training
split and using two relations, we can achieve the answer nodes in 36 % questions. These
paths can generate incorrect answers beside the correct ones. This is tested in detail in
Experiments chapter. To determine the correct relation sequence, all possible relation
sequences are listed and ranked in order to find the correct one.

Neighbourhood exploring is an important part of the process. It is used to generate
the gold standard and the candidates for scoring during the actual question answering
process. The inputs to this process are all entities retrieved during the entity linking
step. Each entity has multiple properties (relations), which connect them to the other
entities or the text nodes.

As described in this subsection, 91 % of the questions in the training split of the
dataset can be answered using a sequence of the relations with the maximal length of 2.
Listing all possible relation sequences will be done in the following way:

• Given the entity e, every relation r is listed if the triplet (e, r,m) exists in the
knowledge base KB for any node m which is not CVT .

p1e = {r|∀r, ∃m : (type(m) 6= CVT ∧ ∃(e, r,m) ∈ KB)}, ∀e

• If the node m in the triplet (e, r1,m) is CVT , we list all relations r2 if the triplet
(m, r2, a) exists in the the knowledge base KB .

p2e = {(r1, r2)|∀r1, r2,∃m, a : (type(m) = CVT ∧ ∃(e, r1,m) ∈ KB

∧∃(m, r2, a) ∈ KB)},∀e

• The previous case can be extended adding a constraint relation if the question
contains more that one entity. We call this constraint a witness relation and it is
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used to reduce the set of the answers generated using the relation path without
this constraint.

p3e = {(r1, r2, r3)|∀r1, r2, r3,∃m, a : (type(m) = CVT ∧ ∃(e1, r1,m) ∈ KB

∧∃(m, r2, a) ∈ KB ∧ ∃(m, r3, e2) ∈ KB)},∀e1, e2 : e1 6= e2

The CVT node is used to describe the relationship between two entities if it is not
possible to describe it using a single relation. It is because the relationship needs to be
described using multiple information. The example could be a marriage of two people.
The CVT node represents the marriage and have associated relations to wife, husband,
date of the wedding and possibly to other nodes.

The Figure 3.2 illustrates three described types of the paths. Note that the third
type is not a path in the graph theory language but it forms a tree. We call this a
“branched” path.

Figure 3.2: Three basic query structures

Following list shows examples of each type of the relation path using Freebase rela-
tions. These questions were selected from the training split of the WebQuestions dataset:

1. what currency do mexico use? – the answer to the question can be found using a
single relation: location.country.currency used. Corresponding SPARQL query is
(without prefix declaration):

SELECT ?answer WHERE {

%entity_id% ns:location.country.currency_used ?answer .

}
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2. what is the name of justin bieber brother? – because the sibling relations contains
multiple information, the entities are connected using the CVT node and two re-
lations are needed: people.person.sibling s and people.sibling relationship.sibling.
SPARQL query:

SELECT ?answer WHERE {

%entity_id% ns:people.person.sibling_s ?m .

?m ns:people.sibling_relationship.sibling ?answer .

}

3. who plays meg in family guy? – there is an additional witness relation as we
want the actor of a specific character instead of all the actors in the TV show:
tv.tv program.regular cast, tv.regular tv appearance.actor and tv.regular tv ap-
pearance.character. SPARQL query:

SELECT ?answer WHERE {

%entity_id% ns:tv.tv_program.regular_cast ?m .

?m ns:tv.regular_tv_appearance.actor ?answer .

?m ns:tv.regular_tv_appearance.character %witness_id% .

}

3.2 Generating gold standard

Because we want to rank all possible relation paths for a given question (more accurately
for all entities obtained for a given question), we need to generate a dataset of these paths.
This process uses the dataset described in the Subsection 3.1.1. The questions with the
correct answers are stored in main directory and the topic entities are in d-freebase

directory. All files are in JSON format and provide a unique ID of the questions. All
scripts which generate auxiliary files and the actual dataset in requested format are
located in scripts directory.

The two top-level scripts dump-refresh.sh and propsel-dataset-refresh.sh re-
generates all the important files and build the final dataset. These are only wrappers of
Python scripts doing the actual work.

As a first step, the entities contained in each question need to be generated. This
is done using YodaQA questionDump task. It runs the question analysis part of the
pipeline and saves selected annotations into a file. The file then contains SV, LATs,
Clues and Concepts. Information about concepts (entities) are important for this task.
The concepts contains labels, Wikipedia page IDs, score, label probability, description,
starting and ending position in the sentence and additional features.

Once the dump containing entities is created, we can start building the gold standard
of Freebase paths. It can be done in two ways:

• Using Freebase API, we can request all information about a single entity if we
know its ID. As a response, we obtain a JSON containing all information about
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the entity. The JSON file contains object with a key “property” which consists
of all properties associated with the entity. The individual properties are objects
where the keys are their names and the values are text, ID (if its available) and
type of the node where it leads to. If type of the node is “compound”, it also
contains object “property” and it can be traversed recursively.

The file is iterated over all properties and if the property has a string contained
in “text” field equal to some answer string, the property is saved as a length 1
path into the gold standard file. If the property leads to a compound node, it is
traversed recursively. This process finds paths of length 2. During exploration of
the second level properties, we also check whether it leads to some other entity
from the question. If it does, we save it as a path suffix and if a property leading
to the answer is found, this suffix is appended. This check is done comparing the
entity IDs if they are available or comparing the entity labels.

The extracted paths are saved in d-freebase-rp and d-freebase-brp directories.
It depends on whether we want the witness relations to be generated (brp) or not
(rp). Each file is named according to the split (trainmodel, test, val, devtest) and
it contains the question ID and the list of the paths leading to the answer. Each
path also has a number associated which tells how many times the path was found
in JSON file of the entity.

Unfortunately, Freebase API was shut down at the beginning of May 2016 (un-
availability was discovered May 4th 2016). It provided a very fast way to generate
the gold standard of the paths as well as the dump of all relations corresponding
with the given entity. Fortunately, we cached all JSON files8 while these scripts
were used. However, if the entity linking finds new entities, these will not be able
to be explored using this method.

• Running YodaQA ExploringPathDump task executes the question analysis and the
answer producing part of the pipeline. The property paths are generated in the
same way as it is described in the Section 3.4. This only dumps all relation paths
for each entity in the question and then the correct ones need to be identified. It
also introduces a lot of issues related to the speed of our Freebase endpoint. A lot
of relations are blacklisted as they make the query to take a significant amount of
time. These relations are relevant to some entities but generate a lot of noise for
the others.

3.2.1 Dataset for dot product based scoring

The dot product based scoring estimates a score for each property contained in the paths
separately. The scripts doing this job are located in YodaQA repository in the folder
data/ml/fbpath-emb.

As a first step, first and second level relations need to be generated separately. Script
generate relations.py serves for this purpose. First parameter specifies whether we

8http://pasky.or.cz/dev/brmson/fbconcepts-2016-05-04.tar.gz
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want to generate 1st or 2nd level relations. The levels need to be generated in increasing
order as they use the information about lower levels. This script runs fast for first level
but it takes a significant amount of time to generate second level relations because there
are a lot of nodes in the knowledge base that need to be explored. Alternatively, this
could be generated from the files described in the very next subsection. The full paths
only need to be split into the individual properties.

The samples for each question are stored in the separated files. They are generated
using fbpath emb.py script. This uses the gold standard paths located in dataset-
factoid-webquestions repository. The question is represented by LATs and Selection
Verb and relations are represented by their label.

3.2.2 Dataset for neural network based scoring

The dataset for the training the neural networks needs to be generated in a comma-
separated format. It needs to contain the a positive and the negative question – relation
path pairs. Each line is in a format question,label,relpath. Generating of the
positive examples was described earlier in this section. Negatives ones are generated in
almost same way (exactly same way using YodaQA pipeline). The script which generates
the path leading to the answer nodes now does not need to check whether the text in
the node is the same as in some answer. However, it stores all the paths to a file instead.

Generated property paths contain only property names but we want to use property
labels to train the model. This is done by simple SPARQL query shown in the Figure
3.3.

SELECT DISTINCT ?proplabel WHERE {

%property_name% ns:type.object.name ?proplabel .

FILTER( LANGMATCHES(LANG(?proplabel), "en") )

}

Figure 3.3: Querying property label

Now we have all the data required to construct the CSV file. All words from both
the question text and the property labels are saved in lower case (WebQuestions are in
lower case anyway). The correct examples have label 1 and the incorrect ones have label
0. The property labels for individual properties from paths longer than 1 are separated
using “#” symbol.

Two variants of the dataset can be generated:

1. The question text is saved “as is” with no additional modifications.

2. All entities which were used for generating corresponding property path (both topic
and witness entity) are replaced by the “ENT TOK” token. To determine which
part of the sentence needs to be replaced, we use information about starting and
ending position of each entity stored in the question dump file.
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If we replace the entities in the way it was described, we can get contradicting
samples. It can happen if two question differ only in entity word. We simply remove
negative samples of these questions.

3.3 Extending original YodaQA approach

The original approach, as described in the previous chapter, uses simple logistic regres-
sion multi-label classifier to predict the relation path. The implementation also brings
these two disadvantages:

1. Entity linking is not employed in this process

2. Only direct path from the topic entity to the answer entity is considered (no
witnesses)

Only one entity represented by the Freebase page for every question in WebQuestions
dataset is used. Since the answers to the respective question were obtained using this
entity, it is guaranteed for the path leading from this entity to the answer to exist (with
some exceptions such as the question with incorrect answer annotations). However, these
entities does not have to be found during the entity linking process and the query based
on predicted correct path does not necessarily have to find the correct answer using
different (incorrect) entity. This extension uses entities from YodaQA entity linking
plus the the correct one from the WebQuestions dataset.

A single property or two properties sharing one CVT node are the only two options
considered as a direct path from the topic entity to the answer entity. For some kinds
of these questions, multiple answers can be generated in addition to the correct one(s).
Typical example of such question is: Who plays Marge in the Simpsons?

The gold standard of the Freebase paths (including witness relations) is used to train
the multi-label logistic regression classifier. The question is represented by LATs, SV
plus Subject. They are all string features. The vocabulary is created from these strings.
Each string is then associated with the index in the vocabulary. The vector representing
the question contains 1 on index which is associated to the string features extracted
from the question and 0 otherwise. Each relation path leading to the answer node is
considered as a label (class).

The model is trained using Python module Scikit-learn[17]. The learning strategy is
one versus rest, which means that one classifier is learned for each class.

3.4 Generating candidates

The property path candidates need to be generated and ranked using selected model.
This step is part of the answer producing step in the YodaQA pipeline. The exact same
approach which uses Freebase API is employed in YodaQA as it is described in the
Section 3.2. Since the Freebase API is shut down, another method is triggered when
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some of the concepts from the question is not stored in the local cache of Freebase
entities.

This approach introduces some modifications such as blacklisting some properties
which helps the query to be processed faster. Unfortunately, some of them can cause
losing the possibility of getting the correct answer. However, the filtration of the prop-
erties needs to be applied, otherwise some queries would consume significant amount of
time (in the matter of hours).

The process starts after the question analysis part is finished. It takes all linked
concepts and tries to generate the relation path candidates using the cached data from
Freebase API. Every concept which is not found in the cache is stored for the additional
exploration. For each of those concepts, the query for retrieving all relations which
have the concept as a subject is constructed. We call these the concept relations. This
query contains filter which drops all blacklisted properties (described later). After that,
another query retrieves the labels for each property separately. These two queries could
be merged into one but the experiments showed that separated queries run faster. If
the selected method of paths scoring computes score for each property separately, the
question and the property representation are sent to the model and the score is estimated.

For all concept relations, we retrieve ID of an object they lead into. If the object has
an empty label we know that it is a CVT and we continue in the exploring. Otherwise,
we do not use this concept relation for the exploration of the longer paths. However, the
ID of CVT node itself is not used for the query construction used to obtain the second
relation. The query is based on the concept ID and the concept relations (Figure 3.4)
as it can lead to a lot of nodes with the same properties. Doing it this way, we need to
process smaller results of unique properties instead of large number of the CVT nodes.
Also, the score is computed if we use separate scoring.

SELECT DISTINCT ?prop WHERE {

%concept_id% %concept_property% ?cvt .

?cvt ?prop ?val .

}

Figure 3.4: Querying second level property

For each question containing two and more entities, we take each pair of them. We
build this pairs sensitive to the order of the entities – (e1, e2) and (e2, e1), where e1 6= e2,
are two different pairs. The first entity is called concept entity and the second entity is
called witness entity. Then we try to find out whether they are connected strictly by
two relations with one CVT node between them. If we succeed, we compute a score for
the relation between CVT and the witness node. For all paths of length 2, we generated
in the previous steps, we check whether there is an intersection between their concept
relation and witness candidate concept relation. In addition we make sure that second
relation from path and witness relation from witness candidate is not the same. If we
found such pair, we add witness relations to the corresponding path.

Now we have all relation paths candidates generated. Two types of the final scoring
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are possible:

1. If the scores were computed separately for each relation, we need to estimate the
final score for full path. Two approaches are introduced:

a) Average of all scores. This approach often prefers shorter paths over the
longer ones. We want to prefer paths with the witness relation over the paths
without it if possible. If the witness relation have low score, the average is
decreased and shorter path wins.

b) Comparing score for each relation separately. If scores of the first relations
are the same we continue to the second relations (otherwise we return path
with higher one) etc. If the paths have different lengths and the scores for
relations are the same, we return the longer path.

2. The score is computed for the full path. The model takes representation of question
(with or without entity replacement) and the relations from the path separated
using “#” symbol and it returns single score for the path.

As it was mentioned before, some properties are blacklisted. This blacklist is used
in every SPARQL query which is likely to produce a large list of results. The first set
of blacklisted properties was selected using YodaQA run on WebQuestions dataset and
the properties which appeared more than 20 times in the results of at least 2 concepts
were blacklisted. This is relatively strict criterion so further experiments were imple-
mented. Blacklisted properties were sorted according to the count of occurrences in the
gold standard. The top ones were removed from the blacklist and the query time was
examined. The example of a property which can make the query to take enormous long
time is location.location.people born here. For example, given the concept of the
USA, it lists all people born in the USA which can take hours using our Freebase en-
dpoint. Simple limit on number of results does the effect of reducing time but a lot of
information can be lost.

3.5 Dot product based selection

The dot product based property selection uses logic implemented in Sentence-selection
repository9. It is inspired by Deep Learning for Answer Sentence Selection article[18].
The dataset for this task is described in the Subsection 3.2.1. The dataset contains
question representation (LATs, SV, Subject) and relation representation (label). Both
representations can consist of one or more words. We need to transform these represent-
ations to the fixed length vectors. For this purpose, we use pre-trained 50-dimensional
GloVe[19] vectors. The GloVe vectors are trained on the large corpus of text with goal to
obtain a vector representation of words where distance between the vectors representing
semantically similar word should be small.

9https://github.com/brmson/Sentence-selection
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We compute the vector representation for each word from the question representa-
tion. We want to obtain a single vector rather than a sequence of vectors. Therefore, we
compute average of all vectors. The same method is applied on the relation representa-
tion. Now, we have vector q representing the question and p representing the relation
(property). Given the dataset of positive and negative pairs of the vectors, we want to
train a model which returns probability of a label y being 1 given vectors q and p.

P (y = 1|q,p) = σ(qTMp + b)

The model is represented by M ∈ R50×50 and b ∈ R parameters. It is learned using a
gradient descent. We learn three models (M1,b1), (M2,b2) and (M3,b3), one for each
relation from the property path r1, r2 and r3 respectively. All coefficients are saved and
loaded during YodaQA pipeline in order to obtain a score for the individual relations.

This approach brings some issues such as losing information about the word order
and need for a method to create the final score from the separate ones.

3.6 Neural network based selection

The neural network based selection tries to solve the issues described at the end of the
previous section. Several types of the neural networks[20] are introduced to be used as
a model:

• CNN – convolutional neural network

• RNN – recurrent neural network

• AVG – average of question and path representation

• ATTN1511 – attention based network[21]

All models, datasets and scripts for training and evaluating are stored in dataset-sts
repository10. Implementation uses Python framework Keras[22].

All described models share the same structure for input and for score estimation from
the learned representations. The dataset used for learning and evaluation is described
in the Subsection 3.2.2. As a first step of all tasks (training, evaluating, scoring), a
vocabulary is made from the training split of the dataset. The vocabulary consists of
the tokens created from both the question and the property path representation. The
input into the model is a vector of indices of the words from the vocabulary. There are
separate vectors for the question and the property path, both with fixed length of 60
elements.

Words represented as an index into the vocabulary are then transformed using 300-
dimensional GloVe[19] vectors. This results into the matrix with 300 rows and 60
columns. This representation servers as an input into a model specific layers.

10https://github.com/brmson/dataset-sts
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The output from the model specific layers is then fed into MLP scorer (layers Projec-
tion and above in the Figure 3.5 and 3.6). The first layer is a projection which is a fully
connected layer. It typically shares weights over the question and the property path if
not specified otherwise. Outputs of this layer for the question and the property path
are summed and multiplied element-wisely. The outputs from the sum and multiplica-
tions are then concatenated and fed into the fully a connected layer which reduces the
dimensionality. This is followed by last the layer which has a single value as an output.

3.6.1 Convolutional neural network

The convolutional neural network uses multiple channels of convolutions with different
lengths (1 to 5-token channels). Each channel consists of N

2 convolutions (N = dimen-
sionality of word vector). The channel of length 1 is illustrated by the red color in the
Figure 3.5, the yellow color is used for length 2 and the green color for length 3. The
stride of each channel is 1, meaning that the channel shifts by one word. The convo-
lutional layer is followed by a max pooling selecting maximum per each channel length
and concatenating results. This is then fed into the projection layer.

The convolutional and max-pooling layers can be siamese or non-siamese. A siamese
layer means that the weights are shared for the question and the relations paths repres-
entation. The siamese network reduce the number of model parameters. However, the
experiments showed that non-siamese performs better.

3.6.2 Recurrent neural network

The recurrent neural network makes use of a memory unit in order to learn information
hidden in word order. A GRU[23] unit is used as a the memory unit in our model.
There are two recurrent layers, one for the forward direction of words and one for the
backwards direction. Each one of the layers consists of 2N GRU units (illustrated by
red color in the Figure 3.6). The outputs of the final units of each direction are then
summed up resulting in a vector representation of length 2N . This output serves as an
input into to the projection layer.

As well as in the CNN model, recurrent layer can be siamese or non-siamese. Non-
siamese one also performs better. However, the performance boost is not as significant
as in the CNN model.

3.6.3 Other models

Other models which were tested are ATTN1511 and AVG. The ATTN1511 model is
described in [21] and [20]. The main idea of the model is to prefer some parts of the
input sentence when the building sentence representation. This model achieves similar
results as non-siamese RNN.

The AVG model uses simple average of the vectors from the input sequence. The
vectors are scored using described MLP scorer. This model has poor performance which
indicates that more complex network structures are useful for this task. The objectives
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Figure 3.5: Non-siamese convolutional neural network

tested in the training of all models was bipartite version of Ranknet[24] and binary
cross-entropy.

3.7 Final answer producing

3.7.1 Scoring API

Once the model is trained, all learned weights are saved into a file. A scoring API is a
Python script which takes as an input the model name, training split of dataset used
to build vocabulary, file containing weights and model parameters (siamese or not,. . . ).
After it starts, it loads the GloVe vectors, builds the vocabulary and the model, loads
the weights and starts a REST endpoint which is used in YodaQA pipeline to get the
score for the question – relation path pairs. It is not directly implemented in YodaQA
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Figure 3.6: Non-siamese recurrent neural network

because it is easier to reuse Keras functionality and required resources can be allocated
on a different machine.

3.7.2 Answer scoring and merging

Once the relation paths are scored and sorted, top N of them is selected (the value 15
was experimentally selected). All selected paths are used to produce the answers. Each
answer has a set of the features (some of them described in the Subsection 1.3.3). If
some answer is present in the list multiple times, the occurrences are merged and the
number is used as a feature as well. Finally, answers are scored using Decision Forest
and sorted. This is sufficient if we need just accuracy at 1, AP-recall or MRR metrics.
If we are required to measure precision and recall, we have to employ a technique which
returns only such answers marked as correct.
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Chapter 4

Experiments

This chapter is divided into the several sections. At the beginning, we are experimenting
with selecting subsets of the gold standard paths. After that, the logistic regression
based path selections are compared. Next two sections describe the performance of the
question answering system using the dot product based scoring and the neural network
base scoring.

4.1 Dataset experiments

The dataset of the gold standard Freebase paths was described in the Subsection 3.1.1.
It contains every path which leads to the answer node regardless of the number of the
incorrect answers it generates. The datasets described in this sections are WebQuestions
(WQ) and WebQuestions + moviesE (WQM).

4.1.1 Empty gold standard of the paths

Some of the questions do not have any gold standard path generated at all. The numbers
of the empty paths differ whether we used the entity linking or only the entities provided
in the dataset. This difference only applies to the WQ dataset because the movies
datasets do not provide the gold standard entities. The Table 4.1 shows how many
questions from the dataset do not have any gold standard path according to the used
entity source (GSE - gold standard entities, LE - linked entities). The experiments are
done on the training split of the datasets.

The result of the empty gold standard path list is that we cannot learn the correct
relation path for the particular question sample. Note that the high number of the empty
paths in WQM / GSE line is because the moviesE questions have no list of the entities
provided. Additionally, the gold standard entity was not found in 620 questions out of
3778 (16.4 %) using the WQM dataset. We use WQM / GSE + LE for further model
training. We include the gold standard entities not found by YodaQA entity linker to
increase path coverage.
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Table 4.1: Empty gold standard paths

Dataset / used entity Question count No path Percent

WQM / GSE + LE 4573 492 10.7 %
WQM / GSE 4573 1140 24.9 %
WQM / LE 4573 919 20.0 %
WQ / GSE + LE 3778 336 8.8 %
WQ / GSE 3778 345 9.1 %
WQ / LE 3778 763 20.1 %

Error analysis

As shown in the Table 4.1, the path from the topic entity to the answer entity was not
found for all questions. Here there are 10 randomly selected questions with no correct
path generated considering that the failure was not caused by the incorrect entities:

• what was malcolm x trying to accomplish? – The answers “African Americans’
rights” and “Black Liberation” were not found in the entity neighbourhood. The
first answer only occurs in the topic description. The closest answer found is
“Human rights activist”.

• what money is used in england? – The answer in the Freebase is “Pound sterling”
instead of the requested “UK £”.

• what year michael jordan came in the nba? – The answer “1984” can be found in
the Freebase, but the gold standard answer is “1984 NBA Draft”.

• when did mary shelley write frankenstein what were the circumstances? – The
answer in the gold standard is a whole description which is not considered as an
answer source.

• what is 2pm est in philippines? – The requested answer is “UTC+8” but “Philip-
pine Time Zone” was found which is an equivalent answer.

• what round did manny pacquiao win in? – The gold standard contains a wrong
answer “celebritynetworth.com”.

• what year did william mckinley became president? – Only a year is requested but
the Freebase contains a full date “1897-03-04”.

• what is the timezone in england called? – The gold standard answer is “Greenwich
Mean Time” and the Freebase contains “Greenwich Mean Time Zone”.

• what was malcolm x trying to accomplish? – The gold standard answer is “AIDS”
and the Freebase contains “HIV/AIDS”.

• what disease did helen keller? – No relation regarding diseases is contained in our
Freebase dump
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4.1.2 Gold standard reduction

Since all paths leading to the answer node are used as the positive examples, some
of them can generate a lot of incorrect answers. For example, the question about a
director of a film has the “directed by” as a correct relation. However, the relation
“award nominee” could also lead from the film node to the director node. Additionally,
the relation can generate more people who are not the directors of the requested film.

The paths are paired with the entities in order to obtain an answer. We compute
precision p, recall r and F1 score for each path – entity pair. Informally, precision says
how many of the answers marked as a correct were in the gold standard and recall says
how many of the gold standard answers we discovered. The formulas for these metrics
are following:

p =
TP

TP + FP
r =

TP

TP + FN
F1 =

2 · p · r
(p+ r)

A variable TP means true positive (number of correct answers marked as correct),
FP means false positive (number of incorrect answers marked as correct) and FN means
false negative (number of correct answers marked as incorrect).

We want to sort all paths for each question separately according to the F1 score. Since
the path can generate multiple sets of answers given the different entities, we compute
average and maximum over all answer sets for each path. Then we select only those
paths which have the highest average and maximum F1 . If no path has highest both of
the values, we take the paths with the highest average of F1 . Although, we compute the
average and maximum F1 for each path individually, we report mean values F̄1 and F1

∗

over all path and questions. If we use the original dataset without the reduction, the
F1

∗ value is 0.697 and the F̄1 value is 0.562. If we filter the paths as described earlier
in this paragraph, the values are 0.744 and 0.647 respectively.

The intuitive meaning of the maximum F1 value is the upper bound of the F1 value
achieved at the end of the question answering process. This also requires that the correct
entity was selected. The meaning of the average F1 is the same with the difference that
we use all linked entities to produce the answers.

4.1.3 Property blacklist

A lot of properties were blacklisted for the performance issues as described in the Section
3.2. The WQM gold standard of the Freebase paths contains 11,870 properties and 813 of
them are blacklisted. It affects 704 out of 4573 questions (15.3 %). The Reduced WQM
gold standard of the paths contains 7,524 properties and 566 of them are blacklisted
which affects 557 out of 4573 questions (12.3 %). If the question if “affected” by the
blacklisted property path, it means that one or more its property paths contains the
blacklisted property. It does not necessarily means that the correct answer cannot be
found. However, if the question contains only one correct property path, then the path
cannot be used and no answer is found.

41



4. Experiments

Table 4.2: Blacklisted properties

Blacklisted properties # in GS paths # in reduced GS

people.person.profession 136 119
location.country.languages spoken 122 58

location.location.contains 102 54
travel.travel destination.tourist attractions 80 77

book.book subject.works 48 34
book.author.works written 36 28
location.location.time zones 33 33

symbols.name source.namesakes 26 15
book.author.book editions published 21 9

location.citytown.postal codes 19 19

The Table 4.2 shows the blacklisted properties in YodaQA sorted according to the
occurrences in the gold standard paths. Only top 10 paths are shown. Full table can be
found in the Appendix in the Table B.1.

4.2 Logistic regression

This section provides the results of the YodaQA system using the logistic regression
classifier described in the Section 3.3. Two types of the classifier are tested. The original
one that has no witness relations and the improved one that uses those relations. The
system evaluation uses three datasets: WebQuestions, moviesD and moviesF11. The
moviesF dataset is a modification of the moviesD dataset including some bug fixes and
synthetically generated questions. These two movies datasets were selected as they have
a different structure. The moviesD introduces more diversity because it does not contain
the synthetically generated questions as the moviesF does.

Table 4.3: Original approach

Dataset Phase ACC @ 1 AP-recall MRR

moviesD
Test 38.1 % 61.9 % 0.446
Train 54.8 % 60.9 % 0.571

moviesF
Test 34.9 % 52.0 % 0.398
Train 41.7 % 50.1 % 0.447

WebQuestions
Test 39.7 % 60.3 % 0.464
Train 49.8 % 66.9 % 0.558

The Table 4.3 shows the results achieved on the mentioned datasets by the original
system. Firstly, the system finds the answers of the questions from the training dataset.

11https://github.com/brmson/dataset-factoid-movies
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After that, the decision forest used for the answer scoring is re-trained and the answers
are re-evaluated. The very same classifier is applied on the testing questions. Three
metrics are provided:

1. Accuracy at one (ACC @ 1) – a percentage of the questions that have the top
answer equal to some of the correct answers

2. AP-recall – a percentage of the questions that have the correct answer in the top
20 (this is because we report results of the last phase of the YodaQA evaluation
which uses only top 20 answers)

3. Mean reciprocal rank (MRR) – an average of the reciprocal ranks of all answers
for each question

The original approach uses neither the witness relations nor the entities from the
entity linking for training the classifier. As the moviesD and moviesF datasets do not
provide the topics entities, the relation classifier is trained using only the questions from
WebQuestions dataset. This is the reason why the results of the movies dataset in the
Table 4.3 are not significantly better as in the following experiments.

Table 4.4: Original approach + entity linking

Dataset Phase ACC @ 1 AP-recall MRR

moviesD
Test 47.3 % 74.2 % 0.555
Train 71.5 % 77.6 % 0.738

moviesF
Test 56.3 % 78.6 % 0.632
Train 71.6 % 81.9 % 0.754

WebQuestions
Test 40.5 % 61.2 % 0.471
Train 51.0 % 68.2 % 0.571

The Table 4.4 shows the results after the entity linking was employed. Given the
linked entities, the gold standard of the relation paths can be found even for the movies
questions. The performance improvement on the movies dataset is significant. It is
because of the presence of the synthetically generated questions in the training dataset
while the logistic regression classifier was trained. The Table 4.5 shows performance on
the moviesD dataset with the entity linking employed but with the movies questions
excluded from the training process. It is clear the entity linking alone cause only a slight
improvement.

The Table 4.6 shows the results using both the entity linking and the witness rela-
tions. The witness relations introduces an additional improvement because the relations
reduces the number of the false positive answers.
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Table 4.5: moviesD with entity linking, movies question were excluded from the training
of the classifier

ACC @ 1 AP-recall MRR

Test 38.5 % 66.5 % 0.462
Train 59.3 % 67.1 % 0.626

Table 4.6: Extended approach

Dataset Phase ACC @ 1 AP-recall MRR

moviesD
Test 51.2 % 73.5 % 0.582
Train 71.3 % 76.9 % 0.738

moviesF
Test 62.5 % 78.4 % 0.679
Train 75.8 % 83.5 % 0.790

WebQuestions
Test 42.4 % 61.7 % 0.485
Train 50.4 % 67.5 % 0.565

4.3 Dot product based scoring

This section describes the results of the dot product based scoring described in the
Section 3.5. Three models, one for each relation type of the property path, are trained.
The Figure 4.1 shows the loss value and the MRR development during the learning
process. The red line represents learning process of the first (concept) relation, the
green line represents the second (expanded) relation and the blue line represents the
third (witness) relation.

The model is trained using 6-fold cross-validation. The curves shown in the graph
represent the mean values over all folds. The final mean MRR is 0.446 for the first
relation, 0.712 for the second relation and 0.827 for the third relation. Every question
has a concept relation and it has a lot of those relations in its neighbourhood. If the
question has the expanded or the witness relations in its neighbourhood, the number of
those relation is small and it is easier to recognize the correct one among them. The
Subfigure 4.1a uses a logarithmic scale on the y axis.

The Table 4.7 shows the results of the end-to-end process using the dot product
based property path scoring. The results are not so impressive and it is caused by
several aspects. The question representation loses a lot of information contained in the
original question. Although, the same representation is used in the previous approach,
this model computes an average over all vectors of the words from the representation
which causes an additional information loss.

Another aspect is the way of computing the final score. Two approaches are intro-
duced in this thesis, the average of individual scores and the separate sorting. The table
shows the results using the average of the scores which performs slightly better than the
other approach.
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Figure 4.1: Learning curves for the dot product based model

Table 4.7: Dot product based scoring

Dataset Phase ACC @ 1 AP-recall MRR

moviesD
Test 50.8 % 77.3 % 0.580
Train 66.8 % 75.6 % 0.702

moviesF
Test 52.9 % 74.5 % 0.593
Train 65.0 % 76.2 % 0.690

WebQuestions
Test 28.8 % 54.7 % 0.363
Train 36.3 % 56.1 % 0.426

4.4 Neural network based scoring

This section describes the results of the neural network based scoring described in the
Section 3.6. Following models are tested: RNN (siamese and non-siamese), CNN (sia-
mese and non-siamese), ATTN1511 and AVG. Those model are also described in the
[20] paper. The Table 4.8 shows the models comparison on WebQuestions + moviesE
dataset with the entity replacement (WQME) and on the reduced dataset (WQMER).
Each entity mentioned in the question is replaced using the token “ENT TOK”. All
models were trained four times and the mean value is shown in the table.

We can see that non-siamese architecture of the models have slightly better perform-
ance than the siamese variant. We can also see that the results of the models on the
WQMER dataset are worse than on the WQME. This is due to a ratio of the correct
and incorrect samples in the datasets. The WQMER dataset has approximately a half
number of the correct samples. We chose the WQME dataset for further testing since
it has a chance to assign a higher score to not completely correct samples. Those par-
tially correct samples are marked as incorrect in the WQMER dataset. The Table 4.9
shows the results of the end-to-end system using the scoring based on the non-siamese
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Table 4.8: Model comparison using the WQME and WQMER datasets

WQME WQMER

Model train MRR val MRR train MRR val MRR

CNN-S 0.893261 0.708962 0.538412 0.505810

CNN 0.802253 0.697644 0.543348 0.508036

RNN-S 0.824593 0.716676 0.513264 0.491681

RNN 0.814869 0.708421 0.566334 0.532597

ATTN1511 0.900919 0.739048 0.738079 0.620818

AVG 0.513481 0.506383 0.486454 0.488889

CNN model (CNN-S). However, the CNN-S is not the best model according to the Table
4.8, the experiments during the development showed that the end-to-end performance
is slightly better using this model.

Table 4.9: Neural network based scoring

Dataset Phase ACC @ 1 AP-recall MRR

moviesD
Test 55.0 % 80.4 % 0.628
Train 76.3 % 83.7 % 0.793

moviesF
Test 62.8 % 84.4 % 0.696
Train 73.2 % 86.6 % 0.786

WebQuestions
Test 43.9 % 71.6 % 0.522
Train 53.8 % 77.2 % 0.620

We also tried combination of the logistic regression and CNN-S models and it achieved
comparable results as the CNN-S model alone. The Table 4.10 shows all three approaches
for the relation matching task used separately. The results are shown on the test split
of each dataset.

Table 4.10: Relation matching comparison

Dataset Method ACC @ 1 AP-recall MRR

moviesD
Log. regression 51.2 % 73.5 % 0.582

Dot product 50.8 % 77.3 % 0.580
CNN-S 55.0 % 80.4 % 0.628

moviesF
Log. regression 62.5 % 78.4 % 0.679

Dot product 52.9 % 74.5 % 0.593
CNN-S 62.8 % 84.4 % 0.696

WebQuestions
Log. regression 42.4 % 61.7 % 0.485

Dot product 28.8 % 54.7 % 0.363
CNN-S 43.9 % 71.6 % 0.522

The YodaQA returns a list of all answers found in the process sorted according to
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4.4. Neural network based scoring

their scores. It aims to show the correct answer on the first place which is then presented
to the user for example in the web interface. However, it is not capable to return a list of
the answers marked as correct. In order to preserve answer scoring path of the pipeline,
we try to simulate this behaviour in two ways. The first way is to select all answers with
the score higher than a certain threshold as a set of the correct answers. The Figure 4.2
shows the dependence of the precision, recall and F1 score on the answer score threshold.
The blue dashed line represents the precision, the green dashed line represents the recall
and the red line represents the F1 score. The highest value of the F1 score is 0.351 given
the threshold equal to 0.53.
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Figure 4.2: F1 score dependence on the answer score threshold

The other option is based on the property path which generated the answer. We take
the answer with the highest score and we add the other answers which were generated
using the very same property path. This approach results in F1 score equal to 0.304.
Each of the mentioned techniques is far from the perfection and the YodaQA system
needs more sophisticated way to select list of the correct answers. The most straight-
forward way could be using the top scored path and select all the answers it generates
as the correct ones. However, this cuts the process before the answer scoring step which
leads to worse results. The Table 4.11 shows the comparison of the F1 with the solutions
described in the Chapter 2.

Table 4.11: F1 comparison

System F1

Aqqu 49.4

Stagg 52.5

DeppQA 53.3

YodaQA 35.1
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Conclusion

The goal of this thesis was to improve the question answering performance of the YodaQA
system. The selected approach was the usage of the structured knowledge base. The
selected knowledge base was the Freebase thanks to its robustness and since the gold
standard answers to the questions from the datasets were obtained using this knowledge
base. Three most recent articles about the question answering using the structured
knowledge base was used as an inspiration.

The selected approach was based on the scoring of the relation paths. The paths were
generated using the entities from the entity linking and three scoring approaches were
introduced: the logistic regression, dot product based and neural network based scoring.
The logistic regression approach was inspired by the previous YodaQA implementation of
this task and the simple extension was introduced resulting in performance improvement
from 38.1 % to 51.2 % on the moviesD, from 34.9 % to 62.5 % on the moviesF and from
39.7 % to 42.4 % on the WebQuestions dataset.

The dot product based scoring was inspired by the sentence selection task. Unfor-
tunately, the representation of the question and the final score estimation caused this
approach to perform worse then the previous one.

The neural network based scoring was inspired by the mentioned articles. The ad-
ditional models were tested and compared. This approach introduced an additional
performance improvement in comparison with the logistic regression approach. The fi-
nal performance using this scoring method was 55.0 % on the moviesD, 62.8 % on the
moviesF and 43.9 % on the WebQuestions dataset.

As mentioned in the previous chapter, the achieved value 0.351 of the F1 score is
very low. The value is low because of the low precision as the YodaQA returns all
answers sorted by their score. The future improvements should aim to this issue in
order to improve precision as well as to add the ability to return a list of the answers
if the question requires it. This could be done for example by improving the entity
linking. The Wikipedia description of the entity can be used to measure co-occurrences
of the words from the question and from the description as mentioned in [11]. A similar
approach can be used for the relation matching. The benefit of the current system is
that it needs only the data provided in the dataset for the training which is helpful for
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Conclusion

a possible domain adaptation.
Another improvement is more about the speed performance of the system. The

current Freebase endpoint is very slow and it needs to be replaced with a better endpoint
software. Additionally, the Freebase can be replaced with the Wikidata knowledge base
since it is not developed and supported any more.
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Appendix A

Acronyms

QA Question answering

YodaQA Yet anOther Deep Answering pipeline

UIMA Unstructured Information Management Architecture

CAS Common analysis system/structure

LAT Lexical answer type

SV Selection verb

POS Part of Speech

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

CVT Compound Value Type

SVM Support Vector Machine

CNN Convolutional neural network

RNN Recurrent neural network
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Appendix B

Property blacklist

Table B.1: Blacklisted properties

Blacklisted properties # in GS paths

people.person.profession 136
location.country.languages spoken 122

location.location.contains 102
travel.travel destination.tourist attractions 80

book.book subject.works 48
book.author.works written 36
location.location.time zones 33

symbols.name source.namesakes 26
book.author.book editions published 21
location.location.partially contains 19

location.citytown.postal codes 19
music.artist.track 18

location.location.events 18
location.country.first level divisions 17

location.country.administrative divisions 16
music.artist.album 14

sports.sports team location.teams 12
music.composer.compositions 11

film.film subject.films 9
visual art.art subject.artwork on the subject 6

music.lyricist.lyrics written 5
periodicals.newspaper circulation area.newspapers 5

book.book.editions 4
organization.organization scope.organizations with this scope 4

food.beer country region.beers from here 3
influence.influence node.influenced 3
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B. Property blacklist

location.location.people born here 3
people.person.quotations 3

music.producer.tracks produced 3
broadcast.artist.content 2

biology.breed origin.breeds originating here 2
film.film location.featured in films 2

fictional universe.fictional setting.fictional characters born here 1
people.profession.people with this profession 1

time.event.includes event 1
tv.tv program.episodes 1

media common.netflix genre.titles 1
astronomy.celestial object.locations 1

location.country.second level divisions 1
fictional universe.character species.characters of this species 1

government.governmental jurisdiction.agencies 1
award.award.category 0

olympics.olympic games.events 0
chemistry.chemical element.isotopes 0

military.military conflict.military personnel involved 0
government.government office category.offices 0

music.genre.artists 0
organization.organization sector.organizations in this sector 0

music.composition.recordings 0
astronomy.orbital relationship.orbited by 0

olympics.olympic games.competitions 0
people.cause of death.people 0

tv.tv genre.programs 0
music.genre.albums 0

music.compositional form.compositions 0
cvg.cvg genre.games 0

meteorology.cyclone affected area.cyclones 0
film.film genre.films in this genre 0

business.industry.companies 0
military.military unit place of origin.military units 0

award.award discipline.awards in this discipline 0
media common.literary genre.books in this genre 0

wine.wine region.wines 0
broadcast.genre.content 0

biology.organism classification.lower classifications 0
music.genre.subgenre 0

internet.website category.sites 0
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Appendix C

Contents of enclosed CD

readme.txt................................. the file with CD contents description
src.................................................the directory of source codes

yodaqa.....................................................................

dataset-sts................................................................

dataset-factoid-webquestions............................................

thesis........................the directory of LATEX source codes of the thesis
text....................................................the thesis text directory

DP Pichl Jan 2016.pdf.........................the thesis text in PDF format
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