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Abstract

People travel all the time, whether it be commuting, weekend bike trips or transportation of
goods. We often require our smartphones or computers to find the quickest route for us to
get somewhere. But what if we are not interested merely in the shortest or the fastest option
and, instead, desire to choose from several alternatives that meet our expectations in a whole
range of criteria? We know that searches accommodating multiple preferences simultaneously
often find an excessive number of results, the ultimate selection from which may be awkward.
We therefore consider the options for reducing the solution set’s size. Our intention is to
identify a few representative solutions that exhibit spatial diversity. To accomplish this,
we design a multi-criteria algorithm that integrates the preference of geographically distinct
solutions directly into the search, and we compare it with the method that simply filters the
complete set of solutions based on their distinctness. We perform the evaluation on the road
networks of the city of Prague and New York City. The proposed search algorithm indeed
finds a set of routes with a convenient size, still covering all of the interesting route segments.
The evaluation also shows that it is on average up to two times worse in terms of runtime,
although there are certain cases in which it clearly outperforms the filtering method.

Abstrakt

Ludia neustdle cestuji, ¢ uZ sa jednd o dochadzanie, vikendové vylety na bicykli alebo
prepravu tovaru. Casto sa obraciame na svoje smartfény alebo poéitace s poziadavkou
nijdenia najrychlejSej trasy niekam. Avsak, ¢o ak nds nezaujima zrovna najkratsia alebo
najrychlejsia moznost a chceli by sme si vybrat z viacerych alternativ, ktoré spiﬁajﬁ nase
ocakdvania v §irSom spektre kritérii? Je zndme, Ze vyhladdvanie, ktoré ma uspokojit viaceré
preferencie naraz casto najde nadmerné mnozstvo vysledkov, z ktorych sa findlny vyber robi
len velmi tazko. Preto sme sa rozhodli preskimat moznosti na zredukovanie mnoziny rieseni.
Nasim zdmerom je urcit zopar reprezentativnych rieseni, ktoré by preukazovali diverzitu v
priestore. S tymto cielom sme navrhli multikriteridlny algoritmus, v ktorom je zabudované
uprednostiiovanie geograficky jedineénych rieseni priamo do procesu vyhladdvania, a porov-
nali sme ho s metédou, ktord jednoducho vyfiltruje kompletni mnozinu rieSeni podla ich
jedineénosti. Vyhodnotenie prebiehalo na cestnych siefach Prahy a New Yorku. Navrhnuty
vyhladédvaci algoritmus skutoéne nijde rozumne velki skupinu ciest, ktoré pokryvaji vietky
zaujimavé useky. FExperimenty tiez ukéazali, ze v priemere sice dosahuje zhruba dvakrat
horsie ¢asy, no v niektorych pripadoch dokézal jednozna¢ne prekonat metédu s filtrovanim.
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“If we cannot now end our differences, at least
we can help make the world safe for diversity.”

— John F. Kennedy

Chapter 1

Introduction

1.1 Motivation

Most people travel every day using various means of transportation available in today’s
society. Depending mostly on the size of the city or town they reside in and their occupation,
people may have to commute to work or they drive a vehicle as a part of their job. In some
countries, they rarely walk to a store anymore and, if they have some spare energy on
weekends, they try to make up for the time spent in the office during the week by driving
off to the mountains or to visit their relatives. Others ride their bicycles to the nearest
swimming pool or out of town to explore new tracks in the nearby woods. What all these
scenarios have in common is that they require a plan how to get from one place to another.

In most cases, we are interested in either the shortest or the fastest way to reach our
destination. We already have apps in our smartphones that can find the fastest route from
our current location almost instantly. There are groups of people, however, who travel for
enjoyment, which mostly includes the cyclists, or who travel between the same two points
frequently and desire some variation, which again chiefly concerns the bicycle commuters.
These often have a different set of criteria based on which they decide how good a route
is. The amount of uphill climbing, the surface type and quality of the roads, as well as
the busyness of the streets, all play an important role in determining the convenience of
a route when you are riding a bike, perhaps even more so than the travel distance and
time. Planning that takes multiple factors into consideration typically produces many results
with different trade-offs between the individual criteria. The results naturally vary in their
geographic setting too. This enables the cyclists to choose an alternative that best suits their
preferences. However, it also poses a computational challenge far greater than the ordinary
route planning with a single criterion.

In the recent years, the research interest in diverse multi-criteria route planning has pri-
marily been attracted by the efforts to improve planning for the hazardous material (hazmat)
transportation. The criteria that can be used to optimize the routes range from distance
and time (in the carrier’s interest) to weather conditions, traffic flow and population density
along the route (mostly in public interest). It is thus typically desired to find spatially differ-
ent routes that can be alternated between for a series of shipments with the goal of spreading
the risk they impose across a larger area, while not giving up the efficiency of the routes.
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Although accidents involving hazmat are rare, they are disastrous when they do happen, and
their consequences may, directly or indirectly, affect thousands of people, as well as they can
be very costly. Efforts to enhance the current methods for hazmat transportation planning
are therefore deemed worthwhile.

1.2 Scope and Goals

Our aim in this thesis is to identify a suitable way of integrating the preference of geograph-
ically distinct solutions into the multi-criteria search in road networks. We shall design an
algorithm that finds a set of solutions with a more convenient size and an emphasis on spatial
diversity among the solutions.

Finding optimal paths when taking multiple criteria into account is a difficult problem to
solve, as explained in Section 2.2. The runtime of a multi-criteria search increases substan-
tially compared to its single-criterion counterpart. Furthermore, the number of solutions to
such a problem can explode depending on the origin-destination distance and the number of
criteria in consideration. When the solution set is enormous, the ability to choose the most
suitable one among them is markedly impaired. And we are talking hundreds or thousands
of solutions only considering two or three criteria. It is therefore essential to devise a method
to filter the exhaustive solution set found by a multi-criteria search.

What we shall strive to accomplish is avoid the necessity of computing the entire solution
set in the first place and enhance the search in such a way that will enable it to come up with
a reasonably sized and, at the same time, diverse set of solutions directly. The emphasis on
diversity should ensure that the solution reduction does not render attractive route segments
unavailable in the condensed solution set. By adjusting the focus of the search, this approach
could possibly improve the performance, making thus the multi-criteria search not only more
convenient for use, but also better suited for real-time applications.

To assess the quality of our accomplishment, we shall evaluate the algorithm against
the full multi-criteria search with an added diversity filter supplementarily applied to the
solution set. The evaluation will be performed on large real-world road networks in order to
maximize the relevance of the results.

1.3 Outline

We begin with a brief introduction to the shortest path problem, which is the basis of route
planning, in Chapter 2. The necessary background of its multi-criteria extension along with
the related work is then reviewed as we move toward the overview of the recent approaches to
solution diversity in the multi-criteria search. In Chapter 3, we specify several techniques for
determining the path difference, which will enable us to evaluate the diversity of a solution
set. We then proceed with a description of the state-of-the-art multi-criteria search algorithm
in Chapter 4, followed by our proposition of a diversity-aware extension of the algorithm.
The implementation of the algorithms is described in Chapter 5, and their performance, as
well as the solution quality, is then evaluated in Chapter 6. Finally, we conclude the thesis
with a review of our achievement and a discussion of the future work in Chapter 7.



Chapter 2

Related Work

This thesis focuses on diversity-oriented route planning with multiple criteria, where by route
planning we mean an application of the shortest path problem in a road network. Graph
G = (V, E, ¢), representing a road network, is defined by a set V' of nodes and a set E of edges
connecting the nodes. Nodes typically correspond to junctions, while edges represent the
road segments between them. Each edge (u,v) € E has a cost c¢(u,v) assigned to it. A path
from an origin s € V to a destination t € V' is a sequence of edges connecting distinct nodes
starting in s and ending in ¢. The shortest path between s and ¢ is that which minimizes the
sum of the costs of its edges. It is often called the distance between s and t, denoted d(s, t).

Dealing with multiple criteria means that each edge has multiple costs. It typically re-
sults in a multitude of optimal solution paths, none of them strictly better than another.
Depending on the size of the problem, the number of all optimal solutions can be overwhelm-
ing. To facilitate the selection of the most suitable solution for a given purpose, the set of
all solutions can be filtered based on their distinctness in a specific aspect from the other
solutions, thus promoting a high diversity with respect to the chosen aspect in the filtered
solution set.

The sections of this chapter will gradually introduce the well-researched problem of find-
ing the shortest paths in a graph, followed by its multi-criteria variant along with several
performance-improvement techniques and, finally, various approaches to obtaining a spatially
diverse set of solutions.

2.1 Shortest Path Problem

Depending on the size of the set of origin nodes and the set of destination nodes, we can
distinguish several classes of the shortest path problem. The point-to-point problem is to find
the shortest path between a single pair of nodes in a graph. In the one-to-many problem, a
set T of destination nodes is given and the shortest path is to be computed from an origin s to
allt € T. When T' =V, the problem is called one-to-all. Analogically, when we have a set S
of origin nodes and would like to find the shortest path from each s € S to a destination £,
it is a many-to-one problem, with its probably most common variant being the all-to-one
problem. The many-to-many problem defines both a set .S of origin nodes and a set T' of
destination nodes between which the shortest paths are to be found. Finally, there is the
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all-pairs problem, in which we have to compute the shortest path between all pairs of nodes
in the graph, which is a variant of the many-to-many problem with S =T = V. The actual
shortest paths are often not required when solving the problems and it is sufficient to only
calculate the distance between the set of origins and the set of destinations.

A static road network is represented by a directed graph with non-negative edge costs.
The standard approach to solving a point-to-point shortest path problem in such a graph
uses Dijkstra’s algorithm [13]. At the beginning, it sets the distance of the origin node s to
zero, and the tentative distance of all other nodes from s to infinity. It maintains a priority
queue ) in which the nodes are ordered by their distance from s. Initially, the only node
contained in () is s. In each iteration, a node u with the lowest distance from the origin is
extracted from @, and the outgoing edges (u,v) € E to all of u’s unvisited neighbors v are
inspected. We will refer to this step as an ezpansion. Whenever d(s,u) + ¢(u,v) is better
than the current tentative distance to v, the distance is updated and v is added to @ with its
new tentative distance as key. Dijkstra’s algorithm is a label-setting algorithm, which means
that, once a node v is visited, its tentative distance from the origin becomes final and equals
the minimal distance d(s,v). As a result, the algorithm can stop as soon as the destination
node t is visited. The set of nodes visited by the algorithm is called the search space, which
is represented by a data structure called the search graph. In case of Dijkstra’s algorithm
the search graph is a tree.

There are multiple variants of Dijkstra’s algorithm that optimize its performance, mostly
by reducing the search space. The bidirectional variant runs two simultaneous searches,
one forward from the origin s and the other backward from the destination ¢, until the
intersection of their individual search spaces contains a node that lies on the shortest path
from s to t. Another class of variants uses goal-directed techniques. These guide the search
in the direction of ¢ in order to avoid exploring an unnecessarily large space that lies within
d(s,t) from s, as Dijkstra’s algorithm does.

A popular goal-directed algorithm is the A* search [20]. It uses a heuristic function
h : V' — R to estimate the distance of a node u from the destination node ¢, where h(u)
is a lower bound on d(u,t). The priority of u in the queue is then determined by the sum
d(s,u) + h(u), which results in preferring the nodes that are closer to the destination. If
h(u) = d(u,t) for Yu € V, the search visits only the nodes along the shortest path. In
road networks, the heuristics typically exploit geometric properties of the graph, such as the
Euclidean distance between two points.

The performance gain using geometric lower bounds may, however, be insignificant. The
ALT algorithm [17], stemming from A* improves the lower bounds used in its heuristic
function by employing graph preprocessing. In this initial step, a small subset of V is
selected as a group of landmarks, while storing the distances between them and all nodes in
the graph. These are then used in triangular inequalities to compute the lower bounds on
the nodes’ distances from the destination in the actual query.

A different approach to solving the shortest path problem uses the Bellman-Ford algo-
rithm [9][14]. It repeatedly iterates over all edges and improves the distances of the nodes
where appropriate. Since the nodes may be visited and updated multiple times during one
search, it belongs to the class of label-correcting algorithms. The main advantage of the
Bellman-Ford algorithm over Dijkstra’s algorithm is that it also works when there are edges
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with negative costs in the graph. On the other hand, it intrinsically computes the shortest
paths from an origin to all nodes, which is a redundant work for a point-to-point problem.

The last decade has seen a significant development in the area of route planning in trans-
portation networks, and there are recent algorithms that work efficiently in large-scale road
networks. There are new goal-directed methods, such as Arc Flags [21][23], alternative ap-
proaches including hierarchical techniques (e.g. Contraction Hierarchies [16]), bounded-hop
techniques (e.g. Hub Labeling [11][15] or Transit Node Routing [6][5][38][3]) and various hy-
brid algorithms that offer additional speedups (e.g. SHARC [7] — combining the computation
of shortcuts with multilevel Arc Flags, or CHASE [8] — combining Contraction Hierarchies
with Arc Flags). For an extensive survey and performance comparison of these and other
shortest path algorithms refer to [4].

2.2 Multi-Criteria Shortest Path Problem

The previous section only considers the scenario in which each of the graph’s edges is assigned
a single cost. In a more advanced scenario, we may be interested in optimizing across multiple
criteria simultaneously, typically, minimizing multiple objective functions. Hence, it is often
called a multi-objective shortest path problem. In this case, instead of a single cost value each
edge is labeled with a cost vector ¢, the values of which correspond to the individual criteria.
In road networks these criteria could be the obvious — time requirement and travel distance
— but also, for example, fuel consumption (which may be an indication of the presence of
mountain passes along the path), road type (freeways, residential area streets, etc.) or the
number of intersections with traffic lights.

The multiple criteria render the problem more difficult because comparing two vectors is
not as straightforward as comparing two scalar values. We can utilize a partial order relation
between two cost vectors that determines whether one vector dominates (i.e. is “lower than”)
the other vector or not. The primary implication of the dominance being a partial order
relation is that there may be multiple non-dominated paths from the origin node s to an
arbitrary node u € V. Therefore, unlike in Dijkstra’s algorithm, it is possible that u gets
expanded more than once during the search for the shortest path. Another consequence is
that there is no single optimal solution to a multi-criteria shortest path problem. Instead,
the solution is a set of all non-dominated paths from s to the destination node t. A tree is
no longer a sufficient representation of the search space in a multi-criteria problem, so it is
replaced by a directed acyclic graph.

Consequently, the multi-criteria search is considerably more complex than its scalar coun-
terpart. The number of node expansions can grow exponentially with the solution depth in
the worst case, even in a problem with two criteria [18]. However, it has also been shown
that in certain classes of the problem, the size of the solution set grows only polynomially
with the destination depth [33]. Such behavior is exhibited in particular by problems with
polynomially sized graphs, bounded integer costs and a fixed number of criteria [30].

Similarly to the single-criterion search, there are two major methods of solving the multi-
criteria problem — label correcting and label setting. In a multi-criteria search algorithm, a
label represents a unique non-dominated path to a particular node, and its main component
is the cost vector of the path. The label-correcting approach [39] builds on its single-criterion
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version by keeping a set of labels for each node. When a node u is extracted from the priority
queue, all of its labels are expanded along all outgoing edges (u,v). For each label-edge pair
there is a new label added to the respective successor node v, which is created by summing
the edge’s cost vector and the cost vector of the label being extended. Any existing label
of v that is dominated by the new label is subsequently removed. And conversely, the new
label is removed (or not added to the successor node in the first place) if it is dominated.
All nodes whose set of labels changes have to be extended in the next iteration. When there
is no node to extend, the algorithm terminates.

The main difference of the label-setting approach lies in the label selection. Instead of a
repeated expansion of the labels of many nodes, the algorithm maintains a queue of labels
ordered lexicographically by cost vectors and, in each iteration, selects the first label in the
queue for expansion. This label is associated with a particular node v and so the label
is expanded along all outgoing edges (u,v) in the same way as in the previous method.
Dominated labels must be removed both from the sets of labels of the corresponding nodes
and from the queue. The search terminates as soon as the queue is empty. The algorithm
using this technique introduced by Martins in [32], may as well be considered a multi-criteria
extension of Dijkstra’s algorithm. Additional methods for solving the multi-criteria problem
are reviewed in [36].

One of the first multi-criteria search algorithms, which became the foundation for nu-
merous extensions, was MOA*. As the name suggests, it is a multi-objective adaptation of
A* and hence it implements a lower-bound function for estimating the costs of the paths to
the destination for each criterion. It was presented, and proven complete and admissible,
by Stewart and White in [40]. Although a label-setting algorithm, MOA* employs node
expansion, i.e. it expands one node at a time generating new labels for its successors from
the whole set of the node’s labels. The node selected for expansion must have at least one
label that is not dominated by any solution cost already discovered, nor by a label of any
other node in the queue (note that the queue contains nodes instead of individual labels).
However, node expansion has recently been shown not to be a good choice for the multi-
criteria search. Not only can it be outperformed by a blind search technique, but also better
informed lower-bound heuristics can actually decrease its performance, which is contrary to
the purpose of the heuristics [26][34].

An alternative label-setting approach uses label expansion, upon which Mandow and
Pérez de la Cruz built the NAMOA* (New Approach to Multi-Objective A*) algorithm [29].
Its efficiency has been shown to improve with better lower-bound estimates. Furthermore,
NAMOA* has been proven to be optimal over the class of admissible multi-criteria algo-
rithms, and to strictly dominate MOA* [28]. The algorithm was evaluated on fairly large-
scale, realistic road networks (containing up to 10 nodes), achieving a feasible performance
for bi-criteria problems [25], but still not good enough for real-time applications. Since our
work builds on NAMOA¥*, the algorithm is presented in detail in Chapter 4. Recent ef-
forts enhanced the algorithm by implementing a more efficient graph structure [27] and by
parallelizing the search [37].

Given the complexity of the multi-criteria problem, a complete search is intractable in
real time for very large instances. This realization has spawned several heuristic approaches
in attempt to speed up the search. The recently proposed NSMOA* algorithm [19] orders
the non-dominated labels in the queue according to their crowding distance instead of the
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default lexicographic order. The reasoning behind this idea is that a solution with a low
crowding distance is in a dense area of the solution space, which presumably makes such a
solution superior to those with a higher crowding distance. This should, in particular, lead
to a faster discovery of the first solution and, with it, an earlier start of the search space
pruning. However, the algorithm’s performance was compared to that of NAMOA* only on
very small graphs (up to 2000 nodes), and the only performance metric used was the number
of expanded nodes before the first solution was found. That makes NSMOA*’s superiority in
large graphs with hundreds of solutions questionable at best. Moreover, the absent runtime
comparison makes it unclear whether the increased computational complexity, caused by the
new sorting method, does not cancel out the modest performance boost.

A more promising extension of NAMOA* is the LEXGO* algorithm [35], which intro-
duces label sorting by lexicographic goal preferences. The goal preferences define a target
value for each criterion. They can be grouped in multiple priority levels, each containing a
set of one or more preferences; each goal preference is assigned to exactly one priority level.
The principle of optimality does not apply to goal preferences and, therefore, a more complex
pruning condition is employed so as to make the reduction of the number of explored paths
during the search possible. This naturally causes some overhead, but overall, the algorithm
displays a significant performance increase (up to four orders of magnitude) at the expense
of the size of the solution set.

The more restrictive the goals are, the greater is the reduction of the number of labels
expanded during the search as well. It is, however, important to mention that the targets
represent preferences, not constraints, and, therefore, feasible solutions do not necessarily
have to satisfy all of them, or in fact, any of them. What matters is the difference of the
label’s cost vector from the goal preferences. The algorithm introduces deviation vectors to
capture this difference and uses them for determining the order in which the labels become
expanded (the lower-bound estimates are only used in case of equality of the deviation
vectors).

LEXGO* returns a bounded subset of solutions — those that satisfy a set of predefined
goals for each criterion or those that minimize the deviation from the goals in case there is no
solution that satisfies all goals at the same time. A subset of solutions does not necessarily
imply a worse outcome, for instance, when the complete solution set contains hundreds of
paths, which would very likely be redundant in a real-world scenario anyway. The authors
of the algorithm also proved that LEXGO* always explores a subset of the labels explored
by a full Pareto search, such as in NAMOA*.

The trade-off between the runtime and the number of solutions in LEXGO* could in fact
be useful for real-time route planning. However, when reducing the search space, we may
be more interested in preserving a limited subset of solution paths that are as diverse as
possible.

2.3 Solution Diversity

An important issue in the real-world multi-criteria route planning that needs to be addressed,
if its results are to be of any practical use, is the size of the solution set. When the search
yields a hundred solutions from which none can be declared better than another, at least
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not based solely on the criteria as provided, they need to be considered from yet another
perspective. There are a few natural ways how humans would filter such a set of optimal
solutions in order to pick a handful of the most useful ones. The selection becomes rather
infeasible for the humans, however, when the number of solutions found by the search is even
greater, such as in thousands or tens of thousands, which is not an exception in problems
with three or more criteria. Therefore, it would be convenient to extend the multi-criteria
search to perform even this reduction for us and only offer a small subset of all optimal
solutions in order to facilitate the final decision making.

The previously described algorithm LEXGO* does indeed accomplish this by introducing
a sort of target values for each criterion and different levels of preference for the criteria.
Declaring one criterion more important than another is one of the natural ways to decide
which solutions stand out among the rest. In this case, a 10-km-long route that only takes 15
minutes would be preferable to an 8-km route that requires 25 minutes, supposing the time
criterion is more significant than the distance. LEXGO* integrates this filtering directly into
the search with the further benefit of decreasing the size of the search space explored and,
with it, the necessary computation time.

Considering that route planning takes place in a geographical space, another intuitive
way of reducing the number of solutions is by selecting the most spatially dissimilar routes,
such as those that share the least part with other solution routes. This, at first, was applied
by Akgiin et al. in [2] to single-criterion route planning, wherein a number of candidate
routes were first generated using various methods, such as k-shortest paths or the iterative
penalty method (IPM), and subsequently a diverse subset was picked using the p-dispersion
algorithm. The p-dispersion [22] selects a subset of a fixed number of routes such that the
minimum difference between two routes in the subset is maximized.

Dell’Olmo et al. [12] took it one step further by using it to find diverse routes in a multi-
criteria shortest path problem, which seems only natural, since a multi-criteria search yields
a set of optimal solutions that can be supplied as the input candidates to the p-dispersion.
The authors also argued that computing the dissimilarity of paths based merely on the
edge intersection may lead to finding two parallel solution paths not distant enough to be
considered satisfactory in some cases. Hence, they proposed defining buffer zones, i.e. virtual
bands of a certain width along the paths, and calculating the intersections of these zones
instead.

Marti et al. [31] reviewed the previous approaches and devised a GRASP algorithm
adapted to the bi-criteria problem. This algorithm finds an approximate subset of non-
dominated candidate solutions, which are, however, generated by combining k-shortest paths
and IPM, and filtered using a randomized destructive method (RDE). This method improves
the diversity over the combination of k-shortest paths / IPM with p-dispersion, but it is not
exact and it does not employ a proper multi-criteria approach.

Another strategy, presented by Caramia et al. in [10], employs k-means clustering to split
up all optimal paths into k£ groups minimizing the cost vector variance within the groups.
A single path is then heuristically chosen from each of the groups such that the spatial
diversity among them is maximized. This extension of the fully multi-criteria approach by
Dell’Olmo et al. was tested with three objectives and real-world data from an Italian region
of Lazio. The corresponding road network consisted of 311 nodes, which can be considered an
extremely small problem instance where possible shortcomings of the algorithm are unlikely
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to emerge. In a larger instance, it might be quite common that two routes with very similar
cost vectors are completely different spatially, but they would fall into the same group during
the clustering phase. Eventually, only one of them would be picked as a solution, resulting
rather in the suppression of diversity.

Experiments on very small networks are in fact an issue present in the majority of the
literature on multi-criteria route planning, probably due to the computational complexity of
the problem. This was one of the motivations for us to work with large-scale route networks
when developing our own extension of a multi-criteria search algorithm.

All of the above approaches to finding a spatially diverse set of solution routes have one
thing in common — they generate a set of candidate solutions first and then filter the most
dissimilar ones, mostly a fixed number of them regardless of the problem instance. This,
however, appears to be a waste of computational power when the search has to explore a
multitude of solutions only to choose a small fraction of them in the end. In this thesis, we
will examine an alternative approach, which is more similar to that of LEXGO* (an extension
of NAMOA*) in that it directs the multi-criteria search straight toward the solutions with
a desired property first. This enables it to stop as soon as the set of solutions found is
satisfactory, with no need to search for all the optimal solutions. We present a new extension
of NAMOA* that is driven by the path dissimilarity.
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Chapter 3

Problem Specification

We begin this chapter with several standard definitions that are fundamental for the expla-
nation of the multi-criteria search algorithm in Chapter 4. We are only interested in the
point-to-point class of search problems, and all definitions are formulated with this in mind.
Afterwards, we go on to discuss the spatial diversity of paths in a set, such as the Pareto
set of solutions found by a multi-criteria search. We present several metrics to calculate the
difference between two paths, which is used for determining the diversity of a set of paths.

3.1 Basic Definitions

In a problem with multiple criteria, it is not always possible to assert whether one cost
vector is less than another. Instead, we introduce a strict partial order relation <, called
dominance:

T < = T < A l_"#l_j Viel,...,n,

where T, 2’ € R" and ; denotes the i-th component of Z (corresponding to the i-th criterion).

Following the above definition, we say that vector ¥ dominates vector ' if there is at least
one criterion in which 7 is lower than 2/ , and no criterion in which 7 is greater than 7. To
illustrate the relation, let us consider three simple vectors (1, 2), (1,3) and (3,1). Vector (1,2)
dominates (1,3), but it does not dominate (3,1), nor is it dominated by (3,1). Therefore,
vectors (1,2) and (3, 1) are non-dominated in the set of these three vectors. To express that
vector £ dominates or equals vector 7 , we will use the <-relation.

Given a set X of vectors, N (X) is the set of non-dominated vectors in X. N (X) is called
a Pareto set and is defined as follows:

NX)={ZeX|PeX §y=<i}.

The vectors in N (X) are called Pareto optimal, as there exists no vector in X that would
improve on one component of a vector from N (X) without degrading another component.
A Pareto set is bounded by two points:

e the ideal point a = (a1, ..., an), where a; = mingearx){z:},

e the nadir point 5: (B1,- -+, Bn), where B; = maxzen(x){7i}

11
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While each element «; of the ideal point can easily be calculated for a multi-criteria shortest
path problem by optimizing the i-th criterion separately, it is difficult to calculate the exact
nadir point for n > 2 without finding the complete Pareto set of solutions first.

In the multi-criteria search algorithms, we will not be exclusively interested in the dom-
inance relationship of the vectors though. What we shall find useful in addition to the
dominance relation among vectors, is the lexicographic order < defined as:

/

T <pa = Jjlay<af ANVi<] x; = .

Note that the lexicographic minimum of a set X of vectors is necessarily a non-dominated
vector in X.

In a multi-criteria search algorithm, we typically use labels, which are structures contain-
ing information about a unique path P;, from the origin s to the node u. The simplest label
Ly = (u,§(Psy), Lypreq) contains the last node u of the path (also the node to which the
label is assigned), the cost vector g(Ps,) of the path and the label L,pyeq of which L, is the
extension. L,preq is assigned to the immediate predecessor of u on the path Ps,. In these
terms, L, dominates L, = (v, §(Psy), Lypred) When §(Ps,) < §(Ps,). Note that there may be
multiple labels assigned to a single node, since there may be different paths from the origin
to the node, therefore it is possible for v to equal u. The set of all non-dominated paths
(i.e. paths whose cost vectors are non-dominated) from the origin node s to the destination
node t is the Pareto set of solutions of a multi-criteria shortest path problem. Throughout
the thesis, we will often compare labels with paths, as labels essentially represent paths.

3.2 Path Diversity

Different paths in a graph can have certain edges in common. When we have to deal with
a whole set of paths from the same origin node to the same destination node, it may be
useful to differentiate between these paths, as, in some cases, we are simply not interested
in all of them. One such case is multi-criteria route planning, where comparing the paths
based on their cost vectors might not be convenient or sufficient to determine which path is
better. We therefore consider another aspect that enables us to compare paths — the spatial
difference. It is especially useful in route planning, since the underlying graphs are typically
road networks in a two-dimensional space. There are several ways to define how different a
path is from another one, each having its pros and cons.

Once we have a way to determine how different two paths are (preferably in relative
terms), we can compute a path’s distinctness in a set of paths. It is obtained by comparing
the path with each of the other paths in the set and finding the least difference:

6(P17 S) - P]g}gl,r]l;ézd(P“F)j) )
where P; is a path in S and d is the relative difference function of two paths. The higher the
distinctness among the paths in a set, the more diverse the set of paths. We may also find
it useful to define the term distinctness threshold as a distinctness value below which a path
is not considered distinct enough for our purposes.

Following is a review of some of the metrics that express the difference of two paths,
along with an evaluation of their utility in the solving of our problem.
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3.2.1 Average Node Distance

According to the first metric, the distance of path P; from path P, is calculated as the
average distance of a node in P; from the nearest node in P,. We assume that each node in
the road network is defined by coordinates, whether it be two simple coordinates in a plane
or geographic coordinates defining the latitude, the longitude and possibly the elevation.
Hence, there is a straightforward way to compute the distance d(u,v) between nodes u
and v, regardless of whether the two nodes are connected by an edge with a distance cost in
the graph or not. In the planar case, the Kuclidean distance is sufficient:

dg(u,v) = /(01 —u1)? + (v2 — u2)?,

where w; is the i-th coordinate of node wu.

If the nodes are defined in terms of latitude and longitude, and we insist on a more
exact! geographical distance, then we can use an approximation by calculating the great-
circle distance. Using an abstraction of the Earth’s surface to a sphere, it is measured as the
shortest distance between u and v along the surface of a sphere:

dgc(u,v) = r - arccos (sin Gy * SIN Py, + COS Py - COS Oy - COS (A)\)) ,

where r is the Earth’s radius, ¢, and A, are the latitude and the longitude of u, and A\
denotes the absolute difference of the longitudes. Considering that the Earth’s shape is al-
most spherical, this approximation’s error is no greater than 0.5% [1]. Most of the route
planning is performed on a significantly smaller scale anyway, and the error becomes negli-
gible. There are several alternative representations® of the above formula more suitable for
use in computer programs because they mitigate the consequences of rounding errors caused
by the limited floating-point precision of computer systems, especially for small distances.

Having a definition of the distance function between a pair of nodes, the average node
distance of path P, from path P; is:
1

dave (P, Py) = —— - in d
an( 1, 2) |VP1 | EZV vrél‘l/f% (U, U) )
ueVp,

where Vp, is the set of nodes contained in path P; and d(u,v) is an arbitrary node distance
function, such as dg or dgc defined above. The problem with this metric is that it lacks the
symmetry property, i.e. d(P;, P») does not necessarily equal d(P,, P;). Figure 3.1 depicts
several different scenarios that can occur when determining the nearest node. As the nodes
u and a illustrate, the relationship can be mutual, i.e. a is the nearest node to u and, at the
same time, u is the nearest node to a. A different scenario, involving nodes ¢, v and w in the
example, shows that a node can be the nearest node to another node (as ¢ is to v), but the
nearest node to the former is a different one (node w). And then there is the case of shared
nodes (such as z is shared between P; and P»), where a node is the nearest node to itself,
with a distance equal to zero.

Note that an exact distance is virtually unattainable due to the surface irregularities between any two
points on the Earth’s surface. Therefore, the computation is often based on abstraction to a certain degree,
typically not accounting for the elevation at all.

2 https://en.wikipedia.org/wiki/Great-circle_distance
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Figure 3.1: Examples of the nearest nodes and the (a)symmetry of this relationship between
two paths. The characteristic of being the nearest node is depicted by an arc with an arrow,
wherein the arrow points at the nearest node with respect to the node it springs from. If
the arc has arrows at both ends, the two nodes are the nearest to each other.

In some cases, the asymmetry might not be an issue, but otherwise, the two average node
distances can be averaged in order to obtain the same distance value:
davg(Pl’ P2> + davg(P% Pl)

dan(P1, Py) = dan(P2, Pr) = 5 .

Using the average node distance for the assessment of path difference has two major
drawbacks. First, a lot of calculations need to be performed to obtain the difference of two
paths. This function would have a huge performance impact if called repeatedly. Second, the
difference is absolute and, therefore, we would require a new scale to determine the degree of
the difference for every problem instance depending on its size. Simply put, an average node
distance of 100 meters between two routes might be significant in an urban environment
but not quite enough when planning long-distance trips.

3.2.2 Jaccard Distance

A different metric relies completely on the nodes as entities, without considering their coor-
dinates. The Jaccard similarity coefficient [24] of two paths is determined by comparing the
paths as sets of nodes they are composed of. The coefficient is defined as the ratio of the
number of nodes in the intersection and the number of nodes in the union of the two node

sets:
VP, NVp|

VR UV,
where Vp, is the set of nodes contained in path P;. The Jaccard similarity coefficient can

range from 0 to 1, where 0 means the two sets are disjoint and 1 indicates they are identical.
This, of course, does not necessarily imply the paths are the same, for the sequence of the

J(VP1 ) VPQ)
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nodes may be different in each of the paths. A simple remedy for that is to use the paths’
sets of edges instead in the calculation of the Jaccard similarity index:

_ ‘EPI N EP2|

J(EP17EP2) - ‘EP UEp ‘ s
1 2

where Ep, is the set of edges contained in path P;. If the edges in the graph are directed,
then the equality of two edge sets guarantees the equality of the paths they constitute, as
long as the paths start in the same node.

What the coefficient expresses is the degree of similarity of two sets. Since we are in-
terested in how dissimilar two paths are, we use the following definition of the Jaccard
distance [24], which is a complement to the Jaccard similarity coefficient. At the same time,
we alter the metric’s arguments so as to express the dissimilarity of two paths, not of two

edge sets:
’EP1 U EP2| - ‘EPI N EP2|
dy(P1,P) =1—J(Ep,,Ep,) = .
1P, ) (B, Er,) |Ep, U Ep,|

The alternative interpretation in the above formula enables us to count the edges that are
present in only one of the paths (which corresponds to the symmetric difference of the two
edge sets) and divide the count by the size of the sets’ union in order to obtain the Jaccard
distance between the two paths.

The primary advantage of this metric over the previous one is that it indicates the
dissimilarity of the paths on a fixed scale (between 0 and 1) no matter what length of the
paths or how many edges they contain. Unlike in the case of average node distance, where
we do not know the upper bound of the total path difference, using the Jaccard distance the
bound is always 1. Hence, the relative difference obtained by this metric allows us to decide
about the distinctness threshold in advance and regardless of the problem instance we are
solving.

What could be perceived as a weakness is that the Jaccard distance neglects the spatial
distance of the paths. As a result, a nearby, so to speak, parallel path could be indicated
as more different than one generally farther away but sharing a slightly greater portion.
However, an even bigger issue is that the Jaccard distance completely ignores the lengths of
the diverging sections. One of the consequences is that a long path section with sparse nodes
could contribute to the path’s difference considerably less than a short one with a higher
density of nodes, which, in road networks, typically corresponds to the contrast between
rural highways and streets in city downtowns or residential areas with frequent junctions.
Figure 3.2 will help us illustrate this on an example. Let us assume there are three Pareto
optimal paths from s to t: P, 4, P, . and B, 4, each going through the nodes indicated in
its subscript. Using the Jaccard distance to compare the first two paths with the third one,
we discover that P, 4 is more different from P, 4 than Py . is. There are eight nodes in the
symmetric difference of the former pair of paths, compared to only five in the latter. But
clearly the section between the nodes x and y is less significant than that between y and z, so
declaring P, ¢4 a more different path than P, . is arguably an undesired result. This renders
the Jaccard distance metric rather unsuitable for the computation of path distinctness in a
road network with all kinds of roads and streets.
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downtown

Figure 3.2: The disparity of node densities in different parts of the road network can cause
a path to be unreasonably evaluated as very different from another path when using the
Jaccard distance.

3.2.3 Cumulative Edge Length Difference

Keeping the deficiencies of the previous metric in mind, we can improve on it by accounting
for the edge length. The computation of the difference of a path P; from P» then amounts
to calculating the cumulative length of all edges present exclusively in P; or P, and, subse-
quently, the ratio of this length to the total length of the edges of P, and P» combined:

ZGE (EpluEPQ)\(EplﬁEPQ) l(e)

d P, Py) =
CEL( 1 2) ZeeEpluEPQ l(e)

)

where Ep, is the set of edges contained in path P; and /(e) denotes the length of edge e. As
a matter of fact, this is an extension of the Jaccard distance with edges weighted by their
lengths. When calculating the Jaccard distance, each edge not shared between the paths
contributes to the path’s difference with the same value, whereas here an edge contributes
with a fraction that corresponds to its relative length to the paths’ lengths combined.

This modification makes the metric based on the cumulative edge length a great deal more
versatile. Problem instances in which the origin is in the city downtown and the destination
is, say, a cabin in the woods fifty kilometers out (such as the exmaple in Figure 3.2) are no
longer a complication. Even the other flaw present in the Jaccard distance metric, concerning
the preference of nearby paths, is positively affected by the edge weighting. It is still possible
that the area (or the sum of areas) enclosed with paths P} and P» is smaller than that enclosed
with P; and P, while P is evaluated as more different from P; than P is (see Figure 3.3
for an example). However, supposing the length is the principal measure of difference, this is
no issue at all. Calculating the size of the area instead of summing the edge lengths, which
could be a separate metric in itself, would considerably increase the complexity after all. It
is difficult to argue which of these two approaches would lead to “more different” results,
and it may be simply a matter preference.
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Figure 3.3: An example of the contrast between the cumulative edge length difference and
the enclosed area difference.

Incremental Path Update

The two relative difference metrics mentioned up to this point have a shortcoming that
manifests when we try to compute the difference of a path P; from P» incrementally, i.e. edge
by edge without the recalculation of the contribution of the already processed part of Pj.
During each increment before the final one, we only have a path segment — a term we use
for a path from the origin up to a node, but not including the destination node yet (in other
words, a sub-path of a solution path) — at our disposal whose distinctness we are interested
in. At the moment of determining the difference of a path segment Pig, from P», neither
the length nor the total number of edges of the future solution path P is known. Without
that information and using, for instance, the length of the current path segment instead,
we would not have a constant denominator in the difference formula. That would result
in a different relative contribution of the edges in each increment (the contribution would
gradually decrease with the increasing length of the path segment) and the edge contributions
would eventually not add up to the same value as if the difference was calculated for the
entire P, at once.

It is clear that, in order to be able to utilize a relative difference metric in a scenario
with an incremental update, it is necessary to fix the denominator so the relative difference
contribution of every edge is calculated with respect to the same whole. To achieve that for
the current metric, we can replace the union of Ep, and Ep, in the denominator by Ep, only,
which remains constant throughout the whole process. However, we then need to adjust the
numerator in the formula for the change in the denominator and only count in the edges that
are present in P,. If we did include edges from Pj, the metric could eventually take on values
greater than 1 and its upper bound would be unknown, nullifying thus the benefit provided
by the bounded range for setting a universal distinctness threshold. Following these notions,
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the formula reduces to:

dcpL,., (Piseg, P2) = ZEEEpz\EPlseg I(e) 4 ZeeEp2mEplseg l(e)
re segy — —
d g ZeGEP2 l(e) ZeeEp2 l(e)

After the modification, the metric behaves more like an estimation, but it does not
fundamentally change its usability for our purposes. Although it is no longer symmetric, it
still takes on values between 0 and 1, where 0 conveys the paths’ equality and 1 indicates
there is no overlap. Moreover, it gives us the choice between using the portion of P, that is
different from Pjge or the portion that is shared (which, in the formula, is expressed by the
two alternative interpretations respectively), the latter being more practical because, during
the incremental update, each edge in P; gets compared with the edges in P, and is confirmed
as shared or not shared.

An important characteristic of the above formula is that it assumes a total difference
of the yet unknown portion of P; from P,. Hence, the difference of P;’s segments from P»
monotonically decreases from 1 toward 0 during the incremental update. A threshold can be
employed here to stop the update as soon as the difference of a path segment drops below
a certain value in case we would like to discard paths with a small difference. Now, when
Pigeg is extended by edge enew, the difference of the extended path Pigey from P, can be
computed with the help of the previous segment’s difference as follows:

_ Uenew)
e, 1©)

if enew € Ep,, otherwise dcgr, ., (Piseg’s P2) equals dcgr, ., (Piseg, 2). The number of shared
edges cannot exceed the number of edges in P>, which ensures that the value of dcgr,,, never
drops below zero. Note, that the equation would not hold true using the original dcgr, in
place of dcgr,

dCELer (Plseg’a P2) = dCELmd (Plsega P2) -

red *

The Jaccard distance metric could be modified analogically and adapted to the iterative
updating of paths. However, being inferior to the cumulative edge length difference metric,
there is no use in elaborating on the Jaccard distance.

3.2.4 Cumulative Edge Length Difference with Projection

We also consider a different approach to ensuring the metric’s fitness for the incremental
path update, with the further benefit of not giving up the symmetry. It is based on the
cumulative edge length difference, similar to the previous metric, but the edges are projected
onto a straight line between the origin and the destination node before their lengths are used
in the calculations of the relative path difference. The projection enables us to compare
the relative length of an edge with respect to the length of the virtual origin-destination
line, which remains constant throughout the whole process of the difference evaluation. This
again gives us the option to assume the remainder of a path does not overlap with the path
being compared to when working with path segments.

In order to calculate the length of the projection of edge e, we only need to know the
coordinates of its endpoints u and v, and the coordinates of the origin node s and the
destination node ¢. Having these values, we can determine the angle ¢ between e and the
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Figure 3.4: Projection of a path’s edge onto the origin-destination line.

origin-destination line f (see Figure 3.4). When we regard the edge e as a vector defined by
the nodes v and v, and f as a vector defined by s and ¢, the cosine of the angle is:

so— T
el - {171l

where & = (v) —u1, va—ug), f = (t1—s1,ta—s2), and ||é]] and || f]| are their Euclidean lengths.

The coordinates of the nodes are denoted using subscripts, so, for instance, u; and uy are

the first and the second coordinate of node u. For the sake of simplicity, we perform the

computations in Euclidean plane.

The cosine of ¢ can then be substituted in the following formula to calculate the length
of the projected edge eproj:

. . g f  (vi—w)-(t1—s1) + (v2 — ug) - (tg — s9)
l(epmj) = ”eprOjH =|l€]| -cos p = —- = .

1 Vit =507 + (12— 52)?

The dot product of vectors € and f is written out as the sum of the products of their
corresponding components. The length of the origin-destination span can be precomputed
at the beginning and used as a constant throughout the entire incremental update, and so
can be the differences of the origin’s and the destination’s coordinates.

The difference of a path segment from a path is then computed in a similar way as in
the dcgr,,, metric, but it operates with projected edges. One of the consequences is that
the denominator reduces to the flying distance from the origin to the destination:

ZGEEP ~Ep l(eproj) ZeGEp NEp l(eproj)
dCEmej (Plseg, PQ) — 2 lseg — 1 _ 2 1seg ,

\/(751 —51)° + (t2 — 52)° \/(tl —51)% + (2 — 52)°
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Figure 3.5: Interpretation of the edge projection metric. The relative difference corresponds
to the length ratio of aprg; + bproj to the origin-destination (s-t) span.

where [(eproj) is the length of e’s projection. Extending a path segment by edge e then works
analogically too — with the simplified denominator and using the edge’s projection:

(Plseg, PQ) — l(eproj) .
\/(tl - 31)2 + (tQ — 52)2

The projection handles the cases in which the edge goes “away” from the destination (that
is, when ¢ is greater than 90° and smaller than 270°) in a rather undesired way though. The
cosine of such an angle is negative, which is reflected by the dot product, and, therefore,
the projected edge’s length becomes negative as well. This results in a negative contribution
to the relative difference of a path segment from the origin-destination line. An example of
such an edge is the third edge of path P; in Figure 3.5. The negative contribution of this
edge essentially lessens the positive contribution of the fourth edge.

(Prseg’, P2) = dcEr

dcEr

proj proj

In the end, what the difference computed by this metric amounts to is the cumulative
flying distance between pairs of nodes at the ends of the path’s sections that are not shared
with the other path, projected onto the virtual origin-destination line. The example in
Figure 3.5 illustrates this — the difference of path P; from P,, and vice versa, correlates with
the cumulative length of the line segments ao; and byro;. The shape of the different sections
clearly does not affect the eventual difference. What matters is the distance of the points
where the paths split up and rejoin. This is a considerable weakness when compared to the
previous two metrics because the physical length of a different section has only a limited
impact on the path’s difference.

3.2.5 Metric Review

So far in this section, we have presented five metrics for assessing how different a path is
from another. Each of them has its pros and cons, as summarized in Table 3.1. While day is



3.2. PATH DIVERSITY 21

Table 3.1: Overview of the path difference metrics’ properties.

dAN | dj | deBL | dCELyeq | ACELp,0;

Considers spatial distance ° - - - -
Considers physical length - - ° ° ~
Symmetric ° ° ° - °

Relative difference

(— allows global setting of | — . . . o

a distinctness threshold)

Suitable for incremental
path update

Fast execution — ° ° ° ~

the only one that considers the spatial distance of the paths, it lacks in other departments,
such as the performance and the suitability for incremental path update. Although the
incremental update is possible, its utilization is hindered in practice by the difference being
absolute, as opposed to relative, which complicates the setting of a universal distinctness
threshold for a set of paths.

On the other hand, the only two metrics to properly consider the physical length of
the paths’ diverging sections are dcgr, and dcgr,,,- While the former is symmetric and,
so to speak, more accurate, the latter is ready for use in the incremental update of paths’
differences. The main purpose of the incremental update is that it enables the computation
of a path’s difference from multiple paths in parallel, edge by edge. This is essential in
order to efficiently update the distinctness of a path in a set of paths when it is extended
by an edge, which is a typical operation in the multi-criteria shortest path search during the
label-expansion phase. The adoption of a path difference metric in the multi-criteria search
is discussed in Chapter 4.

Finally, we devised an alternative metric usable incrementally as well, but preserving the
symmetry. Unlike dcgL, 4, dCEL,,,; can be used when the difference of a path P, from P»
is required to equal the difference of P, from P;. That, however, is achieved at the expense
of the metric’s performance (there is a significant increase of calculations that need to be
carried out in the process of projection) and also its accuracy (the length of the diverging
sections affects the path’s relative difference to a lesser extent).
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Chapter 4

Solution Method

In this chapter, we first formally describe the NAMOA* algorithm for solving the multi-
criteria shortest path problem. We present a few selected heuristics that estimate the path’s
costs and help thus the multi-criteria search to find the solutions faster. Afterwards, we
discuss the diversification options in the process of finding non-dominated solutions. Finally,
we introduce our diversity-aware extension of the NAMOA* algorithm, which embeds the
diversification directly into the search.

4.1 NAMOA* Algorithm

The NAMOA* algorithm, first introduced in [29] in 2005, is a successful extension of the
A* algorithm for solving the shortest path problem with multiple criteria. The algorithm
was originally designed to work with multiple destinations, i.e. to solve the one-to-many
shortest path problem. However, considering that typical queries for shortest paths in a
road network are defined by a single origin and a single destination, we present a point-to-
point modification of the algorithm.

NAMOA* employs a heuristic lower bound function h(u) to estimate the cost of the path
from a node u to the destination node ¢. During the run of the algorithm, a node can be
assigned one or more labels. In NAMOA¥, a label L is defined as (u, §(Psu), f(Psu), Lpred)s
and it represents a unique path Py, from the origin s to the node u (note that there may be
more than one path between these two nodes). Let g(Ps,) be the cost vector of a particular
path Py, f(Psu) = §(P8u)+ﬁ(u) the evaluation vector, and Lypeq the label of L’s predecessor.
The vector ﬁ(u) contains the lower bound of the cost of any path from w to t provided by
the function h(u). To simplify the label notation, we will omit P, from the label description
and use (u, gy, f;, Lpred) instead, as we are only interested in paths starting in s. Label L,
dominates label L, if for their respective evaluation vectors f; and f;} holds that f_; < ﬁ;

Being a label-setting algorithm with the label-selection strategy, NAMOA* handles labels
individually. It maintains a priority queue @ of all currently open labels. When a label is
open, it means it has been created by expanding another open label that was subsequently
closed. Initially, Q contains a single label (s, 0, H(s), null), assigned to the origin node, which
has no predecessor and whose evaluation vector equals the lower bounds of each criterion for
a path from the origin to the destination. In addition to the queue of all open labels, each
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node u has its own sets Gop(u) of open labels and Gg(u) of closed (i.e. already expanded)
labels belonging to the node. Finally, we will use a set C' that stores the labels corresponding
to the non-dominated solution paths, which means that C' is equivalent to G¢(t).

The algorithm, whose pseudocode is outlined in Algorithm 1, iteratively selects labels
offered by the priority queue ) for expansion. In each iteration, it removes a non-dominated
label L, = (u, gy, f;,Lpred) from @ and extends it along all edges (u,v), creating a new
label L, with a cost vector ¢, = g, + ¢(u,v) and an evaluation vector fo=go+ H(v) for
each v. L, is then moved from Gop(u) to Ge(u). Each L,, before being added to Gop(v)
and @, must be tested for dominance in the following two ways:

1. If there is an existing label in Gop(v) or G (v) dominating L,, then L, is discarded
because an extension of L, would always be dominated (due to the optimality princi-
ple). For the same reason, if there is an existing label in Gop(v) or Gei(v) dominated
by L., the label is removed from the respective set and from @ as well. This operation
is called pruning.

2. If there is a label in C' that dominates L,, then L, can never become a non-dominated
solution and, therefore, it can safely be discarded. We refer to this as filtering.

The iteration continues until ) is empty. The algorithm returns the set C', which, at the
end of the search, contains the labels corresponding to all non-dominated solution paths. It
is then possible to reconstruct all the solution paths from the labels in C' recursively using
the references to their predecessors.

Much like its single-criterion ancestor A*, NAMOA* is guaranteed to reach the correct
result, in this case the complete set of Pareto optimal paths to the destination, as long
as the heuristic function h(u) returns a lower bound of the cost of any path from u to
the destination node t. Furthermore, if h(u) is a consistent heuristic, NAMOA* expands
non-dominated labels only and is optimal among the class of exact best-first algorithms [28].

4.2 Cost Estimating Heuristics

Heuristic functions are used in search algorithms to estimate the costs of paths. Based on
these estimates, the search can be directed toward the destination node ¢, avoiding thus the
unnecessary exploration of remote parts of the search space that are certainly not visited by
the shortest paths. All the heuristic functions f_i(u) presented in this section return a single
vector of cost estimates for the path from u to t.

In general, the better mformed the chosen heuristic, the more efficient the search. In
a multi-criteria search, heuristic iy is said to be at least as informed as ha when hg( ) < h_i( )
for each node u € V and, at the same time, h1 is admissible. For a heuristic  to be admissible,
it must satisfy the following condition:

—

G(Psu) + h(u) = G(Pst)

for each non-dominated solution path Ps = (s,...,u,...,t) and each of its sub-paths Py, =
(s,...,u). In other words, an admissible heuristic never overestimates the real costs and,
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Algorithm 1: NAMOA*

Input : graph G(V, E,¢), origin node s € V, destination node ¢ € V, heuristic
function h
Output: set of all non-dominated solution paths

/* Initialization */
1 Ly + (5,0, h(s),null) // initial label of the origin node s
2 Gop(s) < {Ls}, Gal(s) <0 // sets of open and closed labels of s
3 Q<+« {Ls}, C+ 0 // priority queue and solution set
4 while @ is not empty do
/* Label selection x/
select a non-dominated label L, = (u, g, f;, Lypreq) from Q
6 move L,, from Gop(u) to Ge(u), and remove L,, from Q
/* Solution label recording */
if w =1t then
add L, to C
9 foreach L, = (2, gz, fo, Lopred) € Q | gu < gz do
10 L remove L, from @) // filtering
11 continue with the next label selection
/* Label expansion */
12 forall successor nodes v of u that do not create a cycle in the path do
13 v + Gu + c(u,v)
14 fo < gu+ h(v)
15 LU A (vvg_”[)afvaLu)
16 if 3(z, Gz, fo. Loprea) € C'| g < f, then
17 ‘ discard L, // filtering
18 else if v is a new node, i.e. a node with no labels so far then
19 Gop(v) < {Ly}, Ga(v) < 0
20 add L, to Q
21 else if 3(x, gz, fo, Lapred) € Gop(v) UG (v) | gz < gy then
22 ‘ discard L, // pruning
23 else
24 foreach Ly, = (y, gy, fy, Lypred) € Gop(v) | gv < gy do
25 L remove L, from Gp(v) and from @ // pruning
26 foreach L, = (v, gy, ﬁ, Lypred) € Ga(v) | g» < gy do
27 L remove L, from G (v) // pruning
28 | add Ly to Gop(v) and to Q

29 return C
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therefore, its estimates may be considered as lower bounds of the path’s costs. A multi-
criteria search with an admissible heuristic function is guaranteed to find the full Pareto set
of solutions [28].

Another important property of heuristics is consistency. A multi-criteria heuristic func-
tion h is consistent if:
h(u) < é(u,v) + h(v) VY(u,v) € E.

When a heuristic function is consistent, it is also admissible, but the opposite does not have to
be true [40]. The consistency of the heuristic used is essential for the efficiency of NAMOA*
because it guarantees that the pruning of paths during the search will be optimal [28].

In the remainder of this section, we will briefly introduce a few consistent heuristics often
used when solving the multi-criteria shortest path problem in road networks. Note that the
basic heuristic ho(u) = (0,...,0) corresponds to a blind search.

Flying Distance Heuristics

In planar graphs, the most straightforward heuristic uses the Fuclidean distance, which is
the flying distance, between two nodes to estimate their real distance. The time estimates
could be calculated by dividing the distance by the maximum speed, which we know will not
be exceeded under any circumstances, but such simple estimates are obviously rather poor.

In case we have a problem where the nodes’ coordinates are given as their latitude and
longitude, we can use the great-circle distance heuristic instead to calculate the distance
between two nodes. It is still the flying distance, only it takes the curvature of the Earth’s
surface into account. The time estimate computation is then analogical to that of the
Fuclidean distance heuristic.

However, neither of these heuristics is remotely accurate, and they may prove incapable
of producing useful estimates for some types of criteria, such as the road incline or the
number of signal-controlled intersections. Their major asset is that they are simple and thus
fast enough to be used in real time during a search.

TC Heuristic

A different approach, proposed by Tung and Chew in [41] — the T'C heuristic — searches for the
single-criterion shortest paths from the destination node to all other nodes for each individual
criterion, ignoring the other criteria. Note that the shortest path from the destination to
an arbitrary node in this reversed search corresponds to the actual shortest path from that
node to the destination.

This can be easily achieved by applying Dijkstra’s algorithm on the graph with reversed
edges. For two criteria the heuristic is defined as h(u) = (¢f(u), c3(u) ), where ¢} (u) denotes
the optimal cost of a path from u to the destination node considering the i-th criterion only.
This heuristic is considerably more informed than the previous two, in fact it is optimal,
but it is a fairly costly procedure. For this reason, it must be performed in a preprocessing
phase of the search, and it has to be done so for each new instance of the problem, since the
estimates are precomputed with a particular destination node in mind.
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Figure 4.1: An example of the Pareto frontier in the cost space of a problem with two criteria.
It is delimited by the ideal point (¢}, ¢3) and the nadir point (¢}, ).

Bounded TC Heuristic

As we mentioned in the introduction to this section, heuristic functions are employed to
reduce the area of the search space that gets explored. Apparently, not all nodes are neces-
sarily visited during the search and, therefore, we do not have to precompute the estimates
for all of them. That is the idea behind the bounded TC heuristic.

It has been shown that during the search in NAMOA*, no path will be expanded whose
evaluation vector is dominated by a cost vector of a non-dominated solution path [28]. It is
thanks to this property of the algorithm that we can limit the number of nodes for which
we calculate the estimates. Let us consider the optimal costs ¢ and ¢} of a path from the
origin to the destination for the individual criteria. There is a certain minimum value of
the second criterion among all the solution paths having the first criterion equal to ¢j. We
denote this value by ¢,. Analogically, ¢} is the minimum value of the first criterion among
the solution paths with the second criterion equal to ¢5. The two extreme points (¢}, ¢5) and
(ch,c}) define the boundaries within which we can find the costs of all the Pareto optimal
solution paths. NAMOA* will never expand a label whose cost is dominated by the vector
(c},ch), as such a label could never lead to a non-dominated solution. Hence, it is the nodes
with the optimal costs ¢f(u) > ¢} and ¢(u) > ¢, at the same time (in Figure 4.1 they would
correspond to those in the shaded area marked with a C) that we do not need to calculate the
heuristic estimates for. This substantially reduces the number of computations, especially
in problem instances with a short origin-destination distance.

4.3 Diversification of Multi-Criteria Solutions

In a multi-criteria route planning problem, we face the inconvenience of possibly having to
deal with an enormous number of Pareto optimal solutions. In most cases, it is pointless to



28 CHAPTER 4. SOLUTION METHOD

offer hundreds of solutions, all optimal from the multi-criteria point of view, when they are
mostly just various combinations of different path segments and often differ only marginally
from many of the other optimal solutions. Reducing the size of the solution set substantially
is one of the major objectives of the route planning with an emphasis on diversity, which
is the focus of our work. Unlike in other, simpler approaches, such as picking the first few
solutions found, our intention is to maximize the mutual difference of the chosen solutions.
In other words, we are only interested in the first couple of the most distinct solutions, which
are expected to have the highest utility with regard to the variety of choices. If we compare,
for instance, the solution routes in Figure 4.2a with their diverse subset in Figure 4.2b, there
is no significant change to be observed in the map, besides several short segments missing in
the latter that did not end up included in any of the chosen solutions. However, the number
of solutions offered was reduced to as little as 3%, which is considerably more convenient.

We consider two different approaches to finding a reasonably small but diverse subset of
all Pareto optimal solutions. In both we include the solutions corresponding to the single-
criterion optima, as, presumably, they are always of certain interest. They also serve as the
initial references with which the other candidate solutions are compared. To elaborate on
our notion of a “reasonably” small subset, depending on the size of the problem instance,
it should range from three to ten solution paths for a bi-criteria problem, and possibly
slightly more for three-and-more-criteria problems, inclusive of the default solutions (i.e. the
single-criterion optima). In the following, we introduce the two diversification strategies.

4.3.1 Post-Processing Filter

This is the simple and intuitive approach, in which all Pareto optimal solutions are found
first, and only then will the most distinct among them be filtered, as a post-processing step.
The main advantage here is that all the solutions are already known, and it is only a matter
of choosing a method to determine which subset of the solutions is the most diverse one. The
subset is delimited either by a fixed number of desired solutions or by a minimum solution
distinctness accepted, i.e. a distinctness threshold.

To choose the most dissimilar paths out of the pool of paths found by NAMOA*, we
use a greedy selection method. Having one or more default solution paths in the diverse
set to start with, further ones are resolved iteratively by comparing the remaining paths
with each of those already present in the diverse set. A path’s distinctness is determined
as the minimum relative difference from an already selected solution path. Therefore, the
distinctness must be recalculated every time a new solution is added to the diverse set. Hence
in each iteration, all remaining paths have their distinctness updated and, subsequently, the
path with the greatest distinctness value is moved to the diverse set. This goes on as long
as the selected solution’s distinctness is above the defined threshold or until the diverse set
has the desired size.

The greedy selection serves as an efficient approximation of the more comprehensive p-
dispersion filtering, which selects from the Pareto set a subset of p solution paths that maxi-
mizes the minimum difference between any pair of paths it contains. While the p-dispersion
takes a global view of the solutions’ distinctness, the greedy selection only considers a path’s
distinctness at the time of its addition to the gradually growing diverse subset, ignoring that
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(a) The full Pareto set of 280 solutions. The Pareto frontier is plotted in the upper left-hand corner.
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Figure 4.2: An example of the solution set reduction for a bi-criteria problem.
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its distinctness will continue to decline with the addition of new solutions (although it will
never drop below the distinctness threshold).

4.3.2 Integration of Distinctness into the Search Algorithm

An alternative to filtering the Pareto set is incorporating path distinctness directly into the
search algorithm. That involves the computation of the distinctness for every new label
(new path) and the taking of these distinctness values into consideration during the label
expansion, so as to be drawn, at any point in the search, toward the next solution that is
different from those that were found up to that point. This enables us to stop the search
early — before all the paths become explored — as the first few solutions found comprise the
diverse subset we are looking for, and the unexplored solutions are thus those that are of no
interest.

Considering the fact that the search algorithm discovers the solutions one at a time, this
procedure is very similar to the filtering by greedy selection, only the selection is based on
partial solutions (i.e. sub-paths of the future solution paths). Every time a new solution
is found, the distinctness values of all paths need to be updated accordingly to reflect the
distinctness from the most recent solution set. Only then can the search resume exploring
further partial solutions.

The primary advantage of this approach, when compared to the filtering, is a reduced
number of necessary label expansions and, with it, a potential performance improvement.

4.4 Diversity-Aware NAMOA* Algorithm

In this section, we describe how the path distinctness can be employed in the multi-criteria
search algorithm NAMOA* to compel it to discover the Pareto optimal solutions in such order
that stopping the search after finding only the first few solutions would yield a solution subset
with a decent variety among them with regard to their geographical setting. This extension
will enable the algorithm to find a small set of diverse solution paths in a straightforward
way and without the need for exploring all Pareto optimal solution paths.

In the process of the search, labels, or rather the paths they represent, are compared with
the paths in the solution set to have their distictness determined. The difference is evaluated
using the cumulative edge length difference metric adapted to the incremental path update,
as defined in 3.2.3.

4.4.1 Label Augmentation by Path Distinctness

Let us first delve deeper into how the integration of distinctness, introduced at the end of
the previous section, affects the creation of successor labels in NAMOA*. When expanding
a label L,, the path Pr, is extended by an edge to each neighboring node v. The extended
path Pr, then needs for its distinctness to be evaluated. To avoid having to do it from
scratch for every new path extension, each label retains the information on difference of its
path from each of the solution paths, instead of just the minimum that corresponds to the
distinctness value. This allows us to calculate the distinctness incrementally.
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It is here that the incremental-update property of the dcgr,,, metric comes in handy.
The distinctness of P, is determined from that of Pr, using the information about the
extending edge only. The edge is tracked down in each solution path Py,. If it is present
in Py, it means it shares this edge with Pr, and, hence, the difference of Pr, from Py
is decreased by the relative contribution of the edge’s length to the total length of Py,.
As explained in the metric’s description, the length of the solution path to which Pr, will
eventually be extended is unknown at this point, therefore the length of Py, is regarded as
the whole when computing the relative difference.

In order to increase the efficiency of the edge tracking in a solution path, in addition
to recording the difference, we can keep track of the last shared edge in the solution path
and only search from there on. This relies on the assumption that, if two edges are present
in both paths, they are also visited in the same order on the way from the origin to the
destination. The effect is the greatest when comparing longer sections that the two paths
have in common because the search picks up where it left off when it tracked down the
preceding edge. The next edge in the shared sequence is thus found immediately. It is when
the paths finally diverge that the next edge is searched for possibly up to the very last edge of
the solution path, but only from the last shared edge. Once the paths rejoin, the information
is updated, which shortens the future edge searches in the solution path.

4.4.2 Diversity Priority Queue

In order to utilize the paths’ distinctness to point the search in the right direction with the
goal of discovering the most distinct solution paths first, the default priority queue used in
NAMOA* has to be replaced by a more complex structure. The default queue, implemented
as a heap, maintains the lexicographically lowest label at the top. This ensures that the label
chosen for extension is always non-dominated, while the dominance relationships among the
rest of the labels in the queue are of no importance. However, if the distinctness of the path
represented by a label is to influence when the label is offered by the queue for extension,
the heap is not sufficient anymore. In this section, we describe our custom priority queue
designed for the purpose of directing the search of NAMOA* toward a diverse subset of the
Pareto optimal solutions.

The diversity priority queue maintains two separate data structures: a heap for the
non-dominated labels (ordered by distinctness) and a set for the dominated labels. It is
important to keep the dominance relationships among the labels up-to-date at all times, so
as to keep track of all the non-dominated labels in the queue. Therefore, the queue internally
works with structures consisting of a label L, a set of labels dominated by L and another
set containing labels that dominate L. Not all the dominated and dominating labels are
necessarily recorded for each label, as the queue relies on the hierarchy of dominance, as
depicted in Figure 4.3, which naturally arises when inserting new labels into it.

To illustrate this on an example, let us assume the state of the priority queue captured
in Figure 4.3, in which we have three non-dominated labels and five labels each directly
dominated by at least one of the non-dominated labels. When inserting a label Ly that
dominates all of the previously non-dominated labels, only these three labels will comprise
Liew’s set of dominated labels. Due to the transitivity of the dominance relation, it is
automatically inferred that Ly also dominates the other five labels, but there is no need to
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non-dominated
labels

dominated
labels

Figure 4.3: The dominance hierarchy in the diversity priority queue. The arrows point from
a dominant to a dominated label, but the dominance relationship is recorded in both labels.
The non-dominated label with the highest distinctness is indicated by a double-circle.

add them to Lyew’s set of dominated labels too. The reason for that is that when a label L3
is dominated by a label Lo, which again is dominated by a non-dominated label L, removing
L1 from the queue does not directly affect Ls. However, it does affect Lo, since Lo would
become a non-dominated label in case L1 was its sole dominant label. We will discuss this
in more detail when we describe the individual operations of the priority queue.

As a consequence of insertions, extractions and removals from the diversity priority queue,
the dominance relationships established among the dominated labels can be in various “di-
rections” within the set, but a cycle is impossible to arise. If it did, it would suggest there
is a label Ly that is dominated by a label Ly which is dominated by L, itself. Nor can there
be a dominated label whose dominance relationships, if followed recursively in the reversed
direction of the arrows in Figure 4.3, would not ultimately lead to a non-dominated label.

Inserting a Label

When inserting a new label Ly to the priority queue (Figure 4.4) we need to determine
whether it should be included in the heap of non-dominated labels or the set of dominated
labels. In order to do that, Ly is compared with each of the non-dominated labels and their
dominance relationship is evaluated. There are three possible outcomes of the evaluation.

First, if Lyew is dominated by a label L,q, Lyuew is added to Lyg’s set of dominated labels
and L,q is added to Lyew’s dominant labels. Second, if Ly, dominates L,q, the labels
are added to each other’s respective sets recording the dominance relationship in a similar
fashion as in the previous evaluation outcome. In addition, L,q is moved from the heap of
non-dominated labels to the set of dominated labels. In these two cases, the new label is
marked as dominated or dominant, respectively. The marking may help avoid unnecessary
dominance checks when L.y is compared with the remaining non-dominated labels, as it
eliminates the need to verify the opposite dominance relationship. In other words, once
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Figure 4.4: A flowchart outlining the insertion of a label into the diversity priority queue.
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Lyew is identified as dominant among the non-dominated labels, it is not possible for it
to be dominated by another label because the label L4 it dominates was previously non-
dominated. Utilizing the transitivity of dominance, Lpew can be declared non-dominated
instantly. Analogically, if Lyew is dominated by L,q, then L.y certainly cannot dominate
any of the other non-dominated labels.

When, after all evaluations, Lyey is marked as dominated, we add it to the queue’s set
of dominated labels, and when it is marked as dominant, it goes straight to the heap of
non-dominated labels. Here, the third possible evaluation scenario can occur, when Ly is
neither dominated by a non-dominated label nor does it dominate any of them. Keeping
the transitivity property in mind, it is clear that L.y cannot be dominated by any of the
remaining labels either (note that each of them is dominated by at least one of the non-
dominated labels). Hence, it can safely join the non-dominated labels.

Extracting a Label

An extraction from the priority queue (Figure 4.5) returns the currently most distinct non-
dominated label Leyir, which is retained at the top of the heap of non-dominated labels.
Therefore, identifying and removing such a label from the queue is swift, especially, consid-
ering that the non-dominated labels typically constitute only a small proportion of all labels
in the queue at any time during the search. However, what slows the extraction down is the
following update that needs to be performed subsequently in order to maintain the queue’s
consistency.

The update deals with the labels immediately dominated by Ly, i.e. those that are
contained in Ley,’s set of dominated labels. In case Leyt, was the only label dominating
them, these labels become candidates for a transfer to the heap of non-dominated labels,
whereas for the labels that are deeper in the hierarchy nothing changes with the removal
Of Lextr- S0, iterating through all Ley,’s dominated labels, Lexty is removed from their
set of dominant labels. Whenever the remaining set is empty, the dominated label Lgom
is compared against all currently non-dominated labels. If none of them dominates Lgom,
it is moved to the non-dominated heap. Before it is actually inserted into the heap, its
distinctness must be updated to reflect the latest additions to the solutions. It is likely that,
at this point, the partial path represented by Lgom has not been compared to one or more
solution paths that were added most recently. This just-in-time approach is essential in
reducing the amount of time spent computing the difference of partial paths, represented by
the labels in the queue, from newly discovered solution paths. The reasoning behind that is
that an up-to-date distinctness is only ever significant once the label becomes non-dominated
and, hence, a candidate for extraction, which is affected by the distinctness.

If Lgom is dominated by at least one of the non-dominated labels, it remains in the
dominated set. During the comparing, however, new dominance relationships might be
established between Lgonm and the non-dominated labels. Although the comparing could
be stopped as soon as the first non-dominated label that dominates Lgom, is encountered,
following through with the evaluations serves the purpose of reducing the number of repeated
comparisons in the future. Recording only one dominant label for Ly, would cause it to be
compared with the non-dominated labels (or at least the first few of them) frequently because
the only dominant label would, most likely, soon be extracted from the queue, leaving Lgom
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Figure 4.5: A flowchart outlining the extraction of a label from the diversity priority queue.

with an empty set of dominant labels and in need of comparison with the non-dominated
labels again. This can easily become inefficient in case the single dominated label assigned
to Lgom is the first one in the heap, which gets extracted right in the next iteration of the
search, and then the new top label in the heap becomes Lgom’s dominant label, and so on.
On the other hand, acquiring multiple dominant labels at once considerably decreases the
probability of Lgom running out of dominant labels any time soon.

In the special case that the extracted label represents the destination node, all labels
dominated by it can be removed from the priority queue, since there is no way the relationship
between them and the destination label could become anything else than dominated. Not
only does this provide a beneficial pruning of the search space, it avoids the cumbersome
update process described above. The labels to be removed include not only the immediately
dominated ones, but all dominated labels down to the bottom of the hierarchy. It is true
that this might not cover all the labels dominated by Leyt,y in the entire priority queue, but
it is as good as it gets without having to compare Lext; with all labels in the queue when it
is being extracted. The rest of the labels dominated by this destination label, which are not
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in the dominated subtree of Leyt;, will be intercepted and filtered if they are ever extracted
from the queue (refer to the filtering in NAMOA¥*).

Removing a Label

In the majority of cases, the removal operation (Figure 4.6) is called on a dominated label
in the queue. That means that, in addition to the immediately dominated labels of the
removed label Lyen,, we have to handle its immediately dominant labels too. When a label
that both dominates and is dominated by others is removed, the reference to it is deleted
from all those labels that had a dominance relationship with it recorded. Subsequently,
the dominance references require mending so the information about Lyem’s dominant labels
dominating its dominated labels does not get lost. To achieve that, the labels that were
previously dominated by Lyem need to be relinked directly to each of the labels that previously
dominated Lyem, and vice versa, so as to bridge the gap in the dominance hierarchy caused
by the removal.

If Liem is non-dominated, then the scenario is identical to the extracting of a label,
except the label being “extracted” is not necessarily the top label in the heap. Its immedi-
ately dominated labels must be updated in the same fashion nonetheless, including the path
distinctness update, as they may potentially become non-dominated. This is not necessary
when Ly, is dominated, since all the labels that were dominated by Lyem remain dominated,
only the dominant labels are those that dominated Lyem before its removal, in addition to
their original dominant labels if there were any.

Note that, due to the way removing and extracting of a label from the queue works, it
cannot happen that the heap of non-dominated labels is empty and, at the same time, there
are some labels in the set of dominated labels.

Batch Update of the Labels’ Distinctness

When a new path is added to the solution set, all existing labels in the queue become affected,
since the distinctness of the paths they represent depends on the solution paths found thus
far. The non-dominated labels in the queue are ordered by their path’s distinctness when
compared to the solution paths, and the label to be extracted from the queue next is decided
by the greatest distinctness among them. Therefore, at least this subset of labels must be
kept up-to-date in this aspect at all times.

The newly added solution path P, naturally does not affect every other path in the same
way. Some of them may share a substantial portion with Py, which could decrease their
distinctness if they were more different from the previous solution paths. Others might be
entirely different from Pi,, which would make them equally distinct in the new solution set
as they were before the addition of Py to the solutions. Hence, it is very likely that updating
the distinctness of the non-dominated labels will shuffle the heap and a different label will
take the top position, while the former top label may sink to the bottom and possibly never
get extracted before the distinctness threshold is reached and the search is terminated. This
is important in keeping the search on the right track — following those paths that are the
most different from the previous solutions found.



4.4. DIVERSITY-AWARE NAMOA* ALGORITHM 37

Relink labels
directly

Yes

=3
3

Figure 4.6: A flowchart outlining the removal of a label from the diversity priority queue. It
refers to the Update a previously dominated label component in Figure 4.5.
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The dominated labels, which, incidentally, comprise the great majority of all labels in the
priority queue during the search, do not rely on up-to-date distinctness values in any way.
Hence, the distinctness reassessment can safely be postponed until a previously dominated
label becomes non-dominated (such as during the extraction or the removal of a label from
the queue). Only then, just before it gets integrated into the heap of non-dominated labels,
does the distinctness of the label’s path need to be updated. At that point, the update might
involve the comparison with more than one new solution path. Still, a significant amount
of computational power is saved by performing the distinctness update lazily, since many of
the dominant labels never actually make it to the non-dominated heap.

4.4.3 Integration of the Diversity Priority Queue into NAMOA*

Integrating the diversity priority queue into NAMOA* introduces multiple essential additions
to the algorithm, as can be observed in Algorithm 2. First of all, before the algorithm can
commence the search for diverse solutions, it requires at least one initial solution path to
start comparing the labels in the priority queue with. The most straightforward way to
achieve that is to initialize the solution set S with the shortest paths identified by the TC
heuristic looking for the optimum values for each individual criterion in the preprocessing
stage (line 4). We prefer to have these paths among the solutions anyway, as they offer a
good reference and are often highly desirable due to their optimality in one of the criteria.

The initial label Ly created for the origin node in line 1, which is added to the priority
queue at the beginning, has a distinctness value of 1. This is a crucial initialization that
affects all future labels because, ultimately, they all originate from Lg. The setting of the
distinctness to 1 is a prerequisite for the incremental update, which gradually decreases the
path’s difference from a solution path whenever it is extended by an edge that is shared with
the solution path. Note that, besides the distinctness value, labels in the diversity-aware
NAMOA* also contain the corresponding path, as it is required for the evaluation of their
distinctness.

As we have mentioned earlier, whenever a new solution is found, the distinctness of the
labels in the queue must be updated, so as to take into consideration the new solution’s
contribution in their distinctness values. This is a necessary adjustment for the search to
resume extending paths that maximize the difference from the most up-to-date solution set.
The batch update is carried out during the solution path recording in line 13.

Finally, the algorithm contains a new termination condition (line 7) that checks whether
an extracted destination label satisfies a predefined distinctness threshold . If not (i.e. its
distinctness is lower), the label’s path is not added to the solution set and the search is
stopped. This early termination relies on the discovery of solutions in a descending order
of distinctness, and it is the primary benefit of using the diversity priority queue. Once the
distinctness threshold is reached, the algorithm assumes that the future solutions would only
be less distinct, and so it returns the set of Pareto optimal solutions it found thus far and
does not explore the remaining paths.

There is another potential use for the distinctness threshold that we feel compelled to
warn about. It may be tempting to use 6 for additional pruning based on distinctness,
wherein a new label would be discarded if its path had a lower distinctness than 6. This
would, however, cause the algorithm to lose the optimality property because it would allow
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Algorithm 2: NAMOA*;,
Input : graph G(V, E,¢), origin node s € V, destination node ¢ € V', heuristic
function h, difference function d, distinctness threshold 6
Output: a diverse subset of non-dominated solution paths
1 Lg < (s, P,,0, H(s)7 1,null) // initial label of the origin node s
2 Gop(s) < {Ls}, Ga(s) « 0 // sets of open and closed labels of s
3 Q<+« {Ls}, C+10 // priority queue and solution label set
4 S < single-criterion shortest paths // solution path set
5 while @ is not empty do
/* Label selection */
6 select a non-dominated label L, = (u, Py, gu, ﬁ, 0p,, Lypred) with the highest
distinctness dp, from )
7 if 0p, < 0 then break // check termination condition
8 move L,, from Gop(u) to Ge(u), and remove L, from Q
9 foreach L, = (t, P, gi, ﬁ,épt,Ltpred) € C do // lazy filtering
10 t if g < f; then continue with the next label selection
/* Solution path recording */
11 if u =1t then
12 add L, to C and add P, to S
13 update distinctness of labels in @
14 continue with the next label selection
/* Label expansion x/
15 forall successor nodes v of u that do not create a cycle in the path do
16 Gv < Gu + c(u,v), fo < gy + h(v)
17 dp, < 0(Py, S) // evaluate distinctness
18 LU<_ (U7PU7Q_’Z)7fU75Pv7Lu)
19 if 3(x, Py, G, fur 0P, Laprea) € C | gz < fo then
20 ‘ discard L, // filtering
21 else if v is a new node, i.e. a node with no labels so far then
22 ‘ Gop(v) < {Ly}, Ga(v) < 0, add L, to Q
23 else if 3(x, Py, Gz, f2, 0P, , Lapred) € Gop(v) UG (v) | gz < go then
24 ‘ discard L, // pruning
25 else
26 foreach Ly = (y7 Pyag_?;v fya 5Py> LyPred) € Gop(v) | g_{l < g_?; do
27 L remove L, from Gp(v) and from @ // pruning
28 foreach Ly = (yv Pya.g_il: fg;a 5Pya LyPred) S Gcl(v) | g_{) =< g_g; do
29 L remove L, from G (v) // pruning
30 | add Ly to Gop(v) and to Q

31

return S
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Figure 4.7: An example of the consequence of pruning using the distinctness threshold.

dominated solutions to enter the solution set. Let us demonstrate this on a simple example
using the graph in Figure 4.7 and 6 equal to 0.5. If path P, 4 (the path going through
nodes b and d) was the first Pareto optimal solution to be discovered, the path P, . would
be disqualified for being too similar to P4 (apparently it shares more than a half of its
length with P, 4). Supposing path P, . is dominated by P, ., we would run into trouble in
case P, . was pruned based on the distinctness before it “reaches” node u because, once P, .
reaches u, there will be no label of u to dominate it (and prune it) and it would potentially
have a free passage to the destination node. It could still be filtered due to being dominated
by the first solution path, but considering P, 4 does not dominate P, . chances are that P, .
is not dominated by it either. For this reason, we cannot prune non-destination labels with
a distinctness lower than a threshold, for these labels, even though they will not make it to
the solution set, are still required to prune dominated labels with a higher distinctness.

We should also point out that NAMOA*4;, intrinsically returns a set of solution paths,
not merely labels like the original algorithm does, since they are required for the distinctness
evaluation during the search. Therefore, as soon as a label is added to the solution label
set C, the corresponding path is added to the solution paths in S (line 12). Depending on
how the paths associated with the labels are represented, calling a backtracking procedure
might be necessary at this point in order to recreate the solution path from the destination
label.



Chapter 5

Implementation

This chapter offers an insight into the implementation details and the type of data that were
used in the search algorithms.

5.1 Graph Construction from Road Network Data

Searching for the shortest paths in road networks being the focus of our work, it was impera-
tive that we ran the algorithms with some real-world data, or as close to them as possible. A
set of such road networks was put together for the “9th DIMACS Implementation Challenge
— Shortest Paths”!, and they remained available for public use. There are twelve datasets
of an increasing size: the smaller ones representing a big city or a state in the USA, and
the larger ones describing the road network of a greater region, such as the Western USA or
even the whole of the USA. The information provided in the datasets includes geographic
coordinates (latitude and logitude) of junctions, and two types of costs (physical distance
and travel time) for each of the road segments between a pair of junctions. These costs
represent the two criteria that we will optimize during the search. The level of detail of the
DIMACS data can be appraised in Figure 5.1, which provides a visualization of all roads
and junctions in the smallest dataset, namely, New York City. As the creators acknowl-
edge on their website, however, the DIMACS data are known to contain errors, which may
cause a discrepancy between the shortest paths in these and the real-world networks. This
is acceptable for our bi-criteria route planning experiments nonetheless.

The second source of real-world data for our testing purposes is the OpenStreetMap
(OSM) project?. Being a project driven by volunteers and supported by the non-profit
OpenStreetMap Foundation?, it allows the crowdsourced data to be used, as well as edited
and distributed, freely under the Open Database License. Incidentally, OSM’s collabora-
tive nature is its foremost advantage over the proprietary competition, as it draws in both
enthusiasts with local knowledge and GIS* professionals from all over the world, rendering
the data as real-world as it gets. A great proportion of the OSM contributors are cyclists,

"http://www.dis.uniromal.it /challenge9/download.shtml
https://wiki.openstreetmap.org/

Shttps:/ /wiki.osmfoundation.org/
“https://en.wikipedia.org/wiki/Geographic_information_system
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Figure 5.1: Visualization of the New York City DIMACS road network. Nodes (junctions)
are displayed as yellow dots and edges (road segments) are the black lines connecting them.

Figure 5.2: Visualization of the Prague OSM road network (bicycle-navigable paths only).
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who meticulously chart bike paths and other navigable trails. This makes the OSM data
particularly suitable for planning bike trips, which is exactly what we use this data for in
our experiments. The entire world map is available for download from the OSM wiki page,
either as a whole or by smaller regions. Choosing the region of the city of Prague for our
experiments, we extracted and calculated the essential information from the OSM data and
transformed it into the simple DIMACS format. Roads that do not permit bicycle use, such
as most freeways and long tunnels, or are in another way ill-suited to riding a bicycle, were
ignored during the extraction. The three types of costs that we obtained are the physical
distance, the travel time and the level of comfort the bike path or road offers, which enables
us to run and test our search algorithm with three different criteria. The comfort cost corre-
sponds to the bicycle-friendliness based on the road/path type and the traffic. A lower cost
indicates a better suitability for riding a bicycle.

Now that we have uniform input data for our multi-criteria search algorithm, we can
commence the construction of the graph that will be searched by the algorithm for Pareto
optimal paths according to the provided costs. The costs are defined in separate files — one
for each criterion — and the junction coordinates are in yet another file. Hence, we need to
create the graph’s nodes first and then add the edges as defined by a pair of nodes in the
cost files, while combining the costs of each edge into a single cost vector ¢ = (c1,ca,...,cp)
for n different criteria. To build and store the graph we utilize the graph structure from the
basestructures library developed by the Artificial Intelligence Center® at the Czech Technical
University.

5.2 Multi-Criteria Search Implementation

We implemented the NAMOA* algorithm in Java 8 using some of its native data structures
in the process, but naturally developing custom classes for more complex objects. We started
with the basic NAMOA*, which, apart from laying the foundation for our diversity-aware
extension NAMOA*g;,, would serve as a performance reference and for the verification of
the solution’s correctness. The NAMOA* algorithm was then modified and extended to
incorporate the diversity awareness into the search, developing thus the NAMOA* g, .

NAMOA* with a Post-Processing Filter

The standard NAMOA* algorithm, as described in Section 4.1, works with labels of the
custom LabelWithHeuristic class, which stores the ID of the node the label is associated
with, the cost vector of the path from the origin up to the node, the evaluation vector with
the heuristic cost estimates for the entire path to the destination, and a reference to the
previous label on the path (the predecessor). For the priority queue of labels we use the
Java’s own PriorityQueue class, which implements a balanced binary heap. The labels are
sorted lexicographically by their evaluation vector, which ensures that a non-dominated label
is always extracted from the priority queue.

The heuristic function of our choice was the bounded TC heuristic, using which the
algorithm had performed best according to [25], especially in easier problem instances where

Shttp://agents.felk.cvut.cz/
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the heuristic ended up precomputing the estimates only for a small portion of the nodes in
the graph.

There are also a few tweaks that we introduced to the pseudocode outlined in Algorithm 1
in Chapter 4 when we implemented the search algorithm. First of all, we merged the Gop(u)
and G (u) sets of each node u into one set and, instead, equipped each label with a flag
determining whether the label is open or closed. Working with a single set is more convenient,
and setting a binary flag may even be slightly more efficient than moving the labels between
two data structures.

Another modification concerns the cycle checking when generating successor labels for a
label currently being expanded, performed in line 12 of Algorithm 1. Testing whether the
successor node is not already included in the path represented by the label is an extremely
costly operation to perform for all candidate successors at each expansion. Instead we resort
to performing the test for the immediate predecessor on the path only, that is, we discard
the candidate successor node if it is the node immediately preceding the node whose label
is being expanded. In other words, we explicitly avoid going there and back between two
neighboring nodes on a path. However, longer cycles are left to be taken care of by pruning,
as labels representing a path with a cycle are always dominated in the set of labels of a
particular node. That, of course, is only true in a graph with non-negative edge costs and
using a consistent heuristic function, which is our case.

When the search is finished, the solution labels are transformed into solution paths by
backtracking the predecessor references to the origin prepending edge after edge along the
way. Only then are the diverse solutions filtered. We use the greedy selection method (see
Section 4.3.1) for a better comparability of the diverse subset of solutions with those found
by NAMOA*g;,, considering that NAMOA*y;, discovers the diverse solutions intrinsically
in a greedy fashion.

Diversity-Aware NAMOA*

The first step toward integrating the diversity awareness into NAMOA* is to augment the
labels by including the path they represent. The new LabelWithHeuristicExtended class
thus acquires a new member — a PathSegment structure that represents the path from the
origin up to the current node.

In order to maximize the memory efficiency, instead of holding the whole list of edges, the
PathSegment only records the last edge on the path, and a reference to the corresponding
PathSegment that ends at the first node of the edge and is thus a member of the predecessor
label. When the path is required in its entirety, it can be followed, through recursion, edge by
edge in reverse order, much like iterating through a linked list. Such complete path traversal
is used when the PathSegment is being compared with a brand new solution path, from
which the difference was not previously computed. This only happens either when a new
solution is found and the non-dominated labels get updated, or when a previously dominated
label becomes non-dominated and was not evaluated against the latest solutions before.

The PathSegment also maintains a list in which it records the differences from all the
solution paths. So, when a new label is created by extension, its PathSegment is created from
that of the predecessor by updating the differences from all the solution paths remembered by
the PathSegment based on the extending edge, which is also the one and only edge registered
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Figure 5.3: The solution visualizer. The solutions are displayed both as routes in the map
and as points in the cost space plot.

in the new PathSegment. It also contains a separate distinctness value, which corresponds
to the minimum of the listed differences, for a faster access when non-dominated labels are
compared and sorted based on their distinctness, since the value may be queried repeatedly.

The next key modification is the replacement of the default priority queue with the
diversity priority queue presented in Section 4.4.2. By taking the labels’ distinctness into
consideration, the new priority queue alters the order in which the non-dominated labels
become expanded. It then depends on the setting of the distinctness threshold when the
search ends because once a destination label with a lower distinctness is extracted, the
search is stopped.

When finished, there is no post-processing required, since each solution is transformed
into a path at the time of its discovery, which allows for a more efficient distinctness com-
putation. Considering that every new label has its difference evaluated against the solution
paths, repeated backtracking from the corresponding destination label would be very incon-
venient, and it would impair the speed-up technique described at the end of Section 4.4.1
involving the records of the last shared edge.

The tweaks introduced in the standard NAMOA*, including the merging of the Gop
with the G set and the limited cycle checking during label expansion, are retained in
NAMOA*g;,. The bounded TC heuristic is retained for calculating the cost estimates in the
preprocessing stage of the search as well.
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5.3 Solution Presentation

Finally, we set up the visualization of the search results on the map so they can be presented
in a useful and convenient way. The route visualizer is implemented in JavaScript and
displays the solution routes in a web browser. As the underlaying map we use Google
Maps, the most popular web mapping service. The well-documented JavaScript API® that
Google provides for the service makes the displaying of custom routes in Google Maps fairly
straightforward and allows a good deal of customization. The routes are colored randomly
to make them easily distinguishable. Clicking a route toggles a small tooltip with the route’s
costs. The origin (green) and the destination (red) markers are also clickable and their
tooltip notifies about their geographic coordinates.

In the upper left-hand corner of the map, the solutions are plotted in the cost space. Being
a two-dimensional plot, if the paths have more than two costs, the points are projected onto
the zy-plane. The z-axis represents the first criterion and the y-axis the second one, as
provided in the input data. When a point is clicked in the plot, the corresponding route in
the map is highlighted in red for easy following. The interactive plot is powered by the Flot
library” for jQuery.

Shttps://developers.google.com /maps/documentation /javascript/
"http://www.flotcharts.org/



Chapter 6

Evaluation

To evaluate our implementations of the solution methods presented in Chapter 4, we con-
ducted a series of experiments on two different datasets. We used one of the DIMACS road
networks — New York City (NYC) — with the travel distance and the time costs provided.
The other road network is that of Prague, containing only bicycle-navigable streets and
roads, and it includes comfort costs instead of time costs. These two datasets allowed us to
observe the effect of using different criterion combinations on the solutions of a multi-criteria
search. The overview of their sizes is in Table 6.1.

There are three aspects in which we compare the performance of the algorithms. First,
we look at the number of label expansions performed during the search, which indicates the
size of the search space explored. The label expansion involves different processes in different
algorithms, which affects their complexity. Therefore, we also measure their total runtime
for an absolute performance comparison. The third metric — the number of solutions — serves
the evaluation of the diversity threshold parameter’s effect on the solution set reduction. We
tested the algorithms with the threshold values of 0.3, 0.4 and 0.5, which correspond to the
minimum diversity requirements of 30%, 40% and 50%, respectively.

The experiments were carried out in a cluster of supercomputers provided by MetaCen-
trum'. This allowed us to both tap the great computational power they offer and save time
by having multiple problem instances run simultaneously and remotely. The machines were
equipped with Intel Xeon E5-2670 CPUs with 2.60 GHz per core and 20 MB of cache. The
amount of RAM available was 64 GB, although the tested instances never required more
than 16 GB to be solved.

6.1 Multi-Criteria Search

The search algorithms were tested on the same 50 NYC problem instances as used in [25],
so as to compare the performance of our implementation of the basic NAMOA* with that
of its authors. Since they included the size of the Pareto set of solutions for each problem in
their results, we also used them to double-check the correctness of our results. The instances
are randomly generated pairs of nodes with various distances between them, resulting in a

Thttp://metavo.metacentrum.cz/en/index.html

47



48 CHAPTER 6. EVALUATION

Table 6.1: Road network sizes and optimization criteria in the datasets.

Number of | Number of o .
Criteria
nodes edges
New York City (NYC) 264,346 733,846 distance, time
Prague (PRG) 109,415 241,755 | distance, comfort

high variance of problem difficulties. Each problem instance was solved 8 times discarding
the first 3 results, which should account for the warm-up period of the Java virtual machine
during which the performance is decreased. The resulting runtimes that we present were
averaged over the remaining 5 runs. If a run took more than 15 minutes, it was terminated,
since we are mostly interested in performance that is satisfactory more or less in real time.
Hence, the difference between 15 minutes and 5 hours was irrelevant for our purposes.

6.1.1 Basic Search

The first thing to notice in our results is that our implementation of NAMOA* performs
considerably better than the original implementation of its authors [25], which also used
the bounded TC heuristic. When the relative runtime difference is averaged over the 50
problem instances, it turns out our implementation performs more than 20 times better.
This may possibly be attributed to a more memory-efficient graph representation or even
the programming language. The authors implemented the algorithm in ANSI Common Lisp,
whereas we did in Java, but it appears to be unlikely that a language difference could account
for a gap of an order of magnitude in performance. We also tested the algorithms on a few
problem instances on a computer with a similar CPU rating as that of the authors, and the
runtimes were comparable with those achieved in the cluster. Thus, the CPU of the machine
on which the experiments are conducted does not seem to have a significant impact on the
search performance. If anything, it is the RAM that could become the bottleneck for the
more difficult instances in which a great number of labels is expanded, but the authors had
an abundance of memory at their disposal.

Overall, our NAMOA* found the Pareto set of solutions within 10 seconds in a great
majority of the NYC problems (see Table A.3 for a comprehensive overview of the search
runtimes), and in under 2 seconds in more than a half of them. There were only a few ex-
ceptions that took up to 3 minutes. These are promising results with a real-time application
in mind.

6.1.2 Diversity-Oriented Search

Having established the performance baseline by the NAMOA*, we can start evaluating the
two diversity-oriented extensions, whose purpose is to decrease the number of solutions and
make the search results more practical. As we can see in Table A.1, the whole Pareto set,
which is found by the basic NAMOA*, indeed often contains hundreds of solutions. The aim
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Figure 6.1: A comparison of the average size of the solution set yielded by the two diversity-
oriented algorithms using various distinctness thresholds. The line indicates the relative
runtime increase of NAMOA*y;, compared to its NAMOA* counterpart using the post-
processing filter and the same threshold. The values are averaged over the 50 NYC instances.

of employing the path diversity in the search was to reduce it down to a set of a convenient
size (3 to 10 solutions), from which it is easier to choose the desired solution.

Solution Quality

The number of solutions is indirectly controlled by the distinctness threshold setting. The
threshold has a different effect in a problem instance with a great origin-destination distance
than in one with a short origin-destination distance. In the former, the paths have naturally
more opportunities to branch off and more space to spread out, which produces more solu-
tions that are distinct from each other. Setting a universal threshold is therefore tricky and
requires a certain amount of fine-tuning. We tested the algorithms with the threshold values
between 30% and 50%. The plot in Figure 6.1 shows that applying the less strict threshold
leads to an average of 5.22 solutions using the filter and 4.46 with the diversity priority
queue. Up to 13 diverse solutions are offered, depending on the problem instance. On the
other hand, allowing only paths that are at least 50% different from the others in the solution
set reduces their average number to 2.98, or 2.74, meaning in practice that most problems
have 2 to 4 solutions offered (for individual results refer to Table A.1). A 2-member solution
set merely corresponds to the single-criterion shortest paths, which means the multi-criteria
search added no value at all to the results. Unless the problem instance is very small, such
result is not satisfactory. We therefore consider the threshold of 50% too strict and opt for
40% or less in order to obtain more useful results.

To evaluate the adequacy of the solution subset found by NAMOA*g;,, it is best to
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(a) The full Pareto set of 266 solutions. The Pareto frontier is plotted in the upper left-hand corner.
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(b) A diverse subset of 7 Pareto optimal solutions found by NAMOA*g;, with the distinctness thresh-
old set to 40%.

Figure 6.2: The path coverage provided by a diverse subset of the Pareto set demonstrated
on a PRG problem instance.
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Table 6.2: Evaluation of both the NAMOA* with a post-processing filter and the
NAMOA*g;, with three different distinctness thresholds each. The values are measured
relative to those of the basic NAMOA* (NYC dataset).

NAMOA* with filter NAMOA*g;y
30% 40% 50% 30% 40% 50%

NAMOA*

Average size of
the solution set [%)]
Average number
of expansions [%)]
Average

runtime [%)]

100.00 10.74 9.47 8.71 10.36 9.32 8.64

100.00 | 100.00 100.00 100.00 | 78.49  71.03  65.00

100.00 | 115.83 106.24 105.74 | 225.53 182.99 160.19

compare it with the full Pareto set of solutions visually. Figure 6.2 shows us the solution
routes visualized on the map, which allows us to review the path coverage of the diverse
subset. We can immediately see that the streets and roads used by the routes in the entire
Pareto set at the top are almost completely covered by the 7 diverse routes at the bottom.
Upon a closer inspection of the two maps, a few missing segments are noticeable in 6.2b, but
they are all very short and insignificant. Note that the route colors are generated randomly
and, therefore, the colors in one figure do not correspond to those in the other. There is
a lot of overlapping present, particularly among the routes in the Pareto set, so matching
colors between the two sets would be of no help in recognizing matching pairs of routes.
One selected route pair was highlighted to demonstrate that the diverse routes are indeed
a subset of the Pareto set. This can also be observed in the cost space plots, where the
7 points displayed in 6.2b belong to the Pareto frontier in 6.2a. In conclusion, the solutions
found by NAMOA*4;, can certainly be pronounced adequately diverse as far as the empirical
evaluation is concerned.

Search Performance

Now, let us examine how the diversity integration affects the performance of the multi-criteria
search. Consulting Table 6.2, we see that the NAMOA* that filters the solutions in a post-
processing step is 6-16% slower than the basic NAMOA*. This increase in runtime comes
from the additional computations that are performed after the normal run of NAMOA* in
order to filter the most diverse solutions using a greedy technique. The number of label
expansions performed using this approach is naturally the same as in the basic NAMOA*.
On the other hand, as we can see in the rightmost section of the table, NAMOA*;, reduces
the number of expansions required for discovering a set of solutions of a roughly equal size.
It drops, on average, to 71% using the moderately strict distinctness threshold. Although it
is a fairly significant reduction, this value still seems too high considering that the number
of solutions decreases to an average of 9% of the entire Pareto set.

To explain this only mediocre decrease, we need to consider what effect the diversity
priority queue has on the search progress. Apparently, it converts it into more of a breadth-
first search and causes it to expand labels that represent shorter path segments before those
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Table 6.3: An example of the solution discovery in NAMOA* 4, with a distinctness threshold
of 40% in the NYC problem instance number 36. The first two solutions are the single-
criterion optima. For the remaining solutions the second column indicates the number of
label expansions performed before discovering the solution, while the third column displays
its distinctness among the solutions at the moment of discovery. The distinctness of the
7t solution is below the threshold.

Solution | Number of .
number | expansions Distinctness
1 0 -
2 0 -
R 83852 | 65.14% |
4 208300 47.19%
5 260290 47.37%
6 266215 42.07%
o | s01980 | 37.51% |

that are closer to the destination. This behavior arises from the way the distinctness is
computed — assuming a total difference from all solution paths at the beginning and gradually
decreasing it by the respective shared portions. Approaching the destination, the distinctness
of a path segment is bound to decrease, as, sooner or later, it starts sharing some parts with
the solution paths already found. The shorter path segments, which do not share as much
just yet and are assumed to be different for the rest of the path, are then preferred by the
priority queue. They delay the extension of those path segments that are perhaps already
near the destination, and for a good reason too because chances are that one of the currently
shorter path segments will develop into a more distinct solution. As a result, the algorithm
extends all the path segments bit by bit, as opposed to extending one of them all the way
to the destination, then doing the same with another, and so on.

The discovery of the first distinct solution therefore does not happen until a later stage of
the search, when the algorithm has a better idea of the distinctness of all the path segments.
Other solutions then follow with an increased frequency. See Table 6.3 for an example of a
diversity-aware search terminating after 301,989 expansions, while its filtering counterpart
performs all 521,546 of them (Table A.2). Also note that, in the example, the 5t solution
is more distinct than the 4™, This phenomenon is addressed later in Section 6.2.

The number of expansions carried out during the search directly affects its runtime.
However, the 30-percent reduction of expansions is not enough to balance the computational
demand added by the calculation of distinctness and by the use of the diversity priority
queue. The last row in Table 6.2 summarizes the runtimes relative to the basic NAMOA*,
whereas Figure 6.1 displays the runtime of NAMOA*g;, relative to the NAMOA* with the
filter. We can observe that increasing the threshold reduces the relative runtime increase
of NAMOA*g;, rapidly. In fact, using the strictest threshold reduces the performance gap
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Table 6.4: FEvaluation of both the NAMOA* with a post-processing filter and the
NAMOA*g;, with three different distinctness thresholds each. The expansion and runtime
values of NAMOA*g;, are measured relative to their NAMOA* counterpart with the filter
(PRG dataset).

NAMOA* with filter NAMOA*g;y
30% 40% 50% 30% 40% 50%

Average size of
the solution set [%)]
Average number
of expansions [%)]
Average

runtime [%)]

9.14 8.16 7.53 9.07 8.02 7.47

100.00 100.00 100.00 | 84.99  79.02  68.41

100.00 100.00 100.00 | 202.97 204.52 169.96

down to almost 50%. But we have to keep in mind that using the threshold of 50% already
yields rather unsatisfactory results, so increasing it even more with the aim of closing the
performance gap completely would not be feasible.

Distance-Comfort Criterion Combination

The results of the experiments that we ran on the PRG dataset, which contains comfort costs
instead of time costs, were similar to those achieved with the NYC dataset. There were a
few differences worth pointing out though. Despite being a smaller dataset (Table 6.1) with
shorter distances, the average size of the Pareto set across the 50 PRG instances was 491
(Table A.4), in contrast to the 199 in NYC (Table A.1). This discrepancy can be attributed
to the difference in correlation between the two criteria used in a dataset. While the traveling
time highly correlates with the traveling distance (i.e. longer routes tend to take more time),
the comfort cost does so to a considerably lesser degree. A direct consequence of this is a
greater number of Pareto optimal solutions using the destination-comfort combination. If
two criteria correlated totally, there would be only one Pareto optimal solution because the
shortest path according to one criterion would necessarily be the shortest according to the
other one as well. On the other hand, the less correlated the criteria are, the greater the
Pareto set may become.

Comparing the statistics in Table 6.4 with Table 6.2, we notice that the solution set
got reduced on average slightly more using the PRG data, while the relative number of
required label expansions grew. Both of these trends are likely products of the lower criterion
correlation too. During the search, the labels have a wider competition in the form of other
non-dominated labels, which possibly leads to an even greater delay of the solution discovery
and, with it, a greater number of label expansions performed. On the other hand, the
substantially higher proportion of Pareto optimal solutions inevitably brings in even more
spatially similar paths to the pool from which only the most distinct ones are eventually
selected. This may be the reason for the decrease of the average solution set size, which
dropped from 9.32% in NYC to 8.02% in PRG when using NAMOA*;, with the threshold
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Figure 6.3: A comparison of the average size of the solution set yielded by the two diversity-
oriented algorithms using various distinctness thresholds. The line indicates the relative
runtime increase of NAMOA*4;, compared to its NAMOA* counterpart using the post-
processing filter and the same threshold. The values are averaged over the 50 PRG instances.

of 40%. When we compare the plot in Figure 6.3 with that in Figure 6.1, however, we can
see that the absolute number of solutions found for the PRG problem instances is generally
higher, so now even the use of the threshold value of 50% might be considered reasonable.
Moreover, the relative runtime increase drops significantly when switching from the threshold
of 40% to the stricter 50%.

The NAMOA*g4;, search nevertheless remains up to two times slower on average than
the standard NAMOA* with the post-processing diversity filter. A few exceptions occurred
in our experiments, where certain problem instances were solved faster using NAMOA*g;y,
such as the instances number 10 and 26 (see Table A.6 to review the precise runtimes). In
the latter, using the threshold of 50% results in a more than four-times-faster performance
(24.84 vs. 105.52 seconds), which is definitely more than just a marginal improvement. We
should also remark that it is not at the expense of the size of the solution set, as its size is
4 in both variants (Table A.4). However, these cases are rare and are therefore considered
statistical outliers.

6.2 Diversity Priority Queue

The most fundamental change in the NAMOA* algorithm that we performed in order to
transform it into NAMOA*g;, was the replacement of the priority queue. Substituting
the heap, which merely maintained the lexicographic minimum among the labels, with the
diversity priority queue described in Section 4.4.2 automatically increased the computational
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Table 6.5: An example of the diversity priority queue with three labels.

Label est(ijr?lictes Distinctness D?:ll:)i:fsint Dolr;l‘ti)r;?: o
L, (3, 12] 0.6 (60%)
Ly [5, 10] 0.5 (50%) L,
L, [6, 11] 0.8 (80%) Ly

complexity of the search. Without this change the search could not become diversity-aware
while retaining its optimality. We therefore tried our best to optimize the new data structure
so that it does not slow down the search substantially even before introducing the distinctness
computations into it.

We tested the performance of the priority queue on the 50 NYC problem instances by
using it (with a lexicographic sorting of the non-dominated labels) in the basic NAMOA*
instead of the default one. The results are summarized in Table A.3 along with those of the
other algorithms (see the column “new @7 under NAMOA*). When the relative runtime
increase compared to the basic NAMOA* is calculated individually for each instance and
then averaged, we get the value of 175.27%, which means it is less than two times slower.
This is a decent performance considering the radical change of the way the priority queue
works.

Once a label is extracted from the diversity priority queue, it is guaranteed to be non-
dominated, which satisfies the condition of NAMOA* to yield only Pareto optimal solutions.
However, the priority queue does not guarantee that the solutions are indeed discovered in a
descending order of distinctness, nor that the first solution found (after the single-criterion
optimal solutions have been established) is the most distinct one, the second solution is the
second most distinct one, etc. It rather performs a good approximation. The source of this
imperfection is the label shadowing taking place in the queue.

To illustrate it on an example, let us suppose we have three labels in the queue, as
defined in Table 6.5. L, and L; comprise the heap of non-dominated labels with L, at the
top due to its greater distinctness, while L. is in the set of dominated labels. May L, be
assigned to the destination node and thus provide a new solution when extracted. We can
see that L. was not dominated by L,, but shadowed by L;, which dominated L. at the time
of L,’s extraction. L. could later be extended into a destination label with unchanged cost
estimates and a slightly lower distinctness, say, 0.7 (after the update taking the newly added
path solution into account), which is still greater than that of L, when it was extracted.
So, when L. finally gets extracted from the queue, the solution path it represents is more
distinct than the previous solution path. As a consequence, a poorly chosen distinctness
threshold used in the search might prevent some sufficiently distinct paths from making it
into the solution set. In this example, such a threshold could be 0.65, which would cause
the search to terminate as soon as L, (representing a solution path with a distinctness lower
than 0.65) was extracted, not giving L. a chance to propagate its eventually more distinct
solution path.
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(a) A diverse subset of 9 Pareto optimal solutions found by the NAMOA* with the filter and with
the distinctness threshold set to 40%.
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(b) A diverse subset of 7 Pareto optimal solutions found by NAMOA*g;, with the distinctness thresh-
old set to 40%.

Figure 6.4: An example of possible differences between the solution sets of the two diversity-
oriented algorithms. The red circles indicate road segments that are not covered by the
solution set of NAMOA*g;, and the yellow ones mark areas with a variation.
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Alternatively, the label shadowing can have the effect of neglecting a potential solution
path with a superior distinctness when the path is similar to a previous solution path. Let
us suppose that, in the example above, the path represented by L. shares a great portion
with that of L,, which is extracted and added to the solutions. Then, once L. becomes non-
dominated and its distinctness is updated, it drops significantly lower, say, to 0.2, because
of the similar path now in the solution set. Whether L. is a destination label itself or it
would be extended to a destination label with a not significantly lower distinctness, it would
have provided a more distinct solution at the time when L, was extracted from the queue.
Instead, it will most likely not be included in the solution set.

This behavior probably cannot be remedied without a significant performance hit on the
priority queue. In order to keep track of such non-dominated relationships among the labels,
the label being inserted into the queue would have to have the dominance evaluated against
virtually every other label. And even then, how exactly would the strategy change in the
extraction procedure? The label L, might be extracted before L, despite being less distinct
because it dominates label L. that precedes L, in distinctness and, at the same time, it is not
dominated by it. But then, let us consider an extended scenario where there is an additional
label Ly with the cost estimates of [4, 13] and the distinctness of 0.9, which is dominated
by L,. We would be required to apply the same double-checking to L; only to learn that
L, dominates the label Ly, which is not dominated by L; and has a greater distinctness. In
fact, the distinctness of L; is even greater than that of L., which would probably resolve
the conflict in favor of L, (keep in mind that only a non-dominated label is allowed to be
extracted, hence, only L, and L are in question). And this would take us back to L, being
extracted before L.. There does not seem to be a deterministic strategy that would lead to
always extracting a label like L. before a label like L, from the example and thus ensure
that the Pareto optimal solutions are discovered in a proper descending order.

All things considered, the effects do not necessarily have to be viewed as a defect of
the diversity priority queue, for they may enable solutions with a higher distinctness to be
found next. For instance, instead of the first three solutions having the distinctness values
of 0.8, 0.4 and 0.3, they could be 0.6, 0.55 and 0.5, as the distinctness of the future solutions
depends on the already retrieved solutions. Depending on the distinctness threshold, the
difference could be one versus three sufficiently distinct solutions making it to the solution
set (that would be the case of a threshold value lower than 0.5 but greater than 0.4), in
addition to the default solutions. This is the reason for NAMOA*g;, occasionally finding
more solutions that satisfy the distinctness threshold than the greedy filter would pick from
the Pareto set (see, for example, the problem instance number 26 in Table A.1).

In the end, it is debatable which of the two scenarios is more favorable. There is an
example in Figure 6.4 that illustrates possible differences between the solution sets found
by the two different methods. The solution space plots show that some of the solutions are
shared, while others are unique for each of the sets. Although there are fewer solutions in
Figure 6.4b, the roads and streets covered by the solution routes are almost the same as
those in Figure 6.4a, with only a few minor discrepancies. In any case, the solutions offered
are still Pareto optimal, only a different subset.
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Chapter 7

Conclusion

Throughout this thesis we gradually took steps toward creating a multi-criteria search al-
gorithm that intrinsically favors solutions that are geographically distinct. We started with
the determination of an appropriate metric for comparing individual paths and evaluating
to what degree they differ from each other. After an analysis of several approaches, we
deemed a metric based on the calculation of the cumulative edge length difference of two
paths the most suitable. It satisfied the requirements for the subsequent integration into the
search-algorithm and, at the same time, did not give up any important properties for use
with real-world road networks.

We then described the state-of-the-art exact algorithm for solving the multi-criteria short-
est path problem — NAMOA*. It served both as the foundation for the construction of our
diversity-aware extension NAMOA*y;, and as a reference for the evaluation of the exten-
sion. We detailed the mechanics of a new priority queue that we designed specifically for
the purposes of directing the search toward diverse results while retaining the optimality
of the solutions. Combined with the selected difference metric to estimate how a path will
contribute to the results’ diversity, it enables NAMOA*g;, to decide accordingly which paths
to explore.

To evaluate the solution quality and the performance of the new algorithm, we addition-
ally implemented a diversity filter to the standard NAMOA*, which corresponds to the com-
mon diversifying approach. With a proper setting of the diversity parameter, NAMOA*;,
achieved similar results to those of the filtered NAMOA*. The number of diverse solutions
offered varied to a certain degree between these two approaches, but in general they covered
more or less matching road and street segments. We also verified that NAMOA*g;, indeed
finds a subset of the Pareto optimal set of solutions of the exact NAMOA*, although it was
often a different subset than that obtained by simply filtering the entire solution set.

Analyzing the runtimes, we found out that the NAMOA*g;, is lacking in performance
compared to the exact search with a filter applied at the end. The new algorithm was
on average up to two times slower in solving the same problem instances, although there
were some instances that were solved by NAMOA*;, substantially faster. The slowdown
was more pronounced when using the destination and comfort criteria, as opposed to the
destination-time combination, due to the correlation difference of the criterion pairs. This
observation renders the NAMOA*g;, algorithm inferior in its current implementation, but
the performance gap is not so drastic that it would make future tweaking efforts worthless.

99
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Perhaps even a category of problem instances gets identified that consistently achieves better
results with the diversity-aware algorithm.

As we have pointed out several times, solving the multi-criteria shortest path problem
is a difficult task, and current exact algorithms are relatively efficient only on moderately
sized road networks. We tested the search algorithms on graphs with up to 700,000 edges,
one representing the city of Prague and another representing New York City. Most of the
problem instances were solved within the period of a few seconds, which is a decent result.
However, we need to keep in mind that the runtimes are relatively low thanks to restricting
ourselves to using only two criteria.

In order to improve the performance of the multi-criteria search, there currently does not
seem to be a feasible way other than by applying approximations if we are willing to sacrifice
the optimality of the solutions. An example of such an approximation could be the relaxation
of the vector dominance checking by using epsilon-dominance instead. A parallelization of
the search algorithms may bring a certain performance boost if we insist on exact solutions.
In fact, there is more room for parallelization of NAMOA*g;,, as it performs batch operations
such as the update of path differences when a new solution is discovered.

The multi-criteria search can definitely find application in route planning nonetheless.
The hazmat transportation, for example, does not strictly require a real-time operation,
as the routes are typically planned in advance. The cyclists, on the other hand, may be
forgiving of the slight divergence from optimality in the results. Reducing the search results
to a reasonable number of highly diverse route suggestions, however, often facilitates the
ultimate decision making when looking for the most convenient route while taking multiple
factors into account.
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Appendix A

Experiment Results

In this appendix you will find the complete results of our experiments for all 50 instances
on the NYC road network. There are three tables that offer an overview of the numbers of
solutions, the numbers of label expansions and the runtimes. Whenever there is a ‘~’ instead
of a value in the tables, it means that for that particular problem instance the search took
more than 15 minutes and was terminated.
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Table A.1: Sizes of the solution sets using various parameters for the search (NYC dataset).

Origin Dest. NAMOA* NAMOA* with filter NAMOA* 4y
authors’ ours new 30% 40% 50% 30% 40% 50%
1 33502 163335 45 45 45 3 2 2 3 2 2
2 198561 195430 12 12 12 4 3 2 4 3 2
3 40851 4310 344 344 344 5 3 2 4 3 2
4 19103 95503 24 24 24 5 3 2 5 3 2
5 65190 57030 1 1 1 1 1 1 1 1 1
6 172882 189944 163 163 163 4 4 4 4 4 4
7 181176 151910 308 308 308 4 3 3 4 3 3
8 177414 103345 122 122 122 4 3 2 3 3 2
9 186166 71968 487 487 487 9 6 5 7 6 3
10 50616 76333 31 31 31 2 2 2 2 2 2
11 56699 159358 401 401 401 6 3 3 4 3 3
12 103987 175817 213 213 213 4 4 2 3 2 2
13 75533 165171 245 245 245 6 3 3 3 3 3
14 191865 72103 346 346 346 9 6 3 7 5 3
15 35170 237017 26 26 26 2 2 2 2 2 2
16 207442 156433 69 69 69 5 4 4 4 4 4
17 62306 134007 78 78 78 4 3 2 3 3 2
18 58427 135252 242 242 242 10 6 5 5 4 4
19 91985 200812 241 241 241 9 6 5 8 4 4
20 242644 163590 156 156 156 2 2 2 2 2 2
21 40180 100359 77 T 77 7 4 3 7 4 3
22 38497 207344 465 465 465 10 7 6 6 4 4
23 180834 83150 814 814 814 10 6 4 9 6 4
24 129948 7003 234 234 234 11 6 4 6 5 3
25 259195 173121 72 72 72 4 3 2 3 3 2
26 147806 136543 371 371 371 12 8 5 13 8 3
27 179874 57536 643 643 643 7 4 4 6 4 4
28 189934 31336 169 169 169 7 5 4 7 4 3
29 138263 253856 11 11 11 3 2 2 3 2 2
30 246144 166336 65 65 65 4 4 2 3 3 2
31 25610 143842 86 86 86 3 2 2 3 2 2
32 228779 167251 162 162 162 3 2 2 3 2 2
33 78936 34136 111 111 111 4 2 2 3 2 2
34 124173 138439 295 295 295 3 3 2 3 3 2
35 260563 233292 36 36 36 3 2 2 3 2 2
36 193168 66816 280 280 280 11 8 5 9 6 3
37 29432 29834 131 131 131 8 6 5 8 6 6
38 193241 144927 787 787 787 10 8 6 8 7 6
39 161522 171446 1 1 1 1 1 1 1 1 1
40 176910 109129 164 164 164 3 3 2 3 3 2
41 251416 53900 106 106 106 5 3 3 4 3 3
42 201505 262626 48 48 48 3 3 2 3 3 2
43 86937 190907 632 632 632 4 4 3 5 3 3
44 35252 18638 4 4 4 2 2 2 2 2 2
45 92562 65120 202 202 202 9 6 5 8 5 4
46 230423 2724 66 66 66 2 2 2 2 2 2
47 17285 92411 17 17 17 4 4 3 4 4 3
48 177037 199832 8 8 8 2 2 2 2 2 2
49 68330 206280 270 270 270 5 4 3 5 4 3
50 61414 50367 50 50 50 3 3 3 3 3 3
Average 198.62 198.62 198.62 5.22 3.76 2.98 4.46 3.40 2.74




Table A.2: Numbers of label expansions performed during the search (NYC dataset).

. NAMOA¥ with filter NAMOA* g,

Origin ~ Dest. | NAMOA* 30% 40% 50% 30% 40% 50%
1 33502 163335 10871 | 10871 10871 10871 8469 7950 7950
2 198561 195430 774 774 774 774 671 626 609
3 40851 4310 | 2354517 | 2354517 2354517 2354517 | 2227598 2081748 1929468
4 19103 95503 5131 5131 5131 5131 4702 4310 4036
5 65190 57030 19 19 19 19 0 0 0
6 172882 189944 197523 | 197523 197523 197523 | 137614 137614 137614
7 181176 151910 319665 | 319665 319665 319665 | 256911 235232 235232
8 177414 103345 177192 | 177192 177192 177192 | 122054 122954 73959
9 186166 71968 | 2399749 | 2399749 2399749 2399749 | 2315395 2181080 1387017

10 50616 76333 10660 10660 10660 10660 7312 7312 7312
11 56699 159358 432131 | 432131 432131 432131 | 362128 334014 334014
12 103987 175817 475049 | 475049 475049 475049 | 394340 206822 206822
13 75533 165171 565959 | 565959 565959 565959 | 299034 299034 299034
14 191865 72103 539446 | 539446 539446 539446 | 444455 339230 285230
15 35170 237017 7629 7629 7629 7629 6634 6634 6634
16 207442 156433 105868 | 105868 105868 105868 82771 82771 82771
17 62306 134007 132234 | 132234 132234 132234 96627 96627 77116
18 58427 135252 319729 | 319729 319729 319729 | 188356 174968 174968
19 91985 200812 423642 | 423642 423642 423642 | 322516 244002 244002
20 242644 163590 30785 30785 30785 30785 17956 17956 17956
21 40180 100359 22487 22487 22487 22487 20174 19140 19024
22 38497 207344 586507 | 586507 586507 586507 | 392156 345544 345544
23 180834 83150 3965136 | 3965136 3965136 3965136 | 3862763 3724778 3531859
24 129948 7003 784170 | 784170 784170 784170 | 754296 539752 321387
25 259195 173121 25382 25382 25382 25382 19965 19965 13469
26 147806 136543 243534 | 243534 243534 243534 | 234735 221592 165585
27 179874 57536 4177079 | 4177079 4177079 4177079 | 3817582 2898984 2898984
28 189934 31336 127754 | 127754 127754 127754 | 105257 102456 100990

29 138263 253856 593 593 593 593 463 333 333
30 246144 166336 13370 13370 13370 13370 7051 7051 5385
31 25610 143842 36106 36106 36106 36106 33576 20387 20387
32 228779 167251 62467 62467 62467 62467 44865 36057 36057

33 78936 34136 247022 | 247022 247022 247022 66015 60146 60146
34 124173 138439 533255 | 533255 533255 533255 | 308877 308877 180922
35 260563 233292 6862 6862 6862 6862 5203 4690 4690
36 193168 66816 521546 | 521546 521546 521546 | 420256 301999 208326
37 29432 29834 124970 | 124970 124970 124970 | 114910 107934 107934
38 193241 144927 467113 | 467113 467113 467113 | 270887 217913 177726

39 161522 171446 144 144 144 144 0 0 0
40 176910 109129 79006 79006 79006 79006 54022 54022 44752
41 251416 53900 92802 92802 92802 92802 65449 63170 63170
42 201505 262626 22330 22330 22330 22330 21532 21532 20655
43 86937 190907 4507771 | 4507771 4507771 4507771 | 4254752 4225641 4225641
44 35252 18638 359 359 359 359 297 297 297
45 92562 65120 189860 | 189860 189860 189860 | 153579 132714 113385
46 230423 2724 11112 11112 11112 11112 9039 9039 9039
47 17285 92411 8805 8805 8805 8805 8315 8315 7517
48 177037 199832 1761 1761 1761 1761 1508 1508 1508

49 68330 206280 409058 | 409058 409058 409058 | 292512 195264 158640
50 61414 50367 17869 17869 17869 17869 15449 15449 15449
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Table A.3: Runtimes (in seconds) of the algorithms with various parameters (NYC dataset).

Origin Dest. NAMOA* NAMOA* with filter NAMOA*

authors’ ours new ) 30% 40% 50% 30% 40% 50%
1 33502 163335 9.22 0.55 0.52 0.51 0.47 0.48 0.60 0.56 0.55
2 198561 195430 0.34 0.06 0.07 0.06 0.06 0.06 0.06 0.07 0.04
3 40851 4310 525.87  30.03 82.72 | 37.67 3260 3425 | 89.11 7491 74.38
4 19103 95503 4.98 0.30 0.32 0.29 0.29 0.31 0.34 0.33 0.30
5 65190 57030 0.09 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.06
6 172882 189944 44.17 1.26 2.71 1.37 1.38 1.28 3.12 3.32 3.05
7 181176 151910 89.46 2.63 4.58 2.36 2.35 2.52 8.10 5.30 5.65
8 177414 103345 30.72 1.50 4.02 1.40 1.39 1.64 3.16 3.06 1.99

9 186166 71968 862.22 7195 101.69 | 62.87 59.79  65.54 | 185.90 159.09  72.88
10 50616 76333 7.27 0.37 0.37 0.37 0.32 0.37 0.34 0.38 0.41
11 56699 159358 114.02 6.36  11.33 6.48 5.61 595 | 12.09 10.36  10.50
12 103987 175817 77.33 6.42 1691 5.97 6.37 6.81 | 16.11 6.26 5.87
13 75533 165171 129.05 6.09 11.28 5.65 5.16 5.75 | 11.90 9.51  12.70
14 191865 72103 128.17 4.07 9.82 8.65 5.17 497 | 23.76  18.23 9.85
15 35170 237017 5.31 0.24 0.31 0.25 0.26 0.24 0.31 0.29 0.34
16 207442 156433 15.08 0.35 0.93 0.34 0.36 0.35 1.24 1.17 1.29
17 62306 134007 22.05 1.26 2.65 1.31 1.42 1.18 2.05 1.88 1.59
18 58427 135252 76.63 2.59 5.06 3.90 3.18 3.19 6.41 5.47 5.39
19 91985 200812 97.36 3.44 9.26 4.33 3.78 4.88 | 15.13 6.01 6.97
20 242644 163590 12.83 0.62 0.79 0.58 0.73 0.62 0.72 0.70 0.72
21 40180 100359 5.54 0.22 0.26 0.24 0.26 0.24 0.37 0.34 0.33
22 38497 207344 199.53 716  11.82 7.76 6.78 9.41 | 16.00 12.07 13.09
23 180834 83150 | 1948.15 134.34 211.57 | 138.90 146.70 121.71 | 315.50 295.92 227.72
24 129948 7003 135.24 6.53  24.74 8.50 717 6.15 | 3240 16.48 7.86
25 259195 173121 12.87 0.77 0.86 0.84 0.84 0.94 0.98 0.94 0.79
26 147806 136543 63.93 2.09 3.64 3.49 2.67 3.07 9.29 8.29 4.87
27 179874 57536 | 1495.73  99.53 201.64 | 126.75 130.80 145.94 | 274.87 155.75 155.14
28 189934 31336 25.34 0.95 2.55 1.55 1.07 1.27 3.19 2.57 2.65

29 138263 253856 0.64 0.05 0.06 0.05 0.06 0.05 0.05 0.09 0.09
30 246144 166336 6.84 0.34 0.43 0.38 0.40 0.36 0.41 0.46 0.38
31 25610 143842 10.71 0.42 0.67 0.53 0.45 0.40 1.04 0.69 0.57
32 228779 167251 18.6 0.92 1.05 0.88 0.92 0.84 1.78 1.75 1.76

33 78936 34136 39.86 1.64 3.66 1.58 1.52 1.41 1.89 1.43 1.56
34 124173 138439 108.12 6.16  14.78 6.83 5.33 5.94 8.64 9.02 4.44

35 260563 233292 3.51 0.18 0.22 0.18 0.17 0.17 0.20 0.21 0.20
36 193168 66816 94.74 3.82 11.15 7.21 5.05 4.09 | 21.55 12.09 7.89
37 29432 29834 20.5 0.88 1.61 1.17 0.95 0.90 3.09 3.01 2.92
38 193241 144927 209.09 8.81 12.86 | 1643 1441 11.78 | 1831 11.96 7.04
39 161522 171446 0.8 0.06 0.05 0.05 0.06 0.06 0.05 0.05 0.05

40 176910 109129 23.21 1.11 1.40 1.21 1.23 1.10 1.90 1.89 1.55
41 251416 53900 19.09 0.94 1.53 0.99 0.87 1.02 1.98 1.58 1.61

42 201505 262626 7.32 0.38 0.53 0.35 0.35 0.32 0.54 0.54 0.56
43 86937 190907 | 1389.98 118.43 194.76 | 102.77 105.06 114.87 | 234.19 280.15 237.94
44 35252 18638 1.53 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
45 92562 65120 33.85 1.21 3.63 2.79 2.06 1.68 6.21 4.86 3.27
46 230423 2724 4.78 0.25 0.30 0.25 0.24 0.25 0.36 0.31 0.34
47 17285 92411 3.35 0.15 0.27 0.19 0.15 0.15 0.21 0.20 0.21
48 177037 199832 5.44 0.28 0.31 0.29 0.31 0.29 0.35 0.30 0.29

49 68330 206280 114.12 3.28 6.35 3.70 3.00 293 | 11.23 5.83 4.32
50 61414 50367 11.32 0.61 0.79 0.63 0.63 0.58 0.76 0.75 0.87
Average 165.32 10.83  19.58 | 11.62 1141 11.57 | 26.96 22.73 18.10
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Table A.4: Sizes of the solution sets using various parameters for the search (PRG dataset).

. NAMOA* with filter NAMOA* g,
Origin - Dest. | NAMOA® | 00" 0ot 50 | 30%  40%  50%
1 103429 107165 801 8 5 5 8 1 1
2 27625 26432 732 8 7 5 9 7 5
3 27912 89965 1397 5 4 3 4 4 3
4 92297 36432 885 7 6 5 7 6 4
5 18160 84281 57 7 6 3 7 6 3
6 17458 20024 188 9 6 4 9 6 4
766914 9549 1774 7 3 2 7 3 2
8 81734 105542 231 4 3 3 5 3 3
9 13085 32485 373 6 5 4 6 5 4
10 15649 49846 1005 9 5 5 7 5 3
11 6236 85706 214 8 6 6 8 6 6
12 54128 26394 74 6 4 4 6 4 4
13 107731 101041 347 6 6 3 6 5 3
14 45195 104737 430 6 4 3 6 5 2
15 55635 105308 1 1 1 1 1 1 1
16 38648 97599 840 7 4 3 6 4 3
17 24386 48526 23 3 2 2 3 2 2
18 97404 73342 110 5 4 4 5 4 2
19 76986 63946 336 5 4 3 4 4 3
20 74057 35482 82 4 4 3 4 4 3
21 106775 52687 23 4 3 2 3 2 2
22 35396 31745 29 4 3 3 4 3 3
23 73824 75324 1496 9 6 4 8 5 3
24 84789 61539 45 3 3 2 3 3 2
25 9284 101419 266 11 9 6 9 7 6
26 54686 7840 1138 8 6 4 7 5 4
27 346 6895 115 7 4 3 7 4 3
28 13017 10384 165 6 4 3 5 4 3
29 12431 30085 282 9 7 5 8 5 4
30 7979 43212 436 7 6 4 6 5 4
31 16110 7930 74 3 3 2 3 3 2
32 70404 66089 73 4 3 2 4 3 2
33 87069 17496 1 1 1 1 1 1 1
34 1731 106815 72 3 3 3 3 3 3
35 47179 17472 1545 9 5 5 8 5 5
36 38480 67828 3659 - : : - - -
37 72187 31209 83 3 2 2 3 2 2
38 106609 9431 353 8 6 4 8 5 4
39 53634 41879 465 7 5 3 5 5 3
40 2068 73787 839 6 4 3 6 4 3
41 34583 50919 355 6 6 5 6 6 5
42 4087 48156 159 8 6 4 8 6 4
43 108248 38197 179 3 3 2 3 3 2
44 83952 16603 9 2 2 2 2 2 2
45 74602 15450 1002 5 4 3 5 4 3
46 108109 51919 18 3 2 2 3 2 2
47T 26057 53072 1406 7 6 4 6 5 4
48 TT60 78446 2% 8 6 5 9 6 5
49 31095 93191 341 6 5 4 6 5 4
50 38141 60189 9 2 2 2 2 2 2
Average 491.26 5.78 4.37 3.37 5.49 4.14 3.18
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Table A.5: Numbers of label expansions performed during the search (PRG dataset).

NAMOA* with filter NAMOA*4;y

30% 40% 50% 30% 40% 50%
1 103429 107165 1852113 | 1852113 1852113 1852113 | 1640893 1430479 1430479
2 27625 26432 1856819 | 1856819 1856819 1856819 | 1800962 1772838 1603802
3 27912 89965 6100784 | 6100784 6100784 6100784 | 5894165 5894165 4746645
4 92297 36432 1513010 | 1513010 1513010 1513010 | 1430572 1420528 1342375
5 18160 84281 10318 10318 10318 10318 9911 9767 9487
6

7

8

Origin ~ Dest. | NAMOA*

17458 20024 186636 | 186636 186636 186636 | 172753 141211 77403
66914 9549 7741839 | 7741839 7741839 7741839 | 7477443 7339151 6994676
81734 105542 203614 | 203614 203614 203614 | 149203 136784 136784
9 13085 32485 160562 | 160562 160562 160562 | 147397 143427 129903
10 15649 49846 1200251 | 1200251 1200251 1200251 | 862280 544262 260242
11 6236 85706 124463 | 124463 124463 124463 | 115342 114212 114212
12 54128 26394 13489 13489 13489 13489 11443 10619 10619
13 107731 101041 456146 | 456146 456146 456146 | 438388 435761 431967
14 45195 104737 476861 | 476861 476861 476861 | 218954 171675 34681

15 55635 105308 16 16 16 16 0 0 0
16 38648 97599 3367624 | 3367624 3367624 3367624 | 2715135 2279626 1814000
17 24386 48526 1246 1246 1246 1246 1136 1024 1024
18 97404 73342 22509 22509 22509 22509 20482 17312 15316
19 76986 63946 357130 | 357130 357130 357130 | 276853 276853 124663
20 74057 35482 32572 32572 32572 32572 30924 30924 29770
21 106775 52687 4015 4015 4015 4015 2526 2470 2470
22 35396 31745 8093 8093 8093 8093 7539 7407 7407
23 73824 75324 3770577 | 3770577 3770577 3770577 | 3495357 3304800 3018644
24 84789 61539 8598 8598 8598 8598 7264 7264 4852

25 9284 101419 198252 | 198252 198252 198252 | 164492 141931 139304
26 54686 7840 3428293 | 3428293 3428293 3428293 | 2268502 1382278 852984
27 346 6895 69408 69408 69408 69408 61154 56677 49208
28 13017 10384 52088 52088 52088 52088 39770 36299 12174
29 12431 30085 360663 | 360663 360663 360663 | 307146 280084 259623
30 7979 43212 143710 | 143710 143710 143710 | 108064 81981 67634

31 16110 7930 32615 32615 32615 32615 16938 16938 5487
32 70404 66089 15690 15690 15690 15690 15062 14865 13974
33 87069 17496 49 49 49 49 0 0 0
34 1731 106815 11045 11045 11045 11045 9458 9458 9458

35 47179 17472 3577342 | 3577342 3577342 3577342 | 3540308 3508581 3508581
36 38480 67828 - - - - - - -
37 72187 31209 22324 22324 22324 22324 16133 9842 9842
38 106609 9431 106999 | 106999 106999 106999 99286 85811 79808
39 53634 41879 690161 | 690161 690161 690161 | 510835 510835 141363
40 2068 73787 1018480 | 1018480 1018480 1018480 | 1004731 999416 988858
41 34583 50919 787982 | 787982 787982  78TIY82 | 771170 771170 744262
42 4087 48156 127681 | 127681 127681 127681 | 119788 113480 82039

43 108248 38197 26513 26513 26513 26513 24875 24875 20988
44 83952 16603 671 671 671 671 543 543 543
45 74602 15450 1914584 | 1914584 1914584 1914584 | 1595373 1567763 1529370
46 108109 51919 475 475 475 475 382 336 336
47 26057 53072 6814719 | 6814719 6814719 6814719 | 4658219 4118835 3335151
48 7760 78446 2341 2341 2341 2341 2069 1948 1788

49 31095 93191 414957 | 414957 414957 414957 | 399919 393221 374552
50 38141 60189 769 769 769 769 615 615 615
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Table A.6: Runtimes (in seconds) of the algorithms with various parameters (PRG dataset).

Origin Dest. NAMOA* with filter NAMOA*g;y
30% 40% 50% 30% 40% 50%
1 103429 107165 | 32.34 34.62 30.09 | 125.36  87.88  81.70
2 27625 26432 | 33.66 34.21 2927 | 89.61 7276  58.55
327912 89965 | 260.38 241.53 232.64 | 433.68 436.79 270.74
4 92297 36432 | 27.55 2333  25.17 | 56.55  60.64  46.51
5 18160 84281 0.13 0.15 0.11 0.15 0.16 0.15
6 17458 20024 1.55 0.95 0.96 5.23 3.33 1.21
7 66914 9549 | 342.81 336.52 387.00 | 868.88 792.32 666.95
8 81734 105542 0.98 0.95 1.03 2.61 2.23 2.69
9 13085 32485 1.43 1.45 1.18 4.51 3.78 3.02
10 15649 49846 | 35.24 28.88 29.60 | 59.51 19.79 5.34
11 6236 85706 1.03 0.79 0.76 2.79 2.96 2.74
12 54128 26394 0.16 0.15 0.13 0.19 0.23 0.17
13 107731 101041 3.49 3.29 2.73 | 1242  20.47 10.94
14 45195 104737 4.58 3.59 3.25 7.72 4.62 0.84
15 55635 105308 0.02 0.01 0.01 0.01 0.01 0.01
16 38648 97599 | 94.04 8231 74.11 | 129.00 94.55  62.11
17 24386 48526 0.08 0.07 0.07 0.08 0.08 0.08
18 97404 73342 0.27 0.28 0.24 0.48 0.38 0.36
19 76986 63946 2.66 2.54 2.36 7.06 6.45 2.26
20 74057 35482 0.28 0.29 0.24 0.42 0.40 0.40
21 106775 52687 0.15 0.14 0.13 0.12 0.12 0.11
22 35396 31745 0.18 0.15 0.16 0.22 0.26 0.15
23 73824 75324 | 196.90 163.28 150.24 | 666.86 522.49 387.62
24 84789 61539 0.15 0.15 0.16 0.16 0.27 0.13
25 9284 101419 2.15 1.55 1.16 4.48 2.68 2.69
26 54686 7840 | 114.99 100.18 105.52 | 126.62  45.17  24.84
27 346 6895 0.48 0.36 0.34 0.91 0.84 0.72
28 13017 10384 0.40 0.31 0.32 0.60 0.54 0.24
29 12431 30085 2.45 2.05 1.96 6.58 5.01 4.05
30 7979 43212 1.57 1.26 1.09 2.35 1.70 1.09
31 16110 7930 0.27 0.29 0.33 0.35 0.35 0.26
32 70404 66089 0.20 0.16 0.16 0.32 0.29 0.27
33 87069 17496 0.09 0.09 0.09 0.10 0.09 0.15
34 1731 106815 0.15 0.14 0.12 0.14 0.15 0.15
35 47179 17472 | 177.05 157.89 158.80 | 449.19 430.84 425.15
36 38480 67828 - - - - - -
37 72187 31209 0.21 0.19 0.19 0.34 0.24 0.32
38 106609 9431 1.24 0.97 0.92 2.93 1.95 1.58
39 53634 41879 8.47 7.26 775 | 16.69  16.15 3.10
40 2068 73787 | 15.03 12.65 12.80 | 58.04 54.38 49.44
41 34583 50919 5.48 4.94 529 | 1642 16.11  24.32
42 4087 48156 0.71 0.62 0.60 2.36 1.97 1.22
43 108248 38197 0.26 0.24 0.27 1.13 0.95 0.78
44 83952 16603 0.04 0.04 0.04 0.04 0.04 0.04
45 74602 15450 | 36.46  36.24 41.21 | 111.54 101.89 95.44
46 108109 51919 0.02 0.02 0.02 0.02 0.02 0.02
47 26057 53072 | 250.51 242.23 255.83 | 319.97 218.31 133.26
48 7760 78446 0.09 0.07 0.08 0.08 0.08 0.14
49 31095 93191 3.06 2.66 2.62 9.99 8.50 6.69
50 38141 60189 0.11 0.11 0.12 0.12 0.13 0.21
Average 33.91  31.27  32.03 | 73.57 62.07 48.59
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APPENDIX A.

EXPERIMENT RESULTS



Appendix B

CD Contents

readme . tXE ..t i brief description of the CD’s contents
| _src
L Ampl directory with the implementation source code
| _src
MAII o o e et tee et iee e source codes of the search algorithms
test
t java........... source codes of the graph building and the testing routines
TESOUTCES + vt tet e etnee e etneeeenneeeennneeeennnns road network data
| visualization.........oiiiiiiiiiiiiiii, directory with JavaScript libraries
| thesis.............l directory with the IXTEX source code of the thesis
| _text
LDP_Juraska_Juraj _2016.pdf oo thesis text in PDF format
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