Master Thesis

Czech

Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

An Integrated Approach to Multi-Robot
Exploration of an Unknown Space

Bc. Vojtéch Lhotsky

Supervisor: RNDr. Miroslav Kulich, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Robotics

May 2016

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Vojtéch Lhotsky
Study programme: Cybernetics and Robotics
Specialisation: Robotics

Title of Diploma Thesis: An Integrated Approach to Multi-Robot Exploration
of an Unknown Space

Guidelines:

=

. Get acquainted with current approaches to multi-robot exploration, especially with [1,2].

2. Get acquainted with methods of simultaneous localization and mapping for RGBD data
(RGBD SLAM), e.g. [3-5].

3. Choose an appropriate open source implementation of RGBD SLAM and experimentally
verify its behavior with real data. Focus on computational complexity, precision of
computed position in various environments.

4. Propose integration of RGBD SLAM into implementation of [1].

5. Verify experimentally the proposed solution and describe and discuss obtained results.

Bibliography/Sources:

[1] TomaS Juchelka: Exploration algorithms in a polygonal domain, Diploma Thesis, CTU
in Prague, FEE, Dept. of Cybernetics, 2013.

[2] Miroslav Kulich, Tomas Juchelka,Libor Pfeucil: Comparison of exploration strategies for
multi-robot search, Acta Polytechnica , Vol. 55, No. 3 (2015), pp. 162-168.

[3] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, W. Burgard: An Evaluation of the
RGB-D SLAM System, Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
2012.

[4] F. Endres, J. Hess, J. Sturm, D. Cremers, W. Burgard: 3D Mapping with an RGB-D Camera,
IEEE Transactions on Robotics, 2014.

[5] M. Labbé and F. Michaud: Online Global Loop Closure Detection for Large-Scale Multi-
Session Graph-Based SLAM, Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2014.

Diploma Thesis Supervisor: RNDr. Miroslav Kulich, Ph.D.

Valid until: the end of the summer semester of academic year 2016/2017

L.S.

prof. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
Head of Department Dean

Prague, December 22, 2015

iv

Acknowledgements

I would like to thank my supervisor RNDr.

Miroslav Kulich, Ph.D. for his advice
and guidance throughout this project and
also to other members of the Intelligent
and Mobile Robotics Group for the help
mainly with hardware aspects of this
work.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, dateccooeevvviiiiinininnnnnn.

signature

Abstract

This work focuses mainly on the prac-
tical aspects of the multi-robot explo-
ration of an unknown space. Each robot
is equipped with an RGB-D camera and
builds a 3D model of its neighbourhood.
The team of robots is controlled by a cen-
tralized exploration approach using a 2D
polygonal map of the environment. This
work follows and extends the Exploration
algorithms in a polygonal domain thesis
by T. Juchelka [I], focuses on improving
T. Juchelka’s framework and connecting
that framework with tools and libraries
for simultaneous localization and mapping
using an RGBD camera. The approach is
verified by many experiments with both
single and multi-robot exploration in var-
ious environment.

Keywords: multi-robot exploration,
mapping, SLAM, RGB-D camera,
polygonal domain

Supervisor: RNDr. Miroslav Kulich,

Ph.D.

vi

Abstrakt

Tato prace se zaméruje hlavné na prak-
tickou stranku multi-robotické explorace
neznamého prostredi. Kazdy robot je vy-
baven RGB-D kamerou a stavi si sviij 3D
model okoli. Cely tym je pak fizen cent-
ralizovanym pristupem za pouziti 2D po-
lygonalni mapy. Prace navazuje na Explo-
rac¢ni algoritmy v polygonalni doméné od
T. Juchelky/[I], sousttedi se na vylepsovani
ptvodniho frameworku a na propojeni to-
hoto frameworku s néastroji a knihovnami
pro soubéznou lokalizaci a mapovani za
pomoci RGB-D kamery. To celé je ové-
feno pomoci mnoha experimentt s jednim
i vice roboty v ruznych prostredich.

Kli¢ova slova: multi-roboticka
explorace, mapovani, SLAM, RGB-D
kamera, polygonalni doména

Pteklad nazvu: Integrovany pristup k
prohledavani nezndmého prostiedi
tymem robott

Contents

1 Introduction 1
2 Current approaches to multi-robot

exploration 5|
2.1 Exploration using a 2D occupancy

grid

2.2 Exploration in a polygonal domain

3 Implementation 9

3.1 Framework (Robot Operating
System)

3.2 EAPD implementation
3.3 Modifications in EAPD 12
3.3.1 Transformations 12
3.3.2 Exploration boundaries
3.330ffset map
3.3.4 Updating the map
3.3.5 Small fixes and improvements
3.4 EAPD on a robot with RGBD
CAIMETA .« .ot et e e 18|
3.4.1 Devices and drivers 18
3.4.2 Application architecture
3.5 Laser simulator............... 20
3.5.1 Point cloud transformation .. 22|
3.5.2 Outlier filtration 23
3.5.3 Ground and ceiling removal .
3.5.4 Scan simulation............ 24
3.63D SLAM 25
3.6.1 RGBD SLAM (Freiburg). ...
3.62RTAB-Map
3.6.30RB-SLAM 2 28
3.6.4 Comparison
3.7 Odometry
3.8 Initial transformation

vii

4 Robot, sensors and hardware
4.1 Robot
4.2 RGBD Camera

4.3 Laser Rangefinder

4.4 On-board computer

5 Power and Connection
Requirements

5.1 Computational Requirements. . .

5.2 Data Transfer Over Wireless
Network

5.3 Testing Intel NUC computer . ..

6 Kinect sensor in outdoor
environment

7 Experiments with a single robot
7.1 Indoor offices.................
7.2 Technical library..............
7.3 Underground garage

7.4 Outdoor environment

7.5 Real environment issues
8 Multi-robot experiments
9 Conclusion

A Bibliography

B CD content

Figures

2.1 Occupancy grid................

2.2 Polygonal map
3.1 ROS transformation tree.......
3.2 Implementation of EAPD
3.3 Transformation tree of EAPD ..
3.4 Filtering data outside of bounding

polygon
35 0ffset map...................
3.6 Selecting target frontiers.......
3.7 The connection between modules

in a single robot case.
3.8 The connection between modules

in a multi robot case
3.9 Problem with height in pixels ..
3.10 Filtering comparison
3.11 Laser scan simulation
312 RGBD SLAM
313 RTAB-Map
314 ORBSLAM 2 28
3.15 Initial transformation diagram .
4.1 The module with sensor and PC

for ER1 robot.
42 ER1 Robot 34
6.1 Reference outdoor environment .
6.2 Kinect 2 data in sunlight
6.3 Kinect 2 data in a sunny day with

most of the scene covered in

a shadow from a building
6.4 Kinect 2 data in the evening . ..
7.1 The office environment 46
7.2 Exploration in offices..........
7.3 The second experiment in the office

T 46,

viii

7.4 Technical Library
7.5 Exploration in Technical Library

7.6 Exploration in Technical Library

detail ... 48
7.7 Underground garage

7.8 Exploration in underground
GATAZE . o o e e e e

7.9 Outdoor environment 51

7.10 Exploration in an outdoor
environment 51

7.11 Update time of RTAB-Map ...

7.12 Mapping with more powerful
computer

8.1 Connection of maps from two

TODOLS « o oo 56
8.2 Map from two robots top view .

Tables

3.2 Comparison between SLAMs . ..

ix

Chapter 1

Introduction

This work focuses mainly on practical aspects of autonomous multi-
robot exploration of an unknown environment. Frameworks for multi-robot
exploration are currently (2016) available, for example Explorer package [2]
for ROS (Robot Operating System [3]), but they mostly work only in 2D
environment on a grid map using a laser rangefinder.

A framework working with a 2D polygonal map is available, but it was
never tested on a real robot. That framework is a result of the "Exploration
algorithms in a polygonal domain" thesis by Tom4as Juchelka [I]. Polygonal
maps have several advantages over the grid maps. They are much more
memory efficient and precise especially in large environments. On the other
hand some operations are much more complicated in a polygonal domain, for
example incorporation of new scans into the map. The EAPD (Exploration
in a polygonal domain) framework is written in C++ using ROS and provides
a way for autonomous exploration by multiple robots equipped with laser
rangefinders, but it does not provide localization.

The main idea behind this thesis is to follow and extend the work by T.
Juchelka, especially to make it work in real environments, but also to add
a creation of 3D map using an RGBD camera. Most libraries necessary for an
autonomous multi-robot 3D exploration with an RGBD camera are already
implemented in the Robot Operating System (Sec. 3.1):

® Drivers for RGBD cameras

® Simultaneous localization and mapping (SLAM) using data from RGBD
cameras

® Libraries providing simple communication, visualization, data processing
and transformations

The main goal in this case is to use those libraries and frameworks, add
missing features, create a complete framework for a multi-robot exploration,
which produces a 3D map and perform experiments in the real world environ-
ments in order to determine and solve the issues with practical deployment.

1

1. Introduction

One question arises. Why to use 2D polygonal map when a 3D map is also
created? The main reason is that a continuous transfer of 3D data is very
demanding on a wireless network. Using a 2D polygonal map for exploration
algorithm while each robot builds its own 3D map (which can be merged
after the exploration finishes) creates much lower load on the network. In
order to implement such solution it is necessary to solve many issues that
do not appear in the simulator and provide new features and extensions in
several directions

1. Usage of an RGBD camera sensor (specifically Microsoft Kinect 2),
processing and filtering its data.

2. Creation of additional 3D map of the environment.

3. Using a 3D SLAM approach for creating the map and for determining
the position of the robots.

4. Solving many problems with the real environment (noise, communication,
inaccuracies of sensors and drives, computational power requirements,
etc.).

As the original work was done only in the simulator, the first goal is to
consider requirements and to determine which hardware and software libraries
to use. The computational requirements are one of the biggest problems as
the current software providing 3D SLAM is very demanding.

The next step is to connect all the parts of the software with the "Explo-
ration in a polygonal domain" package (later referred as "EAPD"), enhance
and optimize that package and make it more user friendly by providing many
parameters, which can be easily modified. That is followed by doing many
experiments in a real environment to detect and solve possible problems and
to finalize an exploration framework. The comparison of different approaches
for planning and distributing the goals of the robots is not the part of this
work as it is already well covered in [IJ.

Current approaches to multi-robot exploration are introduced in the
beginning of this work (Chapter |2) with a focus on the one developed by T.
Juchelka. The following chapter focuses on the implementation (Chapter |3)).
The framework (Sec. 3.1) and the original implementation of EAPD (3.2) are
briefly covered followed by the description of the modifications made as a part
of this work (3.3). The next section (3.4) explains the architecture of the
whole application, especially the connections between the exploration itself
and other parts, which are later described in more detail - Laser simulator
(Sec. 13.5), 3D SLAM (Sec. 3.6) and odometry (Sec. 3.7).

Chapter |4 describes the selected sensors and computer as well as the
robot itself with the modifications made during this work. The following
chapters focus on the experiments. Chapter [5| covers the experiments with
the computational and connection requirements of the whole framework and

2

1. Introduction

RGBD SLAM. Chapter [6| focuses on the testing of the Microsoft Kinect 2
sensor [4] and the following chapters cover the experiments with a single
robot (Chapter 7)) and finally experiments with a multi-robot exploration
(Chapter 8)).

Chapter 2

Current approaches to multi-robot
exploration

This chapter aims to provide a basic view on the problem as good sources
exist [I][5]. It also focuses on the approaches already implemented in the
Robot Operating System framework [3].

O 2.1 Exploration using a 2D occupancy grid

The majority of nowadays approaches (for example Explorer package for
ROS [2]) uses occupancy grid maps. Such maps are created by sampling
the environment into grids consisting of small squares. Occupancy grid is
a matrix where each cell has a value representing the probability that the
corresponding area is occupied (see Fig. . The disadvantage is that
occupancy grids can take a lot of memory and computational time in large
environments.

The Explorer package is a frontier based exploration that incorporates
both coordinated and uncoordinated exploration strategies selecting goals for
robots.

O 2.2 Exploration in a polygonal domain

The polygonal map (Fig. 2.2) is much more memory efficient environment
representation and can retain its precision even for large environments where
an occupancy grid must use bigger cell size.

Several approaches for the exploration in a polygonal domain exist, for
example "Exploration and Mapping of Unknown Polygonal Environments
Based on Uncertain Range Data" [6], but this work focuses mainly on the
approach by T. Juchelka [I].

2. Current approaches to multi-robot exploration

Figure 2.1: An example of an occupancy grid

The original framework deals with the problem of exploring an unknown
environment with a group of robots. They are equipped with a ranging sensor
(laser rangefinder or similar) and cooperate in order to make the exploration
fast and efficient.

Usage of polygonal map also brings several problems. Some of the libraries
used for exploration do not work on polygons. Updating the map is more
complicated (merging and clipping polygons or obstacle expansion).

The exploration procedure consists of following steps:

1. Update the position of the robots from the odometry.
2. Convert the data from laser rangefinders to polygons.

3. Incorporate the new polygons into the polygonal map using the clipping
library.

4. Create an offset map (alternative to the obstacle expansion in occupancy
grid).

5. Select the target frontiers.
6. Create a visibility graph.

7. Generate the plans for robots using a specified method (for example
Yamauchi [7])

8. Drive the robots using the Smooth Nearness Diagram algorithm
This exploration framework provides good results in a simulated environ-
ment, but it works with several assumptions that are not met in the real
world:
® The positions of all robots are known and precise.
® The sensors are close to ideal (no large errors).
® The environment is static.

® The floor is ideally flat.

2.2. Exploration in a polygonal domain

o
il
.

R

18
A

— Jg

Figure 2.2: An example of a polygonal map generated by EAPD. The red colour
represents obstacles, the blue one frontier, the violet one expanded obstacles and
the grey one expanded frontier

Removing those assumptions either by extending the framework or by
incorporating other libraries is one of the main goals of this work.

Chapter 3

Implementation

This chapter focuses on the implementation of the exploration framework.
The first part of the chapter explains the general approach and modifications
made in the original software. The second part covers the architecture of the
whole framework used with an RGBD camera and other specific parts of the
framework like laser simulator, SLAM or odometry.

0 3.1 Framework (Robot Operating System)

The Robot Operating System (ROS) [§] is a large framework which con-
tains many libraries, tools and drivers useful for creating robotic applications.

The advantage of the ROS is that it provides a simple way for applications
to communicate with each other even when they are on different machines.
Each process running under the ROS framework is interpreted as a graph node.
The nodes can interchange informations by sending messages to a specified
topic or by subscribing to a topic in order to receive messages. Nodes can
also provide services for other nodes.

Another advantage is the ROS way of handling different coordinate frames.
The frames are also represented as nodes in a graph. Transformations between
frames (edges in the graph) are published using the topic system and the
current transformation between two frames can be simply obtained by using
the ROS TF library (there must be a path in the graph between them). An
example of a transformation tree is presented in Fig. 3.1 The base frame is
the map frame which is connected to the frames of the robots. This example
is from EAPD running in a simulator with 2 robots.

The transformations are also very useful for handling positioning of sen-
sors on the robot or even when the robot has movable joints. A separate
transformation between the frame of the robot and a sensor (or a joint)
can be published so that the message from the sensor can be easily trans-
formed to any other frame. An example of a transformation to the coordinate
frame of a sensor can be seen in Fig. [3.1] - from robot_0/base_link to

9

3. Implementation

Figure 3.1: An example of a transformation tree in ROS. This is a transformation
tree from the exploration in a polygonal domain running in a simulator.

robot_1/odom
robot_1/base_footprint

robot_0/base_laser_link.

The ROS is currently a popular framework so the drivers for a wide range
of different hardware (robots, sensors, ...) are available. The framework
contains also a wide range of different tools, for example:

Rviz An application used for 3D data visualization.

RQT A framework for GUI development in ROS. It contains many different
tools for data processing, monitoring, debugging, etc.

Catkin make A build system extending the standard CMake for easier
building of ROS packages.

The version used in this work is Indigo running on Ubuntu 14.04 (The
ROS can run on other operating systems as well, but Ubuntu has currently
the best support).

O 3.2 EAPD implementation

The EAPD (Exploration in a Polygonal Domain) package is a C++
implementation (using ROS libraries) of the multi-robot exploration algorithm
by T. Juchelka (Sec. [2.2) [1], which has been improved and extended as
a part of this work.

The whole package contains three ROS applications:

10

3.2. EAPD implementation

Laser
scan data

Laser
scan data

Robot O

Robot 1

Publish command
message

Publish command
message

Transformation

Transformation
Calculate
velocities using
SND

Calculate
velocities using
SND

Map
Filtration and Simplify the Clipping library - add obstacles
conversion to polygon polygon and free space to the map
Map Clipping library - merge Create offset
publish obstacles and free space map
|
Planner
Save latest map
Update Get robot Create Plan paths for
plan positions (TF) visibility graph robots

Figure 3.2: A diagram representing the implementation of EAPD.

Robot processes the data from sensors on one robot and publishes them to
the map and the planner. It also drives the robot according to the path
from the planner using SND (Smooth Nearness Diagram) approach [9].

Map uses the laser scans together with the transformations from the robots
and creates a polygonal map of the environment. That map is published
and optionally visualized in Rviz (Sec. 3.1)).

Planner uses the map and the positions of the robots, selects the goals for
the robots and plans their paths using the Dijkstra’s algorithm [10].

In a single robot case, all three applications run on one machine - the
computer typically placed on the robot itself. In a multi robot case, the map
and the planner run on a central machine which collects the data from all
robots and provides them with the planned paths (see Fig. .

The whole package uses a laser scan messages and transformations as an
input and publishes the commands for the robots as well as the polygonal
map. An interface for visualizing the data (map, plan, visibility graph) in
Rviz visualization tool is also implemented.

11

3. Implementation

. 3.3 Madifications in EAPD

The original exploration was tested only in the simulator and several
problems appeared during the tests on a real robot. Some parts of the
application are significantly modified and several new features are added.

[3.3.1 Transformations

The original EAPD package used odometry topics as a transfer channel
for the information about the positions. This was not desired in the real
world application for several reasons:

® Odometry and position on the map is not the same.
® Transformations provide extrapolation |'.

B Positions were sent through some parameters in a laser scan message.

Due to these reasons the original approach is replaced by ROS transformations.
A part of the code has already been rewritten for the usage of transformations
[11] and the rest is completed during the work on this thesis.

The transformations do not have any of the issues listed above and they
allow nicer and more readable source code. The structure of the transforma-
tion tree of a multi-robot task in the simulator has been presented in the
previous chapter (Fig. 3.1). The real environment transformation tree (for
one-robot case) is presented in Fig. [3.3. The main difference is the usage of
RGBD camera instead of a laser.

Each coordinate frame has a different meaning. The map frame is a fixed
coordinate frame that contains both polygonal and 3D map. Each robot in
a multi-robot case has its own 3D map so the fixed map frame is used only
for the polygonal map and the 3D maps have their own coordinate frames
(map_0, map_1, ...). The transformations between these frames must be static,
but they can be computed prior to the start of the exploration.

If the odometry would be ideal the odom_combined frame would be identi-
cal to the frame of the map. The odometry is not ideal in the real world so the
SLAM must make corrections of the position by providing a transformation
between the map and odometry frames.

The rest of the frames represents different positions on one robot. For
example, if the sensor is not in the centre of the robot, providing a static
transformation between the robot and the sensor frames resolves this problem
and the point clouds are always automatically transformed into the correct
coordinate frame.

!Missing extrapolation causes inaccuracies in the position because when some old laser
scan message arrives, it is always matched with the latest odometry.

12

3.3. Modifications in EAPD

robot_0/base_link

kinect2_rgb_optical_frame
kinect2_ir_optical_frame

Figure 3.3: The transformation tree of one-robot EAPD running with RGBD
camera

The following parts of EAPD are modified to use transformations:

Callback of a message from a laser scan The message from a laser scan
was originally directly placed into the map at the position from the latest
odometry message. Transformations allow using different coordinate
frames for the laser and the robot as well as non-zero transformation
between the odometry and map frames.

Robot position The position of the robot is now always obtained through
the ROS transformations API. This change simplifies the source code
because all callback functions for odometry are now replaced by a sim-
ple request for transformation and it allows to use extrapolation for
determining the position in a specified point in time.

Laser scan transformation The laser scan is transformed from its own
frame to the frame of the map. The advantage is that the scan does not
need to be from robot’s frame but it can have its own transformation
frame.

[3.3.2 Exploration boundaries

The environment in which the exploration takes place may be too large
and the robot would try to map everything, which could be nearly impossible
and may cause omission of some important places. Restricting the exploration
can be beneficial in such cases.

13

3. Implementation

Figure 3.4: Filtering data outside of the bounding polygon (red). The input
polygon is visualized in blue (free space) and green (obstacle). The new polygon
in light blue and light green. The yellow area is outside of the bounding box
therefore it is removed.

The restriction is implemented in such way that it allows to set a polygon
which represents the boundaries for the exploration. This polygon behaves
like a solid wall, the robots do not go outside of it. It is also represented in
the polygonal map as a solid wall.

This behaviour is achieved by using a simple polygon filter which is applied
on all polygons generated from arriving laser scans. All points outside the
boundaries are removed and new points on the edge of a bounding polygon
are added (see Fig. 3.4)).

Changing the bounding polygon is possible on the fly by publishing a new
one through ROS topic, but it would not be applied on already mapped areas
until they are revisited by the robots.

O 3.3.3 Offset map

The original EAPD package solved the problem of expanding the obstacles
by simply generating an offset polygon (using clipper library [12]). The
problem is that this method keeps a frontier in front of narrow passages (see
the bottom passage in Fig. |3.5a). The planner finds the path to that frontier
and the robot goes there even though it can not get further through that
Nnarrow passage.

The result is an infinite loop where the robot moves to and from that
frontier. It can not get through. When the robot reaches that frontier the
planner sends it somewhere else, but it sends it back in the next planning
iteration (as it is again the closest frontier).

The solution to this problem is to replace the frontiers close (closer than
the distance used as an offset for expanding the map) to the obstacles by
a wall (see Fig. |3.5b). This seals the problematic passages and the offset map
can be generated in the same way as before.

14

3.3. Modifications in EAPD

S

(a) : The original offset where the (b) : The offset after extending the
impassable corridor is still marked as obstacles. The impassable corridor
a frontier. is not marked as a frontier and the

robot would not try to get there.

Figure 3.5: Offset map

O 3.3.4 Updating the map

Every measurement is converted to a polygon, split into obstacles and
frontiers and merged with the map in the original work using the clipping
library [12]. The obstacles and free space in the map are stored separately.
When the map is published the obstacles are merged with the free space
recreating the frontier.

This approach is simple, fast and creates a very nice polygonal map, but
it works only with a static environment and an ideal (or close to ideal) sensor.
Any object detected in already mapped space is simply discarded?| when
obstacles are merged with the free space.

Even if the environment is static, this may still be an issue. If the robot
would for example go over a small bump and the sensor would be momentarily
turned slightly upwards, it may “see” over a small obstacle and place the
space behind it into the map. The obstacle would be removed and never
placed back, because it would be in the area marked as a free space.

Another issue may arise when some glossy object is present. The sensor
usually detects some false points due to the bad reflections and if those points
are behind the actual object, it is never placed into the map.

This issue is solved by forcing all obstacles (from the “obstacles” part of
the map) back into the clipped map. A new problem is that now the free
space can never replace an obstacle. It is fixed by clearing all free space
between the robot and the detected obstacles when a new scan is placed into
the map.

This approach ensures that the newest data are always preferred. The
published map looks less nice because obstacles are more fragmented, but the

2The obstacle remains stored in the “obstacles” part of the map, but it can never appear
on the publish map due to the clipping.

15

3. Implementation

exploration using that map is much more resilient.

O 3.3.5 Small fixes and improvements

The main changes are already covered in the sections above but during
the work with the EAPD package many small problems appeared. A short
description of these problems is provided bellow:

Number of active robots

Each robot in the original version of EAPD increased the counter in a ROS
parameter named robot_count. This approach failed when the exploration
was launched for the second time on the same ROS master. The parameter
increased again so the final number of robots was doubled.

This is solved by determining the number of active robots directly in
the planner node with a possibility to set up the robot_count parameter
manually.

Visualization

The EAPD package contains a small library for visualizing the data in
Rviz. That library originally used a fixed scale, which caused problems with
viewing too small or too large maps. This is resolved by adding a scale
parameter.

The part of the visualization concerning the visibility graph from the
planner was rewritten (originally it failed to visualize data properly in more
complex environments).

Parameters

All parameters are now obtained by using the ROS parameter server.
That removes the necessity for recompiling the whole package each time some

parameter is changed. It also allows creation of a well-arranged parameter
file.

Laser range

Originally, this parameter had to be set to the same value as the range of
the real sensor. Using smaller values would cause creation of a wall around
the robot in the map and immediate crash of the planner because there was
no reachable frontier.

The parameter can now be safely set to smaller values. The situation
when there is no frontier can still happen (for example when the robot finishes
the exploration), but the planner does not crash any more and it starts slow
rotation of all robots. This is helpful in cases when for example someone
opens door and the exploration can continue.

Start by rotation

A new option for starting the exploration by rotating the robots first is

16

3.3. Modifications in EAPD

Figure 3.6: Selecting target frontiers. The part of the polygon representing the
obstacles is visualized in red, frontier is blue. The selected points are filled.

added to the planner. It is better when the robot first turns to see what is
around it and starts the exploration after that.

Path through known walls

It was possible that the robot would have been inside of an expanded
obstacle, when the position had been updated after the map had been
published. That caused planner to generate a path through the obstacles
instead of the free space. This issue is solved by cutting the robot footprint
from the map inside of the planner node.

Selecting target frontiers

A function for selecting target frontiers for the planning is in the planning
part of EAPD. The input of this function is a set of polygons. Each edge of
a polygon can represent either an obstacle or a frontier. The goal is to reduce
the number of frontiers used in the planning algorithm. It is pointless to plan
a path to several different frontiers that are very close to each other.

The frontiers are selected by a predefined distance. The goal is to have the
maximal distance between the two selected frontiers lower than the predefined
threshold while selecting as few frontiers as possible.

The original function contained some problematic parts which caused
a risk of an infinite loop. This function is completely rewritten in the new
version of EAPD. The original function selected targets by the radius but
the new version uses the distance along the edges of the polygon. It is also
guaranteed in the new version that the beginning and the end of the frontier
section is always selected. The behaviour of such function is shown in Fig.
3.6. The pseudo code of the presented method is in Algorithm [1]

Build environment The Robot Operating System originally used Rosbuild
[13] environment for the compilation of packages. The environment contained
a set of scripts that incorporated ROS libraries into the make (and CMake)
environment. This system is still supported, but it is slowly replaced by the
new one called Catkin [14].

Catkin is also a build system extending the CMake environment and it is
improved in many ways (for example better support of installing packages

17

3. Implementation

Algorithm 1 Generate target frontiers.
1: for polygon P € map M do

2 if P[0] is a frontier and the polygon contains some obstacle then
3 Set is to the beginning of some polygon segment.

4: end if

5: d=0
6

7

8

9

for point P[i] € P starting with is do
if P[i] is a frontier following or followed by the wall then

Select P[i
d=0
10: else if PJi] is a frontier then
11: d=d+|P[i] — P[i+1]
12: if d >=d,,, then
13: Select P[i]
14: d=0
15: end if
16: end if
17: end for

18: end for

Note: If 75 # 0, the loop must continue from zero when the end is reached in
order to process all points in the polygon.

on different operation system). Catkin also removes the Makefile from the
project and uses only CMakeLists.txt.

The EAPD package was originally made in the old Rosbuild environment,
but it has been migrated to the Catkin and it can be simply compiled,
deployed or installed from the Catkin workspace now.

. 3.4 EAPD on a robot with RGBD camera

The EAPD package needs a data from a laser rangefinder and a precise
position in order to work. The first step is to simulate the laser from RGBD
data provided by the RGBD sensor. The next one is to use some SLAM
approach for obtaining a precise position of the robot.

If the selected SLAM approach would allow to use the odometry as an
initial guess for incorporating new scans into the map, providing a precise
and reliable odometry may significantly improve the map quality.

] 3.4.1 Devices and drivers

The RGBD camera drivers are specific for each device, but they usually
have the same structure. One part is the actual driver which works with the

18

3.4. EAPD on a robot with RGBD camera

Odometry
Velocities |

USB

Bridge (ROS RTAB Visual ER1 (ROS
node) odometry node)

RGBD Data

Vis. odom. Wheel odom.

RGBD Clouds

Kinect to Robot Pose

Scan

Laser EKF

Map TF

Velocities

Scan

EAPD Map EAPD Robot
Map 20 Plan
Planner
Position
Scan

Intel NUC , Ubuntu 14.04, ROS Indigo

jonine diagramming & desion] CIE€ALEly com

Figure 3.7: The connection between modules in a single robot case.

device and provides an API for other applications. The other part is the ROS
node using that API for publishing the RGBD data via ROS topics.

For example when using the Microsoft Kinect 2 [4] the libfreenect2 [15]
library provides basic drivers for connecting the sensor and the ROS Kinect 2
Bridge [16] publishes the data.

The implementation works with ground robots able to process the com-
mands in the form of linear and angular velocities and ideally providing
the wheel odometry as well. The data are processed in a ROS driver which
provides an interface between the connected device and ROS.

An example of the robot driver is the ROS ER1 node (provided by the
Intelligent and Mobile Robotics Group - CTU in Prague) for the ER1 [17]
robot which is used for experiments in this thesis. The node accepts ROS twist
messages containing linear and angular velocity and publishes the odometry
measured from the wheels on ER1 robot.

19

3. Implementation

O 3.4.2 Application architecture

In the single robot case all processes run on a single computer (typically
placed directly on the robot). Both RGBD camera and ER1 robot are
connected to the computer using USB interface. The ROS drivers for those
components are separate nodes - bridge for the RGBD camera and the ER1
node.

The visual odometry is computed from the RGBD data and together
with the wheel odometry is sent to the Extended Kalman Filter [I8] for
processing and generating more reliable source of odometry in a form of
a transformation between odom and robot base_link frames. It is used
afterwards by the SLAM (RTAB Map [19]) together with the RGBD data
and the simulated laser scan to create a 3D map of the environment and
publish the transformation between map and odometry frames.

The EAPD package uses the transformations and the simulated laser scan
to create a polygonal map, which is expanded and used for planning the path
and driving the robot along that path by publishing cmd_vel messages to
the ER1 node.

The detailed scheme of the data transfer between all software modules is
provided in Fig. 3.7.

The multi robot case is slightly more complicated. Each robot runs its own
SLAM node, the laser simulator and also the Robot node from EAPD (see
Sec. 3.2)). The polygonal mapping and planning is processed on some central
machine (or on one of the robots) which communicates with other robots using
WiFi. This solution has very light load on the wireless communication because
only 2D laser scans, transformations, positions and plans are transmitted.
Each robot keeps its own 3D map. Transferring those 3D maps in runtime
over WiFi would result in much higher connection load although it is still
possible. The detailed scheme of the data transfer between software modules
in the two robot case is provided in Fig. 3.8

. 3.5 Laser simulator

The EAPD package requires the data from a laser rangefinder sensor, but
it is not necessary to have such sensor physically placed on the robot. The
scan can be simulated from the RGBD data, but due to the character of the
package and the robot the following requirements must be met:

B Filtering erroneous data - The data from the RGBD sensor are often
noisy, especially in glossy environments. The noise is generated from bad
reflections from the glass, mirrors or similar objects. It is not so easy
to filter because reflections often behave in such a way that erroneous

20

3.5. Laser simulator

Odometry
USB Velocities |

Bridge (ROS
node)

ER1 (ROS

RGBD Data node)

Wheel odom. (or combined
RGBD Clouds with visual odom.)

Kinect to

Scan RTAB Map Velocities
Laser

Scan

EAPD Robot

I Position J
Intel NUC , Ubuntu 14.04, ROS Indigo Scan
WiFi
Transformations
Scans
EAPD Map Robot Positions
EAPD Plans

Ma
P Planner

Central Computer

e dagramming & design] CF@Ately com

Figure 3.8: The connection between modules in a multi robot case

points create big clusters or even silhouettes of objects behind glass or
mirrors.

® Possibility to set up the minimal and maximal height - The simulation
must consider all obstacles, which could endanger the robot therefore it
is not convenient to use just one row from the depth image.

® Taking advantage of ordered data (or point clouds) into rows and columns
- Processing unordered point clouds is much more computationally de-
manding.

A ROS packages which could provide the simulation of a laser rangefinder
already exist. The depthimage to laserscan package [20] works well with
RGBD images and is very fast. Unfortunately it does not provide a possibility
for setting minimal and maximal height. It only provides the scan height
parameter which sets the number of used pixel rows. That is not sufficient

21

3. Implementation

Maximal height

Minimal height

~

Expected Real

Figure 3.9: Problem with height in pixels. The green lines show required
minimal and maximal height. The red lines show how can setting the height in
pixels result in incorrect measurements.

because the height in pixels in reality represents constraints in the angle and
not in the real height. That causes missing low obstacles close to the camera
or detecting floor far from the camera (see Fig. 3.9)

Another possibility is to use the pointcloud to laserscan package [21].
It has wider options and provides min height and max height parameters
however neither of the packages provides an option to filter outliers.

Since both ROS packages do not meet the requirements a new package
kinect to laser was created. It uses the ordered depth clouds, filters data
and has an option for setting the minimal and the maximal height. The data
processing consists of several steps:

1. Point cloud transformation: The point clouds from the RGBD cam-
era are transformed from the sensor’s frame to the robot’s frame in order
to correct orientation.

2. Outlier filtration: The outliers are removed from the data.

3. Ground and ceiling removal: The pass through filter is used for
elimination of the objects not relevant for the navigation (either passable
or above the robot).

4. Scan simulation: A laser scan is simulated from the filtered point cloud
and published.

The particular steps are described in the following sections.

[3.5.1 Point cloud transformation

The point cloud from the RGBD camera is not in the robot’s transfor-
mation frame. The transformation between the robot’s and camera’s frames
can be non-zero, because the sensor must not necessarily be positioned on
the axis of robot’s rotation, so the cloud must be transformed to the robot’s
frame.

22

3.5. Laser simulator

(a) : The filtering using 8 neighbors (b) : The filtering using 24 neigh-
(threshold T" = 6) does not remove 3 bours - 5x5 square (threshold T' = 14)
erroneous clusters removes the erroneous clusters.

Figure 3.10: Filtering comparison. The red colour represents the points that
are not removed.

] 3.5.2 OQutlier filtration

The Point Cloud Library provides several methods for filtering outliers.
The problem is that those methods do not take advantage of a point cloud
ordered into a 2D grid (RGBD point clouds created from the colour and
depth images are ordered in this way). It means that the neighbours of each
point are always at an adjacent row or column and it is useless to search for
them through the whole point cloud. The point P is marked as an outlier if
the number of neighbours N with euclidean distance |P — N| < d is lower
than a given threshold T'.

The computational complexity of this filter is O(n - m) where n is the
number of neighbours and m is the number of points in the cloud.

Using only neighbours from an adjacent row and column (4-neighbourhood
or 8-neighbourhood) proved to be insufficient especially in areas with glossy
objects. Data from the RGBD sensor are very noisy in such areas and the
erroneous points create small clusters, which are not marked as outliers by
this method.

Filtering using 8 neighbours is fast and sufficient in environments without
glossy or other objects which creates lot of noise in the data, but it is better
to use more neighbours anyway just to be safe. Unfiltered clusters can force
the robot to stop (see Fig. 3.10) because it considers them as obstacles.

A simple method which would not have too large impact on computa-
tional complexity was found. The improvement consists of extending the
neighbourhood into a square with the length of the edge equal to [= 2k + 1,
where k is a given parameter (k € N). The length [must be an odd number
so that the point P can be in the centre.

23

3. Implementation

The pseudo code of the presented filtering method is in Algorithm 2|

Algorithm 2 Organized point cloud filtering
1: for P € C do
2: Select neighbours N

1, for||N—-P| <d

3: X =Y nyz(N, P), where (N, P) =]
0, otherwise

4 if X < T then

5: Mark P as an outlier.
6 end if

7: end for

The parameters for this method depend on the environment. The safest
option is to use 5 x 5 square (24 neighbours) and 7" = 20. This ensures that
the filtering works even in environments with glass and mirrors, but reduces
the precision of the scan. In the environments without objects with high
reflectivity only 3 x 3 square (8 neighbours) and 7' =5 can be used which
is faster and does not significantly reduce the precision of the scan. The
recommended distance threshold in both cases is d = 0.01m.

O 3.56.3 Ground and ceiling removal

The ground and ceiling is removed using a pass through filter (from the
PCL library). The filter removes all points with z coordinates outside the
specified interval. The result is a point cloud with removed floor and ceiling.
This method has one weakness. It requires the sensor to be oriented parallel
to the floor. If this condition is not met the filtering may not be successful in
removing floor or ceiling especially in the places far from the sensor.

The problem is solved by lowering the range of the sensor to a value under
8 meters and by placing the sensor parallel or facing slightly upwards. Setting
the floor height to 0.1 meters provides the sufficient tolerance for small errors
in sensor orientation.

The orientation of the sensor can also be measured and published as
a static transformation between the RGBD sensor frame and the robot base
link.

] 3.5.4 Scan simulation

The point cloud is processed so the last step focuses on the main goal of
the whole algorithm which is generation of a laser scan message from the
point cloud data. That is achieved by simulating the scan.The following
method works on ordered point clouds as well as non-ordered ones.

the parameters of the scan are found in the first step:

24

3.6. 3D SLAM

Figure 3.11: Laser scan simulation. The areas between black lines are segments
(see Sec. 3.5.4). The simulated beams are the red lines. The points from the
cloud are blue, the polyline connecting the points closest to the origin is green
and the simulated scan points are red.

Horizontal field of view The minimal and maximal angles about z axis
are found by searching for minimal and maximal values in angles of
points in the cloud. In open space or outdoor environments without
large number of obstacles is not enough points so the difference between
minimal and maximal angle can be too small. In such cases the default
field of view of the Kinect 2 sensor (70 degrees) is used.

Angle increment The angle incrementation between the virtual beams of
the laser scan. It is calculated by dividing the field of view by the
required number of points in the scan (usually 128 - 512).

The angular distance between the columns of points from the RGBD cam-
era does not match the angular distance from the simulated laser rangefinder
and it is not constant so the whole cloud is sampled in such way that each
sample corresponds to one laser beam and the closest point from each sample
is selected. The selected points are connected in order to create a polyline.
Finally a ray shooting is used in order to find the distances measured by each
virtual beam (see Fig. [3.11)).

0 3.6 3D SLAM

The planning algorithm runs in a 2D polynomial map. Since an RGBD
camera is used, it would be great to create a 3D map of the environment.
There are several available RGBD SLAMs so the first task is to select the

most fitting one.

25

3. Implementation

RGBDSLAM

Adding Node to Graph

|
Figure 3.12: RGBD SLAM used with a hand-held Kinect2 sensor in a small

room.

ded, Camera Pose Graph Size: 166N/965€, Duration: 2.882452, Inliers: 161

] 3.6.1 RGBD SLAM (Freiburg)

The Rgbdslam[22][23] provided in the ROS is now obsolete (the last
version is for ROS Fuerte). The new version (Rgbdslam v2) is available on
Github and supports ROS Indigo.

Rgbdslam divides the trajectory estimation into front-end and back-end.
The front-end focuses on detecting key points in the visual image, extracting
descriptors and matching with the previously extracted ones. The relative
transformation is calculated using RANSAC (Random sample consensus).

The g2o0 framework [24] is used in the back-end. It is an extensible graph
optimizer, which can be applied to a wide range of problems. The global
optimization of the graph is very useful especially in the cases when a loop-
closure happens. The map is represented using the OctoMap framework,
which is a Voxel grid managed in a tree structure [23].

Fig. [3.12] shows an example of a test of Rgbdslam in a small room using
a hand-held Kinect 2 sensor. In this short experiment a problem with the
duration of the map update appeared. Even in this small area the duration
increased over 3 seconds on Intel NUC [25] with the default parameters.

26

3.6. 3D SLAM

RTAB-Map* [ROS]

® & 3D Map

Loop closure detection (3]

Figure 3.13: RTAB-Map used with a hand-held Kinect2 sensor in a small room.

B 362 RTAB-Map

The RTAB-Map is an RGB-D Graph SLAM library with a global Bayesian
loop closure detector. That approach uses a Bayesian filter for evaluating
loop closure hypotheses over previous images. The likelihood required by this
filter is computed by using quantizing the visual words (SURF features). If
the loop closure is accepted (enough inliers) the link is added to the graph.
The transformation between images is computed using RANSAC. The TORO
(Tree-based network optimizer) approach is used for the optimization of the
graph (with poses as nodes and transformations as constraints). When a loop
closure is found the update can propagate throughout the whole graph and
correct the map [19].

RTAB-Map is distributed as a ROS package and it is supported on ROS
Hydro, Indigo and Jade. It can be used with a hand-held RGBD or a stereo
camera as well as with a camera and a laser rangefinder placed on a robot.

RTAB-Map also allows to use an odometry as an initial guess. If it
is not available it is possible to make an estimate of the position using
a separate visual odometry node (provided in RTAB-Map package), however
that estimation may fail due to the low number of detected features. Using
the odometry from wheels (or combination of the two) is therefore more safe
and robust.

Transformation from a map to odometry and a complete 3D map are
published through the ROS topics. RTAB-Map offers a wide range of different
parameters.

The test of RTAB-Map in a small room using a hand-held Kinect2 sensor
with a visual odometry is shown in Fig. [3.13. The duration of the map
update in this small room was up to 1 second on Intel NUC [25] with default
parameters, but it can be tuned to run faster as long as the map is small.

27

3. Implementation

Figure 3.14: ORB SLAM 2 used with a hand-held Kinect2 sensor in a small

room.

B 363 ORB.SLAM 2

ORB-SLAM 2 is a SLAM library for monocular, stereo and RGB-D
cameras. It computes the camera trajectory and a sparse 3D reconstruction.
The loop detection and re-localization is done in real-time. [26]

The biggest advantage of this approach (in comparison to those mentioned
above) is its duration of the update. It is by far the fastest approach. It is
able to process the update in tenths of second on Intel NUC (Sec. 4.4)

A problem appeared during the short test in a small room (Fig. 3.14).
In the area with smaller amount of visual features a large error (around 30
degrees in angle) in localization basically made the map unusable. This was
tested several times and the map was never created correctly.

28

O 3.6.4 Comparison

3.6. 3D SLAM

] Rgbdslam v2 \ RTAB Map | ORBSLAM 2 |
- Very slow updates of | Faster than Rgbdslam | + Very fast updates of
the map v2, slower than the map

ORB-SLAM 2 but it
can provide a fast
visual odometry

+ Can re-localize after
looking at known
position

Problems with
re-localization, but it
can use the wheel
odometry

+ Can successfully
re-localize after being
lost for a long time,
but also becomes lost
more often than the
others

+ Well readable map,
also published through
ROS

+ Well readable map,
also published through
ROS

- The map is not very
readable (for people)

+ All important data
is published through
ROS topics

+ All important data
is published through
ROS topics & services

- No data is published
through ROS topics

+ Can utilize the
odometry provided by
the ER1 robot

+ Wide range of
parameters

+ Wide range of
parameters

- Low range of
parameters

Table 3.2: Comparison between SLAMs

The Rgbdslam is not selected mainly for its long duration of the update
and because it is not able to incorporate wheel odometry.

The ORB-SLAM is very fast which would be a big advantage, but it would
need to be modified in order to publish map and transformations through
ROS and even then there are still issues with the errors in the map (Sec.

3.6.3).

As can be seen from the Table (3.2 the best option is RTAB Map - mainly
for the possibility of using the odometry from ER1 robot (possibly combined
with the visual odometry) and publishing all required data through ROS
topics. It is also highly customizable and faster than Rgbhdslam.

29

3. Implementation

O 3.7 Odometry

The RTAB-Map needs an odometry in order to work properly. There are
two options: wheel odometry and visual odometry.

Wheel Odometry

The wheel odometry provided by the ER1 node is generated by measuring
the orientation of each wheel and estimating the position change. The
advantage of this approach is that it is almost unaffected by the surrounding
environment, the odometry does not get lost and it provides reliable data.

The problematic case is when the wheels are slipping. That immediately
causes huge error, which is often impossible to recover from.

The main disadvantage of this approach is the drift of this odometry,
especially in rotation. Very small errors in the wheel orientation together
with some wheel slipping can in time cause large errors in both position and
orientation.

Visual Odometry

The visual odometry can be obtained using an application from RTAB-
Map package. The biggest advantage of this approach is a very small drift (in
comparison to the wheel odometry) and it can not be affected by the wheel
slipping.

The biggest disadvantage is the need for a sufficient number of visual
features in order to calculate the new position. If a number of detected
features is small, the position can not be calculated and the application just
sends zeros. Once it get lost, it will usually not start working again®| so it
needs to be reset. The reset would however cause problems in the RTAB-Map
itself and the visual odometry thus cannot be used on its own.

Combining odometries

An Extended Kalman Filter (EKF) can be used to combine the readings
from both odometries to provide a reliable and precise position. The ROS
application Robot Pose EKF[IS] is designed exactly for this purpose.

That application can handle missing data from one source so the outage of
visual odometry would not be a problem. The only problem is that the visual
odometry from RTAB-Map package sends zeros in the case of insufficient
number of features. The EKF is therefore modified to treat the zero messages
in the same way as the missing ones.

The problem with resetting the visual odometry is solved here, because
the EKF can use the wheel odometry in the meantime.

3The visual odometry can recover from being lost, but the robot would need to look at
the features detected in the last correct position so the problem would need to be propagated
to the planner.

30

3.8. Initial transformation

. 3.8 Initial transformation

When the EAPD is running on multiple robots in a real environment, the
knowledge of the initial transformation between the robots and some fixed
point (it can be the start position of one of the robots) is required in order
to create a valid map. The simplest way to acquire such transformation is by
placing the robots on predefined positions or by measuring their distance and
orientation. Such method however complicates and prolongs each experiment
and relies on the precision of the placement.

Due to these reasons a different approach is selected - calculating the
transformations by comparing RGB and depth images from the sensors on
robots assuming that all the robots see almost the same scene. Continuous
transfer of such images would make high load on the wi-fi network, but in
this case only one RGB and one depth image from each sensor is required.

The transfer of these images is managed by a new ROS application (Fig.
. It acquires images from one measurement on each robot, uses the
RTAB-Map visual odometry for calculation of the transformation between
the robots and repeatedly publishes that transformation. The RTAB-Map
visual odometry node can be stopped once the transformation is computed
so that it does not make a load on the CPU.

Although the application supports only the transformation between two
robots it can easily work with three or more robots by running several
instances where each instance provides a transformation between a pair of
robots.

Sensor Sensor
1 data 2 data

Acquire RGBD Publish them
images from both consecutively to a
sensors single topic

Wait for RTAB
Odom to publish
transformation

Repeatedly publish
the transformation

Compute the
transformation
between the images

Publish the
transformation

RTAB Odom

Stop RTAB node

98 design] Creately com

Figure 3.15: A diagram representing the computation of the initial transforma-
tion between two robots.

31

32

Chapter 4

Robot, sensors and hardware

This chapter focuses on the hardware used for the exploration experiments.
It briefly covers the description of the robot and the selection of the RGBD
camera, laser rangefinder and on-board computer.

. 4.1 Robot

The robot is constructed using the Evolution Robotics ER1 Personal
Robot System [I7]. It is a kit which allows creating a personalized robot
using provided parts and aluminium items.

The ER1 robot has already been constructed so the main goal is to modify
it in order to fulfil the following requirements:

® Add a larger battery for powering both Mini PC and RGBD Camera.
® Mount holders for PC and sensor.

® Ensure that the sensor is positioned as high as possible without endan-
gering the stability.

® The added construction should be easily removable and modifiable.

A small module made of aluminium items is constructed. It provides
holders for RGBD camera, Mini PC, battery, and enough space for placing

all cables (see Fig. [4.1)).

The whole module can be easily mounted on top of the ER1 robot as
can be seen in Fig. 4.2l Everything on the module is powered from its own
battery so the only cable connecting it to ER1 is the USB used for the control
of the robot. The position on top of the robot is also very convenient as the
RGBD camera is placed in a sufficient height (0.5m).

33

4. Robot, sensors and hardware

Figure 4.2: The ER1 Robot modified for the purpose of this project.

34

4.2. RGBD Camera

. 4.2 RGBD Camera

There are several different RGBD cameras on the market and the following
are considered for this work:

ASUS Xtion PRO

The Xtion sensor from ASUS is very small and does not require external
power. It is powered from the USB and it’s consumption is below 2.5 W.
It uses the PrimeSense Light Coding Technology which acquires the depth
image by illuminating the scene with patterns in IR light, measuring the
deformation of that pattern and triangulating the depth of the scene [27].
It’s depth resolution is 640x480.

The Xtion however has several disadvantages. A very big problem is its
range, which is only between 0.8m and 3.5m. The second problem is the
absence of RGB camera'l The field of view is also low - only 58 degrees [28].

The usage of the PrimeSense technology is problematic in the outdoor
environments. The emitted IR light is almost invisible in the amount of light
coming from the sun so the sensor can not provide reliable depth image.

Microsoft Kinect

The first version of Microsoft Kinect sensor also uses the PrimeSense Light
Coding technology so it has the same problems with broad daylight. It’s
depth resolution is 320x240, but it has better range than Xtion (0.4m - 4.5m).
It’s field of view is only 57 degrees [29].

It is not as lightweight as Xtion and it can not be powered over USB
cable.

Microsoft Kinect for Xbox ONE (Kinect 2)

The second version of the Kinect sensor replaced the PrimeSense Light
Coding with a time of flight technology. That significantly increased the
accuracy especially in outdoor environments where the original Kinect was
not able to work properly in broad daylight.

The new version is still affected by strong sunlight but it can provide
reasonable data for a short range, see experiments in Chapter 6.

It’s depth resolution is 512x424 and it has a 1080p RGB camera. The
range is also better. Although officially it is still 0.5m - 5m [4], the experiments
show that the new Kinect provides accurate data approximately from 0.3m
to 12m. An important improvement is also the field of view which increased
to 70 degrees [29].

This sensor is chosen as the best option mainly for its time of flight camera
and increased range. The power requirements are met by installing a 12V
battery with sufficient capacity on the robot (Sec. 4.1).

! Another version - Xtion PRO Live has RGB camera, but it is still limited in its range.

35

4. Robot, sensors and hardware

O 4.3 Laser Rangefinder

The EAPD package needs the data from a laser rangefinder in order
to create a polygonal map. It is however not necessary to use a real laser
rangefinder when an RGBD camera is available. The laser data can be
simulated by processing RGBD images as described in Sec. |3.5.

O 4.4 On-board computer

The experiments with Wi-Fi load (see Sec. [5.2) and computational
requirements of RTABmap (see Sec. |5.1) proved that the best idea is to use
a small computer with sufficient computational power directly on the robot
for the complete processing of the RGBD data and 3D map. The biggest
advantage is that the robot can run on its own and it does not depend on
another central computer. Using a remote computer for processing the data
would also reduce the range the robot can go, because the robot would need
very strong Wi-Fi connection to the central computer.

The on-board computer runs the RTABmap node and publishes only
the 2D data required for EAPD and optionally a 3D map over Wi-Fi. The
transfer of the raw (or even compressed) RGB and depth images over Wi-Fi
is very problematic.

The Intel NUC mini computer is selected, because it is very small, has
a processor with sufficient power - dual core mobile Intel Core i5 processor
(1.6GHz - 2.7GHz with Turbo), can be equipped with a sufficient amount of
RAM and a solid state drive [25].

That computer is also very economical. Its idle power consumption is only
around 7W, which increases to 33W under heavy load. It can be powered
together with the Kinect 2 from a single 12V battery [30].

36

Chapter 5

Power and Connection Requirements

The point clouds from RGBD cameras usually contain around 50 000 -
300 000 points and the rate is around 10-30 Hz. Processing such amount of
data in real time is very demanding on the computational power and the
connection so it needs to be tested first.

O 5.1 Computational Requirements

The first tests focused on the computational requirements of the RTAB-
Map library which creates the biggest load on a CPU compared to the EAPD
and other nodes that processes data. Those tests were done on Kinect 1
sensor (The Kinect 2 was not available at that time).

The Kinect was directly connected to the notebook (Intel core i7 - 4
physical cores 2.4 GHz, 8 virtual cores, 8 GB RAM, Nvidia GT 650M).

RVIZ

The first test focused on computer load when the Kinect data were only
visualized in ROS RVIZ tool without further processing. The frame rate was
in both cases (compressed / uncompressed) around 30 FPS. The processor
load was 19% for compressed and 15-17% for uncompressed data.

RTAB-Map

This test focused on the requirements of the RTAB-Map library. The
RTAB-Map update rate was set to 1 Hz and the visual odometry was turned
on.

After the start (when Kinect was not yet moved), the RTAB-Map node
consumed approximately 20% of processor time (13% calculation, 7% visual-
ization).

When one room was mapped (4x3m, lots of features), the RTAB-Map
node consumed 25-30% of processor time and about 700 MB RAM.

37

5. Power and Connection Requirements

The real processor load was always by 4-10% higher due to some other
system and ROS processes (37% when the room was mapped).

It is worth mentioning that the RTAB-Map does not really use a multi-core
processor so the load was distributed only on one or two cores therefore it
cannot really use more than some 30-50% of processor time (on quad core
machine).

Conclusion

The i7 notebook should be able to manage mapping with 2 robots. The
mapping with 3 or 4 robot may also be possible. Some processor load can be
decreased by shutting down visualization and the mapping should be able
to run even though some messages are dropped. The problem is that in this
case the mapping was running only on 1 Hz frequency. In reality it would be
better to update map much faster (at least more than 2 Hz) because otherwise
the robots can get so far or turn so much that the RGBD image can not be
properly incorporated into the map due to the low overlay of images.

. 5.2 Data Transfer Over Wireless Network

The RGBD cameras generate a large amount of data and the tests mainly
focused on whether it would be possible or convenient to transfer RGB and
depth images over wi-fi and process them on a central computer (so called
"Remote mapping"). That would allow using a mini computer with low
computational power on-board (FOXCONN NanoPC is used for the tests).

The tests were done using Kinect 1 sensor.
RVIZ tests

There seems to be a problem with data trasfer. When only the raw depth
image is processed the transferred data rate fluctuates between 300 KiB/s
and 1 MiB/s. The image is however very laggy and it has only 0.5 - 2 FPS
(when the FPS is higher - 2, the transfer rate is also higher - 1MiB/s).

When only the depth images are published and they are compressed the
transferred data rate is again between 300 KiB/s and 1 MiB/s, but the image
has 5-8 FPS and is delayed by 1s.

When the RGB data is added (compressed), the transferred data rate stays
around 500 KiB/s and 1 MiB/s, but the FPS drops to 1-4. The connection
becomes quite unstable. After 3 - 10s the image stops refreshing even though
there is still about 1 MiB/s activity on the network.

When the refreshing breaks, the console on the NanoPC shows repeatedly:

"Device timed out. Flushing device. Starting a 3s RGB and Depth stream
flush. Stopping device RGB and Depth stream flush."

The computer load on the NanoPC fluctuates between 40 and 55%.

38

5.3. Testing Intel NUC computer

RTAB-Map tests

When the RTAB-Map node is started, data transfer rate is around 800
KiB/s, but the mapping is not able to work.

Connection speed

The internet speed test showed approximately 15 Mb/s (1.88 MiB/s) for
both download and upload, which means that the network capacity is higher.

When the connection speed between the notebook and the NanoPC was
measured directly, it was only about 1.1 MiB/s, which was strange, because
this connection should not be affected by the bottleneck from an internet
provider (the notebook also has higher internet speed 2.2 MiB/s on its own).

Note: All these tests were done in the environment, where only 1 - 2
active wi-fi networks were present so no overlapping problems should have
appeared.

Conclusion

Under such circumstances the mapping is not possible via wi-fi by trans-
mitting the data from Kinect sensor. Even with compressed data it would
require about 10 MiB/s (80 Mbps) connection for smooth data transfer with
30 FPS.

Lowering the FPS to 3-8 in order to achieve a stable connection is possible,
but it is safer to use more powerful PC directly on the robot, process the
Kinect data there and publish only 2D data (optionally 3D map). Low FPS
also affects the visual odometry node (Sec.3.7) which normally updates about
10 times per second. The advantage is also that the number of robots is
not limited by the computational power of the central machine (each robot
processes its own data) and the robots can explore larger areas, because the
WiFi does not need so strong signal for transmission of 2D data.

O 5.3 Testing Intel NUC computer

The Intel NUC mini computer was selected as on-board PC (Sec. 4.4)). It
is much more powerful than the NanoPC and it has low power consumption.
The NUC is able to process RTAB-Map, but with the CPU load at 95-100%

even when running at 1Hz frequency.

Increasing the frequency is possible (the update phase is shortened while
loosing focus on precision) and the RTAB-Map node can run at 2Hz, but as
the map grows, the update duration increases.

39

40

Chapter 6

Kinect sensor in outdoor environment

The Microsoft Kinect for Xbox one sensor (Kinect 2) uses a time of flight
method for building the depth image which is the most significant change
from its first version. The first version did not work in sunlight but the second
version is generally more precise and it has longer range so it is possible that
it may be able to work outdoor even in a bright day.

An experiment in the outdoor environment is done to verify that assump-
tion. The environment is presented in Fig. It contains many objects at
different distances from the sensor:

B A barrel 1m from the sensor.
® A chair 2m from the sensor.
B Flowers 3m from the sensor.

B Several trees and other objects 4 - 15m from the sensor.

The first experiment is done in a very bright sunlight at 1 PM (May 7,
2016). The results (Fig. show that the data are very noisy and only the
barrel at a 1m distance is represented in an acceptable quality. The front
part of the chair at 2m distance is still visible, but with a large amount of
missing points.

The range of the Kinect 2 sensor in a very bright day is approximately 1.2 -
2.4 meters depending on the material of the detected obstacle and many other
factors (whether a part of that obstacle is in the shadow, whether the sun
shines directly on the sensor and on the reflectivity of the object’s surface).

Running RTAB-Map SLAM in a direct sunlight is nearly impossible as
it can not effectively localize due to the limited range and large amount of
noise.

The same area is also scanned when the most of the scene is covered in
a shadow from a building, but the sunlight is still bright so even the areas
covered in shadow are illuminated (see Fig. [6.3).

41

6. Kinect sensor in outdoor environment

=l S

Figure 6.1: Reference outdoor environment with objects at different distances.

(a) : The depth cloud (b) : Visible objects in a 1m grid
from above

Figure 6.2: Kinect 2 data in sunlight

The range increased to 3.5 - 6m under these circumstances and the majority
of objects within 3m range is well represented with almost no noise or outliers.
RTAB-Map SLAM is able to run, but the localization is worse than in the
indoor environments.

The last experiment with the sensor is done again in the same environment,
but this time in the evening when the scene illumination is much lower (see
Fig. 6.4).

The sensor correctly detected objects in 12m range and the RTAB-Map
works with similar precision as indoors.

42

6. Kinect sensor in outdoor environment

(a) : The depth cloud (b) : Visible objects in a 1m grid
from above

Figure 6.3: Kinect 2 data in a sunny day with most of the scene covered in
a shadow from a building

§

(a) : The depth cloud (b) : Visible objects in a 1m grid
from above

Figure 6.4: Kinect 2 data in the evening

43

44

Chapter 7

Experiments with a single robot

Most of the features can be tested on a single robot because there is no
need for multi robot exploration in order to test localization or map quality.
It is also useful for determining the effect of issues that can appear in a real
environment, for example noise in the data, low precision of localization or
the presence of reflective objects.

. 7.1 Indoor offices

Several indoor experiments are done in the BLOX building located in
Prague - Dejvice. It is a typical office environment. The robot starts the
exploration in the resting area and the kitchen. That area contains a sufficient
number of visual features and it is open space where the robot can easily
avoid the obstacles.

On the other hand it presents a challenge, because it is a very dynamic
place with a lot of moving people and the kitchen is separated from the resting
area by a glass wall. The glass on its own is very problematic in combination
with a Kinect sensor as it creates a lot of erroneous data due to the reflections
(this is the case when the modification presented in Sec. 3.3.4|is necessary).

As can be seen in Fig. 7.2 the exploration of the kitchen and a part of
the resting area was successful. The robot even managed to successfully go
through a door in the glass wall. That wall can not be seen in the 3D map,
but its location is in the place where the colour of the floor changes.

The problem is with corridors leading from the resting area. They are
painted with white colour and there are not enough features (only doors
to the offices) so the SLAM starts to drift there and the map becomes less
and less reliable. A short experiment in the corridor area can be seen in
Fig. [7.3 The robot managed to successfully explore the first two corridors
but the map started to drift and the loop closure was not successful. The
drift becomes more and more apparent as the map expands. The time of the
update continuously increases and the incorporation of new measurements is

45

7. Experiments with a single robot

Figure 7.1: The office environment in the BLOX building in Prague Dejvice.

(a) : The polygonal map (ob- (b) : The 3D map of the kitchen and resting
stacles - red, frontier - blue, ex- area.

panded - violett / grey) with

a path of the robot (green).

Figure 7.2: Exploration in offices

(a) : The polygonal map (ob- (b) : The 3D map of the corridors.
stacles - red, frontier - blue, ex-

panded - violett / grey) with

a path of the robot (green).

Figure 7.3: The second experiment in the office area.

46

7.2. Technical library

Figure 7.4: The ground floor of the National Technical Library in Prague used
for experiments with exploration.

more and more complicated.

The movement of people is handled reasonably well. Even though the
people are sometimes placed into the map (Fig. , if there are not too
many of them the localization does not get lost and the exploration can
continue. The robot even successfully avoids the people in front of it. The
quality of the map slightly decreases because the moving person can be placed
into it many times so the area looks crowded.

The polygonal map (Fig. looks very noisy especially in the right
bottom section. That section represents the tables and chairs in the kitchen
and as the robot considers only legs as the obstacles (it can pass under the
table) the map contains many small circles (sometimes connected). The
presence of people also adds small obstacles into the map. The second
polygonal map (Fig. looks better, because it consists mostly of direct
corridors with few doors and windows.

Even though the map does not look very nice (partly also because of
the modification presented in Sec. , its quality is sufficient for the
exploration as it clearly defines the passable areas and the planner can find
a non collision path.

O 7.2 Technical library

The ground floor of the National Technical Library in Prague (Fig.
is a large area suitable for exploration experiments. In comparison with the
indoor offices this place is much bigger and does not contain long featureless
corridors.

47

7. Experiments with a single robot

Figure 7.5: The path of the exploration in the National Technical Library in
the 3D map.

Figure 7.6: The detail of the library 3D map.

On the other hand with a glossy floor and transparent walls there are
much more reflections than in the office environment. The movement of
people is also much more frequent.

The mapped area is large (Fig. [7.5) but the exploration was stopped
before it could finish. That happened due to a risk of collision with a glass
panel that robot was not able to detect. Other experiments were made but
usually they had to be stopped due to the long duration of the RTAB-Map
update on large maps which caused problems with localization.

The map is reasonably accurate but it still contains several erroneous
areas. The first problem is the glass wall (Fig. 7.5/ on the left). It is not
properly matched and placed to the map probably due to the large number
of reflections. Such error could potentially have large impact on the map but
in this case the SLAM managed to re-localize using the exposition placed
opposite the wall (Fig. 7.6/ on the left).

The second problematic part is the area in the middle in Fig. [7.5| which
is basically empty. The SLAM must rely on the wheel odometry which can
drift from the correct position. As the path through this empty area is not

48

7.3. Underground garage

Figure 7.7: The underground garage in BLOX building (Prague Dejvice)

too long, the damage on the map is very small.

The glossy floor is very challenging because the Kinect sensor sees the
reflections in a similar way as a standard camera - the reflected object is
mirrored under the glossy floor. This mirror image is then placed into the 3D
map under the floor (see the reflections of the boards in the left of Fig.
Fortunately the objects under the floor do not affect the exploration and the
polygonal map but some glossy objects perpendicular to the floor can greatly
reduce the map precision.

The robot successfully managed to avoid people moving throughout the
area mostly without a significant decrease in the precision of localization.
Those people can be seen in Fig. and

O 7.3 Underground garage

An underground garage is selected as another place for experiments. One
smaller floor of the garage in the BLOX building is selected. The advantage
of using a smaller garage floor is that the car traffic is lower so the experiment
does not need to be repeatedly stopped due to ongoing cars.

Such environment has an advantage in a small number of people passing
through so it is almost static. There are also barriers (see Fig. that can
be carried and used as obstacles (provided that the route for a car is not
blocked).

The problematic part is as usually the glossy floor and mainly the alu-
minium covered parts on the roof. Due to these the sensor data are so noisy
that the noise often creates large clusters that are hard to filter (for example

49

7. Experiments with a single robot

(a) : 3D map of the garage (b) : Detail in the 3D map

Figure 7.8: Exploration in underground garage

Fig. in Sec. .

The beginning of the experiment was successful. The robot managed to
get out of the space enclosed by obstacles and to provide a good map of
the place (Fig. |7.8b). The problem appeared when the robot went into the
open space (Fig. in the bottom). The number of features significantly
decreased and an error in orientation caused that the rest of the map was
not properly aligned to the first part. The loop closure was not successful so
the error remained in the map. Other experiments in the same area usually
had similar problems. The localization slowly drifted and sometimes one
unsuccessful update destroyed the map.

. 7.4 Qutdoor environment

The experiments in outdoor environments are significantly affected by the
weather. The Kinect 2 sensor is able to work well as long as there is not too
much sunlight (i.e. overcast). The situation in the direct sunlight is worse,
but even than the sensor can provide data that can be reliable in a reduced
range.

The outdoor environments present another challenge. It is very prob-
lematic to use the SLAM on RGB-D data due to its more open space and
reduced range of the sensor. The number of features is usually very low so
the only reliable position can be acquired from the wheel odometry which
drifts in time.

An example of an outdoor environment is presented in Fig. The robot
started going around the fountain, but the asphalt road was not entirely flat.
The environments with uneven terrain are problematic for the robot. The
SLAM can handle small changes in the height even if it is set up to use only
2D position but the problem is with the small wheels. The robot is unable to

50

7.5. Real environment issues

Figure 7.9: Outdoor environment near BLOX building (Prague Dejvice)

(a) : Polygonal map (b) : 3D map

Figure 7.10: Exploration in an outdoor environment

go through such environment as the wheels usually start to slip or get stuck.
The robot managed to map only a very small area during the experiment
(Fig. [7.10) and then it got stuck because of small bump on the road.

. 7.5 Real environment issues

Many different issues appeared during the exploration experiments in
the real environment. This section provides a short description of the most
significant problems that can not be solved by simple modifications of the
exploration framework.

Field of view

One of the biggest constraints is the field of view of the Kinect sensor
which is only 70 degrees [29]. This causes a big problem for the SLAM
especially when the robot is rotating. Even though the angular velocity is
limited it can still be around 0.3rad/s. Lowering the velocity even more

o1

7. Experiments with a single robot

Update time of RTAB-Map

3 : : : : 480
&
@ 2.5 400
< [0]
9o <
< 2 320 2
2 »
- (0]
<15 240 3
G c
5 1 160 ©
® 2
205 go E
Z

0 1 1 1 1 1 1 O

0 200 400 600 800 1000 1200 1400

Time (sec)

Figure 7.11: The time of the RTAB-Map’s update and the number of nodes in
the map depending on the length of time the mapping runs (test done on Intel
NUC computer (Sec. |[4.4).

would make the exploration too slow.

When the exploration is running for a long period of time, its refresh
duration can be longer than 2 seconds. In that time the robot can rotate
by 35 degrees. Due to the low field of view the SLAM can only match the
features from roughly 50 percent of the image.

There is an option for limiting the computation time of the RTAB-Map
but at the cost of lower quality and even then the duration of the update
gradually increases as the map grows. The SLAM must therefore rely on the
data from the odometry.

The RTAB-Map visual odometry is very fast and in most cases it can
compensate for the long duration of the RTAB-Map update, but it often fails
due to the low number of features so the only working source of the position
data is the wheel odometry which slowly drifts.

Duration of update

Duration of the RTAB-Map’s update is directly linked to the problem with
field of view. The time of the update gradually increases. In the experiment
presented in Fig. [7.11] the update time was set to 0.5s. As can be seen in the
graph, this threshold is crossed in approximately 200s after the start and the
time of the update continues to grow as the map expands.

An experiment with a more powerful computer was done in order to verify
that the results would be better with lower time of the update. Kinect was
connected to the notebook described in Sec. [5.1] which is more powerful than
Intel NUC and it was used for manual mapping of the office area. The results
were much better as can be seen in Fig. [7.12. Both 3D and polygonal map
have higher quality even though the whole mapping was done without the
wheel odometry (only with the visual one).

92

7.5. Real environment issues

(a) : Polygonal map (b) : Detail in 3D map

Figure 7.12: Mapping with more powerful computer

Reflections

Reflective surfaces in the environment cause large amount of noise and
also silhouettes of the reflected objects. Most of that noise can be filtered
(Sec. 3.5) but the silhouettes remain in the map.

The worst example of such reflective surface is a glass wall (for example
. It generates a large amount of noise and also points from both the glass
wall and the objects behind. The robot can not always detect such wall and
it may try to get through.

On the other hand, the wall is detected in most cases in a form of few
points which are sufficient, because the offset map connects them and creates
a single obstacle so the robot does not try to go through.

Not enough features

The quality and success of the whole exploration highly depends on the
number of detected visual features. As the number of features decreases, the
SLAM has bigger problems with matching scenes and may result in error such
as inserting a new scan under an incorrect angle. Such error can be sometimes
repaired by a loop closure, but often remains in the map uncorrected.

93

o4

Chapter 8

Multi-robot experiments

The framework has been also tested by doing an experiment with a si-
multaneous mapping using more than one robot. The previous experiments
uncovered many issues that can appear in real environments, but without an
experiment with multiple robots there is no way how to test the matching of
the separate 3D maps or adding measurements from different robots into the
polygonal map.

A full multi-robot experiment has not been possible due to the problems
with a control unit for ER1 robot. One unit has broken during the single
robot experiments and it had to be replaced by the unit from the second
robot, therefore the second robot has not been operational any more and no
other ER1 robot has been available. Without the second robot the experiment
was slightly modified so that only one robot is used and the other robot is
replaced by a hand-held RGBD camera.

This modified experiment is still sufficient for the multi-robot testing of
the framework because both 3D map matching and incorporation of scans
to polygonal map is done in a same way for both hand-held camera and an
autonomous robot.

The experiment is done in the office environment presented in previous
chapter (Fig. |7.1). The initial position for both robots was in front of the
kitchen (in the centre of Fig. |8.1) where both robots faced the kitchen.
The orientation in a similar direction was required because the algorithm for
determining the initial transformation between robots (3.8) relies on matching
images from both sensors. The transformation was successfully determined
as presented Fig. 8.1. The kitchen area was mapped by both robots (Figs.
8.1a and 8.1b) and was smoothly connected (Fig. 8.1c).

The autonomous robot (first) started the exploration by turning around
and then by going left from the kitchen and covered most of the resting area
(Fig. [8.2a). The hand-held camera (simulation of the second robot) was
moved in the opposite direction so that it covers a different part of the area.
The hand-held camera was connected to a notebook and power supply so it
was not possible to move it far from the initial position. The kitchen and

95

8. Multi-robot experiments

s
3 5,
»

(a) : A map from the first robot (b) : a map from the second robot

(c) : The connected map

Figure 8.1: Connection of maps from two robots

a part of the corridor behind was covered (Fig. [8.2b)).

The top view of the connected map is presented in Fig. [8.2c. It is clearly
visible from that view that although the kitchen is connected well, the corridor
behind is not ideally matched with the rest of the map, but the error is not
too large. This happens because of small inaccuracies in both maps mainly
due to the reasons presented in Sec. [7.5l

The polygonal map (Fig. 8.2d)) looks noisy and erroneous and does not
cover the whole area. The 3D map covers slightly more space, because the
2D map assumed lower range of the sensor (5m instead of 10m). This is
beneficial, because the robot tends to explore more thoroughly and it covers
some areas in more detail. The presence of noise in the polygonal map is
mainly because of two reasons. One is the constant movement of people
through the area (few of them can be seen even in the 3D map - Fig. 8.1)
and the other one is a glass wall between the kitchen and the resting area.
The glass wall creates a lot of reflections causing a large amount of erroneous
data.

Some parts of the map also seem wrong but they are correct because most

o6

8. Multi-robot experiments

(a) : Map from the first robot (b) : Map from the second robot

(c) : Connected map (d) : Polygonal map

Figure 8.2: Map from two robots top view

of the tables are actually placed into the polygonal map as four small round
obstacles - legs.

This experiment (similarly as most of the single-robot experiments) had
to be stopped sooner than the whole area was covered. The main reason
for this was the gradual increase of the computational complexity (Sec. [7.5)
that eventually makes the duration of the update so long that the new scenes
are not properly incorporated into the map, because the robot already sees
completely different objects than in a previous iteration.

o7

o8

Chapter 9

Conclusion

The Exploration in a Polygonal Domain framework by T. Juchelka pre-
sented in Sec. 2.2 has been modified and updated in many ways to be more
stable, reliable and better for use in real environments (Sec. |3.3). The most
significant changes were rewriting the framework in order to use transfor-
mations, adding the possibility for setting the boundaries, improving the
algorithms for updating the map and for generating the offset map (which
is a polygonal alternative to obstacle expansion in occupancy grids). Many
other changes, bugfixes and improvements were made as explained in Sec.
3.3l

In order to transfer the exploration framework to the real environment
it had to be connected with other libraries (Sec. |3.4)) especially with SLAM
because the framework does not provide localization. A 3D SLAM approach
working with RGB-D camera was selected (Sec. [3.6). The available im-
plementations were compared and the RTAB-Map [19] was chosen as the
best suiting for this work. The advantage of using a RGB-D SLAM was
creation of a 3D map of the environment. The exploration framework and
the SLAM were connected using the Robot Operating System [8] while other
libraries and applications were added or created, for example an application
for a simulation of a laser scan from RGB-D image (Sec. 3.5|) or for computing
the initial transformation between the robots (Sec. 3.8).

The hardware for this task was selected according to the requirements
arising from the software implementation. It consisted of extending the ER1
robot by adding a new module with the Microsoft Kinect 2 RGBD camera [4],
Intel NUC mini computer [25] and a battery for providing sufficient power
(Chap. 4.

As this work focuses on the practical aspect of the multi-robot exploration,
the power and connection requirements of the implementation were tested
(Chap. 5). Continuous transfer of RGB-D images would create high load on
the wireless network so it was decided that each robot computes its own 3D
map and the maps are matched at the end of exploration. The 2D polygonal
map is is managed centrally and it is used for planning the robots because
2D data are much smaller for transmission.

99

9. Conclusion

One part of this work was also testing the Kinect 2 RGB-D camera in
outdoor environments. The previous version of Kinect sensor did not work
in broad sunlight but the new version started using a time of flight method
for creating a depth image. The goal was to test if the sensor is now able
to handle the sunlight. The tests show that it is still strongly affected by
the illumination of the scene. A direct sunlight reduces the range of the
sensor to 1.2 — 2.4m but it can work reasonably well if the sky is clouded or
the detected objects are in a shadow. The range in such cases increases to
3.5 — 6m. The sensor works still much better in indoor environments where
the range is up to 12m (Chap. [6).

The whole exploration was tested first on one robot (Chap. 7). The
experiments show that the selected method works well for a short time
exploration, but it is not ideal for a long time usage because the duration of
the RTAB-Map update increases as the map gets bigger (Fig. |7.11)). This
problem together with a small field of view of the Kinect, low amount of
features in some areas and reflections from some objects makes the exploration
unstable for long time running. The localization loses its precision because
the duration of the update on a big map is so long that the new sensor reading
has very few common features with the existing map - the robot moved to
far in that time.

The whole framework was also tested with two robots (Chap. 8) where
the second robot was simulated by using a hand-held RGB-D camera due to
the damaged control unit. The matching of the maps works well (see Fig. |8.2)
but due to the problems explained in the previous paragraph the localization
is less and less precise as the size of the map increases so only smaller areas
can be successfully mapped.

This work managed to show that the polygonal representation can be used
in the real world and that it can work well in many different environments.
It is fast, memory efficient and reliable, but the results of the tests with the
whole framework are not so good especially because of the problems with the
low field of view of the Kinect sensor and the computational requirements of
the RTAB-Map SLAM which are too high for a mini computer on-board the
robot, especially when the map covers large area. Replacement of the Kinect
by a stereo camera with a wider field of view together with the usage of more
powerful on-board computer could significantly improve the results of the
exploration and increase the size of the area that can be explored before the
time of the update increases too much. Parallel processing of the SLAM on
a graphic card may have also large influence on the time of the update and
thus improve the quality of the whole map.

60

[10]

Appendix A
Bibliography

T. Juchelka, “Exploration algorithms in a polygonal domain,” diploma
thesis, CTU in Prague, FEE, Dept. of Cybernetics, 2013.

T. Andre, D. Neuhold, and C. Bettstetter, “Coordinated multi-robot
exploration: Out of the box packages for ROS,” in Globecom Workshops
(GC Wihshps), 2014, pp. 1457-1462, Dec 2014.

ROS.org, “About ROS,” 2013. [Online; accessed 1-April-2016] Available
from http://www.ros.org/about-ros/|

Wikipedia.org, “Kinect for Xbox One,” 2016. [Online; accessed 1-April-
2016] Available from https://en.wikipedia.org/wiki/Kinect_for_|
Xb 0

M. Kulich, T. Juchelka, and L. Preucil, “Comparison of exploration
strategies for multi-robot search,” Acta Polytechnica, vol. 55, no. 3,
pp. pp- 162-168, 2015.

M. Dakulovic, S. Iles, and I. Petrovic, “Exploration and Mapping of
Unknown Polygonal Environments Based on Uncertain Range Data,”
Automatika — Journal for Control, Measurement, Electronics, Computing
and Communications, vol. 52, no. 2, 2011.

B. Yamauchi, “Frontier-based exploration using multiple robots.,” Proc.
of the Second International Conference on Autonomous Agents, pp. 47-53,
1998.

ROS.org, “Robot Operating System Documentation,” 2016. [Online;
accessed 2-April-2016] Available from http://wiki.ros.org/.

J. W. Durham and F. Bullo, “Smooth nearness-diagram navigation,”

in 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 690—695, Sept 2008.

Wikipedia.org, “Dijkstra’s algorithm,” 2016. [Online; accessed 1-May-
2016] Available from https://en.wikipedia.org/wiki/Dijkstra
[27s_algorithm.

61

http://www.ros.org/about-ros/
https://en.wikipedia.org/wiki/Kinect_for_Xbox_One
https://en.wikipedia.org/wiki/Kinect_for_Xbox_One
http://wiki.ros.org/
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

A. Bibliography

[11]

[12]

[18]

[19]

[20]

[21]

[24]

ROS.org, “TF Package Summary,” 2015. [Online; accessed 2-April-2016]
Available from http://wiki.ros.org/tf]

A. Johnson, “Clipper - an open source freeware library for clipping and
offsetting lines and polygons,” 2014. [Online; accessed 2-April-2016]
Available from http://www.angusj.com/delphi/clipper.php.

ROS.org, “Rosbuild,” 2012. [Online; accessed 10-May-2016] Available
from http://wiki.ros.org/rosbuild.

ROS.org, “Catkin,” 2015. [Online; accessed 10-May-2016] Available from
http://wiki.ros.org/catkin.

H. Martin, J. Blake, and K. Machulis, “Libfreenect,” 2016. [Online;
accessed 1-April-2016] Available from https://github.com/code-iai/
iai_kinect2l

T. Wiedemeyer, “IAI Kinect 2,” 2016. [Online; accessed 1-April-2016]
Available from https://github.com/code-iai/iai_kinect2.

M. Humphries, “Evolution Robotics ER1 Personal Robot System,” 2003.
[Online; accessed 17-April-2016] Available from http://www.geek.com/
hwswrev/hardware/eri/|

ROS.org, “Robot Pose EKF,” 2012. [Online; accessed 11-April-2016]
Available from http://wiki.ros.org/robot_pose_ekf.

M. Labbé and F. Michaud, “Online global loop closure detection for
large-scale multi-session graph-based slam,” in Intelligent Robots and
Systems (IROS 2014), 2014 IEEE/RSJ International Conference on,
pp. 2661-2666, Sept 2014.

ROS.org, “Depthimage to laserscan,” 2013. [Online; accessed 30-
April-2016] Available from http://wiki.ros.org/depthimage_to_|
laserscanl

ROS.org, “Pointcloud to laserscan,” 2015. [Online; accessed 30-
April-2016] Available from http://wiki.ros.org/pointcloud_to_|
laserscanl

F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d mapping
with an rgb-d camera,” IEEE Transactions on Robotics, vol. 30, pp. 177—
187, Feb 2014.

F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard,
“An evaluation of the rgb-d slam system,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pp. 1691-1696, May
2012.

R. Kiimmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G20: A general framework for graph optimization,” in Robotics and

62

http://wiki.ros.org/tf
http://www.angusj.com/delphi/clipper.php
http://wiki.ros.org/rosbuild
http://wiki.ros.org/catkin
https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2
http://www.geek.com/hwswrev/hardware/er1/
http://www.geek.com/hwswrev/hardware/er1/
http://wiki.ros.org/robot_pose_ekf
http://wiki.ros.org/depthimage_to_laserscan
http://wiki.ros.org/depthimage_to_laserscan
http://wiki.ros.org/pointcloud_to_laserscan
http://wiki.ros.org/pointcloud_to_laserscan

[27]

[28]

A. Bibliography

Automation (ICRA), 2011 IEEE International Conference on, pp. 3607—
3613, May 2011.

Intel.com, “Mini PC—Intel® NUC Kit NUC5i5RYK,” 2016. [Online; ac-
cessed 19-April-2016] Available from http://www.intel.com/content/
www/us/en/nuc/nuc-kit-nucbibryk.html.

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardés, “Orb-slam: A versatile
and accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, pp. 1147-1163, Oct 2015.

Wikipedia.org, “PrimeSense,” 2016. [Online; accessed 1-April-2016]
Available from https://en.wikipedia.org/wiki/PrimeSense,

ASUS, “Xtion PRO Specifications,” 2016. [Online; accessed 1-April-
2016] Available from |https://www.asus.com/3D-Sensor/Xtion_PR0O/
|specifications/|

M. Szymczyk, “How Does The Kinect 2 Compare To The Kinect 1,”
2014. [Online; accessed 1-April-2016] Available from http://zugara|
|com/how-does-the-kinect-2-compare-to-the-kinect-1|

T. S. Ganesh, “Intel NUC5i5RYK Review: A Broadwell-U
UCFF PC for Enthusiasts,” 2015. [Online; accessed 19-April-
2016] Available from |http://www.anandtech.com/show/8986/
lintel-nucbibryk-review-a-broadwellu-ucffpc-for-enthusiasts/

i

63

http://www.intel.com/content/www/us/en/nuc/nuc-kit-nuc5i5ryk.html
http://www.intel.com/content/www/us/en/nuc/nuc-kit-nuc5i5ryk.html
https://en.wikipedia.org/wiki/PrimeSense
https://www.asus.com/3D-Sensor/Xtion_PRO/specifications/
https://www.asus.com/3D-Sensor/Xtion_PRO/specifications/
http://zugara.com/how-does-the-kinect-2-compare-to-the-kinect-1
http://zugara.com/how-does-the-kinect-2-compare-to-the-kinect-1
http://www.anandtech.com/show/8986/intel-nuc5i5ryk-review-a-broadwellu-ucffpc-for-enthusiasts/7
http://www.anandtech.com/show/8986/intel-nuc5i5ryk-review-a-broadwellu-ucffpc-for-enthusiasts/7
http://www.anandtech.com/show/8986/intel-nuc5i5ryk-review-a-broadwellu-ucffpc-for-enthusiasts/7

64

Appendix B

CD content
] Folder ‘ Content ‘
/cloud_tf ROS package for evaluation of the initial transfor-
mation between two point clouds
/eapd2 Updated implementation of the Exploration in a

/kinect_to_laser
/robot_pose_ekf

/thesis
/thesissrc

Polygonal Domain framework

ROS package for calculation of a virtual laser scan
from Kinect data

Original ROS package for processing odometries
with several modifications

This thesis in PDF format

Latex source code of this document

65

	Introduction
	Current approaches to multi-robot exploration
	Exploration using a 2D occupancy grid
	Exploration in a polygonal domain

	Implementation
	Framework (Robot Operating System)
	EAPD implementation
	Modifications in EAPD
	Transformations
	Exploration boundaries
	Offset map
	Updating the map
	Small fixes and improvements

	EAPD on a robot with RGBD camera
	Devices and drivers
	Application architecture

	Laser simulator
	Point cloud transformation
	Outlier filtration
	Ground and ceiling removal
	Scan simulation

	3D SLAM
	RGBD SLAM (Freiburg)
	RTAB-Map
	ORB-SLAM 2
	Comparison

	Odometry
	Initial transformation

	Robot, sensors and hardware
	Robot
	RGBD Camera
	Laser Rangefinder
	On-board computer

	Power and Connection Requirements
	Computational Requirements
	Data Transfer Over Wireless Network
	Testing Intel NUC computer

	Kinect sensor in outdoor environment
	Experiments with a single robot
	Indoor offices
	Technical library
	Underground garage
	Outdoor environment
	Real environment issues

	Multi-robot experiments
	Conclusion
	Bibliography
	CD content

