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Abstract
Tato práce se zab˝vá problematikou multilingválního akustického modelování zaloûeného
na sdíleném fonetickém inventá�i pro 5 v˝chodoevropsk˝ch jazyk�: �eötinu, slovenötinu,
polötinu, ma�arötinu a ruötinu, které jsou dostupné v souboru databází telefonních sig-
nál� SpeechDat-E. Jelikoû dostupné v˝slovnostní slovníky v jednotliv˝ch databázích
obsahují v˝slovnosti za pouûití SAMPA abeced s neustálenou konvencí nap�í�í jazyky,
není pouûit pro stejné hlásky v r�zn˝ch jazycích stejn˝ symbol. Byla proto vytvo�ena
jednotící reprezentace na úrovni foném� pro vöechny pouûité jazyky na bázi X-SAMPA
abecedy a tím zajiöt�na jednotná reprezentace hlásek nap�í� jazyky. P�ínos multilig-
válního akustického modelu byl analyzován na úloze rozpoznávání spojité �e�i. Byla
provedena anal˝za dvou realizací akustického modelování v LVCSR: tj. byl pouûit stan-
dardní GMM-HMM (Gaussian Mixture Model-Hidden Markov Model) a DNN-HMM
architektura. Vlastní experimenty byly provedeny pro LVCSR s akustick˝m modelem
pro jednotlivé jazyky a pro mutilingvální systém. Jednotlivé systémy automatického
rozpoznávání �e�i byly realizovány pomocí nástroj� Kaldi. Jedním z cíl� této práce
je poskytnout základní návod pro pouûívání Kaldi a vytvo�it vzorovou implementaci
(angl. recipe) s databázemi z �ady SpeechDat. V závislosti na jazyku se nejlepöí dosa-
ûená úsp�önost GMM-HMM sytému pohybovala v rozmezí 18%-28%WER. DNN-HMM
systém p�inesl zlepöení v pr�m�ru o 4%WER. Pro multi-lingvální HMM systém se pak
v˝sledky pohybovaly v rozmezí od 25%-37%WER. Pouûití DNN p�ineslo nakonec dalöí
v˝razné sníûeníWER, v p�ípad� multilingválního systému v pr�m�ru o 9% pro vöech
5 jazyk�.

Klí�ová slova
rozpoznávání spojité �e�i; LVCSR; GMM-HMM systém; DNN-HMM systém; multiling-
vální systém; akustické modelování; IPA; SAMPA; X-SAMPA; Kaldi
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Abstract
This thesis deals with the multilingual acoustic modeling problem based on the shared
global phones inventory for five East Eurpoean languages: Czech, Russian, Hungarian,
Slovak and Polish which are available within SpeechDat-E, i.e. the set of telephone
speech databases. Because the SAMPA with unnormalized convention is used to repre-
sent the phonetic content of the particular languages and di�erent symbols are in several
cases representing the same phone, the mapping to the general X-SAMPA phonetic al-
phabet was proposed in the first step. The impact of a multilingual acoustic modeling
was analyzed on the basis of a continuous speech recognition. The analysis of the acous-
tic modeling in the LVCSR task was performed for the GMM-HMM system and for
the DNN-GMM approach. The experiments were performed for the LVCSR with the
language specific acoustic model same as for the multilingual system. The particular
recognizers were implemented via the Kaldi toolkit. One of this thesis goals is to provide
a tutorial-style description of the Kaldi usage and create the recipe for the SpeechDat
databases. Depending on the language, the best obtained accuracy of HMM recogniz-
ers was 18%-28%WER. DNN-HMM improved the results about 4%WER on average.
The results for the multilingual HMM system reached the values from 25%-37%WER.
The DNN approached had significant impact on the speech recognition accuracy for the
multilingual system as well and it reduced theWER about 9% on average.

Keywords
continuous speech recognition; LVCSR; GMM-HMM system; DNN-HMM system; mul-
tilingual system; multilingual acoustic modeling; IPA; SAMPA; X-SAMPA; Kaldi
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1 Introduction

With the progress of the machine learning algorithms and the hardware computational
performance, the speech technologies are becoming vastly popular and are being de-
ployed in a still growing amount of applications. It reflects the fact, that the speech
is the most natural way of a human communication, so the technology is desired to be
able to understand the human speech. The speech technologies can be found in many
applications such as dictation, automatic subtitles generation or archiving the various
types of spoken recordings. In general, the speech recognition covers the area from
simple commands recognition to the sophisticated dialog systems and artificial personal
assistants. Also, the human voice is consider as one of the biometric identifier and can
be used for a speaker identification or verification.

The most noticeable progress in the field of a speech recognition brought the intro-
duction of the HMM (Hidden Markov Models). Such acoustic modeling method allowed
the new capabilities of recognizing the continuous speech with a large vocabulary and
it became the baseline of speech recognition systems. In the recent years, the ANN
(Artificial Neural Networks) have provided noticeable results. Their output is often
used in the systems based on the TANDEM features or they are a part of the hybrid
HMM-DNN recognizers. The ANN variant denoted as deep neural network has proven
the promising results for an acoustic modeling and such approach is also investigated in
this thesis.

Hand in hand with the increasing speech recognition performance and capabilities,
the requirements of such systems are also growing. They have to perform well in the
various conditions e.g. the noisy car environment or with the low quality telephone data.
Another requirement for such systems is often the need to provide their functionality
for various languages. In general, the statistical speech recognition system is a language
dependent, so its setup for another language often means to obtain the appropriate
training set and reinitiate the training process. But some parts of such system can be
shared even for the new language. One such part can be the acoustic model. Phones
sharing in the acoustic modeling can result in the need of the smaller training data set.
Thus, this can allow to deploy the system for the new language with less e�ort and cost.
With respect to this summary, the multilingual speech modeling is the main topic of
this work.
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1 Introduction

The content is organized as follows. The general principles and approaches of contin-
uous speech recognition are described in the chapter 2. The general speech recognition
theory is expanded with used multilingual acoustic modeling approach in the chapter 3.
The used phonetic alphabet and a phone inventory unification is also described there.
Chapter 4 describes the Kaldi toolkit and provides a tutorial-like manual. The indi-
vidual experiments are introduced in chapter 5 as well as the discussion of experiment
results. The complete thesis evaluation is stated in the last chapter.

2



2 Continuous Speech Recognition

The first speech recognition attempts were to recognize the isolated words and expres-
sions. The principle of the first recognizers was a template matching. To evaluate and
compare two utterances, the dynamic programing was used to model the nonlinear vari-
ations in the speech speed of one of the utterances. Such approach is called the dynamic
time warping and it was the most used classification method in the 70s and early 80s.
During the 80s, the statistical classification methods were introduced and laid down
the base for continuos speech recognition. The statistical approach of continuos speech
recognition is described in this chapter.

Figure 1 The principle of a statistical large vocabulary speech recognition approach.

An acoustic analysis of the input speech signal performs two main subtasks. The first
is the signal processing itself. It can include denoising, echo cancellation, pre-emphasis
and other modifications to clean and normalize the input speech audio signal. The main
function of the acoustic analysis is to extract the sequence of features that is processed
and recognized by a decoder. The elements of this sequence represent the feature vectors
in the individual time steps t. Let’s denote this sequence as O = (x1, x2, x3, . . . , xt).
Let’s assume the sequence W = (w1, w2, w3, . . . , wn) of n words. Then the sequence of
the acoustic observations O generates W with the probability P (W |O). The key task
of the decoder is to find such sequence W ú which maximizes the probability P (W |O),
written as

W ú = argmax
W

P (W |O) . (1)

3



2 Continuous Speech Recognition

Thus, it is a decoding with the maximum a posteriori probability (MAP). The Eq. 1
can be rewritten with Bayes’ rule to the form

W ú = argmax
W

P (W )P (O|W )
P (O) . (2)

The a priori probability P(W) is the probability that a speaker will say the sequence
of words W . P (O|W ) is the probability, that the feature vector sequence is produced
when the W sequence is pronounced. The a priory probability of the observation feature
sequence O can be omitted, since it is constant under the max operation which results
in

W ú = argmax
W

P (W )P (O|W ). (3)

As it can be seen, the decoding problem can be decomposed into the evaluation of a
two probabilities. These probabilities are independent which means that they can be
trained separately. The probability P (W ) is called, or represented by, the Language
Model (LM), that reflects the semantic and(or) syntactic constrains of the given lan-
guage. P (O|W ) is determined by an acoustic model. It needs to be stated, that the
evaluation of Eq. 3, thus obtaining the W ú for observed O over all possible sequences
W , involves enormous number of operations and it is computationally very expensive.
The sophisticated decoding techniques has to be applied to obtain the desired sequence
W ú.

To conclude, the statistical continuous speech recognition task can be formulated in
the form of the following problems:

• The acoustic processing problem. Signal processing in the time domain to remove
or reconstruct missing information. Then, the proper features are needed to be
extracted out of the speech signal. It means to find such feature vectors with as
low dimension as possible while keeping su�cient amount of information.

• To train appropriate model to evaluate the probability P (O|W ). It means to decide
which acoustic units are to be modeled and what evaluation mechanism should be
used (HMM, ANN, ...)

• Train the language model and evaluate the probability P (W ).
• Obtain the sequence W ú in acceptable time by using the proper methods.

2.1 Acoustic Analysis
Depending on the various conditions like the environment, quality of communication
canal or with respect to the nature of a human speech production, the speech signal
often su�ers from information loss or abundance of misleading information, which is
inappropriate for further processing. Between common preprocessing methods belongs

4



2.1 Acoustic Analysis

the pre-emphasis, that compensate the energy loss proportionate to the increasing fre-
quency. Regarding the human speech production system, the speech signal is considered
as stationary in short time intervals around 10-30 ms during which the current state of
production system is being kept. This state corresponds to the sound unit that is then
recognized. A further speech signal processing therefore requires the short time analysis
both for the time and spectral domain. So, the next step is a signal segmentation. Many
experiments proved 25 ms to be an optimal segment width with 10 ms shift. Several
windows with di�erent characteristics are used for this purpose. Namely rectangular
window, Hanning or the most used Hamming window. The complete description of
short-time analyses methods and their principles can be found for example in [14].

Since the time domain reflects every aspects of a signal production and transmis-
sion channel, the time steps themselves are not suitable for the direct classification and
modeling. The key function of the acoustic analysis is to provide a proper and robust
features. The widely used are the Mel-Frequency Cepstrum Coe�cients (MFCC) and
features based on Perceptual Linear Predictive analysis (PLP) [16] also provided promis-
ing results in many speech applications. These methods of the feature computation are
briefly described further.

2.1.1 MFCC
The MFCC features are designed with respect to the human audio perception. The
human ear does not perceive the frequencies in linear scale but in a logarithmic one.
This property is simulated by the application of a filter-bank in the frequency domain.
The filter bank consists of triangular filters designed in the Mel-scale and is illustrated
in Fig. 3a. The conversion from a linear to Mel-scale is given by

fmel = 2595 log10

A

1 + f

700

B

.

The procedure of MFCC computation is following. The signal is pre-emphasized and
the short-time analysis is then performed. It means that the magnitude frequency
spectrum is computed and filtered via the Mel Filter Bank that is designed with respect
to the requirements and the signal properties. Then the logarithm of filter outputs is
computed, that allows to divide the convolution channel distortion. The Discrete Cosine
Transformation (DCT) decorrelates the output coe�cients, which is desired for further
statistical classifier. The MFCC features tries to emulate the human perception of

Figure 2 The principle of MFCC computation.
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2 Continuous Speech Recognition

(a) Triangular-shaped filter bank used for MFCC computation.

(b) Filter bank with trapezoidal filters applied in PLP analysis.

Figure 3 Comparison of the filter-banks used in MFCC and PLP features computation. The
x-axis is scaled to Hz from mel and bark scale.

sound frequencies and thus they try to increase the recognition accuracy. The principle
of MFCC computation is illustrated in the Fig. 2.

2.1.2 PLP

The LP analysis approximates the signal spectrum well for all the frequencies of the
analyzed band. Such approximation does not involve the principles of a human sound
perception, such as frequency sensitivity or non-linear perception of frequencies and
intensity. The Perceptual Linear Predictive (PLP) analyses was designed to account
the properties of a human hearing. The block diagram of the individual steps of PLP
analysis is in Fig. 4

Figure 4 The individual steps of PLP analysis.

6



2.1 Acoustic Analysis

In the first step, the short time spectrum S(Ê) is computed out of the windowed sig-
nal frame via the FFT. Then the power spectrum is computed as a squared amplitude
spectrum. As for the MFCC computation, the filter bank is then applied. Since the PLP
tries to incorporate the nonlinear human sound perception, the Bark-scaled filter bank
with trapezoid-shaped filters is applied and the output of each filter is pre-emphasized
by a simulated equal-loudness curve. The law of hearing is used and finally the ap-
proximation by the spectrum of an all-pole model is performed. Often, the resulting
prediction coe�cients a0, a1, . . . , ap are transformed to the cepstral coe�cients as

c(0) = 1 (4)
c(1) = ≠a1 (5)

c(k) = ≠ak ≠
k≠1ÿ

i=1

3
i

k

4
c(i)ak≠1 , for 2 Æ k Æ p (6)

c(k) = ≠
pÿ

i=1

A
k ≠ i

k

B

c(k ≠ i)ai , for k = p + 1, p + 2, . . . (7)

2.1.3 Further Features Procesing
To support a robustness and discrimination of the features, the further processing and
adaptation methods are applied in a current approaches resulting in better classification
results. Let’s introduce some feature transformations used in the experimental part.

Dynamic coe�cients (� + ��)

The individual cepstral coe�cients obtained by methods described above are called
static, since they are computed only out of the current frame. To include some context
information, the first and second derivative is computed to obtain the delta (�cm)
and delta-delta (�2cm) dynamic features that are appended to the static ones. These
dynamic coe�cients are determined via the equations

[�cm(j)]n =

L1q
Ÿ=≠L1

Ÿ[cm(j)]n+Ÿ

L1q
Ÿ=≠L1

Ÿ2
, [�2cm(j)]n =

L2q
Ÿ=≠L2

Ÿ[�cm(j)]n+Ÿ

L2q
Ÿ=≠L2

Ÿ2
, (8)

out of 2L1,2 + 1 consecutive frames, where typically L1 = L2 = 1. These dynamic
coe�cients are appended to the static ones and altogether represents the final feature
vector.

Linear Discriminant Analysis (LDA)

LDA [17] reduces the dimension of n-dimensional feature vector into a m-dimensional
space where (m < n). It clusters the elements of the individual classes closer to each

7



2 Continuous Speech Recognition

other so the class separability is maximum. Also, lowering the features dimension can
lead to overcoming the curse of dimensionality problem. Let’s suppose the D > K

dimensional input vector x, where K is the number of classes. Then the vector x can
be reduced to DÕ > 1 features

yk = wT
k x, for k = 1, . . . , DÕ. (9)

where wT
k is the weight vector. We can combine the equations 9 as

Ë
y1 y2 . . . yDÕ

È
=

Ë
w1 w2 . . . wDÕ

ÈT
x and write down the matrix equation of the form

y = WT x. (10)

The individual components of matrix W can be selected in a such way, that the projec-
tion to the DÕ dimensional space maximizes the class separation [22]. The mean vector
of the class Ck, for k = 1, . . . , K can be computed as

mk = 1
Nk

ÿ

nœCk

xn (11)

where Nk is the number of elements in class Ck. The within-class covariance matrix is
given by

SW =
Kÿ

k=1
Sk (12)

where Sk is computed as

Sk =
ÿ

nœCk

(xn ≠ mk)(xn ≠ mk)T . (13)

For the total number of N data points the mean m of the whole data set is

m = 1
N

Kÿ

k=1
Nkmk (14)

and the between-class covariance matrix is then

SB =
Kÿ

k=1
Nk(mk ≠ m)(mk ≠ m)T . (15)

The columns of the weight matrix W are represented by eigenvectors of matrix

S≠1
W SB, (16)

t corresponding to the DÕ larges eigenvalues.

8



2.2 Acoustic modeling

Maximum Likelihood Linear Transform (MLLT)

As it will be described in the following section in more detail, each state of HMM has
associated the observation symbol probability distribution expressed as the Gaussian
Mixture Model (GMM) with parameters � = {cj, µj, �j}M

j=1 given by

p(x|�) =
Mÿ

j=1
cj · N (x; µj, �j). (17)

M is the number of components in a mixture, cj is the weight of j-th component satisfying
cj Ø 0 and

Mq
j=1

cj = 1. Then, �j is the j-th component square covariance matrix of the
rank n and finally µj is the mean value of j-th component. The MLLT imposes a
di�erent form of the covariance matrix, that allows to share the full covariance matrices
by all components of one GMM [18]. MLLT decomposes the inverse covariance matrices
as:

�≠1
j = W�jWT

so each covariance matrix consists of two elements, the diagonal matrix �j and non-
singular linear transformation matrix W, that is shared across all GMM components.
The EM algorithm with maximum likelihood approach is usually used the estimate the
model parameters.

2.2 Acoustic modeling
As it was stated at the beginning of this chapter, the acoustic model evaluates the
probability P (O|W ), thus the probability that sequence of the output feature vectors
O is observed, when the sequence of words W is spoken. The training conditions and
the conditions of a real speech recognition application are completely di�erent in the
most cases. The speaker variability, distortions in the acoustic channel, pronunciation
variations and other di�erences emphasize the importance of robustness and flexibility
of the acoustic model. The HMM proved to meet such requirements and this acoustic
modeling method became the standard in statistical speech recognition and was not
overcome for a long period of time. In the recent years, DNN as acoustic modeling
method has shown better results than conventional HMM approach. These two acoustic
modeling methods are the main topics of the following sections.

2.2.1 The Hiden Markov Model (HMM)
When the speech is produced, the human articulatory system is in one of the finite
set of states that results in a desired phone. This state can’t be observed directly,
the listener only hears the acoustic output. So it can be viewed as a system with
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a12 a34 a 45

a22 a33 a44

a23

o1 o2 o3 o4 o5

b2 o1( ) b2 2( ) b3 o3( ) b4 o4( ) b4 o5( )o

1 2 43 5

Figure 5 The HMM illustration.

hidden states that produces the sequence of observations. Such system can be modeled
via the HMMs, which are stochastic finite-state automata generating the sequence of
observations vectors with a hidden sequence of states. In the speech applications, the
left-right models are used, since they are suitable to model processes progressing through
the time. Based on the set of transition probabilities aij, the state transition is preformed
from the state si to the state sj at every discrete time step. When the state sj is
reached, the actual vector of observations ot generates the probability based on the
symbol probability distribution bj(ot).

HMM structure can be various and it can model the whole words or sub-word units like
monophones, diphones and others. The practical applications showed, that the triphones
are the best compromise between the the unit size to be modeled and between the context
information involved. Modeling whole words requires the vast training dataset, since
several acoustic realizations of one word is needed, therefore, the sub-word unit models
are used, mainly the triphones represented by 5-state HMM as shown in Fig. 5. The first
and the last state are non-emitting, thus no probability is produced when reaching this
state. These states are used to composing individual HMMs together. Let’s review the
parameters of HMM. The observation symbol probability distribution bj(o) for emitting
state j has mostly the form of Gaussian Mixture Model given by:

bj(o) =
Mÿ

m=1
cjm · N (o, µjm, Cjm) (18)

where the meaning of particular symbols is as follows. M is the number of Gaussian
mixtures, cjm is the weight of individual mixtures and Cjm represents the covariation
matrix for j-th state and m-th mixture component with mean value µjm For the model
given in Fig. 5, which includes only the forward state transitions, the transition matrix

10



2.2 Acoustic modeling

A has the form:

A =

S

WWWWWWWWWU

0 a12 0 0 0
0 a22 a23 0 0
0 0 a33 a34 0
0 0 0 a44 a45

0 0 0 0 0

T

XXXXXXXXXV

And it holds, that sum over all transition probabilities aij is equal to 1. To use the
HMM in real applications, the three following problems has to be solved:

1. Evaluation problem: denoting ⁄ as the HMM, what is the probability P (O|⁄), that
given observation sequence O was generated by the model ⁄?

2. Decoding problem: how to estimate the state sequence S = {s0, s2, . . . , sT +1}
(where s(0) and s(T + 1) denotes the non-emitting boundary states) of model
⁄ corresponding to the given O?

3. Training problem: How to tune the model parameters to maximize P (O|⁄)?
Solution for problem 1.Let’s consider for a while, that the state sequence for a given
observation is known. Then solution of the first problem for the example given in Fig. 5
is

P (O|⁄) = a12b2(o1)a22b2(o2)a23b3(o3)a34b4(o4)a44b4(o5).

But in real application, the state sequence is not known and has to be estimated as sum
over all possible sequences of states

P (O|⁄) =
ÿ

S

P (O, S|⁄) =
ÿ

S

as(0)s(1)

TŸ

t=1
bs(t)(ot)as(t)s(t+1) (19)

Such direct computation requires to evaluate enormous amount of operations. To com-
pute the probability P (O|⁄) more e�ciently, the iterative forward-backward procedure
can be used [23].

Solution for problem 2. To determine the optimal state sequence for a given
observations, the dynamic programming based method called the Viterbi algorithm can
be used. The detailed description can be found in several publications e.g. in [24].

Solution for problem 3. In many applications, the standard approach to estimate
the model parameters is based on Maximum Likelihood (ML) criterion. Let’s consider
the individual HMM parameters as ⁄ © {aij, cjm, µjm, Cjm} for 1 Æ i, j Æ N and
1 Æ m Æ M where N is the number of states. Next, let’s consider the set of E known
utterances {Oe}E

e=1 that is used to estimate to estimate the model parameters ⁄. Then
the desired maximum of ML criterion is

⁄̂ = argmax
⁄

Eÿ

e=1
log P (Oe|⁄). (20)

11



2 Continuous Speech Recognition

To obtain ⁄̂ the iterative procedure called Baum-Welch (sometime referred as EM -
Expectation Maximization) algorithm can be used. ML criterion is often used in many
current application, since it provides su�ciently accurate model whose training is not
computationally demanding. Let’s state, that if certain assumptions hold, no other cri-
teria will out-perform this one [25]. These assumptions are: the unlimited training data
set, individual observation vectors are independent and observation vectors are really
generated by HMM, where modeled density function corresponds to the real one [26].

Discriminative training - Maximal Mutual Information (MMI) Criterion

The ML assumptions are not met in the real applications, so obtaining the optimal model
parameters is not guaranteed. This problem try to solve the discriminative training
methods. ML uses the correct observation vectors to train the individual parameters
of HMM state, by the correct observations vector are meant vectors, that belong to
the state. In a discriminative approach, both correct (positive) and wrong (negative)
samples are used for training. This state is trained not only with the correct vectors, but
it is trained also with respect to the vectors that are negative for this state, thus belong to
the di�erent states. The discriminative training is used for the majority of classification
methods including neural networks or linear classifiers [26]. Such discriminative HMM
training method is MMI. Let’s consider again the training utterances Oe and the model
parameters ⁄, the objective function to be maximized is

FMMI(⁄) =
Eÿ

e=1
log P⁄(Oe|MWr)P (Wr)

q
Ŵ P⁄(Oe|MŴ )P (Ŵ )

(21)

where wr is the reference transcription of the utterance Oe and MWr is HMM representing
the wr. MŴ is the model corresponding to the transcription Ŵ and P (W ) is the
probability of a word sequence Ŵ determined by a language model such as unigram.
To maximize 21, the numerator has to be increased while the denominator is decreased.
The first part P⁄(Oe|MWr) of numerator is identical with MLE criterion. So MMI tries
to maximize the likelihood of all observations given the training transcriptions. The
denominator can be minimized by reducing the probabilities of other possible word
sequences. So the MMI performs maximization of correct hypothesis probability while
reducing the probability of false hypothesis. But the following problems are connected
with MMI training:

• A maximization of the given objective function is di�cult. The conventional Baum-
Welch algorithm cannot be used, so its modified version known as extended Baum-
Welch algorithm [27] needs to be applied.

• It is computationally expensive to maximize the objective function since the de-
nominator represents a sum over all possible word sequences in the language model.

12



2.2 Acoustic modeling

• Poor generalization performance of testing data.
With respect to these drawbacks, in the current applications, the standard ML training is
used to train the whole model whose parameters are then updated with several iterations
of MMI training algorithm. Also, the other version of MMI training that boosts the
likelihoods in the denominator lattice with higher phone error was introduced in [28]
and it is used in this work.

Subspace Gaussian Mixture Model (SGMM)

An alternative method of an acoustic modeling is a Subspace Gaussian Mixture Model
(SGMM). In a SGMM, the model parameters are derived from the globally shared model
subspace with a very low dimensional state-dependent vector [32], thus, each state is
described by a low dimensional vector and there is globally shared mapping from this
vector, denoted as state vector, to the means and weights of the state’s GMM [34]. The
probability model p(x|j) of state j is in SGMM defined as

p(x|j) =
Kjÿ

k=1
cjk

Iÿ

i=1
wjkiN (x|µjki, �i) (22)

µjki = Mivjk (23)

wjki = exp wT
i vjk

qI
iÕ=1 exp wT

iÕ vjk

(24)

where x is the feature, j is the HMM state, k is a sub-state, where each state j has Kj

sub-states with own mixture weight cjk and sub-state vector vjk. I is the number of
Gaussian components in a sub-state each with weight wjki, mean µjki and covariance
matrix �i. Mi is the mean projection matrix and wi is the weight projection vector.
This model is actually a mixture of mixtures of Gaussians. This approach can be
further extended by introducing the speaker vectors v(s) describing the speaker s. Then
the model becomes:

p(x|j, s) =
Kjÿ

k=1
cjk

Iÿ

i=1
wjkiN (x|µ(s)

jki, �i)

µjki = Mivjk + Niv(s)

wjki = exp wT
i vjk

qI
iÕ=1 exp wT

iÕ vjk

when Niv(s) is the speaker specific o�set to mean. The SGMM acoustic modeling pro-
vides better results then the conventional GMM structure [34]. SGMM reduces the total
number of model parameters to be estimated that is crucial when only limited amount
of training data is available. By introducing the speaker vectors, it also incorporates the
speaker adaptation.
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2 Continuous Speech Recognition

2.2.2 Adaptation Methods

In general, the two types of ASR systems can be distinguished. The first system is a
speaker independent which means that it was trained on the large group of speakers.
Such system would perform slightly worse for a particular speaker when compared with
a case, when the whole system is trained specifically for this speaker. We call these
systems a speaker dependent. But to train a speaker dependent system requires a lot of
training data recorded by this speaker and it can be costly from many angles of view.
The idea of adaption methods is to adapt the speaker independent system for a particular
speaker without the need of huge amount of speaker training data and thus improve the
performance of a recognition. This is referred as speaker adaptive traininng (SAT) and
it can be performed at the level of feature space or at the level of the acoustic model
parameters. Between adaptation methods belongs Vocal Tract Length Normalization
(VTLN), Maximum A posteriori Probability (MAP) and last but not least Maximum
Likelihood Linear Regression (MLLR) or its feature spaced variant fMLLR [19], that is
widely used in many current applications.

feature-spaced Maximum Likelihood Linear Regression (fMLLR)

MLLR method reduces the number of the model parameters by concatenating the
acoustically similar Gaussian mixture components to the individual classes Cn which
are further processed with the same transformation [3]. Consider the adaptation data
Oe = {oe(1), oe(2), . . . , oe(Te)}, e = 1, . . . , E. The mean value linear transform is given
by

µ̂jm = A(n)µjm + b(n), (25)

where µ̂jm is the the adapted mean value. The regression matrix A(n) and additive
vector b(n) are both connected with the class Cn and µjm is the original mean value of
m-th component of GMM in j-th model state. After the substitution

›T
jm = [µT

jm, 1], W(n) = [A(n), b(n)] (26)

is it possible to rewrite the equation (25) as

µ̂jm = W(n)›T
jm (27)

The transformation of a covariance matrix can be expressed in the form of

Ĉjm = H(n)CjmH(n)T , (28)

where H(n) is the transformation matrix for class Cn and Cjm is the original covariance
matrix. The individual transformation matrices can be found by estimating the optimum
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2.2 Acoustic modeling

of the function

Q(⁄, ⁄̄) = const≠ 1
2

ÿ

bjmœ⁄

Eÿ

e=1

Teÿ

t=1
“jm(t)(cjm+log |Ĉjm|+(oe(t)≠µ̂jm)T Ĉ≠1

jm(oe(t)≠µ̂jm)).

(29)
The description of further steps is provided in [33]. The fMLLR method performs the
linear adaptation of feature vector O instead of acoustic model parameters that results
in a lower computational cost. The transformed feature vector ôe is given by

ôe = A(n)oe(t) + b(n) = A≠1
(n)co

e(t)A≠1
(n)b(n)c = W(n)›e(t) (30)

where W(n) = [A(n), b(n)] is the transformation matrix, ›e(t) = [oe(t), 1] is the ex-
tended feature vector and A(n)c, b(n)c are matrices for equivalent transformation of an
acoustic model parameters

µ̂jm = A(n)cµjm ≠ b(n)c, (31)
Ĉjm = A(n)cCjmAT

(n)c (32)

The optimization function has the form

Q(⁄, ⁄̄) = const≠1
2

ÿ

bjmœ⁄

TEÿ

t,e=1
“e

jm(t)(cjm+log |Ĉjm|≠log(|A(n)|2)+(ôe(t)≠µjm)T Ĉ≠1
jm(ôe(t)≠µjm)).

(33)

2.2.3 Deep Neural networks (DNN)

In the hybrid DNN-HMM acoustic model, the DNN outputs provides pseudo-likelihoods
for the states of HMM, thus DNN replaces the GMM and emulates the observation
symbol probability function b(). The usage of DNN in acoustic model is schematically
illustrated in Fig. 6. The optimization of DNN training and setup is not the main task of
this work, therefore the recommended values are used and only brief description of DNN
principle is provided. A DNN is a such type of feed-forward artificial neural network,
which has more than one hidden layer between its input and output layers. The output
of j-th neuron in a hidden layer, with m inputs, is given by

yj = „

A

bj +
mÿ

i=1
xijwij

B

= „(z), (34)

where bj is the bias of j-th neuron, wij is the weight of the input xij and „ is the
transfer function with a well-behaved derivative like hyperbolic tangent or the mostly
used sigmoid function

„(z) = 1
1 + e≠z

. (35)
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2 Continuous Speech Recognition

The DNN outputs have the probabilistic character defined by the softmax transfer func-
tion for neurons in its output layer. Thus, output of j-th neuron in this last layer is

yj = ezj

q

k
ezk

, (36)

where k is the index over all classes. The error back-propagation method can be used

Figure 6 DNN-HMM hybrid approach to acoustic modeling.

to train the DNN and recent experiments [13] proved, that DNN pre-training provides
better results in many task. In this case, the training procedure has two stages. In the
first stage, the restricted Boltzmann machines (RBM) are trained. GRBM is trained to
model feature window at first. The states of its hidden units are then used to train a
RBM. The process is repeated until the desired number of layers is obtained. Finally,
these RBM are stacked together and converted into the Deep Belief Network (DBN).
The resulting DBN-DNN is created by adding the output layer with softmax transfer
function. Process of creation of pre-trained DBN-DNN with three hidden layers is
illustrated in the Fig. 7. After this, the alignment and lattices, evaluated by GMM-
HMM system from training data are used to discriminatively train the DBN-DNN to
predict the individual HMM states. The complete description of the training process
can be found in several publications, e.g. [13] and [29].
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2.3 Language Modeling

Figure 7 DNN pretraining process. Taken from [13].

2.3 Language Modeling
A stochastic language model estimates the probability P (W ) for every word sequence
W with K words as

P (W ) = P (wK
1 )

= P (w1, w2, . . . , wk)
= P (w1)P (w2|w1)P (w3|w1w2) . . . P (wK |w1w2 . . . wk≠1)

=
KŸ

i=1
P (wi|w1, w2, . . . , wi≠1),

where the probability P (wi|w1, w2, . . . , wi≠1) is conditioned only by the previous word
sequence. But it is impossible to evaluate the P (wK

1 ) for all the possible word sequences
of an arbitrary length K. Therefore, the approximation is performed by estimating the
probability only for the preceding N ≠ 1 words as

P (W ) ¥
KŸ

i=1
P (wi|wi≠N+1, wi≠N+2, . . . , wi≠1). (37)

These stochastic models are referred as N -grams. Depending on the N value, we distin-
guish unigrams (N=1), bigrams(N=2) and trigrams (N=3), which are used by the most
of applications. N -gram models are especially suitable for languages with a strict word
order like for example English. The individual probabilities of N -gram model can be
estimated by the relative frequency of occurrence of the word sequences in the training
data. For trigram model holds

P̄ (wk|wk≠2wk≠1) = N(wk≠2, wk≠1, wk)
N(wk≠2, wk≠1)

,
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2 Continuous Speech Recognition

where N(wk≠2, wk≠1, wk) is the number of occurrences of trigram wk≠2, wk≠1, wk in the
training data and N(wk≠2, wk≠1) denotes the number of training data occurrences of
bigram wk≠2, wk≠1).

To evaluate the quality of a stochastic language model, the perplexity value is defined.
It is also possible to use the word error rate, but this would required working speech
recognition system. Perplexity PP is defined as

PP = 1
K
Ò

P (w1, w2, . . . , wK)
,

where P (W ) = P (w1, w2, . . . , wK) is the estimate of probability of occurrence of the
word sequence w1, w2, . . . , wK provided by a language model. The lower the perplexity
is, the more the language is predictable. The perplexity can be also interpreted as an
estimate of the size of the word list that recognizer must choose from.

2.4 Decoding
The aim of the decoder is to obtain the sequence of words W out of the observation
sequence O. This can be expressed as:

Ŵ = argmax
W

P (W )P (O|W ).

Both of these probabilities are known. P (O|W ) is estimated by an acoustic model and
probability P(W) is computed by a language model. Especially in the large vocabulary
speech recognition tasks, it is infeasible to search for all possible word sequences due
the vast amount of computations. But the real time response is required by the ASR
system in real applications, therefore several techniques to solve the decoding problem
have been proposed.

In the recent years, the weighted finite state transducers (WFST) are being used
in the task of speech recognition. Since the HMMs, that are finite state automata, are
usually used as the AM and language model can be expressed as probabilistic finite state
automaton, the WFSTs are the natural representation of of these two part of ASR system
as well as the pronunciation dictionary, context dependency and even further. Thus,
these representations can be combined together and flexibly and e�ciently optimized.

2.4.1 WFST
A finite state automaton whose state transitions are labeled with the input and output
symbols is called the finite state transducer. A weighted finite state transducer (WFST)
is created by adding the weight on its transitions. Thus, the path through the transducer
encodes a mapping from an input symbol sequence to an output symbol sequence. The
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formal definition is as follows. A WFST is a 8-tuple T = (�, �, Q, E, i, F, ⁄, fl) over the
semiring K where � is an input alphabet and � is an output alphabet. Q represents
a finite set of states and E ™ Q ◊ (� fi {‘}) ◊ (� fi {‘}) ◊ K ◊ Q is the final set of
transitions. i œ Q denotes the initial state, F ™ Q set of final states, ⁄ an initial weight
and fl is a final weight function. Transition t is 5-tuple t = (p[t], li[t], lo[t], w[t], n[t])
given by source state p[t], destination state n[t], input label li[t], output label lo[t] and
weight w[t]. The weights in a speech recognition task mostly represent probabilities, so
the corresponding semiring is called the tropical semiring (R, +, ., 0, 1). An example of
WFST representing the pronunciation lexicon is in Fig. 8. The common set of operations

Figure 8 An example of WFST representing the pronunciation lexicon. An initial state is
represented by bold circle while a finite state by double circles.

for weighted transducers like composition, intersection or determinization defined in [30]
supports the ASR applications. In speech recognition, the WFST are used to compose
the HCLG recognition graph:

HCLG © H ¶ C ¶ L ¶ G

where H specifies the HMM structure. As an input, it takes the probability density
function labels. Its output is the context dependent phone. C is the context dependency
transducer that takes the context dependency phones and returns a phone. L is the
lexicon that pairs any sequence of vocabulary words to their pronunciations. Finally,
the G is the language model. To optimize this integrated transducer, the determinization
(det), minimization (min) and factoring operations are performed which can be expressed
by the formula

N = fi‘(det(H̃ ¶ det(C̃ ¶ det(L̃ ¶ G)))).

The tilde symbol is used to denote the slightly modified transducers that arise from
the original ones by using other techniques in real implementations like deploying the
auxiliary symbols for denoting the homonyms and so on. fi‘ is operation which replaces
the auxiliary symbols with ‘’s.
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Figure 9 A word lattice example.

2.4.2 N-best results, word lattice
The desired output of the decoding is the most likely word sequence for an obtained
sequence of observations. In the practical applications, it is useful to generate the N -
best set of hypotheses. N -best results can be used in multi-pass search of a state space,
when the decoding process is divided into the several stages. In every pass, the set of
hypothesis is reduced so it allows to use the more sophisticated and computationally
demanding methods thanks the smaller state space to be searched. Also, the set of
N -best results can be used for re-scoring the new language or acoustic models without
the need of decoding the whole graph [3]. The N -best results are typically represented
by a word lattice that consists of a set of nodes and spanning arcs. The individual nodes
represent word ends with a given transition time to another word and arcs represent the
words with an evaluation of the form of negative logarithm of the uttering probability
of the given word in the time interval given by the surrounding nodes. An example of a
word lattice is given in Fig. 9.
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One approach in the multilingual acoustic modeling is to find a global phonetic inventory.
That means to find an acoustic similarities across all languages which leads to such
phonetic inventory that is detailed enough to model all acoustic variations but which
is not too big, to require huge amount of training data. To find such global phonetic
inventory, it is necessary to determine the appropriate representation of the acoustic
units. Therefore, the upcoming analyses in this chapter mainly deal with phonetics that
is essential for this task.

3.1 Phonetic Inventory Unification
Phonetic alphabets allow to represent the utterances in the form of pronunciation that is
essential for recognition. This process is called the phonetic transcription and it assigns
the unique graphic symbol from the phonetic alphabet to an every distinguishable speech
sound in the phonetic inventory of a given language. For this purpose, several phonetic
alphabets like IPA or SAMPA were introduced.

SpeechDat

SpeechDat-E database [21], that serves as data source for all the experiments, provides
an appropriate resource for telephone speech multilingual experiments. It consists of
the five Eastern Europe languages namely Russian, Czech, Slovak, Polish and Hungar-
ian. Every database includes several types of utterances, the read and also spontaneous
ones. The SpeechDat pronunciation dictionaries use the SAMPA for phonetic transcrip-
tion, which definition di�ers for every language. Therefore the proper unification is
investigated in this section.

3.1.1 Phonetic alphabets
International phonetic Alphabet (IPA)

IPA represents a standard for the phonetic transcription. This alphabet provides sym-
bols for every distinct sound of every known language in the world. It was created in
1888 by the International Phonetic Association and was last updated in 2015. The IPA
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includes 107 letters, 52 diacritics and 4 prosodic marks. The individual symbols are
represented by Roman alphabet letters and specially defined characters. The complete
IPA is in Fig. 10.

Speech Assessment Methods Phonetic Alphabet (SAMPA)

SAMPA is machine readable phonetic alphabet, that actually allows coding of IPA
characters in ASCII symbols. It was initially introduced for six European languages
(Danish, Dutch, English, French, German,Italian) and lately extended for other ones.
In 2006, the SAMPA was o�cially defined for 20 languages [3]. Despite the fact, that
the SAMPA usage recommendations has been proposed, the SAMPAs are defined for
every language individually, so this alphabet loses its unifying purpose.

Extended SAMPA (X-SAMPA)

X-SAMPA proposes machine readable coding for the entire IPA, so it is possible to use
ASCII symbols for phonetic transcription of every possible language. It is an extension
to SAMPA and its complete definition can be found in [1]. Let’s summarize the main
conventions:

• The IPA lower case alphabet symbols remain the same in X-SAMPA.
• Apostrophe symbol is redefined for palatalization diacritics.(cj[IPA] = c�[X-SAMPA])
• Reverse apostrophe stands for r-colouring and retroflex consonants.(@~[IPA] = @8[X-

SAMPA], ï[IPA] = n8[X-SAMPA])
• The backslash extends, or changes, the meaning of preceding character, thus it

has to be interpreted together with the character which immediately precedes it.
Symbols with backslash represent other individual characters of IPA and backlash
symbol used alone has no meaning. (e.g. X-SAMPA letter B corresponds to the B

in IPA, while B\ stands for voiced bilabial trill denoted in IPA with the symbol à)
• Underscore implies diacritics. Thus, the symbol that follows underscore has di�er-

ent interpretation as in case of the standalone character.

3.1.2 Conversion to XSAMPA

For the multilingual speech recognition is essential to unify the phonetic transcription
throughout the used languages. As previously described, since the IPA is not machine
readable and SAMPA is not defined in general, the X-SAMPA is used to normalize
the phonetic transcription of the given languages. The individual SpeechDat databases
use SAMPA for phonetic transcription. Its unification, the conversion to X-SAMPA, is
proposed further. The following notation is used. Letters in [ ] represent X-SAMPA
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CONSONANTS (PULMONIC) © 2015 IPA

 Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive                       
Nasal                       
Trill                       
Tap or Flap                       
Fricative                       
Lateral 
fricative                       
Approximant                       
Lateral 
approximant                       

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible. 

CONSONANTS (NON-PULMONIC) 

Clicks Voiced implosives Ejectives

 Bilabial  Bilabial  Examples: 

 Dental  Dental/alveolar  Bilabial 

 (Post)alveolar  Palatal  Dental/alveolar 

 Palatoalveolar  Velar  Velar 

 Alveolar lateral  Uvular  Alveolar fricative 
 

VOWELS 

Front Central  Back
Close      

     
Close-mid     

     
Open-mid    

     
Open     

Where symbols appear in pairs, the one 
to the right represents a rounded vowel. 

OTHER SYMBOLS 

 Voiceless labial-velar fricative   Alveolo-palatal fricatives 

 Voiced labial-velar approximant   Voiced alveolar lateral flap 

 Voiced labial-palatal approximant   Simultaneous and 

 Voiceless epiglottal fricative 
Affricates and double articulations 
can be represented by two symbols 
joined by a tie bar if necessary. 

 Voiced epiglottal fricative 

 Epiglottal plosive 
 

 

SUPRASEGMENTALS 

 Primary stress 

 Secondary stress 

 Long  

 Half-long  

 Extra-short  

 Minor (foot) group 

 Major (intonation) group 

 Syllable break  

 Linking (absence of a break) 
 

DIACRITICS Some diacritics may be placed above a symbol with a descender, e.g. 
 Voiceless    Breathy voiced    Dental  

 Voiced    Creaky voiced    Apical  

 Aspirated    Linguolabial    Laminal  

 More rounded    Labialized    Nasalized  

 Less rounded    Palatalized    Nasal release  

 Advanced    Velarized    Lateral release  

 Retracted    Pharyngealized    No audible release 

 Centralized    Velarized or pharyngealized  

 Mid-centralized    Raised  ( = voiced alveolar fricative) 

 Syllabic    Lowered  ( = voiced bilabial approximant) 

 Non-syllabic    Advanced Tongue Root  

 Rhoticity    Retracted Tongue Root  
 

TONES AND WORD ACCENTS 
LEVEL   CONTOUR

or Extra  or Risinghigh 
  High Falling

  Mid High
rising

  Low Low
rising

  
Extra Rising-
low falling

Downstep  Global rise 

Upstep  Global fall 

 

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015) 

Typefaces: Doulos SIL (metatext); Doulos SIL, IPA Kiel, IPA LS Uni (symbols) 
 

 

Figure 10 International phonetic alphabet. Source: www.internationalphoneticassociation.org
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3 Multilingual Acoustic Modeling

symbols, the individual SAMPA characters are written in / / and italic font is used to
mark the phones themselves.

Czech SpeechDat SAMPA

The complete list of phones that occur in the Czech SpeechDat database is in Tab. 1.
This notation corresponds to the definition in [4] and the following changes are proposed.
The long and short variant of vowel a should be, in X-SAMPA, denoted as [a] and [a:].
Vowels e correspond to the open-mid variants E, E: in IPA, which is rewritten as [E],
[E:]. The long variant of i is close front, thus [i]. The short i is pronounced as near-close
near-front variant [I] in Czech language. Vowels o’s are open-mid variants [o], [o:]. The
last tuple of vowels u’s are close back variants [u], [u:] for now, but recent research
has been shown the change in pronunciation to the [U] and [u:] variants. Diphthongs
/a_u/, /e_u/ and /o_u/ should be [ou], [au] and [Eu]. Note that /2:/ and /y:/ may
occur when spelling the foreign words, especially German.

Plosive consonants remain the same as in SAMPA, thus [p, b, t, d, c, J\, k] and [g].
With respect to the [2], the a�ricates /t_s,t_S,d_z/ and /d_Z/ are denoted as [ts, tS,
dz] and [dZ]. Fricatives /f,v,s,S,Z,j,x,h\/ remain the same, but /P\/, representing voiced
� (e.g. in the word �eka), is in IPA called as alveoral trill fricative and marked with
symbol rfi. This symbol is encoded as [r_r] in X-SAMPA. The o�cial Czech SAMPA
definition also distinguishes unvoiced variant rfi

˚
written in X-SAMPA as [r_r_0]. The

rest of consonants has the same symbols as in SAMPA. The complete conversion chart
between individual alphabets for Czech language is in Tab. 2.

Slovak SpeechDat SAMPA

The list of SAMPA symbols used in Slovak SpeechDat is in Tab. 3. With respect to the
definition of the Slovak SAMPA [5], the Slovak vowels a,e,i,o,u and their long variants
should be rewritten as [a,e,i,o,u,a:,e:,i:,o:,u:]. Also, the Slovak diphthongs denoted as i

“
a,

i
“
e, i

“
u, i

“
o in IPA remain the same as in SAMPA, thus [i_ˆa], [i_ˆe], [i_ˆu], [i_ˆo].

The small sonorant letters remain the same too. The syllabic mark = does not require
the underscore according to the X-SAMPA definition. But its usage with underscore
does not lead to any collision and since it is diacritics symbol, I suggest to stick to the
definition and use the underscore character. This leads to [r_=], [l_=]. The length
mark [:] represents the standalone symbol, so it is written without the underscore. For
the long variants of these two sonorants we get [r_=:] and [l_=:]. There are three
pronunciation variants of letter v in the Slovak language. As it can be seen from the
table Tab. 3, these are the sonorants v, u_ˆ and fricative w. In the o�cial Slovak SAMPA
definition, the following examples can be found:
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3.1 Phonetic Inventory Unification

Vowels Consonants
num sampa plosives fricatives nasals

1 a num sampa num sampa num sampa
2 e 14 p 26 f 38 m
3 i 15 b 27 v 39 n
4 o 16 t 28 s 40 N
5 u 17 d 29 z 41 J
6 a: 18 c 30 P\ additional allophones
7 e: 19 J\ 31 S num sampa
8 i: 20 k 32 Z 42 F
9 o: 21 g 33 j foreign phones
10 u: a�ricates 34 x num sampa
diphthongs 22 t_s 35 h\ 43 E:

num sampa 23 d_z liquids 44 2:
11 a_u 24 t_S num sampa 45 y:
12 e_u 25 d_Z 36 r
13 o_u 37 l

Table 1 The Czech SAMPA used in the SpeechDat database.

num SAMPA IPA XSAMPA num SAMPA IPA X-SAMPA
1 a a a 24 t_S tS tS
2 e E E 25 d_Z dZ dZ
3 i I I 26 f f f
4 o o o 27 v v v
5 u u u 28 s s s
6 a: a a: 29 z z z
7 e: E: E: 30 P\ rfi r_r
8 i: i: i: 31 S S S
9 o: o o: 32 Z Z Z
10 u: u: u: 33 j j j
11 a_u au au 34 x x x
12 e_u Eu Eu 35 h\ H h\
13 o_u ou ou 36 r r r
14 p p p 37 l l l
15 b b b 38 m m m
16 t t t 39 n n n
17 d d d 40 N N N
18 c c c 41 J ñ J
19 J\ é J\ 42 F M F
20 k k k 43 E: . .
21 g g g 44 2: . .
22 t_s ts ts 45 y: . .
23 d_z dz dz

Table 2 Conversion table from Czech SpeechDat SAMPA to X-SAMPA.
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3 Multilingual Acoustic Modeling

vowels consonants
num SAMPA sonorants plosives a�ricates

1 i num SAMPA num SAMPA num SAMPA
2 e 15 r 32 p 48 ts
3 a 16 r= 33 b 49 tS
4 o 17 r=: 34 t 50 dz
5 u 18 l 35 c 51 dZ
6 i: 19 l= 36 d
7 e: 20 l=: 37 J\
8 a: 21 L 38 k
9 o: 22 m 39 g
10 u: 23 F fricatives

diphthongs 24 n num SAMPA
num SAMPA 25 N\ 40 f
11 i_ˆa 26 N 41 w
12 i_ˆe 27 J 42 s
13 i_ˆu 28 v 43 z
14 u_ˆo 29 u_ˆ 44 S

30 i_ˆ 45 Z
31 j 46 x

47 h

Table 3 The Slovak SAMPA used in the SpeechDat database.

v - slovo (en. word), transcription: slovo

u_ˆ - kov (en. metal), transcription: kou_ˆ

w - vdova (en. widow), transcription: wdova
It has been decided to write the /u_ˆ/ as [w] and the remaining variants as [v] and
[w]. The character N\, representing uvular n, is absent in Slovak language. Therefore
I suggest to map in onto the n symbol. There is also more opened variant of phoneme j,
that is in SpeechDat SAMPA alphabet defined as i_ˆ. This variant should be the IPA
symbol jfi and thus j_r in XSAMPA. The remaining consonant should be the same in
X-SAMPA as in SAMPA. The complete mapping to X-SAMPA is in Tab. 4.

Polish SpeechDat SAMPA

The complete list of SAMPA symbols used in Polish SpeechDat is in Tab. 5. There is
one change for vowel /I/, that should correspond to 1, written in X-SAMPA as [1]. Other
vowels can be directly rewritten as [i], [e], [a], [o] and [u]. The nasalization symbol /~/ is
kept in the X-SAMPA, so the remaining vowels are [e~] and [o~]. As it is written in the
Polish SAMPA definition, the �symbol stands for palatalization as well as in X-SAMPA.
But consonants /s’/ and /z’/ can be rewritten as [z\] and [z\], since they correspond
the IPA symbols C and ˝. Thus, the a�ricates /ts’/ and /tz’/ are changed the same way.
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3.1 Phonetic Inventory Unification

num SAMPA IPA X-SAMPA num SAMPA IPA X-SAMPA
1 i i i 27 J ñ J
2 e e e 28 v v v
3 a a a 29 u_ˆ w w
4 o o o 30 i_ˆ jfi j_r
5 u u u 31 j j j
6 i: i: i: 32 p p p
7 e: e: e: 33 b b b
8 a: a: a: 34 t t t
9 o: o: o: 35 c c c
10 u: u: u: 36 d d d
11 i_ˆa i

“
a i_ˆa

12 i_ˆe i
“
e i_ˆe 37 k k k

13 i_ˆu i
“
u i_ˆu 38 g g g

14 u_ˆo u
“

o u_ˆo 39 f f f
15 r r r 40 w w w
16 r= r

"
r= 41 s s s

17 r=: r
"
: r=: 42 z z z

18 l l l 43 S S S
19 l= l

"
l= 44 Z Z Z

20 l=: l
"
: l=: 45 x x x

21 L L L 46 h h h
22 m m m 47 ts ts ts
23 F M F 48 tS tS tS
24 n n n 49 dz dz dz
25 N\ n n 50 dZ dZ dZ
26 N N N

Table 4 Conversion table for Slovak SAMPA

Since the main goal is to unify the transcription, the consonant /n’/ is mapped as [J].
This is the description of changes for the Polish phonetic alphabet.

Hungarian SAMPA

The Hungarian is the phonetically richest language used in this work. Its phonetic
inventory (according to the SAMPA) contains 68 phonemes. The complete phonetic
alphabet is in Tab. 7. Let’s review the vowels at first. Hungarian o�cial SAMPA [7]
has a di�erent definition for the long version of the phone a. Compared with Hungarian
IPA in [2], it is decided to write it as a: in X-SAMPA. As well as the /O/ vowel is
rewritten as [A]. Other consonants are identical in both alphabets.

The palatalized /t’/ and /d’/ with their long variants occur in other languages. It is
valuable to unify them as [c] and [J\]. Consonants 64-68 should represent the salient
allophones for Hungarian. The character /x/ denotes voiceless velar fricative, that is
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3 Multilingual Acoustic Modeling

vowels consonants
num SAMPA num SAMPA num SAMPA

1 i 9 p 24 ts
2 I 10 b 25 dz
3 e 11 t 26 tS
4 a 12 d 27 dZ
5 o 13 k 28 ts’
6 u 14 g 29 dz’
7 e~ 15 f 30 m
8 o~ 16 v 31 n

17 s 32 n’
18 z 33 N
19 S 34 l
20 Z 35 r
21 s’ 36 w
22 z’ 37 j
23 x

Table 5 Polish SAMPA used in SpeechDat.

num SAMPA IPA X-SAMPA num SAMPA IPA X-SAMPA
1 i i i 20 Z Z Z
2 I 1 1 21 s’ C s\
3 e e e 22 z’ ˝ z\
4 a a a 23 x x x
5 o o o 24 ts ts ts
6 u u u 25 dz dz dz
7 e ~ ẽ e~ 26 tS tS tS
8 o~ õ o~ 27 dZ dZ dZ
9 p p p 28 ts’ tC ts\
10 b b b 29 dz’ d˝ dz\
11 t t t 30 m m m
12 d d d 31 n n n
13 k k k 32 n’ ñ J
14 g g g 33 N N N
15 f f f 34 l l l
16 v v v 35 r r r
17 s s s 36 w w w
18 z z z 37 j j j
19 S S S

Table 6 Polish SAMPA to X-SAMPA conversion table.
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3.1 Phonetic Inventory Unification

vowels consonants
num SAMPA num SAMPA num SAMPA num SAMPA

1 i 15 p 33 ts: 51 m:
2 i: 16 p: 34 dz: 52 n
3 E 17 b 35 tS 53 n:
4 e: 18 b: 36 tS: 54 J
5 O 19 t 37 dZ 55 J:
6 A: 20 d 38 f 56 r
7 o 21 t’ 39 f: 57 r:
8 o: 22 d’ 40 v 58 l
9 2 23 t’: 41 v: 59 l:
10 u 24 t: 42 s 60 j
11 u: 25 d’: 43 s: 61 j:
12 y 26 d: 44 z 62 h
13 y: 27 k 45 z: 63 h:
14 2: 28 k: 46 S 64 F

29 g 47 S: 65 N
30 g: 48 Z 66 x
31 ts 49 Z: 67 h\
32 dz 50 m 68 x’

Table 7 Hungarian SAMPA.

used for example in the Czech for denoting the pronunciation of ch letter, so it is proposed
to map this character to the [x]. Symbols /F/ and /N/ are used for nasals m and n
so they are kept as well as the symbol /h\/.The character /x�/ is in the Hungarian
SAMPA used for the phoneme j. It is demonstrated as the example of the transcription
of the word kapj, and thus transcribed as /kOpx�/ It is proposed to map it on [C].
The complete mapping of the Hungarian SAMPA to X-SAMPA with changes discussed
above is in Tab. 8.

Russian SAMPA

The last used language is Russian. It’s SAMPA is in Tab. 9. The vowels are distinguished
with respect to the stress. Accented vowels are marked with ” symbol. This symbols
fulfills the X-SAMPA definition and all the vowels are mapped to X-SAMPA without a
change. As in the case of Hungarian SAMPA, the palatalized /t’, d’, s’, z’, x’, m’/ and
/n’/ are rewritten as [c,J\,zs\,z\,F] and [N]. Sounds separated by a morpheme boundary
are marked with [-] symbol. It has been decided not to distinguish between such cases
and write these symbols as [tS’] and [ts]. The remaining symbols have the same meaning
in both phonetic alphabets.
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3 Multilingual Acoustic Modeling

num SAMPA IPA X-SAMPA num SAMPA IPA X-SAMPA
1 i i i 35 tS tS tS
2 i: i: i: 36 tS: tS: tS:
3 E E E 37 dZ dZ dZ
4 e: e: e: 38 f f f
5 O A A 39 f: f: f:
6 A: a: a: 40 v v v
7 o o o 41 v: v: v:
8 o: o: o: 42 s s s
9 2 ø 2 43 s: s: s:
10 u u u 44 z z z
11 u: u: u: 45 z: z: z:
12 y y y 46 S S S
13 y: y: y: 47 S: S: S:
14 2: ø: 2: 48 Z Z Z
15 p p p 49 Z: Z: Z:
16 p: p: p: 50 m m m
17 b b b 51 m: m: m:
18 b: b: b: 52 n n n
19 t t t 53 n: n: n:
20 d d d 54 J ñ J
21 t’ c c 55 J: ñ: J:
22 d’ é J\ 56 r r r
23 t’: c: c: 57 r: r: r:
24 t: t: t: 58 l l l
25 d’: é: J\: 59 l: l: l:
26 d: d: d: 60 j j j
27 k k k 61 j: j: j:
28 k: k: k: 62 h h h
29 g g g 63 h: h: h:
30 g: g: g: 64 x x x
31 ts ts ts 65 F M F
32 dz dz dz 66 N N N
33 ts: ts: ts: 67 h\ H h\
34 dz: dz: dz: 68 x’ ç C

Table 8 Hungarian X-SAMPA conversion table.
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3.1 Phonetic Inventory Unification

vowels consonants
num SAMPA plosives fricatives sonants

1 "1 num SAMPA num SAMPA num SAMPA
2 "a 13 p 29 f 42 m
3 "e 14 p’ 30 f’ 43 m’
4 "i 15 b 31 v 44 n
5 "o 16 b’ 32 v’ 45 n’
6 "u 17 t 33 s 46 l
7 i 18 t’ 34 s’ 47 l’
8 1 19 d 35 z 48 r
9 e 20 d’ 36 z’ 49 r’
10 a 21 k 37 S 50 j
11 o 22 k’ 38 S’:
12 u 23 g 39 Z

24 g’ 40 x
africates 41 x’

num SAMPA
25 ts
26 tS’
27 t-S’
28 t-s

Table 9 Russian SAMPA

3.1.3 Summary
Let’s summarize the results of proposed SAMPA to X-SAMPA mapping. Let’s denote
�N as the phonetic set for language N . Then there are |�CS| = 45 phonemes in
Czech, |�HU | = 67 in Hungarian, |�P L| = 37 in Polish, |�RU | = 48 in Russian and
|�SK | = 48 in Slovak. The unified global set for all the five languages consists of
|�| = �CS fi �HU fi �P L fi �RU fi �SK = 111 units. Then we can determine the share
factor sf5 [31], that indicates the percentage of data that can be shared to train acoustic
models across known languages as

sf5 = |�CS| + |�HU | + |�P L| + |�RU | + |�SK |
|�| = 245

111 = 2.21 (38)

On average, each phoneme of the unified global set is shared by two languages. That
is 40 % sharing rate for 5 languages. There total number of 46 polyphonemes, thus
such phonemes shared by Æ 2 languages and 65 monophonemes that are distinct for
particular languages. The exact counts an of phonemes shared by di�erent numbers of
languages can be found in Tab. 11. As it can be seen, the language with the highest
number of unique phonemes is Hungarian. On the other hand, Polish is the best covered
by the global set.
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3 Multilingual Acoustic Modeling

num SAMPA IPA X-SAMPA num SAMPA IPA X-SAMPA
1 "1 "1 "1 26 tS’ tSj tS’
2 "a "a "a 27 t-S’ tSj tS’
3 "e "e "e 28 t-s ts ts
4 "i "i "i 29 f f f
5 "o "o "o 30 f’ fj f’
6 "u "u "u 31 v v v
7 i i i 32 v’ vj v’
8 1 1 1 33 s s s
9 e e e 34 s’ C s\
10 a a a 35 z z z
11 o o o 36 z’ ˝ z\
12 u u u 37 S S S
13 p p p 38 S’: Sj : S’:
14 p’ pj p’ 39 Z Z Z
15 b b b 40 x x x
16 b’ bj b’ 41 x’ ç C
17 t t t 42 m m m
18 t’ c c 43 m’ M F
19 d d d 44 n n n
20 d’ é J\ 45 n’ N N
21 k k k 46 l l l
22 k’ kj k’ 47 l’ lj l’
23 g g g 48 r r r
24 g’ gj g’ 49 r’ rj r’
25 ts ts ts 50 j j j

Table 10 Russian X-SAMPA

polyphonemes
Number of
languages

shared
phoneme
count

phonemes

5 22 N,S,Z,b,d,f,g,j,k,l,m,n,o,p,r,s,t,ts,u,v,x,z
4 8 F,J,a,c,dZ,dz,i,tS
3 6 J\,a:,e,i:,o:,u:
2 10 1,2:,C,E,e:,h,s\,w,y:,z\

monophonemes
language count phonemes
CS 8 E:,Eu,I,au,h\,ou,r_r,r_r_0

HU 27 2,A,J:,J\:,S:,Z:,b:,c:,d:,dz:,f:,g:,h:,j:,k:,
l:,m:,n:,p:,r:,s:,t:,tS:,ts:,v:,y,z:

RU 16 "1,"a,"e,"i,"o,"u,S’:,b’,f’,g’,k’,l’,p’,r’,tS’,v’
SK 10 L,i_ˆa,i_ˆe,i_ˆu,j_r,l=,l=:,r=,r=:,u_ˆo
PL 4 ẽ,õ,ts\,tz\

Table 11 Table with details about shared and unique phonemes.
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4 KALDI

4.1 Introduction
There are several toolboxes for the speech system development and experiments. The
Hidden Markov Model Toolkit (HTK) [12] can be considered as the baseline. Between
other toolkits belong for example CMU Sphinx open recognition toolkit [8] or Open-
Source Large Vocabulary CSR Engine Julius [9]. In the 2009, the Kaldi project [11]
was introduced. Kaldi is a progressively developing speech recognition toolkit with
excellent support provided by its authors and the wide base of users. According to its
development status, Kaldi allows to implement the state of the art speech recognition
systems. One aim of this thesis is to provide the tutorial-style description of Kaldi usage
and principles.

After the main Kaldi distribution is downloaded, the content of its directory called
kaldi-master, is as shown in 11.

Figure 11 The content of a Kaldi distribution.

Kaldi is compiled against two main external libraries - BLAS/LAPACK for linear algebra
and OpenFST for weighted finite state transducers. These libraries and other external
tools that Kaldi may use are located in the tools/ directory. Kaldi compilation begins
in this directory by following the instructions in INSTALL file located here.

After the content of a tools/ directory is compiled, the next step is to continue with
compilation in the src/ directory. The own code files of Kaldi are located here divided
in to the several subdirectories. When the compilation is finished, the subdirectories
with bin su�x will contain the executable files. To get information about usage, just
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4 KALDI

invoke the desired tool with no option in the command line.
The misc/ directory includes several scripts for model conversion back and forth

between Kaldi and HTK, logos, paper and other supportive stu�.
The content of windows/ directory is essential for working with Kaldi on Windows

operating system.
The egs/ directory should be the main subject of interest when someone wants to

begin to work with Kaldi. It contains several examples, referred as recipes, mainly for
experiments performed with various databases. This directory can be viewed as a source
of tutorials. Note, that some database not for free and require special memberships to
get them. The wsj recipe can be consider as base-line recipe. In the following section,
the speechdat recipe will further be described.

4.2 SpeechDat recipe

The SpeechDat-E database is the data source for this thesis. Its recipe was published
in [35] and can be downloaded from http://noel.feld.cvut.cz/speechlab/start.
php?page=download&lang=cz. Therefore, it is used to demonstrate the Kaldi usage.
Kaldi recipes usually have the structure given in Fig. 12

kaldi-master/egs/speechdat/s5

|-- conf/

|-- local/

|-- steps/

|-- utils/

|-- cmd.sh

|-- path.sh

\ -- run.sh

Figure 12 Kaldi examples directory.

Kaldi is distributed not only with executable command line tools, but also with bunch
of script files, that encapsulate the individual Kaldi tools or perform several tasks to
ensure proper functionality and make the work with Kaldi even more e�cient. These
global script files, shared across all Kaldi recipes, are located in the utils and steps

directories. There is no documentation with the detailed function description of the
individual scripts, but the names themselves indicate what the scripts do. It is nec-
essary to open the script, where the short description of usage is given and individual
parameters listed. It is useful to search these directories when working with Kaldi tools
and data files at first, to find out, if the desired functionality is already provided by
some of these scripts. The usage message can be obtained when some of these scripts is
called without a single parameter. As example, it can be named steps/make_mfcc.sh
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4.2 SpeechDat recipe

for feature extraction, utils/best_wer.sh that returns the best obtained WER and so
on.

The conf directory contains various configuration files read by the individual tools.
These files are not necessary, since they actually contain the individual tools options,
that can also be provided in the command line. But these files allow to immediately see
the used setting and when the same configuration is needed in some other task, it can be
easily set up with these files without the need of a manual writing. This is an example
of the configuration file for mfcc computation typically stored in the conf directory:

kaldi-master/egs/speechdat/s5/conf/mfcc.conf

--sample-frequency=8000

--window-type=povey

--frame-length=25

--frame-shift=10

...

Figure 13 Example of the configuration file for MFCC computation.

The local directory includes scripts, that are specific to the given experiment. It con-
tains especially data preparation files, since every database uses di�erent structure. So
everything, what is written specifically for the given task and cannot be used in general,
is located here. In our speechdat recipes its content is:

kaldi-master/egs/speechdat/s5/local/

|-- nnet/

|-- create_LM.sh

|-- make_fea_ctucopy.sh

|-- speechdat_create_trans.pl

|-- speechdat_data_prep.sh

|-- speechdat_format_lms.sh

|-- speechda_prepare_dict.pl

|-- speechdat_prepare_dict_CS.pl

...

- speechdat_prepare_dict_SK.pl

Figure 14 The content of a speechdat recipe local directory.

Besides the directories described above, there are also come script files:
• path.sh: sets up the path to Kaldi root directory, the KALDI_ROOT variable has

to point to the directory, where the Kaldi is compiled, denoted as kaldi-master by
default. If you want to get immediate access to the Kaldi executables, just write
../path.sh to the command line and than you call all the Kaldi tool without the
need of providing full path to kaldi-master directory.

• cmd.sh: used to configure the variables for parallel computing. With respect to the
individual cluster setup, the parameters for particular queues has to be modified.
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4 KALDI

• run.sh: summarizes the whole experiment. Described further in detail.

4.2.1 Description of run.sh script
This is the key file. All the required steps are included in this script. In general, it is not
recommended to run this file at once, but run the individual step separately to see what
is going on. The script was written with respect to that and allows to choose which step
to be run by defining the stage variable. As illustrated in 15, it is also possible to select

# Set the path to the root speecon database directory
speechdat=/data/SPEECHDAT

# Choose language
lang="CS"
# - CS HU RU PL SK

# stage of run.sh
stage=0;
# 0 - Data & Lexicon & Language Preparation
# 1 - Feature Extration
# 2 - AM training
# 3 - Create HCLG.fst
# 4 - Decode

tool="ctucopy"
# - compute-mfcc # KALDI mfcc feature extraction tool
# - ctucopy # CtuCopy tool implementing speech enhancement and feature extraction algorithms.

# Use the following to map to X-SAMPA phoneset
xsampa_map=true

Figure 15 run.sh header with configuration.

which language will be processed via the lang variable and if the original SAMPA or
the X-SAMPA should be used. There is also possibility to choose the parametrization
tool. It can be the Kaldi’s default comput-mfcc or the CtuCopy tool. CtuCopy tool
was implemented by members of speech processing group at CTU in Prague. Its main
function is to perform the speech enhancement methods and feature extraction. The
speech enhancement is based on spectral subtraction with VAD, that is also implemented
internally. Otherwise the extended spectral subtraction can be used. CtuCopy allows
user to choose several types of filter banks and various filter shapes. When used as
feature extraction tool, the common features like PLP, MFCC, LPC or TRAP-DCT can
be computed. CtuCopy supports an output format compatible with HTK or KALDI
standards. Detailed information can be found in o�cial documentation provided on the
web pages of CTU SpeechLab (http://noel.feld.cvut.cz/speechlab/start.php?
page=download&lang=cz). Now we will go through the individual stages.

stage 0

The data preparation script. As it can be see in Fig. 16, the majority of the scripts,
that are called here, is located in the local/ directory. Let’s assume, that the chosen
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4.2 SpeechDat recipe

language is CS.
if [ $stage == 0 ]; then
echo "Data & Lexicon & Language Preparation"
local/speechdat_data_prep.sh --tool $tool $speechdat $lang
local/speechdat_prep_dict.sh --xsampa_map $xsampa_map $speechdat $lang
utils/prepare_lang.sh data/$lang/local/dict "!sil" data/$lang/local/lang_tmp data/$lang/lang || exit 1;
local/create_LM.sh --smoothing "-wbdiscount" data/$lang/train/text.lm data/$lang/local/lm || exit 1;
local/speechdat_format_lms.sh --lm-srcdir "data/$lang/local/lm" data/$lang/lang

fi

Figure 16 Stage 0 of the run.sh script.

speechdat_data_prep.sh generates the data/ directory containing the individual data
files that are required by Kaldi and that are desired to perform the experiment with.
The majority of this directory content is crucial for Kaldi to run and it has to be created
manually. The structure of this directory is illustrated in Fig. 17

../s5/CS/data/
|-- dev
|-- local
|-- test
\-- train

| -- wav.scp
| -- spk2utt
| -- utt2spk
| -- spk2gender
\ -- text

Figure 17 Data directory content illustration.

The train,test and dev subdirectories includes the data for test, train and dev sets.
Each of this subdirectory contains:

• wav.scp - the list of audio files. Wav.scp serves as reference file with the location
of individual audio files and its mapping to an utterance id, which could by an
arbitrary string that will represent the corresponding audio file in the experiment.
This file has the following structure:
<utterance id1> <audio file1>
<utterance id2> <audio file2>
...
For example
A30000A1 /data/SPEECHDAT/CS/FIXED3CS/BLOCK00/SES0000/A30000A1.wav
...
It is necessary to note, that o�cial Kaldi feature extraction tool requires the audio
files in the wav format. If the audio files are in di�erent format, it is possible to
use some conversion tool, like sox, to establish pipe for the extraction tool. Then
the wav.scp would have the following format:
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A30000A1 sox -t raw data/A30000A1.CSA -t wav - |
...

(The sox parameters has to be appropriate to the used audio format).
• text - the transcription file. It has the format of utterance id and text, e.g.:

A30000A1 one two four seven nine
...

• utt2spk - mapping between utterance and the speaker. Again, the speaker can
be an arbitrary text to distinguish, which utterance belongs to the corresponding
speaker. The format is <utterance id> <speaker>:
A30000A1 0000
...

spk2utt - this file contains the mapping between speaker and all his utterances.
The format is <speaker id> <utterance id 1> <utterance id 2> ...
0000 A30000A1A30000A2 A30000A3 ...
...

It is not needed to create this file manually, since there are scripts utils/utt2spk
_to_spk2utt.pl (utils/spk2utt_to_utt2spk.pl) that convert these files be-
tween each other.

• spk2gender - mapping between speaker and gender. The format is <speaker ID>
<gender>
0000 f
0002 m
...

speechdat_prep_dict.sh generates the dict directory inside ../s5/CS/data/local.
Again, all the following content of the dict directory has to be created manually.

• lexicon.txt - it contains the pronunciation of individual words that occur in
transcription.
!SIL sil
aby a b I
adam a d a m
...

• silence_phones.txt - the list with silence phones
sil
..

• optional_silence.txt - optional silence phones.
• nonsilence_phones.txt

• extra_questions.txt
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The third invoked tool is the default Kaldi tool utils/prepare_lang.sh. It takes
the content of dict directory and generates ../s5/data/CS/lang folder with the files
for training and testing, including the L.fst, which is the transducer representing the
pronunciation lexicon. The next tool is the create_LM.sh. Its output is the arpa-format
language model estimated from the provided text corpus. Finally this language model is
processed with speechdat_format_lms.sh, transformed into G.fst transducer and the
../s5/data/CS/lang_test_lm_tg is created. The content of this directory is used for
generating the resulting HCLG.fst graph. Let’s list the lang_test_lm_tg to summarize
the output of the previous three scripts:

..s5/data/CS/lang_test_lm_tg/
|-- G.fst
|-- L.fst
|-- L_disambig.fst
|-- oov.int
|-- oov.txt
|-- phones/
|-- phones.txt
|-- tmp/
|-- topo
�-- words.txt

word.txt and phones.txt consists of mapping from text corpus words to integers as
well as from phones to integers, which is the representation used by Kaldi. oov.txt
contains the out-of vocabulary words.

stage 1

Feature extraction step. For all the signals in data/train, test and dev directories, the
features are computed with the selected tool.

if [ $stage == 1 ]; then
echo "Feature Extration & CMN stats for Training and Test set"
mfccdir=/scratch/speechdat/mfcc/$lang
for x in train dev test; do

if [ $tool == "ctucopy" ]; then
local/make_fea_ctucopy.sh --cmd "$train_cmd" --nj 32 data/$lang/$x exp/mfcc/$lang/$x $mfccdir/$x

else
steps/make_mfcc.sh --cmd "$train_cmd" --nj 32 data/$lang/$x exp/mfcc/$lang/$x $mfccdir || exit 1;

fi
steps/compute_cmvn_stats.sh data/$lang/$x exp/mfcc/$lang/$x $mfccdir/$x || exit 1;

done
fi

Figure 18 Stage 1 of the run.sh script.

The Features are located in the directory specified with mfccdir variable in the form
of ark files. Ark file includes all data like features, transformation matrices etc. in the
form of text or binary files. To print the content of an ark file, the copy-feats or
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copy-matrix can be used. The the cepstral mean variance normalization is performed
by steps/compute_cmvn_stats.sh. In this step the s5/exp/CS directory is created.
This directory serves for storing the experiments results including the log files. When
this stage is finished, the log files with progress of MFCC ann CMVN are located here
and the scp files pointing to the features and cmvn statistics are generated to the data
directory.

exp/mfcc/CS/
|-- dev

|-- cmvn_dev.log
|-- make_mfcc_dev.1.log

...
|-- train

...
\-- test

...
The number associated with every log with corresponds to the number of parallel jobs.

stage 2

An acoustic model training. This stage performs the training of acoustic model in several
steps.
if [ $stage == 2 ]; then
echo "MonoPhone Training & Decoding"
steps/train_mono.sh ...

echo "tri1 : Deltas + Delta-Deltas Training & Decoding"
steps/align_si.sh ...
steps/train_deltas.sh ...

echo "tri2 : LDA + MLLT Training & Decoding"
steps/align_si.sh ...
steps/train_lda_mllt.sh ...

echo "tri3 : LDA + MLLT + SAT Training & Decoding"
steps/align_si.sh ...
steps/train_sat.sh ...

echo "SGMM2 Training & Decoding"
steps/align_fmllr.sh ...
steps/train_ubm.sh ...
steps/train_sgmm2.sh ...

echo "MMI + SGMM2 Training & Decoding"
steps/align_sgmm2.sh ...

steps/make_denlats_sgmm2.sh ...
steps/train_mmi_sgmm2.sh ...

fi

Figure 19 Stage 2 of the run.sh script.
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At first, the monophones are trained by steps/train_mono.sh. It requires the
data/train and data/lang directories to be run and provides the final model in the
s5/exp/CS/mono directory together with its log file. In the next step, the triphone
system (tri1) is trained with delta and delta delta features. Then LDA and MLLT
transformations are applied to train the model denoted as tri2 followed with speaker
adaptive training performed by applying the fMLLR to obtain the tri3 model. feature
Based on this model, other setting are trained including triphones, various transforma-
tions and other methods. Finally, the subspace gaussian mixture models are trained
followed by discriminative MMI training.

stage 3

Creating the HCLG graph. Based on the resulting acoustic models, G.fst and L.fst
transducers the HCLG graph is created by default utils/mkgraph.sh. This script

if [ $stage == 3 ]; then
echo "Create HCLG.fst graphs"
(
$train_cmd JOB=1:1 exp/$lang/mono/log/mkgraph.lm_tg.log \

utils/mkgraph.sh ...
)&

for x in tri1 tri2 tri3 sgmm2_4a; do
(
$train_cmd JOB=1:1 exp/$lang/$x/log/mkgraph.lm_tg.log \

utils/mkgraph.sh data/$lang/lang_test_lm_tg exp/$lang/$x exp/$lang/$x/graph_lm_tg || exit 1;
)&

done
wait

fi

Figure 20 Stage 3 of the run.sh script.

generates the HCLG.fst to the folder in the same location, where the final.mdl acoustic
model is stored. Thus in case of monophones, it generates the resulting graph and
copies the necessary words.txt and phones.txt to the ../s5/exp/CS/mono/graph_lm_tg
directory. Now everything is prepared for decoding.

stage 4:

Decoding. Since there are HCLG graphs and all required models available in the exp
directory, the decoding can be performed.

Depending on the acoustic model, it is done by steps/decode.sh, steps/decode
_fmllr.sh, steps/decode_sgmm2.sh and steps/decode_sgmm2_rescore.sh. Individ-
ual results are stored in the s5/exp/<acoustic model>/decode_test_lm_tg directory,
where /<acoustic model> is substituted by mono, tri1 and so on. The output of this
stage are decoded lattices which are post-processed with acoustic rescoring with various
acoustic scale. The resulting WER values are stored in the files denoted as wer_#,
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if [ $stage == 4 ]; then
echo "Decode"
for eval in test dev; do

(
steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \

exp/$lang/mono/graph_lm_tg \
data/$lang/${eval} \
exp/$lang/mono/decode_${eval}_lm_tg || exit 1;

............

............

steps/decode_sgmm2.sh --nj "$decode_nj" --cmd "$decode_cmd" \
--transform-dir exp/$lang/tri3/decode_${eval}_lm_tg \
exp/$lang/sgmm2_4a/graph_lm_tg \
data/$lang/${eval} \
exp/$lang/sgmm2_4a/decode_${eval}_lm_tg || exit 1;

for iter in 1 2 3 4; do
(
steps/decode_sgmm2_rescore.sh --cmd "$decode_cmd" \

--iter $iter \
--transform-dir exp/$lang/tri3/decode_${eval}_lm_tg \
data/$lang/lang_test_lm_tg \
data/$lang/${eval} \
exp/$lang/sgmm2_4a/decode_${eval}_lm_tg \
exp/$lang/sgmm2_4_mmi_b0.1a/decode_${eval}_lm_tg$iter || exit 1;

)&
done

)&
done$WER$

fi

Figure 21 Stage 4 of the run.sh script.

where # stand for the value of an acoustic scale. To obtain the best result, it is very
useful to use the utils/best_wer.sh as given in the following example:

grep WER exp/CS/mono/decode_*test/wer_* | best_wer.sh

stage 5 (optional) In this last step, usually the DNN training and decoding is
performed by run_dnn.sh located in the ../s5/local/nnet folder. More information
about DNN usage in Kaldi can be found on the page http://kaldi-asr.org/doc/
dnn1.html. The results of DNN step are stored e.g in the exp/CS/dnn5b_pretrain-dbn
and exp/CS/dnn5b_pretrain-dbn_dnn_smbr.

Based on this recipe, the multilingual system was implemented. The individual stages
are almost identical except for the data preparation part in which the the lists are merged
to train the models on all the data. Also for the decoding steps, the separate scripts
were created to decode the GMM and DNN AM for every language individually. All
these scripts are included as the part of the CD content.
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This chapter describes the individual experiments. The resulting recognition accuracy
was observed with respect to several setups. Experiments were performed for every
language individually observing the influence of a language model and phone inven-
tory. Then the performance of the DNN acoustic model was observed. Multilingual
experiments were performed in the similar manner.

5.1 Experimental Setup
Let’s summarize the setup for experiments, e.g the used database, acoustic analysis
configuration, the setup of the acoustic models and evaluation criterion to measure the
recognition performance.

5.1.1 Used Data

As it was mentioned in the chapter 3, the SpeechDat-E [21] database is used through-
out this thesis. Let’s revise the applied conventions to provide immediate information
required for working with these databases without the need to study the o�cial docu-
mentation. Since SpeechDat-E contains a telephone speech, the audio signals are stored
as 8kHz, 8bit, A-law audio files. Each audio file name consists of a recording ses-
sion(NNNN), corpus code(CC) and language code (LL) in the format

A3NNNNCC.LLA.

The language code represents the following utterances types given in Tab. 12

A1-6 application words B1 one sequence of isolated digits
C1-4 numbers D1-3 dates

E1 one word spotting phrase I1 isolated digit
L1-3 spelled words M1-2 currency

N1 natural number O1-3,O5,O7-8 directory assistance names
Q1-2 yes/no questions S0-9/Z0-1 phonetically rich sentences
T1-2 time phrases W1-4 phonetically rich words
X1-4 spontaneous utterances

Table 12 Utterances types in SpeechDat-E databases.
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set/lang CS RU SK HU PL
train 43090 91079 36525 37861 42506
test 1134 1827 1117 1085 1148
dev 1135 1829 1113 1085 1164

Table 13 The total number of used utterances per language.

Let’s pinpoint the noise and mispronunciation markers:

• /≥/ - word truncation

• /*/ - mispronunciations

• /**/ - non-understandable speech
Non-speech acoustic events are:

• /[fil]/ filled pause

• /[spk]/ speaker noise

• /[int]/ intermittent noise

• /[sta]/ stationary noise
All the provided languages were used, namely Czech (CS), Russian (RU), Slovak (SK),
Hungarian (HU) and Polish (PL). The utterances including some noise and mispronun-
ciation markers, listed above, were completely discarded. Every database is distributed
with the list of utterances suitable for testing located in the . . . /INDEX/ directory, so
the test set was generated using these lists and halved into the dev and test set. If pro-
vided, the train set was generated with respect to the train list, otherwise the remaining
signals were used for training. Since the LVCSR task is investigated, the test and dev
set consist from whole sentence utterances only, thus the signals with S and Z in their
names. The resulting number of utterances for individual languages is di�erent and by
applying described approach, the resulting data set size, noted in Tab. 13, was used.

5.1.2 Front-End Processing

MFCC features were extracted with the following setup. The pre-emphases coe�cient
was 0.97. The 25 ms long Povey window with 10 ms shift was used. The 24 bins of
filter-bank designed in the range from 100 Hz to 3800 Hz were applied. The mean value
of each frame was subtracted and the resulting 13 coe�cients were kept (c(0) included).
A further feature processing included cepstral mean and variance normalization over
the speaker and the standard delta and delta-delta computation. Finally, the high
dimensional vector obtained from the context of 3 frames was processed with LDA and
MLLT transformation into to the resulting dimension size of 40.
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5.1.3 Acoustic Modeling Setup

The HMM-GMM model was trained in the following steps. The monophone model
(mono) was further expanded to the context dependent crossword triphone system (tri1)
with the use of MFCC dynamic parameters. Then, the system (tri2) was trained with
LDA + MLLT features. In the next step, the fMLLR per each speaker was applied
(tri3). Then, the SGMM system (sgmm) based on the UBM was trained. The resulting
system was discriminatively retrained with bMMI (mmi). The DNN acoustic model was
trained with fMLLR features estimated by tri3 HMM-GMM system. DNN input layer
consisted of 440 inputs, this was given by the context of 5 frames and 40 dimensional
fMLLR features with cepstral mean and variance normalization. DNN had 6 hidden
layers, each with 2048 neurons with the sigmoid activation function and was pre-trained
and initialized with RBMs. DNN was then trained with the cross-entropy training and
sMBR sequence-discriminative training process.

5.1.4 Language Modeling

Only the transcriptions of the whole sentences of the training sets were used to generate
the text corpus for LM estimation. Based on a such filtered training transcription, the
0-gram and 3-gram model were computed. The resulting values of perplexity(PPL) for
these models and out of vocabulary words counts (OOV) are given in Tab. 14

model CS SK HU RU PL

PPL 3-gram 13.22 7.53 6.06 4.75 4.98
0-gram 14802 7885 7550 9652 7453

OOV both 0 0 0 2 0

Table 14 Perplexity values of 3-gram models and OOV counts with respect to the test set.

Compared with the 0-gram LM, the perplexity of the 3-gram models is very low.
Thus, the recognition results are expected to be noticeable better when the 3-gram
model is used. To explain the di�erence between 3-gram and 0-gram model, the tran-
scription overlap of the individual sets was examined. Tab. 15 shows the numbers for
the individual languages.

set CS HU SK PL RU
train all 9763 9711 8963 10425 14611
test all 1134 1085 1117 1148 1827

train unique 5526 2977 3442 3104 2903
test unique 1057 900 922 939 1360

overlap 793 833 808 833 1263

Table 15 Transcription overlap for the individual languages.
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If the di�erence is enumerated, 75 % of utterances was the same in both test and
train set for Czech, 93 % for Hungarian, 88 % for Slovak, 89 % for Polish and 93 % for
Russian. The majority of the utterances was included in the training set from which
the LM was estimated that resulted in the obtained perplexity values. Some general
LM should be used to properly evaluate the recognition performance. For this purpose,
the 2-gram LMs for Slovak were estimated with the use of the Slovak national corpus
http://korpus.juls.savba.sk/prim(2d)7(2e)0(2f)models.html. Influence of the
di�erent LMs size was observed, namely 60 000, 180 000 and 340 000 words. The
individual perplexity values and OOV counts for every size of LM are noted in Tab. 16.

60k 180k 340k
PPL 2471.15 3053.97 3397.38
OOV 725 263 115

Table 16 Perplexity values of 2-gram models and OOV counts with respect to the test set for
the Slovak national corpus LM.

Based on these values, the recognition accuracy can be expected significantly worse
compared to the 3-gram model estimated from the train set and obviously better then
in case of the 0-gram LM.

5.2 Results
At first, the performance of the separate LVCSR with the language specific AM were
examined. Then the experiments with the multilingual AM were performed. To compare
and evaluate the results, the standard Word Error Rate (WER) criterion was used, i.e.

WER = S + D + I

N
· 100%

where S represents the number of substitutions, D is the number of deletions, I stands
for insertions and N is the total count of words.

5.2.1 GMM-HMM LVCSR with the Language Specific AM
As the first step, the HMM-GMM system was tested for every language individually.
For all the following experiments, the X-SAMPA was used.

3-gram LM

The WER values for decoding with 3-gram model are shown in Tab. 17. The best
performance for all the languages was observed for the mmi AM with the lowest obtained
WER 1.77 % for the Hungarian test set. As the opposite, the Czech system performed
the worst with 12.22 % WER.
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lang set mono tri1 tri2 tri3 sgmm mmi

CS test 17.30 12.96 12.90 12.78 12.30 12.22
dev 15.71 12.72 12.25 12.05 12.18 12.17

HU test 3.00 2.00 2.13 1.98 1.80 1.77
dev 1.91 0.86 1.13 0.83 0.81 0.69

RU test 4.40 2.60 2.63 2.32 2.30 2.38
dev 3.83 2.30 2.51 2.71 2.56 2.65

SK test 9.07 6.94 7.04 6.82 6.35 6.32
dev 7.44 5.67 5.68 5.11 4.79 4.87

PL test 7.74 8.16 8.55 8.81 7.52 7.51
dev 8.11 8.20 8.58 8.88 8.42 8.39

Table 17 The results for acoustic models trained for every language separately and for 3-gram
language model estimated from whole sentences of a training set.

These results can be compared to the LM model analysis given above. The Czech
LM has the highest perplexity significantly overcoming the remaining languages and
it also has the lowest overlap between the train and test utterances that confirms the
obtained results. A performance of the Hungarian system is probably a result of the
several influences. 93 % of the Hungarian test utterances are included in the train set
that together with the low LM perplexity and a quite large amount of training data
resulted in a such low WER value.

0-gram LM

The main task was to investigate the performance of an acoustic model. So for further
experiments, it was decided to create 0-gram language model to decrease LM influence.
The detailed results for this setup are in Tab. 18. Again, the mmi system performed the
best. These results are therefore taken as a baseline. Comparison of 0-gram and 3-gram
results from the previous experiment is illustrated in Fig. 22.

Figure 22 Comparison of mmi results for 3-gram and 0-gram LM.

By using 0-gram LM, the WER rapidly increased about 17 % on average. Hungarian
is still the best performing despite the fact that it is, in our case, the language with the
largest phonetic inventory. With the 0-gram language model, Russian system became
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the worst one. In all the upcoming experiments, the 0-gram is supposed if it is not
stated di�erently.

lang set mono tri1 tri2 tri3 sgmm mmi

HU test 60.44 33.41 29.86 22.63 20.44 18.94
dev 59.45 25.59 23.32 15.72 16.91 13.40

PL test 52.75 34.37 31.52 23.03 20.66 19.51
dev 53.08 28.36 25.67 18.44 18.52 14.96

RU test 74.05 50.16 45.64 35.63 32.17 28.90
dev 73.24 50.36 45.96 36.33 32.16 28.96

CS test 66.39 42.57 38.32 30.76 29.57 27.50
dev 66.08 42.71 38.01 30.19 28.47 26.55

SK test 66.28 41.12 37.39 27.79 24.62 22.37
dev 65.88 39.30 36.89 26.24 23.34 21.35

Table 18 Results for 0-gram language model estimated from the training set transcriptions.

Despite the fact, that individual databases should contain the signals of equal quality
and phonetically rich utterances, this is not necessarily fulfilled. The di�erences in the
utterance distributions in the train and test set across the languages led to the results
presented above.

Hungarian Phone Set Reduction

The Hungarian language is the phonetically richest language with its 67 phones that
was used in this thesis. As illustrated in Tab. 8, there are also the long variants for
almost every consonant. With an aim to increase the coverage of Hungarian by the
global phonetic set in a multilingual acoustic modeling, it implies to remove the long
consonants and map them on the short ones, which reduces the Hungarian set down to
44 phones. Recognition accuracy results are in Tab. 19. When compared with results for

lang set mono tri1 tri2 tri3 sgmm mmi

HU test 59.24 32.90 28.65 23.18 19.73 20.22
dev 59.04 24.97 21.98 15.44 16.58 16.79

Table 19 Results for Hungarian reduced phone set.

the original set, the accuracy was about 1.28 % WER worse for mmi. But mono,tri1,tri2
andsgmm systems behaved better. Although, the Hungarian phone set was remained
unchanged for further experiments.

Russian Phone Set Reduction

The Russian Phone set also o�ers and opportunity for experiments. Its stressed vowels [
o" ] and [ e" ] are pronounced as [ o] and [ e ], which are already defined. Also, similarly
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as long consonants for Hungarian, the Russian consonants have palatalized variants.
For this experiment, the palatalized variants were removed. The stressed vowel were
mapped to the vowels without diacritics that are already present in the set. The results
are shown in Tab. 20

lang set mono tri1 tri2 tri3 sgmm mmi

RU test 78.46 55.23 49.94 39.03 34.68 30.78
dev 78.27 54.20 49.34 39.00 34.71 30.98

Table 20 Results for the reduced Russian set.

The Russian phonetic set reduction increased the WER about 1.88 % for the best mmi
system when compared with the original one in Tab. 18. Thus even for the Russian,
whole it set was kept unchanged for the multilingual acoustic model.

Slovak National Corpus LM

To demonstrate the influence of the global language LM on the recognition performance,
the several sizes of LM estimated from the Slovak national corpus were used for decoding
in the Slovak system.

lang set mono tri1 tri2 tri3 sgmm mmi

60k test 63.80 41.33 39.49 35.31 32.00 30.92
dev 66.04 41.18 40.07 34.62 31.10 30.37

180k test 56.99 30.82 29.71 24.30 20.48 19.72
dev 59.82 31.76 30.62 24.35 21.23 20.37

340k test 57.21 30.30 29.04 22.37 18.59 18.02
dev 59.65 30.62 28.85 23.02 19.59 18.59

Table 21 Table with WER for a global language model used in the Slovak system.

As it was expected, the higher the vocabulary size is, the lower is the WER value.
For 60k words of vocabulary size, the WER is even higher then in the of 0-gram model
which is caused by the high number of OOV.

5.2.2 DNN-HMM LVCSR with the Language Specific AM

In the further experiments, the performance of DNN-HMM system was investigated.
The results for the individual languages are in the Tab. 22.

The hybrid HMM-DNN system has a significant influence on the speech recognition
accuracy. The improvement for the Russian test set was 5.1 % WER, 3.13 % for Slovak,
5.83 % for Czech, 6.78 % for Polish and 2.12% for Hungarian sMBR discriminatively
trained DNN system. Thus, the DNN AM outperformed, in the case of sMBR system,
the conventional GMM-HMM model about 5 % on average.
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HU PL RU CS SK
test dev test dev test dev test dev test dev

dnn 19.13 15.34 18.48 16.11 26.74 27.09 25.80 25.30 22.16 21.39
smbr 16.82 13.17 12.73 15.48 23.80 23.34 21.67 22.00 19.24 18.78

Table 22 Table with the results for the DNN-HMM system.

5.2.3 GMM-HMM LVCSR with the Multilingual AM

In the following sections, the experiments with the multilingual acoustic modeling are
described. Firstly, the HMM-GMM system was trained and the multilingual acoustic
model was used to recognize all the languages separately.

Decoding Languages from the Train Set

All available data for all the languages were combined together to train the multilingual
acoustic model. Then every language was decoded separately. Recognition results are
in Tab. 23.

mono tri1 tri2 tri3 sgmm mmi

CS test 74.47 51.08 47.28 37.03 35.17 33.34
dev 7321 50.66 46.80 36.02 34.98 32.60

SK test 75.83 51.68 46.75 35.24 33.24 31.48
dev 76.29 50.56 46.11 33.79 32.15 30.94

HU test 72.96 46.71 43.29 30.26 28.78 27.53
dev 74.75 46.16 42.40 28.29 27.46 25.94

RU test 84.19 60.90 55.51 42.38 39.67 37.61
dev 84.44 60.56 55.55 42.33 39.36 37.30

PL test 65.99 43.59 39.65 28.56 27.08 25.49
dev 66.14 41.82 37.45 27.25 26.06 24.47

Table 23 WER results for the multilingual AM used for the individual languages.

The lowest WER was obtained for Polish. This is the expected result, since the Polish
language has the lowest number of the individual phones. The nasalized vowels eãnd
oãre close enough to the remaining vowels in the set and the alveolo-palatal fricatives
tz\and ts\are probably su�ciently modeled with fricatives in other languages. When
compared with the language separate AM, there is expected accuracy deterioration on
average about 4.8% caused by the increased information to be modeled.

Unseen Language Decoding

In this experiment, the multilingual acoustic model was trained without Polish, therefore
the term unseen language. This was decided with respect to the result of the previous
experiment. Let’s revise, that the Polish phones out of the global phone set are [ e≥ ],
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[ o≥ ], [ ts\] and [ tz\]. For the decoding purposes, these phones were mapped onto the
closest available ones in the following way:

[ e≥ ] æ [ e ]
[ o≥ ] æ [ o ]
[ ts\] æ [ ts ]
[ tz\] æ [ dz ]

The results are noted in Tab. 24.

mono tri1 tri2 tri3 sgmm mmi

PL-unseen test 80.40 69.03 65.23 57.66 51.82 51.11
dev 81.15 68.74 65.76 60.07 54.20 53.32

PL-included test 65.99 43.59 39.65 28.56 27.08 25.49
dev 66.14 41.82 37.45 27.25 26.06 24.47

Table 24 WER results for multilingual AM used for unseen Polish language and it comparison
with the AM trained with Polish

Even for the mmi system, the recognition accuracy is poor. Over the half of the
words are recognized wrong. Despite the fact, that Polish did well in the the previous
experiment, this result was unexpected and its explanation requires further examination.

5.2.4 DNN-HMM LVCSR with the Multilingual AM
In this experiment, the multilingual DNN acoustic model was trained and 0-grams of
the individual languages were used for decoding. The results are noted in the Tab. 25

HU PL RU CS SK
test dev test dev test dev test dev test dev

dnn 20.95 18.39 21.41 19.50 29.73 29.49 28.71 27.29 22.76 22.50
smbr 18.79 15.98 18.16 16.15 26.45 26.83 24.58 23.63 19.81 19.73

Table 25 Table with the results for the ML DNN-HMM system.

As expected, the DNN-HMM system improved the recognition accuracy about The
recognition accuracy significantly increased and even for the DNN model itself, the
results are very close to the GMM-HMM systems trained for every language individually
and the smbr system even outperformed the language dependent HMM-GMM system
about 2.92 % WER for Czech, 2.45 % WER for Russian and 1,35 % WER for Polish. In
the case of Slovak and Hungarian, these systems performed similarly when compared.
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6 Conclusions

The multilingual acoustic modeling based on the global phones inventory was inves-
tigated in this thesis. The impact of the multilingual acoustic modeling was studied
for 5 languages which are available in the SpeechDat-E databases. The analyses were
performed for the large vocabulary continuous speech recognition task with the acous-
tic modeling based on GMM or DNN respectively as the most important task for the
possible applications from the field of an automatic speech transcription. Phoneme
recognition was not finally analyzed in details within this thesis. The designed systems
were implemented using the Kaldi toolkit with a recommended setup and methods. The
experiments were performed for the individual languages at first, that means the sep-
arate per language acoustic models were used and the influence of a language model
and a phone inventory was observed. In the next step, the analyses were repeated with
shared multilingual acoustic model which was created out of data from all the available
languages. The most important results of this thesis are discussed in more details within
the next paragraphs.

Phonetic Transcription Unification

Spechdat-E pronunciation lexicons distributed with every language use the SAMPA
to represent the phonetic transcription. It was discovered, that these alphabets use
a slightly di�erent standards and every language defines its own conventions. Therefore
the direct SAMPA usage was not suitable to create the global phone set. Thus, the
first step was to unify the phonetic transcription. The X-SAMPA was used as the
unifying phonetic alphabet because it represents the machine readable equivalent of
the international IPA. Every element of the individual SAMPAs was investigated and
mapped onto to the appropriate counterpart in X-SAMPA. This mapping is considered
as one of the main outputs of this thesis, since it may be used in other experiments and
databases as well.The current set of the shared phones across the five studied languages
is ready to be extended when the data for some other languages are available.
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6 Conclusions

Kaldi Recipe

One of this thesis outcome is the Kaldi recipe for the SpeechDat-E database. This
recipe allows to train the GMM-HMM models of the di�erent levels from the basic
monophone model to the SGMM system. Also, the DNN model can be trained. The
SpeechDat recipe was used to train the individual languages in the experimental part
and it is written in a such way, that all the experiments for selected languages can
be performed at once without the need of a script modification. With this recipe, the
scripts performing the mapping from SAMPAs to X-SAMPA are included in the local/
directory. This recipe was used as the base for the multilingual system, which is a part
of the CD content together with the scripts for decoding of the languages separately.

Language Specific and Multilingual Experiments

In the first experiments, the 3-gram LM model estimated from the training transcription
was used. The further analysis initiated based on these results indicated, that the overlap
between the transcription of the train and test set was too significant and the impact of
such LM led to the distorted results. Therefore the 0-gram LM model was chosen as the
baseline and allowed to observe the behavior of the AM more directly. The AM model
with the best performance was discriminatively trained with MMI for the Hungarian
language with the best WER of 18.94 %. The language with the worst performance
was Russian with 28.90 % WER. For these two language, the experiments with the
reduction of phonetic set were performed with the aim of the reduction of the global
phones set in the multilingual acoustic model. In the both cases, the WER increased so
the the phonetic inventories of these languages were kept unchanged. The HMM-GMM
multilingual acoustic model increased the WER about 8 % on the average for all the
languages and the language with the best recognition accuracy was Polish with 25,49 %
WER. The worst recognition accuracy of 37,61 % WER was obtain for the Russian
language as well. The significant improvement was noticed for DNN-HMM acoustic
model. These systems outperformed the conventional GMM about 4 % WER in the
case of language separate AM.

In the case of the multilingual acoustic model, the HMM-GMM system increased the
WER about 8 % on the average when compared with the language specific AMs. The
DNN-HMM approach had noticeable impact on the results and it outperformed the
multilingual HMM-GMM system about 9 % on average. In the case of smbr system, the
multilingual AM results got below the WER of the Czech, Polish and Russian separate
acoustic models. It achieved the similar results for the Slovak and Hungarian HMM-
GMM systems.
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Future work

Based on the obtained results, the following steps can extend the work that was done
within this thesis. In the near future we suppose to add German and French using the
data the from available Globalphone databases. For the practical usage of LVCSR it is
necessary to use a more general LM for Hungiarian, Polish, and Russian and Czech. Also
the further optimization of DNN-GMM multilingual LVCSR system will be investigated,
as DNN-GMM LVCSR significantly overcomes base-line HMM-GMM systems.
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