
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Optimization of admission of patients to a
hospital by using parallel algorithms on
Intel Xeon Phi

Jan Kůrka

Supervisor: Ing. Libor Bukata
Supervisor–specialist: Ing. Přemysl Šůcha, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2016

ii

iv

Acknowledgements
I would like to thank my supervisors Ing.
Libor Bukata and Ing. Přemysl Šůcha,
Ph.D, who lead me through this project
with great patience and encouragement. I
am also grateful for the support of my fam-
ily and friends.

Declaration
I declare that this thesis is my own work
and that I have listed all the literature
and publications used in accordance with
Metodický pokyn č. 1/2009 - O dodržování
etických principů při přípravě vysokoškol-
ských závěrečných prací.

V Praze, 27. May 2016

v

Abstract
We have implemented the state-of-the art
sequential algorithm for the Patient Ad-
mission Scheduling (PAS) problem and
proposed two versions of parallel algo-
rithms in this thesis. All algorithms are
based on the local search metaheuristic
called Simulated Annealing (SA). Two ap-
proaches to parallelization are compared.
The first version runs multiple instances
of SA which share solutions via a solu-
tion pool. The second version runs one
SA with the moves evaluated in parallel.
This version proved to be better than the
first one because it produced more con-
sistent results with average speedup 2.9
on CPU. The experiments indicate that
the Intel Xeon Phi is not suitable for this
problem since we were not able to utilize
vectorization efficiently.

Keywords: scheduling, hospital, patient,
admission, parallel algorithm, Xeon Phi,
local search, simulated annealing

Supervisor: Ing. Libor Bukata

Abstrakt
Tato práce se zabývá problémem optima-
lizace přijímání pacientů do nemocnice
známým jako Patient Admission Schedu-
ling (PAS) problem. Implementovali jsme
sekvenční algoritmus a navrhli dva para-
lelní algoritmy na jeho řešení. Základem je
metaheuristika na lokální prohledávání na-
zývaná simulované žíhání. Porovnali jsme
dva přístupy k paralelizaci. Jeden využíval
paralelního běhu několika simulovaných
žíhání, která si vyměňovala řešení přes
sdílenou paměť. Druhý přístup používá
jeden průběh simulovaného žíhání, kde
vyhodnocuje více změn paralelně. Tato
varianta se ukázala jako vhodnější, pro-
tože podávala konzistentní výsledky a na
procesoru dosáhla průměrného zrychlení
2.9 oproti sekvenční verzi. Experimenty
ukázaly, že Intel Xeon Phi není vhodný
pro tento problém, protože jsme nebyli
schopni využít efektivně vektorizaci.

Klíčová slova: plánování, nemocnice,
pacient, přijímání pacientů, paralelní
algoritmy, Xeon Phi, lokalní
prohledávání, simulované žíhání

Překlad názvu: Optimalizace přijímání
pacientů do nemocnice pomocí
paralelních algoritmů na Intel Xeon Phi

vi

Contents
1 Introduction 1
1.1 Patient Admission Scheduling
(PAS) . 1
1.2 Intel Xeon Phi 3
1.3 Outline . 4
2 Problem Definition 5
2.1 Mathematical Model 7
2.1.1 Preprocessing Steps 7
2.1.2 Mathematical Model 9

3 Intel Xeon Phi 11
3.1 Installation Instructions for Gentoo
Linux . 13
3.1.1 Setup System and Xeon Phi
Coprocessor 14

3.1.2 Installation of Intel Parallel
Studio . 18

3.1.3 Offloading 18
3.2 Benchmark 19
4 Sequential Algorithm 21
4.1 Simulated Annealing 21
4.2 Moves . 22
4.3 Optimizations 24
5 Parallel Algorithm I 25
6 Parallel Algorithm II 31
7 Experiments 35
7.1 Delta evaluations per second . . . 35
7.2 Quality and time 36
7.2.1 Sequential version 36
7.2.2 Parallel versions on CPU. . . . 37
7.2.3 Parallel versions on Intel Xeon
Phi . 39

7.3 Progress of the algorithms 40
8 Conclusion 43
A Contents of the attached CD 45
B Acronyms 47
C Notation 49
D Bibliography 55

vii

Figures
1.1 Patient . 1
1.2 Intel Xeon Phi coprocessor 3

3.1 Intel Xeon Phi card 11
3.2 Intel Xeon Phi core architecture 12
3.3 Intel Xeon Phi bidirectional ring
interconnect . 13

4.1 Change Room (CR) move
example . 22

4.2 Swap Patients (SP) move example 23

5.1 High-level scheme of the Parallel
Algorithm I . 26

5.2 Exponential function 27

6.1 High-level scheme of the Parallel
Algorithm II 33

7.1 Sequential algorithm - progress of
the active and best solution cost . . 40

7.2 Sequential algorithm - temperature
during the run on dataset1 41

7.3 Parallel I algorithm - progress of
the active and best solution cost of
one thread . 41

7.4 Parallel I algorithm - temperature
during the run on dataset1 41

Tables
2.1 Weights of soft constraints 8

3.1 Intel Xeon Phi specifications . . . 11
3.2 Benchmark results 19

7.1 Number of delta evaluations per
second. 35

7.2 Sequential and CPLEX versions 36
7.3 Comparison of parallel versions on
CPU . 38

7.4 Comparison of parallel versions on
Intel Xeon Phi 39

viii

Chapter 1
Introduction

Efficient planning is an important part of a high-quality health-care system.
Better planning means lower costs for the hospital and better services for the
patient. With increased efficiency, a hospital is able to serve more patients
and patients can more likely get into rooms that suit their needs. That can
lead to a greater comfort for the patients as well as higher income for the
hospital for special rooms.

Available statistical data from the years 1995–2013 shows that health
expenditures per capita in the Organisation for Economic Co-operation and
Development (OECD) countries are growing [1] and the growth will continue
with increasing life expectancy [2]. That suggests that hospitals will have to
accommodate to higher demand for their services.

Figure 1.1: Patient (source: [3])

1.1 Patient Admission Scheduling (PAS)

An admission of patients into a hospital is a promising area which can become
more effective using automated scheduling. Demeester et al. [4] were aware
of that and introduced the PAS problem. After an extensive discussion with
hospital staff and other relevant people, they formulated this problem as an
assignment of patients to the beds in hospital with respect to the patients’

1

1. Introduction
needs and preferences. The needs and preferences are formulated as soft
constraints and the objective is to optimize overall assignment of the patients.
Each patient has a fixed admission day and discharge day, between these
days they must be assigned a bed. The scheduling is performed for the
entire hospital consisting of multiple departments with different specialisms
and across all rooms with various capacity, specialisms and properties. This
definition became a standard in this branch of research and most of the
following literature uses or extends this model. It will also be used in this
thesis.

Demeester et al. [4] tried to solve this problem by integer programming
approach which proved to be too slow since this problem is NP complete,
as Vancroonenburg et al. [5] proved. Using Tabu Search hybridized with
token-ring and variable neighborhood descend they have been able to solve
this problem in a reasonable time. They also created artificial instances based
on realistic hospital situations, since the real-world data was hard to obtain
due to privacy issues. These are available on the PAS website [6].

Bilgin et al. [7] followed up and used high-level hyper-heuristic approach to
tackle two health care timetabling problems, the PAS and the nurse rostering.
They compared various hyper-heuristics and concluded that the best one
significantly outperforms previously mentioned tabu search [4] when focusing
on PAS.

Ceschia and Schaerf [8] proposed a multi-neighborhood local search al-
gorithm to solve this problem. Two metaheuristics were considered, the
Simulated Annealing and Tabu Search. In the preliminary comparison, the
Simulated Annealing performed better, it was therefore used and examined
in more detail. Results were compared to the lower bounds computed using
ILOG CPLEX [9] software and Integer Linear Programming (ILP) model
with relaxed some integrality constraint(s) for variables. Comparison showed
that the obtained results are quite close to the lower bound. It was observed
that due to the nature of the problem and the instances, the best solutions
have no transfers between beds. This allowed to reduce the search space to
solutions with zero transfers.

Kifah and Abdullah [10] tried to use a different metaheuristic called adaptive
non-linear Great Deluge (GD) algorithm for solving PAS problem. The
algorithm is based on local search and accepts the worse solution if it is less
than or equal to the water level. The standard GD uses linear decay rate
which determines the decline of the water level. Kifah and Abdullah [10]
employed adaptive changes to the water level and decay rate and reported
positive effect of this improvement. From the four neighborhood moves they
used, two are the same random moves as Ceschia and Schaerf [8] used and
the other two aim for more precise focus on satisfying the soft constraints.
However, the results are not as good as in Ceschia and Schaerf [8].

Range et al.[11] committed themselves to produce new best-known solutions.
That was quite a challenge since the results in Ceschia and Schaerf [8], with
which they are comparing, were close to the lower bound. The column
generation approach was proposed for this task and fine-tuned so that for

2

.................................... 1.2. Intel Xeon Phi

most of the small instances gives the best results, however the solver took
more time to get the result. There is no dominant parameter setting that
would yield strictly better results than the other settings, which limits its
real-world application. To get competitive results for the larger instances this
approach would need the further improvement.

Based on the original PAS problem Ceschia and Schaerf [12] proposed a new
formulation called Dynamic Patient Admission Scheduling under Uncertainty
(PASU) which introduced several real-world features including registration
day, uncertainty of the length of stay and delaying the admission of the (non-
urgent) patients. Registration day is the day the patient became known to the
system, primarily their admission and discharge day. The actual admission
day can be delayed but no more than given maximum for a patient dependent
on her/his medical condition. For emergency patients, the registration day
is equal to the admission day and delay is not possible. The overstay risk
expresses the possibility that the patient will need an extra day to stay
in the hospital and there is a corresponding penalty for that. Artificial
instance generator of this problem was implemented and published as well
as the benchmark instances [13] used when comparing ILP and local search
approach.

1.2 Intel Xeon Phi

Figure 1.2: Intel Xeon Phi coprocessor (source: [14])

Intel Many Integrated Core (MIC) Architecture used in Intel Xeon Phi
coprocessors (shown in Figure 1.2) is a relatively new and promising approach
to the parallelization and high-performance computing. It directly competes
with GPGPU approach, mainly with the NVIDIA CUDA which utilizes
graphics cards for general-purpose computing. Intel MIC is a x86 compatible
multiprocessor architecture that allows the same code to run on a coprocessor
as runs on the CPU. That results in added comfort for programmer and fair
comparison of the CPU and accelerated version, because optimizations for

3

1. Introduction
one piece of hardware will also reflect on the other.

There is almost no published research dealing with Intel Xeon Phi usage
for solving combinatorial problems. One exception is the work of Melab
et al. [15] who proposed a new data structure called Integer–Vector–Matrix
(IVM) for solving large permutation problems using a parallel Branch-and-
Bound algorithm. They showed that IVM is better suited for large number
of threads compared to the traditional linked list, and is thus suited for Intel
MIC architecture. The experiments performed on Intel Xeon Phi showed that
Branch-and-Bound algorithm with IVM is about 10 times faster than with
linked list.

1.3 Outline

This chapter presented a brief introduction, motivation and the literature
relevant to this thesis. Chapter 2 elaborates the problem discussed in this
thesis in more detail and shows a mathematical model. Chapter 3 contains
description of the properties and architecture of Intel Xeon Phi coprocessor,
its setup guide for Gentoo Linux and a micro-benchmark. After that, three
algorithms are proposed. The sequential algorithm is in Chapter 4, Parallel
I and Parallel II are in Chapter 5 and 6 respectively. The efficiency of the
algorithms is compared on the Central Processing Unit (CPU) and Intel Xeon
Phi in Chapter 7. The thesis is concluded in Chapter 8.

There are several appendices. The contents of the attached CD is described
in Appendix A. After that, there is a list of acronyms in Appendix B and the
used notation is summarized in Appendix C. The bibliography is at the end
of the thesis.

4

Chapter 2
Problem Definition

In this chapter, we present detailed description of the PAS problem starting
with required terminology and notation, followed by an overview of constraints
and mathematical model. We employ a similar notation to Ceschia and
Schaerf [8]. The PAS problem consists of the following features:.Day d ∈ D is a unit of time and one day is considered one time-slot.

The D denotes all days in planning horizon..Planning horizon is a number of consecutive days in the schedule..Patient p ∈ P is a person who needs a medical attention and have to
spend time in hospital. P denotes the set of all patients. Each patient
has the following features:.Admission day AD(p) is a day when the patient is admitted to

the hospital (first day)..Discharge day DD(p) is a day when the patient is discharged
from the hospital (next to the last day). Dp(p) denotes all days
that patient p stays in hospital..Gender according to which we can divide the patients into groups
of women PF and men PM ..Age page(p).Mandatory room property (MRP) pMRP(p, rq) is a room prop-
erty that the patient really needs..Preferred room property (PRP) pPRP(p, rq) is a room property
that the patient should have for his/her comfort.. Specialism pS(p) which corresponds with the medical treatment
the patient requires..Room preference pRP(p) is a capacity of the room in which the
patient wish to stay. Smaller rooms are usually charged extra in
hospitals.

5

2. Problem Definition
.Room r ∈ R where R denotes set of all available rooms for planning.

Each room is assigned to exactly one department. They have the following
features:.Capacity rc(r) which expresses how many beds are in it..Department rz(r) to which the room r belongs to..Gender type which specifies which gender should be accommo-

dated in the room. There are 4 types:. F type means that only female patients are allowed.. M type means that only male patients are allowed.. D type (most common) means that only one (arbitrary) gender
is allowed.. N type is a mixed gender room, both genders are allowed at
the same time.. Specialism Sr(r) of the room.Properties rq ∈ RQ present in the room, where RQ is set of all

properties that can be in the rooms..Beds.Department z is qualified for treatment in several specialisms S(z)..Transfer is each change of bed during the patient’s stay in hospital. It
is undesirable and thus penalized.

The goal is to assign patients to the beds with respect to hard constraints:. There can be at most one patient per bed per day.. Each patient has to have assigned a bed for each day of his/her stay.

And violate the following soft constraints as little as possible:. Room gender type restrictions should be fulfilled.. Patients preferred and mandatory room properties should be present in
the room.. Department age restrictions should be fulfilled.. Department and room specialism should correspond with the patients’.. Transfers should be minimized.

6

................................. 2.1. Mathematical Model

2.1 Mathematical Model

2.1.1 Preprocessing Steps

As Ceschia and Schaerf [8] pointed out, the beds in each room are equivalent
in terms of features and constraints therefore we can use patient-room as-
signments to simplify the problem. Resulting patient-room assignment must
be then post-processed into the patient-bed assignment. It is important to
avoid moving patient from bed to another bed inside a room and thus causing
transfer. There always exists patient-bed assignment that never transfers
patient from one bed to another in the same room if the patients are processed
according to their first day in the room [8].

There are several patient-room constraints that can be precomputed into a
joint matrix C(p, r). It contains following penalties which are independent of
the day and other patients:. Static room gender (SRG) fSRG(p, r).Mandatory room property (MRP) fMRP(p, r). Preferred room property (PRP) fPRP(p, r). Age constraint fage(p, r). Room preference (RP) fRP(p, r). Department specialism (DS) fDS(p, r). Room specialism (RS) fRS(p, r)

These constraints are described in more detail below. Weights of all soft
constraints are specified in the Table 2.1.

C(p, r) = fSRG(p, r) + fMRP(p, r) + fPRP(p, r) + fage(p, r)+
+fRP(p, r) + fDS(p, r) + fRS(p, r)

(2.1)

Static room gender (SRG) constraint is applied only for room types F or
M which means that the particular room can be occupied only by females or
males.

fSRG(p, r) =
{
wSRG, iff room r type does not correspond with patient gender,
0, otherwise.

(2.2)
Mandatory room property (MRP) is denoted rMRP(r, rq) ∈ {0, 1} where

1 (0) means that the room property rq is present (not present) in the room r.
Mandatory room property from point of view of a patient p is pMRP(p, rq) ∈
{0, 1} where 1 (0) means the room property rq is needed (not needed) by the
patient p.

fMRP(p, r) = wMRP ·
∑

rq∈RQ

[(1− rMRP(r, rq)) · pMRP(p, rq)] (2.3)

7

2. Problem Definition
Description Weight Penalty
Patients in the rooms of type F and M do not have
appropriate gender wSRG 5

Room is not equipped with mandatory room properties wMRP 5
Room is not equipped with preferred room properties wPRP 2
Age of the patients does not correspond to the depart-
ment age limits wage 10

Patient room preference is not fulfilled wRP 0.8
Department specialism does not correspond to the pa-
tient needs wDS 1

Room specialism does not correspond to the patient
needs wRS 1

All patients in the room of type D do not have the same
gender wRG 5

Transfer of a patient wTr 11

Table 2.1: Weights of soft constraints

Preferred room property (PRP) rPRP(r, rq) ∈ {0, 1} is similar to MRP,
however when MRP penalty for a particular room, patient and room property
is issued, the PRP penalty is not applied there.

fPRP(p, r) = wPRP ·
∑

rq∈RQ

[(1− rMRP(r, rq)) · (1− rPRP(r, rq)) · pPRP(p, rq)] ,

(2.4)
Departments and by extension the rooms may have age constraints - lower

bound LBage(r) and upper bound UBage(r). The penalty for not meeting the
age constraint is following:

fage(p, r) =
{
wage iff page(p) < LBage(r) OR page(p) > UBage(r),
0, otherwise.

(2.5)

Room preference (RP) pRP(p) of a patient p is a type of a room according
to its capacity rc(r) which the patient desire (there are single, double rooms
etc.). The penalty is issued only if patient gets a room with greater capacity
than she/he wants.

fRP(p, r) =
{
wRP iff pRP(p) < rc(r),
0, otherwise.

(2.6)

Each room r belongs to a department z = rz(r) which is qualified for
treatment in several specialisms s ∈ S(z). S(z) is set of specialisms of
department z. The degree of specialism dS(z) of given department characterize
how well it is prepared to treat patients with given specialism pS(p). The
major specialism has degree 1, the minor has 2. For every patient that is not
treated in department with his major specialism, the penalty proportional to
degree-specialism difference ∆dS

(z, s) is issued.

fDS(p, r) = ∆dS
(rz(r), pS(p)) · wDS (2.7)

8

................................. 2.1. Mathematical Model

∆dS
(z, s) =

{
dS(z)− 1, iff specialism s ∈ S(z), ,
2, otherwise.

(2.8)

Similarly to the departments, each room is equipped for the certain spe-
cialisms s ∈ Sr(r). The degree of specialism is not applied here.

fRS(p, r) =
{

0, iff specialism pS(p) ∈ Sr(r),
wRS, otherwise.

(2.9)

2.1.2 Mathematical Model

The mathematical model we present in this section helps to demonstrate
the PAS problem in detail. Finding optimal solution even for the smallest
instance using ILP model and CPLEX proved to be very time-consuming.
P. Demeester provided the optimal result for the first instance and it took
over 60 hours of CPLEX computation [16]. We have also implemented our
mathematical model in ILOG CPLEX [17], verified it and used it to compare
results with our local search approach in the section 7.2.1.

The decision variables are following:

x(p, r, d) =
{

1, iff patient p is assigned to room r on day d,
0, otherwise.

(2.10)

t(p, r, d)) =
{

1, iff patient p is transferred from room r on day d,
0, otherwise.

(2.11)
f(r, d) number of female patients in room r on day d (2.12)
m(r, d) number of male patients in room r on day d (2.13)

Thanks to the preprocessing step described above, there are only three
components in the objective function. Patient-room cost (PRC) FPRC which
contains cost using C(p, r) matrix whose elements describe how is a room r
generally suitable for a patient p. Room gender (RG) cost FRG which covers
room gender constraint of D type room (those which should be occupied by
arbitrary one gender) and transfer cost FTr which includes the transfers of
patients between rooms. Set of all D type rooms is denoted RD

FP RC =
∑

p∈P,r∈R,d∈Dp

Cp,r · xp,r,d (2.14)

FRG =
∑

r∈RD,d∈D
wRG ·min (f(r, d),m(r, d)) (2.15)

FT r =
∑

p∈P,r∈R,d∈D
wTr · tp,r,d (2.16)

9

2. Problem Definition
The objective is to minimize the function (2.17) subject to the following

constraints: constraint (2.18) ensures that every patient is assigned to exactly
one room for every day of his/her stay; constraint (2.19) makes sure that no
room is overcrowded; constraints (2.20, 2.21) computes numbers of female
f(r, d) and male m(r, d) patients for room gender cost; and finally constraint
(2.22) computes number of transfers t(p, r, d) for computing transfer cost.

min (FPRC + FRG + FTr) (2.17)

s.t. ∑
r∈R

x(p, r, d) = 1, ∀p ∈ P, d ∈ Dp(p) (2.18)

∑
p∈P

x(p, r, d) ≤ rc(r), ∀r ∈ R, d ∈ D (2.19)

f(r, d) =
∑

p∈PF

x(p, r, d), ∀r ∈ R, d ∈ D (2.20)

m(r, d) =
∑

p∈PM

x(p, r, d), ∀r ∈ R, d ∈ D (2.21)

t(p, r, d) ≥ x(p, r, d)− x(p, r, d+ 1), ∀p ∈ P, r ∈ R,
d ∈ {AD(p) . . .DD(p)− 2}

(2.22)

10

Chapter 3
Intel Xeon Phi

In this chapter, the Intel Xeon Phi coprocessor is discussed. First its parame-
ters, architecture and properties, then setup guide for Gentoo Linux. At the
end of this section, the synthetic micro-benchmark is presented and used to
compare compilers in terms of code optimizations and to compare CPU with
Intel Xeon Phi.

Figure 3.1: Intel Xeon Phi card (source: [14])

Number of cores 57–61
Core clock speed 1.1–1.238 GHz
Number of hardware threads per core 4
L1 Data Cache 32 kB
L1 Instruction Cache 32 kB
L2 Cache 512 kB
Memory 6–16 GB

Table 3.1: Intel Xeon Phi specifications (Knights Corner product line)[18]

Intel Xeon Phi is a coprocessor for high-performance computing based
on Intel Many Integrated Core (MIC) architecture. The Knights Corner
product line is available, which is the first generation of Intel’s commercial
MIC product. Summary of the basic specifications is shown in Table 3.1. It

11

3. Intel Xeon Phi
has over 50 cores connected by on-die bidirectional ring shown in Figure 3.3
and is connected via PCIe bus to a Intel Xeon processor, which is usually
referred as the host. Communication on PCIe bus is performed via virtual
TCP/IP connection allowing it to have its own IP address, be connected to
the network and act as high-performance compute node. The coprocessor has
its own Linux operating system and can run native Xeon Phi applications
as well as heterogeneous ones where part executes on the host and part is
offloaded to the coprocessor.

Intel MIC architecture is an x86 compatible multiprocessor architecture
allowing us to run the code designated for CPU on Xeon Phi and vice versa.
The core architecture shown in Figure 3.2 is based on Intel Pentium processor
family which uses in-order instruction execution therefore there is no dynamic
scheduling of instructions common in modern CPUs. There are also some new
features and improvements, mainly Vector Processing Unit (VPU) supporting
512-bit SIMD instruction set called Intel Initial Many Core Instructions
(IMCI). The VPU accommodates Extended Math Unit (EMU) which helps
to vectorize the transcendental operations, such as log, square root and
reciprocal function [19, 20]. Each core has 2 pipelines (U-pipe and V-pipe),
therefore it can execute 2 instructions per cycle, however the pipelines are
not equal. Not all instructions can be executed on the V-pipe, e.g. more
complex vector instructions can be executed only by the U-pipe. Each core
can run 4 hardware threads.

The second generation of Intel Xeon Phi coprocessors with codename
Knights Landing should be available during the year 2016[21]. The architec-
ture should be based on Intel Silvermont (Atom) architecture.

Figure 3.2: Intel Xeon Phi core architecture (source:[22])

12

........................ 3.1. Installation Instructions for Gentoo Linux

Figure 3.3: Intel Xeon Phi bidirectional ring interconnect (source: [22])

3.1 Installation Instructions for Gentoo Linux

Official support of Linux distributions is limited to only two distributions:
SUSE Linux Enterprise Server (SLES) and Red Hat Enterprise Linux (RHEL).
The installation procedure on other distributions is not always straightforward,
therefore we are going to show how to install Xeon Phi on Gentoo Linux. We
used Gentoo Linux with kernel version 3.12.49, Manycore Platform Software
Stack (MPSS) 3.5.2 [23] and two Xeon Phi 31S1P coprocessors.

We have built upon the work of Anselm Busse who managed to run the
Xeon Phi on Gentoo Linux. He has presented overlay on his GitHub [24]
as well as brief tutorial [25]. We have extended his overlay by adding new
ebuilds, updating it to newer MPSS 3.5.2, fixing some dependencies and
embedding Python 2.7 dependency into the ebuilds so that they behaved
correctly even when multiple Python versions are installed. New ebuilds
mainly consist of packages supporting offloading. Since Intel supports only
SLES and RHEL with a very limited number of kernel versions 2.6, 3.0, 3.10,
3.12; a few patches had to be written in order to make the ebuilds compilable.
The changes usually deal with OS distribution check or a slightly different
kernel API.

This installation guide has the following structure. First we show how
to setup the host system and coprocessor, then how to install Intel Parallel
Studio XE, after that you should be able to compile code using Intel compiler
and use offloading mentioned in the third chapter. Finally we present a
compiler comparison of GNU compiler, Intel compiler CPU version and Intel
compiler offloaded version on synthetic micro-benchmark.

13

3. Intel Xeon Phi
3.1.1 Setup System and Xeon Phi Coprocessor

Packages to Install

The following MPSS packages need to be installed in order to setup the host
system to run and administrate the coprocessor.. sys-apps/mpss-daemon - Daemon for starting/stopping Xeon Phi copro-

cessors + micctrl control utility. sys-apps/mpss-micmgmt - Various tools to manage Intel Xeon Phi co-
processors (e.g. miccheck, micinfo, micflash). sys-firmware/mpss-flash - Bootloader and firmware images for flashing
Intel Xeon Phi coprocessors. sys-kernel/mic-image - Boot image for Xeon Phi card. sys-kernel/mic-rasmm-kernel - RASMM kernel for Intel Xeon Phi card. sys-kernel/mpss-modules - Kernel modules for a host. sys-libs/libmicmgmt - C-library to access and update Intel Xeon Phi
coprocessor parameters. sys-libs/libscif - SCIF library for Intel MIC coprocessors. sys-libs/mpss-headers - Header files for MIC Architecture. sys-devel/mpss-sdk-k1om - SDK for Intel Xeon Phi. dev-util/gen-symver-map - Utility for generating maps of symbols (Sys-
tem.map)

The following MPSS packages provide offloading support.. sys-libs/mpss-coi - Library for offloading support for Intel Xeon Phi
coprocessor. sys-libs/mpss-myo - Shared memory library for MPSS stack

The ebuilds for the packages mentioned above are on the enclosed CD.

After Installation

When all the necessary packages are installed, we can load the kernel module
mic. There can also be mic_host module present in the kernel, however we
cannot use it. Make sure that mic_host is not loaded to avoid possible collisions.
The kernel module can be loaded by the following command:

modprobe mic

14

........................ 3.1. Installation Instructions for Gentoo Linux

It is useful to add mic module to /etc/conf.d/modules in order to load the
module automatically during the booting process. The snippet of this file
can look like this:
modules="nvidia -uvm msr nf_conntrack_ftp mic"

In the next sections we will use the micctrl control utility that allows us to
control and administer the coprocessors. Note that the last argument of this
tool is a list of Xeon Phi cards which allows us to select only some of the cards
installed in the system. This argument is optional and when not specified, it
applies the command to all available Xeon Phi cards. For example the
micctrl -s mic0 mic1

will check coprocessor 0 and 1 status. The coprocessors are hereinafter
denoted "micX" where X stands for coprocessor number (e.g. mic0, they are
numbered beginning from zero).

We can generate default configuration files in /var/mpss
micctrl --initdefaults

and start the daemon.
/etc/init.d/mpss start

The micctrl utility let us control and configure the coprocessor. First we use
micctrl -s

to check the coprocessor status. The card should be online. If it indicates
the ready state, try to boot it.
micctrl -b

Note that booting takes a moment because Xeon Phi runs on Linux micro-
kernel that has to be loaded to the card from the host system.

After that, it is needed to add users, setup network and possibly update
the coprocessor flash as shown in the next sections.

Adding Users

Users can be added to /etc/passwd and /etc/shadow files on the coprocessor
file system by micctrl --useradd command. The syntax is following
micctrl --useradd=<username > --uid=<uid > \
--gid=<gid > [--home=<dir >] [--comment=<string >] \
[--app=<exec >] [--sshkeys=<keyloc >] [MIC list]

It is necessary to specify a correct user and group IDs. These can be
obtained by id command. Users should have valid RSA keys on the host
system in their .ssh directory in order to be able to establish SSH connection
with the coprocessor. To generate SSH key use ssh-keygen.

If the SSH keys are not added automatically or they are stored at different
location, you can use --sshkeys=<keyloc> switch to explicitly specify the path.

15

3. Intel Xeon Phi
Network Configuration

The mic kernel module has to be loaded before the network setup, see section
After Installation 3.1.1. The communication between host and coprocessor is
done via virtual TCP/IP network over PCIe bus. The Static Pair topology is
the simplest configuration usually used in single host installations:. Top two quads have default value "172.31".. Third quad indicates coprocessor number (0, 1,...).. Last quad: coprocessor gets "1", host "254".

More complex configurations are also possible. For example, it is possible
to connect the card to the Internet. For more information see System
Administration for the Intel Xeon Phi Coprocessor [26] and Configuring Intel
Xeon Phi coprocessor inside a cluster [27] guides.

Each coprocessor is assigned to a separate subnet. The first three quads
must match, they define the subnet of the particular coprocessor. Example
of IP addresses for a host number X:. Assigned address to the host for communication with coprocessor number

X: 172.31.X.254. Assigned address to the coprocessor number X for the communication
with the host: 172.31.X.1

Running micctrl --initdefaults does not correctly initialize micX network
interfaces on Gentoo, it has to be done manually. The host side of the
coprocessors is defined in /etc/conf.d/net (note that we don’t use RHEL con-
figuration file /etc/sysconfig/network-scripts/ifcfg-micX). In /etc/conf.d/net
you should define network interface micX for each installed coprocessor. A
snippet of the file which defines the network interface for coprocessor number
X is as follows.
config_micX=null #ensure that a network manager is not used
config_micX="172.31.X.254␣netmask␣255.255.255.0"
mtu_micX="64512"

After that, create a symbolic link from net.lo to net.micX.
cd /etc/init.d
ln -s net.lo net.micX

Start the network services. For OpenRC and default runlevel that means
to execute:
rc -update add net.micX default

The coprocessor configuration is located in file /etc/mpss/micX.conf. There
can be assigned hostname to coprocessor and set the network configuration.
The part of the file that we are interested in could look like this:

16

........................ 3.1. Installation Instructions for Gentoo Linux

Hostname to assign to MIC card
HostName your.domain.com

Network class=StaticPair micip =172.31.X.1 hostip =172.31.X.254 \
mtu =64512 netbits =24 modhost=yes modcard=yes

After editing this file run micctrl --resetconfig to instantiate the changes
in the configuration files.

Check with ifconfig that all host network interfaces are correctly configured.
There is snippet of what you might get:
micX: flags=67<UP ,BROADCAST ,RUNNING > mtu 64512
inet 172.31.X.254 netmask 255.255.255.0 broadcast 172.31.X.255
inet6 fe80 ::4e79:baff:fe1c:1b4f prefixlen 64 scopeid 0x20 <link >
ether 4c:79:ba:1c:1b:4f txqueuelen 1000 (Ethernet)
RX packets 6 bytes 468 (468.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 8 bytes 648 (648.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Update Flash

MPSS has specific firmware requirements which are stated in MPSS readme
[28]. The micinfo utility provides detailed information about the coprocessor
hardware and software and allows us to check whether the flash, SMC firmware
and bootloader versions correspond to required ones. For MPSS 3.5.2 [23]
these versions are required:. Flash Version : 2.1.02.0391. SMC Firmware Version : 1.17.6900. SMC Boot Loader Version : 1.8.4326

Before flashing, it is very important to see Flash Issues & Remedies [29]
and readme for MPSS [28]. There are described critical combinations that do
not allow the standard way of flashing. In rare cases, these combinations can
even lead to a card becoming stuck in a non-operational state.

Flash image files (with the suffix .rom.smc) are stored in the default location
/usr/share/mpss/flash/. If they are elsewhere, you need to pass the path as
an argument to the flash tool. There are few preconditions that should be
satisfied before flashing.. Current running version of Flash must be >=375, otherwise see Flash

Issues & Remedies [28].. Coprocessors must be in the ready state. You can achieve it by running
micctrl -rw.

The micflash utility can also check the compatibility of the image file or save
the current flash image into a file.

17

3. Intel Xeon Phi
Use this command to update device X:

micflash -update -device X

When SMC boot loader update is necessary use this command to update
flash and SMC of device:
micflash -update -device X -smcbootloader

After the flashing is complete perform a cold boot.

3.1.2 Installation of Intel Parallel Studio

Intel Parallel Studio XE [30] is available for students, educators, academic
researchers, and open source contributors free of charge. After download, the
install script install.sh will guide you through the process. For more details,
see Intel Parallel Studio XE Installation guide. It depends on Python 2.7,
you can select the correct Python version and run the installer by using the
following command.
EPYTHON=python2 .7 ./ install.sh

The installer will warn you that the operating system is unsupported, however
the installation should proceed successfully and Intel Compiler should work.
So far we have not noticed any problems with Intel Compiler.

To initialize the environment variables for Intel Parallel Studio XE tools in
a current shell run
source <install -dir >/bin/compilervars.sh intel64

You can add this command to the ~/.bashrc file to make it permanent for a
current user.

For more information see Intel Parallel Studio XE Installation Guide [31].

3.1.3 Offloading

Offload programming model refers to running main program on a host and
offloading work to the coprocessor. This model fits well in the program where
there are sections in which coprocessor parallel performance and vectorization
can be utilized, as well as sections which benefit from CPU performance
and architecture (e.g. out-of-order execution, bigger cache). However there
are significant overhead costs for initialization and transferring data to a
coprocessor that may incur a performance bottleneck.

On each coprocessor, there is an automatically created special user called
micuser who executes work offloaded to the coprocessor.

For more information, see Offload Compiler Runtime for the Intel Xeon
Phi Coprocessor [32] and Native and Offload Programming Models [33].

18

..................................... 3.2. Benchmark

3.2 Benchmark

We have created synthetic micro-benchmark to test our system and to make
some comparisons. Since version 2.22, the glibc contains libmvec [34], the
vector math library which contains vector variants of scalar math functions
implemented by using Single Instruction, Multiple Data (SIMD) instructions
(e.g. SSE or AVX on x86 64 bit platform). Therefore, we were able to
compare the performance with and without vectorization using GNU Compiler
Collection (GCC) [35]. The second objective was to compare the offloaded and
CPU versions using Intel C++ Compiler (ICPC) [36]. Third objective was
to compare ICPC and GCC in terms of vectorization and code optimization
only for the CPU.

The benchmark randomly initializes the array a of the length H and does
specified number of attempts G to compute sin2 ai + cos2 ai; i = 0...H − 1.
The input is H - the size of the array and G - the number of trials (number
of repetitions of computation). The snippet of the benchmark source code
follows, the whole source code is available on the enclosed CD.
#pragma omp parallel
...
#pragma omp for
for (uint32_t j = 0; j < G; ++j){

#pragma omp simd aligned(a,b:AVX_ALIGNMENT)
for (uint32_t i = 0; i < H; ++i) {

// note: suffix ’f’ to function names for floats
// to enable vectorization
b[i] = powf(sinf(a[i]), 2.0f);
b[i] += powf(cosf(a[i]), 2.0f);

}
}

The following optimization flag were used:
g++ -march=native -ffast -math -fopenmp -O3 -std=c++11
icpc -march=native -openmp -O3 -std=c++11

The number of attempts G distinguished small and heavy workloads. The
time in Table 3.2 is average of 10 runs. Hardware configuration was following:
two Intel Xeon E5-2620 CPUs and two Xeon Phi 31S1P coprocessors with 64
GB of RAM.

G H Average time
GCC 4.9.3 without vectorization 220 210 2.310 s
GCC 4.9.3 with vectorization 220 210 0.602 s
ICPC 16.0.0 CPU 220 210 0.381 s
ICPC 16.0.0 offloaded 220 210 0.686 s
ICPC 16.0.0 CPU 230 210 355 s
ICPC 16.0.0 offloaded 230 210 39.6 s

Table 3.2: Benchmark results

19

3. Intel Xeon Phi
From Table 3.2, it is obvious that for a small workload, the offloading

overhead significantly reduces the speedup, resulting in a worse time than
pure CPU version compiled by ICPC. However, for the heavy workload the
offloaded version is almost 9 times faster than ICPC CPU version. Comparing
ICPC with GCC using vectorization, the ICPC is around 1.6 times faster
on this benchmark. When focusing on GCC, the vectorization improved
performance 3.8 times.

20

Chapter 4
Sequential Algorithm

The sequential algorithm we used is an implementation of M0 solver proposed
by Ceschia and Schaerf [8]. It is a multi-neighborhood local search algorithm
based on SA.

4.1 Simulated Annealing

SA is a metaheuristic emulating a physical process used in metallurgy where
the metals are slowly cooled from high-energy (high temperature) to the
low-energy (low temperature) state in order to decrease defects. Gelatt et al.
[37] and Černý[38] introduced it to find near-optimal solutions of the hard
combinatorial problems such as traveling salesman problem. In each iteration
of SA, a new neighbor solution is generated using moves and evaluated. All
improving and some of the non-improving moves are accepted, the temperature
is used to control the acceptance probability of the non-improving moves.
During the run of the algorithm, the gradually decreasing temperature also
decreases the probability that the non-improving move is accepted. The non-
improving moves help to escape the local minima and allow more extensive
search for the solution.

We used SA with geometric cooling, probabilistic acceptance, and two
random moves which are described more thoroughly in the next section 4.2.
The pseudocode in the Algorithm 0 illustrates the algorithm in greater detail.
Cooling rate is denoted β and it is used to decrease the previous temperature
T ’ into the next value T such that

T = β · T ′. (4.1)

The probabilistic acceptance threshold is defined as

e−
10·∆F

T (4.2)

where
∆F = F (S ◦m)− F (S) (4.3)

is a difference between the value of objective function of a solution S with
applied move m and value of solution S. The ◦ operator in S ◦m means

21

4. Sequential Algorithm
that the move m is applied at the solution S. The hard constraints on the
capacity of rooms are converted into soft constraints with very high weight.

The number 10 in the expression 4.2 is motivated by the benefits of
using integer algebra that are described later in the section 4.3. For better
efficiency, the weights are multiplied by ten at the start of the algorithm and
the resulting objective function divided by ten at the end to obtain correct
objective function value. Note that this value relates to the original values of
weights as stated in Table 2.1.

There are two loops in the algorithm - the inner loop performs Nmax

number of iterations on one value of temperature, the outer one decreases the
temperature by multiplicating it by the cooling rate β. Each iteration consists
of choosing random move (function RandomMove(S) in Algorithm 0) with
random parameters. Then the move is evaluated, which yields ∆F . The
improving move is applied every time, the non-improving is applied only with
the probability defined by the acceptance criteria in Equation 4.2. At the
end of the iteration, the best solution Sbest is updated if needed.

There are four parameters that this algorithm needs:. Tmin is a stopping temperature of the SA.. Tinit is an initial temperature.. β is a cooling rate..Nmax is a number of iterations performed on one value of temperature
(controls inner loop of the SA algorithm).

4.2 Moves

There are two moves used in this algorithm: Change Room (CR) and Swap
Patients (SP). As mentioned above, the algorithm chooses in each iteration
one of them randomly, but with a different probability. Ceschia and Schaerf
[8] found out that the best probability for SP is 38% and for CR it is the
remaining 62%.

Change Room (CR)

CR move picks one random patient and assigns him/her a new random room
for the full stay. The image in Figure 4.1 illustrates an example of this move.

r6p3

d1 d2 d14

r2p3

d1 d2 d14

CRhp3; r2i

Figure 4.1: Change Room (CR) move example

22

....................................... 4.2. Moves

Algorithm 0 Sequential algorithm
1: T ← Tinit;
2: S ← RandomState();
3: Sbest ← S;
4: while T ≥ Tmin do
5: N ← 0;
6: while N < Nmax do
7: m← RandomMove(S);
8: ∆F ← F (S ◦m)− F (S); . S ◦m means m applied at S
9: if ∆F ≤ 0 then

10: S ← S ◦m;
11: else
12: r ← RandomNumber(0, 1); . Random number from [0; 1)
13: if r ≤ e− 10·∆F

T then
14: S ← S ◦m;
15: end if
16: end if
17: if F (S) < F (Sbest) then . Update the best solution
18: Sbest ← S;
19: end if
20: N ← N + 1;
21: end while
22: T ← β · T ;
23: end while
24: returnSbest;

Swap Patients (SP)

SP move picks two random patients such that their stay overlap in at least
one day. Than the patients exchange their rooms,the first patient gets the
room of the second patient and vice versa. The Figure 4.2 illustrates an
example of this move.

r6p3

d1 d2 d14

SP hp3; p5i

r2

r2p3

d1 d2 d14

r6p5 p5

Figure 4.2: Swap Patients (SP) move example

23

4. Sequential Algorithm
4.3 Optimizations

There are several important optimizations that we used to create an efficient
implementation. The most important one is a delta evaluation of the objective
function. The changes to the solution made by certain move are analyzed
and the ∆F difference in the objective function is computed without directly
evaluating the whole schedule. That means it is not necessary to compute the
full objective function when move is evaluated and since the moves are quite
simple, the delta evaluation is significantly faster than the full evaluation of
the schedule.

The vectorization was used to precompute values of exponential function
and random numbers. To do it efficiently for the exponential function, the
weights of the constraints presented in Table 2.1 were multiplied by 10 during
the run of the solver. The objective function (as well as ∆F) than always
has integer value for the weights in Table 2.1. That allows to simplify the
indexing of the precomputed values by ∆F . At the end of the algorithm, the
objective function is divided by 10 to obtain the correct value. The values
of exponential function were precomputed for limited number of ∆F every
time the temperature dropped (at the beginning of the outer loop in the
Algorithm 0). This approach benefits from the high number of iterations
per one temperature value. The values beyond the precomputed range can
be computed directly or the closest precomputed value can be used instead
of the exact value in case that there are small differences. In the case of
the random numbers, the buffer for them is created and filled with random
numbers. When all the numbers are used, it is refilled.

For the vectorization, the specialized library can be utilized. In this case the
Intel Math Kernel Library (MKL) [39] was useful because it contains optimized
and vectorized math and statistics functions including the vectorized random
number generation and exponential function computation.

24

Chapter 5
Parallel Algorithm I

We propose two parallel algorithms for solving PAS problem. The first version
is presented in this chapter, the second in the next (Chapter 6). Both versions
are based on the sequential version presented in Chapter 4 and use Simulated
Annealing (SA). There are more parameters than in the sequential version:. Tmin is a stopping temperature of the SA.. Treop is a SA initial temperature threshold. The βreop rate is used below

this threshold instead of β.. Tpool is an initial temperature of random solutions in the solution pool.. β is a cooling rate of the SA.. βreop is a cooling rate of the reoptimizations that have initial temperature
below Treop..Nmax is a number of iterations performed on one temperature (controls
the inner loop of the SA algorithm).. itersPerCheck defines the number of iterations between the checks of
the solution pool. The checks are performed in order to load the better
solution from solution pool to the SA.. umin is a threshold for temperature Tmin which defines how big the
relative difference between SA best solution Sbest and the solution in
pool must be to load the better solution from pool to SA and continue
from that new solution. It is used to compute parameters of exponential
function 5.1 as shown in Figure 5.2.. umax is a threshold similar to umin but for temperature Tpool.. µ is a mean value of the normal distribution of a random number
generator.. σ2 is a variance of the normal distribution of a random number generator.. poolSize is the size of the solution pool.

25

5. Parallel Algorithm I

Figure 5.1: High-level scheme of the Parallel Algorithm I

This first approach utilizes multiple SA runs in parallel as depicted in
Figure 5.1 or described in more detail in Algorithm 1. The threads share
solutions via solution pool of the the size poolSize. Each thread repeatedly
chooses a random solution out of the solution pool and run the SA algorithm
(function RunSA in Algorithm 2) on them until one of the stopping criteria is
met, either timeout or the requested quality is achieved. The quality criteria
was introduced for the purpose of comparison with the existing algorithms.
When applying to unknown instances, there is of course no knowledge of what
quality is achievable; in this case, the timeout has to suffice.

Each solution in the solution pool is assigned a temperature at which
the solution was uploaded to the pool. Meaning that when SA updates the
solution in the pool, it saves its temperature as well. The SA algorithm needs
an initial temperature which is based on temperature T [i] of loaded solution
S [i] in the pool, and then raised by an absolute value of random number from
normal distribution with mean µ and variance σ (see line 9 in Algorithm 1).

There are some modifications of the SA algorithm compared to the sequen-
tial version, mainly with regards to the solution pool. The pseudocode of
it is shown in Algorithm 2. When the solution Sbest in SA achieves better
quality than the one saved in the pool, the algorithm tries to update the
solution pool (function Update in Algorithm 3). There, it checks whether
the solution in the pool is still worse than the one found by SA. If it is, the
pool is updated.

The SA can load a better solution from the solution pool during its run
(function Load in Algorithm 4). The interval of checking is controlled by
itersPerCheck parameter that defines number of iterations between the
checks. The load happens only if the difference of the SA best solution
Sbest and solution from pool is higher than a threshold given by exponential
function (depicted in Figure 5.2)

K · eA·T (5.1)

where coefficients A and K are computed from parameters umin and umax in
the following way:

26

...................................5. Parallel Algorithm I

A = log (umax/umin)/(Tpool − Tmin) (5.2)

K = umin/e
A·Tmin (5.3)

T

Tmin Tpool

umin

umax

K · e
A·T

Figure 5.2: Exponential function

Algorithm 1 Version I of the parallel algorithm
1: A← log (umax/umin)/(Tpool − Tmin);
2: K ← umin/e

A·Tmin

3: for i← 0 . . . poolSize− 1 do . Initialize the solution pool
4: S [i]← RandomState();
5: T [i]← Tpool;
6: end for
7: while (!timeout || !qualityAchieved) do . Parallel section
8: idx← RandomInteger(0, poolSize);
9: Tinit ← T [idx] + |RandomFrom(N(µ, σ2))|;

10: if Tinit < Treop then
11: Sout ← RunSA(Tinit, Tmin, βreop, idx, itersPerCheck);
12: else
13: Sout ← RunSA(Tinit, Tmin, β, idx, itersPerCheck);
14: end if
15: Update(idx, Sout, Tmin)
16: end while
17: returnBestSolutionFromPool();

27

5. Parallel Algorithm I
Algorithm 2 RunSA function
1: function RunSA(Tinit, Tmin, β, idx, itersPerCheck)
2: S ← S [idx] ;
3: T ← Tinit;
4: Sbest ← S;
5: while T ≥ Tmin do
6: N ← 0;
7: while N < Nmax do
8: m← RandomMove(S);
9: ∆F ← F (S ◦m)− F (S); . S ◦m means m applied at S
10: if ∆F ≤ 0 then
11: S ← S ◦m;
12: else
13: r ← RandomNumber(0, 1);
14: if r ≤ e− 10·∆F

T then
15: S ← S ◦m;
16: end if
17: end if
18: if F (S) < F (Sbest) then . Update the best solution
19: Sbest ← S;
20: end if
21: if F (S) < F (S [idx]) then
22: Update(idx, Sbest, T);
23: end if
24: if (N mod itersPerCheck) == 0 then
25: S ← Load(idx, Sbest, T);
26: end if
27: N ← N + 1;
28: end while
29: T ← β · T ;
30: end while
31: returnSbest;
32: end function

Algorithm 3 Update function
1: function Update(idx, Sbest, T)
2: if Sbest < S [idx] then
3: lock(S [idx]);
4: S [idx]← Sbest;
5: T [idx]← T ;
6: unlock(S [idx]);
7: end if
8: end function

28

...................................5. Parallel Algorithm I

Algorithm 4 Load function
1: function Load(idx, Sbest, T)
2: if ((F (Sbest)− F (S [idx]))/F (S [idx])) > K · eA·T then
3: if trylock(S [idx]) then
4: Sout ← S [idx] ;
5: unlock(S [idx]);
6: end if
7: end if
8: returnSout;
9: end function

29

30

Chapter 6
Parallel Algorithm II

The second version of the parallel algorithm runs only one instance of simu-
lated annealing, however, the moves are evaluated in parallel. It still preserves
the form of the SA algorithm used in sequential version, which is apparent
from simplified diagram in Figure 6.1. The pseudocode in the Algorithm 5
and 6 covers it in a greater detail. The parallelization is based on the efficient
representation of the solution and conflict detection. The conflict occurs when
one thread changes the part of the solution that another thread is working
on.

The solution S consists of the set of room-assignments Ri where patients
are assigned to the particular room number i. At the start, the solution
is randomly initialized and each thread sets its temperature to the initial
value. That is followed by iterating through inner and outer loops as in
sequential algorithm in chapter 4. Inside the inner loop, the algorithm starts
by choosing a random move (using function RandomMove). Each move
operates only on two room-assignments from the solution: Rj and Rk, which
limits the conflicts between threads. There is a counter of changes for each
room-assignment (changesCounter[Ri]) that keeps track of modifications in
the rooms and helps to identify the conflicts between threads. After the
move and its parameters are chosen, the values of the counter of changes
are stored and the move is evaluated. The criteria for accepting the moves
are the same as in sequential version, however, the application of the move
onto the solution is more complicated, as shown in function ApplyMove in
Algorithm 6.

When applying a move, both room-assignments Rj and Rk have to be
locked. If the locking is not successful, the current move is thrown away and
new move is evaluated. In the case that the locking is successful, the counter
of changes is compared with the saved values to check whether another thread
did not changed the room-assignments intended for update. When the counter
of changes is equal to the saved values, there is no conflict, the move is applied
and the counter of changes is incremented. When a conflict occurs, the move
cannot be applied in order to keep the solution consistent. In this case, the
move is discarded and the thread resume with the next iteration. Note that
since the moves are simple and the delta evaluation is efficient, it is better to
continue to work rather than blocking the thread or resolving the conflicts.

31

6. Parallel Algorithm II..................................
Algorithm 5 Version II algorithm
1: S ← RandomSolution();
2: T ← Tinit; . Parallel section
3: while T ≥ Tmin do
4: N ← 0;
5: while N < Nmax do
6: m,Rj , Rk ← RandomMove(S);
7: cj ← changesCounter[Rj]; . Atomic read
8: ck ← changesCounter[Rk]; . Atomic read
9: ∆F ← F (S ◦m)− F (S); . S ◦m means m applied at S

10: if ∆F ≤ 0 then
11: ApplyMove(m,S,Rj , Rk, cj , ck);
12: else
13: r ← RandomNumber(0, 1); . Random number from [0; 1)
14: if r ≤ e− 10·∆F

T then
15: ApplyMove(m,S,Rj , Rk, cj , ck);
16: end if
17: end if
18: N ← N + 1;
19: end while
20: T ← β · T ;
21: end while
22: returnS;

Algorithm 6 ApplyMove function
1: function ApplyMove(m,S,Rj , Rk, cj , ck)
2: if !trylock(Rj) then
3: return;
4: end if
5: if !trylock(Rk) then
6: unlock(Rj);
7: return;
8: end if
9: if changesCounter [Rj] 6= cj ||changesCounter [Rk] 6= ck then

10: unlock(Rk);
11: unlock(Rj);
12: return;
13: end if
14: ++changesCounter [Rj] ;
15: ++changesCounter [Rk] ;
16: S ← S ◦m;
17: unlock(Rk);
18: unlock(Rj);
19: end function

32

.................................. 6. Parallel Algorithm II

Figure 6.1: High-level scheme of the Parallel Algorithm II

33

34

Chapter 7
Experiments

In this chapter, the experiments and their results are presented. First,
the datasets and the hardware configuration are introduced. Then, the
experiments which are divided into two parts. First part presents the raw
performance via the number of delta evaluations per second. The second
focuses on the quality of the solutions.

The datasets for the PAS problem were publicly available on PAS website
[6], as of 25. 4. 2016, they are unfortunately not available. Thanks to the
Peter Demeester the offline copy is on the enclosed CD. On the website, there
are 12 standard datasets which have been used in the experiments. There
is also a validator application that processes the output file with scheduled
patients and prints detailed analysis of constraints that have been broken and
penalty for that. That significantly helps to ensure that all constraints are
understood well, and to minimize the room for error. The website contains
a detailed description of the dataset format and a brief description of the
penalty calculation and validator.

The experiments were performed on a computer with two Intel Xeon E5-
2620 CPUs, 64GB of memory and Intel Xeon Phi 31S1P coprocessor. Because
the decisions of the algorithm depend on probability, the presented results
are average values over 20 runs. The results were checked by the validator.

7.1 Delta evaluations per second

The number of delta evaluations per second represents the number of moves
evaluated in one second. The evaluation of the schedule is one of the most
computationally demanding parts of the algorithm, it is therefore an appro-
priate metric to measure the raw performance of the proposed algorithms on
different hardware.

Ceschia&Schaerf Sequential Parallel I Parallel II
CPU 1.7 · 106 ~ 5.2 · 106 72.9 · 106 27.9 · 106

Intel Xeon Phi - 0.2 · 106 22.2 · 106 5.6 · 106

~ Note that Ceschia and Schaerf[8] used different hardware.

Table 7.1: Number of delta evaluations per second

35

7. Experiments
From the Table 7.1 is clear that the performance of Intel Xeon Phi is in

this case not comparable with the two CPUs, since we have not been able to
efficiently employ vectorization in this problem. The poor performance on
the sequential version also comes from the simple core architecture and lower
frequency in comparison with the modern CPU.

7.2 Quality and time

The following experiments were performed on all 12 public datasets. The ID
column in the tables contains their ordinal number.

7.2.1 Sequential version

The first Table 7.2 compares sequential algorithm proposed by Ceschia and
Schaerf [8] with our implementation and with ILP model created in ILOG
CPLEX [17]. The ILP model is based on the mathematical model presented
in Chapter 2. Both sequential algorithms used same parameters that Ceschia
and Schaerf [8] identified as the best:. Tmin = 0.85. Tinit = 114.81. β = 0.9999.Nmax = 13653

ID Ceschia&Schaerf Sequential ILOG CPLEX
Quality Quality Time [s] Quality Time [s]

1 666 666 129 788 7200
2 1151 1150 143 3345332 7200
3 787 787 134 7462 7200
4 1191 1193 137 20007 7200
5 632 633 130 630 7200
6 811 812 129 12333 7200
7 1216 1222 106 1216 7200
8 4192 4189 117 4583 7200
9 22053 22372 113 90506 7200
10 8261 8281 134 49965 7200
11 12106 12161 155 153911 7200
12 23969 24114 156 243832 7200

Table 7.2: Sequential and CPLEX versions

The quality of both implementations is comparable which indicates that
we have been successful with the reconstruction of the of the algorithm from
available information and Table 7.1 shows that the implementation is efficient.

36

................................... 7.2. Quality and time

Comparing with ILP model, the CPLEX has not been able to find optimal
solution for any of the instances when given 2 hours of computational time
for each instance. Peter Deemester was able to find an optimal solution for
one of the smallest datasets. According to him [16], it took over 60 hours of
CPLEX computational time, presumably on different hardware.

7.2.2 Parallel versions on CPU

Table 7.3 compares the two versions of the parallel algorithm. The parameters
were tuned so that the quality of the solutions was approximately the same
as in the sequential version. Unfortunately, we were not able to tune the
parameters of Parallel I algorithm to perform well on all instances. It had
good results mostly on the smaller instances, and the results for the best
setting found are presented in Table 7.3 for CPU and 7.4 for Intel Xeon Phi.

Settings for the CPU:

Parallel I algorithm. Tmin = 0.85. Treop = 10. Tpool = 114.81. β = 0.997. βreop = 0.999.Nmax = 10000. itersPerCheck = 100. umin = 0.2. umax = 2. µ = 6. σ2 = 1. poolSize = 1

Parallel II algorithm. Tmin = 1. Tinit = 114.81. β = 0.9991.Nmax = 10000

From Table 7.3 is apparent that the parallelization was successful on the
CPU. The Parallel I version gives very good results on smaller instances with
average speedup 4.8 on them. On the large instances, the performance is
worse than the sequential version. This version proved to be difficult to tune
for large instances and the Parallel II version showed better results there.

The Parallel II version yielded much more consistent results than the
first version, with average speedup of 2.9. The speedup on all instances is
quite close to the average, this approach therefore seems like a better choice,
especially for large instances. When solving the unknown instances, it is

37

7. Experiments
ID Sequential Parallel I Parallel II

Quality Time[s] Quality Time[s] Speedup Quality Time[s] Speedup
1 666 129 666 26 5.0 666 57 2.3
2 1150 143 1151 126 1.1 1149 44 3.3
3 787 134 787 34 3.9 785 49 2.8
4 1193 137 1193 66 2.1 1192 45 3.0
5 633 130 633 10 13.4 632 66 2.0
6 812 129 812 36 3.6 809 48 2.7
7 1222 106 1225 117 0.9 1226 38 2.8
8 4189 117 4255 180∗ - 4195 39 3.0
9 22372 113 23910 180∗ - 22278 29 3.9
10 8281 134 8610 180∗ - 8353 50 2.7
11 12161 155 13070 180∗ - 12290 53 2.9
12 24114 156 26036 180∗ - 24133 50 3.1

∗ timeout

Table 7.3: Comparison of parallel versions on CPU

better not to rely on the size of an instance and know that the approach
would work well on all sizes.

38

................................... 7.2. Quality and time

7.2.3 Parallel versions on Intel Xeon Phi

Because only negligible part of the code of both parallel versions is sequential,
the solvers were compiled as a native application for Intel Xeon Phi. It
therefore runs solely on the coprocessor. The results are compared with the
sequential CPU version in Table 7.4. The settings were tuned to perform on
Intel Xeon Phi in the best possible way, for Parallel I algorithm:. Tmin = 0.85. Treop = 10. Tpool = 114.81. β = 0.995. βreop = 0.997.Nmax = 10000

. itersPerCheck = 100. umin = 0.2. umax = 2. µ = 6. σ2 = 1. poolSize = 1

and for Parallel II algorithm:. Tmin = 1. Tinit = 114.81

. β = 0.9991.Nmax = 10000.

ID Sequential CPU Parallel I Parallel II
Quality Time [s] Quality Time [s] Quality Time [s]

1 666 129 666 191 668 188
2 1150 143 1151 413 1162 153
3 787 134 787 163 789 179
4 1193 137 1193 199 1212 164
5 633 130 633 106 633 208
6 812 129 812 219 817 162
7 1222 106 1228 495 1317 128
8 4189 117 4272 600∗ 4330 137
9 22372 113 24038 600∗ 23553 120
10 8281 134 8729 600∗ 8423 225
11 12161 155 13292 600∗ 12447 248
12 24114 156 26395 600∗ 24392 229

∗ timeout

Table 7.4: Comparison of parallel versions on Intel Xeon Phi

39

7. Experiments
From Table 7.4 is apparent that the Intel Xeon Phi performed worse than

sequential CPU version. That happened mainly because we were not able to
utilize vectorization efficiently. There was no room for that in delta evaluation.
If it was possible the results would have been much more optimistic. From
Table 7.1, it is clear that the cores in Intel Xeon Phi are much slower when
compared to the state-of-the-art CPUs with more advanced architecture, and
that the vectorization is necessary in order to gain a significant speedup.

7.3 Progress of the algorithms

The graphs in Figure 7.1 and 7.2 illustrate the run of the sequential algorithm.
Figure 7.1 shows the progress of the active solution cost (F (S)) and best
solution cost (F (Sbest)) during the execution of SA algorithm. The active
solution cost is oscillating due to the SA ability to accept even non-improving
moves, however, the overall tendency is decreasing and oscillating mitigates
with decreasing temperature. The temperature is plotted in Figure 7.2.

Similar graphs are presented for one thread of the Parallel I algorithm in
Figures 7.3 and 7.4. The difference in the run of the algorithm is apparent. In
Parallel I, there is a number of consecutive SA runs. The first is starting with
high temperature and then the reoptimizations start with low temperature as
depicted in graph in Figure 7.4. The increase of temperature at the start of
each reoptimization is bound to the increase in active solution cost in Figure
7.3. That are the parts with increased acceptance of non-improving solutions
which help to escape the local minima and allow to search more extensively.

Figure 7.1: Sequential algorithm - progress of the active (S) and best solution
(Sbest) cost on dataset1

40

...............................7.3. Progress of the algorithms

Figure 7.2: Sequential algorithm - temperature during the run on dataset1

Figure 7.3: Parallel I algorithm - progress of the active (S) and best solution
(Sbest) cost of one thread on dataset1

Figure 7.4: Parallel I algorithm - temperature during the run on dataset1

41

42

Chapter 8
Conclusion

We have implemented the state-of-the art sequential algorithm for the Patient
Admission Scheduling (PAS) problem and proposed two versions of parallel
algorithm. The algorithm is based on the local search metaheuristic called
Simulated Annealing (SA). Our implementation of the sequential algorithm
is comparable with the one proposed by Ceschia and Schaerf [8] in terms of
quality and efficiency. Publicly available datasets were used to compare our
results with others and the available validator was utilized for verifying the
results.

We tried two approaches to parallelization. The Parallel I version runs
multiple instances of SA each in its own thread. The threads share solution
via solution pool, from which they could load the solution when starting
the SA or when deviating to overly poor solutions comparing with the pool.
During the run, the treads also update the solution pool when they find
a better solution. The Parallel II version runs only one SA, however the
moves are evaluated in parallel. The parallelization lies on the effective data
representation and conflict detection.

The experiments were performed on both CPU and Intel Xeon Phi copro-
cessor. Parallelization on CPU was successful resulting in significant speedup.
The Parallel I version proved to be hard to tune for large instances and we
were not able to find parameters that would perform well on all instances. We
have been able to tune it for small instances on which we obtained average
speedup of 4.8. The results of Parallel II version were much more consistent,
giving an average speedup of 2.9 over all instances.

Focusing on Intel Xeon Phi coprocessor, we have been able to successfully
set it up in Gentoo Linux, despite the fact that this operating system is not
officially supported by Intel. The experiments on Intel Xeon Phi suggested
that it is not suitable for this problem. One of the most important features
of the coprocessor is its vector processing unit, and without vectorization, it
was not able to compete with modern CPUs on this problem. The key to the
efficient implementation was delta evaluation of solutions, which means that
the whole schedule was not evaluated each time the change to the solution
was calculated; only the changes were analyzed. Unfortunately, the delta
evaluation cannot be efficiently vectorized and that undermined the benefits
of Intel Xeon Phi.

43

44

Appendix A
Contents of the attached CD

Directory Content description
datasets PAS datasets and validator
micro-benchmark Micro-benchmark from section 3.2
parallel-I Source code of the Parallel I version of algorithm.
parallel-II Source code of the Parallel II version of algorithm.

pas-website Offline copy of PAS website where datasets and val-
idator are described.

post-processing-tool Tool for postprocessing of patient-room assignment
into the patient-bed assignment.

sequential Source code of the sequential version of algorithm.
thesis This thesis in PDF format
xeon-phi-ebuilds Ebuilds for setup of Intel Xeon Phi on Gentoo Linux.

45

46

Appendix B
Acronyms

Notation Description Page
List

CPU Central Processing Unit 3, 4, 11,
12, 35–
37, 39,
40, 43

CR Change Room 22

DS department specialism 7, 51,
53

EMU Extended Math Unit 12

GCC GNU Compiler Collection 19, 20
GD Great Deluge 2
GPGPU general-purpose computing on graphics pro-

cessing units
3

ICPC Intel C++ Compiler 19, 20
ILP Integer Linear Programming 2, 3, 9,

36
IMCI Initial Many Core Instructions 12
IVM Integer–Vector–Matrix 4

MIC Many Integrated Core 3, 4, 11,
12, 14

MKL Math Kernel Library 24
MPSS Manycore Platform Software Stack 13, 14,

17
MRP mandatory room property 5, 7, 8,

51–53

47

B. Acronyms
Notation Description Page

List
OECD Organisation for Economic Co-operation and

Development
1

PAS Patient Admission Scheduling vi, 1–3,
5, 9, 25,
35, 43,
45

PASU Dynamic Patient Admission Scheduling under
Uncertainty

3

PRC patient-room cost 9, 49
PRP preferred room property 5, 7, 8,

51–53

RG room gender 9, 49,
53

RHEL Red Hat Enterprise Linux 13
RP room preference 5, 7, 8,

51–53
RS room specialism 7, 51,

53

SA Simulated Annealing vi, 21,
22, 25,
26, 31,
40, 43,
49, 50,
52

SDK software development kit 14
SIMD Single Instruction, Multiple Data 12, 19
SLES SUSE Linux Enterprise Server 13
SP Swap Patients 22, 23
SRG static room gender 7, 51,

53

VPU Vector Processing Unit 12

48

Appendix C
Notation

Notation Description Page
List

A The parameter of an exponential threshold
curve A·eK·T which defines how big the relative
difference between SA best solution Sbest and
the solution in pool must be to load the better
solution from pool to SA and continue from
that new solution.

26, 27,
29, 49

C(p, r) Patient-room penalty matrix 7, 9
FPRC Patient-room cost (PRC) component of the

objective function
9, 10

FRG Room gender (RG) component of the objective
function

9, 10

FTr Transfer component of the objective function 9, 10
F The value of the objective functions of a solu-

tion
21, 23,
28, 29,
32, 40

G The number of attempts in micro-benchmark
3.2

19

H The size of the input and output array in micro-
benchmark 3.2

19

K The parameter of an exponential threshold
curve A·eK·T which defines how big the relative
difference between SA best solution Sbest and
the solution in pool must be to load the better
solution from pool to SA and continue from
that new solution.

26, 27,
29, 49

Nmax The maximum number of iterations on the
same value of temperature of the SA algorithm

22, 23,
25, 28,
32, 36,
37, 39

N The counter of iterations of the SA algorithm 23, 28,
32

49

C. Notation
Notation Description Page

List
R The part of the solution representing one room

in Parallel II algorithm
31, 32,
51

Sbest The representation of the best solution found
so far by SA

22, 23,
25, 26,
28, 29,
40, 41,
49, 52

S The representation of the active solution of SA 21–23,
26–29,
31, 32,
40, 41,
51

Tinit The initial temperature of the SA algorithm 22, 23,
27, 28,
32, 36,
37, 39

Tmin The minimal temperature of the SA algorithm 22, 23,
25, 27,
28, 32,
36, 37,
39, 52

Tpool The initial temperature of random solutions
in the solution pool in Parallel I algorithm

25, 27,
37, 39

Treop The initial temperature threshold from which
the βreop is used

25, 27,
37, 39,
50

T The working temperature of the SA algorithm 21, 23,
26–29,
32, 49,
52

∆F The difference of the objective functions in SA
algorithm

21–24,
28, 32

∆dS
(z, s) Degree-specialism difference 8, 9

βreop The cooling rate of the SA algorithm for reop-
timizations in Parallel I algorithm (the Treop

is a threshold temperature below which this
value is used)

25, 27,
37, 39,
50

β The cooling rate of the SA algorithm 21–23,
25, 27,
28, 32,
36, 37,
39

Dp(p) Set of all days the patient p is present in hos-
pital

5, 10

50

....................................... C. Notation

Notation Description Page
List

D Set of all days in planning horizon 5, 10,
51

PF Set of female patients 5, 10
PM Set of male patients 5, 10
P Set of all patients 5, 10,

52
RD All D type rooms 9
RQ Set of all room properties 6–8, 52
R Set of all rooms 6, 10,

52
S(z) Set of all specialisms of a department z 6, 8, 9
Sr(r) Set of specialisms of the room r 6, 9
S Set of all specialisms 52
AD(p) Admission day 5, 10
DD(p) Discharge day 5, 10
LBage(r) Age lower bound of a room r 8
UBage(r) Age upper bound of a room r 8
changesCounter Array of the counters for all rooms Ri in the

solution S, that increments when a change to
the room Ri is made.

32

c The saved value of the changes counter in Par-
allel II algorithm

32

dS(z) Degree of specialism of the department z 8, 9
d Day d ∈ D 5, 9, 10,

51–53
f(r, d) Decision variable 2.12 that stores the number

of female patients in room r on day d.
9, 10

fRS(p, r) Cost of patient p being in the room r for room
specialism soft constraint

7, 9

fDS(p, r) Cost of patient p being in the room r for de-
partment specialism soft constraint

7, 8

fMRP(p, r) Cost of patient p being in the room r for
mandatory room property soft constraint

7

fPRP(p, r) Cost of patient p being in the room r for pre-
ferred room property soft constraint

7, 8

fRP(p, r) Cost of patient p being in the room r for room
preference soft constraint

7, 8

fSRG(p, r) Cost of patient p being in the room r for static
room gender soft constraint

7

fage(p, r) Cost of patient p being in the room r for age
soft constraint

7, 8

51

C. Notation
Notation Description Page

List
itersPerCheck The interval between checks of solution pool

(in Parallel Algorithm I) that are performed
in order to keep the solution in SA not much
worse than the the solution the pool.

25–28,
37, 39

m(r, d) Decision variable 2.13 that stores the number
of male patients in room r on day d.

9, 10

m The neighborhood move in the SA algorithm 21–23,
28, 32

pS(p) Specialism of the patient p 5, 8, 9
pMRP(p, rq) MRP from point of view of a patient p 5, 7
pPRP(p, rq) PRP from point of view of a patient p 5, 8
pRP(p) Room preference (RP) of the patient p 5, 8
page(p) Age of the patient p 5, 8
poolSize The size of the solution pool in Parallel Algo-

rithm I
25–27,
37, 39

p Patient p ∈ P 5, 7–10,
49–53

rc(r) Capacity of the room r 6, 8, 10
rq Room property rq ∈ RQ 5–8, 52
rz(r) Department the room r belongs to 6, 8
rMRP(r, rq) MRP 7, 8
rPRP(r, rq) PRP 8
r Room r ∈ R 6–10,

49,
51–53

s Specialism s ∈ S 8, 9, 50
t(p, r, d) Decision variable 2.11 that is 1 iff patient p

is transferred from room r on day d, and 0
otherwise.

9, 10

umax The threshold for temperature Tpool which de-
fines how big the relative difference between
SA best solution Sbest and the solution in pool
must be to load the better solution from pool
to SA and continue from that new solution.
Used to compute exponential threshold for all
temperatures.

25–27,
37, 39

umin The threshold for temperature Tmin which de-
fines how big the relative difference between
SA best solution Sbest and the solution in pool
must be to load the better solution from pool
to SA and continue from that new solution.
Used to compute exponential threshold for all
temperatures.

25–27,
37, 39

52

....................................... C. Notation

Notation Description Page
List

wDS Department specialism weight, default value is
1

8

wMRP Mandatory room property weight, default
value is 5

7, 8

wPRP Preferred room property weight, default value
is 2

8

wRG Room gender weight, default value is 1 8, 9
wRP Room preference weight, default value is 0.8 8
wRS Room specialism weight, default value is 1 8, 9
wSRG Static room gender weight, default value is 5 7, 8
wTr Transfer weight, default value is 1 8, 9
wage Age weight, default value is 10 8
x(p, r, d) Decision variable 2.10 that is 1 iff patient p is

assigned to room r on day d, and 0 otherwise.
9, 10

z Department 6, 8, 9,
50–52

53

54

Appendix D
Bibliography

[1] OECD. Oecd.stat - health expenditure and financing, March 2016. URL
http://stats.oecd.org/index.aspx?DatasetCode=SHA.

[2] OECD. Health at a glance 2013. doi: http://dx.doi.org/10.1787/
health_glance-2013-en. URL http://www.oecd-ilibrary.org/
social-issues-migration-health/health-at-a-glance-
2013_health_glance-2013-en.

[3] Doctor Zubair Clinic pvt. ltd. Image gallery, March 2016. URL http:
//drzubairahmad.com/.

[4] Peter Demeester, Wouter Souffriau, Patrick De Causmaecker, and
Greet Vanden Berghe. A hybrid tabu search algorithm for automatically
assigning patients to beds. Artificial Intelligence in Medicine, 48(1):
61–70, 2010.

[5] W Vancroonenburg, D Goossens, and FCR Spieksma. On the com-
plexity of the patient assignment problem. Technical report, Tech.
rep., KAHO Sint-Lieven, Gebroeders De Smetstraat 1, Gent, Belgium,
2011. URL http://allserv.kahosl.be/~wimvc/pas-complexity-
techreport.pdf.

[6] Peter Demeester. Patient admission scheduling. URL http://
allserv.kahosl.be/~peter/pas/. Not available at the moment. The
offline copy of the website is on the enclosed CD.

[7] Burak Bilgin, Peter Demeester, Mustafa Misir, Wim Vancroonenburg,
and Greet Vanden Berghe. One hyper-heuristic approach to two
timetabling problems in health care. Journal of Heuristics, 18(3):401–
434.

[8] Sara Ceschia and Andrea Schaerf. Local search and lower bounds for
the patient admission scheduling problem. Computers & Operations
Research, 38(10):1452–1463, 2011.

[9] IBM. ILOG CPLEX Optimization Studio v. 12.1, 2009. URL http:
//www-03.ibm.com/software/products/en/ibmilogcpleoptistud.

55

http://stats.oecd.org/index.aspx?DatasetCode=SHA
http://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2013_health_glance-2013-en
http://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2013_health_glance-2013-en
http://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2013_health_glance-2013-en
http://drzubairahmad.com/
http://drzubairahmad.com/
http://allserv.kahosl.be/~wimvc/pas-complexity-techreport.pdf
http://allserv.kahosl.be/~wimvc/pas-complexity-techreport.pdf
http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

D. Bibliography.....................................
[10] Saif Kifah and Salwani Abdullah. An adaptive non-linear great deluge

algorithm for the patient-admission problem. Information Sciences, 295:
573–585, 2015.

[11] Troels Martin Range, Richard Martin Lusby, and Jesper Larsen. A
column generation approach for solving the patient admission scheduling
problem. European Journal of Operational Research, 235(1):252–264,
2014.

[12] Sara Ceschia and Andrea Schaerf. Modeling and solving the dynamic
patient admission scheduling problem under uncertainty. Artificial intel-
ligence in medicine, 56(3):199–205, 2012.

[13] Scheduling and Timetabling Research Group at the University of
Udine. Dynamic patient admission scheduling problems. URL http:
//satt.diegm.uniud.it/projects/pasu/.

[14] Intel. Intel newsroom - Intel Xeon Phi coprocessor 5110P/3000 series,
. URL https://newsroom.intel.com/press-kits/intel-xeon-phi-
coprocessor-5110p3000-series/.

[15] N. Melab, R. Leroy, M. Mezmaz, and D. Tuyttens. Parallel Branch-
and-Bound using private IVM-based work stealing on Xeon Phi MIC
coprocessor. In High Performance Computing Simulation (HPCS), 2015
International Conference on, pages 394–399, July 2015. doi: 10.1109/
HPCSim.2015.7237067.

[16] Sara Ceschia and Andrea Schaerf. Multi-neighborhood local search for
the patient admission problem. In Hybrid Metaheuristics, pages 156–170.
Springer, 2009.

[17] IBM. ILOG CPLEX Optimization Studio v. 12.6, 2013. URL http:
//www-03.ibm.com/software/products/en/ibmilogcpleoptistud.

[18] Intel. Intel Xeon Phi product family: Product brief, .
URL http://www.intel.com/content/www/us/en/high-performance-
computing/high-performance-xeon-phi-coprocessor-brief.html.

[19] Intel. Intel Xeon Phi X100 family coprocessor - the architecture,
. URL https://software.intel.com/en-us/articles/intel-xeon-
phi-coprocessor-codename-knights-corner.

[20] Intel. Intel Xeon Phi coprocessor architecture overview,
August 2013. URL https://software.intel.com/
sites/default/files/Intel%C2%AE_Xeon_Phi%E2%84%
A2_Coprocessor_Architecture_Overview.pdf.

[21] Intel. Inside Intel Knights Landing architecture, January
2016. URL http://www.hpctoday.com/viewpoints/inside-intel-
knights-landing-architecture/.

56

http://satt.diegm.uniud.it/projects/pasu/
http://satt.diegm.uniud.it/projects/pasu/
https://newsroom.intel.com/press-kits/intel-xeon-phi-coprocessor-5110p3000-series/
https://newsroom.intel.com/press-kits/intel-xeon-phi-coprocessor-5110p3000-series/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html
http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/sites/default/files/Intel%C2%AE_Xeon_Phi%E2%84%A2_Coprocessor_Architecture_Overview.pdf
https://software.intel.com/sites/default/files/Intel%C2%AE_Xeon_Phi%E2%84%A2_Coprocessor_Architecture_Overview.pdf
https://software.intel.com/sites/default/files/Intel%C2%AE_Xeon_Phi%E2%84%A2_Coprocessor_Architecture_Overview.pdf
http://www.hpctoday.com/viewpoints/inside-intel-knights-landing-architecture/
http://www.hpctoday.com/viewpoints/inside-intel-knights-landing-architecture/

..................................... D. Bibliography

[22] James Reinders. An overview of programming for Intel Xeon pro-
cessors and Intel Xeon Phi coprocessors. Technical report, Intel,
2012. URL https://software.intel.com/sites/default/files/
article/330164/an-overview-of-programming-for-intel-xeon-
processors-and-intel-xeon-phi-coprocessors_1.pdf.

[23] Intel. Intel Manycore Platform Software Stack (Intel MPSS)
3.5.2, . URL https://software.intel.com/en-us/articles/intel-
manycore-platform-software-stack-mpss.

[24] Anselm Busse. Xeon Phi overlay, January 2014. URL https://
github.com/abusse/xeon-phi-overlay.

[25] Anselm Busse. Xeon Phi: Setting up a Gentoo host system, January
2014. URL http://anselm-busse.de/?p=32.

[26] Taylor Kidd Frances Roth, Sunny Gogar. System Administration for the
Intel Xeon Phi Coprocessor. Intel, December 2014.

[27] Intel. Configuring Intel Xeon Phi coprocessors inside a cluster. IntelIn-
tel, March 2013. URL https://software.intel.com/en-us/articles/
configuring-intel-xeon-phi-coprocessors-inside-a-cluster.

[28] Intel. MPSS Readme (includes installation instructions) for Linux.
Intel, . URL https://software.intel.com/en-us/articles/intel-
manycore-platform-software-stack-mpss.

[29] Intel. Flash Issues & Remedies. Intel, 2013. URL https://
software.intel.com/sites/default/files/Flash%20FAQ.pdf.

[30] Intel. Intel Parallel Studio XE, 2016. URL https://
software.intel.com/en-us/intel-parallel-studio-xe.

[31] Intel. Intel Parallel Studio XE 2016 update 3 - installation
guide for Linux* OS. Technical report, Intel, 2016. URL
https://software.intel.com/en-us/parallel-studio-xe-2016-
install-guide-linux.

[32] Intel. Offload Compiler Runtime for the Intel Xeon Phi Coprocessor.
Intel, 2013. URL https://software.intel.com/sites/default/
files/article/366893/offload-runtime-for-the-intelr-xeon-
phitm-coprocessor.pdf.

[33] Intel. Native and Offload Programming Models. Intel, 2014.
URL https://software.intel.com/en-us/articles/native-and-
offload-programming-models.

[34] Glibc wiki - libmvec, May 2016. URL https://sourceware.org/glibc/
wiki/libmvec.

[35] Free Software Foundation. GCC, the GNU Compiler Collection, May
2016. URL https://gcc.gnu.org/.

57

https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://github.com/abusse/xeon-phi-overlay
https://github.com/abusse/xeon-phi-overlay
http://anselm-busse.de/?p=32
https://software.intel.com/en-us/articles/configuring-intel-xeon-phi-coprocessors-inside-a-cluster
https://software.intel.com/en-us/articles/configuring-intel-xeon-phi-coprocessors-inside-a-cluster
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/sites/default/files/Flash%20FAQ.pdf
https://software.intel.com/sites/default/files/Flash%20FAQ.pdf
https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/parallel-studio-xe-2016-install-guide-linux
https://software.intel.com/en-us/parallel-studio-xe-2016-install-guide-linux
https://software.intel.com/sites/default/files/article/366893/offload-runtime-for-the-intelr-xeon-phitm-coprocessor.pdf
https://software.intel.com/sites/default/files/article/366893/offload-runtime-for-the-intelr-xeon-phitm-coprocessor.pdf
https://software.intel.com/sites/default/files/article/366893/offload-runtime-for-the-intelr-xeon-phitm-coprocessor.pdf
https://software.intel.com/en-us/articles/native-and-offload-programming-models
https://software.intel.com/en-us/articles/native-and-offload-programming-models
https://sourceware.org/glibc/wiki/libmvec
https://sourceware.org/glibc/wiki/libmvec
https://gcc.gnu.org/

D. Bibliography.....................................
[36] Intel. Intel C++ Compilers, May 2016. URL https://

software.intel.com/en-us/c-compilers.

[37] CD Gelatt, MP Vecchi, et al. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[38] V. Černý. Thermodynamical approach to the traveling salesman problem:
An efficient simulation algorithm. Journal of optimization theory and
applications, 45(1):41–51, 1985.

[39] Intel. Intel Math Kernel Library (Intel MKL), 2016. URL https:
//software.intel.com/en-us/intel-mkl.

58

https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl

	Introduction
	Patient Admission Scheduling(PAS)
	Intel Xeon Phi
	Outline

	Problem Definition
	Mathematical Model
	Preprocessing Steps
	Mathematical Model

	Intel Xeon Phi
	Installation Instructions for Gentoo Linux
	Setup System and Xeon Phi Coprocessor
	Installation of Intel Parallel Studio
	Offloading

	Benchmark

	Sequential Algorithm
	Simulated Annealing
	Moves
	Optimizations

	Parallel Algorithm I
	Parallel Algorithm II
	Experiments
	Delta evaluations per second
	Quality and time
	Sequential version
	Parallel versions on CPU
	Parallel versions on Intel Xeon Phi

	Progress of the algorithms

	Conclusion
	Contents of the attached CD
	Acronyms
	Notation
	Bibliography

