
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Cooperative Path Planning for Big Teams
of Robots

Bc. Jakub Lukeš

Supervisor: RNDr. Miroslav Kulich, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Robotics
March 2016

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Jakub L u k e š

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Diploma Thesis: Cooperative Path Planning for Big Teams of Robots

Guidelines:
1. Get acquainted with current approaches to collision-free path planning for a teams
 of cooperating agents/robots.
2. Choose a most promising method and implement it. The selection should be done with
 respect to ability of the method to be extended by adding constrains to robots and
 trajectories (heterogeneous team of robots, different maps for different types of robots, etc.)
 and its computational complexity.
3. Propose extensions of the method, which will consider the previously mentioned constrains.
4. Verify experimentally the proposed solution and describe and discuss obtained results.

Bibliography/Sources:
[1] B. de Wilde, A. W. ter Mors and C. Witteveen. Push and Rotate: a Complete Multi-agent
 Pathfinding Algorithm, Volume 51, pages 443-492, 2014
[2] B. de Wilde. Cooperative Multi-Agent Path Planning, Ph.D. thesis, Delft, the Netherlands,
 2012
[3] W. Wang and W. B. Goh. A stochastic algorithm for makespan minimized multi-agent path
 planning in discrete space. Appl. Soft Comput. 30, C, May 2015, 287-304
[4] Peasgood, M.; Clark, C.M.; McPhee, J. A Complete and Scalable Strategy for Coordinating
 Multiple Robots Within Roadmaps, in Robotics, IEEE Transactions on , vol.24, no.2, pp.283-
 292, April 2008
[5] Cap, M.; Novak, P.; Kleiner, A.; Selecky, M., Prioritized Planning Algorithms for Trajectory
 Coordination of Multiple Mobile Robots, in Automation Science and Engineering, IEEE
 Transactions on , vol.12, no.3, pp.835-849, July 2015

Diploma Thesis Supervisor: RNDr. Miroslav Kulich, Ph.D.

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, December 22, 2015

iv

Acknowledgements
I thank here to my supervisor RNDr.
Miroslav Kulich, Ph.D for helping me with
this topic and sharing great deal of in-
formation and experiences from his own
previous projects and for always being ca-
pable of helping me. His different point
of view speeded up the solution of many
problems which occurred.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date 27. May 2016

...
signature

v

Abstract
The goal of this thesis is to choose a most
promising method for solving the move-
ment of goods from one place to another.
This task is called the Warehouse prob-
lem and it is defined a task where agents
(usually robots) on a graph must reach
their goal positions while avoiding obsta-
cles and other agents. The graph also
contains racks which have an ability that
an agent not carrying a rack can go under
them but agent with a rack cannot. Few
algorithms are shortly described based
on their computational complexity and
completeness and the Push and rotate al-
gorithm is selected as the most fastest and
also suitable the extension. Push and ro-
tate is implemented using C++ program-
ming language, the implementation is de-
scribed in detail and experimental results
are discussed. The most important re-
sult is acquiring a solution to a task with
58 581 nodes and 982 agents in 42 seconds
from which 10 seconds can be removed
when a replanning on the same map is
invoked.

Keywords: path planning with two
types obstacles, teams of heterogeneous
agents, complete algorithm, Push and
rotate

Supervisor:
RNDr. Miroslav Kulich, Ph.D.

Abstrakt
Cílem této diplomové práce je vybrat nej-
více slibnou metodu pro řešení přemís-
tění zboží z jednoho místa na druhé. Tato
úloha je nazvána problém skladu a je de-
finována jako úloha, kde agenti (obvykle
roboty) musí na grafu dosáhnout cílové
pozice a zároveň se vyhnout překážkám
a ostatním agentům. Graf také obsahuje
regály, které mají tu vlastnost, že agent,
který nějaký nepřeváží, se může pod ním
pohybovat, ale agent s regálem ne. Několik
algoritmů je krátce popsáno v závislosti na
jejich výpočetních rychlostech a úplnosti
a algoritmus Zatlač a zatoč je vybrán jako
nejrychlejší a zároveň vhodný pro uvedené
rozšíření. Zatlač a zatoč je implemento-
ván v jazyce C++, implementace je do de-
tailu popsána a experimentální výsledky
jsou popsány. Nejvýznamějším výsledkem
je získání řešení pro úlohu s 58 581 uzly
a 982 agenty za 42s, kde 10s může být
odstraněno při přeplánování na té samé
mapě.

Klíčová slova: plánování cesty s dvěma
typy překážek, týmy heterogenních
robotů, úplný algorithm, Zatlač a zatoč

vi

Contents
1 Introduction 1
2 Problem description 3
2.1 Common approaches 4
3 Push and rotate 7
3.1 Division into subproblems 8
3.1.1 Algorithm description 8

3.2 Assigning agents to subproblems . 9
3.2.1 Algorithm description 10

3.3 Priority relation between
subproblems 11
3.3.1 Algorithm description 12

3.4 Solve . 13
3.4.1 Plan . 15
3.4.2 Push . 16
3.4.3 Move . 16
3.4.4 Clear_vertex 16
3.4.5 Swap . 17
3.4.6 Multipush 18
3.4.7 Clear . 19
3.4.8 Exchange 20
3.4.9 Reverse 21
3.4.10 Rotate 22
3.4.11 Resolve 22

3.5 Smooth . 23
3.5.1 Smooth algorithm description 24
3.5.2 Detect redundancies 25
3.5.3 Remove redundancies 26

3.6 Example solution 27
4 Push and rotate implementation 31
4.1 Agents . 31
4.2 Nodes . 32
4.3 Arena . 32
4.4 Division into subproblems 32
4.5 Assigning agents to subproblems 33
4.6 Priority relation between
subproblems 33

4.7 Solve . 34
4.7.1 Plan . 34
4.7.2 Push . 34
4.7.3 Clear_vertex 34
4.7.4 Swap . 34
4.7.5 Multipush 34
4.7.6 Clear . 35
4.7.7 Exchange 35
4.7.8 Reverse 35

4.7.9 Rotate . 35
4.7.10 Resolve 35

4.8 Smooth . 35
4.9 Move . 36
4.10 Extension for two types of agents 37
5 Experiments 39
5.1 maze27-11 40
5.2 maze512-1-0 41
5.3 AR0411SR 41
5.4 random512-40-0 42
5.5 warehouse 42
5.6 Time complexity 51
5.7 Available maps types 51
5.7.1 Low node count map type . . . 51
5.7.2 Benchmark map type 52

6 Conclusion 53
7 CD content 55
Bibliography 57

vii

Figures
3.1 Agent R0 has a goal position at
node pointed by arrow. If the agent
R1 has a higher priority than R0
then the task has no solution. 8

3.2 Demonstration how the methods in
Solve are call each other. 14

3.3 The visualization of a move with
its four pointers NA (next agent), NV

(next vertex), PA (previous agent)
and PV (previous vertex). Each
pointer points to another move. . . . 24

3.4 The solution for a map called
vertex produced by the Smooth
algorithm. It can be seen that the
moves 3.4a to 3.4d are redundant
because 3.4a is same as 3.4e. 28

3.5 The smoothed solution for a map
called vertex produced by the Smooth
algorithm on the solution from the
Solve algorithm. Two redundant
sequences have been removed. The
original solution can be found in
figure 3.4. 29

5.1 Maze27-11 overview. The map is
taken from [1]. 40

5.2 The result acquired on the map
maze27-11 using 10 agents. 41

5.3 Maze512-1-0 overview. The map
is taken from [1] and the picture as
well. 43

5.4 The result acquired on the map
maze512-1-0 using 101 agents. . . . 44

5.5 The result acquired on the map
maze512-1-0 using 499 agents. . . . 44

5.6 The result acquired on the map
maze512-1-0 using 993 agents. . . . 44

5.7 AR0411SR overview. The map is
taken from [1] and the picture as
well. 45

5.8 The result acquired on the map
AR0411SR using 101 agents. 46

5.9 The result acquired on the map
AR0411SR using 497 agents. 46

5.10 The result acquired on the map
AR0411SR using 982 agents. 46

5.11 Random512-40-0 overview. The
map is taken from [1] and the picture
as well. 47

5.12 The result acquired on the map
random512-40-0 using 100 agents. 48

5.13 The result acquired on the map
random512-40-0 using 499 agents. 48

5.14 The result acquired on the map
random512-40-0 using 991 agents. 48

5.15 The map warehouse created for
this thesis. Each agent has its own
colour. The coloured squares are the
agents under the rack. The goal
destination of an agent is marked by
dotted arrow. 49

5.16 The result acquired on the map
warehouse using 47 agents. The map
can be seen in Fig. 5.15. It has 218
nodes and single subproblem of size
118. 50

5.17 Map result using 575 agents. . . 50
5.18 The result acquired on the map

warehouse using 575 agents. The
map can be seen in Fig. 5.15. This
map was created copying the
warehouse map next to it until a
width 112 and height 113 nodes was
reached. It has 11 472 nodes and
single subproblem of size 5 552. . . . 50

5.19 The calls made during the
computation of map
AR0411SR(Fig. 5.7 done by
QTProfiler [2]). 52

5.20 The calls made during the
computation of map maze (Fig. 5.3
done by QTProfiler [2]). 52

viii

Tables

ix

Chapter 1
Introduction

Assume a movement of goods from one place to another is needed. This
is a common task in warehouses when a customer buys something and the
movement is done by humans. They go to one place then they pick goods and
then move to another and avoid obstacles (racks, walls) and they try not to
hit other humans as well. The transport done by humans is rather inefficient
because they are expensive and they cannot move a large quantities quickly
moreover they can cause traffic jams as well.

A wide range of algorithms were created to solve the problem with traffic
jams and they try to optimize paths of the movements of the goods. The
algorithms consider agents (usually robots in reality) for the movement of
the goods but they consider only one type of agent. The topic of this thesis
is to choose a most promising method for solving this task, implement it and
mainly extend it to allow two types of agents.

This task we refer as the Warehouse problem. The goods are stored in
racks which either stay still or are moved by some robot. The racks have
an ability that a robot which is not carrying a rack can go through them
(in reality underneath them) and off course a robot which is carrying a rack
cannot move under them. These additional specifications are considered as
an extension to the Warehouse problem.

The Warehouse problem, the definition of the problem and the task, and
common approaches are described at first. A description of few algorithms is
stated based on their computational complexity and completeness and the
Push and rotate algorithm is selected as the fastest and also suitable for the
extension. Methods using multi agent systems are not considered(Chapter 2).
Push and rotate is theoretically explained at first and all its parts are

desribed in detail then. Each of the original algorithms is described and
recounted how it works and what are its main advantages. These pseudo
codes are shown and explained what they compute line by line. An example
using all algorithm parts is shown at the end (Chapter 3).

The implementation and the extension for more types of obstacles is
reported and short information about the programming language C++ and
its standard template library is added. The Boost library is also shortly told
out and the used algorithms from it are described. The extension for the two
types of agents is also introduced (Chapter 4).

1

1. Introduction ..
The experiments are created using the maps available from the Pathfinding

benchmark page [1] which contains problems with around 80 thousand nodes
and these maps come with a problem set containing description for over one
thousands agents. These maps are utilized in experiments and the results for
varying number of agents are shortly discussed. A note about available map
types is depicted. The Algorithm is capable of processing two types of maps
and their syntax is shown (Chapter 5).

2

Chapter 2
Problem description

The definition of the warehouse problem as well as the common approaches
can be found in this chapter.

Imagine a big warehouse with goods. In such warehouse a common opera-
tions are to store goods, to retrieve them and sometimes even to reorganize
goods locations. All these actions can be simplified to a movement of goods
from one place to another one. Let’s call a task the movement of a good
from one place to another one. Solving one task is easy but what about more
than one to be done in parallel, for example 5? The tasks surely influence
each other because the goods cannot pass through one another. Let’s name
those many tasks as a problem. The problem must be solved in real time, i.e.
usually in tens of seconds. Let’s say that the number of tasks increases to
50. The question is can it be planned still in tens of seconds even for this big
problem of tasks?

Let’s formulate the Warehouse problem at first. Given graph G = (U , E),
where U is a set of nodes and E is a set of connection between the nodes from
U , a set of agents A, an initial assignment of agents to nodes I : A → U , a
goal assignment of agents to nodes T : A → U . Let a move π : (A → U)→
(A → U) be a change of an assignment of agents in exactly one agent (A). A
can only change its position from a node u to another node v if and only if
(u, v) ∈ E and v does not contain another agent before moving with A. It is
expected that the number of free space in the graph is much higher than the
number of agents [3].

The solution for the problem is a finite sequence of moves Π = [π1, π2, · · · , πk]
which satisfies that it moves the agents to their destinations, i.e. T = I ◦Π.
In this thesis such sequence is sometimes called list of done moves.

The agent represents the entity which carries out the task. In the reality it
can be for example a robot. The nodes represent the important places in the
warehouse, for example picking stations or storage.

3

2. Problem description.......................................
2.1 Common approaches

Coupled or decoupled methods are usually reasoned for solving the Ware-
house problem. Centralized (coupled) approaches plan all agents simultane-
ously. These methods provide an optimal solution and they are complete,
i.e. they always find a solution if one exists or report that no solution exists
otherwise. Downside is that the solution usually takes long to be found even
for a few agents.

Decoupled methods decouple the problem into subproblems and then solve
each subproblem separately. Each agent plans its path separately and solve
the task independently. If agent encounters another agent then it tries to
found a path along it. This can cause deadlocks. These methods are usually
a magnitude faster but they usually are not complete. The solution found by
these methods is very often deviated from the optimal solution.

In Windowed Hierarchical Cooperative A* algorithm (WHCA*) [4], each
agent searches its own path in a three dimensional space-time and uses a
reservation table thus taking into account the planned routes of other agents.
It also uses precomputed optimal paths to the destination from a few nodes
in its windows size. An agent gains better ability to avoid other agents with
increasing size of the window but the computation demands increases. The
windows size is usually denoted as a number in brackets, i.e. WHCA*(16). If
the problem is too big and the window is chosen small then some agents are
not capable of reaching their destination.
A scalable multi-agent path planning algorithm with tractability and com-

pleteness guarantees (MAPP) [5] is complete for a class of problems called
Slidable which basically means that an alternate path around the node can
be found. With a problem containing m nodes and n mobile units (agents)
the worst cast performance for the running time is stated as O(m2n2).

A stochastic algorithm for makespan minimized multi-agent path planning in
discrete space (PIMM) [6] defines the Warehouse problem as an optimization
problem. An objective function is defined using maximum entropy then it is
later minimized by a probabilistic iterative algorithm. The algorithm has at
least two parameters which must be tuned to receive some useful results. The
authors compare PIMM, WHCA*(16) and WHCA(128) on a problem with
80 tasks which they are able to solve in 10 003 ms, 1 650ms and 33 260ms.
A scheduling and routing of autonomous moving objects on a mesh topol-

ogy [7] is an algorithm for moving 4n2 autonomous moving objects (AMOs)
on a n × n mesh topology. An assumption is made on a graph G that G
allows simultaneous movement of agents in opposite direction on a single
vertex. This is too strong constrain for our application. On the other hand
the computing requirements are O(n2).

An efficient and complete centralized multi-robot path planning was proposed
by Luna and Bekris [8]. An algorithm Push and swap is presented as a
complete heuristic which solves general problems with at most n− 2 agents
on a graph with n nodes. The algorithm uses two methods (push, swap) for
manipulating the agents in the graph. Push pushes the agent along its path

4

......................................2.1. Common approaches

and swap swaps an agent with another adjacent to it along the path.
An extension of the algorithm Push and swap algorithm was written by de

Wilde [9] which divides a graph into subgraphs and solves them independently.
It introduces additional methods such as rotate which deals in agents in a
cycle.

In this thesis, an algorithm adaptation of Push and rotate[3] is presented.
The inspiration is taken not from [9] but rather from [3] because it the other
source it goes more into detail. This algorithm belongs to the decoupled
methods but the author extended it in such way that it is expected to be
complete. The main task here is to confirm that this algorithm is as fast as
written in [3] because the claim is that it is capable of planning team of 100
agents under 1s.

Many decentralized methods were published last years, but these are not
considered in this thesis.

5

6

Chapter 3
Push and rotate

The Push and rotate algorithm was chosen based on the state of the art as
the most fastest and the most suitable for the extension with two types of
agents. This algorithm was presented in a PhD thesis [3] where it started as
Push and Swap and was extended to solve some other specific problematic
tasks, e.g. maps where all nodes have a degree at most two. This entire
chapter is based on this thesis and all pseudo code is taken from [3]. Some
parts are reformulated and explained more in detail when the algorithm was
not clear. The extension for two types of robots is done in next chapter as
well as the implementation details.

The main idea of this algorithm is to find subproblems which have an
ability to circle agents, i.e. each agent can reach any desired position in the
subproblem. Some agents are assigned to this subproblem if they are close
enough to it. The next step decides priority of each subproblem based on
agents belonging to other subproblems and their goal position. All agents
are planned in order which reflects priority of the subproblem they belong to
and are moved around the graph until the desired assignment is reached. At
the end the algorithm removes all redundant moves from the solution.

The algorithm can be split into three parts. The first one decides the
agent planning order (steps: find suproblems, assign agents to them, order
subproblems). The second one solves the task itself (step: solve). The third
one tries to shorten the solution (step: smooth). Each step is explained in
more detail in next subsections. The two types of agents (one carries a rack
and the other does not) is mainly used in the second part thus all neighbours
of a specific node are considered the ones without a rack if not state otherwise.

When Push and rotate computes a path for an agent then other agents are
not considered as an obstacle. Either the part using this path does not move
with an agent at all (the first part) or it is capable of pushing the agents on
path away (the second part).

Why is the planning order of agents is important? It is because in some
cases the priority of one agent over another can cause the task to have no
solution even if one exists because the agent with higher priority cannot be
moved (pushed away) from its position by a lower priority agent.

An example of this situation can be seen in Fig. 3.1. The task has only two
agents R0 and R1 and they are located at their starting locations. The agent

7

3. Push and rotate ..
R1 is already at its goal location. The doted line marks the goal position of
the agent which means that R0 needs to move R1 from its position. If R1 is
planned first then R0 cannot reach its goal position because it cannot push
R1 from its position thus the algorithm does not find a solution.

It should be noted that if the priority is assigned fittingly for this task then
it only solves this specific case. It can happen that the roles of the agents are
reversed and the task would have no solution again. The fixed assignment of
priorities cannot be used.

R0

R1

R1

R1

Figure 3.1: Agent R0 has a goal position at node pointed by arrow. If the agent
R1 has a higher priority than R0 then the task has no solution.

3.1 Division into subproblems

The planning order of agents influences both the solution quality and its
existence. The first three steps of the algorithm Push and rotate ensure that
this algorithm is complete. The first step is to find biconnected parts of the
graph, i.e. subproblems.

All nodes which have degree three or higher are checked if they belong to
some subproblem. The check is done by searching all subproblems. If not
then they are marked as a single one. Then it is tested if it is possible to
merge some subproblems along with their path between them. Note that a
path between two subproblems is unique because if another path exists then
the subproblems are biconnected.

Let’s take a look at this step more in detail. The Division into subproblems
algorithm can be found in the Algorithm 1.

3.1.1 Algorithm description

The algorithm starts with finding the biconnected components in the graph
(line 1). Let a component be a non-empty subgraph. Let a trivial biconnected
component is a component of size lesser than 3. Components of size 2 are
biconnected but for this application they are not treated as such and they
are removed from this set (line 2).

8

................................ 3.2. Assigning agents to subproblems

Nodes which have degree more than three can remain assigned to no
subproblem. These nodes are important for finding a solution because two
agents can swap position using them. These nodes are marked as a subproblem
of size one and added to the set of all subproblems (line 3).

Subproblems can be merged together if they are close enough to each
other. Let d(u, v) denote the length of the path between nodes u and v, i.e.
the number of nodes between them including the start and end nodes. Let
d(C1, C2) = minu∈Ci,v∈Cjd(u, v) denote the length of the shortest path from
subproblem C1 to C2. Let m = |U| − |A| denote the number of unoccupied
vertices. If some subproblems, let’s say C1 and C2, are close enough to each
other, i.e. d(C1, C2) ≤ m− 2, then they are merged to a single subproblem
including the path between them.

On the line 4 starts a while loop which iterates until there exist two
subproblems which can be merged together. When two subproblems are
merged to a single one then the shortest path between them is added as
well. This can cause other subproblems to be mergeable with some other
subproblems which was previously not close enough.

Algorithm 1 Division_into_subproblems(G)
1: C ← all biconnected components from G
2: C ← C \ {trivial biconnected components}
3: C ← C ∪ {v ∈ U | degree(v) ≥ 3 ∧ v 6∈ C}
4: while ∃Ci, Cj ∈ C |

(
minv∈Ci,u∈Cjd(v, u)

)
≤ m− 2 do

5: Ck ← Ci ∪ Cj ∪ {v′ ∈ shortest_path (u, v)}
6: C ← (C \ {Ci, Cj}) ∪ {Ck}
7: end while

3.2 Assigning agents to subproblems

From the last section 3.1 the subproblems are known. Now agents are
expected to be part of some subproblems, if any. This will later decide their
planning order. Agents are assigned to a subproblem if they are capable of
entering it, i.e. there is at least one free node in the subproblem [3]. This
means that agents in the subproblem are capable of creating such free node
for another agent, i.e. agents in the subproblem can leave it if needed.

Let v be a vertex in a subproblem Ci. Let u be a vertex not in Ci. Let
m′ be the number of unoccupied vertices reachable (a path exists) from v
in G \ {u}. Let m′′ be the number of unoccupied vertices reachable from Ci

in G \ {v}. Let’s take an agent a located at v ∈ Ci. Agent a is assigned to
subproblem Ci if v is located inside Ci, i.e. ¬∃w 6∈ Ci | (w, v) ∈ E .

If the agent a is not located inside the subproblem the nodes are called the
edge of the subproblem, i.e. ∃w 6∈ Ci | (w, v) ∈ E . If this happens then it is
assigned to Ci in two following cases. The first one is when a can reach at least
one free space but not all when avoiding the node v, i.e. m′ ≥ 1 ∧m′ < m.
The second one is when the node v does not block access to all free nodes

9

3. Push and rotate ..
available to C1, i.e. m′′ ≥ 1. It is possible that the agent located at the node
at the edge of the subproblem is not assigned to that subproblem.

When all agents located at nodes belonging to subproblems then the
remaining agents are solved. When a node u at an edge of the subproblem Ci

is tested then algorithm adds each agent located at a node v which does not
belong to subproblem and it is close enough, i.e. v 6∈ Ci | d(u, v) < m′ − 1.

If the agent a is not located at some u belonging to some Ci then it is
assigned to closest subproblem Cj if it can enter it. Note that an agent can’t
belong to two subproblems simultaneously and an agent does not need to be
assigned to some subproblem. Unassigned agents are always planned last.

3.2.1 Algorithm description

The task here is to found how many free nodes are reachable from a specific
node u when avoiding a set of nodes. The set is usually a single node or a
subproblem without a single node in it.

The algorithm is described in the Algorithm 2. For each component its
all nodes are tested (line 3). If the node is inside a subproblem we assign
an agent located at this node to this subproblem, if any. If the node has a
connection to outside of subproblem then the values m′ and m′′ are computed
(lines 4 and 5).

The line 9 means that the nearest nodes are followed away from the removed
node v starting at the node u and ignoring the connection to v. If the node is
empty then no agent is assigned but the value m′ is lowered. This can cause
the number of assigned agents to be lower than the value m′.

Algorithm 2 Assigning_agents_to_subproblems(G, C)
1: for all Ci ∈ C do
2: for all v ∈ Ci do
3: if ∃u 6∈ Ci for which (u, v) ∈ G then
4: m′ ← num. of unoccupied vertices reachable from v in G \ {u}
5: m′′ ← num. of unoccupied vertices reachable from Ci in G \{v}
6: if (m′ ≥ 1 ∧m′ < m) ∨m′′ ≥ 1 then
7: Assign agent on position v to Ci (if any)
8: end if
9: Follow path from u away from v (include nodes with racks)

10: and assign all agents at the first m′ − 1 nodes
11: on this path to Ci

12: else
13: Assign agent on position v to Ci (if any)
14: end if
15: end for
16: end for

10

.............................. 3.3. Priority relation between subproblems

Algorithm 3 Detect_priorities(C)
1: R ← empty list
2: for all Ci ∈ C do
3: N (Ci)← empty set
4: end for
5: for all Ci ∈ C do
6: for all Cj ∈ C do
7: P ← path from Ci to Cj

8: for all v′ ∈ P do
9: if v′ ∈ Ci then

10: P ← P \ [v′]
11: else
12: break
13: end if
14: end for
15: for all v′ ∈ P do
16: S ← t(v′)
17: if S 6= ∅ ∧ S 6∈ Ci then
18: if S ∈ Cj then
19: R ← R∪ {(Ci ≺ Cj})
20: break
21: end if
22: else
23: break
24: end if
25: end for
26: for all v′ ∈ P do
27: if v′ ∈ Cj then
28: N (Ci)← N (Ci) + {Cj}
29: break
30: end if
31: if ∃Ck ∈ C | v′ ∈ Ck then
32: break
33: end if
34: end for
35: end for
36: end for
37: return N ,R

3.3 Priority relation between subproblems

So far subproblems have been found and agents assigned to them. Each
subproblem represent a pack of agents which have same planning priority
because they can circle in the subproblem. Now the subproblems shall be
ordered.

11

3. Push and rotate ..
An agent was assigned to a subproblem if it was close enough. Its assignment

depends on the starting position of the agent. On the other hand the priority
of the subproblem depends on goal position of agents from other subproblems.

Let Ci and Cj be two subproblems. The priority relation Ci ≺ Cj (agents
from subproblem Ci should be planned before agents from subproblem Cj)
is added if an agent A ∈ Cj pushes another agent B ∈ Ci to an edge of the
subproblem Ci and lock it there or A has a goal position on the edge of the
subproblem Ci.

If an agent from subproblem Cj either has its goal position on the edge of
subproblem Ci, or will push another agent to the edge of subproblem Ci and
lock it there, then , which means that .

If both relations exists then they are removed because they make a cycle.
This is difference from the source [3] where it was used to detect if the task
has solution.

3.3.1 Algorithm description

The algorithm has two parts. The relations between subproblems are
detected at first (algorithm 3) Then the found relations are treated as a
partially ordered set and the planning order is extracted (algorithm 4).

The first Algorithm starts with two possible same subproblems Ci and Cj .
Two subproblems Ci and Cj are chosen (lines 5 and 6). The path between those
subproblems is found (line 7). If the path is empty then nothing happens
and the order does not matter because, either those two subproblems are not
connected and they cannot influence each other, or it is the same subproblem.

The nodes on the path are checked one after another. It is needed to
get out of the subproblem Ci at first. This is done because the algorithm
is interested only in testing nodes outside of the subproblem. The path, in
general, can start at a node inside of Ci. The next node is checked until the
node on the path belongs to Ci(line 9).

At this point the algorithm test a node outside of a subproblem (line 15).
All nodes in this for cycle are outside of Ci because those which belonged to
Ci were removed on line 10. If no agent has a goal position at this node then
the search is done and the rest nodes are not checked.

If some agent has a goal position at this node then it is checked if it belongs
to Cj (line 18). If this is true then an information that Ci must be planned
before Cj (noted as Ci ≺ Cj) is appended to a list of all priority relations R
(line 19). R is initialized as empty on line 1. The algorithm stops in this case
even though the other nodes on the path are not checked (line 20).

The important priorities have been found but for the next part the neigh-
bourhood subproblems are needed as well. On line 26 a for cycle starts. In it
the path is followed until a node belonging to Cj is found (line 27). Or until
the path crosses another subproblem Ck (line 31). In the first situation Cj is
added as a neighbour. In the second situation the search ends.

Neighbours are utilized in algorithm propagate which propagates priority.
For all neighbourhood subproblems of Cj it is tested if the relation Ck ≺ Cj

holds (line 2). If it does then nothing happens. If it does not then it can be

12

.. 3.4. Solve

said that Cj has greater priority than Ck a thus a relation Cj ≺ Ck is added
[3] and the algorithm now propagates to Ck to its neighbours.

The previous algorithm 3 found all priorities. Now it is needed to extract an
order of subproblems which is respecting them. This is done in algorithm 4.

It can happen that R contains same priorities more than once. If this
happens the extra duplicates are removed (line 1). Then it is checked if R
does not contain inverse priorities simultaneously, i.e. Ci ≺ Cj and Cj ≺ Ci

(lines 2 to 6). Both priorities are removed in this case.
Then all priorities are propagated on line 7. All priorities are represented

as an oriented graph and topological sorted at the end.[10]. Finally a priority
of agents is assigned according to the subproblem they belong to. This creates
the planning order of agents.

Algorithm 4 Fill_all_priorities(R,N)
1: R ← remove duplicates from R
2: for all (Ci ≺ Cj) ∈ R do
3: if (Cj ≺ Ci) ∈ R then
4: R ← R \ {(Ci ≺ Cj) , (Cj ≺ Ci)}
5: end if
6: end for
7: for all (Ci ≺ Cj) ∈ R do
8: Propagate(R,N , Cj)
9: end for

10: return Extract priority order from R

Algorithm 5 Propagate(R,N , Cj)
1: for all Ck ∈ N (Cj) do
2: if (Ck ≺ Cj) 6∈ R then
3: R ← R∪ {(Cj ≺ Ck)}
4: Propagate(R,N , Ck)
5: end if
6: end for

3.4 Solve

A planning order of agents is known at this point. It is needed now to find
a sequence Π which moves the agents A from its starting position to its goal
position.

The Solve algorithm plans agents sequentially. It is done by calling the
method Plan. Note that all algorithms, from later on, return true if they
succeeded or false if they did not. Solve (Algorithm 6) starts with initialization
of an empty list of done moves Π (line 1) and with creation of a set of already
planned agents F (line 2). Then each agent is planned sequentially until the
a list of done moves is returned (lines 3 to 7). This list is either a solution

13

3. Push and rotate ..
(line 8) or an empty list (line 5) if no solution has been found. The overview
what each method in Solve calls can be seen in Fig. 3.2.

In the original algorithm there was also the Plan* algorithm. The difference
is that Plan* avoids other agents when finding a path for an agent. This issue
can only happen on a map where all nodes have degree equal to 2. Those
maps are not considered for our application.

Algorithm 6 Solve(G,A)
1: Π← empty list []
2: F ← empty set ∅
3: for all agents A ∈ A do
4: if Plan(Π,G, A,F , []) = false then
5: return empty list []
6: end if
7: end for
8: return Π

Solve

Plan

Push

Clear_vertex

Move

Swap

Multipush Clear

Exchange

Reverse

Resolve Rotate

Figure 3.2: Demonstration how the methods in Solve are call each other.

14

.. 3.4. Solve

3.4.1 Plan

The Plan algorithm (Algorithm 7) finds for the provided agent A the
shortest path from the agent’s current location c(A) to its goal position t(A)
while avoiding other agents if that is possible (line 1) and pushes the agent
along it.

In the while cycle (line 2) it is expected that the agent A ends at the goal
position. This is done by three algorithms (Push, Rotate, Swap) which deal
with specific situations which can occur during a planning. The next node on
the path P is extracted (line 3) at first and removed from the path (line 4). If
the v is already contained in a list of already visited nodes Q then the agents
are forming a circle and thus the Rotate algorithm is called (line 5). Q is
passed as an argument and starts as an empty list if passed from Solve.

If v is not contained in Q then the agent is pushed to the node. This
is done by calling Push algorithm (line 8). Push does not succeed because
another agent (the blocking agent) is located at v. The current agent and the
blocking one must swap positions and thus Swap algorithm is called (line 9).
Note that a(v) returns the agent currently located at v. If Swap does not
succeeded then it is not possible for the agent A reach t(A) and task has no
solution and Plan returns false in this case.

After A reached v the v is added to Q (line 14). When A is located at
t(A) then A is added to the set of already planned agents F (line 16) and
Resolve is called (line 17). This returns already planned agents back to their
positions.

Algorithm 7 Plan(Π,G,A, A,F ,Q)
1: P ← shortest path in G from c(A) to t(A)
2: while c(A) 6= t(A) do
3: v ← first node in P
4: P ← P \ [v]
5: if v ∈ q then
6: Rotate(Π,G, q, v)
7: else
8: if Push(Π,G, A, v, c[F]) = false then
9: if Swap(Π,G, A, a[v]) = false then

10: return false
11: end if
12: end if
13: end if
14: Q ← Q+ [v]
15: end while
16: F ← F ∪ {a}
17: return Resolve(Π,G,A, g,F)

15

3. Push and rotate ..
3.4.2 Push

The Push algorithm (Algorithm 8) moves the agent A to node v if the node
is empty (line 7). But before it it is checked if this is possible (line 1). If not,
then it means some other agent is occupying v. The algorithm Clear_vertex
tries to empty v, i.e. to move the agent from it (line 3).

The argument V is filled from Plan as c[F] which means a list of nodes
where already planned agents currently stand. The current node from agent
A (marked as c(A)) is added to V and marked as V ′ (line 2). This is utilized
in Clear_vertex algorithm which works with a set of forbidden nodes, i.e.
nodes which cannot be used for moving an agent from vertex v. This prevents
the creation of cycles. The algorithm Move is called (line 7) and A was
successfully moved so the algorithm returns true (line 8).

Algorithm 8 Push(Π,G, A, v,V)
1: if a(v) 6= ∅ then
2: V ′ ← V ∪ {c(A)}
3: if Clear_vertex(Π,G, v,V ′) = false then
4: return false
5: end if
6: end if
7: Move(Π, A, v)
8: return true

3.4.3 Move

The Move algorithm (Algorithm 9) just moves an agent A from its current
node c(A) to the node v. When this is done A treated as located at node v
from now.

A move is created at first (line 1) and then it is appended as the last move
in the list of done moves Π (line 2). Note that this action cannot fail because
node v is empty and a just moves to the node. That is the reason why Move
does not return true or false.

Algorithm 9 Move(Π, A, v)
1: π ← (A, c(A), v)
2: Π← Π + [π]

3.4.4 Clear_vertex

The Clear_vertex algorithm (Algorithm 10) is called when the node v
contains some agent and this agent is asked to leave the node. The main idea
is that a free node somewhere in a graph G \ V is found at first. V is a list of
blocked nodes which cannot be used for moving agent from node v. Then all
agents on a path from v to u are moved only one node ahead. This causes v
to be free.

16

.. 3.4. Solve

A distance array from node v to all other nodes is found at first (line 1).
This array is sorted by value (line 2) and the nodes are tested one by one if
it is possible to move agents there (lines 3). If the node u is not empty then
next one is tested (line 4 to 20).

If the node u is empty then a path is extracted from u to v (line 7). If
the path is not empty then the first element is extracted (line 9) and it is
removed from P (line 10). Now the elements in P are processed sequentially
starting with element after u until v (line 11). If the node x contains an agent
then this agent is moved to xprev (line 14) and the next node is checked. At
the end Clear_vertex returns true because it has succeeded in clearing the
node v.

When all nodes are checked and either no path to them is found, or they
are not empty, then algorithm returns false (line 21). Note that it is possible
that the path is empty since the search is done in G \ V.

Algorithm 10 Clear_vertex(Π,G, v,V)
1: D ← array of distances to all nodes in G \ V
2: D ← sorted D according to the distance to each node
3: for all u ∈ D do
4: if a(u) 6= ∅ then
5: continue
6: end if
7: P ← path from u to v
8: if ∃x : x ∈ P then
9: xprev ← u

10: P ← P \ [u]
11: for all x ∈ P do
12: B ← a(x)
13: if B 6= ∅ then
14: Move(Π, B, xprev)
15: end if
16: xprev ← x
17: end for
18: return true
19: end if
20: end for
21: return false

3.4.5 Swap

The algorithm Swap (Algorithm 11) swaps positions of two agents R and S.
This is only possible on a node with a degree three or higher. The algorithm
selects a node with such property (line 2) and tries to swap agents using it.
A local list of done moves in this current attempt Π′ is created because not
all attempts are successful (line 3).

The Multipush algorithm is called at first(line 4). If Multipush succeeds

17

3. Push and rotate ..
then the algorithm Clear is called (line 5). If Clear managed to clear v then
local moves are added to the list of done moves (line 6) and both agents
are ready to be swapped. This is done in method exchange (line 7). After
exchange it is needed to move all agents back where they were before the
swap which is done in reverse (line 8). Swap succeeded and true is returned
(line 9).

If any operation fails then the state of the graph G must be restored. Π′

carries information which agents moved where. The algorithm Restore works
same in the same way as reverse but without swapping roles of R and S
(line 12).

It can happen that no such vertex exists or no vertex for is suitable for this
type of operation. The algorithm returns false (line 14) in these cases.

Algorithm 11 Swap(Π,G, R, S)
1: D ← {vertex x ∈ G | degree(x) ≥ 3}
2: for all vertex v ∈ D do
3: Π′ ← empty list []
4: if Multipush(Π′,G, R, S, v) = true then
5: if Clear(Π′,G, R, S, v) = true then
6: Π← Π ∪Π′

7: Exchange(Π,G, R, S, v)
8: Reverse(Π,Π′

r/s, R, S)
9: return true

10: end if
11: end if
12: Restore(Π′)
13: end for
14: return false

3.4.6 Multipush

The algorithm Multipush (Algorithm 12) basically drags two agents A and
B to a node v. This node has a degree more than 3 and it is passed as a
parameter. Note that A and B are located at nodes which share an edge in
G because B blocks A from moving to a desired goal node. The difference
between Multipush and Push is that Push moves only one agent but Multipush
simultaneously moves two agents.

It needs to be decided which agent is closer to v at first (lines 1 to 11).
Path from agent A current node to v is found (Apath). This is done for B
as well. If Apath is shorter then Bpath then A is marked as R, B as S and
Apath is saved to P. The reason behind this is that the agent R is expected
to be located at node v when moved to it. Note that R is not always blocking
agent B because v can be on the A’s side.

Path P can be empty. The algorithm returns false in that case (line 13). If
the path is not empty then the first element is removed because R is standing
at it (line 15).

18

.. 3.4. Solve

In for cycle starting on line 16 both agents are moved along P until R
reaches v. If some other agent is encountered during the process then it is
asked through Clear_vertex to move away. In this case the list of blocked
nodes consists only from a current nodes where R and S are, i.e. already
planned agents can be moved because when swap ends then all moves are
reversed and already planned agents are returned back.

At the end the algorithm returns true because R is located at v and S next
to it (line 28).

Algorithm 12 Multipush(Π,G, A,B, v)
1: Apath ← path from c(A) to v
2: Bpath ← path from c(B) to v
3: if Apath < Bpath then
4: R← A
5: P ← Apath

6: S ← B
7: else
8: R← B
9: P ← Bpath

10: S ← A
11: end if
12: if ¬∃x : x ∈ P then
13: return false
14: end if
15: P ← P \ [c(R)]
16: for all x ∈ P do
17: rc ← c(R)
18: sc ← c(S)
19: if a(x) 6= ∅ then
20: U ′ ← {rc, sc}
21: if Clear_vertex(Π,G, x,U ′) = false then
22: return false
23: end if
24: end if
25: Move(Π, R, x)
26: Move(Π, S, rc)
27: end for
28: return true

3.4.7 Clear

The Clear algorithm (alg. 13) is called by Swap when at least two free
nodes around a node v are required. Clear is prevented from moving agents
R, located at node v, and S which is in some neighbourhood node of v.
Clear gets two agents R′ and S′ as a parameter and it is decided which

one from them is located at node v at first(lines 1 to 9) and this agent is

19

3. Push and rotate ..
marked as R. The other one is marked as S and its node as v′. It is checked
how many free nodes are in the neighbourhood of node v (line 10) and all
those free nodes are added to the set N . If N has at least two elements then
it is sufficient and the algorithm returns true (line 12).

If |N | is lower or equal to 1 then Clear calls clear_vertex on a neighbourhood
node avoiding the node where S is located (line 14). Each cleared node is
added to N (line 19). If it happens that the size of |N | ≥ 1 then two nodes
are found and true is returned because the other node was just cleared.

If |N | ≤ 1 after all attempts then algorithm returns false (line 22). The
original algorithm tried to call Push and Clear if |E| = 1. This situation
rarely happens and this part was not implemented.

Algorithm 13 Clear(Π,G, R′, S′, v)
1: if r′ = a(v) then
2: R← R′

3: S ← S′

4: v′ ← c(S′)
5: else
6: R← S′

7: S ← R′

8: v′ ← c(R′)
9: end if

10: N ← free neighbours(v)
11: if |N | ≥ 2 then
12: return true
13: end if
14: for all n ∈ neighbours(v) \ (N ∪ {v′}) do
15: if Clear_vertex(Π,G, n,N ∪ {v, v′}) = true then
16: if |N | ≥ 1 then
17: return true
18: end if
19: N ← N ∪ {n}
20: end if
21: end for
22: return false

3.4.8 Exchange

The Exchange algoritm (Algorithm 14) exchanges position of two agents.
One agent R is located at node v which has degree at least three. The other
agent S is located at node sc which has an connection with v. At least two
unoccupied nodes are needed to guarantee that exchange is possible. R moves
away from v to free neighbour, S moves through v to other free neighbour, R
moves through v to sc and S moves to v.
Exchange detects which agent from R′ and S′ (passed as an argument) is

located where at start (lines 1 to 7) and finds two unoccupied nodes. Note

20

.. 3.4. Solve

that those nodes exist because they were cleared earlier by Clear algorithm.
Exchange of positions of agents commences (line 10). For example line 10
means that algorithm moves R to the first free node v1. This algorithm
always succeeds.

Algorithm 14 Exchange(Π,G, R′, S′, v)
1: if R′ = a(v) then
2: R← R′

3: S ← S′

4: else
5: R← S′

6: S ← R′

7: end if
8: (v1, v2)← two unoccupied neghbours of v
9: sc ← c(S)

10: Move(Π, R, v1)
11: Move(Π, S, v)
12: Move(Π, S, v2)
13: Move(Π, R, v)
14: Move(Π, R, sc)
15: Move(Π, S, v)

3.4.9 Reverse

The algorithm Reverse (Algorithm 15) appends moves from Π′
r/s to Π in

reverse order. Each move π from the Π′
r/s is reversed, i.e. the start node is

now end node and vice versa. Then the order is reversed, i.e. the last done
move is now the first in the list. Moreover moves done by an agent R are
saved as done by agent S and vice versa (line 3 to 6). Other moves remains
same but are only inverted (line 8). These all newly created moves π are
added to the list of already done moves Π (line 11).

Algorithm 15 Reverse(Π,Π′
r/s, R, S)

1: Πinv ← empty list []
2: for all (A, vstart, vend) ∈ Π′

r/s do
3: if A = R then
4: Πinv ← [(R, vend, vstart)] + Πinv

5: else if A = S then
6: Πinv ← [(S, vend, vstart)] + Πinv

7: else
8: Πinv ← [(A, vend, vstart)] + Πinv

9: end if
10: end for
11: Π← Π + Πinv

21

3. Push and rotate ..
3.4.10 Rotate

The algorithm Rotate (Algorithm 16) is called when Plan found out that
node on the agent’s path is already visited by that agent. This means that
nodes in the list of visited nodes Q form a cycle starting with node v. The
cycle is extracted from Q and agents are moved forward.

The original algorithm considered also the situation when a circle had no
free node. This is not important for this task and this is avoided. In such
situation the algorithm returns false.
Q is divided into two parts at start. The first part is D which is from tail

of Q until v but not including it (line 1). These are the nodes which form a
circle. The second part is Q which is what is left after removing D from Q
(line 2). Now the algorithm goes through all nodes in D (lines starting at 4).
Each node is checked if it contains an agent (line 5). If the node contains an
agent then the node is pushed to list of tested nodes H (line 13), which is
initialized as a empty list (line 3).

If the node is free then all agents located at nodes in H are pushed one
step ahead in D (lines 7 to 10). On line 6 the current element is saved. This
is a destination node where the agent from H is moved (line 8). This means
rotate succeeds and true is returned (line 11).

If the circle contains only nodes with agents then false is returned (line 15).

Algorithm 16 Rotate(Π,G,Q, v)
1: D ← the tail of Q starting from (including) v
2: Q ← the head of Q up to (not including) v
3: H ← empty list []
4: for all vertices v′ ∈ D do
5: if a(v′) = ∅ then
6: w ← v′

7: for all h ∈ H do
8: Move(Π, h, w)
9: w ← h

10: end for
11: return true
12: end if
13: H ← [v′] +H
14: end for
15: return false

3.4.11 Resolve

It is not normally possible to move already planned agents F but some
algorithms (for example Clear_vertex) can push them out of the way. When
an agent reach its goal position then all these agents must be returned back.
That is when Resolve algorithm (Algorithm 17) do its job. Resolve utilize a
list of visited nodes Q. Each node is tested whether it is a goal position an

22

... 3.5. Smooth

agent A from F . If it is that the case then A is returned back.
Resolve operates until Q contains a node (line 1). The last node in Q is

extracted (line 2). An agent R which has a goal position at v is extracted
(line 3). If no such agent exists then v is removed from Q (line 10).

If R exists then it is tested whether it is located at its goal position (line 4).
If not then Push tries to move him back to its position. The agent at this
point is at most one node away from it. Push can only fail if another agent
S is at R’s goal position. S is extracted (line 6) and planned using Plan
(line 7). Note that S cannot be at its goal position because that position
already belongs to R.

Resolve can call Plan at this situation (line 7). And this is in fact a cyclic
calling because Plan calls always Resolve. The cycle is actually guaranteed to
end because at most k agents are out of their positions and all were planned
before thus the solution exists.

Algorithm 17 Resolve(Π,G,A,Q,F)
1: while |Q| > 0 do
2: v ← the last vertex on Q
3: R← t(v)
4: if R 6= ∅ ∧R ∈ F ∧ c(R) 6= t(R) then
5: if Push(Π,G, R, t(R), c[F]) = false then
6: S ← a(t(R))
7: return Plan(Π,G,A, S,F ,Q)
8: end if
9: end if

10: Q ← Q \ [v]
11: end while
12: return true

3.5 Smooth

All agents are planned at this point. A problem is that the algorithm Solve
(section 3.4) produces redundant moves. These moves can be removed using
the Smooth algorithm.

Smooth operates with pointers to other moves π in the list of done moves
Π. A redundant sequence is a sequence of moves that moves an agent to a
vertex that it has visited before and no other agent has visited that vertex in
between [3].

An example of a redundant sequence consisting of two moves Move2 and
Move3:.Move1: Agent 1 moves from a node 1 to a node 2..Move2: Agent 1 moves from the node 2 to a node 3..Move3: Agent 1 moves from the node 3 to the node 2.

23

3. Push and rotate ..
.Move4: Agent 1 moves from the node 2 to the node 3.

The moves Move2 and Move3 are redundant because no other agent visited
the node 2 in between.

To solve this issue a double linked list of nodes is created [3]. Each move π
consists of an agent A and a node u. It is needed to known which moves, if
any, A did before π and which move follows after π. The same applies for u.

Let’s define pointers to other moves. Let NA(v) (next agent) return a next
move of the agent A. Let NV (v) (next vertex) return a next move where the
vertex v is noted as the end vertex. A redundant sequence can be written as
π,NA(π), NV (π) [3].

When this redundant sequence is deleted it is possible that another re-
dundant sequence appears. To update the double linked list additional two
pointers are introduced. Let PA(v) (previous agent) return a previous move
of the A and let PV (v) (previous vertex) return a previous move where the
vertex v is noted as the end vertex. Figure 3.3 shows pointers of a single
move [3].

moveP_A

P_V

N_A

N_V

Figure 3.3: The visualization of a move with its four pointers NA (next agent),
NV (next vertex), PA (previous agent) and PV (previous vertex). Each pointer
points to another move.

It is now possible to update the list of done moves efficiently but this
assumes that pointers are already constructed. Two extra types of pointers
are introduced. Let LA(a) (last agent) return the last move (π = (A, u))
done by an agent A. u is some destination vertex and let LV (v) (last vertex)
return the last move (π = (B, v)) where the vertex v is noted as the end
vertex, i.e. some agent B moved to the vertex v [3].

3.5.1 Smooth algorithm description

The Smooth algorithm (Algorithm 18) has two parts. It detects redundan-
cies in the list of done moves Π at first while simultaneously constructing
double linked chains of moves (line 1). Then it removes redundancies and
possibly detects some additional redundancies in the process (line 2). Finally
Π is returned at (line 3). This is the same Π as passed as argument but
without redundancies which have been removed on line 2. Both algorithms
are now described.

24

... 3.5. Smooth

Algorithm 18 Smooth(G,Π)
1: D ← Detect_redundancies(G,Π)
2: Remove_redundancies(D)
3: return Π

Algorithm 19 Detect_redundancies(G,Π)
1: D ← empty unique list []
2: LA ← empty array
3: LV ← empty array
4: for all A ∈ A do
5: LA(A)← impossible move
6: end for
7: for all u ∈ U do
8: LV (u)← impossible move
9: end for

10: for all (A, u) = π ∈ Π do
11: PA(π)← LA(A), NA(LA(A))← π
12: PV (π)← LV (A), NV (LV (A))← π
13: if a(LV (u)) = A then
14: D ← D + [LV (u)]
15: end if
16: LA(A)← π, LV (u)← π
17: end for
18: return D

3.5.2 Detect redundancies

The algorithm Detect_redundancies (Algorithm. 19) detects redundant
sequences in Π and initializes double linked chain.

Denote an impossible move be a move of an non-existing agent from a
non-existing node to a non-existing node -1. This is going to be used as a stop
barrier for pointers. The arrays LA and LA are initialized with an impossible
move (lines 4 to 9). Then a double linked chain is created on lines 11 to 12.

Let’s explain the line 11 little in more details. The first part PA(π)← LA(A)
means that the last move of agent A, LA(a) is now saved as a previous move
of agent A of current move π, PA(π), i.e. the current move π has now filled a
pointer to the previous move PA.

The second part NA(LA(A))← π saves the current move π as a next move
of agent A, NA, to the last move of agent A, LA, i.e. the next move NA of
the move last move of agent A, LA, is the move π.

It is checked if π is the last move of a redundant sequence when the double
linked list is constructed (line 13). If it is then the first move of the redundant
sequence is added to unique list D, which is initialized as empty unique list
(line 1). Note that a(π) returns the agent A assuming that π = (A, v).

25

3. Push and rotate ..
Note about the uniqueness of the moves. Let’s look back at the example

in section 3.5. The moves Move2 and Move4 are unique even though they
represent the same action. They are unique because the Move2 is done as
second and Move4 is done as fourth. But for example when comparing Move2
and Move2 then they are not unique when considered by the D.

Algorithm 20 Remove_redundancies(D)
1: while |D| > 0 do
2: π ← retrieve and remove first element from D
3: D ← D \ [π]
4: π′ ← π
5: πL ← NA(π)
6: while πL 6= π′ do
7: π′ ← NA(π′)
8: π′.mark()
9: PA(NA(π′))← PA(π′), NA(PA(π′))← NA(π′)

10: PV (NV (π′))← PV (π′), NV (PV (π′))← NV (π′)
11: if a(PV (π′) = a(NV (π′)) then
12: D ← D + [PV (π′)]
13: end if
14: end while
15: end while
16: for all π ∈ Π do
17: if π.isMarked() then
18: Π← Π \ [π]
19: end if
20: end for

3.5.3 Remove redundancies

The algorithm Remove_redundancies (Algorithm 20) receives a list of
detected redundancies D as a paramater. This list is iterated over again until
the list is empty. An element is chosen from D and then the sequence is
deleted. It is checked whether some new redundant sequence appeared. If
yes then it is added to D and process is repeated. This procedure is finite
because Π has a finite number of steps which can contain a finite number of
redundancies. It is possible that the number of redundancies can be drastically
temporary increased.
Remove_redundancies removes all redundancies in while cycle (lines 1 to

15). The first element is retrieved from D and removed from it (lines 2 to 3).
A redundant sequence starts with π and ends NA(π). NA(π) is removed as
well.

The redundant sequence is removed (lines 6 to 14). When a move is
removed then it is marked as removed (line 8) and all four pointed moves,
PA, PV , NA, NV , have some of their pointers updated (lines 9 to 10). After
that it is checked whethera new redundancy appeared (line 11). If it is the

26

....................................... 3.6. Example solution

case then it is added to the end of D (line 12). Note that at this moment π′

is pointing to some other moves but nothing points back at it. Finally the
entire Π is checked and redundant moves are removed (lines 16 to 20).

3.6 Example solution

Let’s take a task which was already mentioned in Fig. 3.1. Assume that
the task has only two agents R0 and R1 at their starting locations. R1 is
already at its goal location. The doted line marks the goal position of R0.
R0 needs to move R1 from its position.

Solution of this situation is displayed in Fig. 3.4. No biconnected compo-
nents are detected, only a node with degree three or higher. The problem
thus contains a single subproblem C1 which is the node where R1 is located.
No subproblems can be merged.

Assignment of agents assigns both agents to C1. R0 is assigned because
when the edge between them is tested then at most 2 agents outside of the
subproblem can be assigned to it. R1 is assigned to C1 as well. When another
edge is tested which is different from the edge with R0 then the condition
m′ ≥ 1 ∧m′ < m is satisfied because m′ = 1 ∧m = 2.

There is no priority between subproblems to be decided. Agents can be
planned in any order.

Solve produces the moves. In this case R0 is planned first (Fig. 3.4a) and
R0 pushes R1 away (Fig. 3.4b). Unfortunately, R1 chooses R0’s destination.
R0 is pushed along the path to its goal and Swap is called because Push does
not succeed (Fig. 3.4c). Both agents performs Multipush. R0 is chosen as an
agent at node with degree three. Clear successfully cleared two neighbourhood
nodes (they were already free).

Exchange exchanges both agents positions (Figs. from 3.4d to 3.4i). It is
verified that both agents are at their goal positions (3.4i).

It can be seen that moves from 3.4a to 3.4e are part of redundant sequence
because 3.4a is the same as 3.4d. Smooth detects that R0 returns back to its
starting position using moves 3.4a (initial move), 3.4c and 3.4d at first. Move
3.4b does not concern R0 because it is done by R1. Move 3.4a is added to D.

When the move 3.4c is removed and pointers are redirected it is detected
that another redundant sequence appears because the condition a(PV (π′) =
a(NV (π′)) is satisfied. These are 3.4a (initial move), 3.4b and 3.4e. So the
move 3.4a is added to D. Then move 3.4d is removed because Smooth is
still removing the first redundant sequence. Now Smooth starts removing
the second redundant sequence (3.4a, 3.4b, 3.4e) by removing 3.4b and 3.4e.
No new redundant sequences are found and algorithm returns the solution
containing move 3.4a and moves from 3.4f to 3.4i. The complete solution can
be seen in 3.5.

27

3. Push and rotate ..

R0

R1

R1

R1

(a) : R0’s destination is
marked by the arrow.

R0

R1

R1

R1

(b) : R1 is pushed away.

R1 R0

R1

R1

(c) : R0 advances.

R0

R1

R1

R1

(d) : The Swap is called.
R0 empties the node for
exchange.

R0

R1

R1

R1

(e) : R1 returns to its
starting position.

R0

R1

R1

R1

(f) : R1 moves to an-
other node.

R1 R0

R1

R1

(g) : R0 advances.

R1 R1

R0

R1

(h) : R0 finishes at goal
position.

R1 R1

R0

R1

(i) : R1 returns to start-
ing position.

Figure 3.4: The solution for a map called vertex produced by the Smooth
algorithm. It can be seen that the moves 3.4a to 3.4d are redundant because
3.4a is same as 3.4e.

28

....................................... 3.6. Example solution

R0

R1

R1

R1

(a) : R0’s destination is
marked by the arrow.

R0

R1

R1

R1

(b) : R1 moves to an-
other node.

R1 R0

R1

R1

(c) : R0 advances.

R1 R1

R0

R1

(d) : R0 finishes at goal
position.

R1 R1

R0

R1

(e) : R1 returns to start-
ing position.

Figure 3.5: The smoothed solution for a map called vertex produced by the
Smooth algorithm on the solution from the Solve algorithm. Two redundant
sequences have been removed. The original solution can be found in figure 3.4.

29

30

Chapter 4
Push and rotate implementation

The theoretical description of Push and rotate is done in the chapter 3. It
is appropriate to go more into detail now and to explain the implementation
and how it was realized. The extension for two types of agents is located at
the end of this chapter.

The algorithm was implemented in a programming language C++ [11].
This language allows using pointers and managing them. A pointer is variable
storing an address of another variable. This allows many parts of programs
to work with the structure which is pointed at without the need to copy it.

Some of the problems from the theoretical chapter can be reformulated or
already are common solved problems. Usual approaches are taken in that case
the or even, if it is possible, algorithms from public libraries are considered.
A great example of this is the Boost library. Few of its graph algorithms are
used in this thesis. The algorithm is noted and shortly explained in that case.

The standard template library (STL) is used when possible [12]. When a
list (for example of nodes) is mentioned then it is a structure from STL.

A vector is used storing nodes U and agents A. A list is used for storing the
list of done moves. A set is utilized in this thesis on few places, for example
when all planned agents are returned back to their goal position. A map is
used when two subproblems are merged together. A pair is used for storing
priority relation between two subproblems.

4.1 Agents

Each agent is represented as an object which knows the agent’s id, the
initial node id, the goal node id and if it carries a rack. These are expected
parameters for creating an agent.

An agent has the private id which allows that the provided id (by a user
for example) can have spaces between them, i.e. it is not expected that 10
agents in a task have ids from 0 to 9. This is useful for creating and removing
tasks. Another agents’ variable is planning_priority_ which starts as −1 and
it is assigned during the assigned agents to subproblems 3.2.

31

4. Push and rotate implementation
4.2 Nodes

A node is represented as an object which knows the node’s id, the position
(both x and y), a pointer to an agent currently located at the node, the
subproblem id, if it contains a rack and pointers to all its neighbourhood
nodes. Each node has the private id for same reasons like the agents.

Also a node has a pointer to an agent which has the node as a goal position.
It is used for example in algorithm Detect priorities 3 on line 16.

4.3 Arena

The arena is an object which is created at the start and it us utilized by
all algorithms. It knows all agents and all nodes. All agents are stored as a
vector and nodes as well. This allows quick reference using their private id.

It contains a special variables, for example show_info_about_running_.
If it is set to true then algorithm returns info about the running and about
time elapsed. It contains a pointer to initialized AStar algorithm because it
is called many times in Solve.

The arena is added as a parameter to all algorithms and it is noted as G
because it represents mostly the graph.

4.4 Division into subproblems

The implementation details of the Push and rotate algorithm are explained
one by one now. The advantage of this step is that it is only needed to
perform once for each map unless some nodes or edges are removed or added.
All other steps depend on all agents’ starting and goal positions.

The biconnected components are found at first. The finding is done using
the algorithm Biconnected_components_and_articulation_points from the
Boost library [13]. This algorithm returns also subproblems of size two.
These are not considered biconnected and are removed from the set. The
articulation points are not used at all because Push and rotate has no use for
nodes in a map which belongs simultaneously to two biconnected components.

Each subproblem is represented as a list of nodes which belong to it and it
is stored as an element in the list of subproblems C. Nodes of degree three or
higher are added to main list as well. Then all subproblems receive a private
id and the main list is replaced by a map where the id of subproblem is used
as reference.

Subproblems are merged now. The algorithm chooses a first node in the first
subproblem and starts Dijkstra’s algorithm [14]. Dijkstra searches shortest
paths from a single node to all other nodes in the graph using the value of
the edge between the nodes. For the search the edge between the nodes in
the same subproblem has a value 0 and the remaining edges have value 1.
This solves the issue with finding the closest node in each subproblem.

32

................................ 4.5. Assigning agents to subproblems

All distances provided by Dijkstra’s algorithm are sorted then and the
testing for merging starts from the closest node. This prevents adding more
paths more than once. If the node belongs to another subproblem and the
condition for merging is satisfied then those subproblems are merged. When
two subproblems C1, C2 are merged then all nodes of C2 are appended to the
end of the list of C1. C2 is removed from the map and no longer exists. A
path (a list of nodes) between C1 and C2 is added to the end of the list of C1,
after nodes from C2. The next subproblem is processed when all nodes have
been tested for merging. The algorithm restarts after all subproblems are
checked, i.e. it starts from the first subproblem if any two subproblems were
merged in the previous iteration.

4.5 Assigning agents to subproblems

The next task is to found how much free space is reachable from a specific
node u when avoiding a set of nodes. The set is usually a single node or a
subproblem without a node in it and the actual distance is not important
even if the edges have different weights. The algorithm breath first search
(BFS [15]) is used for computation of m′ and m′′.

BFS has two lists, an open list and a closed list. It starts the search from
a single node it adds it to closed list and then it adds all nodes in node’s
neighbourhood into the open list. Then it chooses another node from the
open list. Reachable nodes are stored in the open list and then processed if
they are empty.

At some point in the algorithm (2 at line 9) it is asked to assign the first
m′ − 1 agents away from node v. It was not clear from the original paper
what exactly this meant but BFS was used and the node edge between u
and v is ignored and at most m′ − 1 agents are assigned. Note that it is not
possible to enter the subproblem containing v via another edge because the
one between u and v is the only way.

4.6 Priority relation between subproblems

A relation Ci ≺ Cj is described as a pair (STL) where the first element is
the id of Ci and the second element is the id of Cj . That means the list of
relations is represented as a list of pairs.

For each pair of subproblems Ci and Cj a path is found using the AStar
algorithm [16]. AStar is initialized using the nodes and edges from map. A
start node is the first node Ci and an end node is also the first node in Cj .
AStar uses a heuristics for finding the closest path to the destination node
which depends on node’s position. That’s why all nodes have coordinates.

When the path from Ci to Cj is followed then it is actually tested for both
another agent’s goal position and Ci’s neighbour simultaneously. The path
is not restarted. For the sake of simplicity it is written in the pseudo code
(alg. 3 lines 15 to 34).

33

4. Push and rotate implementation
The ordering is extracted using the Topological sort algorithm [10]. A

directed graph is constructed from the found priorities and then passed as a
parameter. Topological sort returns an array of ids of each subproblem where
the first element has the highest priority, the second one slightly lower and
so on with the last element having the lowest priority.

4.7 Solve

The list of done moves Π is actually a list. The list of already visited nodes
Q is represented as a list of pointers to the specific nodes. The set of already
planed agents F is represented as a map using the agent’s private id as a key.

4.7.1 Plan

AStar is used in the same way like in the section 4.6 but in this case
the graph G is created once and utilized every time a path is needed. The
creation of G is done when the map is loaded. The weight of an edge has a
default value of 1. If the node contains an agent then the weight of all edges
containing this node has weight 10. This force AStar to avoid pushing other
agents if it is not necessary.

4.7.2 Push

The set of blocked nodes of already planned agents V is represented as a
set for fast searching. V contains only a nodes’ ids.

4.7.3 Clear_vertex

Clear_vertex actually calls BFS ([15]) for finding the unoccupied nodes.
The search is stop when a free node is found. The parent array is extracted
from BFS as well. If the unoccupied node does not work then next closest
unoccupied node is returned and so on.

4.7.4 Swap

The list of nodes with degree at least three D is saved during the map
initialization and these nodes are tested one by one.

All done moves are saved in Π′ (11 on line 3). The graph G is not copied in
any iteration. This is possible because Π′ stores where which agents moved
and these moves are processed backwards and the agents are restored back
to their initial position before Multipush is called (line 4). Note that Restore
is called only when Swap did not succeeded.

4.7.5 Multipush

It is decided which agent, A or B, is assigned to variable R at the start of
the algorithm 12. Actually the R starts as B and if the path is shorter for A

34

... 4.8. Smooth

then it is reversed. This is done because B is expected to be a blocking agent
and usually this is true and it is expected to have initialized variables when
they are created. The V ′ is represented as a set containing ids of blocked
nodes (line 20).

4.7.6 Clear

The set of all unoccupied nodes N of a node v is created just by processing
the node’s neighbours and adding only if there is no agent at the tested node.
N contains only ids of free nodes. Another set is created and it contains all
ids from N (Algorithm 13 line 15). These two sets exist and are maintained
together for the rest of the for cycle.

4.7.7 Exchange

The comparison which agent stands at v is done only by using the agents
id (Algorithm 14 line 1). Nothing else is checked. This is sufficient since the
agent id is unique. The unoccupied neighbours are constructed once again
thus it is possible that they are different from the ones found in Clear if the
node has more than two free neighbours.

4.7.8 Reverse

The local list of done moves Π′ is created using the STL. Π′ allows the
iteration from the end to the start and each move is replaced using the Reverse
algorithm (Algorithm 15). Agents are distinguished based on their id only.

4.7.9 Rotate

One of the argument of the Algorithm 16 is a node v which marks the start
of the cycle. The implementation actually does not need this at all. If the
element exists the Algorithm already saves a special type of a pointer, an
iterator, to it. This iterator is passed as an argument to Rotate instead of v.
This allows the splitting of Q in c and Q \ c.

4.7.10 Resolve

The set of already planned robots F contains a method find which returns
an iterator to the element. The iterator points either to the desired element
or to an inaccessible element. This is utilized when returning already planned
agents back to their start position.

4.8 Smooth

One thing which is not clear is that move π can be marked (line 17). This
is thanks to the structure π which has a local variable removed_from_list_.

35

4. Push and rotate implementation
If this removed_from_list_ is marked (i.e. the variable is set to true) then
Smooth removes the move at the end during the clean up.

4.9 Move

The impossible move is represented as a regular move with its values set
to special values (−1). When a move is created, for example in Push, then
all its pointers (PA, PV , NA and NV) point to the impossible move.

The unique move is a move on a specific position in list of done moves Π.
Two moves are the same if they both move the same agent from some node u
to some node v and are at the same position in the solution. This is solved
by using an id which is assigned to all moves when they enter Smooth.

Algorithm 21 Plan_with_racks(Π,G,A, A,F ,Q)
1: if A has a rack ∧ c(A) has a rack then
2: n← free neighbour of v
3: if Push(Π,G, A, n, c[F]) = false then
4: return false
5: end if
6: end if
7: P ← shortest path in G from c(A) to t(A)
8: while c(A) 6= t(A) do
9: v ← first node in P

10: P ← P \ [v]
11: if v ∈ q then
12: Rotate(Π,G, q, v)
13: else
14: if Push(Π,G, A, v, c[F]) = false then
15: if Swap(Π,G, A, a[v]) = false then
16: if Push_with_racks(Π,G, A, v, c[F]) = false then
17: if Swap_with_racks(Π,G, A, a[v]) = false then
18: return false
19: end if
20: end if
21: end if
22: end if
23: end if
24: Q ← Q+ [v]
25: end while
26: F ← F ∪ {a}
27: return Resolve(Π,G,A, g,F)

36

................................4.10. Extension for two types of agents

4.10 Extension for two types of agents

The additional requirements (two types of robots and obstacles) cause the
addition of few algorithms mainly into Solve because the idea is that an agent
not carrying a rack tries to avoid all agents carrying it. If the agents with
racks block a path then the agent without a rack is allowed to push them only
after exhausting all other options. The algorithms Division into subproblems,
Assigning agents to subproblems, Priority relation and Smooth remained same.
The agents with racks are considered as a part of a subproblem but racks are
not considered as a free space during the Assigning agents to subproblems.

Plan_with_racks (Algorith 21) is mainly same as Plan. If the agent has a
rack and starts at a position with a rack then it carries it and it is moved
away to some free node (line 1). Another difference is that if Swap fails the
algorithm calls Push_with_racks and Swap_with_racks (lines 16 to 17).

If A does not carry a rack then Push treats other agents with racks as moving
obstacles and automatically fails and false is returned. The Push_with_racks
algorithm (Algorithm 23) works in a similar way as Push but agents without
racks are allowed to push agents with racks away. Push was changed to take
this into an account.

Algorithm 22 Push(Π,G, A, v,V)
1: if a(v) 6= ∅ then
2: if a(v) has a rack ∧ A has no rack then
3: return false
4: end if
5: V ′ ← V ∪ {c(A)}
6: if Clear_vertex(Π,G, v,V ′) = false then
7: return false
8: end if
9: end if

10: Move(Π, A, v)
11: return true

Algorithm 23 Push_with_racks(Π,G, A, v,V)
1: if a(v) 6= ∅ then
2: V ′ ← V ∪ {c(A)}
3: if Clear_vertex_with_racks(Π,G, v,V ′) = false then
4: return false
5: end if
6: end if
7: Move(Π, A, v)
8: return true

Clear_vertex_with_racks works in a similar way as Clear_vertex but since
it has the ability to move agents with racks then the search for nearest free

37

4. Push and rotate implementation
space is done in a graph where the agents with racks do not block the path.
The rest remains same.

Swap_with_racks works in the same way as Swap but it is allowed to move
agents carrying racks, e.g. Multipush, Clear and Exchange can move those
agents. The pseudo code is not provided because it is almost the same.

38

Chapter 5
Experiments

An experimental evaluation can be founds in this chapter. The maps and
tasks were taken from the Pathfinding bechmark site [1]. Each task is carried
by exactly one agent. The tasks are loaded sequentially. If a task shares a
start position with a processed task then this task is not added. The same
goes for a goal position. It is possible that a task has a goal position equal to
a start position of another task. If an agent carries a rack then it is removed
if its goal position already contains a rack.

Three tables for each map are provided. The first one shows general info,
such like a number of agents or subproblem sizes, the second one depicts the
time taken for each part to complete. Note that the total time is measured
over the entire algorithm run, i.e. it includes another calls besides the shown
(for example notifying the user about the state of the algorithm). This means
that the total time is slightly higher than the sum of all shown measurements.
The problem time is the total time minus the time taken for both map loading
and division into subproblems. This is done because when the tasks restarts
on the same map then these two parts are not needed to be computed again
in practise although the restarting is not used in this thesis.

The third one displays solution statistics. The shortest possible solution
l0 is a sum of all agents’ shortest paths and each agent does not to consider
other agents when reaching its destination, i.e.

l0 =
∑
A∈A

shortest_path (S[A], T [A]) .

The value l0 can usually never be reached. The last column shows how
many extra moves are needed for solving the task:

x1 = |Π| − l0
l0

,

where Π is the size of the list of done moves, i.e. the number of steps
which solves the problem. The definition of l0 and x1 is taken from [3]. The
experiments were done on Lenovo IdeaPad Y50-70 Black with Intel Core i7
4720HQ Haswell, RAM 8GB, NVIDIA GeForce GTX 960M 4GB, SSD 256GB
and Windows 10 64-bit and the code optimization −O2 (Release) was used.

39

5. Experiments ..
5.1 maze27-11

This map was extracted by cutting out only 27x11 elements from the original
map ’maze512-1-101-101.map’. Description of the original map contains also
specification of tasks, but in this case the set is not used because many agents
are located outside of this small part of map. A special assignment was
therefore created for this map. As can be seen in Fig. 5.1. An interesting fact
about this map is that there are no biconnected components. This problem
is relatively easy with small number of nodes and agents in comparison to
the problems presented later in this chapter. On the other hand, this is the
only problem the whole map with all agents’ positions and their goals can be
visualized.

R0

R1

R1 R1 R1 R1 R1 R1 R1 R1

R1

R9

R1

R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R2

R1

R1 R1 R1 R1 R1 R1 R1

R6

R1

R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1

R1 R1 R1 R1 R1

R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1

R1 R1 R1 R1 R1 R1

R1 R1 R1 R1 R7

R1

R1 R1 R1 R1 R1 R5 R1 R1 R1 R1 R1

R1 R1 R1 R1 R1 R1 R1 R1 R1 R1

R1 R1 R1 R3 R8 R1 R1 R1 R4 R1 R1 R1 R1 R1 R1 R1 R1

(a) : The map. The goal position of each agent is marked with a dotted line
and arrow.

MAP INFO COUNT
Nodes 129
Subpr. before merging 11
Subpr. after merging 1
Size of subpr. 1 73

(b) : Map properties.

Figure 5.1: Maze27-11 overview. The map is taken from [1].

The results are presented in Tab.5.2. The shortest possible route is about
three times shorter than the solution found. This is because the agents have
to call Swap many times in order to swap their positions.

40

... 5.2. maze512-1-0

SOLUTION MOVES RATIO
x1

Shortest possible l0 355 0.000
Push and rotate 933 1.628
Smoothed 883 1.487

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 0
Division into subpr. 0
Assign. A to subpr. 0
Priority relation 0
Solve 0
Smooth 0
Total time 2
Problem time 2
(b) : The duration of each part.

Figure 5.2: The result acquired on the map maze27-11 using 10 agents.

5.2 maze512-1-0

The maze512-1-0 can be seen in Fig. 5.3 and this is the map maze27-11
is cut from. The map is hard for Push and rotate because there are no
biconnected components. All 11 506 are nodes with degree three or higher
which are merged one by one together. Another issue is that corridors are
exactly one node wide which causes problems with swapping the agents.

Another big issue is that the Assigning agents to subproblems algorithm has
problems with this type of map. The subproblem has many nodes on the edge
of the subproblem and for each of these nodes the number of reachable vertices
(Assigning agents to suproblems, Algorithm 2 line 3) must be computed and
agents around it evaluated even though they end up in same component
thanks to the great number of free space.

If the Assigning agents to subproblems is solved or turned off (which in this
case can be) then computation for 101 agents takes only 70 milliseconds, 499
takes only about 2 seconds and 993 agents takes about 29 seconds. The rest
of the results are stored presented in Tab. 5.4 – 5.6

5.3 AR0411SR

Another experiment was done in map from the PC game Baldurs Gate II
(published September, 2000) which is scaled to 512x512 [1]. The map can
be seen in Fig. 5.7 and it actually has two parts. The first one is basically
the entire map and the second one is hidden on the right side where a circle
around a circle is located. That’s why it has two subproblems even after
merging.

The map has sufficient a number of nodes 58 581 and 101, 497 and 982
agents were planned on this map. For 101 agents the duration is only 610
milliseconds if the map loading and division into subproblems is not taken into
an account. If the number of agents increases by 4.92 then the time required

41

5. Experiments ..
to solve the problem increases by 11.62 seconds which is nice given that the
agents must plan around each other. Planning 982 agents takes about 33
seconds which is a result given that the path is only longer by 50.21%. On the
other hand this map contains plenty of free space and agents can go around
each other. All results are stored in Tab. 5.8 – 5.10

5.4 random512-40-0

This section presents an experiment on a map named random512-40-0
which contains two types of obstacles, normal ones (white) and trees (green)
and both types must be avoided, see Fig. 5.11. The map has same issues
as the map maze512-1-0, e.g. it has long corridors which end with a node
od degree three or higher and Assigning agents to subproblems is too slow.
These types of maps are not exactly the target of Push and rotate but they
are part of the Benchmarking maps and thus they are considered and tested.

On the other hand the computation time of Solve is only 14 seconds for
991 agents. The rest of the results are depicted in Tab. 5.12 – 5.14.

5.5 warehouse

This experiment demonstrates feasibility of the extended Push and rotate
algorithm to deal with two types of robots. The map can be seen in Fig. 5.15.
The nodes of the map are marked as circles and the racks as squares. The
map has 218 nodes. The problem with 47 agents takes only 17 milliseconds.
The results are stored in Tab. 5.16.

Another map was created by copying the warehouse map next to and
under it until a width reached 112 and height 113. A random generator
was used for creating tasks for this map. Many tasks were not used because
they either targeted an obstacle or they shared a start or goal position with
others. The map has 11 472 nodes and 575 agents were assigned and the task
was computed in 36 seconds with 25 seconds wasting on Assigning agents to
subproblems. The results are stored in Tab. 5.18.

42

.. 5.5. warehouse

(a) : The map. Obstacles are black and free nodes are white.

MAP INFO COUNT
Nodes 131 071
Subpr. before merging 11506
Subpr. after merging 1
Size of subpr. 1 89785

(b) : Map properties.

Figure 5.3: Maze512-1-0 overview. The map is taken from [1] and the picture
as well.

43

5. Experiments ..

SOLUTION MOVES RATIO
x1

Shortest possible l0 2387 0.000
Push and Rotate 2419 0.013
Smoothed 2413 0.011

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 189
Division into subpr. 341
Assign. A to subpr. 819 800
Priority relation 0
Solve 62
Smooth 8
Total time 820 403
Problem time 819 873
(b) : The duration of each part.

Figure 5.4: The result acquired on the map maze512-1-0 using 101 agents.

SOLUTION MOVES RATIO
x1

Shortest possible l0 51626 0.000
Push and Rotate 104555 1.025
Smoothed 104212 1.019

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 349
Division into subpr. 328
Assign. A to subpr. 819 079
Priority relation 0
Solve 1 953
Smooth 81
Total time 821 792
Problem time 821 115
(b) : The duration of each part.

Figure 5.5: The result acquired on the map maze512-1-0 using 499 agents.

SOLUTION MOVES RATIO
x1

Shortest possible l0 201355 0.000
Push and Rotate 2991836 13.859
Smoothed 2767780 12.746

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 689
Division into subpr. 339
Assign. A to subpr. 840 430
Priority relation 0
Solve 27 385
Smooth 2 216
Total time 871 061
Problem time 870 033
(b) : The duration of each part.

Figure 5.6: The result acquired on the map maze512-1-0 using 993 agents.

44

.. 5.5. warehouse

(a) : The map AR0411SR from a pc game Baldurs Gate II (published September,
2000) [1]. Obstacles are black and free nodes are white. The circle inside of a
circle on bottom right side is the second subproblem.

MAP INFO COUNT
Nodes 58 581
Subpr. before merging 2
Subpr. after merging 2
Size of subpr. 1 57 359
Size of subpr. 2 1 222

(b) : Map properties.

Figure 5.7: AR0411SR overview. The map is taken from [1] and the picture as
well.

45

5. Experiments ..

SOLUTION MOVES RATIO
x1

Shortest possible l0 35947 0.000
Push and rotate 36457 0.014
Smoothed 36266 0.009

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 453
Division into subpr. 7 180
Assign. A to subpr. 10
Priority relation 104
Solve 471
Smooth 22
Total time 8 243
Problem time 610
(b) : The duration of each part.

Figure 5.8: The result acquired on the map AR0411SR using 101 agents.

SOLUTION MOVES RATIO
x1

Shortest possible l0 164344 0.000
Push and rotate 178353 0.085
Smoothed 173116 0.053

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 1 544
Division into subpr. 5 717
Assign. A to subpr. 9
Priority relation 94
Solve 6 859
Smooth 128
Total time 14 352
Problem time 7 091
(b) : The duration of each part.

Figure 5.9: The result acquired on the map AR0411SR using 497 agents.

SOLUTION MOVES RATIO
x1

Shortest possible l0 337811 0.000
Push and rotate 554219 0.641
Smoothed 507415 0.502

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 3 032
Division into subpr. 6 182
Assign. A to subpr. 8
Priority relation 91
Solve 31 944
Smooth 442
Total time 41 703
Problem time 32 489
(b) : The duration of each part.

Figure 5.10: The result acquired on the map AR0411SR using 982 agents.

46

.. 5.5. warehouse

(a) : The map. Obstacles are black nodes, free nodes are white and trees are
green. In this case the trees are considered as obstacles as well.

MAP INFO COUNT
Nodes 104 950
Subpr. before merging 5482
Subpr. after merging 1
Size of subpr. 1 84 520

(b) : Map properties.

Figure 5.11: Random512-40-0 overview. The map is taken from [1] and the
picture as well.

47

5. Experiments ..

SOLUTION MOVES RATIO
x1

Shortest possible l0 2658 0.000
Push and rotate 2662 0.001
Smoothed 2662 0.002

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 113
Division into subpr. 52 480
Assign. A to subpr. 857 561
Priority relation 0
Solve 41
Smooth 8
Total time 910 206
Problem time 857 613
(b) : The duration of each part.

Figure 5.12: The result acquired on the map random512-40-0 using 100 agents.

SOLUTION MOVES RATIO
x1

Shortest possible l0 60380 0.000
Push and rotate 61822 0.024
Smoothed 61595 0.020

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 424
Division into subpr. 52 449
Assign. A to subpr. 848 536
Priority relation 0
Solve 1 454
Smooth 54
Total time 902 920
Problem time 850 047
(b) : The duration of each part.

Figure 5.13: The result acquired on the map random512-40-0 using 499 agents.

SOLUTION MOVES RATIO
x1

Shortest possible l0 242384 0.000
Push and rotate 292718 0.208
Smoothed 286502 0.182

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 1 913
Division into subpr. 49 082
Assign. A to subpr. 848 026
Priority relation 0
Solve 13 897
Smooth 241
Total time 913 163
Problem time 862 168
(b) : The duration of each part.

Figure 5.14: The result acquired on the map random512-40-0 using 991 agents.

48

.. 5.5. warehouse

Node: 0 (0)
 Component: 0

R1

Node: 1 (1)
 Component: 0

R1

Node: 2 (2)
 Component: 0

R1

Node: 3 (3)
 Component: 0

R1

Node: 4 (4)
 Component: 0

R25

Node: 76 (70)
 Component: 0

R1

Node: 5 (5)
 Component: 0

R1

Node: 6 (6)
 Component: 0

R1

Node: 7 (7)
 Component: 0

R1

Node: 8 (8)
 Component: 0

R24

Node: 163 (149)
 Component: 0

R3

Node: 9 (9)
 Component: 0

R1

Node: 10 (10)
 Component: 0

R1

Node: 11 (11)
 Component: 0

R1

Node: 12 (12)
 Component: 0

R1

Node: 13 (13)
 Component: 0

R1

Node: 14 (14)
 Component: 0

R32

Node: 81 (75)
 Component: 0

R1

Node: 16 (15)
 Component: -1

R1

Node: 17 (16)
 Component: -1

R1

Node: 18 (17)
 Component: -1

R1

Node: 19 (18)
 Component: -1

R1

Node: 20 (19)
 Component: -1

R1

Node: 21 (20)
 Component: -1

R1

Node: 22 (21)
 Component: -1

R1

Node: 23 (22)
 Component: -1

R1

Node: 24 (23)
 Component: -1

R1

Node: 25 (24)
 Component: -1

R45

Node: 129 (118)
 Component: -1

R1

Node: 27 (25)
 Component: 0

R1

Node: 28 (26)
 Component: 0

R1

Node: 29 (27)
 Component: 0

R1

Node: 30 (28)
 Component: 0

R1

Node: 31 (29)
 Component: 0

R1

Node: 32 (30)
 Component: 0

R1

Node: 33 (31)
 Component: 0

R1

Node: 34 (32)
 Component: 0

R1

Node: 35 (33)
 Component: 0

R1

Node: 36 (34)
 Component: 0

R1

Node: 37 (35)
 Component: 0

R34

Node: 200 (182)
 Component: 0

R1

Node: 38 (36)
 Component: 0

R1

Node: 39 (37)
 Component: 0

R1

Node: 40 (38)
 Component: 0

R33

Node: 220 (201)
 Component: -1

R39

Node: 41 (39)
 Component: 0

R16

Node: 42 (40)
 Component: 0

R1

Node: 44 (41)
 Component: -1

R1

Node: 45 (42)
 Component: -1

R1

Node: 46 (43)
 Component: -1

R1

Node: 47 (44)
 Component: -1

R1

Node: 48 (45)
 Component: -1

R46

Node: 49 (46)
 Component: -1

R1

Node: 50 (47)
 Component: -1

R22

Node: 74 (68)
 Component: 0

R1

Node: 51 (48)
 Component: -1

R1

Node: 52 (49)
 Component: -1

R1

Node: 53 (50)
 Component: -1

R1

Node: 55 (51)
 Component: 0

R1

Node: 56 (52)
 Component: 0

R1

Node: 58 (53)
 Component: -1

R1

Node: 59 (54)
 Component: -1

R1

Node: 60 (55)
 Component: -1

R1

Node: 61 (56)
 Component: -1

R1

Node: 62 (57)
 Component: -1

R1

Node: 63 (58)
 Component: -1

R1

Node: 64 (59)
 Component: -1

R1

Node: 65 (60)
 Component: -1

R1

Node: 66 (61)
 Component: -1

R1

Node: 67 (62)
 Component: -1

R26

Node: 161 (147)
 Component: 0

R1

Node: 69 (63)
 Component: 0

R1

Node: 70 (64)
 Component: 0

R1

Node: 71 (65)
 Component: 0

R1

Node: 72 (66)
 Component: 0

R23

Node: 78 (72)
 Component: 0

R1

Node: 73 (67)
 Component: 0

R15

Node: 114 (104)
 Component: 0

R1

Node: 75 (69)
 Component: 0

R21

Node: 118 (108)
 Component: 0

R1

Node: 160 (146)
 Component: 0

R1

Node: 77 (71)
 Component: 0

R1

Node: 79 (73)
 Component: 0

R1

Node: 80 (74)
 Component: 0

R1

Node: 82 (76)
 Component: 0

R1

Node: 83 (77)
 Component: 0

R1

Node: 84 (78)
 Component: 0

R1

Node: 86 (79)
 Component: -1

R1

Node: 87 (80)
 Component: -1

R42

Node: 88 (81)
 Component: -1

R1

Node: 89 (82)
 Component: -1

R1

Node: 90 (83)
 Component: -1

R1

Node: 91 (84)
 Component: -1

R9

Node: 92 (85)
 Component: -1

R1

Node: 93 (86)
 Component: -1

R1

Node: 94 (87)
 Component: -1

R35

Node: 95 (88)
 Component: -1

R4

Node: 97 (89)
 Component: 0

R1

Node: 98 (90)
 Component: 0

R1

Node: 100 (91)
 Component: -1

R1

Node: 101 (92)
 Component: -1

R1

Node: 102 (93)
 Component: -1

R17

Node: 103 (94)
 Component: -1

R1

Node: 104 (95)
 Component: -1

R41

Node: 105 (96)
 Component: -1

R1

Node: 106 (97)
 Component: -1

R1

Node: 107 (98)
 Component: -1

R1

Node: 108 (99)
 Component: -1

R1

Node: 109 (100)
 Component: -1

R1

Node: 111 (101)
 Component: 0

R1

Node: 112 (102)
 Component: 0

R1

Node: 113 (103)
 Component: 0

R29

Node: 188 (171)
 Component: -1

R1

Node: 115 (105)
 Component: 0

R1

Node: 116 (106)
 Component: 0

R1

Node: 117 (107)
 Component: 0

R1

Node: 119 (109)
 Component: 0

R1

Node: 120 (110)
 Component: 0

R1

Node: 121 (111)
 Component: 0

R1

Node: 122 (112)
 Component: 0

R36

Node: 153 (139)
 Component: 0

R1

Node: 123 (113)
 Component: 0

R5

Node: 124 (114)
 Component: 0

R1

Node: 125 (115)
 Component: 0

R1

Node: 126 (116)
 Component: 0

R37

Node: 128 (117)
 Component: -1

R1

Node: 130 (119)
 Component: -1

R1

Node: 131 (120)
 Component: -1

R1

Node: 132 (121)
 Component: -1

R43

Node: 206 (188)
 Component: 0

R1

Node: 133 (122)
 Component: -1

R1

Node: 134 (123)
 Component: -1

R1

Node: 135 (124)
 Component: -1

R20

Node: 136 (125)
 Component: -1

R1

Node: 137 (126)
 Component: -1

R1

Node: 139 (127)
 Component: 0

R19

Node: 199 (181)
 Component: 0

R1

Node: 140 (128)
 Component: 0

R1

Node: 142 (129)
 Component: -1

R1

Node: 143 (130)
 Component: -1

R1

Node: 144 (131)
 Component: -1

R1

Node: 145 (132)
 Component: -1

R28

Node: 146 (133)
 Component: -1

R31

Node: 193 (176)
 Component: -1

R1

Node: 147 (134)
 Component: -1

R1

Node: 148 (135)
 Component: -1

R1

Node: 149 (136)
 Component: -1

R1

Node: 150 (137)
 Component: -1

R7

Node: 155 (141)
 Component: 0

R1

Node: 151 (138)
 Component: -1

R1

Node: 154 (140)
 Component: 0

R1

Node: 156 (142)
 Component: 0

R1

Node: 157 (143)
 Component: 0

R1

Node: 158 (144)
 Component: 0

R1

Node: 159 (145)
 Component: 0

R1

Node: 162 (148)
 Component: 0

R1

Node: 182 (166)
 Component: 0

R1

Node: 164 (150)
 Component: 0

R1

Node: 165 (151)
 Component: 0

R1

Node: 166 (152)
 Component: 0

R1

Node: 167 (153)
 Component: 0

R1

Node: 168 (154)
 Component: 0

R1

Node: 170 (155)
 Component: -1

R1

Node: 171 (156)
 Component: -1

R1

Node: 172 (157)
 Component: -1

R1

Node: 173 (158)
 Component: -1

R1

Node: 174 (159)
 Component: -1

R1

Node: 175 (160)
 Component: -1

R8

Node: 176 (161)
 Component: -1

R1

Node: 177 (162)
 Component: -1

R1

Node: 178 (163)
 Component: -1

R40

Node: 179 (164)
 Component: -1

R1

Node: 181 (165)
 Component: 0

R44

Node: 184 (167)
 Component: -1

R10

Node: 185 (168)
 Component: -1

R2

Node: 186 (169)
 Component: -1

R1

Node: 187 (170)
 Component: -1

R1

Node: 189 (172)
 Component: -1

R1

Node: 190 (173)
 Component: -1

R12

Node: 191 (174)
 Component: -1

R1

Node: 192 (175)
 Component: -1

R1

Node: 195 (177)
 Component: 0

R1

Node: 196 (178)
 Component: 0

R1

Node: 197 (179)
 Component: 0

R27

Node: 198 (180)
 Component: 0

R1

Node: 201 (183)
 Component: 0

R1

Node: 202 (184)
 Component: 0

R1

Node: 203 (185)
 Component: 0

R1

Node: 204 (186)
 Component: 0

R1

Node: 205 (187)
 Component: 0

R1

Node: 207 (189)
 Component: 0

R1

Node: 208 (190)
 Component: 0

R14

Node: 209 (191)
 Component: 0

R1

Node: 210 (192)
 Component: 0

R1

Node: 212 (193)
 Component: -1

R1

Node: 213 (194)
 Component: -1

R1

Node: 214 (195)
 Component: -1

R1

Node: 215 (196)
 Component: -1

R1

Node: 216 (197)
 Component: -1

R1

Node: 217 (198)
 Component: -1

R1

Node: 218 (199)
 Component: -1

R1

Node: 219 (200)
 Component: -1

R1

Node: 221 (202)
 Component: -1

R38

Node: 223 (203)
 Component: 0

R1

Node: 224 (204)
 Component: 0

R30

Node: 226 (206)
 Component: 0

R1

Node: 225 (205)
 Component: 0

R6

Node: 237 (217)
 Component: 0

R1

Node: 227 (207)
 Component: 0

R0

Node: 228 (208)
 Component: 0

R18

Node: 229 (209)
 Component: 0

R1

Node: 230 (210)
 Component: 0

R1

Node: 231 (211)
 Component: 0

R11

Node: 232 (212)
 Component: 0

R1

Node: 233 (213)
 Component: 0

R13

Node: 234 (214)
 Component: 0

R1

Node: 235 (215)
 Component: 0

R1

Node: 236 (216)
 Component: 0

R1

Figure 5.15: The map warehouse created for this thesis. Each agent has its own
colour. The coloured squares are the agents under the rack. The goal destination
of an agent is marked by dotted arrow.

49

5. Experiments ..

SOLUTION MOVES RATIO
x1

Shortest possible l0 534 0.000
Push and Rotate 2803 4.249
Smoothed 2180 3.082

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 2
Division into subpr. 0
Assign. A to subpr. 4
Priority relation 0
Solve 10
Smooth 1
Total time 19
Problem time 17
(b) : The duration of each part.

Figure 5.16: The result acquired on the map warehouse using 47 agents. The
map can be seen in Fig. 5.15. It has 218 nodes and single subproblem of size
118.

SOLUTION MOVES RATIO
x1

Shortest possible l0 37476 0.000
Push and Rotate 49652 0.325
Smoothed 49498 0.321

(a) : Solution sizes.

ALG. PART TIME
[ms]

Map loading 267
Division into subpr. 80
Assign. A to subpr. 25 087
Priority relation 0
Solve 10 800
Smooth 44
Total time 36 281
Problem time 35 934
(b) : The duration of each part.

Figure 5.18: The result acquired on the map warehouse using 575 agents. The
map can be seen in Fig. 5.15. This map was created copying the warehouse map
next to it until a width 112 and height 113 nodes was reached. It has 11 472
nodes and single subproblem of size 5 552.

50

....................................... 5.6. Time complexity

5.6 Time complexity

The algorithm Push and rotate was profiled by QTProfiler [2] which returned
the Fig. 5.19. The profiling was done on a map AR0411SR. The problems with
this map are that Solve takes too long. There is no clear winner here but
apparently it would be possible to improve the call of AStar where there is
too much time wasted on such easy algorithm.

Another profiling was done on a map maze-512-1-0 by QTProfiler as well
and it returned the Fig. 5.20. The issue and a clear winner here is the method
GetReachableFreeSpaceCount which really takes too much time. This method
shall be improved possibly by some better representation of queue.

5.7 Available maps types

The algorithm supports two map types. The first type is used for a maps
with a low count of nodes, e.g. maps with node count lower than about 20.
The maximum number of nodes is not defined because it depends on the user.
The second type is taken from the benchmark page using the map description
from the same source [1]. This is used for maps with thousands of nodes.

5.7.1 Low node count map type

The map starts with the description of nodes and their neighbours. The
node id is ended by ’:’ character. The delimiter between the nodes is ’,’. Each
new node is on separate line. Then follows the list of the robots. Robots are
marked with R before id. When at least one robot is loaded and then there
is a free line beneath it then the loading is finished. Syntax is:

<NodeId>[<row>,<column>]:<NeighbourId>,<NeighbourId>,...
<no line>
R<AgentId>:<initial position>,<goal position>
<no line2>

It is possible to store some info about the map after <no line2> because
the algorithm ignores everything after this free line. For example a name
or what to expect from the task. A map vertex (Fig. 3.4) is described for
example as:

1[10,0]:2
2[10,5]:1,3,4
3[0,10]:2
4[20,10]:2

R1:1,3
R2:2,2

51

5. Experiments ..

Figure 5.19: The calls made during the computation of map AR0411SR(Fig. 5.7
done by QTProfiler [2]).

Figure 5.20: The calls made during the computation of map maze (Fig. 5.3
done by QTProfiler [2]).

5.7.2 Benchmark map type

The benchmark maps are maps taken from Pathfinding benchmark site [1].
The algorithm supports their tasks are detected based on their file name
extension, for example ’AR0411SR.map.scen’. A benchmark map consists of
two files. The first one describes each task (start and goal position) and the
second one depicts the map itself. The Information about the file format can
be found [17].

A special char ’R’ for describing a node with a rack was introduced because
these maps do not support the idea of racks.

52

Chapter 6
Conclusion

The Push and rotate algorithm is described in this thesis. Push and rotate
is moreover extended for use in maps with two types of agents (carrying a
shelf and not) and with two types of obstacles (a wall, a rack) besides solving
the Warehouse problem as well. The implementation of Push and rotate is
explained and the implemented algorithm is used to provide results.

The Warehouse problem is defined at first. The common approaches (which
are coupled and decoupled methods) are noted with the exception of multi
agent planning systems. Push and rotate was chosen because its computation
complexity promised that it is capable of planning of hundreds of agents in
mere seconds which this thesis showed that it is possible on a certain type of
maps. It was also suitable for the extension with shelves.

The algorithm is theoretically and thoroughly explained and the pseudo
codes are upgraded and corrected when needed. The implementation notes
are provided also with reasoning behind them for future work either for a
revision or for an extension with real life applications.

Several experiments were performed based on problems from the Pathfind-
ing benchmarks site. Tasks stored there are useful and they are guaranteed
to be meaningful at least when an agent is planned alone (without other
agents). The most important result is that Push and rotate is capable of
planning 982 agents on a map AR0411SR with computing time 42 seconds
about from which 10 seconds are used on parsing the map which can be done
once and then used for another task on the same map unless some nodes or
edges are removed or added. The extension with racks was tested on a map
with 11 472 nodes and the task was to plan 575 agents. This was done in
about 37 seconds from which about 25 seconds the assignment of agents was
computed. This can be removed if the map remains the same.

The future work can extend this algorithm to work with a more types of
agents. For example an agent which moves half the speed of other agents
or double speed. A situation is only considered in this thesis when an agent
is capable of moving to a next node in an instant. Another future task is
that a human moves through the Warehouse and no agent can come to its
proximity for safety reasons. This will cause some replanning among the
agents and probably removing some graph nodes and edges. The last thing is
that agents are expected to move one after another, i.e. they are taking turns.

53

6. Conclusion...
The application can be extended in future in the way that the agents are
moved concurrently. The solution provided can be used for the concurrently
moving agents but sometimes an agent must wait for another one.

54

Chapter 7
CD content

Folder Content
/push_and_rotate The extended Push and rotate algorithm.
/thesis This thesis in PDF format.
/thesissource The source of this thesis.

55

56

Bibliography

[1] “Pathfinding benchmarks.” http://www.movingai.com/benchmarks/.
[Online; accessed 20-May-2016].

[2] “Profiling and memory checking tools.” https://wiki.qt.io/
Profiling_and_Memory_Checking_Tools. [Online; accessed 27-May-
2016].

[3] B. De Wilde, Cooperative multi-agent path planning. PhD thesis, TU
Delft, Delft University of Technology, 2012.

[4] D. Silver, “Cooperative pathfinding.,” in AIIDE, pp. 117–122, 2005.

[5] K.-H. C. Wang and A. Botea, “Mapp: a scalable multi-agent path plan-
ning algorithm with tractability and completeness guarantees,” Journal
of Artificial Intelligence Research, pp. 55–90, 2011.

[6] W. Wang and W. Goh, “A stochastic algorithm for makespan mini-
mized multi-agent path planning in discrete space,” APPLIED SOFT
COMPUTING, vol. 30, pp. 287–304, 2015.

[7] K. Chiew, “Scheduling and routing of autonomous moving objects on a
mesh topology,” Operational Research, vol. 12, no. 3, pp. 385–397, 2012.

[8] R. Luna and K. E. Bekris, “Efficient and complete centralized multi-
robot path planning,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3268–3275, Sept 2011.

[9] B. de Wilde, A. W. ter Mors, and C. Witteveen, “Push and rotate:
cooperative multi-agent path planning,” in Proceedings of the 2013 in-
ternational conference on Autonomous agents and multi-agent systems,
pp. 87–94, International Foundation for Autonomous Agents and Multi-
agent Systems, 2013.

[10] “topological_sort.” http://www.boost.org/doc/libs/1_60_0/libs/
graph/doc/topological_sort.html. [Online; accessed 02-May-2016].

[11] “C++.” https://en.wikipedia.org/wiki/C%2B%2B. [Online; accessed
17-May-2016].

57

http://www.movingai.com/benchmarks/
https://wiki.qt.io/Profiling_and_Memory_Checking_Tools
https://wiki.qt.io/Profiling_and_Memory_Checking_Tools
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/topological_sort.html
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/topological_sort.html
https://en.wikipedia.org/wiki/C%2B%2B

Bibliography ...
[12] “Standard template library.” https://en.wikipedia.org/wiki/

Standard_Template_Library. [Online; accessed 17-May-2016].

[13] “Biconnected_components and articulation_points.” http:
//www.boost.org/doc/libs/1_60_0/libs/graph/doc/biconnected_
components.html. [Online; accessed 02-May-2016].

[14] “Dijkstra_shortest_paths.” http://www.boost.org/doc/libs/1_60_
0/libs/graph/doc/dijkstra_shortest_paths.html. [Online; ac-
cessed 02-May-2016].

[15] “Breadth-first search.” https://en.wikipedia.org/wiki/
Breadth-first_search. [Online; accessed 17-May-2016].

[16] “Astar_search.” http://www.boost.org/doc/libs/1_60_0/libs/
graph/doc/astar_search.html. [Online; accessed 02-May-2016].

[17] “Pathfinding benchmarks.” http://www.movingai.com/benchmarks/
formats.html. [Online; accessed 20-May-2016].

58

https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.wikipedia.org/wiki/Standard_Template_Library
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/biconnected_components.html
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/biconnected_components.html
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/biconnected_components.html
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/dijkstra_shortest_paths.html
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/dijkstra_shortest_paths.html
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/astar_search.html
http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/astar_search.html
http://www.movingai.com/benchmarks/formats.html
http://www.movingai.com/benchmarks/formats.html

	Introduction
	Problem description
	Common approaches

	Push and rotate
	Division into subproblems
	Algorithm description

	Assigning agents to subproblems
	Algorithm description

	Priority relation between subproblems
	Algorithm description

	Solve
	Plan
	Push
	Move
	Clear_vertex
	Swap
	Multipush
	Clear
	Exchange
	Reverse
	Rotate
	Resolve

	Smooth
	Smooth algorithm description
	Detect redundancies
	Remove redundancies

	Example solution

	Push and rotate implementation
	Agents
	Nodes
	Arena
	Division into subproblems
	Assigning agents to subproblems
	Priority relation between subproblems
	Solve
	Plan
	Push
	Clear_vertex
	Swap
	Multipush
	Clear
	Exchange
	Reverse
	Rotate
	Resolve

	Smooth
	Move
	Extension for two types of agents

	Experiments
	maze27-11
	maze512-1-0
	AR0411SR
	random512-40-0
	warehouse
	Time complexity
	Available maps types
	Low node count map type
	Benchmark map type

	Conclusion
	CD content
	Bibliography

