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Abstract

In this work, we investigate how the classification error of deep convolutional neural networks (CNNs)
used for image verification depends on transformations between two visually similar inputs. Further-
more, inspired by research in experimental psychology suggesting that humans solve such a task by
mentally rotating the observed objects, we test whether building such a mechanism into artificial
neural networks improves their performance. For transformations, we consider 2D rotations and
translations. We show that, in the case of rotation, the lowest error is achieved when the two inputs
are aligned, followed by two minima for rotations of 90 and 180 degrees, although the difference is
small for standard architectures. The difference is much more pronounced when “mental rotations”,
implemented by means of resampling and spatial transformer layers, are introduced in the architec-
ture, significantly improving the performance of the vanilla architecture. Finally, we qualitatively
probe deep features using a method for feature inversion. We discovered invariant properties of the
first fully connected layer (FC1) features adapted to input rotation. Our results also suggest that
in networks trained to predict rotation between two inputs, the FC1 features implicitly learn to
establish correspondences between corner points in the rotated inputs.

Keywords: convolutional neural network; CNN; geometry; geometric transformation; rotation;
translation; invariance; image verification; correspondence

Abstrakt
Tato práce zkoumá jak klasifikační chyba hlubokých konvolučních sítí (CNN) používaných pro
verifikaci obrázků závisí na transformaci mezi dvěma vizuálně podobnými obrázky. Inspirování
výzkumem v experimentální psychologii, který se domnívá, že lidé řeší takovéto úlohy pomocí men-
tální rotace pozorovaných objektů, chceme ověřit, jestli zabudování takovéhoto mechanismu do neu-
ronových sítí vylepší jejich klasifikační přesnost. Kontréně uvažujeme 2D rotace a translace. V této
práci ukážeme, že v případě rotace je nejnižší chybovost dosažena, pokud jsou oba obrázky zarovnány.
Další minima jsou při 90 a 180 stupních rotace mezi dvěma vstupy. Nejnižší chybovost v připadě
žádné rotace je navíc podpořena dalšími výsledky ukazujícími, že použití mechanismu „mentální
rotace“ před tím, než jsou obrázky poslány do verifikační neuronové sítě, výrazně zlepší klasifikační
přesnost jednoduché CNN. Nakonec kvalitativně vyšetříme hluboké reprezentace za použití metod
pro invereze reprezentací. Díky tomu jsme objevili invariantní vlastnosti reprezentací z první plně
propojené vrstvy (FC1), která se adaptovala na rotace vstupního obrázku. Na základě našich dalších
výsledků se domníváme, že v sítích trénovaných pro predikci rotace mezi dvěma obrázky, se FC1
reprezentace implicitně naučí korespondece mezi dvěma rotovanými obrázky.

Klíčová slova: konvoluční neuronové sítě; geometrie; geometrické transformace; rotace; translace;
invariance; verifikace obrázků; korespondece
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Chapter 1

Introduction

1.1 Motivation

Deep convolutional neural networks (CNN) are extremely powerful for certain tasks such
as classification. However, they process data in a feed forward manner and it is unclear
whether they can solve image analysis problems that require more careful processing. In
psychology there is a similar distinction as some tasks need more time to be solved. A
prime example is deciding whether two visual objects are the same up to two or three
dimensional transformations, such as the ones induced in a viewpoint change. Shepard &
Metzler [19] presented their subjects with 2D drawings of pairs of 3D objects and asked them
to decide whether the images contains the same object or its reflection. Their study showed
that reaction time of the participants was proportional to the angular rotation between the
presented objects. Cooper [3] did similar experiments with random polygons confirming
that time needed to solve the verification task depends on the rotation. Thus, the more
rotation is between two objects the more difficult the verification is.

Inspired by this, we examine whether similar phenomena occurs also in deep neural net-
works. Moreover, since both of the studies hypothesized that humans solve such a task by
mentally rotating the observed objects in order to align them, we investigate whether mental
rotation can be also useful for CNNs. For this purpose, we consider a number of problems
that consist of matching objects up to transformations of the image. We decided to use a
simple type of synthetic data reminiscent of the one used by [3] or [7]. As our goal is to ver-
ify whether networks have the ability of representing correctly certain factors of variation,
synthetic data are very useful for controlling such factors perfectly. More specifically, we
want to have subtle visual differences between different classes, but relatively large differ-
ences within classes caused by geometric transformations. This would test network ability
to cope with large viewpoint changes, while the network would have to also retain important
information about the object geometry. Although our primary interest is in 2D rotation, we
also provide comparison with 2D translation. Finally, we examine learned features of the
networks used and their changes under the input image transformations.

In the first chapter we discuss our motivation and related literature. The second chapter
provides overview of basic building blocks presented in current CNNs and describes archi-
tectures we used in our experiments. The third chapter discusses generation of synthetic
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CHAPTER 1. INTRODUCTION

datasets. The fourth chapter summarizes our experiments and results. The fifth chapter
discusses features visualization and analysis. Finally, the last chapter provides a summary
of this work.

1.2 Related literature

In this section we discuss the work related to the thesis. However, there is limited work on
understanding geometry and transformations in CNNs. Literature related to understanding
mostly focuses on various visualization techniques [15, 5, 20, 25], some of those works are
later discussed in the 4th and 5th chapter. Probably the most relevant work is by Lenc
& Vedaldi [13] studying invariance and equivariance properties of CNN representations by
finding linear transformations of the learned features in convolutional layers. Work by Aubry
& Russell [1] analyzed the variation of CNN features with respect to various scene factors
such as change of viewpoint. In contrast to our work, both of the works used complex models
that were already pre-trained on the classification task of the ILSVRC-2013 challenge [4].
Cohen & Welling [2] analyze transformation properties of representations using theory of
symmetry groups. Memisevic & Hinton [18, 16, 17] studied learning relations between
transformed images using RBMs. In contrast to standard deep learning models, they use
three-way multiplicative interactions. This means that value of a variable depends on a
product of other variables. The rest of literature related to transformations and geometry
focuses on building transformation invariant mechanisms into the CNNs. However, we want
to focus on mostly vanilla CNNs.

2



Chapter 2

Deep network architectures

In this chapter we firstly provide a brief introduction to CNNs describing their basic building
blocks. Secondly, we describe architectures that we used in experiments.

2.1 CNN overview and its basic building blocks

A neural network is a function y = g(x; w) parametrized by the vector w that maps the
input vector x to the output vector y. The function g can be thought of as the composition
g = fN ◦ · · · ◦ f1 of simpler functions fn called layers. The functions fn have to be at least
piecewise continuously differentiable in order to be able to optimize the neural network with
gradient based methods.

CNNs were first introduced in 1998 by LeCun at al. [12], however, the basic idea inspired
by mammalian visual cortex [9] was presented much earlier in 1982 by Fukushima at al. [8].
The work from 2012 by Krizhevsky at al. [11] marks beginning of convolutional network
renaissance in computer vision and many of the current architectures are iterations of the
one presented in their work. CNNs are nowadays widely used in various computer vision
tasks such as classification [21], localization [20], semantic segmentation [14, 26], surface
normals estimation [6].

CNNs leverage spatial structure in the data, which is represented by rank-3 tensor x ∈
RH×W×D, where H is the height, W is the width, and D is the number of feature channels.
In computer vision, H and W are 2D spatial dimensions. The features channels in the
input tensor can represent color channels and/or depth channel. However, CNNs can be
generalized to any tensor rank. For example, a rank-4 input tensor can represent volumetric
data, which is commonly used in medical imaging.

2.1.1 Basic building blocks

In this section, we provide an overview of basic functional blocks frequently used in current
CNNs. Those are convolution, non-linear gating, pooling, softmax, and loss layer.

3



CHAPTER 2. DEEP NETWORK ARCHITECTURES

2.1.1.1 Convolutional layer

The convolutional layer is a function parametrized by a tensor w ∈ RH×W×D×K , where H is
the height, W is the width, D is the filter depth, and K is the number of filters. The tensor
w is called the filter bank. The convolutional layer takes an input tensor x ∈ RH×W×D
and convolves it across its height and width with each of the filters from the filter bank w
producing an output tensor x′ ∈ RH′×W ′×K . The layer can be furthermore parametrized
by hyper-parameters — padding p and stride s. Padding pads the spatial dimensions of
the input tensor with zeros. Stride s of size higher than 1 down-samples the output tensor
taking every sth point across its spatial dimensions.

2.1.1.2 Fully-connected layer

The fully-connected layer is a special type of convolutional layer that has a filter bank with
the same size of the spatial dimensions as the input tensor has. Therefore, every point in
the output data depends on every point from the input data.

2.1.1.3 Non-linear gating layer

The non-linear gating layer applies a non-linear function, called activation function, on every
point from the input tensor. The most common function

f(x) = max(0, x)

is called a rectified linear unit, abbreviated as ReLU. Other functions can be also used. For
example the sigmoid function

f(x) = 1
(1 + exp−x) .

2.1.1.4 Pooling layer

The pooling layer is a form of down-sampling function. Its role in CNNs is to reduce the
spatial dimensions of the data, while attaining invariance to small deformations by recording
the strongest activation of features in small neighbourhoods. The poling layer is specified
by its filter size H ×W , padding p, stride s (these two parameters have the same role as in
the convolutional layer), and a pooling function. The layer acts as a convolutional layer, but
instead of computing dot-product it applies the pooling function. The max-pooling, which
is the most common one, takes the maximum of the subregion within the filter. Another
type of pooling function can be for example average pooling that computes the average.

2.1.1.5 Softmax layer

The softmax layer is a normalization function f : RH×W×D → RH×W×1 that applies the
softmax operator

yijk = exijk∑D
l=1 e

xijl

on the data x at each spatial location along a column of features. The resulting values can
be thought of as posterior probabilities.

4
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2.1.1.6 Loss layer

The loss layer is a loss function that estimates how far the prediction of the network is from
the desired output, as dictated by the ground truth-labels. When training the network,
the loss function is the last layer, i.e. the outermost function in the function composition.
Our goal is to find such a parametrization of the neural network so the loss function is
minimized. In case of a classification task the log loss function is used. The log loss function
l(x; c) = − vec(c)T log(vec(x)) takes the tensor x of predicted posterior probabilities and
the tensor c of ground-truth probabilities.

2.1.2 Siamese networks

Figure 2.1: Examples of siamese architecture.

A Siamese network is a special type of neural network that consists of two identical
sub-networks that share their weights. It takes a pair of datums as an input and processes
them individually, each in its own subnetwork. After the first n layers the sub-subnetworks
are concatenated into a single-stream network or directly fed into a loss layer, see Figure 2.1
for illustration.

2.1.3 Spatial transformer networks

A spatial transformer module [10] performs a spatial transformation of the input features,
which the transformation is conditioned on. The module is differentiable and can be di-
rectly incorporated into the neural network, which can be trained end-to-end. The spatial
transformer takes the input feature tensor U ∈ RH×W×C , which is firstly passed to the
localization net θ = φloc(U) predicting parameters θ of the transformation Tθ, which trans-
forms the regular spatial grid G to the sampling grid Tθ(G). Finally, the output feature map
V ∈ RH×W×C is sampled from the input U using the sampling grid Tθ(G). The overview of
this procedure is provided in Figure 2.2.

5



CHAPTER 2. DEEP NETWORK ARCHITECTURES

Figure 2.2: Overview of the spatial transformer module. U is an input feature map,
θ are parameters of the transformation predicted by the localisation network. Tθ(G) is the
sampling grid where G denotes a regular spatial grid. The image is taken from [10].

Table 2.1: Baseline architecture. The table does not show the other identical sub-
network. Note that the depth of the filters in the first fully-connected layer is double
the number of filters in the last convolutional layer. This is because the subnetworks are
concatenated.

layer type filter size stride padding
conv 5x5x1x32 1 2
ReLU
maxpool 2x2 2 0
conv 5x5x32x32 1 2
ReLU
maxpool 2x2 2 0
conv 5x5x32x32 1 2
maxpool 2x2 2 0
ReLU
concat
fc 7x7x64x128
ReLU
fc 1x1x128x2
softmax

2.2 Architecture specification

Because we use very similar architectures throughout the experiments, we describe the base-
line architecture here. We use a siamese CNN architecture for image verification. The archi-
tecture has two parallel convolutional sub-networks, which share their weights. The outputs
of the two sub-networks are concatenated and fed into a single-stream fully-connected net-
work. Our baseline architecture partially follows general building principles presented in
the [22, 20], however, the main design goal was to make the architecture very simple. It

6



2.2. ARCHITECTURE SPECIFICATION

has three convolutional layers each followed by ReLU non-linearity and max-pooling that
downsamples the data by the factor two. The convolutional layers are followed by one
fully-connected and ReLU layer before the final classification layer. For a detailed overview,
see Table 2.1.
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Chapter 3

Data

In order to probe networks, we introduce a number of synthetic datasets. We keep these
simple yet challenging for our task. Such a synthetic dataset can provide a baseline case in
which only the factor of interests present a challenge. Since the task is image verification,
the data consist of image pairs. Each pair contains either the same object or it represents
two different objects. Furthermore, one of the images from a pair can be transformed. In
this work we use two classes of transformations, 2D rotation and 2D translation.

We created several simple synthetic datasets consisting either of randomly generated
polygon pairs or randomly generated pairs of doted patterns. Each pair in these datasets
is transformed multiple times gradually increasing the amount of transformation. Further-
more, we also consider datasets that contain pairs that are rotated only by the same angle.
This allows us to study effects of different rotations separately without affecting the training
procedure by different rotations.

In this chapter we first provide an overview of dataset generation procedure and then
we describe details and parameters of datasets used in the experiments.

3.1 Random polygons dataset

Generation of a synthetic dataset for a single rotation is described in detail by the Algo-
rithm 1. The goal of this procedure is to generate random pairs of polygons. First we
sample a list of polygon vertices. In order to create sibling polygon we randomly decide
whether it is going to be the same polygon or a different one. In case of the different one, we
sample another polygon. Since deciding whether two random polygons are the same or not
would be an easy task as two randomly sampled polygons would be visually very different,
we want to generate a polygon, which is similar to the first one. This is done by jittering
the vertices of the original polygon as detailed in the Algorithm 3. We render the polygon
with four times the required image size. This serves as a form of anti-aliasing and help us
to reduce artifacts when transforming the image. Although we could transform the polygon
vertices before rendering them, we want to keep the procedure consistent in case a dataset
consisting of real images is used in the future.

When translation is used instead of rotation, the polygon sampling procedure samples
a random polygon of the maximum relative size smaller than 1.0 to allow space for its

9



CHAPTER 3. DATA

Algorithm 1: Dataset generation. m — number of polygons, α — rotation angle, s
— image size, nl, nu — lower and upper bound for number of vertices, ε, σ — irregularity
parameters, δl, δu — lower and upper bound for jittering of vertices, V — list of polygon
vertices, Ii — image of the ith polygon, I ′i — image of the ith sibling polygon, sample-
Polygon — samples polygon as specified in the Algorithm 2, jitterPoints — jitters
polygon vertices as specified in the Algorithm 3, renderPolygon(V, s) — renders poly-
gon of size s from the list of vertices V , imrotate(Ii, α) — rotates the image Ii by the
angle α, imresize(Ii, a) — resizes the image Ii by the scale a
Require: m,α, s, nl, nu, ε, σ

1: for i = 1, 2, . . . ,m do
2: V ← samplePolygon(nl, nu, ε, σ)
3: Sample d ∼ U(0, 1)
4: if d > 0.5 then
5: V ′ ← V
6: else
7: V ′ ← jitterPoints(δl, δu, V )
8: end if
9: Ii ← renderPolygon(V, 4s), I ′i ← renderPolygon(V ′, 4s)

10: I ′i ← imrotate(I ′i, α)
11: Ii ← imresize(Ii, 1/4), I ′i ← imresize(I ′i, 1/4)
12: end for

translation within the canvas. The 10th (as used in the Algorithm 1) is replaced by a
translation function. The translation function translates the image by a specified number
of pixels t within a randomly chosen axis. The image is also translated in the remaining
axis by a number of pixels sampled from U(0, d). The direction (positive or negative) in the
both axes is also randomly sampled.

3.1.1 Generating random polygon

In order to generate random polygons, we use a method inspired by the [23]. The basic
idea is to walk around a circle and take random angular steps. At each step we place a
next polygon vertex at a random radius. Detailed explanation of this procedure procedure
can be seen in the Algorithm 2. Although this formulation restricts the space of possible
polygon shapes, it allows us to effectively control its irregularity.

3.2 Random dots dataset

Generating the random dots dataset is very similar to the generation of the random polygon
dataset. It only differs in two parts. First, instead of sampling vertices of a random polygon
we uniformly sample centers of the dots on the image canvas. Second, instead of render-
ing polygon from the veritces we render dots at the sampled centers. The dots sampling
procedure takes two arguments, the number of dots n in each image and their radius r.

10



3.2. RANDOM DOTS DATASET

Algorithm 2: Random polygon sampling. Samples a random polygon with vertices
(xi, yi) ∈ [−0.5, 0.5] × [−0.5, 0.5]. nl, nu — lower and upper bound for number of vertices,
ε, σ — irregularity parameters

1: function samplePolygon(nl, nu, ε, σ)
2: Sample n ∼ U{nl, nu}
3: for i = 1, 2, . . . , n do
4: Sample δi ∼ U(πn − ε,

π
n + ε) and r′i ∼ N (0.25, σ2)

5: θi ← θi−1 + 1
kδi, k =

∑n

i=1 δi

2π
6: ri ← clip(r′i, 0, 0.5)
7: xi ← ri cos(θ), yi ← ri sin(θ)
8: end for
9: return list of points (x1, y1), (x2, y2), . . . , (xn, yn)

10: end function

Algorithm 3: Points jittering. δl, δu — lower and upper bound for jittering of points,
(x1, y1), (x2, y2), . . . , (xn, yn) — list of points

1: function jitterPoints(δl, δu, (x1, y1), (x2, y2), . . . , (xn, yn))
2: for i = 1, 2, . . . , n do
3: Sample δx ∼ U(δl, δu), δy ∼ U(δl, δu), sx ∼ U(−1, 1), and sy ∼ U(−1, 1)
4: xi ← xi + sign(sx)δx, yi ← yi + sign(sy)δy,
5: end for
6: return list of points (x1, y1), (x2, y2), . . . , (xn, yn)
7: end function

11



CHAPTER 3. DATA

(a) (b) (c) (d)

Figure 3.1: Datasets examples. (a) and (b) contains random samples from the poly-m
dataset, (b) and (c) from the dots-m dataset. (a) and (c) show pairs form the “same objects”
class, (b) and (d) pairs from the “different objects” class.

When translation is used, the same modifications as presented in subsection 3.3.2 apply
also here. The dots are not sampled on the whole canvas, but a margin of size of the
maximum applied translation is used along the canvas edges.

3.3 Datasets details

In this section, we provide detailed description of dataset used in our experiments. Our
design goal was to make the dataset reasonably challenging for the proposed architectures.

3.3.1 Datasets using rotation

The dataset with multiple rotations has 10000 samples in training set, 1000 in validation
set and 5000 in testing set for each rotation. We call this variant poly-m. The datasets with
a single rotations have 20000 samples in the training set. We had to double the number of
training images per rotation in comparison with the poly-m dataset, as the network did not
have enough training samples and was subject to extreme overfitting. The rest is the same,
i.e. 1000 in the validation set and 5000 in the testing set. We call them poly-s-α, where
α is the applied rotation in degrees. We use discrete rotations α ∈ 0, 15, . . . , 180 degrees.
The same set of polygon pairs is used for all the rotations. All the datasets have grayscale
images of the size 56×56 and were generated with the parameters specified in the Table 3.1.

Table 3.1: Datasets parameters. The parameters naming is the same as in the Algo-
rithm 1

parameter dataset nl nu ε σ δl δu

value polygons 6 16 0.5 0.26 0.2 0.3
dots 6 8 − − 0.2 0.3
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The random dots datasets, called dots-s-α and dots-m, have the same parameters as the
random polygons datasets specified in the subsection 3.3.2 unless stated otherwise. The
radius r to the 5% of the image size. For further details, see the Table 3.1.

3.3.2 Datasets using translation

Datasets using translation are called poly-tran-m and dots-tran-m. They have the same pa-
rameters as poly-m and dots-m respectively except for the following changes. The maximum
relative size of the polygon is 0.7, the canvas margin for the dots is 15% of the image size
(image width or height). We used 13 different values, the same number used for the rotation
dataset, for the translation size t evenly spaced between 0% and 15% of the image size. We
choose not to use bigger translations, as it would require to sample smaller polygons or dot
patterns. Given the small image size, their shape would be significantly distorted and thus
very difficult to classify. On the other hand, using bigger images would require to design a
different and more complex network architecture than the one we intended to use.
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Chapter 4

Experiments

In this chapter, we firstly investigate the dependence of classification error on the rotation
between two input images. Secondly, we discuss two ways of implementing mental rotation
and examine whether it can improve verification accuracy.

Unless otherwise stated, we use the following hyper-parameters for all the experiments.
We use standard stochastic gradient descent with momentum. We set the batch size to 100
and learning rate to 0.001. The learning rate is decreased by the factor 10 after every 150th
epochs. We train for 450 epochs. The momentum is 0.9 and the weight decay is 0.0005.
We run each training 4 times with a different random seed and report the average. We use
MatConvNet toolbox [24] for the implementations of the experiments.

4.1 Effect of transformations on verification performance

We use the network architecture as presented in the section 2.2 in the following experiments.
Since the task is object verification, we classify the input pairs into two classes — both images
contain the same object, images contain two different objects. Thus, the last fully-connected
layer has two units.

First, we train networks on the poly-m and dots-m datasets. Throughout this work, we
name the networks after the datasets they were trained on. The Figure 4.1 shows test errors
with respect to the rotation between the two inputs. The lowest test error is on the zero
rotation subset. The test error sharply increases when the images are rotated by 15 degrees.
Contrary to our expectation, the test error does not globally increase with bigger rotations.
Furthermore, it has another two local minima in 90 and 180 degrees. The character of the
test error is similar for the both datasets.

As the results oppose our prior belief, we trained individual networks for each rotation
using the datasets poly-s-α and dots-s-α. This can be regarded as a form of sanity check. As
can be seen form the Figure 4.1, although test error is lower the overall character with the
same minima at the 0, 90, 180 degrees is similar to the one from the previous experiment.

A possible explanation for the minima at 90 degrees and 180 degrees can be that the
performance suffers from quantization effect. When not rotating by a multiplier of 90
degrees, the pixels of the rotated image will not lay on a discrete coordinates and the
resulting image has to be interpolated. This can lead to loss of information about subtitles
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Figure 4.1: Test error with respect to the rotation. The figure shows test errors
on subsets of the particular datasets. Notice that all the networks have local minima in
around 0, 90, and 180 degrees. Therefore we evaluated additional angles around them for
the poly-s-α and dots-s-α datasets.
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Figure 4.2: Test error with respect to the translation. The figure shows test errors
on subsets of the particular datasets. The values on the x axis of this figure correspond to
the maximum absolute horizontal or vertical shift. The shift is relative to the image size.
Notice the growing trend of error with respect to the absolute shift.
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4.2. MENTAL ROTATION

in object geometry needed for successful recognition. Furthermore, consider a case when
the CNN learns to detect for example a part of polygon using its convolutional layers. (We
can expect this as CNNs are known to have strong responses for discriminative object parts
in their convolutional layers [25].) If the CNN wants to detect the same polygon part in
the rotated image, it can learn the rotated version of the filters detecting this polygon
part. However, all the rotations except for the multipliers of 90 degrees would require to
interpolate the rotated filter. This can again negatively effect the performance, since the
interpolated filter can respond to slightly different visual stimuli.

Overall, both the poly-m and dots-m networks perform well with test error 4.2% and
5.7% respectively. The differences in performance with respect to rotation are relatively
small, at most 23.0% and 25.8% respectively of relative difference. For comparison, we
trained the same network on the translation datasets. The test error tends to increase with
the size of translation as can be seen in Figure 4.2. The overall test error is 1.32% for the
poly-tran-m dataset and 2.97% for the dots-tran-m dataset. The network performs better
on translations. This can be also partly caused by the small translations we used.

4.2 Mental rotation

The previous experiments with the lowest error at 0 degree rotation suggest that aligning
objects in the input images can improve performance. In this section we aim to built such
a mechanism directly into the network. We first start with a simple bruteforce method and
continue with more sophisticated mechanism. All the experiments are using verification
network trained on only 0 rotation subset of poly-m dataset.

4.2.1 Exhaustive mental rotation

The idea of the exhaustive mental rotation is very simple. We train a neural network which
is specialized to verify only aligned polygons. In the test time, we exhaustively try all the
possible rotations, in our case the translations are discretized by 15 degrees. We classify
an input pair of objects as the same if and only if it has been classified as such at least for
one rotation. The input pair is otherwise classified as two different objects. This greatly
reduces the test error to 1.73% om the poly-m dataset and 0.57% on the dots-m dataset.
However, it also multiplies the evaluation time by the number of tested rotations if not run
in parallel.

4.2.2 Spatial transformer

Encouraged by the exhaustive mental rotation method results, we wanted to take advantage
of the spatial transformer module, which would correctly align the inputs in one pass before
feeding them to classification network. This would have clearly positive impact on the
evaluation speed and possibly also on accuracy, since it should avoid classifying incorrectly
aligned images.
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4.2.2.1 Rotation prediction

However, as the spatial transformer requires localization network predicting transformation
parameters, we first verify whether our simple architecture has ability to estimate the angle
of rotation between the two input images from our datasets. We use the same architecture
as in the verification experiments, but we replace the classification layer with a layer that
classifies the input pair into classes from the set {0, 15, . . . , 180}. We used the poly-m dataset
for training and call this neural network poly-cls. The network achieves very low testing
error, only 2.11%.

4.2.2.2 Combining networks

The networks poly-cls and poly-m can be combined together. The first network would
predict transformation parameters, in our case angle of rotation. This would by used by
the spatial transformer module, which would transform one of the input images, before it is
along with the second image fed into the poly-m verification network.

This fusion can operate in two ways. First, we can directly use the pretrained poly-cls
localization network and the pretrained classification network in test mode. Second, we can
train the combined networks end-to-end from scratch and the localization network should
learn to predict transformations implicitly (in unsupervised manner). This can be expected
as it was observed in the original work [10].

4.2.2.3 Explicit rotation

When trained explicitly to transform the input image, the network works exceptionally
well with testing error 0.64% on the poly-m dataset and 0.40% on the dots-m dataset
outperforming the basic poly-m and dots-m architectures and the brute force method. It is
also considerably faster than the latter method, the test time is only 2 times higher when
compared to the poly-m network. This is a bit unfair comparison as such a network has
two fold more learnable parameters that the original net. To make the comparison fair, we
modified the architectures. The localization network has then 70% of parameters from the
original network and the classification network has 30%. The classification net is highly
negatively affected by such a drastic reduction of parameters, however, we were not able to
lower the number of parameters in the localization network even further, since it was not
possible to optimize the network at all when using less parameters. This combination of
networks still has lower test error, 3.83%, than the original poly-m architecture.

4.2.2.4 Implicit rotation

However, when we were trying to replicate results from the [10] on their rotated version of the
MNIST dataset, we found out that in many situations the spatial transformer network does
not learn to transform the input images. We had to experiment with various architecture
modifications to make the spatial transformer rotate the input into its canonical proposition.
We did not experience such a difficulties in case of the translated MNIST dataset. We still do
not quite understand what kind of conditions make the spatial transformer learn to transform
the inputs. One of our hypothesis is that the architecture is very sensitive to number of
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4.2. MENTAL ROTATION

weights in the localization and classification networks. If the number of parameters is high
in the classification network, then it can easily overfit on the training data and before the
localization network learns to predict the correct rotation, which is probably more difficult
to predict than translation is. This also happened when we were trying to adapt spatial
transformer on this task as we were not able to find such an architecture that would do the
transformation.
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Chapter 5

Features analysis

The experiments from the chapter 4 showed that there is relatively small difference in
testing error between different rotations and translations. This means that the network has
to learn, at least to some extent, rotation and translation invariant features while preserving
information about the geometry in order to successfully verify the images. We want to probe
the learned features in both the convolutional layers and in the fully connected layers by
inverting them back to the image space.

Recently, there has been two methods introduced for this purpose. The work by Mahen-
dran & Vedaldi [15] uses gradient descent optimization in order to find a regularized image
that has a similar representation to the original image representation in feature space. For-
mally, let x ∈ RH×W×C be the input image and φ(x) ∈ Rd its representation in feature
space. The goal is to find the image x∗ ∈ RH×W×C that minimizes the objective

||φ(x)− φ(x∗)||22 + λR(x)

where R : RH×W×C → R is a regularizer and λ ∈ R+ regularization trade-off parameter.
The resulting image x∗ can be than thought of as the inversion of the representation φ(x)
or the reconstruction of the original image x from its features φ(x).

Dosovitskiy & Brox [5] train up-convolutional network to perform the image recon-
struction. Let φ′(φ(x); w) : Rd → RH×W×C be a neural network that takes the image
representation φ(x) outputs the image reconstruction x∗. The training procedure finds such
a weights w that minimize the objective∑

i

||xi − φ′(φ(xi); w)||22

where xi ∈ RH×W×C are training images. This method produces better image reconstruc-
tions by automatically learning image prior, which is then encoded in the network weights.
However, this is undesirable for our work as we want to visualize only the information
encoded in the features. Therefore, we choose the first method.

In practice, we used gradient descent with momentum and a simple L2 norm as the
regularizer R(x) = ||x||22. We set the learning rate to 0.1, momentum to 0.9. If not stated
otherwise, we use reguralization trade-off parameter λ set to 0.0005.
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CHAPTER 5. FEATURES ANALYSIS

(a)

(b)

Figure 5.1: Convolutional features reconstruction: rotation. The first rows of (a) and
(b) contain samples from the dots-m and poly-m datasets and their consecutive rotations by
45 degrees. The second rows show their corresponding reconstructions from the last pooling
layer.

Note that in case of reconstruction from the fully-connected layers we have to reconstruct
both of the images from the input pair as our siamese architecture is already merged into a
single stream network starting from the first fully-connected layer.

5.1 Convolutional features

The convolutional part of a CNN has the most transformation invariant features in its
last layer [13]. Therefore, we invert the features of the last pooling layer just before the
two streams of the network join. The reconstructions Figure 5.1 from the poly-m network
show that the features preserves information about object geometry and its location. The
reconstructions of the of the polygons have a little bit diminished bodies as only edges are
intuitively needed for successful recognition. It is clear that the features are not rotation
invariant and we have to look deeper into the network. This is with contrast with features
from the networks trained on translated data. The Figure 5.2 suggests that the features are
more localy invariant to transformation, in this case translation.
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5.1. CONVOLUTIONAL FEATURES

(a)

(b)

Figure 5.2: Convolutional features reconstruction: translation. The first row in (a)
and (b) contain samples from the dots-m and poly-m datasets and their consecutive transla-
tions. For illustrative purposes, we use only vertical translation. The second and third rows
show their corresponding reconstructions from the last pooling layer. The network used for
the second row was trained on the standard dataset as described in the 3rd chapter. Notice
that the reconstructions in (a) contain diagonal strips even though the translations were
evenly distributed to all directions. The third row was trained on a modified dataset where
only vertical translations were allowed. That corresponds to the directions of the strips in
(a). Notice that the reconstructions are noticeably less accurate than those from Figure 5.1.
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(a) (b)

(c) (d)

Figure 5.3: Reconstructions from the first FC layer: poly-m dataset. The first
row in (a) contains a pair of the same input images from the dataset poly-m. The second
row contains their corresponding reconstructions. The first row in (b) contains rotated
versions of either the first input or the second as described further. The second row in
(b) contains reconstructions of the first image from the input pair. In this case, the first
image was consecutively rotated by 45 degrees while the second remained the same. Notice
that as the input image in the first row is rotating its reconstructions from the second row
seems to be rotating as well. The third row in (b) contains reconstructions of the second
input. In contrast with the previous case, the second input was rotated whereas the first
remained the same. Notice, that the reconstructions do not significantly change with respect
to the rotation. These phenomenas are discussed further in the section 5.2. (c) contains
reconstructions of the input pair from the poly-m-shfl network and (d) reconstructions of
the rotated input. We do not observer any of the behaviors that were presented in (b). The
reconstructions of the second input (not shown here) behave similarly. Note that in (b)
we show only reconstructions of one of the inputs, as the reconstructions of the other one
remain almost the same.
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(a) (b)

Figure 5.4: Reconstructions from the first FC layer: dots-m dataset. This figure
displays data obtained from the dataset dots-m. See Figure 5.3 for detailed annotation,
as it applies also here. Notice that the reconstructed dots from the first input roughly
corresponds to those in the original input, whereas the reconstructed dots from the second
input make completely different pattern.

5.2 Fully-connected features

The reconstructions from the fully-connected features provides us with several interesting
insights. The Figure 5.3 contains reconstructions for the polygons dataset. Reconstructions
for the dots dataset are included in the Figure 5.4. The reconstructions of both inputs
now contain only the edges of the polygons. The reconstructions of the first input are quite
distorted, but still partly retains the original shape. The reconstructions of the second image
from the input pairs are not visually similar to the original images and, quite interestingly,
they almost do not change when the input image is rotated. This suggests that the second
input images are mapped onto rotation invariant features. In contrast, when the first input
images are rotated the reconstructions seems to be rotated as well. The reconstructions of
the dots are subject to the same phenomena.

In order to quantitatively confirm this, we measure Euclidean distance between the
zero rotation features and inputs with bigger rotations. The Figure 5.5 shows that when
the second input is rotated the Euclidean distance is smaller than when the first input is
rotated. It seems that the network has adapted to a small bias presented in the dataset. The
dataset consists of pairs of polygons. When the rotated version is created, only the second
images from the pairs are rotated. If the images in the pairs are shuffled in the dataset, this
phenomena disappears. We call the network trained on this modified dataset poly-m-shfl.
Figure 5.5 also shows the Euclidean distances of the features from the poly-m-shfl are almost
the same regardless of the input rotated, as the network has adapted to rotations of the
both inputs.

However, the reconstructions from poly-tran-m and dots-tran-m networks are not subject
to the same phenomena as poly-m and dots-m nets. The reconstructions move together with
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Figure 5.5: Average Euclidean distances between fully-connected features with
respect to the rotation. The figure shows the Euclidean distances between the fully-
connected features of the aligned input images and their rotated versions. Notice that when
the first input is rotated the Euclidean distances are significantly higher than if the second
input is rotated. However, this is not the case of poly-m-shfl network, as it performs almost
equally well in the both cases. This is discussed further in the section 5.2. The distances
for the poly-m network are smaller when compared to those of the dots-m network. This
can be possible reason why the verification accuracy of the latter network is worse when
compared to the former network.
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(a) (b)

Figure 5.6: Reconstructions from the FC features of the poly-cls network. The
first row corresponds to the inputs, the third row their reconstructions and the second row
overlays the first row with the hot color-mapped version of the reconstructions. (a) shows
the whole input pair. (b) shows only the rotated input. Notice that the brightest regions in
the reconstructed images correspond to the polygon vertices.

their original images. The figures are enclosed in the appendix.
Furthermore, we reconstruct the inputs for the rotation classification network poly-cls.

As can be seen from the Figure 5.6 the features represents only the most distinctive parts
of polygons, their vertices. The figure furthermore suggests that the network has implicitly
learned to find correspondences of between the two inputs in order to be able to correctly
estimate rotation between the two inputs.

We observed that using the regularization, i.e. using λ higher than zero, negatively
affects the quality of reconstructions. We measure the quality as the classification error on
the testing dataset that has the original images replaced by their reconstructions. When
using λ = 0.0005, the classification error for the poly-m dataset is 8.3%, 9.1% for the dots-m
dataset, and 3.0% for the poly-cls dataset. Without the regularization it is 5.9%, 6.7%, and
2.4% in the same order. This is much closer to the original error. However, the regularization
is very useful in our situation, as it encourages reconstruction of only the most significant
parts of the input image from the viewpoint of the particular representation. We provide
some unregularized reconstructions in the Appendix A.
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Chapter 6

Conclusion

The first goal of this work was to probe how the classification error of deep convolutional
neural networks used for image verification depends on transformation between two visually-
similar images. Secondly, we wanted to investigate whether the performance of such net-
works can be improved by “mentally rotating” the input images before they are fed in to
the verification network. In order to do so, we considered 2D rotations and 2D translations
and we created several synthetic datasets consisting of randomly sampled polygons and dots
patterns. Generating synthetic data allowed us to fully control the properties of the datasets
used in the experiments. We showed that networks achieve their optimal performance when,
as it could be expected, no rotation is presented. Other local minima are in the close neigh-
bourhood of 90 and 180 degrees. However, performance is surprisingly uniform, and local
minima in the verification error are only slightly higher than the global minimum. In case
of translation, the behaviour is similar and the error tends to increase with increasing the
translation. Both results hold for the two types of objects, polygons and dotted patterns.

Continuing with the investigation of “mental rotations”, we first tested a method that
exhaustively applies all possible rotations to one of the inputs to verify it against the other.
This simple approach leads to a substantial improvement in verification accuracy, but has the
disadvantage of being computationally intensive. In order to solve this problem, we tested
the idea of using a spatial transformer subnetwork to predict in one go the correct relative
rotation to apply to the inputs (to the best of our knowledge, this is the first time spatial
transformers are applied to align image pairs). The spatial transformer network performed
very well on this problem if image alignment and was therefore incorporated in verification
by means of a spatial resampler layer. In this manner, we were able to further lower the
verification error compared to the brute force approach, with a significantly smaller number
of operations overall. However, as we have discussed in detail in the experiments, we were
not able to train this combination end-to-end from scratch.

The results in the previous experiments showed the remarkable performance of deep
architectures in handling transformations. This led us to investigating further the learned
features. We used a feature inversion method to visualize the features of the last pooling
layer, which can be expected to be the most transformation invariant layer in the convolu-
tion part of the network, and the first fully connected layer (FC1). We discovered rotation
invariant properties of the first fully connected layer, which we also confirmed quantita-
tively by measuring Euclidean distances between features of differently rotated inputs. We
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did not observe such a phenomena for the translation transformation. Furthermore, our
results also suggest another intriguing properties of the FC1 features. When we trained the
CNN to predicted rotation between two inputs, the FC1 features implicitly learn to match
correspondences between the rotated inputs.

Our study of transformation properties of CNNs has revealed several interesting be-
haviours of networks trained to verify pairs of transformed images. However, our under-
standing of the underlying statistical mechanisms, i.e. how such properties emerge in net-
works, remain limited, and should be targeted by future explorations.
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Appendix A

Additional reconstruction
visualizations

Here we provide additional reconstructions from the first FC layer. In each figure, title
specifies the dataset the network was trained on. The rows in the figures corresponds to a
single input pair and its corresponding reconstructions.

Figure A.1: poly-m (a)
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APPENDIX A. ADDITIONAL RECONSTRUCTION VISUALIZATIONS

Figure A.2: poly-m (b)

Figure A.3: poly-m regularized (a)

Figure A.4: poly-m regularized (b)

Figure A.5: poly-m-shfl regularized
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Figure A.6: dots-m

Figure A.7: dots-m regularized (a)

Figure A.8: dots-m regularized (b)

Figure A.9: poly-cls regularized
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APPENDIX A. ADDITIONAL RECONSTRUCTION VISUALIZATIONS

Figure A.10: poly-cls

Figure A.11: poly-tran-m

Figure A.12: dots-tran-m
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Appendix B

Nomenclature

2D two-dimensional

CNN convolutional neural networks

FC fully-connected

FC fully-connected

RBM Restricted Boltzmann Machine

ReLU rectified linear unit
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