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Abstract

This work gives an introduction to the biggest cloud vendors on the market and describes a cloud

architecture for a computation intensive application. The goal of this application is to search for

similarities in large datasets of images. Such task is performed using OpenCV, an open-source

computer vision library. The architecture, targeted on AWS infrastructure, is shown with detailed

description of its components and focus on specific services offered by the AWS platform. Hypo-

thetical system behaviour with time performance and computational cost is discussed and these

assumptions are verified against a reference implementation deployed to the cloud.

Abstrakt

Ćılem práce je poskytnout aktuálńı přehled největš́ıch poskytovatel̊u cloudových služeb a navrhnout

architekturu cloudové aplikace pro hledáńı podobnost́ı ve velkých datasetech obrázk̊u. Tato úloha

je realizována pomoćı OpenCV, open-source knihovny pro computer vision. Architektura aplikace,

navržená pro AWS infrastrukturu, je detailně popsána s ohledem na jednotlivé systémové kom-

ponenty a specifické služby dostupné na platformě AWS. Hypotetické vlastnosti, předevš́ım časová

náročnost a cena výpočtu, jsou detailně rozebrány a následně ověřeny vlastńı implementaćı nasazené

do cloudu.
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1 Introduction

The rapid development of ICT technologies in the past decades let to the significant emergence of

cloud computing. Building large scale applications and processing huge amounts of data is easier

than ever before with the source of computation power available in the cloud. Many papers have

been written about cloud computing already [19] so this work will only give a brief introduction to

the problematic.

There are many available cloud infrastructures and providers offering wide range of cloud services.

In the first part of this work, a brief overview of several selected providers will be given, with focus

on the core cloud services (namely compute capacity, object storage, database solutions and mes-

saging) and the corresponding pricing models.

Pricing is especially important in this case, since it often affects the application architecture de-

cisions when big data processing is involved. The trend shifted from paying per server instances,

where application stacks were managed completely by customers, to the pay-per use model, where

users consume services with their own pricing models.

In the second part of this work, a vendor-specific cloud architecture for a computation intensive

application, working with large image datasets, will be introduced. Theoretical benchmarks, esti-

mated time and pricing features of the proposed system will be discussed together with additional

problems and possible optimizations. The task itself will be introduced later with more details.

Finally, a simplified implementation of the proposed architecture will be shown to prove the function-

ality and parameters of the application. The main focus will be on several selected implementation

problems instead of in-depth components description, since the source code can be found in the

attachment to this work.

1.1 Cloud Computing

Cloud computing is a model based on sharing computing resources rather than having personal

devices for providing the required functionality and infrastructure. Networks of large groups of

servers, typically running low-cost consumer PC technology are grouped by specialized connections
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to spread data-processing chores across them. This network can then provide computing capacity

and other computing resources to the consumers.

The key concept behind provisioning compute capacity in the cloud is to offer an easy way of scaling

the application performance. There are two basic models of such scaling:

• Horizontal scaling: adding more machines into the pool of resources

• Vertical scaling: adding more power (CPU, RAM) to an existing resource

The mechanism and challenges behind cloud instances scalability is a huge topic and will not be

explored into detailed in this work. There are several articles [23], [6] in this field.

Many providers set up their own infrastructure in multiple data-centres spread over different re-

gions. Consumers can therefore choose between these locations to guarantee high availability of

their hosted applications or ensure cross-region replication of their data.

Cloud infrastructure can be divided into three basic types:

• public cloud - set of services delivered by a third party provider via the internet

• private cloud - an extension of an enterprise’s own datacenter optimised to provide the

services and computing capacity locally (infrastructure not shared with third parties)

• hybrid cloud - combination of the two

In addition to reducing or eliminating capital expense, many organizations prefer a public cloud

solution for its available, on-demand capacity. The hybrid approach is usually applied by storing

some sensitive data in a local private datacentre and using the public cloud for everything else.

Cloud Computing is often described as a stack consisting of the following layers:

• IaaS - accessing, monitoring, and managing remote datacenter infrastructures

• PaaS - computing platform that allows the creation of web applications without the com-

plexity of buying and maintaining the infrastructure underneath it

3



• SaaS - licensing an application to customers either as a service on demand, through a sub-

scription, in a “pay-as-you-go” model or for no charge

Figure 1: Cloud infrastructure stack

Many related works have been written to cover this problematic [14] [28] so these concepts will not

be explored into detail here.

1.2 Virtualization

Virtualization and cloud computing are often confused, since these technologies work closely to-

gether. It is, however, important to distinguish between these two terms when referring to ’cloud’.

Simply put, virtualization abstracts workloads from hardware [26]. There are several different

types of virtualization:

• Hardware - virtualization of computers as complete hardware platforms

• Network - combining hardware and software network resources into one software-based entity

• Storage - grouping the physical storage from multiple storage devices into something that

appears as a single storage device, can be divided into block virtualization (abstraction of

logical storage from physical storage) and file virtualization (eliminating the dependencies

between the data accessed at the file level and the location where the files are physically

stored)

• memory - virtualization of memory on the application or operating system level

• data - for example database virtualization

Cloud computing uses virtualization as its foundation technology, since it allows optimal resource

utilization of the physical hardware. Most of the on-demand services offered by various vendors are,

in fact, running in a virtual layer and share the physical resources.
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2 Cloud Providers Analysis

In this section, selected cloud services providers and their cloud infrastructures will be compared in

several categories.

Before reading the overview, it is important to note, that there is a difference between a cloud

provider and a cloud infrastructure. There are some specific cloud infrastructure solutions

offered by multiple vendors (providers) and there are also many vendors with their own private

infrastructures. The following table1 shows ten biggest providers with their offered cloud solutions:

Provider Infrastructure

Amazon Amazon Web Services
Microsoft Microsoft Azure
Google Google Cloud Platform
IBM IBM Cloud

CenturyLink CenturyLink
VMWare vCloud Air

RackSpace OpenStack
RedHat OpenStack
Nebula OpenStack
Joyent Joyent Triton

Table 1: Cloud providers and their infrastructures

It is not in scope of this work to compare all the existing cloud providers since their number has

been growing steadily for the past ten years [27] so only several of them will be discussed in this

section. The following vendors has been selected for the overview - Amazon Web Services (AWS),

Microsoft Azure, Google Cloud Platform and IBM Cloud.

Several categories were selected to be discussed in relation to each provider. These are:

• Computing capacity - deploying and managing applications in the cloud

• Storage - storing and manipulating objects

• Databases - SQL and NoSQL [17] database solutions

• Messaging/ESBs - queues and other means of service-to-service communication

1Note, that these are just several of the existing cloud providers.
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In addition, pricing will be taken into account, since it will play an important role in designing the

vendor-specific solution for the system described later in this work.

2.1 Amazon Web Services

AWS was launched in 2006 which makes it the longest operating provider described in this work. It

offers wide range of services in 11 geographical regions. Compared to its competitors, AWS offers

significantly more compute capacity2.

Most of AWS services are highly configurable and customizable. This is, on one side, a huge

advantage, but on the other hand, setting up a cloud solution on this platform requires slightly

more background knowledge and effort.

2.1.1 Elastic Compute Cloud

Amazon EC2 is an IaaS [18] providing access to flexible compute capacity in the cloud. EC2 enables

the users to launch, terminate and manage virtual machines via various tools including graphical

web interface or AWS command line interpreter (AWS CLI). These virtual machines are called

“instances” and the user is able to boot an Amazon Machine Image (AMI)3 on them.

AWS Marketplace

Not only can users choose from number of predefined AMIs provided by Amazon, but there is also a

possibility to buy one from AWS Marketplace4. Customers can trade reserved instances, sell custom

AMIs or offer software running on EC2. Moreover, it is possible to list the service offering program-

matically and therefore automate the process of buying and selling the software or reservations.

At the moment, Amazon offers 9 instance families and 41 instance types types5 in a wide range of

sizes to match specific needs, including GPU or CPU heavy applications. Several analysis have been

done, concerning the EC2, indicating varying, yet stable, performance,of different instance types [7].

2https://www.srgresearch.com/articles/aws-market-share-reaches-five-year-high-despite-microsoft-growth-surge
3http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
4https://aws.amazon.com/marketplace
5https://aws.amazon.com/ec2/instance-types/
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Instances running in EC2 are always priced for the total number of hours used (rounded up) ac-

cording to the following three models:

• on demand – no upfront costs

• reserved – customers can reserve instances for 1 or 3 years (or buy existing reservation from

the marketplace) with some upfront cost based on the utilization

• spot – customers bid on spare instances

By using reserved or spot instances, users can significantly reduce their operational costs. Since

cost-optimization of AWS compute capacity is more advanced (and also more complex) compared

to the other providers discussed in this work, the key concepts will be shortly described below.

Reserved instances

Although called reserved instances, these resources are not instances in the classic sense. They

are just reservations of computing capacity for specific instance configurations. When purchasing

a reserved instance, Amazon guarantees that it will be possible to run your instance in a selected

region/zone with the specified parameters (like platform, instance type etc.). Moreover, Amazon

guarantees lower prices when using reserved instances compared to running the instances as on-

demand.

In order to describe what is meant by this concept, imagine instances being cars and reserved in-

stances highly customized parking spaces. You can either park your car on a public parking lot

and pay an hourly price or use your prepaid parking space to save money. Also note, that reserved

instances are being charged no matter whether they are being used or not.

This table shows an example pricing of several EC2 instance types with reserved instance plans:

Instance vCPU Mem (GiB) On demand RI no upront RI all upfront

t2.micro 1 1 $0.013 $0.009 $0.0086
t2.small 1 2 $0.03 $0.022 $0.0201
c4.large 2 3.75 $0.134 $0.100 $0.0862
r3.large 2 15 $0.200 $0.146 $0.123

Table 2: Example EC2 pricing (with One year RI terms) - US-east, Amazon Linux
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Spot instances

Spot instances are, simply put, unused EC2 instances. The price is often significantly lower than

the price for reserved instance and fluctuates depending on the current supply and demand on the

market. An interesting study [1] has been performed, however, indicating that the prices of spot

instances might not be entirely market-driven. The disadvantage of using spot instances is that

these instances can be terminated by Amazon (there is a notice 10 minutes before the termination)

and might not be launched immediately (since AWS waits for such instance to be available). These

are an ideal choice for applications that do not need to be running without interruptions.

2.1.2 Elastic Beanstalk

Elastic Beanstalk is a service which reduces the complexity of deploying applications to AWS. Users

can upload the application and let Elastic Beanstalk handle the version control, capacity provision-

ing, scaling and application health monitoring.

Elastic Load Balancing automatically distributes and balances the incoming application traffic

among all the running instances. The load balancer sends requests to the Amazon EC2 instances

that are running the deployed application.

The default behaviour is to distribute the load across instances running in the same availability

zone, but cross-zone load-balancing can be enabled to use all the instances, regardless of which

zone they are in. An important thing to note is, that ELB needs some time to launch a new instance

when scaling the application during a spike in demand. This is called pre-warming and it might

take a couple of minutes before the instance becomes available. This might cause problems when

handling very large and short spikes.

The applications can be deployed to ELB either as a ”website” (with public interface) or as a

”worker” (with only one endpoint linked to a queue).

Elastic Beanstalk is not a subject to any charges. Users only pay for the EC2 instances managed

by Beanstalk. There is a whole book [24] dedicated solely to ELB for those interested in in-depth

description of this service.
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2.1.3 Simple Storage Service

Amazon Simple Storage Service provides a scalable object storage accessible via web interface or

API. It offers three storage classes designed for different scenarios:

• Standard - general purpose storage

• Standard-IA (infrequent access) - less frequently accessed data

• Glacier - long-term archive

Objects are stored in buckets which can be configured both with access rights and additional func-

tionality (automatic archival, life span etc.). Buckets can be used not only for file storage but also

for a website hosting or content distribution.

Data size Standard Standard-IA Glacier

First TB / month $0.0300 $0.0125 $0.007
Over 500 TB / month $0.0275 $0.0125 $0.007

Table 3: S3 storage pricing, US, price per GB

Request Standard Standard-IA

Put, Copy, Post $0.005 per 1000 requests $0.01 per 1000 requests
Get and other requests $0.004 per 10000 requests $0.01 per 10000 requests

Delete free $0.01 per GB

Table 4: S3 request pricing

S3 Glacier is charged differently since it only uses archive and restore operations. These are signif-

icantly cheaper than the other two options, but it takes several hours to access the archived data

so it is not meant for standard usage.

2.1.4 DynamoDB

Amazon DynamoDB is Amazon’s scalable NoSQL database. Data entries saved in DynamoDB are

accessible by their hash keys but can also be queried using secondary indexes.

Usage of DynamoDB is charged for both the stored data size and for provisioned throughput capac-

ity. Throughput capacity is, simply put, a guaranteed throughput for a given table which enables

the user to specify how many requests should be achieved per second.
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Operation Price

Storage (monthly) $0.25 per GB
Write throughput (hourly) $0.0065 per 10 units
Read throughput (hourly) $0.0065 per 50 units

Table 5: DynamoDB pricing

The provisioned throughput can be scaled up an down for every DynamoDB table. In other words,

if an application requires to process large amount of data in the database, the throughput can be

increased just during the processing and lowered afterwards to decrease the costs.

One limitation of DynamoDB is the single item size which cannot exceed 64KB, athough it can be

avoided using techniques like paging. This is a tradeoff made by Amazon to ensure the guaranteed

latencies and data replication of this service.

Since DynamoDB is more complex than a simple key-value store, it requires at least some basic level

of understanding before users can take the full advantage of all its capabilities. There are several

puplications [25] [9] dedicated to DynamoDB providing a detailed description, best practices and

examples of usage of this service.

2.1.5 Relational Database Service

Amazon RDS a relational database solution in the cloud. It supports six database engines: Amazon

Aurora, Oracle, Microsoft SQL server, PostgresSQL, MySQL and MariaDB.

RDS is priced, similarly to EC2, for the total number of hours that the database instances were

running. There are various instance types optimised for different tasks (standard, memory opti-

mised, micro etc.). The following table shows an example pricing of several selected instance types.

Like EC2, users can pay for reserved database instances to decrease the costs for a long term usage.

The following table illustrates the pricing for MySQL instances in the EU region:

Instance vCPU Mem (GiB) On demand RI no upront RI all upfront

db.t2.micro 1 1 $0.018 $0.014 $0.012
db.m4.large 2 8 $0.193 $0.146 $0.023
db.r3.large 2 15 $0.265 $0.199 $0.166

Table 6: Example RDS pricing (with One year RI terms), US-east
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2.1.6 Simple Queue Service

Amazon SQS is a scalable message queuing service. It is possible to transmit data of any size and

any throughput with this service regardless of the fact whether the consuming services are available

at the time.

There are no hourly costs but users pay the data transfer:

Data transfer Price

First GB / month free
Up to 10 TB / month $0.090 per GB

More than 10 TB / month $0.050 - 0.0850 per GB

Table 7: SQS pricing

2.2 Microsoft Azure

Azure, announced in 2008 and officially released in 2010, is a cloud computing platform created by

Microsoft. It provides both PaaS and IaaS services through a global network and Microsoft-hosted

data-centres.

Azure provides a strong support for hybrid cloud architecture, in contrast with Amazon which is

only beginning to adopt this concept. The hybrid model allows certain parts of an application to

remain on on-premises hardware and the interfaces with other parts to be hosted in the cloud.

Another important feature of Azure is its high compatibility with other Microsoft products, making

it a solid choice for customers using this stack. A detailed description of Azure services and their

underlying infrastructure can be read in this [12] publication.

2.2.1 Virtual Machines

Virtual machines has been available since 2012 and currently offers 4 instance families with 33

instance types in a variety of sizes. Customers can create virtual machines, of which they have

complete control, to run in Microsoft’s data-centres.

As for pricing, Microsoft charges customers by the total number of minutes used with the possibil-
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ity of short-term commitments with discounts6. In the past, subscribers were able to get 20-32%

discount with 6 to 12 months commitments but Microsoft changed the pricing policy in 2015. At

the moment, there is a global discount 5% for all Azure services when subscribing for 12 months7.

Microsoft offers running the instances in either basic or standard tier8:

• Basic - development workloads, no auto-scaling and load balancing

• Standard - all virtual machine configurations and features

Instance vCPU Mem (GiB) Basic on-demand Standard on-demand

A1 1 1.75 $0.047 $0.06
D1 1 3.5 - $0.077
D2 2 7 - $0.154

D11v2 2 14 - $0.224

Table 8: Example Azure Virtual machines pricing, US-central, Linux

2.2.2 Cloud Services

Cloud Services is a PaaS environment for deploying scalable applications to the cloud. Similarly

to Amazon’s Elastic Beanstalk, the applications have roles indicating their purpose and interface

accessibility: ”Web Role” for a public internet-exposed application and ”Worker Role” for a private

processing engine.

Microsoft currently supports four programming languages to be used with Cloud Services: Java,

Python, Node.js and .NET.

2.2.3 Blob Storage

BLOB (Binary Large Objects) Storage can be used to store and retrieve binary files in Azure cloud.

All data stored with this service are automatically replicated and users can choose from 19 regions

to host their files. All objects (blobs) can be accessed by a unique path.

There are two kinds of blobs with the type specified during the blob creation:

6https://azure.microsoft.com/en-us/offers/commitment-plans/
7ttps://azure.microsoft.com/en-us/offers/ms-azr-0026p/
8The basic tier is available only for selected instance families
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• Block blob - 64MB blocks can be uploaded in one operation. Larger blobs (up to 200GB)

can be uploaded in smaller parts and then put together as one file once the upload is finished.

• Page blob - These blobs can be up to 1TB in size and consist of 512-byte pages.

When creating the blob, users can specify the replication strategy - locally redundant storage (LRS),

zone redundant storage (ZRS) and geographically redundant storage (GRS). The pricing is different

of each of these models:

Data size LRS ZRS GRS

First TB /month $0.024 per GB $0.03 per GB $0.048 per GB
Next 49TB /month $0.0236 per GB $0.0295 per GB $0.0472 per GB
Next 450TB /month $0.0232 per GB $0.029 per GB $0.0464 per GB

Table 9: Block blob storage pricing

Data size LRS ZRS GRS

First TB /month $0.05 per GB $0.095 per GB $0.12 per GB
Next 49TB /month $0.05 per GB $0.08 per GB $0.1 per GB
Next 450TB /month $0.05 per GB $0.07 per GB $0.09 per GB

Table 10: Page blob storage pricing

Read and write operations are both charged $0.0036 for 100k operations.

2.2.4 DocumentDB

DocumentDB is Microsoft’s NoSQL cloud database. Compared to Amazon DynamoDB, it is a fully

functional document-oriented database with ACID transactions (within a collection of stored pro-

cedures) and a built-in JSON and Javascript support. The throughput is controlled by the system

and there is no need to specify it beforehand.

One of the downsides of DocumentDB is a very limited range of supported programming languages

(.NET, Python, Javascript9).

Microsoft charges customers based on the number of collections contained in a database account.

Collections are billed separately on hourly basis and the pricing depends on the specified performance

class:
9Third party plugins for other programming languages exist, though.
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Class SSD storage Request units Price

S1 10 GB 250 / second $0.034
S2 10 GB 1000 / second $0.067
S3 10 GB 2500 / second $0.134

Table 11: DocumentDB pricing

2.2.5 SQL Database

Azure SQL Database is Microsoft’s database-as-a-service. Though somehow similar to Amazon

RDS, there are several key differences to note between these two services. First of all, unlike Ama-

zon, which enables users to have dedicated hardware resources, Microsoft SQL Database shares

these resources between all users. This is called Elastic database model and is used for manag-

ing the collective performance of the pool rather than single databases. The databases in the pool

automatically scale up and down according to the demand.

SQL Database doesn’t offer backups and restoration automatically and this functionality has to be

manually configured. Lastly, this service only supports MySQL at the moment.

Microsoft pricing is based on the total time of running the elastic database on hourly basis. There

are three tiers distinguished by the overall performance:

Tier-eDTUs/pool Storage DBs/pool eDTUs/DB Price

Basic-100 10 GB 200 5 $0.20
Basic-200 20 GB 200 5 $0.40

Standard-100 100 GB 200 100 $0.30
Standard-200 200 GB 200 100 $0.60
Premium-125 63 GB 50 125 $0.937
Standard-250 125 GB 50 250 $1.88

Table 12: SQL Database example pricing

DTU and eDTU

DTU stands for ”Database Transaction Unit” and it is Microsoft’s unit representing the relative

power of database based on the real-world measure of database transaction. In other words, DTUs

indicate how many transactions per second can be performed over a given database system. Similarly

to DTU, eDTU is the same unit applied to an elastic database pool.
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2.2.6 Queue Service

Two types of queue mechanisms are offered by Microsoft’s cloud platform10: Azure Queues and

Service Bus Queues.

Azure queues have a REST interface supporting Get/Put/Peek operations and are used for point-

to-point connections between services. Service Bus queues, however, offer publish/subscribe

mechanism as well as topics/subscriptions.

The following table compares these two queue services in several categories:

Criteria Azure queues Service Bus queues

Ordering Not guaranteed Yes - FIFO
Delivery At least once At least once, at most once

Transactions No Yes
Batches No Yes

Automatic dead-lettering No Yes
Purge queue Yes No

Duplicate detection No Yes
Message groups No Yes
Maximum size 200 TB 80 GB

Maximum message size 64 KB 256 KB
Message TTL 7 days Unlimited

Table 13: Queues comparison

The queue pricing is based on pay-per-use model and due to an extensive list of options and

configurations, it will not be discussed here. These pricing details can be found on the official

Microsoft website11.

2.3 Google Cloud Platform

Google Cloud Platform was first launched in 2008 as a preview with Google Compute Engine be-

ing the first available service. The platform offers a set of modular services providing a complete

infrastructure for cloud-based systems. It is the same infrastructure that Google uses internally for

its services like Google Search. There are currently four regions supported by the platform.

10Although it is possible to install and run third party queues in Azure.
11https://azure.microsoft.com/en-us/pricing/details/service-bus/
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Compared to Amazon, Google provides smaller number of services and regions. These services often

lack sophisticated configuration possibilities but their setup is easier and does not require an extent

background knowledge. Google focuses mainly on providing PaaS rather than IaaS.

Additionally, Google provides unique solutions like BigTable or BigQuery, which makes it an excel-

lent choice for big data processing.

2.3.1 Compute Engine

Google Compute Engine (GCE) is an IaaS enabling the users to configure and run virtual machine

instances in the cloud. GCE currently supports 4 instance families with 18 instance types in total.

It was first launched in 2012 as a preview but it became officially available in 2013.

Unlike AWS, GCE charges users by the number of minutes used (with 10 minutes being the mini-

mum). It only provides on-demand pricing with sustained use discounts12, making instances running

for a significant portion of the month, eligible for discount. Basically, instances running during the

first 25% of the month are charged more than instances running for 25% to 50% and so on. When

running instances for the whole month, they cost up to 20% less than the on demand prices.

Moreover, GCE allows user to run instance in a preemptible mode. However, these instances

might be terminated (similarly to AWS spot instances) if GCE it requires access to the resources

for other tasks. The cost for running such instances is significantly lower than the on demand price.

Sustained use discounts are not applied to such instances.

Instance vCPU Mem (GiB) On demand Full sustained use Preemptible

n1-standard-1 1 3.75 $0.050 $0.035 $0.015
n1-standard-2 2 7.5 $0.100 $0.070 $0.030
n1-highcpu-2 2 1.8 $0.076 $0.053 $0.020
n1-highmem-2 2 13 $0.126 $0.088 $0.035

Table 14: Example GCE pricing, US, Linux

2.3.2 App Engine

Google App Engine (GAE), first launched in 2008, is a PaaS for managing applications deployed

to cloud. The auto-scaling and load-balancing mechanism is available by default without the need

12https://cloud.google.com/compute/pricing
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of additional service configuration. GAE’s strong side is the compatibility and integration with

existing development tools like Eclipse, Maven, Jenkins or Git. Another important feature of App

Engine is the Security Scanner, which can be configured to automatically scan deployed applica-

tions for vulnerabilities.

It is possible to use GAE without GCE (although user can combine these two services easily). That

reduces the cloud management to minimum since App Engine can handle everything automatically.

The downside GAE is the limited number of operating system and platform choices (PHP, Python,

Jana and Go are supported).

With GAE, users only pay for what is used. This applies for the compute capacity, datastore calls

etc13. The pricing of App Engine will not be described into details here since the focus of this work

is to provide an overview of large scale application solutions which are likely to use GCE with other

resources configured manually instead.

2.3.3 Cloud Storage

Cloud Storage is a highly available object storage which comes in three product options sharing the

same API (similarly to Amazon S3):

• Standard - highest level of durability and availability

• DRA - lower availability

• Nearline - storage for archiving, backup and disaster recovery

Another concept shared with Amazon S3 is the use of buckets. Storage options are specified on a

bucket level with Standard storage being the default one. Each bucket can be hosted in different

location which is set during its creation.

Option Availability Price

Standard 99.9% — ms $0.026 per GB
DRA 99% — ms $0.02 per GB

Nearline 99% — sec $0.01 per GB

Table 15: Cloud Storage pricing

13https://cloud.google.com/appengine/pricing

17

https://cloud.google.com/appengine/pricing


In addition to these operations, operations with objects and buckets are charged as well:

Operation Price

Insert, update, patch, list, copy, delete $0.1 per 10000 operations
Get, access control, notifications $0.01 per 10000 operations

Table 16: Cloud Storage operation pricing

Additional charges for Egress might be applied as well14.

2.3.4 Datastore

Google Datastore is a scalable NoSQL database with automatic sharding and replication. It is quite

similar to Amazon DynamoDB - both options offer schema-less table structures, list properties and

simple index keys. Unlike Google Datastore, DynamoDB is able to perform a full table scan (al-

though it is highly discouraged due to low efficiency).

However, there are some important differences between Google Datastore and Amazon DynamoDB.

Unlike DynamoDB, Datastore has a built-in transaction system and an entity hierarchy support. It

is not necessary to specify the throughput capacity like in DynamoDB since this is handled automat-

ically in Datastore (which implies simpler usage but also lower control over large data manipulation).

Pricing is applied to data storage and read/write operations:

Operation Price

Storage $0.018 per GB per month
Read, write $0.06 per 100000 operations

Table 17: Cloud Storage operation pricing

2.3.5 Cloud SQL

Google Cloud SQL is a fully-managed database service. Data encryption is applied automatically

on all data saved in the Cloud SQL and all the data are replicated over multiple regions and backed

up routinely.

There are two pricing plans for Cloud SQL15

14https://cloud.google.com/storage/pricing
15https://cloud.google.com/sql/pricing
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• Packages Billing Plan - ideal for sustained database usage

• Per Use Billing Plan - ideal for non-frequent usage (charged by hour)

Similarly to Amazon RDS, several instance types with different RAM and storage options can be

selected to host the database:

Instance RAM Price / day Price / hour

D0 0.125 GB $0.36 $0.025
D1 0.5 GB $1.46 $0.10
D8 4 GB $8.78 $0.58

Table 18: Example Cloud SQL pricing

2.3.6 Cloud Pub/Sub

Messaging in the Google platform is handled by Cloud Pub/Sub. This service is global by design -

it remains available even when some zones or regions aren’t.

Google uses its private global fibre network to transfer the messages. This is an important difference

between Google and its competitors, who often use the public network.

Operations Price/million per month

First 250M $0.40
Next 500M $0.20
Next 1000M $0.10

More than 1750M $0.05

Table 19: Pub/Sub pricing

2.4 IBM Cloud

IBM offers a complete set of cloud services through public, private and hybrid delivery models.

These offerings used to be marketed under IBM SmartCloud brand since the first launch of enter-

prise cloud service in 2011. In 2013, IBM bought SoftLayer (server, hosting and cloud computing

provider) which meant a huge improvement of the IaaS capabilities.

Private and hybrid cloud solutions are strong sides of IBM cloud, since public cloud has not been

the main area of interest until recently.
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2.4.1 SoftLayer Virtual Servers

IBM offers its IaaS through SoftLayer Virtual Servers. Unlike its competitors, SoftLayer does not

offer specific instance types and instance families, but the individual instance configurations (CPU,

memory, disks etc.) can be specified by the user before launching.

There are six operating systems in multiple flavours supported16: CentOS, CoreOS, Debian, Mi-

crosoft, Redhat and Ubuntu.

Before jumping to the pricing, it is important to note that SoftLayer Virtual machines is funda-

mentally different to, for example, Amazon EC2. EC2 is running on a virtualization layer, which

searches for a free node with requested resource whenever someone orders to launch an instance.

This process is quick and automated and gives the customer a complete control over all the re-

sources on the virtual layer. On the other, SoftLayer gives the customers the same control on the

infrastructure layer. In other words, SoftLayer deploys bare metal servers in a similar same way

AWS deploys public cloud servers. Another difference to note is the lack of regions and availability

zones in SoftLayer. Customers select a specific data centre to host their instances and are able to

expand their cloud infrastructure to different data centres which are interconnected via a global

private network.

There are two pricing models available with the Virtual Servers service: hourly on-demand and

monthly pricing17.

vCPU Mem (GiB) Hourly Monthly

1 1 $0.038 $25
1 2 $0.053 $35
2 4 $0.105 $70
2 12 $0.208 $138

Table 20: Example Virtual Servers pricing, US-Washington-DC, Linux

16It is also possible to launch a custom OS with the instance.
17Public node prices are listed here. Private nodes are more expensive:
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2.4.2 Bluemix

IBM Bluemix, officially launched in 2014, is a PaaS enabling users to create, deploy and manage

applications in the cloud. Bluemix platform is based on CloudFoundry18 and runs on the SoftLayer

infrastructure. Several programming languages are supported including Java, Node.js, Go, PHP,

Python or Ruby. Bluemix consists of all the services related to managing the cloud applications,

including storage, databases, messaging, monitoring etc.

Unlike AWS, Bluemix enables hosting the applications as on-premise and it also offers a connection

to IBM’s Watson - a cognitive machine learning system.

Similarly to GAE or ELB, customers are charged for various services consumed by the default

application. Therefore, the detailed pricing is not going to be discussed in this section19.

2.4.3 Object Storage

Object Storage is used for unstructured data storage and is currently offered as a beta release.

Apart from the standard features like access control or service dashboards, Object Storage adopted

the OpenStack Swift API and SKDs for accessing the stored objects programmatically.

As for pricing, there are currently two plans available:

• Free - Single instance with 5GB limit

• Beta - Multiple instances with scalable storage and pay-per-use pricing model

Unfortunately, by the time of writing this work, there was no available pricing details for Object

Storage since it has not come out of beta yet.

2.4.4 Cloudant NoSQL DB

Cloudant is a schema-free NoSQL database-as-a-service based on Apache CouchDB20. Data are

accessible via Http REST interface in JSON format and records can be treated independently or in

18https://www.cloudfoundry.org/
19IBM has a detailed price calculator on its website: https://console.ng.bluemix.net/pricing/
20http://couchdb.apache.org/
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bulks. Attaching files to documents is supported as well.

One of the strong features of Cloudant is a full-text search based on MapReduce and Apache

Lucene21.

Cloudant offers 20GB of free storage. The additional data are charged according to the following

pricing plan:

Operation Price

1GB storage $1.00
1000 read calls $0.03

1000 write/update/delete calls $0.15

Table 21: IBM Cloudant pricing, US

2.4.5 SQL Database

This service provides an on-demand relational database powered by IBM’s DB2 engine22. All data

is automatically encrypted and some advanced security features, like data masking, are available as

well. Moreover, automatic backup, monitoring and daily reports are available by default.

SQL Database offers two pricing plans: a free one with limited storage and a premium one. Cus-

tomers are charged for the number of instances on monthly basis.

Plan Storage Connections Price

Free 100MB/instance 10 -
Premium 500GB/instance 100 $400/instance

Table 22: IBM SQL Database pricing, US

Apart from SQL Database, there are additional services providing various database functionality

integrated in Bluemix:

• IBM DB2 on cloud - fully private, dedicated instances

• Elephant SQL - third party multi-tenant Postgres database, can also be hosted on AWS,

GCE and Azure

21https://lucene.apache.org/
22http://www-01.ibm.com/software/data/db2/
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• Time Series Database - specialized time series database with both SQL and NoSQL func-

tionality

• ClearDB - third party MySQL database, can be also hosted on AWS, GCE and Azure

2.4.6 MQ Light

Messaging between applications is handled by MQ Light messaging service. MQ light allows both

point-to-point communication and publish-subscribe model with topics. As for the supported pro-

gramming languages, users can choose between Ruby, Node.js, Java and Python, PHP, Perl and

C.

Pricing is based simply on the total number of messages sent via this service:

Messages Price

First 100000 -
1 million $5.0

Table 23: IBM MQ Light pricing, US

MQ Light, however, is not the only messaging option integrated in Bluemix. Besides various custom

queue engines, the following options are also available:

• Message Hub - distributed message bus based on Apache Kafka23

• IBM Push Notifications - push notifications for Android and iOS devices

2.5 Overall Summary

This section will briefly summarize all the discussed cloud providers with focus on their main areas

of expertise. A price comparison of selected services will be given as well, although not every cate-

gory will be evaluated since every provider uses slightly different pricing model and offers different

set of features with every service, which would result in unfair comparison.

One of the biggest differences between the discussed cloud vendors is the number of available ser-

vices. Amazon, being the first company to launch their public cloud infrastructure, has the biggest

number of them, making it’s platform the most complete on the market at the moment. The other

three competitors are, however, introducing new services on regular basis and cover all the discussed

23http://kafka.apache.org/

23

http://kafka.apache.org/


areas of cloud computing as well.

On the other hand, while AWS focus is on the IaaS offerings, Google, Azure and IBM have very

mature PaaS solutions, making the development of applications on their platforms slightly easier.

Another huge aspect of building a cloud stack are the requirements of the customers. Azure, for

instance, offers the best integration capabilities with other Microsoft services and also seems to

have the best support for hybrid cloud solutions. AWS let users configure almost all aspects of their

cloud solution, although more experience and time is required to set-up the application. GCE is

specialized in big data processing, with Google having lots of experience in this topic. And lastly,

IBM cloud offers API to many cognitive and AI services, like Watson, giving it a unique appeal24.

Moreover, with its SoftLayer Virtual Servers offering, it enables customers to host their services on

bare metal machines, rather on a virtual layer like the other providers25.

2.5.1 Pricing Comparison

One of the crucial parts of a cloud system are the virtual instances that host the application and

perform the computation tasks. These will be compared in terms of price in the following three

categories: general usage, high CPU usage and high memory usage. Unfortunately, it is not possible

to find a perfect mapping between instance types across multiple cloud providers so the results must

be treated with caution.

The following instances were selected for the comparison:

24This does not mean that some of the other providers does not have such services in their stacks. Their solutions
are not as mature, though.

25This might change in the near future since Amazon just announced a new ”dedicated machine” feature of its EC2
service
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Instance vCPU Memory Memory

AWS t2.small 1 2 $0.030
Azure A1 1 1.75 $0.060

GCE n1-standard-1 1 3.75 $0.050
IBM SoftLayer-1-226 1 2 $0.053

AWS c4.large 2 3.75 $0.134
Aure D2 2 7 $0.154

GCE n1-highcpu-2 1 1.8 $0.076
IBM SoftLayer-2-4 2 4 $0.105

AWS r3.large 2 15 $0.200
Aure D11v2 2 14 $0.224

GCE n1-highmem-2 12 13 $0.126
IBM SoftLayer-2-12 2 12 $0.208

Table 24: IaaS instances pricing table

The price reflected in this table is the on-demand price for Linux instances in the US region.

Figure 2: Instance pricing comparison

While all the compared providers offer similar instance types, the situation is completely different

with object storage offering. IBM Cloud does not have this service in its portfolio yet, since its

Object Storage is only available as a beta version at the moment. Azure offers different kinds of its

Blob storage in multiple flavours (LRS, ZRS, GRS) and AWS has different types of its S3 storage

as well.
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Only the basic storage types are shown in the following table, all of them with prices in the US

region for the first TB of saved data:

Service 1 GB 100k reads 100k writes

AWS S3 (Standard) $0.03 $0.04 $0.5
Azure Block Blob Storage (LRS) $0.024 $0.0036 $0.0036
GCP Cloud Storage (Standard) $0.026 $0.1 $1

Table 25: Object storage pricing comparison

Figure 3: Instance pricing comparison

Google seems to have significantly higher prices for PUT requests so it might not be an ideal choice

for heave-write applications. On the other hand, it does not charge for any transport across its

multi-region locations (transport of an object from US Cloud Storage to EU compute instance is

free). Amazon and Azure charge for any data transfer between regions or data centers.

SQL and NoSQL services comparison will not be discussed here since the pricing models of the

individual providers are too different and it would, hence, result in unfair outcome.
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3 Problem Description

As mentioned in the introduction, the purpose of this work is to design a cloud architecture for an

application handling large datasets of images and ensure its scalability and robustness in terms of

processing large workloads.

Firstly, the system description and requirements will be introduced. A description of worker tasks

will be given, with emphasis on input and output parameters, workload classification and time

performance.

Secondly, an architecture for one selected cloud provider will be described in the following chapters

together with time and price estimations for big workloads.

Lastly, additional possible optimizations over the discussed solutions will be explored.

3.1 Task Description

The main task of the system is to identify duplicates and similarities in a large collection of images.

There will be two operations performed over the dataset:

• 1-N comparison - compare one image with all the images in the dataset

• N-N comparison - compare all images in the dataset against each other

The results of the comparison must be persisted. The best matches are then presented to the user.

With growing number of images in the dataset it takes considerable amount of computational re-

sources and time, especially with the N-N comparison, to perform the tasks, so the system must be

able to split the workload over multiple worker instances and minimize the time overhead caused

by traffic and database operations.

Moreover, careful selection of cloud services is crucial in terms of pricing since some of the tasks

performed by this system might run for couple of days.
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3.1.1 Image Pre-processing

Firstly, an image is uploaded to the system with tags specifying the image content. This image

must be saved somewhere as a file in order to make the future retrieval possible.

Once the image is saved, several algorithms are executed to compute sets of features describing

the image. OpenCV27 [5] library is used for all the image processing operations. Each algorithm

produces its own set of feature vectors.

It is difficult to define the meaning of the term image feature in this context but we can image it to

be a specific pattern which can be easily tracked and compared. Once OpenCV finds these features,

it needs to convert them into some format which could be used for further processing. This phase

is called feature description and it turns the extracted features into vector representation.

There are number of different algorithms that could be used for the features and image descriptors

extraction28:

• ORB (Oriented FAST and Rotated BRIEF) - local feature detector based on the FAST

keypoint detector and the visual descriptor BRIEF [22], published as open-source

• KAZE - 2D feature detection and description algorithm in non-linear scale spaces, published

as open-source [3]

• AKAZE - accelerated version of KAZE with increased performance and precision [4]

• SIFT (Scale-invariant feature transform) - local feature descriptor invariant to uniform

scaling and orientation [13], licensed and patented by University of British Columbia

• SURF (Speeded up robust features) - local feature detector inspired by SIFT, licensed

and patented in the United States

Finally, image descriptors are computed based on the extracted features. These descriptors are

then used for the image comparison. For the sake of simplicity, these entities will be called just

’feature vectors’ in this work.

27http://opencv.org/
28Only several selected algorithms are listed here - these are is a wide range of approaches to image feature extraction.
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The problematic of content-based image retrieval will not be described into detail here, since it is

not important for the behaviour of the proposed system. There are, however, many other works

discussing this topic [8] [11].

After performing these operations, the image is ready to be compared with other image represen-

tations in the system.

3.1.2 Images Comparison

Two images can be compared against each other using the pre-computed feature vectors. This is

called feature matching. Only vectors generated by the same algorithm can be used in one such

operation. The functionality for matching the feature vectors is also part of OpenCV.

The most simple way of comparing two sets of feature vectors representing the compared images

is Brute-force matching. In this case, the descriptor (vector) of one feature from the first set

is compared with all the features from the second set. The closest match, using some distance

function, is returned. This has to be done for all features in the first set.

Another approach is to use a k-nearest-neighbours matcher. This matcher returns k matches

instead of just one. This enables us to perform a ratio test and remove outliers. For example, if

the distances of one descriptor from the first set are similar to the k descriptors in the second set29,

it means that there are repetitive patterns in the image and such descriptors are not reliable (and,

thus, should be removed).

K-nn matching will be used in the system described in the following sections, since it provides

more accuracy for comparing the images [16].

As a result of the comparison, a value is must be returned, representing the similarity of the com-

pared images. Number of good matches (matches with distance under some specified threshold)

can be used to generate such value. This approach will be used to score the images similarity later.

29Usually, k = 2 is used
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Figure 4: Example of identified matches using ORB detector and knn matcher

Figure 5: Example of identified matches using AKAZE detector and knn matcher

The following workflow is used for the image comparison:

• Load feature vectors (image descriptors) of the two images being compared

• Use OpenCV matcher to find matches

• Discard all matches below a threshold to reduce the number of incorrect results

• Compute the result based on the number of remaining matches and their distance

It is important to note, however, that using features for comparing images might not be accurate

in some cases. Feature count and quality can vary with picture size and content. This can make it
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difficult to compare images in global scale. The overall quality of the results can be increased, for

example, by combining the feature extraction with image histogram analysis30 [21].

30Though this improvement is not evaluated in this work
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4 Design

This section will describe the step-by-step design of the cloud architecture, hosting the system de-

scribed above, on the Amazon Web Services infrastructure. An overall solution will be presented

first with additional modifications and use cases discussed in the end of this chapter.

Figure 6: AWS architecture design

The high-level architecture design is depicted in the figure. The arrows symbolize the data flow in

the system (data, objects, messages) with Gateway being the exposed system interface.

4.1 Gateway

Gateway is the only component exposing a public interface of the system. This service is respon-

sible for processing all the user requests and triggering the computation tasks.
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The following set of REST endpoints is exposed via this service:

• /images [POST] - Uploads the image to an S3 bucket (image storage) with tags and performs

the image pre-processing tasks.

• /images/[id] [DELETE] - Deletes an image from the system.

• /compare [POST] - Schedules 1-N or N-N comparison. The POST request contains the

comparison type and the image id, in case 1-N task was selected.

• /results/[id] [GET] - Gets the results of a computation with selected task-id31.

• /duration/[id] [GET] - Gets the duration of the selected task32.

Image pre-processing

The following operations are executed when uploading a new image to the system:

1. Upload the image to the Image Storage

2. Extract the feature vectors of the image and save them into Feature Storage

3. Save the image metadata to the Metadata Storage

4. Return the image id to the user

As described above, there are metadata saved for each image in the system. These contain the

following information:

• id - unique identifier of the image

• image url - link to the S3 object

• tags - tags for the image (optional), specified by user in the POST request

• features - key to the extracted image features, one entry for each algorithm used in this

extraction33

31When triggering a computation task, this task is assigned a unique ID.
32Used for benchmarking the system performance
33As mentioned in the beginning of this section, we can only compare features obtained by the same algorithm

against each other
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The scheduling endpoints just check the validity of the request (image existence), create a unique id

for this task, which is saved to a database and sends a message to the scheduler which is responsible

for these operations.

The services itself run on a single EC2 instance since it is not expected to handle large amount of

image uploads at once and more than one comparison task running at the same time.

In case that large amount of images would need to be uploaded and processed at the same time, we

could deploy this service to ELB or forward this pre-processing task to a dedicated set of workers

connected to the Gateway by a queue.

4.2 Data Storage

S3 Standard was selected as an Image Storage solution since the data storage is not expensive34

and there will not be many frequent operations over the saved images. The computation only uses

the image features so the images themselves are only used for displaying the results.

As for the Metadata Storage, a MySQL database running on an RDS instance is used, since

these data are relational and we need to query them by various parameters (algorithm choice, tags

etc.). The db.m4.large instance type is going to be used for hosting this database. The comparison

id with current status of the operation is kept on this instance as well.

DynamoDB was selected for the Feature Storage. The feature vectors are always queried by their

hash-keys, which are stored in the Metadata Storage, so these Dynamo tables are only used as a

key-value store.

Finally, the results of the computation are going to be persisted in a relational database as well

Results Storage, since we need to be able to query them and sort them by multiple parameters.

There could be potentially up to N2 records in this table since each image comparison produces

a unique score. Fortunately, we don’t need to store all of them but only those that exceed some

minimum threshold (we are only interested in images that are similar). Since the amount of records

34Compared to the other costs associated with the system’s workflow. The exact pricing calculation will be presented
at the end of this chapter
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in the database is considerably larger than with the metadata Storage, a bigger instance type will

be used to host this database: db.m4.xlarge

Let’s consider a scenario with 106 images in the dataset. In addition to that, let’s assume that there

is a 0.01% chance that two images have a similarity35. This is the amount of data that will be saved

in these storage services36:

Type Entities Item size (kB) Size (GB) Storage price

Images 106 500 500 $15 monthly
Metadata 2 × 106 0.1 0.2 $0.175 hourly ($26 monthly)

Feature vectors 2 × 106 10 20 $2.5 monthly
Results 108 0.1 10 $0.350 hourly ($52 monthly)

Table 26: Storage cost estimation

4.3 Scheduler

The main purpose of Scheduler is to distribute the workload between multiple workers and hence

acts as a computation manager. Since the scheduling part is not scalable by nature, it runs on a

single EC2 instance.

After receiving a computation request from the Gateway, Scheduler starts loading image metadata

from the Metadata Storage and groups them together into messages. These messages are then

sent to the Task Queue and picked up by individual workers. Each computation request (1-N or

N-N) is assigned a unique ID and saved into a relational database (Metadata Storage instance is

used for this purpose) together with the computation state (in progress, finished etc.).

Each message contains the following payload:

• Task id - id of the current computation task

• Multiple sets of image keys - keys pointing to the feature vectors. Each set contains only keys

associated with one feature extraction algorithm (eg. ORB)

35Exceeding the predefined threshold
36All the item sizes shown in this table are estimated from sample data usage. These values should represent an

average entity size.
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Figure 7: Scheduler data flow

There are important aspects of scheduling the worker tasks: the total number of images chosen for

the comparison and the number of images in every task (message).

As for the first one, we probably don’t want to compare all the images in the dataset against each

other (in the N-N comparison task) since this would mean that billions of individual operations

would have to be computed. Tags are used to reduce the total number of tasks. There is no point

in comparing an image tagged as ’car’ against another marked as ’building’. This could reduce the

number of operations drastically since it is expected to have photographs from many areas of interest.

As for the number of images included in one message, we need to consider how the feature vectors

will be loaded from the Feature Storage. Although it is possible to load them one by one, this

approach would be highly inefficient. Instead, batch operations are going to be used over the feature

DynamoDB table. Amazon allows batchGet, which returns up to 100 entities with the total size

16MB with a single request37. This means that we can put 100 images in a single message to reduce

both the number of enqueued tasks and also minimize the traffic between workers and DynamoDB.

The batchGet operation will have to be performed for every set of images corresponding to one

feature algorithm.

The total number of DynamoDB operations can be computed using the following equation:

no =
N × nc × na

nt ×m
, (1)

where N is the total number of images in the dataset, nc the number of comparisons (eg. 1 or N),

na the number of used algorithms (eg. 2), nt the number of topics and m the size of one message

(number of entities loaded in one batch operation).

The following table shows the number of messages and DynamoDB operations for 1-N and N-N

37http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchGetItem.html
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comparison tasks. In the scenario with 106 images and two algorithms used for the feature detection,

we assume that all pictures contain tags from 100 topics which are distributed uniformly (so each

image will be compared against up to 1% other images in the dataset).

Comparison Messages DynamoDB batch operations

1-N 100 200
N-N 108 2 × 108

Table 27: Operation count estimation

4.3.1 DynamoDB Read Capacity

When estimating the cost of the DynamoDB operations and traffic we need to get back to the

pricing model of this service, as described in the first part of this work. Each Dynamo table works

with provisioned read and write throughput capacity which defines the number of reads and writes

per second. One read capacity unit covers 4 kB of item size. With the average size of one stored

feature vector being approximately 10 kB and retrieving 100 such vectors in one batch read, we need

500 read capacity units per operation. If we use eventually consistent reads38 instead of consistent

reads, we get double the effect of a single capacity unit and hence use only 250 capacity units per

single batch operation.

Moreover, it is important to note, that read capacity defines the total number of reads per second

but DynamoDB is charged by hour so we can spread the workload over longer time periods.

The following equations describe the price computation for reading feature vectors from the Feature

storage:

ro =
m× sv

8
, (2)

where ro is the number of reads in a single operation (batch read), m is number of entities in one

batch (eg. 100) and sv is the average size of one entity (eg. 20kB). The result is divided by the

maximum size of one eventually consistent read (8kB).

Now, we need to compute the total number of read operations when performing one big task:

38http://aws.amazon.com/dynamodb/faqs/
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nr = co × no, (3)

where nr is the total number of required reads, ro the number of reads in one batch operation and

no the total number of batch operations, as computed in the previous equation.

Finally, the price can be obtained with the following equation:

price =
nr

3600
× ph

50
, (4)

where ph is the hourly price for 50 read capacity units. It is important to note, that the capacity

units are distributed uniformly across the one-hour time periodss and we therefore need to divide

the result by the total number of seconds in one hour39.

Comparison Batch operations Reads Cost

1-N 200 50000 $0.0018
N-N 2 × 108 2 × 250 × 108 $1800

Table 28: DynamoDB operations cost estimation

The table above estimates the cost of read operations when performing one huge comparison task.

The hourly read throughput will depend on the number of workers and the total time of the com-

putation. The overall summary of these parameters will be given at the end of this chapter.

Moreover, when performing the N-N comparison task, the same image features are used in every

1-N iteration. It might be convenient to cache those features in local memory to avoid loading them

repeatedly. Therefore, each Worker has a feature vector cache which temporarily stores a certain

amount of features.

4.4 Workers

Workers perform the actual comparison operation between two images, respectively their feature

vectors. It is connected to a task queue from which it consumes messages with keys of the image

vectors to be compared.

391 read capacity units guaranties 1 read operation per second
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After processing the message, it connects to the Feature Storage and downloads all the data

needed to perform the task. Once finished with comparing the images, results exceeding a predefined

threshold indicating a match are saved to the Results Storage.

Figure 8: Worker data flow

In order to speed up the processing, each worker performs several tasks simultaneously in multiple

threads. Another thread is dedicated solely to processing the task messages and loading the data

from the database. This way, we can reduce the time when waiting for data to be processed.

Getting back to our example with 106 tagged images and 100 topics, this table shows the computa-

tion time estimate in case of running 10 instances (c4.large), each with 8 threads dedicated to the

comparison operations. Moreover, the time of a single matching operation40 is estimated to be 20ms.

The equation for computing the total number of time for one big comparison task looks as follows:

ttotal =
N × nc × na

nto
× t

ni × ntr
, (5)

where N is the number of images in the dataset, nc the number of comparison tasks (either 1 or N),

na the number of algorithms used (eg. 2), nto number of evenly distributed topics in the dataset, t

the average time of one comparison operation (eg. 20ms), Ni the number of instances and ntr the

number of processing threads of each instance.

Comparison Operations Total time

1-N 20000 5 seconds
N-N 2 × 1010 58 days

Table 29: Worker computation time estimation

40These benchmarks were obtained by testing the ORB feature detector in local environment similar to the instances
described above
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Note, that these estimates are rather optimistic since we are assuming that there are no idle waiting

times and and each thread is 100% utilized at all times.

Finally, the price of running the worker instances can be computed as follows:

price = ni × th × ph, (6)

where ni is the number of instances, th the total number of hours of one comparison task rounded

up and ph the hourly price for running one instance (c4.large).

Comparison Total time (hours) Cost

1-N 1 $1.34
N-N 1392 $1865

Table 30: Worker computation cost estimation

The total price can be further reduced by using reserved instances, as described earlier in this work,

by up to 30%.

4.5 Messaging

There are several possibilities to consider when selecting the messaging service in the proposed

system. We could either use SQS, an Amazon’s message-queue-as-a-service, or run a third party

queue on an EC2 instance. Both of these options will be explored in this section.

4.5.1 SQS

Messages in SQS are strings up to 256kB in size and can be sent in bulks41. SQS guarantees at-

least-once delivery. If a message is received, it is blocked for a specified period of time and unless

deleted within that period, it will become available for delivery again. That means that no messages

will ever be lost, since SQS is a replicated queue, but there is a potential risk of processing the same

message twice.

Getting back to our example with 106 images in a dataset, we can easily compute the cost for

sending the messages during one comparison task. In order to do so, we need to compute the size

of one message bulk. Each message will contain 100 feature vector ids encoded in a string array.

41With the total limit of 256kB for the whole bulk
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With ids having approximately 20 characters, we won’t exceed 20kB in size of a single message.

Each bulk will therefore have up to 200kB.

Comparison Bulks Size Price

1-N 10 2MB free
N-N 107 2000GB $180

Table 31: SQS cost estimation

Since each worker polling the messages in parallel with performing the comparison computation

and since each message contains 100 image references, it is safe to assume that there will not be

any delays with workers waiting for new content to be delivered.

4.5.2 Hosting a Queue

Amazon SQS is a hosted service, so there is no need to handle any operational aspects like moni-

toring, administration or security. Moreover, SQS can scale almost unlimitedly.

However, there might be reasons to consider hosting your own messaging system - for example when

fast response times and extremely low latencies are required. The most typical queues used for this

purpose are RabbitMQ, ActiveMQ or ZeroMQ.

RabbitMQ implements a broker architecture so messages are queued on a central node. This

makes the queue very easy to use and deploy but also leads to limited scalability. A cluster of

RabbitMQ instances, can be configured, however.

ActiveMQ is very versatile messaging system which can be deployed both with broker or as a P2P

topology. It offer wide range of functionality, including Message Groups or Virtual Destinations42.

ZeroMQ is a light-weighted messaging system designed to provide low latencies and high through-

put. Contrary to RabbitMQ, ZeroMQ operates completely without brokers. The downside is that

advanced scenarios are slightly more difficult to implement since various pieces of the framework

need to be combined to achieve the goal.

42This functionality is not relevant to the scenario described in this work, though.
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Every messaging system described in this section supports replication and message persistence.

These features needs to be configured manually, though. These queues would need to be hosted on

its own EC2 instance (or several instances in case a whole cluster was needed).

One of the important aspects to note is the number of messages that can be queued at the same

time. The number and size of the messages are limited by the parameters of the instance hosting

the queue. Scheduler would potentially need to monitor the current state of the queue and delay

sending additional messages when getting close to such threshold.

Moreover, unlike SQS which is managed and charged by message, the instance with a custom queue

would be running the whole time, regardless on the actual workload.

These messaging systems will not be discussed into detail, since it is not in scope of this work.

Number of publications have been written to cover this topic [15] [2].

The following table shows an estimated monthly cost when running a single EC2 instance with a

queue43:

Instance type Monthly cost

t2.medium 37
t2.large 74

Table 32: Messaging cost estimation, US region

4.6 Pricing Summary

The overall architecture design for the described system was presented in the previous section. Sev-

eral choices were made in terms of services used for the individual components with their pros and

cons.

This part presents the summary of all the costs associated with a full N-N comparison task dis-

cussed earlier. For this purpose, the same scenario as always will be considered: 106 images in a

dataset with 100 uniformly distributed topics (tags), 10 instances using 8 computation threads and

43It does not matter which messaging system is used since it does not affect the cost of the instance
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0.01% images sharing significant similarity44.

As evaluated earlier, such computation would run approximately for two months and the following

table shows the cost for all the system components:

Service Cost

Worker instances $1800
Image storage $30

Image metadata storage $52
Feature vectors storage $5

Results storage $104
Provisioned throughput capacity $1800

Messaging $180
Total $3971

Table 33: Cost estimation summary, US region

It is important to note, that these costs could be reduced by using reserved instances and reserved

capacity by 20 − 30%45.

4.7 Special Use-cases

This section will describe several special cases which may occur during the usage of the system and

discuss possible solutions to them in terms of the proposed architecture design.

4.7.1 Adding New Images During Task Computation

The computation of one 1-N or N-N task might take large amount of time, ranging from minutes

to weeks, as described earlier in this section. This means that dynamic addition of new images

during a computation in progress has to be handled as well.

Fortunately, each computation task is assigned a unique ID, which is saved to a database together

with the current state. If a new image is uploaded to a system via Gateway, the Metadata

storage has to be first queried for any computations in progress. If there are any, the Gateway

sends a computation request containing the computation ID to the scheduler so the new image can

be added to the running task.

44The scenario parameters significantly affects the architecture design and cost parameters of the system. It is not in
scope of this work to evaluate all the possible configurations so this candidate was selected to represent a ’reasonable’
input data.

45https://aws.amazon.com/ec2/purchasing-options/reserved-instances/
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Figure 9: Dynamic image addition

4.7.2 Short Computation Over a Dataset Without Tags

In the previous sections, we proposed a cloud architecture of an application processing large datasets

of tagged images. When estimating the time and cost of running the system, we made several

assumptions:

• The images are all tagged

• There is a wide range of uniformly distributed tags which determine how are images compared

against each other

• The computation itself can run for several weeks for the N-N comparison task

However, these assumptions might not be realistic in some scenarios. First of all, if there are no tags

in the collection, all the images in the dataset will have to be compared against each other46 which

would drastically increase the computation time even with large number of instances. Secondly, it

might not be feasible to wait for the computation for such a long time.

Let us image the following scenario: N-N comparison is triggered on regular basis on smaller image

sets without tags. The computation has to be finished under 12 hours since the results have to be

prepared for the next day. How many images can be in one dataset to fulfil these constraints?

The answer to this question depends mainly on the number of instances processing the workload.

The maximum number of images in the dataset, when performing the N-Ncomparison task, can be

46Previously, we only worked with small subsets of the images because only pictures with same tags were compared
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obtained by the following equation47

Nmax =

√
T × ni × nt

t
, (7)

where T is the available time for the task (e.g. 12 hours), ni the number of running instances using

nt threads each and t the time for performing a single comparison operation (e.g. 20ms).

The following table illustrates the maximum dataset size depending on the number of instances

processing the workload. The processing time of a single comparison operation is, similarly to

the previous section, estimated to be 20ms and every instance uses 8 threads dedicated for the

computation. The total time reserved for the task is 12 hours and the instances used for the

computation are c4.large48.

Instances Dataset size Cost

10 13145 $10.34
100 41569 $103.44
1000 131453 $1034.4

Table 34: Maximum dataset size estimation

4.7.3 Populating the System Database

So far, all the problems and corresponding solutions discussed in this chapter worked with the as-

sumption that the application is set-up and there is a dataset of processed images already stored in

the system. There might be situations, however, when it is required to populate the database with

an existing set of images before launching the computation. Although it is possible to upload the

images one by one using Gateway, this process is not automated.

One way to process such workload would be converting Gateway into a worker instance with

horizontal scaling capabilities and creating new component for the coordination of the dataset pro-

cessing.

The following diagram shows a simple architecture for this solution:

47The overhead created by loading data from the database is neglected here since these operations will run in
parallel with the computation as described in the previous section. This will, however, still give only the optimistic
upper bound of the result.

48On-demand prices are used for the cost estimation.
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Figure 10: Populating the system database

Task Manager, hosted on an EC2 instance, is exposing the REST interface. It accepts an URL

pointing to an image repository. This repository is scanned and all the image URIs are sent to

the Gateway workers via a Pre-processing Queue. The image pre-processing itself is than

identical to the one performed by the Gateway service discussed in the previous section.
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5 Implementation

In this section, a simplified implementation of the system described in the previous part will be

discussed with focus on the technology stack used and challenges faced during the development.

Benchmarks and summary of the system performance will be given in the final part of this work.

It is not the aim of this work to discuss the structure of the individual components in the system,

since these are mostly micro-services and the overall architecture has already been described in the

previous chapter49.

5.1 Technology Stack

The whole system is implemented in Java, since it has a strong support in AWS SDK and offers a

seamless integration with all the required AWS services. The components (Gateway, Scheduler and

Workers) are written in Spring Boot50 framework, that enables simplified Spring based application

design and deployment.

Several Spring modules are used in most of the system components:

• Spring JPA providing easy access and manipulation with entities persisted in a relational

database

• Spring Web for exposing REST endpoints

• Spring Actuator including a number of additional features for monitoring and management

of the application

All components are packaged as WAR51 files and deployed to Elastic Beanstalk Tomcat instance52.

Gateway and Scheduler run inside a Web application environment, enabling HTTP(S) communica-

tion and Worker uses Worker environment with access to a predefined SQS Queue53. Furthermore,

Workers are deployed in a load-balancing mode so additional instances are launched based on the

workload (either an instance utilization or number of messages in the queue).

49The source code of the discussed implementation is available as an attachment to this work
50http://projects.spring.io/spring-boot/
51Using Maven: https://maven.apache.org/
52http://tomcat.apache.org/
53http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features-managing-env-tiers.html
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5.2 Packaging OpenCV

One of the main problems, when deploying the system to the cloud, was using OpenCV on the

remote instance. OpenCV supports desktop Java development since version 2.4.4 so it can be

compiled into a JAR file and added to the build path of the application. However, there are several

problems with this approach:

• OpenCV has to be installed on the machine

• Path to the native OpenCV libraries needs to be provided in the Java environment, these may

vary based on the operation system

• OpenCV JAR has to be compiled based on the native libraries version and added to build

path manually since there is no official Maven artifact

This complicates the deployment since a script for installing, compiling and linking OpenCV to the

ELB Tomcat environment.

Fortunately, there is a third party solution - OpenCV Java bindings packaged with native libraries

provided as a Maven artifact54. Although this project is no longer supported55, it provides all the

necessary capabilities for demonstrating the system functionality.

5.3 Serialization of OpenCV Objects

In order to perform the computation over large image dataset efficiently, only the extracted feature

vectors are used instead of the image files. That means that these features needs to be persisted

in a database. Typically, Java objects can be stored as a sequence of bytes using process called

serialization [20].

Feature vectors are stored in OpenCV MAT data types56. Unfortunately, they are not implemented

as serializable objects so this functionality has to be added manually. All the extracted feature

vectors, represented as MATs, are therefore converted into JSON strings and saved in a database in

this format. Once loaded, these JSON objects are deserialized into OpenCV MAT representation

again.

54https://github.com/PatternConsulting/opencv
55It supports OpenCV 2.4.9
56http://docs.opencv.org/java/3.0.0/org/opencv/core/Mat.html
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5.4 Selecting Feature Extractor

There are number of algorithms that could be used for the feature detection and descriptor extrac-

tion, as described in the previous sections. Unfortunately, the actual choice is limited by the fact

that SURF and SIFT algorithms were removed from the official OpenCV distribution and became

available only as part of a non-free module due to their licensing.

From the remaining algorithms, ORB and AKAZE are available for this task. ORB was chosen as

a reference for the system benchmarking, although both algorithms offer satisfactory performance

and results57. As discussed in the design section, there could be several feature detectors used in

the system but only one was chosen for this implementation to avoid unnecessary complexity (and

costs associated with running the application).

5.5 Possible Adjustments

There are several possibilities how to further improve the system performance. These will not be

implemented and tested as part of this work, although some of them will be mentioned for future

consideration.

5.5.1 Dedicated Workers

One of the key drawbacks of this implementation is that the workload is distributed randomly be-

tween all the workers. This decreases the effect of caching feature vectors on the worker instances

since the cache is not accessed so frequently.

Instead of having universal workers fetching messages from one task queue, there could be several

queues dedicated to different tags or groups of images and corresponding groups of dedicated work-

ers. This would improve the resource utilization, especially with non-uniformly distributed tags

because each group of workers could contain different number of instances.

5.5.2 Elastic MapReduce

Another possibility is to use a completely different approach to the problem. Instead of designing

our own application architecture, a MapReduce [10] service from Amazon called Elastic MapReduce

57http://docs.opencv.org/3.0-rc1/dc/d16/tutorial_akaze_tracking.html
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(EMR) could be used. In this way, a managed Hadoop framework with cluster of EC2 instances is

provided by AWS.

However, since MapReduce is usually used for processing large amounts of text data at once, it

might not be a suitable option for the N-N comparison task since multiple jobs would need to

be executed in a sequence. The only alternative would be providing an input consisting of task

messages and letting the cluster instances load the data from DynamoDB. This solution is very

similar to the proposed architecture, though.

5.5.3 Image Comparison Adjustments

The proposed architecture is capable of comparing images against each by using their extracted fea-

ture vectors (image descriptors), extracted using one or more algorithms described in the previous

sections. However, as mentioned earlier, this method does not guarantee high accuracy and there

is a risk of many false positives and false negatives when using this method independently.

One of the possibilities to improve the comparison accuracy is to add another metric during com-

puting the score of a match. Various methods based on histograms, for example, could provide this

additional metric [21]. These would need to be precomputed during the image pre-processing phase

and store in a persistent storage (like DynamoDB) to enable fast access during the computation.

This would, however, increase the traffic58 between workers and the storage services since more data

would be needed to perform the comparison task.

This approach, combined with using multiple feature extracting algorithms, could be used for smaller

datasets or 1-N comparison tasks where high accuracy is required, though.

58not mentioning the time performance and costs
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6 Testing

The implementation of the proposed system was tested against a prepared dataset to verify the ex-

pected system behaviour. It is, however, important to note, that the costs associated with running

the system are a limiting factor so the size of the dataset and number of instances running during

the computation were adjusted to meet this constraint.

During the benchmarking, the following set-up was used to test the system:

• 2 workers running on t2.micro instances with 5 working threads each

• RDS database instance running on t2.micro

• messages containing 10 comparison tasks each59

• one algorithm used for the feature matching (ORB)

• dataset containing two topics with the same number of images

The expected and actual time performance of the system will be presented in this section for the

N-N comparison. The same equations as before are going to be used for the estimation:

ttotal =
N ×N × na

nto
× t

ni × ntr
, (8)

where N is the number of images in the dataset, na the number of algorithms used, nto number

of evenly distributed topics in the dataset, t the average time of one comparison operation, Ni the

number of instances and ntr the number of processing threads of each instance .

The average time needed for one feature comparison operation, measured on the running t2.micro

instances, is 30ms. This is slightly more than presented in the previous section, which is caused by

the fact that the initial estimation was done on a more powerful machine60 and it also includes the

time need to load the feature vectors from DynamoDB (approximately 5ms per entity). A dedicated

thread for loading the vectors was not used in this scenario in order to increase the utilization of

59The proposed number of tasks in each message is 100, as described in the previous section, but it makes sense to
lower this limit for smaller number of workers in order to distribute the work more fluently.

60In a scenario with very large datasets, as presented earlier, c4.large instances with better performance would be
used
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all the available threads.

The following table shows the results for multiple dataset sizes:

Dataset size Operations Expected time Actual time

300 45000 135s 138s
500 125000 375s 391s
800 320000 960s 1012s
1000 500000 1500s 1631s

Table 35: System benchmarks

Figure 11: System benchmarks

Note, that operation, in this sense, it the comparison between two sets of feature vectors represent-

ing the images. These typically consist of 500 vectors being compared against each other so the

actual number of arithmetical transactions is much higher.

The results show that the reference implementation meets the proposed criteria in terms of time-

performance. The actual time needed for the computation exceeds the estimated value by only a

few percent. However, it is important to note that this is a very small example, compared to the

scenario with 106, and that caching can affect the computation time significantly. Nevertheless, the

implementation results show that the application can be deployed and operate with performance
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close the expected constraints.

As for the accuracy of the image comparison, by looking at the best 20 results, there were at most

1-2 false positives after each comparison task.

The following table shows the 5 best results of the comparison task with 1000 images in the dataset:
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Table 37: Top 5 results
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7 Summary and Conclusions

The aim of this work was to give an introduction to cloud computing and to show how a specific

computationally intensive application could be developed using the state of the art technologies.

After a brief overview of the cloud computing problematic, several vendors of cloud technologies,

namely Amazon, Microsoft, Google and IBM, were selected and compared in terms of the most

common services and their corresponding pricing models. Pricing is an important aspect when

designing cloud solutions, since cloud applications usually work with huge amount of data (or traf-

fic, availability etc.). The operational costs could differ greatly based on the chosen technology stack.

In addition to that, the discussed vendors sometimes offer discounts to their services. These dis-

counts have been reviewed and considered in the comparison section as well.

All aspects of the application design in the cloud were considered, namely compute capacity, object

storage, SQL and NoSQL database solutions and messaging.

In the second part of this work, a specific problem, searching for similarities in large datasets of

images using the OpenCV library, is introduced and a model scenario for this task is considered. A

cloud architecture for computing this task is shown, using the Amazon AWS technology stack. Each

problem domain is explored in terms of costs, time performance and optimal utilization of resources.

This includes scalability, bottlenecks and other limitation factors faced during cloud development.

All the system parameters are estimated using a model scenario with million images divided into

several uniformly distributed sets of images defined by tags.

In addition to that, a modified version of the problem, with only a limited time available for each

computation, was explored and a theoretical setup and dataset size was computed to meet the

defined goals.

A simplified implementation of the proposed architecture is shown in the following part. The aim

of this section was to discuss several interesting problems faced during the development rather than
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focus on detailed description of the code61. The application was deployed to AWS as a fully func-

tional system.

Finally, several tests with predefined system set-up and various sizes of the input image dataset

were performed and the obtained benchmarks were compared to the expected values, based on the

design section of this thesis. These benchmarks showed that the system behaviour met the predicted

results and thus verified the proposed architecture for given problem.

7.1 Future Work

The technologies in the cloud computing area are constantly evolving and new solutions are being

introduced almost on daily basis. It is thus important to keep track of the up-to-date services and

adapt the applications to given problems.

In the previous section, several possibilities for adjustments of the application architecture were

presented to increase the efficiency and resource utilization. These could be implemented to further

improve the performance and decrease the cost of running the system with large workloads.

61The source code can be found as an attachment to this work.
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scriptors into a compact image representation. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 3304–3311. IEEE, 2010.

i



[12] Roger Jennings. Cloud Computing with the Windows Azure Platform. John Wiley & Sons,

2010.

[13] Luo Juan and Oubong Gwun. A comparison of sift, pca-sift and surf. International Journal of

Image Processing (IJIP), 3(4):143–152, 2009.

[14] Ben Kepes. Understanding the cloud computing stack: Saas, paas, iaas. Diversity Limited,

pages 1–17, 2011.

[15] L Magnoni. Modern messaging for distributed sytems. In Journal of Physics: Conference

Series, volume 608, page 012038. IOP Publishing, 2015.
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