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Abstract
We examine Xser, a system answering
questions over linked data. It works in
two parts. First, it utilizes a shift-reduce
parser to form a structure representing
the question. Then, the structure can be
linked to a knowledge base and converted
to a query in structured language. We
implement the system and perform exper-
iments to evaluate our work.

Keywords: semantic parsing,
shift-reduce, question answering, natural
language processing
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Abstrakt
V této práci zkoumám Xser, systém pro
odpovídání na otázky čerpající ze struk-
turovaných dat. Tento systém funguje
ve dvou částech. Nejdříve použije shift-
reduce parser pro sestrojení struktury re-
prezentující otázku. Poté tuto strukturu
propojí s grafovou databází a převede na
dotaz ve strukturovaném jazyce. Má práce
sestává z implementace systému Xser a
provedení experimentů.

Klíčová slova: sémantické parsování,
odpovídání na otázky, zpracování
přirozeného jazyka

Překlad názvu: Sémantické parsování
otázek
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Chapter 1
Introduction

The need to store general knowledge in a structured way gave birth to several
large graph databases such as Freebase[BTPC07]. A task in semantic parsing
that drawn a lot of attention recently is understanding natural language
question and retrieving answer to it from database. Two tasks need to be
solved: recognizing predicate-argument structures in the question and linking
it to given knowledge base.
Most semantic parsers aim to solve these tasks at the same time which,
however, takes way too long (up to days)[BCFL13] to train due to large sizes
of knowledge databases. On top of that, they usually cannot be reworked
to reference different knowledge bases. Xser [XFZ14] is a new system that
approaches the problem in a slightly different way. Its authors assume that
intention of the question can be recognized independently on any knowledge
base and only when the structured intention is known the structure is linked
to given knowledge base. We examine this system by implementing it in
Python language. We then use our implementation for trying to reproduce
results on various tasks by performing our experiments.
The thesis is structured as follows: First part is a theoretical background
composing of chapters 2 and 3. In chapter 2, we survey various approaches to
semantic parsing and in chapter 3 we explain how a shift-reduce parser works.
Second part describes our implementation of the Xser system with chapter 4
about algorithms and chapter 5 documenting our code. The last part covers
our experiments with the system. Chapter 6 and chapter 7 contains results
of our tests.

1.1 Used software

The programming was done in Python language using PyCharm IDE1. Whole
project code is available on enclosed CD. All pictures appearing in this
document were done by us using Inkscape2 graphic editor. The thesis was
written in LATEXwith Overleaf web service3.

1www.jetbrains.com/pycharm/
2www.inkscape.org/
3www.overleaf.com
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Chapter 2
Semantic parsing

The term semantic parsing covers wide area of tasks. In this chapter we
focus on the most common definition: mapping a natural language sentence
to its representation in formal language (e.g. lambda calculus). We present
various approaches to this problem.

2.1 Approaches

2.1.1 CHILL

CHILL parser input acquisition system was created by [ZM96]. Its original
purpose was finding a set of control rules for a shift-reduce parser from a
set of natural language questions and their respective parses [Zel95]. As the
system is written in Prolog, inductive logic programming is used for finding
the control rules. The resulting parser takes a sentence on input and returns
logic clause for this sentence.
It was later modified to perform parsing questions to a structured query
language, in this case GeoQuery. The modification lies in replacing the
shift-reduce parser actions with new actions introduce, co− reference and
conjoin. The resulting parser is then applied on a question and structured
query is returned.

2.1.2 PCCG

Probabilistic combinatory categorial grammars (PCCGs) are used in the
GENLEX system [ZC05] and in the work of [KGZS12].
A CCG can parse a sentence to one or more logical forms. It is built around
a lexicon Λ composed of pairs (word, syntactic type). The syntactic types
could be primitive (entities) or complex (relations). Semantic type is usually
also added to the lexicon. Furthermore, the CCG has a set of rules for
recursive combination of the syntactic types.
More than one parse is usually found under rules of a CCG. PCCG solves
this problem by finding the probabilities of all parses using a log-linear model
then choosing the best parse.
GENLEX estimates the parameters using dynamic programming. For training

5 ctuthesis t1511151022



2. Semantic parsing ...................................
and evaluation it uses Geo880 and Job640 datasets both split into training
and testing splits. Kwiatkowski trains the model on the Eve corpus with
online Variational Bayes Expectation Maximization.

2.1.3 MATCHER, LEXTENDER

Paper of [CY13] focuses on schema matching and pattern learning. It com-
poses of two parts: MATCHER and LEXTENDER. The authors developed
the Free917 dataset which our framework utilizes.
The task of MATCHER is finding correct matching for natural language
utterance given a textual schema and a database schema.First, candidates
are generated using Web search engine query. Pattern matching rules are
learned using further web queries. Statistics of the patterns are also collected
during this steps and used when training the regression model for scoring the
candidates. Lastly, best candidate according to the model is chosen.
The framework is again based on PCCG. The task of adding semantic types
into PCCG lexicon Λ is delegated to the LEXTENDER system. It tries
to predict syntactic type, semantic type and weight W for each relation in
matching output from the MATCHER. Models for syntactic and semantic
types are Naive Bayes. Features for syntactic type include POS tags and in-
formation about the relation. For semantic type features, predicted syntactic
type is added. Model for finding weights is linear regression.

2.1.4 Semantic parsing from Freebase

[BCFL13] introduce a parser based on a set of compositional rules and lexi-
con mapping phrases in natural language to knowledge base predicates and
entities. This work differs from previous ones by defining only simple rules
then learning finer rules and conditions.
The authors constructed new dataset of question-answer pairs called WE-
BQUESTIONS which they used for training and evaluation. In separate
experiment they also utilize the Free917 dataset.

2.1.5 PARASEMPRE

PARASEMPRE from [BL14] works in three steps. First, it generates a set of
logical form candidates for given utterance. Next, it forms a list of canonical
utterances for each predicate from knowledge base. Last step is choosing a
canonical utterance which paraphrases the input utterance the best. The
model tries to maximize the log-likelihood of a correct answer for the question.
As the authors are the same as in previous system, Free917 and WEBQUES-
TIONS dataset are used for training and evaluation.

ctuthesis t1511151022 6



Chapter 3
Shift-reduce parsing

3.1 Directed acyclic graphs

Data-driven natural language dependency parsing algorithms used in infor-
mation extraction require the sentence structure to be represented as a tree
with words as nodes and head-dependent semantic relations as labelled edges.
Despite advantages such as computation efficiency this representation has
its limitations: relations deeper than shallow syntax cannot be captured by
trees. As opposed to trees, directed acyclic graphs (DAGs), can capture
long-distance relationships and other deeper dependencies and linguistic phe-
nomena while remaining computationally efficient.[ST08] In dependency tree,
each word has only one head. The DAG, however, allows for each node to
have multiple heads.

3.2 Approaches to parsing a DAG

There are multiple approaches to parsing a DAG from a sentence. One of
them is creating a tree out of the question and adding edges to form a DAG.
Another one is shift-reduce transition-based parser [ST08]. Because parsing
the question with this parser is based on local decisions and rich set of features,
the computational cost is quite low. The disadvantage of shift-reduce parser
is that it is unable to output non-projective graph structures.
Definition 3.1. [NN05] We use wi → wj to denote there exists an unlabelled
arc between wi and wj , wi < wj to denote wi precedes wj and wi →∗ wj to
denote the arc is closed on reflexivity and transitivity...1. An arc wi → wk is projective ⇐⇒ ∀wj , wi < wj < wk it holds that wi

→∗ wj..2. A dependency graph D = (W,A) is projective ⇐⇒ ∀a ∈ A it holds
that a is projective.

To put it informally, projective graph has all edges above nodes and no
edge cross each other. To counter this limitation, DAG could be modified by
pseudo-projectivization techniques (see subsection 3.5.1).

7 ctuthesis t1511151022



3. Shift-reduce parsing..................................
3.3 Parser state

The parser state consists of three elements: queue, stack and current DAG
configuration (in bottom-right corner of figure 3.1 and following figures).
Queue is initialized the sequence of input tokens as it is formed in previous
step from the text of the question. Stack starts empty. DAG is initialized to
tokens as nodes with no dependency edges between them. Tokens are pushed
onto the stack and arcs are formed between the top of the stack and the head
of the queue which is then reflected in the DAG.

Figure 3.1: Starting state of parser for question ’How did Bertrand Russell die?’

3.4 Parser actions

The shift-reduce parser performs in each state one of its available actions.
This is non-deterministic since multiple actions could be taken in most states.
The parser needs to be guided in order to perform correctly.

3.4.1 Shift

First possible action is shift. By shifting the parser removes the head of the
queue from the input queue and pushes it onto the stack. Next item of the
queue becomes the new head.

Figure 3.2: Shift action

ctuthesis t1511151022 8



.................................... 3.4. Parser actions

3.4.2 Reduce

Reduce action pops the top of the stack and discards it altogether from the
parsing process. In the standard dependency parser, reduce action is taken
only when the stack top already has at least one head. This ensures the
resulting graph is connected. In our parser, however, we are interested only
in dependencies between predicate and argument and thus the graph could
be left unconnected.

Figure 3.3: Reduce action

3.4.3 Arc-left, arc-right

Actions forming arcs between tokens are left-arc and right-arc. They are
performed only in case no arc already exists between the tokens. Left-arc
creates a dependency arc between the top of the stack to the head of the
queue where the queue item is the head and the stack top is the dependent.
Right-arc action forms an arc where the queue item is the dependent and
the stack top is the head of the dependency. There is no change in stack nor
queue in left-arc and right-arc parser actions. The parser allows for a token
to have multiple dependants as well as multiple heads.

Figure 3.4: Arc-left action

9 ctuthesis t1511151022



3. Shift-reduce parsing..................................

Figure 3.5: Arc-right action

3.5 Modifications of shift-reduce parser

3.5.1 Pseudo-projectivization

[NN05] suggest a way to pseudo-projectivize the structures output by a shift-
reduce parser. First, training data structures are pseudo-projectivized using
minimal number of lifting operations and new edges are marked. Lifting
operation is applied on edge that fails the condition of projectivity and
replaces its head node wj with node wi, which is the head of wj .
Next, shift-reduce parser is trained and when finished it should be able to
assign special labels to edges that ensure the projectivity. Finally, structure
is transformed using the marks on edges and a set of rules.

3.5.2 Right-reduce, left-reduce

Two actions replacing left- and right-arc are used in [Niv04]. Instead of
connecting stack top and head of the queue, these actions connect top two
items of the stack with an arc of corresponding direction (left-/right-) and
remove the top item from stack (reduce).
This ensures the structure being built during the parsing process is connected
at all times.

ctuthesis t1511151022 10
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Chapter 4
Algorithms and approaches

4.1 Structured perceptron

Modification of perceptron aimed for sequence tagging is described in [Col02].
It combines this classic algorithm with an inference algorithm such as Viterbi
algorithm to be used in a tagging task. The task is defined as correctly
assigning a sequence of tags (e.g. part-of-speech tags) y1, y2, · · · , yn to a
sequence of samples (e.g. words) x1, x2, · · · , xn, where n is the length of the
sequence.
Each pair (training sample, label) is mapped by a feature function Φ to a
vector of fixed length. Feature in part-of-speech tagging task could be, for
example,

φ100(x, y) =
{

1 if x = is, y = V
0, otherwise

where V is part-of-speech tag for verb. Other features could be bigrams and
trigrams of words and tags. They are constructed from a vocabulary of words
and tags the same way as the example feature. This results in long sparse
feature vectors for each example.
Parameter vector α of the same length as the feature vectors is initialized to
zero vector. Viterbi algorithm generates a set of tagged sequence candidates
denoted Y and classifier predicts the best one of them subject to

y∗ = argmax
y∈Y

Φ(x, y) · α

If the predicted sequence is different from the gold standard sequence, weight
of incorrect parameters is decreased by value of the learning rate and the
weight of correct parameters is increased. If the predicted sequence is correct,
no change to parameters happens.

4.2 Part-of-speech tagging

In the process of part-of-speech (POS) tagging, each word in a corpus is
marked with a tag corresponding to its role as a part of speech. The role is
defined by its relationships with adjacent and relative words in a sentence or

13 ctuthesis t1511151022



4. Algorithms and approaches...............................
paragraph. There are 9 main parts of speech in English, but these are further
split into more finely distinguished categories based on the gender, number
or case of the word. The task of part-of-speech tagging is not easy due to
the fact a single word could represent different part of speech in different
sentences.
In our work we use tagset from Penn Treebank Project [San04] provided by
the nltk Python library.

4.3 Named entity recognition tagging

Named entity recognition (NER) is the task of extraction of information from
text [NS07]. It requires telling names and numbers apart from other words
in text and then correct classification into one of several categories: people,
companies, places, years etc.

4.4 Xser system overview

The Xser system [XFZ14] works in four steps: First, phrases are detected
in the processed question. The phrases are then parsed with a shift-reduce
parser to form a DAG with them as nodes. That concludes the part which
is independent to any knowledge base. Next, the DAG is linked to a given
knowledge base predicates and arguments. Finally, a query in structured
language is constructed from the linked DAG and sent to retrieve answer.
More detailed description of each step follows.

4.5 Phrase detection

The first phase of parsing is phrase detection. In the original work, each
word in a question is assigned a label from the set {entity, relation, category,
variable, unlabeled}. Figure 4.1 shows an example of labelled question.

Howvariable didrelation Bertrandentity Russellentity dierelation?

Figure 4.1: Example of a question with labelled phrases

Variable is interrogative pronoun or pro-adverb of the question, for example
who or when. Entities are usually subjects of the question, like people or
items. They correspond to knowledge base classes.
Words labelled as category represent the property of given entity which the
asker wants to know about. In our work, however, we dropped the category
label and moved the words originally labelled as category into the “relation”
set. This was done because edges from category token created non-projective
graphs which the shift-reduce parser cannot handle. On top of that, not all
question had word or phrase fulfilling the role of "category". Instead, these

ctuthesis t1511151022 14



..................................4.6. Shift-reduce parsing

n Description Templates

1 unigram of POS tag pi

2 bigram of POS tag pi−1 pi,pi pi+1
3 trigram of POS tag pi−2 pi−1 pi, pi−1 pi pi+1, pi pi+1 pi+2
4 unigram of NER tag n
5 bigram of NER tag ni−1 ni,ni ni+1
6 trigram of NER tag ni−2 ni−1 ni, ni−1 ni ni+1, ni ni+1 ni+2
7 unigram of word wi

8 bigram of word wi−1 wi,wi wi+1
9 trigram of word wi−2 wi−1 wi, wi−1 wi wi+1, wi wi+1 wi+2
10 previous phrase type ti−1
11 previous phrase type ti−1 wi

and current word

Table 4.1: Features for phrase detection

words and phrases were moved to "relation" group where the framework can
profit from extra information extracted from them.
Words describing the relation between entity and its property are labelled as
such. They are mapped to knowledge base predicates.
The phrase detector marks words like articles (unless they are part of an
entity name) or in certain cases prepositions for deletion by tagging them as
“unlabelled”. The problem can be formulated as sequence labelling task with
the question text on input and sequence of tags on output.
The tagging is done via a structured perceptron. Table 4.1 describes used
features. POS stands for part-of-speech tags, NER stands for Named Entity
Recognition. After successful labelling of all words in a question, words are
grouped by their respective labels and formed into tokens. Unlabelled words
are dropped and the parser does not work with them any further. While
there may be only one token of the entity, category and relation kind, it is
possible to have multiple entities in a single question.

4.6 Shift-reduce parsing

Algorithm that performs the DAG decoding is depth-first beam search. First
item is initialized with empty stack and question converted to list of tokens
as a queue. This starting item is put on agenda. Parser then takes out items
and applies all possible cases to them. In some cases, the reduce action (due
to empty stack) or left/right arc action (due to already present edge) cannot
be taken. All items newly created from the original item are inserted into
the agenda. To make the computation more efficient, all items are scored
when inserted into agenda and only the K best for fixed K are then chosen
for further processing; the rest of the agenda is discarded. If the item on the
agenda has no items in the queue, it is considered as finished. This item’s
score is then compared to output candidate score, and the output candidate

15 ctuthesis t1511151022



4. Algorithms and approaches...............................
Category Description Templates

lexical stack top STw; STp; STwp; STe

features queue head N0w; N0p; N0wp
next phrase in queue N1w; N1p; N1wp

ST and N0 STptN0pt; STptN0t
POS bigrams N0pN1p
POS trigrams N0pN1pN2p
N0 phrase N0wN1pN2p

semantic Conjunction of N0t; N0wt; N0pt;
features phrase label N1t; N1pt; STpN0t;

and POS tag STtN0p; STwN0t;
STpN0p; STtN0t

structural Arc-left exists AL(STt,N0t)
features Arc-right exists AR(STt,N0t);

Table 4.2: Features for shift-reduce parser training

is replaced in case of better score. When no items remain on the agenda,
the shift-reduce parsing finishes and the DAG of candidate output item is
returned as DAG representing the question.
Since the parser is non-deterministic, it needs an oracle to choose the next
action. For that, we use the structured perceptron again. Training of the
model is done in the following way: First, shortest sequence of actions leading
to correct DAG is found by performing a depth-first search on the question.
The script automatically creates features for the parser in its every state so the
sequence of features is saved as well. Pairs (feature_vector, correct_action)
can then be created and model can be trained on them the same way as
for phrase detection. At parsing time, parser in each state chooses the best
action according to the model.
Table 4.2 describes features used in shift-reduce parser training. ST stands
for stack top, Ni stands for i-th item in queue, w is phrase text, p is phrase
POS tag and t is phrase label of the item.
We followed the original Xser paper when implementing this part.

4.7 Knowledge base linking

Linking entities to knowledge base classes and relations or DAG edges to
knowledge base predicates is done in several steps. All of the approaches
differ from the original paper and were chosen by us.

4.7.1 Entity linking

Class candidates for entity linking are obtained from Freebase endpoint using
Google API. Only fixed number of them is kept for each entity. Features
are then constructed based on candidate popularity, word coincidence and

ctuthesis t1511151022 16



............................. 4.8. SPARQL language conversion

human-readable ID coincidence. Classification task with logistic regression
as training model is performed on the data and best candidate is chosen as
entity representing the token.

4.7.2 Relation linking

Relation linking is based on the bag-of-words model. Vocabulary of all words
labelled as entity is stored and features are phrases encoded into one-hot
vectors based on this vocabulary. Additionally, type of question (recognized
by the interrogative pronoun) is taken into consideration when creating the
features. Set of all predicates appearing in the whole dataset as a label to
relation phrases is set as the output to the classification task. It is possible
for SPARQL variable to appear as a label for relation phrase in a question
with multiple entities. Classification is done via SVM.

4.7.3 Edge linking

Edges of the DAG are linked either to knowledge base predicates (in case of
question with multiple entities) or to either of the tags SP ,PO (in case of
simpler question). SP is linked between entity phrase and relation phrase
and means that the entity phrase is the subject of the relation. PO stands
for entity being object of the relation.
Model for classification is bag-of-words again, this time the words of edge
target and of edge head are examined. Type of question (recognized by
variable) is also considered in the features.

4.8 SPARQL language conversion

Conversion from a linked DAG to a SPARQL query is done through a fixed
set of conversion rules, same as in the original paper. RDF conditions are
constructed from triples (node, edge, node). Type of question is reflected
during this phase. Figures 4.2 and 4.3 describe two of the rules used.

Figure 4.2: Example of conversion rule: edge is labeled as relation.

Figure 4.3: Example of conversion rule: relation refers to both entity and
variable. SP and PO tags could be switched; In that case, entity and variable
would also be switched in the resulting query.

17 ctuthesis t1511151022
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Chapter 5
Code documentation

5.1 Used libraries

Our work was done almost entirely in the Python language with one Java
library being an exception.
Data were loaded from json format using json library. Files created when
running various parts of the framework such as processed text or trained
models were stored in pickle format.
For part-of-speech tagging, POS tagger from nltk1 library was used. NER
tagging was done using Stanford NLP tagger[FGM05] in Java.
In linking part, scikit-learn2 library was used for classification training and
prediction. Feature processing methods in scikit-learn were also used for
converting features to one-hot array, where numpy library was required.
Candidates for entities were obtained using Google Freebase API. Answers
to constructed SPARQL queries were sent to a Freebase endpoint via SPAR-
QLWrapper library methods.

5.2 System overview

Figure 5.1 explains how the question is processed by the system. Detailed
description of each script follows.

Figure 5.1: Illustration of how the question is processed through the pipeline

5.3 Phrase detection

Files used in detecting phrase type of a word.
1http://www.nltk.org/
2http://scikit-learn.org/
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5. Code documentation .................................
. feature_constructor - creates feature vectors of words based on their

POS and NER tags. Phrase label of previous word and information
about adjacent words in the question are also represented in the features.
The feature vector has the form of list of template_value (see section
4.2 for the templates) strings in order to avoid sparse numeric vectors.. phrase_detector - trains a model for phrase detection using the struc-
tured perceptron algorithm. The model has shape of hashmap (dic-
tionary) where keys are unique features (template_value again) and
values are dictionaries with classes as keys and actual weights as values.
During training time, script extracts small dictionaries from the big dic-
tionary using the feature vector from feature_constructor and sums
the weight values for each class. Then it predicts the class with highest
score as the candidate class. If the candidate class is different from the
correct class, all weights from smaller dictionaries for the incorrect class
are decreased by learning rate and for correct class they are increased by
the same value.

5.4 Shift-reduce parsing

. shift_reduce - contains the methods for training the model, performing
the shift-reduce parsing on one or more question and for evaluating the
model.

5.5 Knowledge base linking

. fb_query - inputs a query for Freebase entity through Google Freebase
API. Query about entity properties is also supported both through
Google Freebase API and SPARQL.. entity_linking - performs linking of DAG edges and nodes to knowledge
base entities and relations.

5.6 SPARQL language conversion

. structured_query - takes a DAG linked to knowledge base and converts
it to a set of SPARQL WHERE conditions. Then it forms whole SPARQL
query and either sends it to a Freebase endpoint or saves it to a file.. convert_question - processes a question through the whole pipeline:
detects phrases, parses a DAG, links to knowledge base, converts to
SPARQL query, sends the query to a Freebase endpoint and analyses
the result. All models have to be trained before running. Question can
be taken from the dataset or input as string.
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.................................... 5.7. Utility scripts

5.7 Utility scripts

. annotator - this script allows the user to create gold standard for
phrase labels. This is the only task where the labels cannot be learned
by machine processing and have to be input manually. Only way to
partially avoid this is to use bootstrapping which is also implemented
here. It takes a subset of training data tagged by user and trains a
model on them. Then the script uses the model to label small part of
the unlabelled data and adds them to the training set. The steps are
repeated until all data is labelled.. feature_processor - converts feature vectors from list of strings rep-
resentation to sparse one-hot vector representation. It utilizes methods
from scikit-learn and numpy libraries.. answer_convertor - finds out which questions cannot be answered
from Freebase and inserts gaps where necessary so for each question,
answer is on the same line. Originally the answer data were stored
without gaps.
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Part III

Experiments
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Chapter 6
Data

6.1 Freebase

Freebase [BTPC07] was created in 2007 with the purpose of storing data in
structured way and allowing collaborative extension of the knowledge graph.
Freebase data are structured into triples in the RDF format. RDF is a
directed, labelled graph data format for representing information in the Web.
The data is obtained using SPARQL query language.

6.2 SPARQL query language

SPARQL language 1 is a semantic query language for databases which store
data in RDF format. Query in SPARQL language consists of two parts: the
SELECT clause which specifies the variables (recognized by starting with
question mark symbol) to be present in the result and the WHERE clause
which provides a basic graph pattern to be matched against the queried graph.
Solution is the found by binding variables to RDF terms. All conditions
given in WHERE clause have to be satisfied for result to be returned. They
are written in the pattern of whitespace-separated list of subject-predicate-
object triples. Further restrictions can be applied using the FILTER keyword.
FILTER allows for example limit numerical values or filter out responses
in different languages. Database for relations and entities and standard for
datatypes can be specified as a prefix using the PREFIX keyword.

6.3 Free917 dataset

Free917 dataset [CY13] composes of 917 questions. Each question is repre-
sented by natural language formulation (called “utterance”) and a structured
query in lambda calculus (called “target formula”). On average, a question
is 6.3 words long. There are 81 distinct domains covered in the questions
and the logic formulas contain 635 different Freebase relations. The dataset
was created by two native English speakers without any restrictions on their

1https://www.w3.org/TR/rdf-sparql-query/
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6. Data ........................................
domains except that the domains should be diverse enough. 884 out of the
917 questions are actually answerable by Freebase based on gold standard
answers2. The dataset is split into 641 training set and 276 questions for
evaluation.
Following modifications were made to the data by us. Certain names of enti-
ties such as people’s names or company names had their first letters initialized
to help with NER tagging. Several typos were fixed in order to improve
training of entity linking. Parentheses in certain original logic formulas had
spaces between them which impeded parsing the formula into gold standard
for DAG, entities and edges so the spaces had to be removed.

2Obtained from https://github.com/pks/rebol
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Chapter 7
Results

7.1 Sub-results of all parts

Authors of the original Xser system [XFZ14] do not mention accuracy of each
part so we did not have comparison for our results.

7.1.1 Phrase detection

The models were trained with 50 iterations over the training data as this gave
the best results in broader experiments.

Learning rate Accuracy

0.01 90.7%
0.1 91.4%
1 91.3%
10 91.5%

Table 7.1: Overall accuracy of phrase detection model

7.1.2 Shift-reduce parsing

Various sizes of beam were tested, ranging from 10 to 500, but no change
had any impact on the result. We examined what impact had number of
iterations of model training on the accuracy. The accuracy is number of
correctly formed DAGs divided by total number of questions from training
set.
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7. Results .......................................
Number of iterations Accuracy

5 59.8%
10 32.9%
20 62.3%
50 55.0%
100 54.7%
200 53.3%
500 54.3%

Table 7.2: Overall accuracy of shift-reduce parser model

The problem with training and running a shift-reduce parser is that when
an incorrect decision is made, the parser is not likely to recover from this
mistake and form the correct DAG, even though all other actions were correct.

7.1.3 Knowledge base linking

Entity Relation Edge

87.4% 31.5% 74.9%

Table 7.3: Accuracy of each of the parts of knowledge base linking

The bag-of-words model does not work well for the relation labelling task.
This is because the same words do not represent the same property in different
questions. For example, one question in training data asks about a team cer-
tain basketball coach manages with words What team does <person> coach?.
In the testing set, there is the same question but given the different coach’s
name, the team is supposed to be an ice hockey team. The knowledge base
properties are different for each sport. The relation gets linked to basketball
team instead of hockey team since the bag-of-words model cannot capture
the difference. Same error could happen when question asks about time a
discovery was made but the query retrieves the person who made it.
On the other hand, if the question resembles a question in the training dataset,
the system is very likely to retrieve a correct answer. Table 7.4 mentions
several relations that the system is able to correctly recognize and answer
the questions that contains them.

Text Representation of relation

When was Bill Clinton born? people.person.date_of_birth
What is the area of the Czech Republic? location.location.area
What is the origin of the Labe river? geography.river.origin

Who directed Fight Club? film.film.directed_by

Table 7.4: Examples of questions the system is able to answer
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.................................... 7.2. Overall results

There are limitations to the system such as that the names have to be
capitalized so the phrase detection correctly classifies them as entities.

7.2 Overall results

Our system was able to correctly answer only 29 out of 276 testing questions,
making its accuracy 10.5%. This is to be expected if we examine the accuracies
of separate parts of the system.
As illustrated by table 7.4, the system performs well on simple questions.
The training dataset, however, composes of both simple and more complex
questions with multiple entities and hard to capture relations. Sometimes
the data is structured in the database so that the value of property is not
available directly from entity but needs to be extracted from extra node.
We were able to cover this in the gold standard for separate model, but the
classifiers were unable to handle this structure well.
When we trained all parts of the system on simpler training data including
DAGs with only three nodes and two relations (which is the form of most
questions anyway), we were able to achieve accuracy of 24.6% (68 out of 276
questions correctly answered) on the testing data. This result came close to
original results of Cai and Yates[CY13] who achieved 26.9% baseline accuracy
on the same data. However, this improvement came at the cost of universality
of the system.
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Chapter 8
Conclusions and future work

We attempted to recreate the Xser system and reproduce its results. The
best result we were able to achieve on the testing data was 24.9% while the
current state is able to answer 10.5% of the questions. The main reason of
the poor results is problematic linking of the relation phrases to knowledge
base predicates.
On the other hand, there is almost no problem with answering simple questions
since all other components work as expected. Also, the system is universal
enough to be adapted to a different knowledge base than Freebase.
The next step to improve our system would be changing a model for relation
labelling which is the weakest point of the pipeline. Models for shift-reduce
parsing and edge labelling also need revising. Another goal is incorporating
our work into YodaQA 1, a question answering system built by ailao composing
of various frameworks.

1http://ailao.eu/yodaqa/
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Appendices
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Appendix A
Program demonstration

If you wish to test the program, you need to have Java and Stanford NLP
package installed in addition to the packages mentioned in section 5.1. Then,
run the convert_question script from question_conversion package with
the following parameters, in this order:. path to where you extracted the code (string). 276 - size of the testing dataset. 50 - part of name of the model for phrase detection. 20 - part of name of the model for shift-reduce parsing. tst - testing mode (string). i - mode where user inputs questions for answering (string). path to your Java installation (string). path to your Stanford NLP installation (string)

Internet connection is also required to retrieve an answer from Freebase. For
more options and instructions on running various parts of the pipeline please
refer to the README file of the project. The system has been tested to run
on Windows operating system but should be optimised to run on any system.
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