
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of electrical engineering

BACHELOR THESIS

2016 Karel GAVENČIAK

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Karel G a v e n č i a k

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Learn and Predict Metasploit Exploit Ranks from Available
 Vulnerability Information

Guidelines:

Metasploit tool contains an interesting exploit feature called rank, which describes reliability
and/or success probability of the given exploit. Attackers often order exploits in descending
rank values, since exploits with high rank are most reliable, likely to succeed and least
detectable. However, there are many vulnerabilities in National Vulnerability Database (NVD),
which do not have exploits in Metasploit (yet). Learning their ranks as soon as possible can
direct the network administrator to focus on important and likely exploited vulnerabilities in his
network.
Use AI approaches (machine learning, data mining, etc.) to predict the rank of vulnerabilities
based on the available data (e.g., CVE specification, CVSS vectors, etc.) as follows:
1. Study the Metasploit's available information about exploits, such as ranks, etc.
2. Study available information about vulnerabilities.
3. Select principal features of vulnerabilities for learning the rank.
4. Propose an AI approach for learning the exploit's rank of vulnerability.
5. Implement algorithm(s) and evaluate their precision using predictive analytics.

Bibliography/Sources:
[1] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, "Beyond heuristics: Learning to
 classify vulnerabilities and predict exploits," in Proc. of 16th Int. Conf. on Knowledge
 discovery and data mining, 2010, pp. 105-114.
[2] Mell, Peter, Karen Ann Kent, and Sasha Romanosky. The common vulnerability scoring
 system (CVSS) and its applicability to federal agency systems. US Department of
 Commerce, National Institute of Standards and Technology, 2007.
[3] Hartanto, Teddy. "Penetration Testing: Testing the Security of Computer Systems."
 CS2107-Semester IV 2014-2015: 65.

Bachelor Project Supervisor: Ing. Karel Durkota

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, December 11, 2015

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Bachelor's Project

Learn and Predict Metasploit Exploit Rank from Available
Vulnerability Information

Karel Gaven£iak

Supervisor: Ing. Karel Durkota

Study Programme: Open Informatics

Field of Study: Computer and Information Science

May 26, 2016

iv

v

Aknowledgements

I would like to express my sincere gratitude to my advisor Ing. Karel Durkota for his
time, advice and feedback that he dedicated to my project and for creating friendly working
environment. Also, I would like to thank my parents for their support during my studies.

vi

vii

Declaration

I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, date 25. 5. 2016 .

viii

Abstract

Vulnerabilities prioritization is an important part of security administrators' work. The
aim of this work is to focus on estimating the risk that each vulnerability presents by predict-
ing rank of its exploit in Metasploit database. As a base for representing vulnerabilities, we
created multidimensional vectors from publicly available information. For predicting we used
Support Vector Machine and Random Forest algorithms with several normalization meth-
ods. With this approach, we were able to predict the existence of Metasploit exploit with
97% accuracy and its rank with 44% accuracy. Results of this project prove that machine
learning can be useful in prioritizing vulnerabilities.

Abstrakt

Prioritizace vulnerabilit je d·leºitou sou£ástí práce systémových bezpe£nostních administrá-
tor·. Cílem této práce je, zam¥°it se na odhadnutí risku, jaký kaºdá vulnerabilita p°edstavuje
pomocí p°edpovídání jejího p°íslu²ného exploit ranku v databázi Metasploit. Z ve°ejn¥ dos-
tupných dat jsme vytvo°ili mnoharozm¥rné vektory, které slouºí jako základ pro reprezentaci
vulnerabilit. Pro p°edpovídání ranku jsme vyuºili algoritmy Support Vector Machine a Ran-
dom Forest s n¥kolika r·znými normaliza£ními techinkami. Ve výsledku jsme byli schopni
p°edpov¥d¥t existenci exploitu s úsp¥²ností 97% a rank exploitu s úsp¥²ností 44%. Výsledky
ukazují, ºe pouºití strojového u£ení m·ºe být velmi uºite£né p°i ur£ování priorit pro systé-
mové vulnerability.

ix

x

Contents

1 Introduction 1

1.1 Thesis Assignment . 1
1.2 Thesis Structure . 1
1.3 Related Work . 2

2 Vulnerability Information and Data Gathering 5

2.1 Data Sources . 5
2.1.1 Common Vulnerabilities and Exposures 5
2.1.2 Common Vulnerability Scoring System 5
2.1.3 National Vulnerability Database . 6
2.1.4 Metasploit . 6

2.2 Vulnerability Dataset . 6
2.3 Exploit Dataset . 8

3 Features Extraction and Analysis 11

3.1 Features Extraction . 11
3.1.1 A�ected Products . 11
3.1.2 Date Di�erences . 11
3.1.3 CVSS Metrics . 13
3.1.4 References . 13
3.1.5 Bag of Words representation . 13

3.2 Most Frequent Features . 14
3.3 Language Processing . 15
3.4 Normalization Methods . 15

4 Technical Background 17

4.1 SVM . 17
4.1.1 Slack Variables . 18

4.2 Decision Trees . 18
4.3 Random Forests . 19

5 Experiments and Results 21

5.1 Implementation . 21
5.1.1 SQLite . 21
5.1.2 Scikit Learn . 21
5.1.3 Natural Language Toolkit . 22

xi

xii CONTENTS

5.2 Reciever Operating Characteristics . 22
5.3 Baseline Approach . 23
5.4 Experiments . 23

5.4.1 Linear SVM . 23
5.4.2 Random Forest . 23

5.5 Experiments with Language Processing . 24
5.5.1 Linear SVM . 24
5.5.2 Random Forest . 24

5.6 Exploit Existence Prediction . 27

6 Result Discussion 29

6.1 Achieved Accuracy . 29
6.2 Sensitivity, ROC curves analysis . 29
6.3 Language Processing Contribution . 29
6.4 Predicting Exploit Existence . 30
6.5 Feature Weights Inspection . 30

7 Conclusion 33

A Content of the CD 37

List of Figures

2.1 CVSS metric groups. 6
2.4 Average number of exploits per one vulnerability. 8
2.5 Frequency of ranks. 8

3.1 Example of vulnerability record from NVD. 12

4.1 Hyperplane through two linearly separable classes [7] 18
4.2 Decision trees . 20

5.5 ROC curves (no language processing). 25
5.6 ROC curves (with language processing). 26

6.1 Most important features for each class . 31

xiii

xiv LIST OF FIGURES

List of Tables

2.2 Metasploit ranks . 7
2.3 Vulnerabilities and exploit frequency in past years. 7

3.2 Frequency of additional features. 14
3.3 15 Most frequent features coming from Bag of Words representation. 14

5.1 Results of SVM classi�ers. 23
5.2 Results of Random forest classi�ers. 24
5.3 Results of SVM classi�ers with language processing. 24
5.4 Results of Random forest classi�ers with use of language processing. 24
5.7 Results of Linear SVM classi�ers with di�erent normalization methods. 27
5.8 Results of Random Forest classi�ers with di�erent normalization methods. . . 27

xv

xvi LIST OF TABLES

Chapter 1

Introduction

The rising number of internet connected devices in recent years makes the demands for
computer security higher. More used devices present possible entrance points to targeted
networks, thus, it is becoming easier to attack targeted systems.

The common process of computer attack is that an adversary �nds weak spots in targeted
network and attacks them with an exploit � a set of methods and procedures that take
advantage of vulnerabilities in the system. When the exploit is successful, the attacker is
given root privileges to use the system as its administrator. The whole process is even easier
as most of these exploits are often already prede�ned and publicly available online.

Hence, system security administrators are often facing di�culties when encountering
multiple vulnerabilities in their systems. They usually work with limited resources and
cannot �x all �aws at once. That is why vulnerabilities need to be prioritized with aspect to
their risks. The problem is that it requires a deep analysis of each vulnerability individually
which is ine�cient and time-consuming.

1.1 Thesis Assignment

The aim of our work is to create a tool that predicts the existence and quality of exploit
for particular vulnerabilities. This tool should o�er a way how to estimate the possible risk
that vulnerabilities present and prioritize them when securing the system.

In our approach, we use Support Vector Machines and Random Forest algorithms to
predict Metasploit ranking for vulnerability exploits. For representing each vulnerability we
create vector consisting of selected features which are obtained from publicly available infor-
mation. Further, we evaluate the performance of used classi�ers and examine the in�uence
of several di�erent normalization methods and use of language processing.

1.2 Thesis Structure

In Chapter 2 we take a closer look on sources of publicly available vulnerability informa-
tion. We describe Metasploit and vulnerability and exploit datasets. Chapter 3 describes
features extraction and their analysis. Chapter 4 provides theoretical background about

1

CHAPTER 1. INTRODUCTION

learning algorithms that we used in our project. Chapter 5 overviews the experiments,their
results. Chapter 6 is a discussion and analysis of our results. Last, Chapter 7 is the conclu-
sion of our project.

1.3 Related Work

Demands for quick and accurate vulnerability prioritization tools are large. These tools
are getting, even more, importance because the time available to patch vulnerable system
is shrinking. Eschelbeck [9] showed the exploitation cycle is shortening (i.e. the time from
disclosure of a vulnerability and exploit availability) and growing trend of zero-day exploits
(exploits which are available at the time of disclosure of a vulnerability) was also proved by
Frei [11].

Most known standardized methodologies for risk estimation is Common Vulnerabilities
Scoring System (CVSS). Although CVSS is widely spread and recognized technique how to
prioritize vulnerabilities, even when constructed thoroughly by experts, values assigned to
the vulnerabilities are still from small range.

Problems about deriving risk from CVSS score were proved by Allodi and Massacci [3].
In their research, they have focused on exploits that appear in the wild, i.e. exploits that
were really used by attackers. By comparing vulnerabilities from National Vulnerability
Database, their CVSS score and existing exploits (from databases and also black market)
they provide assessment whether it is possible to estimate real risk for vulnerabilities by
their CVSS score. As a result mentioned approach did not prove to be an e�cient indicator
that exploit for a particular vulnerability will appear in the wild.

Caution when using CVSS score for prioritizing vulnerabilities is also recommended by
Rieke in [16]. He mentioned that a vulnerable software itself does not necessarily imply
that someone can exploit a vulnerability. Other requirements are for running the vulnerable
software and also if the targeted system is reachable on the port that vulnerable software is
using.

Frühwirth and Männistö [12] advise to improve CVSS with metrics related to each enter-
prise individually. Results show that it is worth not only because improving quality aspect
but also in reference to the cost of additional e�ort.

Bozorghi et al. showed a di�erent approach to the problem of estimating vulnerability risk
[5]. Instead of classifying vulnerability with a score based on expert's analysis, authors are
using machine learning (ML) principles. They labeled vulnerabilities as positive or negative
depending whether there is an existing exploit on them. With the use of the bag-of-words
algorithm, they extracted high-dimensional vector with a total number of 93578 features for
each vulnerability. They use SVM for predicting whether there is an existing exploit for a
vulnerability or how soon it might be created. Results of their work show that it is possible
to predict the existence of exploit with 89.8% accuracy.

A similar approach was presented by Edkrantz et al. [8]. In addition, authors predict the
existence of exploit using not only SVM but also other ML approaches as Random forest
and k-Nearest Neighbors. The accuracy of their prediction is slightly less than Bozorgi's,
about 83%. Another use of ML in the �eld of computer security and risk estimation was by

2

1.3. RELATED WORK

Labu´ [14]. He used it to estimate the cost which adversaries need to pay in order to obtain
successful exploit codes.

ML and statistics methods seem to serve well as a method to prioritize vulnerabilities.
Although accuracy of prediction exploit is high in previous researches, they focus only on
predicting the existence of exploit but not on its severity. Previous works have also omitted
one important aspect. Vulnerability description is transformed into multidimensional vectors
by bag-of-words but there is no consideration of the negations occurring in those sentences.

In our approach, we try to predict not only the existence of exploit but its severity, by
predicting exploit rank. In addition, when extracting the data, we are resolving negations
in descriptions and distinguish their meaning from normal sentences.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Vulnerability Information and Data

Gathering

2.1 Data Sources

2.1.1 Common Vulnerabilities and Exposures

Common Vulnerabilities and Exposures [1] is a dictionary of previously discovered vul-
nerabilities. Each vulnerability, when recorded gets its unique identi�er (also referred as
CVE name, CVE number, CVE-id), that helps to distinguish it among other imperfections
and �aws. Multiple vendors on the market (e.g. Cisco, IBM, McAfee or Symantec corpora-
tion) have the CVE dictionary incorporated into their products, which allows quickly �nding
additional information about a solved problem when knowing this common identi�er.

2.1.2 Common Vulnerability Scoring System

Common vulnerability scoring system (CVSS), currently with its second version, provides
a standardized way to produce a numerical score for each vulnerability that characterizes
its severity. This score is called total CVSS score and it is computed from three main
groups, which are further divided into several di�erent metrics characterizing the vulnera-
bility (all groups and metrics are displayed in Figure 2.1). The Base group refers to main
features of a vulnerability, Temporal presents characteristics that change during the time
and Environmental are related to a speci�c enterprise or environment where the user is lo-
cated. The most important of them is the Base group because it is the only necessary part
to compute the total score. The two other groups only adjust the �nal score value and are
not obligatory.

Access Vector, Access Complexity, and Authentication create together so-called Ex-
ploitability sub-score that should characterize how easily is the vulnerability exploitable.
Metrics as Con�dentiality, Integrity, and Availability create together Impact sub-score. It rep-
resents the risk which the vulnerability presents in a case of successful exploitation by an ad-
versary. The total score is calculated from Exploitability and Impact sub-scores.

5

CHAPTER 2. VULNERABILITY INFORMATION AND DATA GATHERING

Figure 2.1: CVSS metric groups.

2.1.3 National Vulnerability Database

National Vulnerability Database (NVD) [2] is the repository of the vulnerability informa-
tion, managed by the U.S. government. It includes databases of security checklists, security
related software �aws, miscon�gurations, product names, and impact metrics. All vulnera-
bilities discovered in the past are tracked in data feeds with their detailed description. Those
feeds contain CVE-id of the vulnerability and detailed information like a�ected products, ref-
erences to additional information, date of discovery, last modi�cation date, CVSS metrics for
vulnerability and vulnerability summary � a description of vulnerability created thoroughly
by experts.

NVD has a good reputation because works under the auspices of state government and
operates in computer security for a long time (it tracks vulnerabilities since 1999), hence we
decided to use their information as the main source when extracting data for our project.

2.1.4 Metasploit

As was presented by Hartanto in [13], �rst created in 2003, Metasploit is a system security
tool for penetration testing and revealing weak spots in networks. In our Thesis we work with
Metasploit Framework, free open source version, accessible via command line, that provides
the user almost the same possibilities as Metasploit except a few complicated tasks (e.g.
credentials brute forcing or web app testing). The database that Metasploit contains counts
up over 1300 exploits and 2000 modules it allows simulate real world attacks of di�erent
types. These exploits are labeled with a rank, referring to exploit's reliability. Ranks are
as follows in Table 2.2. These labels allows us to distinguish the exploits and provide us a
better knowledge about their possible behavior without actually studying them and o�er us
a way how to predict their �nal success.

2.2 Vulnerability Dataset

During the gathering of the data for learning, we were able to collect information about
a total number of 64100 vulnerabilities from NVD. The total amount of vulnerabilities per

6

2.2. VULNERABILITY DATASET

rank description

excellent The exploit will never crash the service. This is the case for SQL Injection,
CMD execution, RFI, LFI, etc. No typical memory corruption exploits should
be given this ranking unless there are extraordinary circumstances.

great The exploit has a default target AND either auto-detects the appropriate target
or uses an application-speci�c return address AFTER a version check.

good The exploit has a default target and it is the "common case" for this type
of software (English, Windows XP for a desktop app, 2003 for server, etc).

normal The exploit is otherwise reliable, but depends on a speci�c version
and can't (or doesn't) reliably autodetect.

average The exploit is generally unreliable or di�cult to exploit.

low The exploit is nearly impossible to exploit (or under 50%) for common platforms.

manual The exploit is unstable or di�cult to exploit and is basically a DoS. This ranking
is also used when the module has no use unless speci�cally con�gured by the user.

Table 2.2: Metasploit ranks

year is in Table 2.3. Figure 2.4 shows an average number of exploits per one vulnerability.
From the frequency of gathered vulnerabilities we can see that even when the number of
vulnerabilities per year is increasing only slightly, the amount of exploits per vulnerability
grows faster. It indicates that raising number of devices connected to the internet nowadays
probably brings more attention of adversaries. Lower values in the last two years may be
either due to raising focus of software developers on system security or also due to the
fact that more exploit codes can still be developed because software products released in
particular time are still commonly used.

Year # of vulnerabilities # of exploits

2002 3523 30

2003 1465 19

2004 2671 45

2005 4685 66

2006 6997 81

2007 6510 88

2008 2500 43

2009 4887 97

2010 4849 107

2011 3587 97

2012 5092 121

2013 5604 148

2014 5676 84

2015 6051 92

Table 2.3: Vulnerabilities and exploit frequency in past years.

7

CHAPTER 2. VULNERABILITY INFORMATION AND DATA GATHERING

0
0,005
0,01

0,015
0,02

0,025
0,03

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Ave
rag

e ex
plo

its p
er v

uln
era

bilit
y

Year of vulnerability publishing

Figure 2.4: Average number of exploits per one vulnerability.

2.3 Exploit Dataset

Although we were able to examine a total number of 64100 vulnerabilities, existing exploit
was reported only for 1123 of them. The number of exploits reported was lower even when
Metasploit itself disposes with a total number of 3700 exploits and modules, only about a
third of them is linked with CVE-id of a vulnerability that they are related to, which was
necessary for our research.

262

157 123

447

107

2 25
0

50
100
150
200
250
300
350
400
450
500

excellent great good normal average low manual

Num
ber

 of
rec

ord
ed

exp
loit

s

Rank

Figure 2.5: Frequency of ranks.

8

2.3. EXPLOIT DATASET

The number of exploits reported per rank is shown in Figure 2.5. The most frequent one
shows to be normal rank, followed by excellent. Least frequent with its 2 appearances was
low rank, exploits with this label might not be used as much due to their unreliability, thus,
there is probably fewer of them in Metasploit database.

In �nal learning and predicting process, two exploits with low rank were not enough, so
we have decided to integrate them to group labeled with average rank (those two ranks are
closest to each other in terms of reliability). Final set of all classes from our dataset was
C = {excellent, great, good, normal, average, manual, no exploit}.

Still all the data obtained from Metasploit would create a very unbalanced dataset for
learning. Class no exploit would highly over-size the rest of the classes. Therefore, we decide
to under�sample and use only 155 (an average amount of samples for one exploit rank
class) samples from no exploit class and create dataset S with a total number N = 1278 of
vulnerabilities for our experiments.

9

CHAPTER 2. VULNERABILITY INFORMATION AND DATA GATHERING

10

Chapter 3

Features Extraction and Analysis

3.1 Features Extraction

For predicting exploit rank we created set F , containing a total number of 4873 features.
For each vulnerability si ∈ S we created multidimensional vector vi = (f ij |fj ∈ F) where
f ij ∈ R represent value of feature fj for vulnerability si. The majority of features comes from
the bag-of-words representation of vulnerability summaries. Although this inspection gave
us large amount of features, we decided to add more important features.

Our �nal dataset for learning and experiments has a form L = {vi, ci}, i = 1, · · · , N
where ci ∈ C is rank of exploit for vulnerability si.

In following sections, we demonstrate extraction of speci�c features using the example of
a vulnerability record in Figure 3.1.

3.1.1 A�ected Products

fprod is a feature that represents the number of a�ected products by vulnerability s. It is
another of features extracted from NVD (Figure 3.1 part 2). We expect vulnerabilities that
a�ect a greater amount of products to be more attractive for attackers and exploit creators
since they will be able to attack more systems with one exploit and thus have a bigger chance
for a success. Therefore, we consider the exploit for vulnerability with a higher number of
a�ected products to be more likely to occur.

3.1.2 Date Di�erences

Three added features come from inspiration of results of previous Bozorghi's work. In top
ten negative in�uential features, four of them are based on vulnerability dates. From NVD
we extracted last modi�cation date and published date of vulnerability records (Figure 3.1
part 3). For each vulnerability, we constructed three features to characterize the vulnerability
life cycle.

11

CHAPTER 3. FEATURES EXTRACTION AND ANALYSIS

Figure 3.1: Example of vulnerability record from NVD.

12

3.1. FEATURES EXTRACTION

• fdateSinceModified � Di�erence of actual date and last modi�cation date. Value represent
time from the last update of vulnerability record.

• fdateSincePublished � Di�erence of actual date and published date. It represents the age
of vulnerability. Exploit for older vulnerabilities is considered less likely.

• fdateDiff � Di�erence of last modi�cation date and published date. The Larger value
in di�erence means that the record was modi�ed later after vulnerability disclosure,
which probably means there were patches released from the vendor and the risk of
vulnerability was mitigated.

3.1.3 CVSS Metrics

Because CVSS is criticized and not well recommended for prioritizing vulnerabilities,
we decided to use all metrics available in NVD to create additional features. Features
named fcvss1−7 present Total CVSS score, Access Vector, Access Complexity, Authentication,
Con�dentiality Impact, Integrity Impact, Availability Impact.

3.1.4 References

Feature named fref presents number of references and it is also extracted from NVD
(Figure 3.1 part 5). These links refer to additional information about the vulnerability
as whether it was recorded in any other database. Vulnerabilities that are more dangerous
present a higher risk for system security thus they get more into community's awareness. We
expect a higher value to indicate that there will be an existing exploit for the vulnerability.

3.1.5 Bag of Words representation

From NVD, we created set D of all vulnerability descriptions for vulnerabilities si ∈ S
(Figure 3.1 part 6). Then we cleared each description di ∈ D from numbers, punctuation
and stop words (the, of, etc.) and split them into set of words wi. We created set of all
words W =

⋃N
i=1wi. Each word w ∈ W we present as one feature fw. Value f

i
w is equal to

number of occurrences of w in particular description for vulnerability si.

Vulnerability shown in Figure 3.1 has the following summary:

The users controller in katello 1.5.0�14 and earlier, and Red Hat Satellite, does not check

authorization for the update_roles action, which allows remote authenticated users to gain

privileges by setting a user account to an administrator account.

After cutting of stopwords and numbers we gain these features with their respective
values:

fusers = faccount = 2 ,fcontroller = fkatello = fearlier = · · · = fadministrator = 1.

The rest of the bag of words features for words that do not occur in this summary would
have zero value.

13

CHAPTER 3. FEATURES EXTRACTION AND ANALYSIS

3.2 Most Frequent Features

The frequency of additional features that comes from vulnerability characteristics like
CVSS metrics, date based features, the number of a�ected products or references is shown
in Table 3.2. These features are present in the database almost for every record.

Feature name Frequency

fdateSincePublished 1278

fdateSinceModified 1277

fcvssTotalScore 1273

fcvssAccessV ector 1273

fcvssAccessComplexity 1273

fcvssAutentication 1273

fnumberOfReferences 1265

fnumberOfProducts 1265

fdateDiff 1226

fcvssConfidentialityImpact 1131

fcvssAvailabilityImpact 1108

fcvssIntegrityImpact 1089

Total number of vectors 1278

Table 3.2: Frequency of additional features.

The most frequent words to appear in the vulnerability descriptions are shown in the
Table 3.3. Most of them (words like remote, attackers, allow) are neutral in the meaning of
exploit reliability. Although words bu�er, over�ow, stack, service, o�er closer characteristic
of exploit type, and might help in predicting rank.

Word Frequency

remote 1147

attackers 1088

allows 1082

arbitrary 979

execute 870

code 731

bu�er 463

vulnerability 397

over�ow 384

service 302

Total number of vectors 1278

Table 3.3: 15 Most frequent features coming from Bag of Words representation.

14

3.3. LANGUAGE PROCESSING

3.3 Language Processing

As it was mention in the introduction, we base our work on Bozorghi's previous research
[5]. In their work, there were no language processing methods which would take into con-
sideration the negations in vulnerability descriptions. We found that an important part in
creating the data features because negation in vulnerability summary can completely change
the meaning of the sentence. When exploring vulnerabilities summaries in detail, we have
found that from all negative expressions only the word not occurs there. These sentences
represented 368 of the total amount. That is 16 percent of all vulnerabilities, surely not a
negligible amount. Not is in these sentences always followed by the verb that it is connected
to or by an adverb and a verb.

Therefore, in our approach we have in additionally implemented solution that �nds nega-
tions in sentences, determines the verb connected to the negation by the part-of-speech-
tagging method.

In case of record from shown in Figure 3.1, word check would be substituted with word
not_checked and new feature fnot_check would be created to describe better the meaning of
the sentence.

3.4 Normalization Methods

Normalization of data instances is widely recommended in machine learning. The main
advantage is to avoid attributes in greater numeric ranges dominating those in smaller nu-
meric ranges and it shortens the training time and improves the �nal accuracy. In our work
we have used and analyzed results of three di�erent methods. One was setting the maximum
value for each feature equal to one, the next was setting the summation over all feature val-
ues to one and the third was the Term�Frequency�Inverse�Document�Frequency (TF�IDF)
method, widely used for document representation.

• Normalization by feature max value:

vi,j =
f ij

maxsk∈S f
k
j

Where vi,j is normalized value of f ij . The denominator represents a maximum number
of feature fj ∈ F over all records in dataset S.

• Normalization by feature summation:

vi,j =
f ij∑

sk∈S f
k
j

Where the value f ij is normalized by summation of value of feature fj ∈ F over all
records.

• TF-IDF normalization:

tfi,j =
f ij∑

sk∈S f
k
j

15

CHAPTER 3. FEATURES EXTRACTION AND ANALYSIS

tf means term frequency, in our case value of feature fkj for vulnerability sk ∈ S,
divided by summation of values of feature fj ∈ F over all document records in dataset
S.

idfj = log
|D|

|{i|f ij > 0}|

idf means inverse document frequency. Where |D| is total number of vulnerability
descriptions and |{i|f ij > 0}| is number of records for which the feature fj is greater
than zero. The �nal normalized value is:

vi,j = tfi,j + tfi,j · idfj

16

Chapter 4

Technical Background

4.1 SVM

When classifying linearly separable binary labeled data, we are trying to �nd the hyper-
plane that separates the data feature space into two parts according to the classes of training
samples. But often there is more of such hyper planes possible to be found. Support Vector
Machine (SVM) is an algorithm that �nds mentioned hyperplane in a way that it maximizes
the margin between itself and the closest data points from each class.

The problem is that our data are not binary, we have seven di�erent classes with respect
to seven di�erent Metasploit ranks. In this case, for using SVM we need to binarize the
data, separately for each class and create seven di�erent classi�ers.

For creating such classi�er for class c ∈ C suppose we have our training data {vi, yi}
where i = 1, · · · , N and yi = +1 ∀i : ci = c, yi = −1 ∀i : ci 6= c and a hyperplane that
separates the positive from the negative samples. Points which lie on the hyper plane satisfy
w · v + b = 0, where w is normal to the hyperplane |b|/||w|| is the perpendicular distance
from the hyperplane to the origin and ||w|| is the euclidean norm of w.

In order to maximize the margin the task can be formulated as follows:

min
1

2
||w||2

subject to

yi(vi ·w+ b)− 1 ≥ 0 ∀i

After we create classi�ers for each class, when new record is classi�ed we give it label of the
class whose classi�er gives the highest value for the record.

17

CHAPTER 4. TECHNICAL BACKGROUND

Figure 4.1: Hyperplane through two linearly separable classes [7]

4.1.1 Slack Variables

In real world, the data we work with are often noisy, and even when the measurements
are taken precisely, some errors may occur. For this cases we can implement so called slack
variables. Task to minimize is then:

1

2
||w||2 + C ·

∑
i

ξi

subject to:

yi(w · vi + b) ≥ 1− ξi, for i = 1, . . . , N

ξi ≥ 0, for i = 1, . . . , N

Where ξi represents corrective measure and C is constant de�ning the size of inaccuracy
allowed.

4.2 Decision Trees

Decision tree learning maps observations about the training data to a tree structure that
is then used for samples classi�cation. It is one of the predictive modeling approaches used

18

4.3. RANDOM FORESTS

in statistics, data mining and machine learning. Main advantages of decision trees are that
they are simple to understand and interpret. They are also robust to noisiness in the data
and performs quite well with large datasets.

There is two type of nodes in decision trees: decision nodes (each internal node) and leaf
nodes. When predicting classi�cation of record s ∈ S, decision node compares a value of
feature fj(s) with threshold t and determines next direction of decision making in the tree.
Leaf nodes indicate �nal classi�cation c ∈ C of record s.

When building a single decision tree we use so called greedy algorithm. A decision node
is created by selecting feature fj ∈ F and the threshold value t that splits the S to:

Sj = {s ∈ S|fj(s) > t}

S
′
j = {s ∈ S|fj(s) ≤ t}

Feature fj and threshold t are chosen with respect to minimize error value Ej,t.

Ej,t =
1

|Sj |
∑

i:si∈Sj

I(ci 6= c) +
1

|S′j |
∑

i:si∈S
′
j

I(ci 6= c).

Where error for each subset is computed as the number of misclassi�ed records, in case that
we would classify all records in subset by class that has majority there, divided by size of the
subset. Each of newly created subsets Sj , S

′
j is then split in the same way, and all approach

is repeated until each subset does not contain records of only one class c.

4.3 Random Forests

Random forest, presented by Breiman in 2001 [6], works as a large collection of decorre-
lated decision trees. It also uses averaging to improve the predictive accuracy and control
over-�tting. Each tree is created from di�erent random sub-sample of the dataset. When
classifying new sample each tree predicts the class of the sample. The class which has the
majority of all tree decisions in the forest is the �nal decision for a sample.

Follows an example of how we grow a simple random forest with M trees. From our
learning dataset:

L =

v1 y1
v2 y2
...

...
vN yN

we create M subsets L1, L2, · · · , LM of the same size |L1| = |L2| = · · · = |LM |, by

choosing samples randomly with replacement:

L1 =

v1 y1
v2 y2
...

...
v139 y139

 , L2 =

v2 y2
v50 y50
...

...
v200 y200

 , . . . , LM =

v50 y50
v61 y61
...

...
v155 y155

19

CHAPTER 4. TECHNICAL BACKGROUND

From these datasets the single decision trees are then created and each of them gives its
result for �nal classi�cation of sample. Figure 4.2 shows example of three simple decision
trees.

Figure 4.2: Decision trees

In our project we did not want to stick only with the SVM classi�ers, therefore, we have
also used Random forest classi�er for predicting. Thanks to a larger size of our data sample
we have been able to create the forests with 100 trees.

20

Chapter 5

Experiments and Results

5.1 Implementation

For implementing scripts and algorithms we chose Python, mostly because it is a simple
and comprehensive, yet powerful tool. It has a great system of scienti�c libraries available,
and interacts well with other platforms (e.g. SQLite).

5.1.1 SQLite

Database of vectors was created with the use of the SQlite library, which allowed storing
data in a simple and easily accessible SQL-engine-based way. Our python script for database
handling is attached Appendix A.

5.1.2 Scikit Learn

For implementing machine learning algorithms we used the Scikit-learn library [15].
Scikit-learn o�ers a large amount of state-of-the-art implementations of many machine learn-
ing algorithms, and tools for their evaluations which were suitable for our project. The
description of used methods and models follows.

• svm.LinearSVC - support vector machine classi�er implemented on terms of LIBLINEAR
an open source library for large-scale linear classi�cation [10]. We used classi�er with
parameter class_weight set to auto, thus the classi�er assigns weights for classes
according to amount of their instances in dataset.

• RandomForestClassifier - estimator that �ts a number of decision tree classi�ers on
various subsamples of the dataset. We used it with 100 trees by setting the parameter
n_estimators and the parameter class_weight was set to auto the same way as in
the previous example.

• cross_validation - method cross_val_predict(classifier,vectors,labels) was
used for training and testing estimators performance, on terms of cross validation.

21

CHAPTER 5. EXPERIMENTS AND RESULTS

• TfidfTransformer - fit_transform(vectors) allowed us to normalize vectors ac-
cording to Term-frequency�Inverse-document-frequency normalization method.

• CountVectorizer - class that transforms data vulnerabilities descriptions represented
in 2-dimensional data arrays into vectored bag of words representation by function
fit_transform().

• metrics - class that provides us methods like accuracy_score(), roc_auc_score(),

roc_curve() for classi�ers quality measures evaluation.

5.1.3 Natural Language Toolkit

Natural Language Toolkit is a platform for working with human language data in python.
It provides functions as tagging, stemming, semantic reasoning and parsing. We used it in
vector creation when extracting data from NVD vulnerability feeds and also when resolving
negations in a text.

• stopwords - array of common stop words such as the, a, and which we separated from
vulnerability descriptions.

• pos_tag(words) - processes a sequence of words, and assigns a part-of-speech tag to
each word, for us those meaning verb (with tag VB) were important (taken from chapter
5 in [4]).

5.2 Reciever Operating Characteristics

Receiver Operating Characteristics is a tool for evaluating a performance of a binary
classi�er. It is typically displayed in a form of graphical plot. Although ROC characteristic
is used often with continuous classi�ers, we use it in our case to analyze the relations between
true positive rate (TPR) and false positive rate (FPR) in a structured form. The ROC curve
is created by plotting the FPR on x-axis and the TPR (also known as sensitivity) on y-axis.
Where:

TPR =

∑
True positive∑

Predicted positive
,FPR =

∑
False positive∑

Predicted negative
.

In the problem, where we have to deal with multiple classes we compute ROC score for each
class separately, by making the results binary (desired class is considered as positive and the
rest of classes as negative). That allows us to characterize the sensitivity of classi�er for each
class.

Area under the ROC curve (referred as AUC score) is way to display ROC characteristic
in numbers. In general we consider binary classi�er as:

AUC evaluation

〈0.9, 1) excellent

〈0.8, 0.9) great

〈0.7, 0.8) very good

〈0.6, 0.7) good

〈0.5, 0.6) su�cient

< 0.5 insu�cient

22

5.3. BASELINE APPROACH

5.3 Baseline Approach

For a better analysis of our classi�ers results, we created two baseline approaches and
computed their accuracy and ROC score. The �rst one predicts the exploit rank randomly,
the second one proportionally with respect to a number of samples for particular classes in
the training dataset. Average accuracy of random approach was 13.32% and ROC score
was 0.49 and accuracy of proportional approach was 22.56% and roc score 0.50.

5.4 Experiments

For estimating rank, we chose Linear SVM and Random Forest Classi�er. Both of them
were tested with each of the mentioned normalization methods. Whole training and testing
process was performed via cross validation, with �ve folds, and was also run �ve times to
avoid inaccurate results.

5.4.1 Linear SVM

Results show accuracy of tested SVMs, ROC score. All tested SVMs were tuned with
respect to constant C (C is the size of inaccuracy allowed when classifying noisy samples,
mentioned in 4.1.1).

Normalization C Accuracy ROC score Time(s)

TF-IDF 0.02 34.35% 0.59 0.81

sum 0.02 32.55% 0.52 2.83

max 0.06 30.44% 0.55 4.74

Table 5.1: Results of SVM classi�ers.

The best classi�cation was performed by SVM with TF-IDF normalization method.
It predicted rank with over 20% higher accuracy against random assignment and 10%
against proportional assignment of classes. This was expected because TF-IDF normal-
ization method is widely recommended when working with text representation. ROC curves
for classi�ers are shown in Figure 5.5.2.

Important is to notice that even though some classi�ers predict with higher accuracy,
their ROC-AUC weighted score is lower. It means they probably generalize the prediction,
and favor those ranks with greater frequency in the dataset.

5.4.2 Random Forest

Random forest classi�ers were trained with one hundred number of trees. There was
almost no di�erence over normalization methods in accuracy, ROC score or time complexity.
Generally, Random Forests classi�ers over performed SVMs in accuracy with the di�erence
of 8-12%. Overall results are shown in Table 5.2, ROC curves for each class in Figure 5.5.2.

23

CHAPTER 5. EXPERIMENTS AND RESULTS

Normalization Accuracy ROC score Time(s)

TF-IDF 43.57% 0.58 19.32

sum 42.51% 0.58 19.26

max 42.61% 0.58 20.76

Table 5.2: Results of Random forest classi�ers.

5.5 Experiments with Language Processing

Here we present results of experiments on the dataset created with replacing the negated
verbs for new features. We used same classi�cation algorithms as in the previous example.
The whole training and testing process was also performed with use of cross-validation, with
�ve folds, and run �ve times.

5.5.1 Linear SVM

Normalization C Accuracy ROC score Time(s)

tf-idf 0.09 34.89% 0.59 0.73

sum 0.02 32.70% 0.52 2.77

max 0.16 29.73% 0.55 4.51

Table 5.3: Results of SVM classi�ers with language processing.

Classi�er with normalization method was the best one as in previous example. The overall
accuracy of classi�ers remained the same, no signi�cant improvements were observed. ROC
curves for classi�ers are shown in Figure 5.5.2.

5.5.2 Random Forest

Results of random forest classi�ers with use of language processing. ROC curves for
classi�ers are shown in Figure 5.5.2.

Normalization Accuracy ROC score Time(s)

tf-idf 42.81% 0.58 19.06

sum 42.88% 0.58 18.89

max 43.44% 0.58 18.72

Table 5.4: Results of Random forest classi�ers with use of language processing.

24

5.5. EXPERIMENTS WITH LANGUAGE PROCESSING

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.52)
great (area = 0.52)
good (area = 0.52)
normal (area = 0.54)
average (area = 0.64)
manual (area = 0.53)
no exploits (area = 0.95)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.52)
great (area = 0.51)
good (area = 0.49)
normal (area = 0.51)
average (area = 0.50)
manual (area = 0.52)
no exploits (area = 0.58)

SVM norm: TF-IDF SVM norm: sum

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.48)
great (area = 0.53)
good (area = 0.50)
normal (area = 0.52)
average (area = 0.52)
manual (area = 0.50)
no exploits (area = 0.82)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.50)
great (area = 0.51)
good (area = 0.50)
normal (area = 0.58)
average (area = 0.54)
manual (area = 0.50)
no exploits (area = 0.95)

SVM norm: max RandomForest norm: TF-IDF

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.51)
great (area = 0.52)
good (area = 0.50)
normal (area = 0.56)
average (area = 0.50)
manual (area = 0.50)
no exploits (area = 0.94)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.50)
great (area = 0.51)
good (area = 0.50)
normal (area = 0.56)
average (area = 0.51)
manual (area = 0.50)
no exploits (area = 0.94)

RandomForest norm: sum RandomForest norm: max

Figure 5.5: ROC curves (no language processing).

25

CHAPTER 5. EXPERIMENTS AND RESULTS

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.52)
great (area = 0.53)
good (area = 0.50)
normal (area = 0.55)
average (area = 0.65)
manual (area = 0.51)
no exploits (area = 0.95)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.52)
great (area = 0.52)
good (area = 0.52)
normal (area = 0.54)
average (area = 0.64)
manual (area = 0.53)
no exploits (area = 0.95)

SVM norm: TF-IDF SVM norm: sum

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.51)
great (area = 0.52)
good (area = 0.52)
normal (area = 0.51)
average (area = 0.52)
manual (area = 0.50)
no exploits (area = 0.81)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.51)
great (area = 0.51)
good (area = 0.50)
normal (area = 0.56)
average (area = 0.51)
manual (area = 0.50)
no exploits (area = 0.95)

SVM norm: max RandomForest norm: TF-IDF

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.50)
great (area = 0.49)
good (area = 0.50)
normal (area = 0.56)
average (area = 0.51)
manual (area = 0.50)
no exploits (area = 0.95)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

excellent (area = 0.50)
great (area = 0.50)
good (area = 0.50)
normal (area = 0.56)
average (area = 0.52)
manual (area = 0.50)
no exploits (area = 0.96)

RandomForest norm: sum RandomForest norm: max

Figure 5.6: ROC curves (with language processing).

26

5.6. EXPLOIT EXISTENCE PREDICTION

5.6 Exploit Existence Prediction

In addition to our experiments, we try to predict only the existence of exploit. As we
mentioned in 2.3, we found 1123 vulnerability records that have an exploit in Metasploit.
We use all of them as positive samples and added the same number, 1123 randomly chosen
vulnerabilities with no existing exploit, as negative samples. We test Random Forest and
SVM classi�ers �ve times with �ve-fold cross-validation and evaluate their average accuracy.
Baseline approaches for comparison have both (proportional and random assigning of labels)
the average accuracy of 50%.

Normalization Accuracy

TF-IDF 93.09%

sum 64.78%

max 94.43%

Table 5.7: Results of Linear SVM classi�ers with di�erent normalization methods.

Normalization Accuracy

TF-IDF 97.19%

sum 97.39%

max 97.22%

Table 5.8: Results of Random Forest classi�ers with di�erent normalization methods.

27

CHAPTER 5. EXPERIMENTS AND RESULTS

28

Chapter 6

Result Discussion

6.1 Achieved Accuracy

The best SVM classi�er predicted rank with accuracy 34.89 %, Random Forest clas-
si�ers were generally better, in the margin about 10%, the best one predicted ranks with
43.57% accuracy. In comparison to base approaches, we predicted rank with over 30% higher
accuracy against random assignment and 20% against proportional assignment of labels.

6.2 Sensitivity, ROC curves analysis

Each classi�er was sensitive to no exploit class and worked well when predicting it. Re-
garding other classes, SVM with TF-IDF normalization and Random forest classi�ers (with
each of norm. methods) showed at least some sensitivity. SVM was good also in predicting
class average and Random forests were more sensitive when predicting class normal. Sen-
sitivity for other classes (manual, good, great, excellent) was only slightly better than in
baseline approaches.

6.3 Language Processing Contribution

From our results, it is obvious that using of language processing has no signi�cant e�ect
on successful prediction. This might be because with such large amount of features, changing
one of them has not a big in�uence on the overall classi�cation. Another reason might be
that the amount of negated sentences was 368, we were able to determine the correct verb
(connected with negation) only for 222 of them. It was caused mostly by the unnatural
composition of sentences in vulnerability summaries, where we found a lot of abbreviations
and references to di�erent software, which is hard to be found in natural language dictionaries
for processing.

29

CHAPTER 6. RESULT DISCUSSION

6.4 Predicting Exploit Existence

Signi�cantly greater accuracy was achieved when predicting only the existence of exploit,
97.22%. This success comes from high sensitivity of our classi�ers for no exploit class.
From tested classi�ers Random Forest were slightly better, with no regard to normalization
method. SVM with TF-IDF normalization performed the best among SVMs, followed by
max normalization, sum normalization performed the worst.

This test also con�rmed results previous results of previous work in [5],[8], that we are
able to predict exploit existence accurately with this kind of approaches and proved that use
of ML in vulnerability prioritization can be very useful.

6.5 Feature Weights Inspection

In this section we examined weights of features coming from bag-of-word representation,
to determine features that have the biggest in�uence on predicting that an individual sample
belongs to a certain class. Weights were inspected for LinearSVM (with normalization by
TF-IDF) which had the best ROC score and accuracy among tested SVMs with no language
preprocessing. Before examining the most important features, all weights were normalized
by their occurrence in the dataset according to wj = wj(Nj/N). For each label top ten
negative and positive in�uential features are shown in the Figure 6.1.

From results we tried to derive a few insights:

• The vulnerability which allows code execution is more likely to have an existing ex-
ploit because word execute occurred two times as the indicator that vulnerability will
have an exploit and one time as an indicator of non-existing exploit (but with small
weight). These vulnerabilities might be more attractive for adversaries or also they
were probably already recorded with existing exploit.

• Remote access to vulnerability also means bigger danger. It is obvious that attackers
will look for those vulnerabilities in the targeted system, instead of those that require
personal access to the targeted system. The occurrence of word remote proves this,
when four times showing as exploit indicator.

• When vulnerability enables an adversary to create a bu�er over�ow attack, it should
most likely be treated as important. At least that what we can judge by both words
bu�er and over�ow appearing as top positive indicators for class excellent.

• When the way, how to exploit the vulnerability, is uncertain, there probably will be
no exploit ever created. We derive this from the occurrence of unspeci�ed only as
a positive indicator for no exploit label and negative for three other classes. This
idea is proved by the occurrence of word vector (which is present as an indicator of
non-existing exploit two times).

Although some other features occur frequently in the top in�uential list among classes,
they cannot be strictly referred as indicating an existence of exploit or any other characteristic
of a vulnerability. Hence, we are not able to deduce any conclusion about their meaning.

30

6.5. FEATURE WEIGHTS INSPECTION

CLASS excellent
 name: norm. w: name: norm.w:

execute 0.006920 vulnerability -0.004951
attackers 0.005790 windows -0.004027

code 0.005022 users -0.002518
overflow 0.004926 file_ -0.002465

cve 0.004848 stack -0.001694
earlier 0.002935 possibly -0.001414
allows 0.002535 application -0.001265

 arbitrary 0.002523 sp -0.001260
server 0.002071 service -0.001181
buffer 0.001631 string -0.001153

CLASS great
 name: norm. w: name: norm.w:

sp 0.004279 vulnerability -0.003463
 windows 0.003658 cve -0.002775
 remote 0.003644 allows -0.002300
 service 0.003315 vectors -0.001848
 code 0.002362 unspecified -0.001526
based 0.002255 php -0.001505
 stack 0.002045 users -0.001499
 aka 0.001732 arbitrary -0.001474

denial 0.001646 overflow -0.001281
cause 0.001623 execute -0.001091

CLASS good
 name: norm. w: name: norm.w:

 attackers 0.002675 arbitrary -0.006720
windows 0.001587 allows -0.006412

authentication 0.001425 execute -0.005411
 demonstrated 0.001118 code -0.003578

 properly 0.001077 unspecified -0.002958
 allow 0.001038 vulnerability -0.002654

 api 0.000916 users -0.002612
 microsoft 0.000822 earlier -0.002579
 requests 0.000761 crafted -0.002564

 access 0.000746 buffer -0.002510

CLASS normal
 name: norm. w: name: norm.w:

 code 0.004789 sp -0.003333
overflow 0.004070 earlier -0.003003

buffer 0.003208 server -0.002880
service 0.003039 aka -0.002108

long 0.002820 control -0.001455
stack 0.002401 windows -0.001445
note 0.002263 multiple -0.001365

 request 0.001947 unspecified -0.001190
 cause 0.001753 allow -0.001069
allows 0.001644 activex -0.001060

CLASS average
 name: norm. w: name: norm.w:

 service 0.009559 code -0.008767
 crafted 0.009489 windows -0.008239
 users 0.007562 server -0.008080

 remote 0.006130 aka -0.007588
 php 0.005757 earlier -0.006320
rash 0.005730 sp -0.005621

string 0.005119 attackers -0.005611
adobe 0.003331 buffer -0.004897
 files 0.002625 based -0.004801

multiple 0.002373 vulnerability -0.004747

CLASS manual
 name: norm. w: name: norm.w:

php 0.005862 attackers -0.004675
function 0.004787 service -0.004229
windows 0.004262 overflow -0.002621

file 0.003356 cause -0.002555
sp 0.002845 denial -0.002548

 server 0.002299 buffer -0.002386
 users 0.001974 code -0.001970

remote 0.001414 earlier -0.001398
 authenticated 0.001287 based -0.001361

 commands 0.001162 method -0.001327

CLASS no exploits
 name: norm. w: name: norm.w:
 vulnerability 0.006543 code -0.004637

 allows 0.005162 windows -0.003616
 unspecified 0.004072 execute -0.002848

vectors 0.002725 overflow -0.002460
earlier 0.001956 buffer -0.002450
 aka 0.001950 remote -0.002122

 users 0.001936 long -0.002073
management 0.001298 function -0.002019
application 0.001064 sp -0.001875

 method 0.000999 php -0.001832

Figure 6.1: Most important features for each class

31

CHAPTER 6. RESULT DISCUSSION

32

Chapter 7

Conclusion

The aim of our project was to use ML algorithms for predicting exploit ranking. We
presented a solution that creates features for vulnerabilities classi�cation by splitting their
description by bag-of-words algorithm and then predicts rank by SVM and Random Forest
algorithms. The overall accuracy of classi�ers ranged between 31-43% and Random forest
outperformed SVM in the di�erence of 10%. When evaluating the �nal performance, we
have to take into consideration the amount of the predicted classes and results of random
classi�ers. Thus, the �nal results of rank prediction, even when far from perfect classi�cation,
can be considered as successful.

Last part of our tests showed that algorithm can be used when predicting the only exis-
tence of exploit, with an accuracy of 97.22%. Great performance of predicting the existence
of exploit con�rms results of previous works and shows how machine learning can be useful
in predicting rank and prioritizing vulnerabilities.

An important observation was that the use of Language processing in vulnerability de-
scription parsing, which we expect to improve the solution, did not signi�cantly increased
the �nal accuracy.

There are still many ways how to improve the accuracy of our classi�ers. One of them is
to gather a greater amount of information for particular vulnerabilities and also larger the
amount of training and testing sets. Both would be possible when considering di�erent data
sources. Further work also contains implementing automatized software that would require
only a vulnerability CVE-id and found all possible information and provide the complete
risk assessment.

33

CHAPTER 7. CONCLUSION

34

Bibliography

[1] Common Vulnerabilities and Exposures. <https://cve.mitre.org/>. Accessed: 2016-
05-15.

[2] National Vulnerability Database. <https://nvd.nist.gov/>. Accessed: 2016-05-08.

[3] ALLODI, L. � MASSACCI, F. A preliminary analysis of vulnerability scores for attacks
in wild: the ekits and sym datasets. In Proceedings of the 2012 ACM Workshop on

Building analysis datasets and gathering experience returns for security, p. 17�24. ACM,
2012.

[4] BIRD, S. � KLEIN, E. � LOPER, E. Natural language processing with Python. "
O'Reilly Media, Inc.", 2009.

[5] BOZORGI, M. et al. Beyond Heuristics: Learning to Classify Vulnerabilities and Predict
Exploits. Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining. 2010, p. 105�114.

[6] BREIMAN, L. Random forests. Machine learning. 2001, 45, 1, p. 5�32.

[7] BURGES, C. J. A tutorial on support vector machines for pattern recognition. Data

mining and knowledge discovery. 1998, 2, 2, p. 121�167.

[8] EDKRANTZ, M. � SAID, A. Predicting Cyber Vulnerability Exploits with Machine
Learning. In Thirteenth Scandinavian Conference on Arti�cial Intelligence: SCAI 2015,
278, p. 48. IOS Press, 2015.

[9] ESCHELBECK, G. The Laws of Vulnerabilities: Which security vulnerabilities really
matter? Information Security Technical Report. 2005, 10, 4, p. 213�219.

[10] FAN, R.-E. et al. LIBLINEAR: A library for large linear classi�cation. The Journal of
Machine Learning Research. 2008, 9, p. 1871�1874.

[11] FREI, S. et al. Large-scale vulnerability analysis. In Proceedings of the 2006 SIGCOMM

workshop on Large-scale attack defense, p. 131�138. ACM, 2006.

[12] FRUHWIRTH, C. � MANNISTO, T. Improving CVSS-based vulnerability prioritization
and response with context information. In Proceedings of the 2009 3rd international

Symposium on Empirical Software Engineering and Measurement, p. 535�544. IEEE
Computer Society, 2009.

35

https://cve.mitre.org/
https://nvd.nist.gov/

BIBLIOGRAPHY

[13] HARTANTO, T. Penetration Testing: Testing the Security of Computer Systems.
CS2107-Semester IV. 2014, p. 65.

[14] LABU´, M. Estimating the Attacker's Cost for Exploiting Computer Network Vulner-
abilities. Master's thesis, Czech Technical University, 2016.

[15] PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine

Learning Research. 2011, 12, p. 2825�2830.

[16] RIEKE, R. Modelling and analysing network security policies in a given vulnerability
setting. In Critical Information Infrastructures Security. Springer, 2006. p. 67�78.

36

Appendix A

Content of the CD

• /Code/ � source code for creating datasets and testing classi�ers

• /Datasets/ � datasets for learning and testing performance of classi�ers

• /gavenkar_BP_2016.pdf � the electronic version of this work

37

	Introduction
	Thesis Assignment
	Thesis Structure
	Related Work

	Vulnerability Information and Data Gathering
	Data Sources
	Common Vulnerabilities and Exposures
	Common Vulnerability Scoring System
	National Vulnerability Database
	Metasploit

	Vulnerability Dataset
	Exploit Dataset

	Features Extraction and Analysis
	Features Extraction
	Affected Products
	Date Differences
	CVSS Metrics
	References
	Bag of Words representation

	Most Frequent Features
	Language Processing
	Normalization Methods

	Technical Background
	SVM
	Slack Variables

	Decision Trees
	Random Forests

	Experiments and Results
	Implementation
	SQLite
	Scikit Learn
	Natural Language Toolkit

	Reciever Operating Characteristics
	Baseline Approach
	Experiments
	Linear SVM
	Random Forest

	Experiments with Language Processing
	Linear SVM
	Random Forest

	Exploit Existence Prediction

	Result Discussion
	Achieved Accuracy
	Sensitivity, ROC curves analysis
	Language Processing Contribution
	Predicting Exploit Existence
	Feature Weights Inspection

	Conclusion
	Content of the CD

