
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR THESIS

RRT-path method used for cooperative surveillance by
group of helicopters

Author: Matěj Račinský

Thesis supervisor: Dr. Martin Saska In Prague, May 2016

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Matěj R a č i n s k ý

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: RRT-Path Method Used for Cooperative Surveillance by Group
 of Helicopters

Guidelines:
The aim of the thesis is to design, develop and experimentally verified a motion planning
algorithm for simultaneous solving the problems of optimal coverage and deployment
(defined in [3]) in autonomous surveillance by a team of Micro Aerial Vehicles (MAVs).
Work plan:

• To implement the motion planning algorithm RRT-path [1,2] and to extend it for
solving the problem of autonomous cooperative surveillance by MAVs relatively
localized using the onboard system [5].

• To integrate method in [4] for straightening out trajectories obtained by the RRT-path
based algorithm.

• To verify the implemented system in V-REP robotic simulator.
• To adapt the system for using with platforms of Multi-Robot Systems group at CTU

and to prepare a set of trajectories for experimental evaluation of their feasibility by
real MAVs.

Bibliography/Sources:
[1] V. Vonasek, J. Faigl, T. Krajnik and L. Preucil. A Sampling Schema for Rapidly Exploring Random Trees Using
 a Guiding Path. In Proceedings of the 5th European Conference on Mobile Robots. 2011.
[2] V. Vonasek, J. Faigl, T. Krajnik and L. Preucil. RRT-Path: a guided Rapidly exploring Random Tree. In Robot
 Motion and Control. 2009.
[3] M. Saska, J. Chudoba, L. Preucil, J. Thomas, G. Loianno, A. Tresnak, V. Vonasek and V. Kumar. Autonomous
 Deployment of Swarms of Micro-Aerial Vehicles in Cooperative Surveillance. In Proceedings of International
 Conference on Unmanned Aircraft Systems (ICUAS). 2014.
[4] L. Dubins. On curves of minimal length with a constraint on average curvature, and with prescribed initial and
 terminal positions and tangents. American Journal of Mathematics, 79(3):497–516, July 1957.
[5] T. Krajnik, M. Nitsche, J. Faigl, P. Vanek, M. Saska, L. Preucil, T. Duckett and M. Mejail. A Practical Multirobot
 Localization System. Journal of Intelligent & Robotic Systems 76(3-4):539-562, 2014.

Bachelor Project Supervisor: Ing. Martin Saska, Dr. rer. nat.

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 14, 2016

Author statement for the undergraduate thesis:
I declare that the presented work was developed independently and that I have listed all

the sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the presentation of university theses.

Prague, date ________ signature

Název práce: Aplikace algoritmu RRT-path v úloze autonomního dohledu skupinou helikoptér

Autor: Matěj Račinský

Katedra (ústav): Katedra kybernetiky

Vedoucí bakalářské práce: Dr. Martin Saska

e-mail vedoucího: saska@labe.felk.cvut.cz

Abstrakt Tato práce se zabývá plánováním trasy roje složeného z bezpilotních helikop-
tér v úloze autonomního dohledu. Popisuji zde principy a implementaci algoritmu pro
plánování trasy roje bezpilotního helikoptér za použití RRT-Path algoritmu. Algoritmus
popsán v této práci kombinuje RRT-Path algoritmus s optimalizací pomocí Dubinsových
křivek. Tato práce zahrnuje implementaci algoritmu v jazycích C++ a Python. Funkce
vyvinutého systému byla ověřena experimenty, které jsou prezentovány v této práci.

Klíčová slova: RRT, RRT-Path, Dubins curves, UAV, swarm

Title: RRT-path method used for cooperative surveillance by group of helicopters

Author: Matěj Račinský

Department: Department of Cybernetics

Supervisor: Dr. Martin Saska

Supervisor’s e-mail address: saska@labe.felk.cvut.cz

Abstract In this thesis we study deployment of a swarm consisting of Unmanned Aer-
ial Vehicles (UAVs) in the task of autonomous surveillance using motion planning. This
thesis describes principles and implementation of the algorithm for motion planing of
swarm of UAVs using the RRT-Path algorithm. Algorithm described in this thesis com-
bines the RRT-Path algorithm with optimization by Dubins Curves. The thesis includes
the implementation in C++ and Python, functionality was verified by experiments presen-
ted in this thesis.

Keywords: RRT, RRT-Path, Dubins curves, UAV, swarm

7

CONTENTS

1. Introduction 10
1.1. Objective . 12

2. Algorithm 14

3. RRT-Path 16
3.1. Rapidly Exploring Random Tree . 16
3.2. RRT-Path . 16
3.3. Guiding path . 18

4. Grouping of goals for the guiding path 20

5. Areas of Interest coverage 22

6. UAV swarm properties 25
6.1. Motion model . 25
6.2. Relative localization . 26

7. Dubins curves 27
7.1. Trajectories optimization using Dubins curves . 28

7.1.1. One UAV demonstration . 28

8. Trajectory re-sampling 31

9. Covering more AoIs with one swarm 32

10.V-REP simulations 35
10.1. UAV control and trajectory simulation . 35
10.2. Simulations . 36

11. Implementation 40
11.1. External libraries . 40
11.2. Code structure and services . 40
11.3. Utility scripts . 41

12.Experiments 42
12.1. RRT-Path . 42
12.2. Influence of re-sampling on Dubins curves optimization 42

12.2.1. First experiment . 44
12.2.2. Second experiment . 47

8

Contents

13.Conclusion 55
13.1. Future work . 56

Bibliography 56

A. Contents of the enclosed CD 60

9

CHAPTER
ONE

INTRODUCTION

Unmanned Aerial Vehicle (UAV) is an aircraft intended to operate with no pilot on-board. The
UAV is also known as drone and it has been gaining popularity in recent years in both academic
circles and wide public. The term Micro Aerial Vehicle (MAV) is also used for very small
UAV, typically intended for multi-robot scenarios. Drones are used in many applications, both
military and civil, but unfortunately, the term “drone” has negative connotation and is mainly
linked to military actions. The main complication of massive industrial use of drones is national
regulation and legislation.
The drone may be controlled with various kinds of autonomy: either by a given degree of

remote control from an operator, located on the ground or in another vehicle, or fully autonom-
ously, by onboard computers [10].
For small drones, the quadrotor (also called quadcopter) design has become very popular and

widely used. Quadrotor is a helicopter that is lifted and propelled by four horizontal rotors.
Quadrotors are used in the Multi-Robot Systems group at CTU, which uses them in various
multi-robot scenarios, such as formation flying [14, 15, 17, 18, 21], swarm robotics [13, 20],
environment monitoring [19] and autonomous surveillance [16, 23], which is being solved also
in this thesis. Example of a swarm of quadrotors can be seen in figure 1.1.
International Civil Aviation Organization (ICAO) [10] classifies UAVs into two groups: Re-

motely piloted aircraft - an aircraft where the pilot is not on board of the aircraft and control
the aircraft from another location, and Autonomous aircraft - an unmanned aircraft that does not
allow pilot intervention in the management of the flight.
Remotely piloted aircraft are teleoperated usually by a person with a remote radio controller.

Some examples of uses of teleoperated aircraft are inspections of power lines [5], monitoring of
agricultural areas [6], with proof of concept demonstrated in Château de Châtagneréaz vineyard
[1], filming movies and acrobatic aerial footages [6], counting wildlife and searching people
lost in wilderness [11] and crowd monitoring of large events including festivals and protests.
UAV monitoring of crowds allow operators to see different parts of the surveyed scene, follow
crowd/people and thus provide information that is not accessible with fixed infrastructure of
immovable cameras. UAVs are handy in many use cases, where helicopters with human pilots
are too costly or unwieldy.
Autonomous aircraft fly independently without an operator directly controlling the flight. The

operator specifies a task for the aircraft to execute instead. The task difficulty depends on the
level of autonomy of the aircraft. It can be anything from flying straight to a single point or

10

Figure 1.1.: Quadrotors assembled in the Multi-Robot Systems group at CTU

following a path consisting of multiple points, to perform a complex task of following a moving
object and avoiding collisions.

Both start-up companies and large corporates compete in developing various kinds of autonom-
ous aircraft for many different purposes. Currently there are 368 projects on kickstarter tinkering
with drones. TheAmazon plans to use autonomous drones for packages delivery in their program
Prime Air [26]. Next to delivering goods, the other commonly discussed topic is localization of
people or other objects in rescue missions taking place in dangerous or hard to access areas and
autonomous surveillance of Areas of Interest (abbreviated as AoI).
Miniaturization, more manufacturers and lowering costs of UAVs and nature inspired al-

gorithms led to the idea of creating UAV swarms. Vito Trianni [24] defines four criteria for
robotic system to be considered a swarm robotic system.

1. The system should be relevant for the coordination and control of a large number of robots.
This includes all approaches that aim for scalability.

2. The system should involve relatively few groups of homogeneous robots, each group com-
prising a large number of individuals, high redundancy is required within each group.

3. The system should consider tasks that can not be effectively solved by the single robot,
due to individual limitations.

4. The system should involve robots that have local and limited sensing and communication
abilities.

The approach presented in this thesis is not scalable, but it satisfies the other criteria. Swarm
cannot be remotely controlled by one person and controlling each UAV in swarm by one operator
would be really hard to coordinate and practically impossible to avoid collisions between UAVs,

11

Introduction

so the only plausible way to manually control the swarm is to remotely control whole swarm as
one drone. This thesis deals exclusively with fully autonomous aircraft where no UAV needs to
be remotely controlled by an operator.

In the problem of controlling of swarm, collisions betweenUAVsmust be avoided. Thatmeans
that a method to keep them in a safe distance between each other has to be found. Second,
a precise enough relative localization system is needed to keep track of the swarm formation
shape and relative distances. And finally, a motion planning algorithm has to be developed in
order to move the swarm from its initial position to a target position (Area of Interest in case
of the surveillance scenario) in a certain environment which can contain a set of obstacles [7].
Keeping track of the position of UAV individuals in the swarm is essential to prevent collisions
between them and keeping the swarm organized. The most obvious approach would be to equip
each UAV with a Global Positioning System (GPS) chip to obtain absolute positions and use
them to calculate relative distances between each other. However, UAVs are often deployed in
areas where GPS performs poorly or is impossible to use (e.g. inside buildings), moreover, even
in open spaces with a good GPS signal the accuracy offered by GPS (around 3 m) is not sufficient
for control of compact swarms with possibly smaller relative distances.[12]

1.1. Objective
The objective of this thesis is to explore the possibility of using swarms of UAVs in the task of
autonomous surveillance. The task is defined as finding a collision free trajectories from initial
depot to an AoI or more AoIs and covering the largest possible part of AoI or AoIs. For details
on the problem definition see [23].
This task can be done using several approaches. One approach is finding an optimal position

in AoI for each individual UAV and then searching feasible and collision-free trajectory for each
UAV. This approach has the problem that the feasible solution may not exist due to obstacles and
relative localization constrains, as shown in [23]. A demonstration of such problem can be seen
in the figure 1.2. Another approach is to find trajectory to any points above AoIs and then to
optimize AoI coverage.
This thesis presents implementation of finding feasible trajectories using the RRT-Path al-

gorithm [27–29] and optimization by Dubins curves [3]. The RRT-Path algorithm is based on the
Rapidly-exploring Random Tree algorithm (RRT), described in [8]. To guarantee proper func-
tion of the RRT-Path algorithm for multi-UAV deployment, many support algorithms and sys-
tems must be implemented. The motion model of UAVs is implemented and collision avoidance
algorithm is used for obstacles avoidance. In the next step, trajectories found by the RRT-Path
algorithm are optimized using the Dubins curves, which provide optimal trajectory for motion
model used in this thesis.
Part of this thesis is also verification of the planning algorithm by following trajectories by

UAVs swarm in simulation software V-REP. The last part of this thesis is to design an interface
with system [22], where trajectories can be loaded to real UAVs for experiments.

12

Objective

(a) (b)

(c) (d)

Figure 1.2.: Violation of the relative localization constraints when trajectories are planned after
searching the optimal positions. Relative localization constraints are violated in b),
c), d). Obstacles are visualized by red colour, AoIs by green colour. Source [23]

13

CHAPTER
TWO

ALGORITHM

The basic structure of the whole algorithm is shown in the figure 2.1.
The first module represents finding the guiding paths for the trajectory planning. It takes map

as an input and returns the optimal path from initial positions to AoIs. The path planning uses an
A* algorithm. All details regarding the path planning are explained in section 3.3. The trajectory
planning consists of three sub-modules. The first sub-module is the RRT-Path trajectory planning
which takes the map and the guiding path as the inputs and returns space-filling tree with some
leaves in the AoIs. The next sub-module is RRT which continues to search the space above AoIs.
All feasible trajectories are used as an input of the sub-module for finding the best coverage.
This sub-module computes coverage of AoIs in each configuration and returns the trajectory to
configuration with the best AoIs coverage. The quality of the coverage is determined by the
cost function, which is described in chapter 5. The trajectories re-sampling module re-samples
trajectories to higher sampling rate, which results in smoother trajectories. This module is here
mainly due to constraints of real UAVs, which are mentioned in chapter 8. The last module is
optimization of trajectories by Dubins curves. The optimization is explained in chapter 7.

14

Figure 2.1.: The basis of whole algorithm

15

CHAPTER
THREE

RRT-PATH

In this chapter a brief introduction of the RRT-Path algorithm is covered. Firstly, we need to
define the RRT algorithm which the RRT-Path is based on.

3.1. Rapidly Exploring Random Tree

Rapidly Exploring Random Tree (RRT), introduced by LaValle [8] in 1998, is non-deterministic
algorithm for motion planning, used to search non-convex spaces by randomly-built space-filling
tree. The RRT method builds a tree T rooted at qstar t . In each iteration, a random sample qrand
is chosen from the configuration space C and the nearest node qnear in the tree to qrand is
found. The node qnear is expanded using a local planner to obtain a set of new configurations
reachable from qnear . The nearest configuration towards qrand is selected from this set and
added to the tree. The edge from qnear to the newly added configuration contains control inputs
used by the local planner to reach the new configuration. The algorithm terminates if the distance
between a node in the tree and qgoal is less than dgoal or after Imax of planning iterations. [29]
The RRT method is sketched in pseudocode 3.1. In the RRT algorithm, configurations on the
third line have uniform distribution. The implementation of the expansion step is sketched in
pseudocode 3.2. The expansion step includes motion planning with the use of a motion model.
Forward motion model q̇ = f

(
q, u

)
is considered there and the expansion of node q is realized by

applying several control inputs u∈U to the model in order to obtain new configurations reachable
from the node. The control inputs are applied over time ∆t. New configurations are obtained by
integration of the motion model, which can be solved analytically in the case of simple systems
like Car-like robots [21], or using numerical integration like Euler integration of Runge-Kutta
methods for complex systems. As UAVs can be driven by continuous values, the set U has to be
discretized in order to allow RRT to expand the node qnear to a reasonable number of candidate
configurations. [29]

3.2. RRT-Path

RRT-Path, introduced by Vonásek [27, 29] in 2015, is an improved version of RRT featuring
preprocessing of configuration space. RRT-Path enables UAVs to manoeuvre around obstacles
and find way in narrow passages. RRT-Path also finds goal much faster [12]. RRT-Path uses the

16

RRT-Path

Algorithm 3.1 the RRT algorithm source [29]
Input: Configurations qaler t and qgoal , maximum number of iterations Imax , maximum dis-
tance to goal dgoal , configuration space C
Output: Trajectory P or failure
1: T .add

(
qstar t

)
// create new tree and add initial configuration q in it

2: for iteration :=1:Imax do
3: qrand := getRandomConfiguration(C)
4: qnear := nearest node in tree T to q
5: expandTree(qrand ,qnear)
6: d = distance from tree T to qgoal
7: if d < dgoal then
8: P = extract trajectory from qstar t to qrand
9: return P

10: end
11: end
12: return failure // no solution was found within Imax iterations

Algorithm 3.2 expandTree(qrand, qnear): Expansion procedure of the RRT algorithm source
[29]
Input: Random configuration qrand∈C, configuration tree T , its nearest node in the tree
qnear∈T
Output: Extended tree T
1: R = ∅ // set of configurations reachable from qnear together with control inputs
2: foreach u∈U do
3: q = qnear +

∫ ∆t
0 f

(
qnear, u

)
dt

4: if q is f easible then
5: R = R ∪

{(
q, u

)}
6: end
7: end
8: if R , ∅ then
9:

(
qnew, u

)
= select a conguration from R closest to q near ;

10: T .addNode(qnew)
11: T .addEdge(qnear, qnew,∆t, u)
12: end

17

RRT-Path

guiding path during building the space-filling tree. Before running the RRT algorithm, the guid-
ing path from qstar t to qgoal is found and sampled. One of inputs to the RRT-Path algorithm
is the probability p (guided). In the main loop of the algorithm, obtaining of the random con-
figuration is modified. Instead of random configuration with uniform distribution, configuration
around the qi is selected with probability p (guided).

Let G be the guiding path and
(
qstar t, q1, q2, ..., qgoal

)
∈G the points of the guiding path,

where qi∈Cf ree and i∈ (start, 1, 2, ..., goal). In the beginning, qi := q1, so random point is
selected from the area around the point q1 with probability p (guided). When the leaves of the
searching tree reach distance lower than rdist to the qi , then the next point of the guiding path
will be used instead of qi , so qi := qi+1. This continues until qgoal is reached, which means the
RRT-Path algorithm ends.

3.3. Guiding path
The guiding path is obtained by transferring themap to a graph representation and then the path is
found using the graph-search algorithms. The map can be transferred to the graph representation
by using the Voronoi diagram, a visibility graph or by discretization to a grid representation.
Then the path can be found by using Dijkstra algorithm or A* algorithm. In this thesis, the

A* algorithm has been used because of its ability to find optimal path and easy calculation of
heuristic function in Euclidean space.
The classic cost function of node qi in A* algorithm is f

(
qi

)
= g

(
qi

)
+ h

(
qi

)
. The g

(
qi

)
is

sum of costs of all edges in shortest path between nodes and qstar t and qi . The h
(
qi

)
is heuristic

estimate of distance between qi and qgoal . In Euclidean space, it is calculated as h
(
qi

)
=

qi − qgoal

. In this thesis, a node qi in the graph has a function o

(
qi

)
representing its proximity

to the nearest obstacle. This function expresses obstacles avoidance. o (·) function used in this
thesis is following o

(
qi

)
= 30sdirect

(
qi

)
+ 15sdiagonal

(
qi

)
where sdirect

(
qi

)
is count of

obstacles in direct neighbours of the node qi and sdiagonal
(
qi

)
is count of obstacles in diagonal

neighbours of the node qi . Another example of such function is o
(
qi

)
= const
‖qi−nearest obstacle ‖

,
where const is weight of the o

(
qi

)
and determines how much obstacles should be avoided. The

map with nodes evaluation can be seen in the figure 3.1. For every two nodes qi, qj ∈ Cf ree

, the shortest path pmin

(
qi, qj

)
of all paths is used as metric for the map. The length of path

p
(
qstar t, qgoal

)
in graph is calculated as

length
(
p
(
qstar t, qgoal

))
=

qgoal−1∑
qi=qstar t

d
(
qi, qi+1

)
+

qgoal−1∑
qi=qstar t+1

o
(
qi

)
(3.1)

, where the d (·) is euclidean distance between neighbouring nodes. o
(
qstar t

)
and o

(
qgoal

)
are not calculated because the metric needs to satisfy the condition d(qi, qj) = 0 ⇔ qi = qj .
Then all conditions for the metric are satisfied. Because the o (·) is considered only in metric
calculation and not in the heuristic estimate, the heuristic is admissible and thus it finds the
optimal path.

18

Guiding path

Figure 3.1.: Example of the a map with nodes evaluated by o (·) function.

19

CHAPTER
FOUR

GROUPING OF GOALS FOR THE GUIDING PATH

During the processing of the map (method MapProcessor::getEndNodes in codebase), all AoIs
are grouped to one big AoI, which is the smallest rectangle covering all AoIs.

If this modification is enabled, only one goal is used for all AoIs instead of one goal for every
AoI (a node in the middle of AoI rectangle is considered to be the goal node). The whole swarm
has only one guiding path, so the grouping prevents the swarm from splitting. The relative
localization is the main reason to have only one big swarm instead of more smaller swarms (or
individual UAVs in case of the same count of AoI and UAVs), due to increased stability and
reduced possibility of relative collisions as discussed in [23]. When obstacle is in the middle,
nearest node which is not occupied by an obstacle is used as middle of goals group. The middle
is used as the target for the guiding path.
This approach has the following advantage. When individual AoIs are near to a global goal

of the whole group, as seen in 4.2, then the whole swarm follows one guiding path without
any splitting. The grouping makes the RRT-Path run faster and also the advantage of relative
localization is included.
Maps with goals and obstacles are shown in figures 4.1 and 4.2.
The disadvantage of this method emerges when individual AoIs have a bigger distance from

each other than can be covered by UAVs, that are keeping the relative distances required by the
relative localization constraints specified in [4]. Then this approach may fail, because the goal
of the RRT-Path is very distant from AoIs, as can be seen in figure 4.1 and the main part of the
path is found by RRT algorithm. The RRT-Path is able to find the trajectories much faster than
the RRT algorithm and thus finding trajectories by the RRT algorithm is much slower.
Nevertheless such distribution of AoIs can be simply detected bymeasuring distances between

the rectangle centre and the AoIs and the swarm can be split since all sub-swarms will operate in
different parts of the environment and therefore in safe relative distances. The proposal of detec-
tion is mentioned in section 13.1. The method proposed in this thesis can be used independently
for all sub-swarms. This thesis is not focused on the distribution of AoIs to independent swarms
and therefore all situations presented here enable feasible grouping of AoIs for a single swarm.

20

Figure 4.1.: A map with the goals unsuitable for grouping. Group is marked with blue rectangle.
Obstacles have grey colour and AoIs have green colour.

Figure 4.2.: Maps with the goals suitable for grouping. Groups are marked with blue rectangles.
Obstacles have grey colout and AoIs have green colour.

21

CHAPTER
FIVE

AREAS OF INTEREST COVERAGE

Covering Areas of Interest (AoIs) with UAVs is the key part of the task of autonomous cooperat-
ive surveillance. In task of surveillance, UAVs observe space below them by on-board camera,
as shown in figure 5.1. AoIs and areas seen by UAVs are represented by rectangles in this thesis
for simplicity and fast computation.
Coverage of AoIs is an optimization problem. This optimization problem can be solved by

finding minimum of cost function. The value of cost function should objectively reflect the qual-
ity of coverage. The lower value should represent better coverage. In this thesis, cost function
f
(
qi

)
represents quality of coverage in configuration qi , where configuration qi is set of UAV

positions. The cost function f (·)represents size of AoIs not covered by UAVs, which is equi-
valent to information not seen by UAVs. That means if f

(
q1

)
< f

(
q2

)
configuration q1 covers

bigger part of AoIs than configuration q2. The environment is discretized to square grid repres-
ented by matrix A ∈ R2. One of parameters for coverage optimization is size of one square of
grid a

[
map units

]
. Each element Aj,k ∈ R represents square with size a. Before computing

areas seen by UAVs, Aj,k := Amax if it contains AoI, and Aj,k := 0 otherwise. Amax = 100
is used in experiments, but any value which does not cause overflow or underflow in float rep-
resentation will suffice. Then the following formula is applied to every element of the world
representing matrix A:

Aj,k := Aj,k · lm, (5.1)

Figure 5.1.: The area viewed by UAV on-board camera, source [12]

22

where variable l should indicate amount of information not seen by UAV even if this UAV covers
the element Aj,k . This is because quality of image obtained from on-board camera depends on
many factors, such as time of day, weather conditions, flight altitude, camera chip resolution,
lens parameters, stabilization, frame rate and so on. Due to these factors, it is convenient to let
more UAVs observe same area. In this implementation, l := 0.5, but if the flight altitude will
be considered in the optimization algorithm, higher flight altitude would lead worse image re-
cording, so l (f light Altitude1) > l (f light Altitude2) for f light Altitude1 > f light Altitude2.
Variable m represents number of UAVs seeing the area of element Aj,k . Example of AoI with
one UAV observing part of it can be seen in figure 5.2. As we can see, parts of AoI not
seen by a UAV have value Aj,k = Amax = 100 and parts of AoI seen by UAV have value
Aj,k = Amax · lm = 100 · 0.51 = 50. In some applications, one UAV may observe everything
in its observable area and does not need another UAV observing same area. In this case, l := 0,
so the cost of the element Aj,k will not change when more UAV will observe it, because 0m is
same for every m ∈ N . The lm where 1 > l > 0 and m > 1 evaluates the configuration where
more UAVs observe the same area as better than one UAV observing the area, but worse than
each UAV observing its own area.
If UAV arrives above anyAoI, the guiding path is not used for this UAV anymore and instead of

it, RRT algorithm continues by random searching over the AoI. Random node for RRT algorithm
is selected only from AoI beneath the UAV, not from whole environment. The RRT algorithm
is stopped when maximum number of nodes is reached. After stopping, all states found by RRT
algorithm where UAVs are above AoIs are evaluated by the coverage cost function. Every node
of the RRT algorithm contains configurations of all UAVs and during the RRT, but every UAV
has its own random point selected during the RRT. During the RRT algorithm, the feasibility and
relative localization constraints are being checked. State with the lowest cost function is used as
result of the path finding algorithm and used as input for Dubins curves optimization.

23

Areas of Interest coverage

(a) 1 UAV

(b) 2 UAVs

(c) 3 UAVs

Figure 5.2.: AoI matrix with one UAVs above it represented by matrix with every cell evaluated
by formula 5.1. The AoI is marked with green colour and the areas observed by the
UAVs is marked with blue colour. Area covered by more UAVs has smaller value as
implies the formula.

24

CHAPTER
SIX

UAV SWARM PROPERTIES

6.1. Motion model

The RRT-Path algorithm is universal and works with any motion model, which allows us to find
paths feasible for swarm of UAVs. The motion model in RRT-Path is important for obtaining
configurations of UAVs in the next state. In order to obtain smooth trajectories that are easy to
follow, the trajectory planning in space of circles and lines is chosen. For this purpose, car-like
model was chosen. Differential equations of motion model in 3D from [21] are

ẋ (t) = v (t) sin ϕ (t)
ẏ (t) = v (t) cos (t)
ż (t) = w (t)
ϕ̇ (t) = K (t) v (t)

(6.1)

where x (t) , y (t) , z (t) are coordinates of UAV, ϕ (t) represents heading of UAV, v (t) is forward
velocity, K (t) is curvature, w (t) is ascent velocity. Vector

[
K (t) w (t) v (t)

]
represents the

input vector of motion model. Difference equations are used for calculation of next state in RRT-
Path and RRT algorithms. When inputs are held constant in each time interval between two time
steps, difference equations are

x (k + 1) =




x (k) + 1
K (k+1) (sin (ϕ (k) + K (k + 1) v (k + 1) ∆t (k + 1)) − sin (ϕ (k)))

i f K (k + 1) , 0
x (k) + v (k + 1) cos (ϕ (k)) ∆t (k + 1)
i f K (k + 1) = 0

y (k + 1) =




y (k) − 1
K (k+1) (cos (ϕ (k) + K (k + 1) v (k + 1) ∆t (k + 1)) − cos (ϕ (k)))

i f K (k + 1) , 0
y (k) + v (k + 1) sin (ϕ (k)) ∆t (k + 1)
i f K (k + 1) = 0

z (k + 1) = z (k) + w (k + 1) ∆t (k + 1)
ϕ (k + 1) = ϕ (k) + K (k + 1) v (k + 1) ∆t (k + 1)

(6.2)

25

UAV swarm properties

6.2. Relative localization
In compact swarms, every UAV has to be aware of its neighbours in order to remain together
in one swarm and reduce the possibility of collision. In this thesis, constraints of relative loc-
alization are implemented by setting the minimal distance dmin and maximal distance dmax .
The minimal distance is set to avoid collisions and because UAVs push air beneath them when
they fly. Large amount of air needs to be pushed below UAV in order to keep it flying. Because
of this, UAVs can not fly too close to each other because of air currents they produce. UAVs
in minimal distance do not affect each other by air currents. By real experiments, the minimal
distance was identified as 2 meters. The maximal distance needs to be set to respect the sensors
range. UAVs in the Multi-Robot Systems group at CTU use on-board vision based localization
system, published in [4]. In [4] a maximal range of sensors is specified based on pattern size
and camera resolution and UAVs in bigger distance than this maximal range can not be seen. In
experiments in this thesis, the maximal distance was assumed to be 5 meters.
EachUAVmust have n ormore neighbours in distance d, where dmin < d < dmax in each step

of the motion planning. Default setting n = 2 was used in presented experiments. Computation
of this relative localization constraint is fast, but this constraint is unusable for more than 5 UAVs.
Swarm of 6 or more UAVs can split to 2 or more groups and still fit this relative localization
constraint. The following algorithm, which consists of two steps and uses graph representation,
is proposed to check whether all UAVs are in the same swarm. Every UAV is considered as a
node and every pair of UAVs with distance d, where dmin < d < dmax , are connected by an
edge. If the graph has only one connected component, all UAVs are in one swarm. Otherwise,
the graph has more connected components, which implies UAVs are split into more swarms.
In the first step of the algorithm, the adjacency matrix A is built. Each UAV represents one

column and one row in this matrix. The adjacency matrix A is built as

Ai, j =



1 i f dmin < di, j < dmax

0 otherwise
(6.3)

where i, j are indices of matrix A and di, j is distance between i-th and j-th UAV. In the second
step, the graph represented by A is traversed by depth-first algorithm, starting at A1,1. If all nodes
are visited during the traversing, the graph has only one connected component and all UAVs are
in one swarm. The swarming method can be enabled or disabled in configuration.

26

CHAPTER
SEVEN

DUBINS CURVES

Dubins curves, also called Dubins manoeuvrers or Dubins path, were published by Lester Eli
Dubins in 1957 [3]. Length of Dubins path is optimal path for car-like motion model and can
be efficiently applied also for control UAVs if the robot moves at constant forward speed. The
important constraint is the maximum steering angle φmax , which results in a minimum turning
radiusρmin . As the car travels, consider the length of the curve inW = R2 traced out by a
pencil attached to the centre of the car. The task is to minimize the length of this curve as the
car travels between any qI and qG . Due to ρmin , this can be considered as a bounded-curvature
shortest-path problem. If ρmin = 0, then there is no curvature bound, and the shortest path
follows a straight line in R2. In terms of a cost function, the criterion to optimize is

L(q̃ (t) , ũ (t)) =
∫ tF

0

√
ẋ(t)2 + ẏ(t)2dt, (7.1)

where tF is the time at which qG is reached, and a configuration is denoted as q (t) = (x (t) , y (t) , ϕ (t)),
q̃ (t) denotes the function q̃ : [0, t] → X , which is called the state trajectory (or state history).
Similarly, ũ (t) denotes the action trajectory (or action history). If qG is not reached, then it is
assumed that L(q̃, ũ) = ∞. [9]
When considering constraints of inputs (actions) for motion model, the system can be simpli-

fied to

ẋ (t) = cos ϕ (t)
ẏ (t) = sin ϕ (t)
ϕ̇ (t) = u (t)

(7.2)

in which u is chosen from the interval U = {− tan φmax, 0, tan φmax }. As we can see, the
simplified system is identical to equations 6.1 with v = 1.
It was shown in [3] that between any two configurations, the shortest path for the Dubins

car can always be expressed as a combination of no more than three motion primitives. Each
motion primitive applies a constant action over an interval of time. This interval of time is not
constant and it may differ for each primitive during the path. Furthermore, the only actions that
are needed to traverse the shortest paths are u ∈ {− tan φmax, 0, tan φmax }. The primitives and
their associated symbols are shown in table 7.1. The S primitive drives the car straight ahead.
The L and R primitives turn as sharply as possible to the left and right, respectively. Using these
symbols, each possible kind of shortest path can be determined as a sequence of three symbols

27

Dubins curves

Symbol Steering u
L − tan φmax

S 0
R tan φmax

Table 7.1.: The three motion primitives from which all optimal curves for the Dubins car can be
constructed.

in the order in which the primitives are applied. Let such a sequence be called a word. There is
no need to have two consecutive primitives of the same kind because they can be merged into
one. Under this observation, ten possible words of length three are possible. Dubins showed that
only these six words are possibly optimal:

{LRL, RLR, LSL, LSR, RSL, RSR}. (7.3)

The shortest path between any two configurations can always be characterized by one of these
words, which are called the Dubins curves.

7.1. Trajectories optimization using Dubins curves
Because of the fact that Dubins curves provide us an optimal path, they can be used to optimize
the trajectory found with the RRT-Path algorithm. For only one UAV, the proposed optimization
algorithm works as follows. Two random points of trajectory are chosen and Dubins curves
are calculated between them. If calculated curves do not collide with the obstacles, they are
used instead of the original trajectory between the points. This step is repeated until the whole
trajectory can not be shortened more after e.g. 2000 iterations and thus is sub-optimal.
In a real situation, we do not know whether found trajectory is optimal or not, so we need to

determine conditions for stopping the optimization. The optimization is stopped if the trajectory
is not shortened after many (e. g. 150) iterations or optimization is too slow and trajectory is
shortened only by small distances (e. g. shortening by 5% per 1000 iterations).
For a swarm, the situation is complicated because of relative localization constraints, i.e. min-

imal and maximal distances between individual UAVs. Dubins curves must be sampled in the
same frequency as the trajectory found by the RRT-Path algorithm. The motion model in the
RRT-Path algorithm uses constant control input for a fixed time interval T . The frequency of
sampling is 1

T or its integral multiply when a trajectory is being re-sampled. Each point has to
be validated for feasibility in terms of minimal and maximal distance from another UAVs. So the
curves can be used only when all trajectories between minimal and maximal distance of relative
localization.
Due to using randomly chosen points, the optimization is stochastic and non-deterministic.

7.1.1. One UAV demonstration

In figure 7.1 a trajectory of one UAV found by the RRT-Path algorithm in map with one obstacle
marked by a dark grey rectangle is depicted. Obstacle amplification is marked by a light grey
rectangle. In figure 7.2 optimal trajectory found using Dubins curves is shown. The resulting
trajectory consists of many Dubins curves and it was obtained by algorithm mentioned above.

28

Trajectories optimization using Dubins curves

Figure 7.1.: Trajectory of one UAV found by the RRT-Path algorithm before Dubins curves op-
timization

Random points have been replaced by Dubins curves and after many iterations, e.g. 2000, the
optimal trajectory was found.

29

Dubins curves

Figure 7.2.: Trajectory of one UAV found by the RRT-Path algorithm after Dubins curves optim-
ization.

30

CHAPTER
EIGHT

TRAJECTORY RE-SAMPLING

Motion model in the RRT-Path algorithm uses constant control input in time interval from 0.5
to 1 second. Smaller interval for constant input causes RRT-Path algorithm to run for too long.
When using too short constant input interval, the tree has too many nodes, grows slowly and
runs out of memory much faster than longer interval. An interval longer than 1 second makes
UAVs unable to manoeuvre between smaller obstacles. Thus range from 0.5 to 1 second was
experimentally chosen as best interval. Using x seconds long constant input interval also means
1
x Hz frequency of points in resulting trajectory in the output of the algorithm. So the range from
0.5 to 1 second implies resulting frequency is in range 1Hz to 2Hz.
Real UAVs in Multi-Robot Systems group at CTU use frequency 70Hz for providing target

points to UAVs and trajectories with lower frequency are linear interpolated to have frequency
70Hz. That means frequency 2Hz is too low for real usage because a trajectory generated with
this frequency would not be smooth enough.
Change of frequency before the RRT-Path algorithm makes the algorithm unable to run effi-

ciently in bigger maps, so this approach does not solve the problem.
Another solution is to re-sample the trajectory after Dubins curves. But this method failed

because after Dubins optimization, the curves had different length and different constant input
durations.
The best solution for this issue is re-sampling of trajectory generated by RRT-Path algorithm

before it is optimized by Dubins curves. This solution also has big advantage in Dubins curves
optimization because it results in shorter final trajectory as will be shown in the experiments in
the chapter 12.

31

CHAPTER
NINE

COVERING MORE AOIS WITH ONE SWARM

Some maps have distribution of obstacles and AoIs where algorithm stated above fails. These
maps can be seen in figure 9.1. Standard algorithm which uses only one guiding path always
leads swarm to only one Area of Interest and the second area remains completely uncovered.
In case of using relative localization where every UAV needs only 1 to 2 neighbours, UAVs

can create chain and reach to more distant targets or targets divided by obstacles which UAVs
can not reach when moving as one swarm using standard RRT-Path algorithm.
Following modifications must be done if we want to cover all AoIs in figure 9.1.
UAVs are split to two groups, and every group has its own guiding path to one AoI. Relative

localization keeps all UAVs in one swarm by its constraints described in section 6.2. With this
setting, the swarm behaves like chain, because it is “pulled” to opposite sides by different guiding
paths, but it is also connected by relative localization, so it does not split into more smaller
swarms. Successful coverage by using the chain behaviour can be seen in figure 9.2.
Unfortunately, this approach does not work in all maps and configurations as can be seen in

figure 9.3. The map on the right shows typical example of getting stuck in local minimum, where
all UAVs preferred covering only one AoI over covering both AoIs, but the map on the left shows
different issue. When we have symmetric map and UAVs do not have starting position in middle
of this map, one side of the chain needs to be “pulled” with more power than the other side to
cover both AoIs and encircle the obstacle between UAVs starting position and AoIs. This leads
to configuration where only one side of chain covers AoI and the other side of chain does not
reach the second AoI. This bigger pulling power, which would probably solve this issue, can
not be simulated in RRT-Path algorithm. These problems demonstrates the fact this approach
is not robust and needs manual preprocessing of UAVs starting positions. The limitation of this
approach is also the fact it works only for two AoIs.

32

Figure 9.1.: Maps with only one covered Area of Interest

Figure 9.2.: Maps with successful chaining behaviour

33

Covering more AoIs with one swarm

Figure 9.3.: Maps with unsuccessful chaining behaviour

34

CHAPTER
TEN

V-REP SIMULATIONS

V-REP is an acronym for Virtual robot experimentation platform [2], a simulator developed by
Coppelia Robotics, providing an advanced environment for testing and simulations of robots
of all types. The V-REP environment is free and open-souce for educational purposes. The
environment takes in account certain physical laws like gravity, inertia or friction, which enables
to truthfully verify applicability for deployment of UAVs in the real world. V-REP has many
build-in models, but user can also create his own robot. V-REP enables to control robots over
API and has API clients for C, C++, Python, Java, Lua, Matlab, Octave and Urbi.

10.1. UAV control and trajectory simulation

Python is convenient for fast prototyping and has native functions for easy JSON parsing, which
made it good choice for simulations of generated trajectories in V-REP.
UAVs in V-REP can be controlled over remote API only by changing location of their tar-

get. Then UAV tries to reach the location of its target. Unfortunately, when using default UAV
VREP controller, UAVs only follow location, with speed proportional to distance. UAVs do
not try to reach target and simultaneously to have zero speed when reaching their target, which
causes overshoot. This fact leads to another disadvantage of such UAV controller. In long and
straight corridors the UAV increases its speed, which causes overshoot when trajectory changes
its direction because the UAV is not able to slow down and follow its trajectory in turn. These
overshoots were many times bigger than size of UAVs, so they could not be ignored and had to
be fixed. During first, naive implementation, position of next state of the trajectory was set as
target position for UAV, but due to overshoot and large distances between states UAVs failed to
follow the trajectory. Another implementation uses linear interpolated trajectory between UAV
and its next state position. The calculated target is placed in the line between UAV and next state
position, in the constant distance to UAV as

X (k + 1)target = X (k)UAV +

(
X (k)ns − X (k)UAV

)
‖X (k)ns − X (k)UAV ‖

· const (10.1)

where X (k)UAV is UAV position in the k-th iteration of the simulation, X (k)ns is position of
next state in planned trajectory in k-th iteration, X (k + 1)target is position of UAV target in the
k + 1-th iteration and const is constant experimentally tuned, so the UAV does not move too fast

35

V-REP simulations

nor too slow. Too fast movements cause overshoot and too slow movements cause the simulation
to run for needlessly long time.

But as mentioned earlier, even this approach do not work well. In long passages, where tra-
jectory did not turn, UAVs increased their velocity and inertia, which made them harder to turn.
The problem of overshooting is shown in figure 10.1. The overshoot is at the end of long passage
in the map 10.2. Red and violet balls represent positions of next states in trajectory and green
balls represent UAV targets. In the first image, we can see UAVs leaving the narrow passage. As
you can see in second and third image, positions of next state are in same place, but because of
constant distance of target and UAV, the target is dragged by UAVs inertia.
This has been fixed by not updating the position of the target when distance between UAV

and the next state is bigger than in previous iteration and the position of the next state is still the
same, as

X (k + 1)target =




X (k)UAV +
(X(k)ns−X(k)UAV)
‖X(k)ns−X(k)UAV ‖

· const

i f ‖X (k)ns − X (k)UAV ‖ < ‖X (k − 1)ns − X (k − 1)UAV ‖

∧X (k)ns = X (k − 1)ns
X (k)target
else

(10.2)

This prevents the target from dragging by UAV with big inertia.

10.2. Simulations
Trajectories obtained from the algorithm proposed in this thesis were simulated and verified in
the V-REP environment. Screenshots from the simulation are in figure 10.2. All videos with
simulations can be seen in enclosed DVD. Screenshots of trajectories verification on map 12.3
are shown in figure 10.2. Screenshots of trajectories verification on map 12.9 are shown in figure
10.3.

36

Simulations

(a)

(b) (c)

Figure 10.1.: UAV overshoot. In a) we see UAVs flying from the right to the left. Every UAV
follows its target. Red and violet balls represent positions of next states in trajectory
and green balls represent UAV targets. In the b) the planned trajectory has a curve
and next states start heading upwards. In c) all UAVs have too big inertia to follow
its targets precisely and they overshoot. The targets are dragged by UAVs and they
become more distant from the next state.

37

V-REP simulations

(a) t = 0 s (b) t = 25 s

(c) t = 45 s (d) t = 71 s

(e) t = 133 s
(f) t = 192 s

Figure 10.2.: VREP simulation of trajectories in complexmap. All UAVs proceeded successfully
from the initial position to the AoI, marked with white rectangle. Video with the
simulation can be seen in enclosed DVD in the file videos/map0_new.avi. Map
used in this simulation is also used in experiments 12.1 and 12.2.1

38

Simulations

(a) t = 0 s (b) t = 21 s

(c) t = 36 s (d) t = 40 s

(e) t = 45 s (f) t = 50 s

Figure 10.3.: VREP simulation of trajectories in complexmap. All UAVs proceeded successfully
from the initial position to the AoI, marked with white rectangle. Video with the
simulation can be seen in enclosed DVD in the file videos/map3_new.avi. Map
used in this simulation is also used in experiments 12.1 and 12.2.1

39

CHAPTER
ELEVEN

IMPLEMENTATION

This part will cover implementation of the algorithm, which was used for simulations. Whole
codebase in C++ can be found at Github repository https://github.com/racinmat/
AutonomousSurveillanceBachelorThesis. Apart from the C++ program, I also cre-
ated some CLI scripts in PHP, for drawing map and trajectories from the JSON representation,
batch running of Dubins curves optimization and concatenation of the experiment results be-
fore plotting them in Matlab. These can be seen athttps://github.com/racinmat/
UAVUtils. V-REP simulations were made by communicating with V-REP through remote
API, the client is written in Python and can be seen arhttps://github.com/racinmat/
VRepPathBuilder. Trajectories are persisted in JSON format. JSON is more compact than
XML and can be easily parsed by all widely used programming languages. Trajectories are also
persisted to CSV format, so they can be loaded to MATLAB and then into real UAVs.

11.1. External libraries

Some external libraries are used in the implementation. Every used external library is men-
tioned here. Boost libraries, downloaded from http://www.boost.org/, are used for
smart pointers and matrix operations, libraries for Dubins curves are fromMaster Thesis by Petr
Váňa [25]. Generating of JSON from C++ object is done via Json spirit library. Another external
library is V_Collide from The University of North Carolina at Chapel Hill. The source code of
the V_Collide library can be found at http://gamma.cs.unc.edu/V-COLLIDE/.
Because V-Collide sources were written in 1997 and because I used C++11 compiler to com-

pile my source codes, I had to rewrite part of this library for compatibility and to make pub-
lic API easier to use. Modifications can be seen at https://github.com/racinmat/
VCollide2 .
Last used external library is QT, which was used to create platform independent GUI.

11.2. Code structure and services

A brief UML scheme demonstrating dependency diagram of codebase is shown in figure 11.1.
To keep diagram simple, only services are displayed. Other classes, which are not services, were
left out for readability. Diagram was generated using software StarUML.

40

https://github.com/racinmat/AutonomousSurveillanceBachelorThesis
https://github.com/racinmat/AutonomousSurveillanceBachelorThesis
https://github.com/racinmat/UAVUtils
https://github.com/racinmat/UAVUtils
https://github.com/racinmat/VRepPathBuilder
https://github.com/racinmat/VRepPathBuilder
http://www.boost.org/
http://gamma.cs.unc.edu/V-COLLIDE/
https://github.com/racinmat/VCollide2
https://github.com/racinmat/VCollide2

Utility scripts

Core

GuiDrawer

Configuration

StateFactory

InputGenerator AoICoverageResolver DistanceResolver CarLikeMotionModel

CollisionDetector

PathHandler Persister

NTupletGenerator

LoggerInterface

GuidingPathFactory

PathFindingAlgorithm

AStar

Figure 11.1.: Dependency diagram

Core class holds core of whole Application and has all other classes as dependencies, as is
shown in the image 11.1.
As mentioned in the chapter 2, Configuration is DTO for all configuration variables, but to

keep reasonable amount of classes, Configuration is also service, which delegates all configura-
tion changes from GUI to Core class. Configuration and GuiDrawer implementation LoggerInt-
erface are the only connections between Core and GUI.
State factory creates State classes according to Factory pattern. State class represents state in

RRT-Path algorithm. State has coordinates and rotations for all UAVs. Persister persists found
trajectories to JSON using Json Spirit library. PathHandler serves as utils class for manipulations
with trajectories (vector of State classes). CarLikeMotionModel holds motion model algorithm.
InputGenerator is used to generate inputs to motion model. NTupletGenerator only generates
variation with repeating for given input. DistanceResolver counts distances between two states
and length of trajectory. AoICoverageResolver determines cost function for states,where all
UAVs are in AoIs. GuidingPathFactory is wrapper for PathFindingAlgorithm interface and is
used by Core to find guiding path. Implementation of PathFindingAlgorithm is AStart class.

11.3. Utility scripts
All graphs in experiments with re-sampling and Dubins optimization were generated with usage
of PHP scripts. Script runDubinsOptimization.php runs sequentially resampling with given fre-
quencies multiple times. This script can be run many times at once with different configuration,
which brings advantage of parallel run without need to deals with threads. Script processDu-
binsOptimizatinData.php merges all CSV result files to one big matrix, with number of rows
equal to maximal number of iterations and number of columns equal number of runs of the
optimization. For example, as seen in experiment 12.2.1 for frequency 1 Hz it is matrix with
size 2095x100. This can be loaded directly to matlab so the graph can be generated. Script
drawPaths.php generates map to png image. E. g. map generated by this script can be seen in
12.3.

41

CHAPTER
TWELVE

EXPERIMENTS

12.1. RRT-Path

In this experiment, a trajectory in a map shown in the figure 12.1 is searched by using the RRT-
Path algorithm. UAVs start in the lower left corner. In this figure, we can also see the trajectory
found by the RRT-Path algorithm. The algorithm follows the guiding path quite precisely, and
whole searching tree for each UAV has small branching factor. Only the AoI is covered by
branches of searching trees. The algorithm is run 1000 times and a feasible solution was found
in every run. The results can be seen in the figure 12.2, where the mean value and standard
deviation can be seen for each iteration of all 1000 runs. The figure 12.2, describes distance
to nearest neighbour. This experiment has been run with 3 UAVs. In every iteration of the
algorithm, each UAV has a nearest neighbour. Distances between each UAV and its nearest
neighbour is shown in the figure 12.2. This information is important for the relative localization.
The minimal and maximal distance are 24 and 180 map units, in this experiment. During the
whole flight, UAVs fly very close to each other. But in the end, they fly away from each other,
because they can cover bigger part of AoI when they have bigger distance between each other.

12.2. Influence of re-sampling on Dubins curves
optimization

To demonstrate the optimization, few maps were selected to be used in re-sampling and optim-
ization experiments. The RRT-Path algorithm found trajectories for UAVs. These trajectories
were re-sampled and optimized 100 times to obtain relevant results because of using random
numbers during the optimization and avoiding getting stuck in local optima. Due to time and
memory consumption, each optimization is stopped after 200 iterations where optimization did
not shorten the trajectory or when speed of trajectory shortening was slower than 5% of original
trajectory length per 1000 iterations. The algorithm also stops when consumed memory exceeds
1900 MB. This is right before shutting of program by operating system, because 32bit processes
are not allowed to use more than 2 GB of RAM. In next sections, maps with obstacles, AoIs
and trajectories will be shown. Obstacles are grey rectangles, AoI is green rectangle and each
UAV has trajectory marked with different colour. For measuring of influence of re-sampling
of trajectory to Dubins curves optimization, following frequencies were selected: 1 Hz (initial

42

Influence of re-sampling on Dubins curves optimization

Figure 12.1.: Map used for experiment . Low branching factor can be found along the whole
guiding path. When UAVs arrive above AoI, branching factor is higher.

Figure 12.2.: Distances between nearest UAVs in swarm and distance to AoI in experiment 12.1.
Relative distance is small along the whole guiding path. Only the covering of AoI
lets UAVs get more distant from each other.

43

Experiments

Figure 12.3.: Trajectory before Dubins curves optimization.

frequency used in RRT-Path algorithm), 2 Hz, 4 Hz, 6 Hz, 8 Hz, 10 Hz, 12 Hz, 14 Hz, 16 Hz,
18 Hz, 20 Hz.

12.2.1. First experiment

The map with trajectories found by the RRT-Path algorithm can be seen in 12.3.
The best result of Dubins curves optimization (re-sampling of 20Hz) is shown in 12.4. As

we can see, trajectories are much shorter than trajectories before optimization in 12.3. At the
beginning of trajectories, in the left upper corner of the picture, we can see much smoother
curves than before optimization. This is due to re-sampling to frequency 20Hz, which smooths
trajectories.
In real flight, it is undesirable to have trajectories close to obstacles, so obstacles are ampli-

fied before optimization. This can be seen in 12.4 where UAVs keep certain distance from the
obstacles.
The table 12.1 shows average, minimal and maximal length of all trajectories from 100 op-

timizations after the re-sampling and optimization.
The results are also shown in graph 12.5. In the graph we can see that the initial frequency

1 Hz has worst results and the frequency 20 Hz has the best results. We can also see that in
frequency 14 Hz and higher, all 100 iterations had same results, the minimum, maximum and
mean value are the same. But the second best frequency in terms of minimal, maximal and mean
value is 6 Hz and even the worst optimization in 6 Hz has smaller total distance than 8 to 18 Hz.
Depending on re-sampling frequency, the courses of optimization are also different.
In 12.6, 12.7 and 12.8 we can see mean values and standard deviations for different frequen-

44

Influence of re-sampling on Dubins curves optimization

Figure 12.4.: Trajectory after Dubins curves optimization. In the left upper corner the trajector-
ies are not optimized enough. This happened because the optimization got stuck
in local minimum. The local minimum was caused by relative localization con-
straints, which complicates the optimization. The crossing trajectories are very
difficult to optimize due to relative localization constraints.

Frequency [Hz] Minimal distance [m] Maximal distance [m] Average distance [m]
1 8582.18 8849.7 8721.2904
2 8311.65 8548.81 8430.23
4 8366.88 8393.09 8379.985
6 8248.9 8275.7 8262.3
8 8249.88 8378.51 8314.195
10 8286.22 8472.2 8379.21
12 8302.51 8309.2 8307.6613
14 8303.18 8303.18 8303.18
16 8363.92 8363.92 8363.92
18 8510.32 8510.32 8510.32
20 8194.22 8194.22 8194.22

Table 12.1.: Re-sampling and optimization results of the experiment 12.2.1. The initial fre-
quency has

45

Experiments

Figure 12.5.: Re-sampling and optimization results graph. This is visualization of data from
table 12.1.

46

Influence of re-sampling on Dubins curves optimization

Figure 12.6.: rogress of length of paths during the optimization of trajectory in figure 12.3 for 2
Hz, 4 Hz, 6 Hz

cies, divided into three graphs for better readability. The vertical lines are error bars, they show
standard deviation during the optimization. Because the error bars would be too dense if they
were shown for each iteration, only every 100th iteration is shown in the graphs. For comparison,
frequency 1 Hz is also shown in each graph, the initial frequency before re-sampling. As we can
see, frequencies 14, 16, 18 and 20 Hz have almost zero standard deviation and converge to lower
value than the initial frequency. High standard deviation can be seen for frequency 10 Hz. That
means the optimization got stuck in local optimum and was not able to shorten any trajectory for
many iterations.

12.2.2. Second experiment

The best result of Dubins curves optimization (re-sampling of 4Hz) is shown in figure 12.10. As
we can see, trajectories are much shorter than trajectories before optimization in figure 12.9, as
in experiment 1, but curves in the upper part of figure still were not optimized. This was caused
by optimization algorithm getting stuck in local optimum. As shown in figure 12.4, optimizing
trajectory for one UAV does not get stuck in local optimum. The local optimum is caused by
relative localization constraints and crossing paths. The algorithm tried to optimize other parts
and ended due to stopping conditions mentioned above. Light grey colour represents obstacle
amplification.
The results are shown in figure 12.11. Contrary to the graph from first experiment 12.2.1, all

frequencies have same minimal distance, maximal distance and mean distance. This shows us
interesting fact. For same frequency, all 100 runs got stuck in same local optimum, but every

47

Experiments

Figure 12.7.: Progress of length of paths during the optimization of trajectory in figure 12.3 for
8 Hz, 10 Hz, 12 Hz

48

Influence of re-sampling on Dubins curves optimization

Figure 12.8.: Progress of length of paths during the optimization of trajectory in figure 12.3 for
14 Hz, 16 Hz, 18 Hz, 20 Hz

Figure 12.9.: Trajectory in experiment 12.2.2 before Dubins curves optimization

49

Experiments

Figure 12.10.: Trajectory in experiment 12.2.2 after Dubins curves optimization

frequency has different local optimum where the algorithm can stuck. Trajectory in this exper-
iment is much smaller, which leads to zero standard deviation and difference between minimal
and maximal distance between optimization results in one frequency. The difference between
maximal and minimal results is bigger when optimizing longer and more complicated traject-
ory. As we can also see from graphs, we can not predict optimal re-sampling frequency from
trajectory.

Depending on re-sampling frequency, the progresses of length of paths during the optimization
are also different.
In figures 12.12, 12.13 and 12.14, we can see mean values and standard deviations for different

frequencies, divided into three graphs for better readability. The vertical lines are error bars, they
show standard deviation during the optimization. The error bars are shown only in every 10th
iteration n graphs for better readibility. For comparison, frequency 1 Hz, the initial frequency
before re-sampling, is also shown on each graph. As we can see, in comparison to experiment
1, standard deviations are zero, so the optimization algorithm exhibits deterministic behaviour
even if this optimization method is stochastic.

50

Influence of re-sampling on Dubins curves optimization

Figure 12.11.: Re-sampling and optimization results graph of experiment 12.2.2. Mean distance,
maximal distance and minimal distance are overlapping in this graph. This is
caused by zero standard deviation of results at the end of optimization.

51

Experiments

Figure 12.12.: Progress of length of paths during the optimization of trajectory in figure 12.9 for
2 Hz, 4 Hz, 6 Hz. As shown in figure, the optimization got stuck in local optima
very soon for frequency 6 Hz.

52

Influence of re-sampling on Dubins curves optimization

Figure 12.13.: Progress of length of paths during the optimization of trajectory in figure 12.9 for
8 Hz, 10 Hz, 12 Hz.

53

Experiments

Figure 12.14.: Progress of length of paths during the optimization of trajectory in figure 12.9 for
14 Hz, 16 Hz, 18 Hz, 20 Hz.

54

CHAPTER
THIRTEEN

CONCLUSION

This thesis contributes to the problems of autonomous surveillance with a novel approach by
using a sampling-based algorithm for trajectory planning of a swarm of UAVs and consequence
optimizing of obtained trajectories by Dubins curves. This thesis also examined the possibility
of re-sampling of trajectories and influence of re-sampling on the optimization process.
The goal of this thesis was to design and implement a method based on the RRT-Path al-

gorithm for motion planning of a swarm of cooperating unmanned aerial vehicles in the task
of autonomous surveillance, optimize it by Dubins curves and simulate the flight of the swarm
in V-REP platform. The algorithm provides trajectories from a depot station to optimal posi-
tions in Areas of Interest in two internationally standardized formats (CSV and JSON). An easy
computable cost function was created and implemented.
The task of autonomous surveillance was approached by separating the it to more smaller sub-

tasks. The first subtask is finding a path to a position, in which all UAVs are located above Areas
of Interest. The path finding is realized by using A* algorithm to obtain the optimal guiding
path. The RRT-Path algorithm uses this path to guide the space-filling tree. The second subtask
is optimization of AoIs coverage using the RRT algorithm. The next subtask is re-sampling of
trajectories and optimizing trajectories by Dubins manoeuvrers, which provide us shorter traject-
ories than trajectories found only by using the RRT-Path algorithm. The effectiveness of Dubins
curves optimization depends on re-sampling frequency, but unfortunately, the best frequency is
heavily dependent on the map where trajectories are searched.
The presumed use of autonomous surveillance is monitoring of a parking lot near supermarket,

shopping centre, company campus, etc. The advantage of an autonomous system over static
cameras is the fact the UAV swarm can operatively change the distribution of individual UAVs
according to the position of cars and minimize dead angles by moving UAVs. Static cameras
usually fail to capture the identity of a criminal due to large distance or a bad angle, while
UAVs can change their positions to capture the image of criminal in higher quality or from
better angle and even provide simultaneous record from more cameras. Not only parking lots
can be monitored, another possibility is monitoring of people during large events or large scale
monitoring of agricultural areas. UAVs also scalemuch easier than static cameras, becauseUAVs
can fly to their destination without human help, but static cameras must be installed by human
and fast scalability is important factor in massive events and situations where size of Area of
Interest change over time. Contrarily to GPS localized UAVs, swarm described in this thesis can
even operate in hard to access areas, dense urban areas, inside buildings and other places with

55

Conclusion

no GPS signal, thanks to the relative localization system. The relative localization also enables
the UAVs to fly in compact swarm, which could not be achieved by using GPS due to its errors
and inaccuracy.

13.1. Future work
The approach described in chapter 9 could be modified to be more robust and usable in more
maps with more than 2 AoIs. Generalization of this approach would require not crating a chain,
which is good only for covering two AoIs, but tree structure, where each leaf covers one AoI. I
will now propose principle of the generalized algorithm.

In the first step, we need to decide, which AoIs can be covered by swarm. Some maps can
have distant AoIs where all AoIs could not be covered at the same time. This requires finding
shortest tree T which connects middles of all AoIs. When sum of all edges in this tree dtotal is
bigger than dmax = (number o f uavs − 1) · maximal distance between neighbouring uavs,
which is maximal length of chain created by UAVs, some AoI and branch leading to its middle
will be excluded. This results in shortening the value dtotal . This process will be repeated
while dtotal will be bigger than maximal dmax . When dtotal < dmax , we obtain set of AoIs
which can be covered by swarm of UAVs. In the next step, UAVs will be split to multiple groups
connected by relative localization constraints, one group for each AoI. Then the guiding paths
will be planned for each groups to reach corresponding branches of T . Then the RRT-Path
algorithm will take place. The final step will be optimization by Dubins curves, described in this
thesis. The exclusion of some AoIs could be used to split AoIs to more groups. Then each group
will be covered by its own sub-swarm and trajectories will be planned independently.
Another proposal of future work is implementing better controller for the UAV in VREP en-

vironment. Controller which is able to control both position and speed of UAV would solve
problems described in the chapter 10.

56

BIBLIOGRAPHY

[1] Heard on the grapevine: drones to transform viticulture, July 2015. URL https://
droneapps.co/case-study-drones-to-transform-viticulture/.

[2] V-rep, May 2016. URL http://www.coppeliarobotics.com/.

[3] Lester Eli Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal of
Mathematics, 79(3):497–516, July 1957. URL http://www.jstor.org/stable/
2372560?origin=crossref&seq=1#page_scan_tab_contents.

[4] Jan Faigl, Tomáš Krajník, Jan Chudoba, and Martin Saska. Low-cost embedded system
for relative localization in robotic swarms. Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 993 – 998, May 2013.

[5] Roosevelt A. Fernandes. Monitoring system for power lines and right-of-way using re-
motely piloted drone., April 1989. URL http://www.google.com/patents/
US4818990.

[6] Brian Fung. Why drone makers have declared war on the word ‘drone’, August 2013. URL
https://www.washingtonpost.com/news/the-switch/wp/2013/08/
16/why-drone-makers-have-declared-war-on-the-word-drone/.

[7] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics
and Automation, 12:566–580, August 1996.

[8] Steven M. LaValle. Rapidly-exploring random trees: A new tool for path planning.
Technical report, Department of Computer Science, Iowa State University, 1998. URL
http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf.

[9] Steven M. LaValle. Planning Algoritms. Cambridge University Press, 2006. URL http:
//planning.cs.uiuc.edu/.

[10] International Civil Aviation Organization. Unmanned Aircraft Systems (UAS). Interna-
tional Civil Aviation Organization, April 2011.

[11] Andrea Peterson. The switch states are competing to be the silicon valley of drones, August
2013.

57

https://droneapps.co/case-study-drones-to-transform-viticulture/
https://droneapps.co/case-study-drones-to-transform-viticulture/
http://www.coppeliarobotics.com/
http://www.jstor.org/stable/2372560?origin=crossref&seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2372560?origin=crossref&seq=1#page_scan_tab_contents
http://www.google.com/patents/US4818990
http://www.google.com/patents/US4818990
https://www.washingtonpost.com/news/the-switch/wp/2013/08/16/why-drone-makers-have-declared-war-on-the-word-drone/
https://www.washingtonpost.com/news/the-switch/wp/2013/08/16/why-drone-makers-have-declared-war-on-the-word-drone/
http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf
http://planning.cs.uiuc.edu/
http://planning.cs.uiuc.edu/

Bibliography

[12] Matěj Petrlík. Planning of swarm deployment for autonomous surveillance. Bachelor’s
thesis, Czech technical university in Prague Faculty of Electrical Engineering Department
of Cybernetics, 2015.

[13] M. Saska. MAV-swarms: unmanned aerial vehicles stabilized along a given path using on-
board relative localization. In Proceedings of 2015 International Conference on Unmanned
Aircraft Systems (ICUAS), 2015.

[14] M. Saska, V. Vonasek, T. Krajnik, and L. Preucil. Coordination and Navigation of Hetero-
geneous UAVs-UGVs Teams Localized by a Hawk-Eye Approach. In Proceedings of 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.

[15] M. Saska, T. Krajnik, V. Vonasek, P. Vanek, and L. Preucil. Navigation, Localization and
Stabilization of Formations of Unmanned Aerial and Ground Vehicles. In Proceedings of
2013 International Conference on Unmanned Aircraft Systems (ICUAS), 2013.

[16] M. Saska, J. Chudoba, L. Preucil, J. Thomas, G. Loianno, A. Tresnak, V. Vonasek, and
V. Kumar. Autonomous Deployment of Swarms of Micro-Aerial Vehicles in Cooperative
Surveillance. In Proceedings of 2014 International Conference on Unmanned Aircraft
Systems (ICUAS), 2014.

[17] M. Saska, Z. Kasl, and L. Preucil. Motion Planning and Control of Formations of Micro
Aerial Vehicles. InProceedings of The 19th World Congress of the International Federation
of Automatic Control (IFAC). IFAC, 2014.

[18] M. Saska, T. Krajnik, V. Vonasek, Z. Kasl, V. Spurny, and L. Preucil. Fault-Tolerant Form-
ation Driving Mechanism Designed for Heterogeneous MAVs-UGVs Groups. Journal of
Intelligent and Robotic Systems, 73(1-4):603–622, 2014.

[19] M. Saska, J. Langr, and L. Preucil. Plume Tracking by a Self-stabilized Group of Micro
Aerial Vehicles. In Modelling and Simulation for Autonomous Systems, 2014.

[20] M. Saska, J. Vakula, and L. Preucil. Swarms of Micro Aerial Vehicles Stabilized Under a
Visual Relative Localization. In Proceedings of 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014.

[21] M. Saska, V. Vonasek, T. Krajnik, and L. Preucil. Coordination and Navigation of Hetero-
geneous MAV–UGV Formations Localized by a ‘hawk-eye’-like
Approach Under a Model Predictive Control Scheme. International Journal of Robotics
Research, 33(10):1393–1412, 2014.

[22] M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik, J. Faigl, G. Loianno,
and V. Kumar. System for deployment of groups of unmanned micro aerial vehicles in
GPS-denied environments using onboard visual relative localization. Autonomous Robots.
First online., 2016.

[23] M. Saska, V. Vonásek, J. Chudoba, J. Thomas, G. Loianno, and V. Kumar. Swarm distri-
bution and deployment for cooperative surveillance by micro-aerial vehicles. Journal of
Intelligent & Robotic Systems. First online., 2016.

58

Bibliography

[24] V. Trianni. Evolutionary Swarm Robotics: Evolving Self-Organising Behaviours in Groups
of Autonomous Robots. Studies in Computational Intelligence. Springer Berlin Heidel-
berg, 2008. ISBN 9783540776123. URL https://books.google.cz/books?
id=sg9rCQAAQBAJ.

[25] Petr Váňa. Path planning for non-holonomic vehicle in surveillance mis-
sions. Master’s thesis, Czech Technical University in Prague, 2015. URL
https://dspace.cvut.cz/bitstream/handle/10467/61814/
F3-DP-2015-Vana-Petr-thesis.pdf.

[26] Chris Velazco. Amazon is experimenting with autonomous flying delivery drones, Decem-
ber 2013.

[27] V. Vonasek, J. Faigl, T. Krajnik, and L. Preucil. RRT-Path: a guided Rapidly exploring
Random Tree. In Robot Motion and Control 2009, pages 307–316, Heidelberg, 2009.
Springer. ISBN 978-1-84882-984-8.

[28] V. Vonasek, M. Saska, L. Winkler, and L. Preucil. High-level motion planning for cpg-
driven modular robots. Robotics and Autonomous Systems, 68:116 – 128, 2015.

[29] Vojtěch Vonásek. A guided approach to sampling-based motion planning. PhD thesis,
Czech Technical University in Prague Faculty of electrical engineering Department of cy-
bernetics, August 2015.

59

https://books.google.cz/books?id=sg9rCQAAQBAJ
https://books.google.cz/books?id=sg9rCQAAQBAJ
https://dspace.cvut.cz/bitstream/handle/10467/61814/F3-DP-2015-Vana-Petr-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/61814/F3-DP-2015-Vana-Petr-thesis.pdf

APPENDIX
A

CONTENTS OF THE ENCLOSED CD

SwarmDeployment Main a p p l i c a t i o n
SwarmDeployment Source code of a p p l i c a t i o n i n C++
Win32 Compiled b i n a r i e s f o r 32 b i t Windows

U t i l i t y S c r i p t s PHP u t i l i t y s c r i p t s
VRepPa thBui lde r Source code o f VREP s imu l a t i o n program
v i d eo s Videos o f VREP s im u l a t i o n s
readme . t x t B r i e f manual f o r b i n a r i e s
b a c h e l o r _ t h e s i s . pdf E l e c t r o n i c v e r s i o n o f b a c h e l o r t h e s i s

60

	Introduction
	Objective

	Algorithm
	RRT-Path
	Rapidly Exploring Random Tree
	RRT-Path
	Guiding path

	Grouping of goals for the guiding path
	Areas of Interest coverage
	UAV swarm properties
	Motion model
	Relative localization

	Dubins curves
	Trajectories optimization using Dubins curves
	One UAV demonstration

	Trajectory re-sampling
	Covering more AoIs with one swarm
	V-REP simulations
	UAV control and trajectory simulation
	Simulations

	Implementation
	External libraries
	Code structure and services
	Utility scripts

	Experiments
	RRT-Path
	Influence of re-sampling on Dubins curves optimization
	First experiment
	Second experiment

	Conclusion
	Future work

	Bibliography
	Contents of the enclosed CD

