

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Bachelor’s Project

AspectFaces integration to Angular 2 framework

Filip Ryšavý

Supervisor: Ing. Černý Tomáš, Ph.D.

Study Programme: Open Informatics, Bachelor’s degree

Field of Study: Software Systems

May 24, 2016

iv

v

Aknowledgements
I would like to thank my supervisor Ing. Černý Tomáš, Ph.D. for his guidance and advices.
I would also like to thank to all who supported me during studies.

vi

vii

Declaration
I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

In Prague on May 24, 2016 .

viii

Abstract

This thesis aims to integrate the functionality of the AspectFaces library to Angular 2 frame-
work. This integration solves complexities from the development perspective caused by the
convention user interface design approach. These complexities are usually caused by the
information restatements and mostly by mixing various concerns that result in tangling the
user interface code. The integration aims to solve it by the aspect-oriented user interface
design approach that can more effectively work with separation of concerns and thus result
with reduced complexity of development and maintenance of the user interface.
Keywords: user interface; aspect-oriented programming

Abstrakt

Tato práce je zaměřená na integraci funkcionality knihovny AspectFaces do frameworku
Angular 2. Tato integrace řeší komplexity vývoje způsobené tradiční přístupem k vývoji
uživatelských rozhraní. Tyto komplexity jsou obvykle způsobovaný opakováním informací
a hlavně mísení různých zájmů, což vede k těžko čitelnému kódu. Tato integrace si klade
za cíl vyřešit tento problém použitím aspektově orientované přístupu k vývoji uživatelských
rozhraní, který dokáže lépe pracovat se separací zájmů a tím snížit komplexnost vývoje a
údržby uživatelského rozhraní.
Klíčová slova: uživatelské rozhraní, aspektově orientované programování

ix

x

Contents

1 Introduction 1
1.1 Motivation and goal of the thesis . 1
1.2 Structure of the thesis . 2

2 Background 3
2.1 Conventional user interface design . 3

2.1.1 Principle . 3
2.2 Aspect-oriented user interface design . 4

2.2.1 Aspect-oriented programming . 4
2.2.2 Principle . 4

2.3 Inabilities of conventional user interface design 4

3 Related work 7
3.1 AspectFaces with Java Server Faces . 7

3.1.1 Usage of plain Java Server Faces . 7
3.1.2 Usage of AspectFaces with Java Server Faces 7

3.2 Metawidget . 8
3.2.1 Usage . 8

3.3 Other solutions . 9

4 Design 11
4.1 Technologies . 11

4.1.1 AspectFaces . 11
4.1.2 Angular 2 . 11

4.2 Meta-model generation . 12
4.2.1 AspectFaces meta-model generation 12
4.2.2 AspectFaces meta-model formating . 13
4.2.3 Encapsulation of meta-model generation 13

4.3 Form rendering . 13
4.3.1 Meta-model transformation . 13
4.3.2 Entry point . 14

4.4 Communication between server and client . 14
4.4.1 Communication using REST . 14

xi

xii CONTENTS

5 Implementation 15
5.1 Meta-model generation . 15

5.1.1 AspectFaces meta-model generation 15
5.1.2 AspectFaces meta-model formatting 15
5.1.3 Encapsulation of meta-model generation 16
5.1.4 Configuration . 17
5.1.5 Type Mapping . 18
5.1.6 Model Annotations . 18

5.2 Form rendering . 19
5.2.1 Meta-model transformation . 19
5.2.2 Predefined tags . 19
5.2.3 Custom tags . 20
5.2.4 Entry point . 20

5.3 Communication between server and client . 20
5.3.1 Communication using REST . 20

5.4 Usage . 20
5.4.1 Usage of meta-model generation . 21
5.4.2 Usage of form rendering . 21

6 Testing 23
6.1 Test applications . 23

6.1.1 Application 1 . 23
6.1.2 Application 2 . 25

6.2 Performance testing . 25
6.2.1 Results . 25

6.3 Usability testing . 25
6.3.1 Results . 25

7 Conclusion 27

A Nomenclature 31

B Content of the included CD 33

List of Figures

2.1 Conventional user interface design . 5
2.2 Cross-cutting concerns . 5

5.1 Class diagram of the meta-model structure . 17

6.1 Example application 1 developed using AFWA2 23
6.2 Example application 2 developed using AFWA2 24

xiii

xiv LIST OF FIGURES

List of Listings

3.1 Example of a form developed manually using Java Server Faces 8
3.2 Example of a form developed using AspectFaces with JavaServer Faces 8
3.3 Example of a form developed using Metawidget with JavaServer Faces 8
4.1 The data model representing a student . 12
4.2 The meta-model generated form a data model 13
5.1 Getting the context from the AspectFaces library 16
5.2 Getting the AspectFaces meta-properties . 16
5.3 The generation of meta-properties . 17
5.4 Example of the type mapping . 18
5.5 Form developed using AspectFaces with Angular 2 20

xv

xvi LIST OF LISTINGS

Chapter 1

Introduction

Today’s applications in a software engineering grow bigger and more complex. And with
that comes a size and a complexity of their user interfaces especially with increasing demands
on their usability, adaptability and dynamic behaviour [1].

Such demands on the user interface are difficult to achieve using the conventional user
interface design approach. As such an approach we should consider the common component-
based user interface design approach. This approach creates a lot of duplications in a code
[2], which becomes complex, hard to maintain and cannot be used in different contexts [1].

A possible solution to this problem may provide the aspect-orient programming [3] with
its applicability to an user interface design. The aspect-oriented user interface design ap-
proach results in low efforts when dealing with different contexts, information reuse or sep-
aration of concerns.

1.1 Motivation and goal of the thesis

The goal of this thesis is to design and create an implementation of the aspect-oriented
user interface design approach for Java EE (Java Enterprise Edition) applications that use
the Angular 2 framework in their presentation layers. The goal is to implement functionality
of the AspectFaces library to the Angular 2 framework. The main motivation behind this to
reduce efforts in developing user interfaces.

The implementation will use the AspecFaces library that provides the aspect-oriented
programming engine for Java applications to generate a meta-model with the information
about the user interface which will be then transformed into the code that will be rendered
in the Angular 2 framework. A usage of the AspectFaces library ensures that demands
in usability, adaptability and dynamic behaviour on the user interface will be fulfilled [4]
as well as it ensures a presence of AspectFaces library features like supporting automated
transformation of data properties to specific widgets and templates.

This topic of the implementation of the AspectFaces library to the Angular 2 framework
was already processed in the parer Aspect-Oriented User Interfaces Design Integration to
Angular 2 Framework [5] which this thesis expands.

1

CHAPTER 1. INTRODUCTION

1.2 Structure of the thesis

The chapter Background provides information about the conventional user interface
design approach and the aspect-oriented user interface design approach. It describes and
compares them mainly in terms of a re-usability of a code in different contexts and its main-
tenance. The chapter Related work presents some of already existing libraries, frameworks
and widgets that are using the aspect-oriented user interface design approach such as As-
pectFaces with Java Server Faces [4, 6], Metawidget [2, 7], Google Web Toolkit [8], React
[9] or the user interface generation by a server using Java Server Faces [10]. In the chap-
ter Design the integration of the AspectFaces framework to the Angular 2 framework in
designed. The chapter Implementation describes the implementation of the integration
of the AspectFaces framework to the Angular 2 framework in designed. And finally in the
chapter Tests there are presented some performance tests of the integration.

2

Chapter 2

Background

This chapter introduces a technical background behind the thesis. It describes principles
of the conventional user interface design approach and the aspect-oriented user interface
design approach and compares them mainly in terms of a re-usability of a code in different
contexts and its maintenance. In this chapter there are highlighted reasons why the con-
ventional user interface design approach is difficult to use and why the aspect-oriented user
interface design approach provides a better solution to the problem.

2.1 Conventional user interface design

The most common way how to create an user interface is to use the conventional user
interface design approach. As such an approach we should consider the common component-
based user interface design approach. For example in Java SE (Java Standard Edition) we
use Swing or JavaFX and in Java EE we use Java Server Faces.

2.1.1 Principle

This approach describes a particular user interface by various collections of components,
widgets and other mechanisms [1]. This approach usually focuses only on the user interface
part of the application which results in its isolation [1]. This is the reason for the inefficiency
when addressing user interface variations or context-aware user interfaces [1]. Application
information such as data definitions, data binding, field presentations, user interface layouts,
security, input validation rules and other constraints must be defined several times across
different layers of the application [1]. The resulting relation between the user interface and
other layers of the application must be maintained manually [1]. This leads to mistype
errors and inconsistencies [1]. Such a code is complex, hard to maintain and it is virtually
impossible to create an user interface that is context related without its duplicate definition
[1].

3

CHAPTER 2. BACKGROUND

2.2 Aspect-oriented user interface design

Another way how to create an user interface is to use the aspect-oriented programming.
We can do that using libraries and frameworks like AspectFaces with Java Server Faces [4, 6],
Metawidget [2, 7], Google Web Toolkit [8], React [9] or the user interface generation by a
server using Java Server Faces [10].

2.2.1 Aspect-oriented programming

Before the description of the aspect-orient user interface design approach it would be
appropriate to describe the aspect-oriented programming. The most common programming
approaches are the object-oriented programming and the procedural programming. There
are many programming problems that can’t be easily solved by using neither of them [3].

The aspect-oriented programming makes possible to express programs involving aspects
[3]. An aspect in the aspect-oriented programming is a something that cannot be easily
captured in a component [6]. An aspect in intended to capture a particular concern [1]. An
aspect captures cross-cutting concerns separately from the components [1]. The goal of the
aspect-oriented programming implementation is to be easy to understand and efficient [3].

2.2.2 Principle

Unlike the conventional user interface design approach where the code of individual as-
pects is mixed all together the aspect-oriented user interface design approach describes each
individual concern separately [6]. A concern is a set of information that influences the source
code [1] such as data definitions, data binding, field presentation, user interface layouts, se-
curity, input validation rules and others. This approach basically consists of a data model
creation, a code inspection in order to generate a meta-model, their transformation and an
integration of the transformed code into the user interface [1]. This approach produces a
lesser amount of a code which is easier to maintain and is re-usable in a context related user
interfaces [1]. Though this approach has a lot of benefits it fails on the user interface delivery
to the client in terms of preserving concern separation [1].

2.3 Inabilities of conventional user interface design

The situation demonstrating the conventional approach and its inability to capture sep-
arate concerns effectively is provides by Figure 2.1 that shows various concerns in a form
component. Next, Figure 2.2 shows the way conventional design collapses the individual con-
cerns together. The aspect-oriented user interface design approach preserves the separation
of concerns.

4

2.3. INABILITIES OF CONVENTIONAL USER INTERFACE DESIGN

Figure 2.1: Conventional user interface design

Figure 2.2: Cross-cutting concerns

5

CHAPTER 2. BACKGROUND

6

Chapter 3

Related work

In this chapter already existing libraries, frameworks and widgets that are using the
aspect-oriented user interface design approach. Those libraries, frameworks and widgets are
AspectFaces with Java Server Faces [4, 6], Metawidget [2, 7], Google Web Toolkit [8], React
[9] or the user interface generation by a server using Java Server Faces [10]. Examples of a
user interface form are presented for each framework, library or widget.

3.1 AspectFaces with Java Server Faces

One of already existing libraries using the aspect-oriented user interface approach is
the AspectFaces library with its support for Java Server Faces [4]. The AspectFaces library
provides the aspect-oriented programming engine with its support for annotation descriptors,
mapping to custom widgets and templates and other functionality that is utilized by Java
Server Faces.

3.1.1 Usage of plain Java Server Faces

First lets examine an example of a user interface written in plain Java Server Faces. In
plain Java Server Faces the developer has to make the instance accessible using Java Beans
[10]. Then he can use them in the user interface as shown in Listing 3.1.

3.1.2 Usage of AspectFaces with Java Server Faces

The AspectFaces library makes possible to design individual concerns separately and
then weaves them all together [4, 6]. To achieve that the developer has to also make the
instance accessible using Java Beans. He can use the same beans that have been uses by
a plain Java Server Faces user interface. It became a data source that can be used as the
source of the information which can be passed to the AspectFaces custom component as
shown in Listing 3.2.

The AspectFaces library has three basic stages: an inspection, a transformation and
a runtime code integration [4]. During the inspection the information about the data in-
stance are collected from annotations a the context [4]. In other words, a meta-model is

7

CHAPTER 3. RELATED WORK

First name:
<h : inputText id=" firstName" value ="#{i.firstName }"/>
Last name:
<h : inputText id=" lastName" value ="#{i.lastName }"/>
Gender:
<h : se lectMenu id=" gender" value ="#{i.gender }"/>
Email:
<h : inputText id="email" value ="#{i.email }"/>

Listing 3.1: Example of a form developed manually using Java Server Faces

<af : ui instance ="#{ instance }"/>

Listing 3.2: Example of a form developed using AspectFaces with JavaServer Faces

built. The transformations uses the aspect-oriented user interface design approach to apply
presentation rules, template composition and layout integration [4]. In the final stage the
AspectFaces custom component produces the user interface code that represents the data
form and correlates to the context [4]. All this happens at runtime.

3.2 Metawidget

Another solution of that uses the meta-programming and transformations to create the
user interface design approach is Metawidget [2, 7]. Its usage is similar to the usage of the
ApsectFaces library with Java Server Faces.

3.2.1 Usage

It inspects the entity model dynamically at runtime or statically using similar principles
as mentioned above, while not contextual grammar or custom mappings are provided [7]. It
can read information from many technologies, for example Annotations, Hibernate, JSON
and others [7]. It creates user interface components native to existing front-end platforms
such as Android, Google Web Toolkit, HTML5, Java Server Faces, Java Server Pages, Spring,
Swing and others [7]. An example of usage the Metawidget can be see in Listing 3.3.

<m:metawidget value ="#{ student }"/>

Listing 3.3: Example of a form developed using Metawidget with JavaServer Faces

8

3.3. OTHER SOLUTIONS

3.3 Other solutions

The AspectFaces library with its extension for Java Server Faces and Metawidget are
not the only options that target separation of concerns. Currently there are available several
frameworks, libraries and widgets that partially address such separation. Another exam-
ples are Google Web Toolkit [8], React [9] or the user interface generation by server using
JavaServer Faces [10]. They all build on top of a data model that is inspected, transformed
and the result is integrated into the user interface. A usage of these frameworks, libraries
and widgets generally suffers because they are specific in the technology they use so there is
no universal solution. Another problem is for example that Google Web Toolkit is practically
dead and is about to be replace with frameworks like the Angular 2 framework which target
solution of this thesis.

9

CHAPTER 3. RELATED WORK

10

Chapter 4

Design

The already existing solution presented in the previous chapter target specific technology.
In this chapter a design a design of the implementation of the aspect-oriented user inter-
face design approach for Java EE applications that use the Angular 2 framework in their
presentation layers is described. This integration consists of the server-side meta-model gen-
eration, the client-side form rendering and the communication between the server-side and
the client-side part of the application.

4.1 Technologies

The integration of the AspectFaces library to the Angular 2 framework will be designed
specifically to the functionality of the AspectFaces library and Angular 2 framework.

4.1.1 AspectFaces

The AspectFaces library provides the aspect-oriented programming engine for Java ap-
plications will inspect the code and generate meta-properties [4]. The engine also provides
means of a type mapping and custom model annotation [4]. By default the AspectFaces li-
brary comes with the extension for Java Server Faces that was described in Section 3.1. The
integration of the AspectFaces library to the Angular 2 framework will utilize the function-
ality of the the aspect-oriented programming engine provided by the AspectFaces library.

4.1.2 Angular 2

The Angular 2 framework is currently developed successor of the community popular
framework AngularJS. The Angular 2 framework provides functionality such as for example
a templating, a HTTP client or a form validation [11]. However the Angular 2 framework
is still in beta phase at the time of making this thesis. This will bring a certain limitations
during the implementation.

11

CHAPTER 4. DESIGN

4.2 Meta-model generation

The first thing that needs to be solved is a way how to generate a meta-model from a data
model. The meta-model generation will take place on the server-side part of the application
and will utilize the aspect-oriented programming engine provided by the AspectFaces library.

4.2.1 AspectFaces meta-model generation

Lets assume that we have a data model prepared and annotated as shown in Listing 4.1.
The engine provided by the AspectFaces library contains classes and methods that makes
possible to generate the meta-model from a data model and a context [4]. The context is
provided by the AspectFaces library and makes possible to get a configuration of a mapping
of different properties to custom widgets and templates also provided by the AspectFaces
library [4].

public class Student {

@UiOrder (1)
@UiPlaceholder("Enter your first name")
private String firstName;

@UiOrder (2)
@UiPlaceholder("Enter your last name")
private String lastName;

@Email
@NotNull
@UiLabel("E-mail")
@UiOrder (5)
@UiPlaceholder("Enter your e-mail")
private String email;

@NotNull
@UiOrder (6)
@UiPassword
@UiPlaceholder("Enter your password")
private String password;

...

}

Listing 4.1: The data model representing a student

12

4.3. FORM RENDERING

4.2.2 AspectFaces meta-model formating

However this meta-model are not in a suitable structure in which they can be easily passed
to the Angular 2 framework and processed by it. At this point it is necessary to reformat
them into the more suitable structure that could be sent to the Angular 2 Framework. A
latter reformatting of the meta-model on the client-side part of the application would only
cause performance issues. An example of such structure could be seen in Listing 4.2 The
main goal here is to preserve as much of AspectFaces library functionality and features as
possible in order to fulfil demands on the user interface usability, adaptability and dynamic
behaviour.

{
"name":"cz.cvut.fel.rysavfi1.afwa2.example.model.Student",
"fields":[

{
"name":"firstName",
"tag":"inputText",
"constraints":{

"label":"First Name"
},
"options":null

},
...

]
}

Listing 4.2: The meta-model generated form a data model

4.2.3 Encapsulation of meta-model generation

The final step of the server-side meta-model generation is to encapsulate its functionality
into something that an user would easily use. An ideal case is to encapsulate it into one
function.

4.3 Form rendering

The second thing that needs to be solved is a way how to render a form from the generated
meta-model in the Angular 2 framework. The form rendering will take place on the client-side
part of the application and will utilize Angular 2 functionality.

4.3.1 Meta-model transformation

At the client-side of the application in the Angular 2 framework the meta-model are
transformed into the user interface. Specifically the custom component utilizes TypeScript

13

CHAPTER 4. DESIGN

or more precisely JavaScript to populate the content through the separately provided meta-
model, cached templates and transformation rules. All the generation performs the client-
side part of the application reducing the server-side part of the application involvements and
resources.

4.3.2 Entry point

The integration of the AspectFaces library to the Angular 2 framework will provide an
user with a custom component similar to the one from a usage of the AspectFaces library
with Java Server Faces or a usage of Metawidget. The difference is that the structure and the
values of the user interface are separated. This bring multiple options to improve performance
regarding to the client-server communication for example by caching the structure of the user
interface across an user navigation or a session.

4.4 Communication between server and client

The last thing that needs to be solved is the communication between the server-side part
of the application and the client-side part of the application. Both parts of the application
are designed to work together using some sort of communication method. Also the server-
side part of the application and the client-side part of the application are designed so either
of the can be substituted with appropriate alternatives.

4.4.1 Communication using REST

Because the integration is for Java EE application the integration can use benefits of Java
EE such as great support or REST (representational state transfer) and JSON (JavaScript
Object Notation) processing. Java EE allows easily to send a Java object as JSON through
REST. This object can be a user interface structure or values. This means that only things
that needs to be done is to create a suitable Java objects to contain a user interface structure
and values.

14

Chapter 5

Implementation

In this chapter an implementation of the designed integration of the AspectFaces library
to the Angular 2 framework presented in the previous chapter is described. This chapter
contains a description of the implementation of the server-side meta-model generation in
Java EE by using the AspectFaces library, the form rendering in the Angular 2 framework
and the communication between the server-side and the client-side part of the application
by using JSON and REST.

5.1 Meta-model generation

In the implementation of the server-side meta-model generation there are used JDK (Java
Development Kit) version 1.8.0_92 and AspectFaces version 1.5.0-SNAPSHOT that were
available at the time of making this thesis. The meta-model generation will be implemented
in the Generator class.

5.1.1 AspectFaces meta-model generation

First thing that needs to be implemented in the Generator class is the meta-properties
generation. The AspectFaces library provides the aspect-oriented programming engine [4]
that makes possible to get the context as shown in Listing 5.1 and the meta-properties as
shown in Listing 5.2. This aspect-oriented programming engine needs to be provided by a
configuration which will be described in Section 5.1.4 and by a data model whose example
was presented in Listing 4.1. A usage of the aspect-oriented programming engine in a list of
the AspectFaces meta-properties.

5.1.2 AspectFaces meta-model formatting

In order to prevent performance issues on the client-side part of the application, the list
of the meta-properties generated by the ApsectFaces library needs to be formatted into a
more suitable structure. Since the meta-properties generated by the ApsectFaces library
are in the list, it is simple to iterate through each meta-property and format them in the
Generator class.

15

CHAPTER 5. IMPLEMENTATION

Context context = new Context ();
Configuration configuration = ConfigurationStorage

.getInstance ()

.getConfiguration("Angular2");
context.setConfiguration(configuration);

Listing 5.1: Getting the context from the AspectFaces library

JavaInspector inspector = new JavaInspector(entity);
List <MetaProperty > metaProperties = inspector

.inspect(context);
UIFragmentComposer composer = new UIFragmentComposer ();
metaProperties = composer

.filterApplicable(metaProperties);
metaProperties = composer

.getOrderedFields(metaProperties , context);

Listing 5.2: Getting the AspectFaces meta-properties

The AspectFaces library generates a lot of meta-properties by default [4]. A lot of
them is a duplicate or useless for the designed integration. The useless meta-properties
that are generated by the ApsectFaces library are removed. The useless meta-properties
generated by the ApsectFaces library are className, ClassName, dataType, DataType,
DataTypeFullClassName, email, entityBean, field, fieldName, FieldName, fragment,
fullClassName, FullClassName, instance, notNull, password and value.

The AspectFaces library also generates a lot of meta-properties from data model an-
notations [4]. These annotation will be described in Section 5.1.6. The integration of the
AspectFaces library to the Angular 2 framework makes use of following meta-properties:
label, minLength, maxLength, max, min, required and size. The integration of the As-
pectFaces library to the Angular 2 framework also adds a placeholdermeta-property. These
meta-properties are based on attributes of HTML input and select tag.

Then the rest of the AspectFaces meta-properties is formatted into the more suitable
structure which contains a name of the entity and a list of fields. The field consists of a
name, a tag, a list of constraints and optionally a list of options. A constraint is a pair of a
key and a value, an option consists of a label and a value. This representation corresponds
with with the structure that was described in Listing 4.2. At the end of this step, the
meta-properties are generated and formatted.

5.1.3 Encapsulation of meta-model generation

First, there are created Java classes Structure, Field and Option to represent the meta-
model described in Section 5.1.2. These classes are also called DTO (data transfer object).

16

5.1. META-MODEL GENERATION

This representation of the meta-model in Java is visualised in Figure 5.1.

Figure 5.1: Class diagram of the meta-model structure

Secondly, the meta-properties generation and formatting implemented in Section 5.1.1
and 5.1.2 are encapsulated into the generateStructuremethod in the Generator class. This
method needs to be provided with an entity described in Listing 4.1 and a configuration that
will be described in Section 5.1.4. Result can be seen in Listing 5.3.

Generator.generateStructure(Student.class , "angular2");

Listing 5.3: The generation of meta-properties

5.1.4 Configuration

The AspectFaces library provides the basic configuration package [4]. This integration
uses it and modifies it to it needs. A list of configuration files is listed bellow:

• WEB-INF/web.xml - This file is called the deployment descriptor. The AspectFaces
listener must be registered in this file [4].

• WEB-INF/apectfaces-config.xml - The file contains a registration of configurations
and a registration of annotations. This file was modified by adding the configuration
and the annotations of the integration of the AspectFaces library to the Angular 2
framework.

• WEB-INF/apectfaces.taglib.xml - The file contains the configuration of the Java
Server Faces extension of the AspectFaces library. Since the integration of the Aspect-
Faces library to the Angular 2 framework doesn’t use it, the file was removed.

• WEB-INF/af and WEB-INF/af/profile - The folders contains configurations. There are
already presented configuration "html" and "table". They are replaced by "angular2"
configuration.

• aspectfaces.properties - The file contains a basic configuration of a structure of a
project.

The integration of the AspectFaces library to the Angular 2 framework adds its own
configuration file to ones from AspectFaces:

17

CHAPTER 5. IMPLEMENTATION

• afwa2-option-labels.properties - The file was added by the integration of the
AspectFaces library to the Angular 2 framework. It contains labels of enumerations
crated by a user.

5.1.5 Type Mapping

The AspectFaces library provides means to map data types to different components [4].
The integration of the AspectFaces library to the Angular 2 framework provides several
predefined components. They will be described later in Section 5.2.2. A usage of the As-
pectFaces library makes possible to create and map to user-created custom components.
Example of mapping to the integration of the AspectFaces library to the Angular 2 frame-
work components can be seen in Listing 5.4.

The integration of the AspectFaces library to the Angular 2 framework preserves this
functionality. Only change is the attribute tag. Instead of containing the file with the tag,
the attribute contains the name of the tag now. This is because of the current state of the
Angular 2 framework and its capabilities. It is later described alongside the predefined tags
in Section 5.2.2.

<?xml version="1.0" encoding="UTF -8"?>
<configuration

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
xmlns="http:// aspectfaces.com/schema/aspectfaces"
xsi:schemaLocation="...">

<mapping >
<type>String </type>
<default tag="inputText"/>
<condition

expression="${not empty email and email == true}"
tag="inputEmail"/>

</mapping >

...
</configuration >

Listing 5.4: Example of the type mapping

5.1.6 Model Annotations

The AspectFaces library provides means to annotate a model by different kinds of annota-
tions [4]. Those annotations can be from AspectFaces, Hibernate, Java Persistence API and
others. The AspectFaces library also provides means to annotate a model by user-created
custom annotations by creating and registering a descriptor for it [4].

18

5.2. FORM RENDERING

The integration of the AspectFaces library to the Angular 2 framework preserves this
functionality. If developer decides to create a custom annotation that generates a custom
constraint, he needs to create a descriptor for it first. Then he needs to create a custom tag
or component in which the constraint will be used. This creation is describe in Section 5.2.3.

The integration of the AspectFaces library to the Angular 2 framework also creates its
own annotation:

• UiPlaceholder - This annotation is used to generate the placeholder constraint which
is used to specify the place holder in the user interface.

5.2 Form rendering

In the implementation of the client-side form rendering there is used Angular 2 version
2.0.0-beta.17 that was available at the time of making this thesis.

5.2.1 Meta-model transformation

The Angular 2 framework has a component based structure [11]. In order to transform
the meta model into the user interface, the FormComponent component was created. This
component handles the user interface rendering. It needs to be provided with the structure
generated by the server-side part of the application and by the values also provided by it.
This component can also be provided with a boolean value with specifies if the user interface
is editable.

5.2.2 Predefined tags

The integration of the AspectFaces library to the Angular 2 framework comes with several
predefined tags or components:

• inputText - This tag is used for a plain text input. It utilizes HTML input tag with
type attribute set to text.

• inputEmail - This tag is used for an email input. It utilizes HTML input tag with
type attribute set to email.

• inputPassword - This tag is used for a password input. It utilizes HTML input tag
with type attribute set to password.

• inputBoolean - This tag is used for a boolean input. It utilizes HTML input tag with
type attribute set to boolean.

• inputNumber - This tag is used for a number input. It utilizes HTML input tag with
type attribute set to number.

• selectEnum - This tag is used for selecting one item from a list of options. It utilizes
HTML select tag.

19

CHAPTER 5. IMPLEMENTATION

5.2.3 Custom tags

The integration of the AspectFaces library to the Angular 2 framework also supports cus-
tom tags created by a developer. However they must be manually added to the FormComponent
component because the current state of the Angular 2 framework. It is also worth to mention-
ing that if a developer creates a custom annotation that produces a custom meta-property
respectively a custom constraint, he must create a custom tag to use it. The predefined tags
don’t recognise custom constraint without developer changing their source code.

5.2.4 Entry point

The integration of the AspectFaces library to the Angular 2 framework has an user
friendly entry point similar to the one from AspectFaces with Java Server Faces [4] or Metaw-
idget [7]. This entry point comes in form of the selector of the FormComponent component
as shown in Listing 5.5.

<af−form [structure]=" struct" [values]=" vals" [edit]=" edit">
Loading ...

</af−form>

Listing 5.5: Form developed using AspectFaces with Angular 2

5.3 Communication between server and client

Both parts of the application were implemented using REST and JSON. This is not
mandatory so the alternative mean of communication can be used.

5.3.1 Communication using REST

The implementation is for Java EE application so on the server-side part of the application
Java API for RESTful Services (JAX-RS) can be used. On the client-side of the application
the Angular 2 framework has its own support for REST services.

5.4 Usage

Both parts the integration of the AspectFaces library to the Angular 2 framework are
designed to work together but they can also be used separately. The work title of the
distribution is AspectFaces with Angular 2 (AFWA2).

20

5.4. USAGE

5.4.1 Usage of meta-model generation

The server-side meta-model generation described in Section 5.1 is distributed as a JAR
file or through Maven. There is added the configuration package that was described in
Section 5.1.4 to it. In case of the Maven project the installation consists of adding Maven
repositories and dependencies for both AspectFaces [4] and its integration to the Angular 2
framework. Then the configuration package needs to be merge with the project. Examples
of projects can be found on the included CD.

Once the developer finished the installation, he can create a data model which example
was shown in Listing 4.1. Then he can use JAX-RS to create rest services in his application,
Those service will provides values of the data model and its structure that was shown in
Listing 4.2. The structure can be obtained by using the Generator class as shown in Listing
5.3

5.4.2 Usage of form rendering

The client-side form rendering described in Section 5.2 id distributed as a JS file respec-
tively s a TS file that needs to be added to the project. The developer needs to add the
Angular 2 scripts to his project either by Node.js or CDN [11]. The same must be done with
the integration scripts. Examples of projects can be found on the included CD.

Once the developer finished the installation, he can import the FormComponent compo-
nent to his component and use it and its custom tag shown in Listing 5.5 to render a form.
This custom tag must be provided with a structure and values than can be obtained from
the server-side part of the application using the Angular 2 HTTP module.

21

CHAPTER 5. IMPLEMENTATION

22

Chapter 6

Testing

In this chapter there will be presented two example applications of the implementation
of the AspectFaces library to the Angular 2 framework. The performance and usability tests
will be performed on them.

6.1 Test applications

In order to present and test the implementation of the AspectFaces library to the Angular
2 framework two example applications were created. Those application are programmed in
Java EE and Angular 2. They represents information system on which most likely be the
implementation of the AspectFaces library to the Angular 2 framework deployed.

6.1.1 Application 1

This application represent a student registration form. This application was developed
with the integration of the AspectFaces library to the Angular 2 framework and its purpose
id to present all of its features. Example of a form generated by this application can be seen
in Figure 6.1.

Figure 6.1: Example application 1 developed using AFWA2

23

CHAPTER 6. TESTING

Figure 6.2: Example application 2 developed using AFWA2

24

6.2. PERFORMANCE TESTING

6.1.2 Application 2

This application is based on the AF intro application that was provided by Ing. Černý
Tomáš, Ph.D. The AF intro application serves as demo for AspectFaces with Java Server
Faces. The example with the integration of the AspectFaces library to the Angular 2 frame-
work was added to it in order to compare those technologies.

6.2 Performance testing

In this section the performance testing will be described. It will test that the integration
of the AspectFaces library to the Angular 2 framework doesn’t slow the application and it
will compare its speed with other technologies.

6.2.1 Results

The tested application load time was about 315 ms. However most of this time, about
300 ms, was a loading of Angular 2 scripts. The application itself took about 15 ms to load.
For example loading the same application with with AspectFaces and Java Server Faces take
about 20 ms and with PrimeFaces about 75 ms. If the fact that the Angular 2 framework is
still under development is taken into consideration, there can be concluded that there is no
negative performance impact.

6.3 Usability testing

In this section the application’s user interface will be examined in terms of amount code
and its maintainability. The results of the usability testing were directly taken from the
parer Aspect-Oriented User Interfaces Design Integration to Angular 2 Framework [5].

6.3.1 Results

Let us examine the prototype’s user interface in terms of amount code and its main-
tainability. First of all, the developer needs to import a custom component that is defined
through a JavaScript library. Next, she needs to open a conventional HTML form tag and
add there the custom component into it. This reduces the needs to manually design the
form. Manual design would: restate information form backend, tangle various user interface
concerns together, could expose a typological error not captured by weak type safety, extend
development and maintenance efforts, reduce readability and finally loss correlation with
the server-side once it evolves or changes the data stricture. The benefits of the automated
derivation provided by the prototype are clear, all the before mentioned difficulties are ad-
dressed and resulting with a single line of code that provides the expected user interface
outcome. Furthermore, optionally it is possible add form controls to influence the outcome.
Next, the context information can be take into account so that different users receive differ-
ent outcomes basing on their specific conditions. Security, us enforced by the AspectFaces
library thus not extra information is being exposed to the end user.

25

CHAPTER 6. TESTING

To summarize, with our approach the developer only needs to define a particular widgets
once and the resulting form correlated to the server-side data structure and becomes adaptive
to changes at the server-side, which makes the solution efficient form the perspective of
maintenance efforts. Input validations are enforced basing on the server provided meta-
model, thus it cannot happen that client submits data that would not be accepted by the
server-side because of basic constraint violations, such as length restrictions, textual format,
requirements, information types, date restrictions, etc. The prototype thus enforces the
structure as expected by the server-side, which reduces the information restatement and the
single source of information moves only towards the server side.

26

Chapter 7

Conclusion

To summarize there was designed and implemented the aspect-oriented user interface
approach for Java EE applications with Angular 2 in their presentation layers. The func-
tionality of the AspectFaces library was implemented to the Angular 2 framework.

The implementation fulfils demands on usability, adaptability and dynamic behaviour of
the user interface. The implementation doesn’t limits a developer in terms of performance
and usage. Because the Angular 2 framework is still in a beta phase. Our proposal is
evaluated on a prototype application highlighting the benefits or the approach mostly in
reduced development and maintenance efforts.

Even though Angular 2 is still in the beta phase we predict similar success as its pre-
decessor Angular 1. So the first thing that needs to be done in the future is to update the
implementation with new version of the Angular 2 framework. This will hopefully helps to
remove some performance issues caused be the Angular 2 framework.

Other future work may consist of a application of the integration of the AspectFaces
library to the Angular 2 framework on large production-level enterprise applications or ap-
plying this integration approach on other technologies like React.

27

CHAPTER 7. CONCLUSION

28

Bibliography

[1] CERNY T. – MACIK M. – DONAHOO M. J. – JANOUSEK J. On distributed concern
delivery in user interface design. Computer Science and Information Systems. 2015, 12(2),
655–681, ISSN 1820-0214, doi: 10.2298/CSIS141202021C. Available from: <http://www.
doiserbia.nb.rs/Article.aspx?ID=1820-02141500021C>.

[2] KENNARD R. – STEELE R. Application of Software Mining to Automatic User Interface
Generation. New Trends in Software Methodologies, Tools and Techniques - Proceedings
of the seventh SoMeT 2008, Frontiers in Artificial Intelligence and Applications. 2008,
182, 244–254, doi: 10.3233/978-1-58603-916-5-244. Available form: <http://ebooks.
iospress.nl/publication/4851>.

[3] KICZALES G. – John IRWIN J. – LAMPING J. – LOIGTIER J. – LOPES C. V. –
MAEDA C. – MENDHEKAR A Aspect-oriented programming. In ECOOP’97-Object-
Oriented Programming, 11th European Conference 1997, 1241, 220–242.

[4] ApectFaces documentation. Available form: <http://wiki.codingcrayons.com/
display/af/AspectFaces>

[5] RYSAVY F. – CERNY T. Aspect-Oriented User Interfaces Design Integration to Angular
2 Framework. Submitted to International Conference on IT Convergence and Security
2016.

[6] CERNY T. – DONAHOO M. J. On separation of platform-independent particles
in user interfaces. Cluster Computing. 2015, 18(3), 1215–1228, ISSN 1386-7857, doi:
10.1007/s10586-015-0471-7. Available from: <http://link.springer.com/10.1007/
s10586-015-0471-7>.

[7] Metawidget documentation. Available form: <http://metawidget.sourceforge.net/
documentation.php>

[8] HANSON R. – TACY A. GWT in Action: Easy Ajax with the Google Web Toolkit.
Manning Publications Co., Greenwich, CT, USA, 2007.

[9] B. Speaker-Fisher. Flux: A Unidirectional Data Flow Architecture for React Apps. Ap-
plicative 2015, ACM, New York, NY, USA, 2015.

[10] BURNS E. – GRIFFING N. JavaServer Faces 2.0, The Complete Reference. McGraw-
Hill, Inc., New York, NY, USA, 1 edition, 2010.

[11] Angular 2 Documentation. Available form: <https://angular.io/docs/ts/latest/>

29

http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02141500021C
http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02141500021C
http://ebooks.iospress.nl/publication/4851
http://ebooks.iospress.nl/publication/4851
http://wiki.codingcrayons.com/display/af/AspectFaces
http://wiki.codingcrayons.com/display/af/AspectFaces
http://link.springer.com/10.1007/s10586-015-0471-7
http://link.springer.com/10.1007/s10586-015-0471-7
http://metawidget.sourceforge.net/documentation.php
http://metawidget.sourceforge.net/documentation.php
https://angular.io/docs/ts/latest/

BIBLIOGRAPHY

30

Appendix A

Nomenclature

AFWA2 AspectFaces with Angular 2

API Application Programming Interface

CDN Content Delivery Network

DTO Data transfer object

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

JAR Java Archive

Java EE Java Enterprise Edition

Java SE Java Standard Edition

JAX-RS Java API for RESTful Services

JDK Java Development Kit

JS JavaScript

JSON JavaScript Object Notation

REST Representational state transfer

TS TypeScript

UI User interface

31

APPENDIX A. NOMENCLATURE

32

Appendix B

Content of the included CD

|-- example
| |-- src
| |-- target
| |-- ...
|
|-- example2
| |-- server
| |-- src
| |-- target
| |-- ...
|
|-- form-rendering
| |-- src
|
|-- meta-model-generation
| |-- src
| |-- target
| |-- ...
|
|-- rysavfi1-thesis-2016.pdf

The example application 1
Source code of the example application 1
Build of the example application 1

The example application 2
Preconfigured server for the example application 2
Source code of the example application 2
Build of the example application 2

The client-side form rendering
Source code of the client-side form rendering

The server-side meta-model generation
Source code of the client-side form rendering
Build of the client-side form rendering

The pdf version of this thesis

33

	Introduction
	Motivation and goal of the thesis
	Structure of the thesis

	Background
	Conventional user interface design
	Principle

	Aspect-oriented user interface design
	Aspect-oriented programming
	Principle

	Inabilities of conventional user interface design

	Related work
	AspectFaces with Java Server Faces
	Usage of plain Java Server Faces
	Usage of AspectFaces with Java Server Faces

	Metawidget
	Usage

	Other solutions

	Design
	Technologies
	AspectFaces
	Angular 2

	Meta-model generation
	AspectFaces meta-model generation
	AspectFaces meta-model formating
	Encapsulation of meta-model generation

	Form rendering
	Meta-model transformation
	Entry point

	Communication between server and client
	Communication using REST

	Implementation
	Meta-model generation
	AspectFaces meta-model generation
	AspectFaces meta-model formatting
	Encapsulation of meta-model generation
	Configuration
	Type Mapping
	Model Annotations

	Form rendering
	Meta-model transformation
	Predefined tags
	Custom tags
	Entry point

	Communication between server and client
	Communication using REST

	Usage
	Usage of meta-model generation
	Usage of form rendering

	Testing
	Test applications
	Application 1
	Application 2

	Performance testing
	Results

	Usability testing
	Results

	Conclusion
	Nomenclature
	Content of the included CD

