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CHAPTER

ONE

INTRODUCTION

Traditional measurement instruments1 have been available for a long time. Ever since, they
have been greatly improved in all aspects, including precision, size, communication interfaces
and others, but there are still some reasons why they are not very viable for the wide public,
and especially students. The two main reasons are high price and large size.

Currently there is an abundance of microcontrollers which have complex peripherals to
implement such traditional instrument functions. These microcontrollers have limitations,
the largest one low accuracy and speed, however, since their bene�ts include very small size,
and very low price, microcontrollers �t the role of being low cost measurement instruments
perfectly, especially considering the fact, that multiple instruments can be implemented on a
single microcontroller.

Thanks to their low price, size and plethora of peripherals, microcontrollers can be embed-
ded into virtually any device, ranging from laboratory demos to products like power supplies.
There they could be used, among others, as onboard diagnostics. The main bene�t being, that
if correctly done (i.e. separated from the actual device with resistors, own power supply from
USB etc.), these embedded systems are independent of the device they are embedded in, and
thus can provide relevant information even when the device they are embedded in is failing.

This thesis will explore the methods of implementation of traditional instrument functions
with microcontrollers, and will analyze the limitations of these embedded instruments.

1A traditional instrument is self contained measurement instrument, which measures that it has the all required
sensors and signal processing, as well as a user interface built in.
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CHAPTER

TWO

CURRENT SITUATION AND GOALS

2.1. Current situation

If somebody would like to start learning about electronics today, they would have to invest
a signi�cant amount of money into measurement instruments. At the very least, they would
need a multimeter, a power supply, and ideally a signal generator and an oscilloscope. A mul-
timeter can be bought for some $20, but the rest of the instruments are much more expensive,
especially the oscilloscope which starts at $300. An alternative to all these instruments, would
be to buy a proprietary measurement system1, which has all the required instruments built in,
such as the NI ELVIS. Unfortunately, they are also very expensive (hundreds of dollars).

The high cost of traditional instruments poses a problem for those who want to learn elec-
tronics. This is especially true for high school students, as usually neither they, nor their high
schools2 can a�ord such instruments. High school students are a very important group that
should be exposed to electronics. This is because high schools are a place where students
decide which �eld to study in university, especially in the case of techincal �elds, even their
carrer path.

Furthermore, the large size of traditional instruments can be an inconvenience in labs where
the precision and versatility of the traditional instruments is not necessary. Imagine a lab that
will teach the student about a sensor , but not how to control the instruments. Depending
on the sensor, one could need a signal generator, a multimeter, and an oscilloscope, and all
of these instruments take up a lot of space. All of this functionality can be built into a single
microcontroller and controlled from a computer, which are abundant these days.

There are many companies including ST, NXP and Texas Instrumets, who have a large va-
riety of microcontrollers and in particulary development boards3. These development boards
have all the necessary circuitry for the microcontroller to run and connect to measured cir-
cuitry. Thus one can simply upload a program to the board, and have the board perform the
required functions such as measuring voltage, generating pwm signals, or sending the data
back to the computer. The main bene�ts of instruments built on these evaluation boards are:

1A measurement system consists of one or more instruments which can communicate externally, such as over a
serial connection, or USB.

2With the exception of technical schools, because working with the hardware is a big part of their curricullum.
There is however, never enough of measurement instruments.

3ST has 3 series of development boards: nucleo, discovery and eval. Only the �rst two are interesting for this
thesis, as eval boards are for the industry and as such, they have a high price.
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Goals

• very low price (a STM32F303RE nucleo boards costs a little more than $10), and

• small size (roughly the size of a smart phone).

Currently there are public projects which implement traditional instrument functions on these
development boards and microcontrollers. For example Tomas Ostrowsky created an oscillo-
scope [13], which has many features including an arbitrary signal generator or FFT signal
analysis. Unfortunately, to �nd these projects one has to know what he is searching for, and
very often the documentation requires previous experience with electronics. Therefore get-
ting the project up and running can take long hours of trial and error. Ultimately, many people
would be much more motivated to explore the �eld of electronics if their �rst projects were
easy and ’just work’4.

2.2. Goals

This bachelors thesis will explore two ways to implement an embedded instrument, which
can be used instead of the aforementioned traditional instruments. These instruments will be
implemented on STM32 microcontrollers, and the limitations of such instruments will also be
explored.

Signal measurement with traditional instruments can be divided into static and dynamic
measurement. Static measurement deals with the parts of the signal that are constant, such as
frequency or RMS voltage of a periodic harmonic signal (power outlet), thus usually a single
number i.e. a 4 digit display can represent the measurement. Dynamic measurement deals
with the changing parts of a signal, e.g. how the actual sine wave in the power outlet looks,
or measuring the characteristics of a transient. Dynamic measurements are usually presented
in the form of a graph (such as an oscilloscope or a logic analyzer).

This thesis will discuss the methods of implementation and limitations of the functions
described in the following subsections on STM32F3 and STM32F0 series microcontrollers. The
F3 series microcontrollers are based on the ARM Cortex-M4 core, and the F0 series are based on
the ARM Cortex-M0 core. Both cores are 32-bit but they have a di�erent architecture and the
Cortex-M0 has a limited instruction set. These two series have been chosen as they represent
what is available on the market today in terms of computing power, and choice of peripherals
quite well.

2.2.1. Static voltage measurement:

Measuring voltage is arguably one of the most important functions of an embedded instrument,
since it is the most common type of measurement. This functionality is provided by Analog
to Digital Converters, or ADCs, which are builtin peripherals on most microcontrollers.

It is expected, that the embedded system will need to measure voltages in multiple ranges.
Typical ranges are

• CMOS logic levels: 0 V ∼ 3.3 V, TTL logic levels: 0 V ∼ 6 V, and

• bipolar voltages for measurement on operational ampli�ers (op amps): −5 V ∼ +5 V, or
even −15 V ∼ +15 V.

4This was beautifully demonstrated by Arduino. It is development platform that has many examples which are
well documented and easy to use, and it is now very widely used.
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Current situation and goals

Most microcontrollers and their perihperals, including the ADC, are built with CMOS logic,
which means that they only have a limited input range of 0 V ∼ 3.3 V or 0 V ∼ 5 V (a higher
voltage could destroy them). Therefore a signal conditioning block needs to be added before
the microcontroller input if one needs to work with other voltages. This block would reduces
the voltage range, and in case of the bipolar voltages also shift the voltage to start at 0V . This
can be done with a resistor voltage divider, or an op amp with negative feedback.

Another limitation of the builtin ADCs is noise and interference. Even though ADCs have
their own analog power and ground, they will still experience interference and noise from the
rest of the microcontroller, and also from the omnipresent 50Hz sinusoid in powerlines. For-
tunately though, many times this noise and interference can be eliminated by using averaging
from a large enough sample set, and the 50Hz interference can be removed by averaging from
sample sets that cover whole periods of the 50 Hz signal (20ms).

Most microcontrollers use successive aproximation ADCs, which require a sample and hold
(S/H). As will be explained later, the current draw of these S/Hs grows with the sampling
frequency. This in turn means, that at slow sampling rates, there is a low current draw that
doesn’t a�ect the measured voltages too much, at higher frequencies though, which is what an
oscilloscope needs, the current draw is very high. For example, the ADC on an F303 processor,
will current draw roughly 1µA at at 200kHz sampling rate. This would cause a 100mV drop on
a 100kΩ resistor which is not negligible. Since with dynamic voltage measurement the highest
sampling rates are desirable, this limitation should be taken into account.

Finally, all ADCs can measure voltage only upto their supply voltage i.e. with di�erent
supply voltages, the whole measurement gets shifted. This means that the ADC has to be
calibrated to compensate for the voltage shift to ensure that it is measuring correctly. For this
purpose, all ADCs have an internal reference voltage, which can be used to calibrate the ADC.

2.2.2. Controlled voltage source:

The easiest way to generate voltage is using a digital to analog converter (DAC), which is an
builtin peripheral in some microcontrollers. It often supports DMA transfers, thanks to which
it can be used as an arbitrary function generator, however that is out of the scope of this thesis.

The DACs in the F303 series microcontrollers have built in bu�ers. These bu�ers decrease
output impedance, and allow driving external loads directly, however they limit the maximum
and minimum output voltages of the DAC. Therefore rail to rail voltages on the output cannot
be achieved. It is possible to disable the bu�ers, and thus get full rail to rail output voltage, but
at the cost of higher output impedance and lower maximum output current. This can be �xed
by using an external bu�er with better parameters, such as an opamp voltage follower.

Like in the case of the ADC, DACs have selectable resolution. In many cases the maximum
is 12bits and lower resolutions such as 8bits can be selected.

DACs are not as ubiquitous as ADCs, so there may be cases where a voltage source is needed,
but a DAC is not available. There are two other ways with which a controlled voltage source
can be implemented:

1. directly with the digital pins of the microcotroller, or

2. using a PWM signal.

The bene�t of using digital pins is that they very simple to set up, however they only only two
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voltages. Using the PWM signal on the other hand requires a timer peripheral 5(see section
2.2.5), but can provide a higher output voltage resolution.

2.2.3. Dynamic voltage measurement:

Many times we need to see how a signal changes in time, thus we measure the dynamic proper-
ties of the signal. The approach is similar to that of static voltage measurement with averaging.
The voltage is sampled at a certain frequency, usually much faster though, and instead of aver-
aging those measured values, they are saved to a bu�er, and then graphed against time. Since
higher sampling frequencies are used (on microcontrollers hundreds of kSps6 are achievable,
on traditional oscilloscopes, hundreds of MSps, even units of GSps), DMA is used to get the
highest possible speeds. Also, because using DMA frees up the processor (it doesn’t need to
facilitate the data transfer between the ADC and the bu�er), the processor can perform addi-
tional tasks such as triggering and communication.

Since we are interested in the dynamic properties of the signal, often the resolution is less
important than the measurement speed. To get the highest speeds, lower resolution, usually 8
bits, is used, since it o�ers the best compromise between speed and resolution.

All the other limitations that were mentioned for static voltage measurement apply, but
since higher sampling frequencies are usually used, the problem with current draw at higher
sampling frequencies is more important. Furthermore, at high sampling frequencies, the ca-
pacitor in the sample and hold might not have enough time to fully charge to the measured
value, and thus the measured voltage will be di�erent. Finally, because the data needs to be
plotted in a graph, a frontend which can process and plot the data is required.

2.2.4. Counter, frequency and duty cycle measurement

Counter

A counter simply counts the number of pulses. The easiest way to implement it, is using
the timer perihperal and setting the pulse source as the timers clock source. There are two
limitations:

1. the maximum counting frequency, which is typically half of the timer clock speed, and

2. the maximum counter size. In the STM32 line microprocessors, there can be zero to two
32bit (232 ≈ 4 · 106) counters and all the others are 16bit (216 ≈ 65 · 103). Usually though,
when using the counter as a counter (as opposed to DFM or RFM discussed in further
ahead), it is used only at a low speed, and as such, neither the speed nor counter size are
a problem.

Direct frequency measurement (DFM)

We can measure frequency directly by gating7 the counter. A simpli�ed model of a DFM
instrument can be seen on �g. 2.1. For example on �g. 2.2: if we gate the counter for a period
T = 1s and it counts 5 pulses, the frequency is 5 Hz, since frequency is de�ned as the rate of
something happening in a second.

5It cas also be done by switching digital pins with software, this is also know as bitbanging.
6The ADCs can actually sample at MSps, but the data trasmission speed from the microcontroller is the limit.
7Gating means turning the counter on and o� for a certain period of time.
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Ext

Clk Div

Counter

Figure 2.1.: DFM instrument
model

The resolution ResDFM is inversly proportional to the fre-
quency of the measured signalfms, i.e.

ResDFM =
1
fms

(2.1)

For example with a measured frequency of 1kHz, the ac-
curacy is 10−3. Conveniently, this also means that with a
gating time of 1 s the resolution is 1 Hz. To get good accu-
racy, the measured frequency should be much higher than

the gating frequency, at least 1000 times larger.
In the past, the gating time was decadic multiple of 1 s, such as 0.1 s or 0.01 s because the

counter was directly connected to a display. Thanks to this, the frequency at a di�erent gating
time was ’calculated’ by moving the decimal point on the display. Microcontrollers, have a
lot of processing power, so it is easily possible to set any gating time and then recalculate the
frequency. This has one downside though, the resolution can become non integer, e.g. 1.2 Hz.

Tgate

12345
Signal

Count

Figure 2.2.: Direct Frequency
Measurement

As with all time related measurements, the biggest limi-
tations are caused by

• the accuracy of the clock source. The HSI (high speed
internal clock) which is selected as default is very
innacurate (0.1 %), but if an external crystal is used
for the HSE, even units or fractions of a ppm can be
achieved. The second limitation is

• the size of the timer (16 or 32bit). Fortunately, even if
only 16bit timers are available, it is possible to chain

timers and use the over�ow of one as a carry into the other, e�ectively making 32bit or
larger timers.

Reciprocal frequency measurement (RFM)

T

Figure 2.3.: Reciprocal
Frequency
Measurement

Reciprocal frequency measurement is very similar to DFM. In-
stead of gating the counter from an internal clock and counting
the number of the pulses from the measured source, the pulse
signal is used to gate a counter which measures the number of
pulses from the internal clock source. Therefore, while the reso-
lution of DFM was given by the measured signal i.e. ±1 pulse of
the measured signal, the resolution of RFMResRFM is±1 internal
clock cycle Tic, which is contsant i.e.

ResRFM = Tic =
1
f ic

Since RFM resolution is set by the internal clock cycle, to measure the signal with high
precision the signals should have a much lower frequency than the internal clock. If the clock
is 72MHz, then to get a resolution of at least 10−3, the measured signal has to be lower or equal
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to 72kHz. Since RFM measures the period of the signal T , as seen on �g. 2.3, the frequency
has to be calculated using equation 2.2.

f =
1
T

(2.2)

Measuring the period (RFM) is more complicated than direct frequency measurement (DFM),
because the counter is not enabled by a ’known’ signal, but by the measured signal itself. This
means that we have to detect where the period starts and where it ends. This can be done
either by:

1. having the timer measure the clock pulses at each rising edge, and then calculate the
period from the di�erence of these two signals, or

2. have the �rst rising edge start the timer, and the other rising edge record the time. This
gives us the period directly.

DFM has a large bene�t over RFM in that it measures average frequency by de�nition (pulses/time),
however with RFM, only a single period is captured and converted, therefore if the measured
signal is not completely periodic, signi�cant errors can be introduced8.

Even though RFM is used mainly for measuring lower frequencies, the lowest frequency is
limited by the timer clock. This is especially the case when a 16bit timer is used. To be able
to measure a lower frequency, either a counter with more bits has to be emulated, i.e. use the
counter over�ow as a carry into another counter, or the clock speed has to be lowered, this of
course lowers the maximum frequency that can be measured.

The same limitations apply as with DFM - clock percision (HSI vs. HSE) and counter size
(32bit vs 16bit).

Duty cycle measurement

Tpw
T

Figure 2.4.: Duty Cycle
Measurement

Duty cycle measurement can be done as an extension of indirect
frequency measurement, by measuring the pulse widthTpw (e.g.
how long the period is high), in addition to the period T , as
seen on �g. 2.4. The duty cycle %DC can be the calculated using
equation 2.3.

%DC =
Tpw

T
· 100 (2.3)

2.2.5. PWM signal generation

PWM or pulse width modulation signals are important signals
with a wide variety of usage. PWM signals can be used to con-
trol motor speed, LEDs, emulate quadrature signals etc. They can also be used instead of a
DAC.

PWM signal generation can be done with the timer peripheral using output compare.

8This can be however be corrected by averaging, and since the length of each period is know, the �uctuation of
the signal can be analysed.
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20%

50%

80%

Figure 2.5.: PWM Signal Duty Cycles

As seen on �g. 2.5, PWM works by switching an
output high and low at a speci�ed ratio - the duty cy-
cle, at a high frequency. The average output voltage is
calculated using equation 2.4 where Vhigh is the volt-
age on the pin when it is high, and Vlowis the voltage
on the pin when it is low (this is typically 0 though).

Vout =
%DC
100

· (Vhigh +Vlow) (2.4)

Output compare is the timers ability to trigger an output without interrupting the processor,
thanks to this, it is possible to set the timer i.e. set the frequency and duty cycle, and the
timer will generate the set pwm signal until it is requested to do something else. Because the
frequency and duty cycle are set with a counter, similar to RFM, the same limitations apply,
i.e. the counter size (16bit or 32bit) and maximum clock speed limit the frequency and duty
cycle resolutions at high speed and the frequency range.

2.3. Approaches to developing embedded instruments

There are many situations in which an embedded system is developed. These situations can
be very roughly grouped into three development groups:

• Fast - the system is required in a very short time, and it is expected that the microcon-
troller will not be used to its full potential. This can be done with the online IDE and
framework - mbed. It provides a highly abstract api, which allows high code portability
(even between di�erent vendors) and virtually no knowledge of the microcontroller for
which the code is written. This approach is good for beginners with microcontrollers,
because it doesn’t require deep studies of the microcotroller and many working, simple
to understand programs are provided. This approach is discussed in chapter 3.

• Maximum utilization - it is desired to get out the most of the microcontroller, e.g. an os-
cilloscope. This would normally mean implementing the system with a very light frame-
work, or without one altogether, because frameworks create an overhead. It would also
mean writing to the microcontroller registers directly, in C language or even in assem-
bler. This approach also requires rigorous study of the microcontroller documentation,
datasheet and errata. A light framework suitable for this approach is STM32Perihperal
Libraries, of course, it is only usable microcontrollers from the STM32 line. It is also
possible to only use the memory de�nitions from the framework and write even more
low level code. However, since ST is moving away from the preipheral libraries, they
will not be discussed in this thesis, and their successor - STM32Cube will be discussed.

• A compromise between the previous two. This means there is code abstraction with a
framework and it is possible to utilize and completely control all the features of the mi-
crocontroller, but it is not possible to get the most from the microcontroller. STM32Cube
is precisely for this. It also has a GUI for generating peripheral initialization code, which
is usually the hardest part in microcontroller programming. This approach is discussed
in chapter 4.
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CHAPTER

THREE

QUICK DEVELOPMENT USING MBED

3.1. Overview

In microcontroller development, usually the hardest part is initializing the peripherals, that is
enabling the peripherals clock, actually setting up the peripheral itself, setting up the GPIO
pins correctly, and the debugging to see that the functionality was actually set up correctly.
All of this requires a good understanding of the peripherals and what one is doing, and while
all the functionality is described in the reference manuals, datasheets and erratas, setting up
the peripherals can be very time consuming.

Unfortunately, the complexity and time requirements of initializing the microcontroller pe-
ripherals make microcontroller development very hard for beginners. This can pose a problem
even for experienced users if they need a program up and running fast. For these and other
reasons, Mbed was created.

Mbed is an online IDE and framework, which allows writing highly abstract code for sup-
ported ARM1 based microcontrollers. All the complex initialization is done with single line
commands, and there are many examples and tutorials. For example dimming an LED with
PWM is almost trivial2 - �rst a PWMOut(PinName pwm) object is created, which initializes all
the peripherals required for PWM signal generation, and then the write(float dutyCycle)

method can be used to set the duty cycle. One of the bene�ts of such abstract code is that it is
very portable onto other microcontrollers, even to those from other vendors (this is hardly, if
at all possible when writing at a lower abstraction level).

Of course mbed has its cons, because of the abstraction level, one cannot use the full poten-
tial of the microprocessor3, and mbed can only be used with supported boards. As mentioned
earlier though, these cons are completely outweighed in some situations. As mbed enables
very fast prototyping and also has a very low learning curve, it is ideal for students, beginners
or even experienced users.

1ARM develops the ARM architecture and licenses it to other companies who make their own products and add
their peripherals, such as TI, NXP or ST.

2 Normally, these two lines of code would translate to enabling clocks to the timer and gpio peripherals, setting
up the timer in output compare mode and calculating the appropriate autoreload and capture compare values,
and setting up the gpio in correct alternate function mode.

3With mbed it is possible to directly acces the registers, but it requires very good knowledge of the microcon-
trollers and thus won’t be discussed.
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There are two key documents when working with mbed - the handbook[11], and the cookbook
[10]. The handbook contains information about individual libraries, their APIs and examples
on how to use them, and the cookbook contains full tutorials, including client and server side
programs where relevant.

Even though mbed supports a plethora of microcontrollers, some libraries, especially user
contributed ones, don’t support all microcontrollers. Many libraries support only LPC series
microcontrollers from NXP, so before using a library, do look into the handbook whether your
microcontroller is supported.

Important! Each pin supports only some functions, for example on the F303RE nucleo, AnalogOut
(digital to analog converter) is supported only on pins D13 (PA_5) and A2 (PA_4). To �nd out
which functions are on which pins, check the pinout of the board on the mbed site. For ex-
ample the pinout for the F303RE nucleo can be found at [16]. If classes are incorrectly map to
pins (such as PWMOut to PB_3), the program will not start and only “pinmap not found” will
be sent over uart.

3.2. Ways to control an embedded instrument

We can divide individual embedded instruments by how the user can interact with them. There
are four main ways of controlling them:

1. Not using any control. The device is plugged in and just ’works’. This could be a signal
or voltage generator where changes to the output signal are not required. As this method
is very simple, it won’t be discussed further.

2. Controlling with manual reset i.e. singleshot. After connecting the device to a power
supply, it generates a set signal, say 100 periods of a PWM signal and stops. To get
another set of the signal, the user simply resets the device either by a builtin reset button
(many microcontroller boards have these) or by unplugging and plugging back in the
USB cable. This is a rather crude approach but is great when one needs to quickly test
something. A visualization of this can be seen on �g. 3.1. Like the previous case, this
method is very simply and won’t be discussed any further.

Reset by user
Output signal

Figure 3.1.: Singleshot control

3. Controlling with buttons and LEDs. Buttons can be used to cycle through preset pro-
grams, e.g. signal frequencies, or shapes, to start and stop generation etc., and LEDs can
be used as simple status displays. It is discussed in section 3.2.1. A possible use of this
approach can be seen in �g. 3.2, where a button is used to select 1 of 3 freqeuncies.

4. Using a display, such as an LCD to communicate data to the user. The main di�erence
between this approach and the other 4 is that it requires an external library which must
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100Hz

1kHz

10kHz

0x 100Hz

1kHz

10kHz

1x 100Hz

1kHz

10kHz

2x

Figure 3.2.: Control with buttons and LEDs

be imported. The huge bene�t over external control is that the instrument is self con-
tained while providing data in text format. Buttons can be added for interactivity. This
approach is discussed in more detail in sec. 3.2.2

5. The last method is external digital control, i.e. control over a serial connection, USB,
I2C etc. With a serial, or USB connection, the system can be controlled from a computer
terminal application, or a dedicated PC application. This method is very �exible, since
full text strings can be displayed to the user and sent back to the device. It also allows
further data processing. This approach is discussed in section 3.2.3

3.2.1. Control with bu�ons and LEDs

There are cases where controlling the instrument from a computer would be more complicated
than useful and only a few presets or simple settings are needed. In these cases the instrument
can be controlled with just buttons and LEDs. This approach is great for signal generators,
and simple digital (on or o�) controls and displays.

For example, signal generators with only a few frequencies can be controlled very easily
with one button and optionally a few LEDs. The button cycles through the frequency presets
and the leds can show the selected preset. An example can be seen in �g. 3.1.

If one would like to save on buttons, holding a button down can be used as another operation.
If one would like to save LEDs dimming them can be used to show the selected presets (e.g. 0%,
25%, 50%, 75%, 100%). This can be done with the DAC or a PWM signal, which are discussed
in sections 3.4 and 3.10 respectively. An example of change the brightness of an LED can be
seen in Alg. B.6.

Controlling the instrument with buttons and leds is quite convenient when working with
mbed. One can buy a prototype shield4, seen on �g. 3.3, solder onto it the required LEDs or
buttons and plug the shield in to create a standalone embedded instrument.

A huge bene�t of this method is that it saves space (as opposed to using a computer), while
o�ering an intuitive way to control the system, however if more than the built in controls are
required (typically one button and 2 LEDs), extra hardware and all the costs that come with it
are incurred.

To work with digital (2 state) devices such as buttons or LEDs one can use the

• DigitalIn(PinName input) and DigitalOut(PinName output)objects, and their

• int read() and write(int value) methods for reading and setting them.

An example of using a button to control an LED can be seen in Alg. 3.1. The main bene�t of us-
ing the DigitalIn and DigitalOut classes is that they work with all pins.

4Shields are boards which are placed on or under the main board to extend its functionality. A prototype shield
is a prototype PCB with a layout to �t the development board.
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Algorithm 3.1 Mbed controlling an LED

DigitalIn button(PC_13);

DigitalOut led(LED1);

int main(){

while(1){

//One can simply assign the button value to the LED

led = button.read();

//Or use a conditional

if(button){

led = 1;

}else {led = 0;}

}

}

3.2.2. Using an LCD display

Figure 3.3.: Prototype shield with Arduino
headers

When creating selfcontained instruments
LCDs can be very useful, as they provide
much more information than simple LEDs,
but don’t need a computer attached. Since
controlling LCDs directly is not very viable
(too many pins), most LCDs have a con-
troller.

One of the most widely used cotnrollers
is the HD44780. In the minimum con�g-
uration it requires 4 data lines and 2 con-
trol lines, thus taking up 6 GPIO ports. Al-
though the control protocol is not very sim-
ple, mbed has multiple libraries just for the
HD44780, so one doesn’t need any knowl-
edge of the controller except its pinout. I
have used the HD44780 library [5] to cre-
ate an example that measures voltage on a
potentiometer (A), a re�ective optical sensor

(B), and measures the number of passes through an optical gate (C and count). A picture of it
in action can be seen in �g. 3.4.

You might notice that there isn’t a nucleo board, but just a microcontroller on a breakout
board. The program was developed for the STM32F042 nucleo board, and the �ashed onto the
STM32F042 microcontroller seen in the picture. Please refer to Apendix A

3.2.3. Control using a serial interface (UART)

Many development boards, especially low cost ones, have very limited control and display
capabilities, and limited memory and processing power. While there are cases where this does
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Figure 3.4.: Using an LCD Display
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Figure 3.5.: Model of external control with a PC

not matter (such as function and voltage generators with presets), there are other cases in
which we would like more control and feedback. Of course, more hardware can be added to
facilitate this, such as a displays and keyboards, but since the boards that are supported by
mbed typically have a VCP, controlling the board over a serial connection from a computer
is much simpler. A VCP or virtual com port is a software interface that enables applications,
such as a terminal or a full control GUI application, to access a USB device as if it were a serial
device. Typically a VCP serves as a bridge between USB and serial device.

For its simplicity, asynchronous serial communication is a widely spread, and most micro-
controllers have UART peripherals which facilitate it directly5. Typically, data is transmitted at
baud rates6 which are multiples of 9600. Baud rates higher than 115200 are not recommended.

5The reader might be confused at this moment. Most development boards have two processors, one is the ac-
tual microcontroller for which we are designing the embedded instrument, and another which can work as a
debugger, a virtual com port .

6The baud rate is the number of bits transferred per second, including control bits.
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In the basic setting, a data frame consists of 2 control bits - the start and stop bits, and 8 data
bits. This frame can be seen in �g.3.6. If there is a need, a di�erent number of data and stop bits
can be set, and extra features such as a parity bit and �ow control can be turned on. Hardware
or software �ow control can be used to limit data �ow if the receiver cannot cope with the
speed of the transmitter[4].

D0 D1 D2 D3 D4 D5 D6 D7Start StopIdle
Idle/
start

1

0

Figure 3.6.: Typical UART data frame

Adding control over serial communication to an application using mbed is very simple,
as med has a builtin library for that[8]. To use it, a Serial(PinName tx, PinName rx) ob-
ject is created and then the char getc() and void putc(char c) methods can be used to read
and write a single byte. int readable() can be used to see whether a byte is available and
printf(char *format,...) and scanf(char_*format,...) can be used for full string opera-
tions. A very simple example of can be seen in Alg. 3.2.

Algorithm 3.2 Mbed simple command processing

#include "mbed.h"

Serial pc(USBTX, USBRX);

int main() {

while(1) {

/*By using readable() we don’t overwhelm the

system, and other commands can be executed*/

if(pc.readable() && pc.getc() == ’?’) {

//If we receive a ?, return a hello world.

pc.printf("Hello world!");

}

}

}

Furthermore, mbed has a simple implementation of interrupts[7], which are a better way of
handling serial communication. Alg. B.7 shows a simple interrupt based command handler.

Note that like with every object (e.g. Serial) in mbed, to get more information on the avail-
able methods, simply look up the object in the mbed handbook. All the mentioned features
including baud rate, �ow cotrol or data format can be changed by calling the appropirate
method on the object.

3.3. Static voltage measurement

As was already mentioned in the goals, static voltage measurement is the most common type
of measurement. It is done with an analog to digital converter (ADC) which is built into most
microcontrollers and is reasonably accurate.

In mbed, the ADC is abstracted into the AnalogIn class. To use it, an AnalogIn(PinName in)

object is created, and its float read(void) method is used to read the voltage.
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The voltage is measured as a fraction of the ADC supply voltage, therefore the range of the
returned value is from 0 to 1. The read() method can be used implicitly. Assuming that the
system is controlled using a serial connection, an example of a simple 2 input voltmeter can
be seen in alg. B.1

Since the input voltage of the ADC is limited, in the case of the the STM32F303 and STM32F042
series microcotrollers to 0 to 3.3V, it can be desirable to shape the inpt signal so that one can
measure a larger range of voltages. To learn more about this, refer to section 5.1.

It is possible that the input signal will be noisy and riddled with intereference. This could
cause errors in the measurement. An in depth analysis of the causes is in section 5.3. In many
cases averaging from a large enough sample set (at least hundreds of samples), which is taken
over whole periods of 20ms (for 50Hz intereference) is the easiest way to remove most noise
and interference.

By setting up a for loop with all the operations for reading the ADC for say 1000 cycles,
we can measure the sampling period. For a cycle which only adds the current reading to a
variable, which will later by divided to get the average, a period of 8.2µs has been measured.
The minimum sample set size ns can be calculated with equation 3.1, whereTcycle is the period
of a single cycle.

ns =
0.02
Tcycle

(3.1)

Algorithm 3.3 Mbed measuring the adc conversion time

#include "mbed.h"

Serial pc(USBTX, USBRX);

Timer t;

AnalogIn adc(A0);

t.start();

for(int i = 0; i < 1000; i++) {

data += adc.read();

}

t.stop();

printf("\nTotal time: %dus\t",t.read_us());

3.4. Controlled voltage source

LP filterPWM signal
source

Figure 3.7.: Voltage source using PWM

The easiest way to have a fully controllable
voltage source is to use a digital to ana-
log converter (DAC). On many boards how-
ever, there is either no DAC or it has only
a few channels. The STM32F303 has two
DAC channels, which are on pins PA4 and
PA5, while the STM32F042 microcontroller
has none, so sometimes another method has to be used.

With mbed, to use the DAC an AnalogOut(PinName out) object is created, and by assign-
ing values to it, the output voltage is set. An example of its usage can be seen in alg. B.6.
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Roughly in the middle of the code it can be seen that the dac is set with a single line -
extLED = ((float)state) / 4;.

R
C

U pwm U out

Figure 3.8.: RC circuit as
LPF

If two voltage levels are su�cient a digital pin can be used. In
cases where only the mean output voltage matters, a It is pos-
sible to use a PWM signal with a low pass �lter[1] as seen on
�g. 3.7. For example when controlling LEDs, or controlling DC
motors (of course with a driver between the motor and the mi-
crocontroller). For generating a PWM signal source, see section
3.10.

To smooth the PWM signal, a low pass �lter can be added as
seen in �g. 3.7. However some ripple %Rip in the output will be
present. If an RC circuit as in �g. 3.8 is used as the LP �lter, the
ripple as a percentage of the supply voltage can be calculated

with eq. 3.2, where fpwmis the frequency of the PWM signal, and R andC are the values of the
RC resistor and capacitor respectively. After a bit of t, it can be seen that with increasing α
the ripple increases, therefore to decrease the ripple the PWM signal frequency, resistance or
capacitance of the LP �lter have to be increased.

%Rip =
1 − eα

1 + eα
· 100, α =

1
fpwm · 2 · R ·C

(3.2)

With a bit of algebra, eq. 3.2 can be rearranged to express the parameters directly as seen
in eq.3.3.

fpwm ·C · R =
1

2ln( 1+%Rip/100
1−%Rip/100 )

(3.3)
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Figure 3.9.: Ripple on PWM Signal with a LPF

To derive the ripple equation, we �rst as-
sume that the PWM signal has a 50% duty
cycle7, ripple has already stabilized, and the
circuit is currently in the situation seen in �g.
3.9. The lowest and highest voltages of the
ripple Vrl, Vrhwill occur at the edges of the
signal. Since the signal has a 50% duty cycle,
the highest voltage can be written as:

Vrh =
Vcc

2
+
Vr

2
(3.4)

where Vr is the peak to peak ripple voltage.
The lowest voltage will appear on the next
rising edge, which occurs after half a period
Tpwmof the PWM signal. As the voltage on

the capacitor is given by an exponential and the RC time constant τ , Vrl is calculated with eq.
3.5. Furthermore the ripple voltage is calculated with eq. 3.6.

Vrl = Vrhe
−t
τ , t =

Tpwm

2
(3.5)

7This simpli�es the calculations and also, at 50% duty cycle the ripple is the highest.
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Vr = Vrh −Vrl (3.6)

Therefore by substituting eq. 3.5 into eq. 3.6 we get eq. 3.7.

Vr = Vrh (1 − e
−Tpwm

2·τ ) (3.7)

Then by expressing Vrh from eq. 3.7 we can set it equal to eq. 3.4 and get to eq. 3.8.

Vr

2
+
Vcc

2
=

Vr

1 − e
−Tpwm

2·τ

(3.8)

Finally, equation 3.8 can be simpli�ed to 3.9.

Vr = Vcc
1 − eα

1 + eα
, α =

Tpwm

2 · τ
(3.9)

The RC Filter design tool [3] can be used to aid one in the design of a suitable LP �lter.
If a two state voltage sourceis su�cient, a digital pin can be used. An example of this can

be seen in alg. 3.1. After creating the DigitalOut(PinName out), the output is set by writing to
it: led = button;.

Do note that all pins on the microcontroller have a limit of roughly 20 mA. This means that
if a larger output current is required, a transistor or driver needs to be used.

3.5. Dynamic voltage measurement

An oscilloscope won’t be implemented because it is not practical with mbed. Normally the
most important properties of an oscilloscope are its bandwidth and sampling frequency, and
the best possible solution created with mbed will be inferior to an implementation with a
lower level (less abstract) framework like STM32Cube or even the ST Standandard Peripheral
Libraries (there are implementations for mbed which reach speeds of ~70kSps, with periph-
erals, 100kSps can be reached easily without optimalizations). Therefore an oscilloscope is
implmented only in section 4.

I have tested that it is possible to directly read the data from the ADC at roughly 120 kSps,
however this is only reading data out of the ADC, not sending it to the pc or even processing
it. Therefore the actual speed when something useful is required will be lower. Furthermore
if the data is sent directly over the VCP, the baud rate is the bottleneck. I have tested that
by setting the baud rate to 1000000, data can be directly transmitted at roughly 80 kSps. Data
transmision at such a high baud rate could be prone to errors and also, all the data processing
would have to be done on the PC.

3.6. Simple pulse counter

In microcontrollers, pulse counters usually aren’t a dedicated peripheral, but instead a timer
(a builtin peripheral) is used. The pulse source is connected to the timer clock and all the other
functionality of the timer is disabled.

Currently mbed doesn’t have a counter nor a timer class which could be used to control the
counter and direct access to the timer is possible only by accessing the registers. For this reason
the counting has to be done on the software side with interrupts. This software overhead will
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unfortunately cause errors in the measurement, and the performance won’t be as high as it
could be when using the hardware. Since this chapter explores mbed as either a very quick or
a very simple development platform though, it will not be a problem.

External interrupts are facilitated with the InterruptIn class. To use it, an

• InterruptIn(PinName in) object is created, and then a callback method is attached, with
the

• rise(void(*fptr)(void)) or fall(void(*fptr)(void))methods to the rising or falling
edge respectively.

The complex signature simply means that a pointer to a method with no returns and no pa-
rameters should be used as the argument. An example of a counter can be seen in alg. 3.4.

Algorithm 3.4 Mbed pulse counter using interrupts

InterruptIn pSource(PC_13);

int pCount = 0;

//Just increment the counter with each high

void incrementCount(){pCount++;}

int main(){

//Attach the count method to the rising edge of the pulse

pSource.rise(&incrementCount);

while(1){/*Send data ...*/}

}

The two limitations of this approach were already stated. Since it interrupts are used in-
stead of the hardware timer, this approach cannot reach frequencies higher than 200 kHz (the
hardware timer is limited by the clock speed, which is in the range of tens of MHz) and also
because the pulse is transferred with an interrupt, the propagation time is not known, intro-
ducing error. Furthermore, at higher frequencies the interrupts can limit the processing time
allocated to other parts of the program, or even completely choke the program.

The speed limitation and direct software processing does however remove the counter size
problem, since a software variable is used and it can always be 32 bit.

3.7. Direct frequency measurement

In chapter 2 it was explained that frequency can be measured directly by gating the counter
for a certain period. If the counter from section 3.6 is used, timer interrupts can be added to
start and stop the counter.

These timer interrupts are implemented with the ticker class. The ticker is initialized by
creating a

• Ticker(void) object and attaching a callback method. The callback is attached with the

• attach(void(*fptr)(void), float seconds) or attach_us(void(*fptr)(void), float t

microseconds)metods which also specify how long between each callback. To stop the
callbacks, the callback has to be detached with
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• detach() method.

An example of DFM implemented in mbed can be seen in alg. B.2.
DFM implemented with a timer has three main bene�ts over RFM. It has a much higher

maximum measurable frequency, lower error as DFM uses averaging by de�nition, and sim-
pler implementation. But since interrpts are used, the maximum frequency is severly limited.

I have tested that it is possible to measure frequencies upto 200 kHz accurately, with an ac-
curacy of 5 ppm at 200 kHz. This is an astonishing result as the accuracy is extremely high
considering the counting is done on the software side.

The accuracy of measurement fell very fast at higher frequencies, at 400 kHz the accuracy
was roughly 1000 ppm and over 410 kHz the accuracy was completely o� (random). The pro-
gram stopped responding at 740 kHz.

3.8. Reciprocal frequency measurement

The method of repciprocal frequency measurement was explained in section 2.2.4.
From the previous sections we know that the only way to access the timer peripheral with

mbed is to directly access the registers and this is not interesting in the scope of thi thesis.
However, mbed it can directly drive interrupts from pins with the InterruptIn class. The time
between two interrputs of the same polarity has to be measured to get the desired period T .
This can be done with the Timer class which is initalized by creating the Timer(void)object
and it is controlled with the start(), stop(), reset(), and read_us() methods. An example of
RFM implemented using mbed can be seen in alg. B.3.

The are main downside to this approach is the same like in the cases of the counter and
DFM: all the ’triggering’ is done on the software side, which doesn’t guarantee any timing and
could choke the system at higher speeds. Furthermore, RFM calculates the frequency from a
single period, which could introduce signi�cant error if the signal is not perfectly periodic, or
some delays occur in the program itself. The degree of this error could be lessend by measur-
ing multiple periods instead of just one.

Unfortunately RFM has reasonable accuracy only upto 15 kHz, at higher frequencies the the
output �uctuated between the actual value and another value that was more than 1000 ppm
higher. It is interesting that the program started to freeze already at frequencies higher than
90 kHz. Thats 7 times less than in the case of DFM.

3.9. Duty cycle measurement

Duty cycle can be measured by slightly modifying indirect frequency measurement. Since we
have de�ned duty cycle as the ratio of the period when the signal is high, and RFM measures
the complete period of the signal. Therefore the pulsewidth Tpw has to be measured and the
duty cycle can be calculated as %DC = Tpwm

T .
This can be done by starting another timer for the pulsewidth together with the period

counter, and then stopping it on the falling edge of the signal (assuming the frequency is
measured on the rising edges). The code for this can be found in alg. B.4.
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3.10. PWM Signal generation

A PWM (pulse width modulation) signal is useful in many cases, it can be used for motor and
servo control, by adding a simple lowpass RC �lter with a time constant roughly the same as
the PWM signal frequency an ’analog’ test signal can be created, or, as described in section 3.4,
by adding a lowpass �lter with a very long time constant, it can be used as a voltage source.
A PWM signal can be seen in �gures 2.5 and 2.4, T is the PWM period and Tpw is the PWM
pulsewidth.

The default library for PWM in mbed is PWMOut, and in many cases it is su�cient: it allows
for setting the period and pulsewith with a double in seconds, and an integer in milliseconds
and microseconds. If higher frequencies are neede, the FastPWM library can be used. It allows
setting the period and pulsewidth in doubles in all ranges (seconds, milliseconds and microsec-
onds), and for less overhead, it even allows setting the number of clock ticks per period and
pulsewidth and the clock prescaler.

To use the PWM classes, a

• PWMOut(PinName out)object is created, and then its

• period(float seconds) and pulsewidth(float seconds) methods, or for more precise
control,

• period_ms(int miliseconds), period_us(int microseconds), pulsewidth(int milliseconds)

and pulsewidth(int microseconds) methods are used to set the period and pulsewidth..

Furthermore the implicit write(float value) method sets the duty cycle directly. A simple
example of pwm generation can be seen in alg. B.5.
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CHAPTER

FOUR

FULLY FEATURED DEVELOPMENT WITH STM32CUBE

If one needs to create a fully featured embedded instrument, which can utilize most of the
power of the microcontroller, but doesn’t wish to spend long times learning the intricate de-
tails of a speci�c microcontroller, STM32 Cube is a great choice. Among others it allows easy
portability to other microcontrollers from the STM32 line and very simple adding and initial-
ization of new peripherals.

STM32 Cube [21] is a software platform from STMicroelectronics which consists of a graph-
ical tool for setting up the required microcontroller and generating initialization code - STM32
CubeMX, and embedded libraries, including HAL (Hardware Abstraction Layer) and middle-
wares such as RTOS.

One of the most time consuming processes in microcontroller development is writing code
for initializing peripherals. This is because one has to learn how to operate registers of the
peripheral1 and then program them. CubeMX allows setting up the peripherals, assigning
pins and generating a project for the most common IDEs2, and others, all from a nice GUI. It
also allows changing the setup, including adding peripherals and changing clocks, and then
regenerating the whole project while keeping the developers code intact.

It should be noted that one has to understand how peripherals work, otherwise CubeMX
will not be very helpful. Also, debugging a microcontroller program will ultimately require ex-
amining the peripheral registers during run time, however, with the bulk of the code generated
by CubeMX it is much simpler to �nd what one is looking for in the reference manual.

All the code that uses peripherals initialized with CubeMX, must be placed after the calls to
the initialization functions. These are currently named as MX_<peripheral>x_Init, where x is
the number of the peripheral.

The two most important documents when working with microcontrollers are their datasheets
and reference manuals. For the F0303 they are [15, 20] and for the F042 [18, 19].

1This information can be found in the reference manual, and the microcontroller speci�cations can be fonud in
the datasheet. Just to give you an idea, the reference manual for STM32F3xx line has more than 1100 pages.

2Integrated develpment environment, it usually consists of a code editor, build tools and a debugger. For example
KEIL uVision, TrueStudio, or Coocox
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4.1. Working with cube

Cube is a huge framework, and explaining what each of its function does is completely out of
the scope of this thesis. Therefore rather than doing that, this chapter aims to give an idea of
how to work with cube, and where and what to look for when trying to implment something.

When working with cube it is highly advisable to have the reference manual at hand. Even
though cube is getting better and more verbose with each version, the most information about
the settings of the peripherals and microcontroller can be found in the reference manual.

It is also a good idea to inspect the code generated by CubeMX and the actual HAL functions.
This is great especially for beginners and intermediate developers, as they can learn the naming
conventions and the ’philosophy’ of the framework. Furthermore, it helps understanding what
the functions actually do and help debug the program.

For each discovery, nucleo and eval borad, there are packages with examples. While they
do not contain the CubeMX �le, and may need some work to work on another board e.g.
PWMOutput on a 303E Eval board might not work on a 303K8 nucleo, they give an idea of
how its supposed to be done.

Each HAL driver set i.e. F3, F4, L1 etc. has a user manual, which can be found with the
download links for the cube itself. Personally I have not found it very useful, since it contains
mostly the same information as the comments in the code.

Finally, use the internet. Many problems have been faced by other developers and have
already solved on the ST forums and stackexchange.

4.2. Overview of CubeMX

Cube consists of a set of libraries, and a GUI tool to generate initialization tool - CubeMX. This
section aims to give a brief overview of the tool and its use.

After starting, the user can load a project, or create a new one. If a new project is created,
the MCU/board selection screen is displayed (�g. 4.1 on page 24). Here the user can select a
microcontroller or a develpoment board from the STM32 series. The user can �lter the micro-
cotrollers and boards by available peripherals, series and package among others.

After selecting the microcontroller or board, the pinout screen is displayed (�g. 4.2 on
page 25). Here the peripherals can be enabled, and their basic settings set. If the peripher-
als need to use an external pin, it can also be set on the right side. While not seen in the
picture, the middlewares can also be set in this screen. If an external crystal or clock source is
used, it must �rst be enabled on this screen in the RCC selection.

The clock con�guration tab is self explanatory. The clock speeds of peripherals and busses
can be set either manually by setting the respective sources, or the automatic selection utility
can be used by entering the required frequency into the frequency �eld and pressing enter.

The con�guration tab is a continuation of the pinout tab. Seen in �g. 4.3 on page 26, the
left side it shows an overview of the currently enabled peripherals and their basic settings. On
the right side is a selection of the available detailed settings, which then opens a con�guration
window seen for example in �g. 4.5 on page 28. In the parameter settings tab the settings of the
peripheral are set. The tab User Constants allows, as the name suggests, to de�ne constants. In
the NVIC Settings tab, the interrupts available for the peripheral can be enabled and disabled.
In the DMA tab the DMA controller can be set up to work with the peripheral if it is available
and in the GPIO Settings tab the GPIO settings such as pull-up mode and output speed can be
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con�gured.
A very important screen is found in Project->Settings (alt+p). Here the toolchain for which

the project will be generated can be selected. Furthermore in the Code Generator tab, under
the template settings one can choose the destination folder.

4.3. Control over UART with Cube

It has already been explained in the mbed chapter why controlling the instrument using serial
communication is great. It allows to utilize the versatility of the PC to control the instrument
from either a terminal, or a fully featured application, and then use the processing power of
the PC to process the received data. For example, I created a frontend with Labwindows CVI
which uses UART for communication with the device. It can be seen in �g. 4.4.

Assuming that computers with serial ports almost don’t exist, the easiest way to add a serial
communication channel between the embedded instrument and PC is to use a VCP (USB to
UART bridge).

4.3.1. Using the UART to USB bridge on nucleo boards

All STM32 nucleo boards have a uart to usb bridge, therefore one only needs to initialize
the UART on the microcontroller and everything is ready on the instrument side. Do note
that many of the STM32 microcontrollers have multiple UARTs, and on nucleo boards, only
UART2 is connected to the UART to USB bridge.

HAL o�ers three modes of transmiting and receiving data over UART:

• Blocking mode: the processor moves a byte into the UART data register, and once it is
transmitted, it moves in another byte. All of this is done in a while loop, so the processor
is e�ectively stuck until either all the data is transmitted, or a timeout occurs

• Nonblocking mode with interrupts: it is an improvment upon the previous method. The
processor still moves the data into the UART data register, however, once the data is
moved, the processor is free to continue in what it was doing. Once the byte is trans-
mitted, an interrupt is thrown and the processor moves another byte.

• Nonblocking mode with DMA: this modes uses the direct memory access controller to
move the data from an array into the UART data register, and the processor doesn’t have
to do anything. Do note that to use this method, the DMA controller has to be initiated
separately.

Since the processor is free to do other things in nonblocking modes, it needs to be noti�ed
somehow that the transfer is complete. This is done with callbacks, and their method signa-
tures can be found in the IO operation functions section of the uart library. A callback is used
simply by implementing a function with its signature. The most important callbacks are:

• void HAL_UART_TxCpltCallback() - transfer complete callback

• void HAL_UART_RxCpltCallback() - receive complete callback

• void HAL_UART_ErrorCallback() - error callback
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Figure 4.1.: CubeMX MCU/Board selection screen
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Figure 4.2.: CubeMX pinout screen
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Figure 4.3.: CubeMX con�guration tab
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Figure 4.4.: Measurement frontend I implemented

The transmit and receive methods have a similar name convention (arguments are not included
because they are too long):

• HAL_UART_Transmit(...) and HAL_UART_Receive(...) sends and receives data in block-
ing mode,

• HAL_UART_Transmit_IT(...) and HAL_UART_Receive_IT(...) sends and receives data in
nonblocking mode with interrupts, and

• HAL_UART_Transmit_DMA(...) and HAL_UART_Receive_DMA(...) sends and receives data
in nonblocking mode with DMA.

The detail con�guration in CubeMX can be seen in �g. 4.5. The basic parameters are set up
the same way as described in mbed section 3.2.3. The advanced features shouldn’t be enabled
unless the user knows what they do and wants to use them.

In order to use the nonblocking mode with DMA, the DMA controller has to be set up.
This can be done in the DMA Settings tab, by adding a channel for the required directions
(USART2_TX for transmit and USART2_RX for receive). Since data is sent over UART byte
by byte, the data width will be a single byte and to allow the DMA to write data to an ar-
ray, memory address incrementation has to be enabled, but the mode has to be normal (not
circular).

A simple example of working with the uart driver in blocking mode can be seen in alg. C.1
Unfortunately HAL is one of the frameworks where if you wish to do something di�erent

than what was intended you will have a very hard time. This is the case of controlling the
instrument with commands that do not have uniform length, e.g. SCPI (all commands can
have a di�erent length). This is because HAL allows setting the number of characters to be
received, but not the termination character, therefore one would have to build up the command
string character by character, or bypass HAL altogether. Of course, if the command length is
the same, this does not pose a problem and allows for a very simple implementation.
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Figure 4.5.: Setting up the VCP UART in STM32CubeMX

4.3.2. Using the microcontroller itself as a UART to USB bridge

If an external UART to USB bridge is not available, like in the case of Discovery boards, or
just processors by themselves, it is possible to implement the bridge on the microcontroller
itself. Of course, this is only possible on those microcontrollers that have a USB interface (for
example the STM32F042).

Implementing the USB to UART bridge with CubeMX is actually very easy, as CubeMX will
generate all the necessary �les into the project. The necessary steps in CubeMX:

1. in Peripherals -> USB enable Device,

2. in Con�guration -> MiddleWares -> USB_DEVICE select Communication Device Class
for FS IP,

3. generate the project.
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In the projcet itself:

1. include usbd_cdc_if.h into main.c (generetad by CubeMX into Application/User),

2. add a delay after the MX_USB_DEVICE_Init(), I have found out that 500ms su�cies. You
can use HAL_Delay(uint32_t ms). If you do not have a delay before starting the USB
and trying to send data over it, your microcontroller will not be recognized by your PC!

3. You can use the CDC_Transmit_FS(uint8_t* Buf, uint16_t Len) method to send data to
the PC, and

4. to receive data you can update the CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)method
in usbd_cdc_if.c to suit your needs. Personally I found the easiest send the Buf and Len

to a new function in main.c. Also, do note that the Buf is not cleared, so you must use
Len.

Don’t get confused by the IN and OUT endpoints, they are actually reversed because the mi-
crocontroller works as a slave device. Therefore data is received through the OUT endpoint,
and sent through the IN endpoint.

It is also possible to implement the VCP yourself from scratch, but that is out of the scope
of this thesis. You can �nd some information at [2].

4.4. Static voltage measurement using Cube

As was already explained in chapter 2, static voltage measurement is one of the most common
types of measurement. This section will examine the settings of the ADC and implementations
of static voltage measurement.

Ch 1

Ch 2

Ch n

 
ADC1...

Multiplexer

Figure 4.6.: ADC channel
multiplexing

In the STM32 line of microcontrollers we can usually �nd
one to four 12 bit successive aproximation ADCs. Each of the
ADCs has a relatively large number of input channels which
are multiplexed onto the ADC input, as seen on �g. 4.6. On
the STM32F303x microcontrollers, each ADC can sample with
a rate of upto 5.1MSps, but this only interesting when measur-
ing dynamic events for example with an oscilloscope.

When the channels are multiplexed, the sampling speed per
channel will decrease as the time is distributed between the
channels. For static voltage measurement this doesn’t pose a
problem though.

Typically ADCs only have one data register to store the mea-
sured data, so after each conversion the measurement has to be read out of the data register.
It is possible to read it in the main program loop, but that is wasteful and it is better to use
the Direct Memory Access (DMA) controller. The DMA transfers data from the ADC to a user
speci�ed bu�er behind the back of the processor, thus freeing it up.

To set the ADC in cube you will need to:

• enable the required channels in single or di�erential mode in the pinout tab (single mode
measures the signal voltage against ground, di�erential against another signal voltage),
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• in the parameter settings tab, depending on the microcontroller, set the number of reg-
ular conversions to the number of channels,

• set the sampling time (if you don’t know, just select the highest),

• enable scan conversion mode (scan mode converts a single value from one channel, then
moves to the next one) and continuous conversion mode.

• �nally enable DMA continous requests and in the DMA Settings tab add a DMA channel
in Circular mode (once the DMA reaches the end of the bu�er, it starts �lling the bu�er
again from the beginning).

After generating the project, you can use the HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef*

hadc, uint32_t* pData, uint32_t Length) method to start he ADC and DMA. Unless you
have a speci�c need, I highly suggest using the DMA as its very easy, and simpli�es everything.

The limitations of the ADC, and their solutions are discussed in chapter 5.

4.5. Controlled voltage source

The controlled voltage is mostly the same as described mbed. Either the DAC, a PWM signal
or the digital pins can be used. The main di�erence is that since the DAC peripheral can be
controlled completely, it is possible to set whether the output bu�er will be used. With the
DMA controller the DAC can be used as an arbitrary function generator for example with
Direct Digital Synthesis (DDS). The latter will not be discussed as it is out of the scope of this
thesis.

The output bu�er typically an opamp voltage follower which on one side allows higher
current draws and therefore lower impedance loads, but on the other side doesn’t allow rail to
rail voltage. The limit is roughly 60mV from Gnd and 40mV from Vss. The e�ect of the bu�er
is discussed can be seen in section 5.5 on page 47.

With CubeMX the setup is almost trivial. The required DAC channel is enabled in the pinout
tab, and if needed the the output bu�er can be turned o� in the Con�guration tab under the
DAC. After generating the project, the DAC is controlled with the

• HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel) and the

• HAL_DAC_SetValue(..., uint32_t alignment, uint32_t data) methods.

Usually the alignment would be set to DAC_ALIGN_8B_R or DAC_ALIGN12B_R depeding on whether
8 bit or 12 bit resolution is required.

Do note that similarly to the ADC, the DAC output voltage is a ratio of V ref+ − V ref−,
and unless connected to a calibrated source, V ref+is connected to Vcc i.e. the power supply of
the microcontroller, and V ref−is connected to the ground. Therefore to get a precise output,
the DAC has to be adjusted for the V ref+and V ref−. This can be done directly by measuring
the DAC output with the ADC (which has been adjusted using the internal reference 5.4), or
indirectly by measuring the supply voltage on the ADC and then adjusting the DAC output in
both cases.
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4.6. Simple pulse counter

The pulse counter has already been described in chapters 2 and 3. Thanks to the fact that Cube
is designed to allow access to all features and peripherals of the microcontroller, it is possible
to use the timer peripheral to count pulses.

A huge leap in performance over mbed is that the maximal counter speed is limited only
by its clock speed. For example in the F303 series, this is upto 144 MHz on selected timers and
72 MHz on the others. This is 3.5 orders of magnitude faster than mbed which maxed out at
200 kHz. This is not very interesting for the pulse counter itself, but it is a key aspect for direct
frequency measurement.

To setup the timer in counter mode, in CubeMX select any timer that has a dropdown for
the clock source, and select ETR2 (External Clock Mode 2).

You can �nd out more about the clock modes in the reference manual. CubeMX will auto-
matically assign a GPIO pin and set it up. In the Con�guration tab, select the corresponding
timer e.g. TIM2, and in the parameter settings tab of the Con�guration window, set the counter
period to the maxmimum possible (0xFFFF for most counters, 0xFFFFFFFF for TIM2).

When the counter reaches the counter period (autoreload), it will reset its count to 0, which
means that if the counter period is left at 0, the counter will not count. Usually it is
desirable to set the maximal possible value, but there are cases, i.e. if we want to count an
exact number of pulses. In the latter case, the counter period is set to the required pulse count
-1, and the over�ow interrupt is enabled. Once the required pulse count is reached, an interrupt
is generated and further actions can be taken.

After generating the project, the timer must be started by
HAL_TIM_Base_Start(TIM_HandleTypeDef *) where TIM_HandleTypeDef * is the pointer to the
handle of the counting timer e.g. &htim2. The counter can be read with
__HAL_TIM_GetCounter(TIM_HandleTypeDef *).

4.7. Direct frequecy measurement

TIM1
TIM2

clk
dout rst

din trig

Clk int

clk
doutrst

dincapt

Pulse source

CNT

IC

CNT

ARR

TRGO

ITRx

TRC

ETR2

Figure 4.7.: Setup of DFM with 2 timers

Direct frequency measurement is the perfect
choice when measuring very high frequen-
cies. This is because the resolution of DFM is
±1 count of the measured signal, and it can
be setup in a manner such that the only limit
is the maximum input speed of the GPIO
pins, for example 72 MHz in the case of the
F303. Dedicated DFM units would usually
have a counter which is gated for a decimal
multiple of one second, thus the frequency
could be displayed directly from the counter.
Since microcontrollers have a lot of process-
ing power though, it is possible to use an ar-
bitarary gating period and calculate the frequency.

Unfortunately the F303 and F042 both have only one 32 bit timer, and that is also the case
of many other microcontrollers. Since DFM allows the highest precision and a range from
kilohertz to tens of megahertz, as opposed to RFM which is usable only to 100 kHz, it is highly
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advisable to use the 32 bit timer for DFM.
There are two ways to implement DFM, in both cases a pulse counter is used (such as the one

described in the previous section) and it is gated either with another hardware timer, or with
software interrupts. Out of all measurements that can be done, frequency measurement can
be done with the highest precision, therefore it makes sense to use two hardware timers and
achieve the highest precision. Interrupts do not have an exact time of execution, but rather a
range during which it will be executed. This is most problematic in interrupt heavy programs
and is a source of signi�cant error. Furthermore, an external crystal should be used (HSE)
because it can be a few orders of magnituted more precise than the internal (HSI).

Tim 2 External clock ETR2

Tim 2 Count CNT 3 4 1 2 3 4 5 1 2 3 4 1

Tim 2 Input Capture 4 4 5 4

Tim 1 Trigger out TRGO T T

Figure 4.8.: Timing diagram of DFM with 2 timers

The timers on the STM32 microcontrollers can be gated by other timers in slave mode.
The best slave mode for this purpose is Reset mode, as instead of starting and stopping the
timer (Gated mode), it starts the timer and also resets it to zero in every gate. If the timer
won’t stop after every capture, an input capture unit needs to be used to store the frequency.
A simpli�ed diagram of this setup can be seen in �g.4.7, where CNT, ARR and IC are the
counters, autoreload unit (counter period) and input capture unit, and rst are the reset ports,
din/dout are the data ports and trig is the trigger output from the gating timer.

To set up the pulse counter, for example the 32bit TIM2:

1. set clock mode to ETR2,

2. set slave mode to Reset,

3. select the appropriate ITRx3 for the master trigger in,

4. enable Input Capture triggered by TRC ,

5. in the con�guration, set the counter period to maximum .

To set up the gating timer, e.g. TIM1 if ITR0 was selected:

1. select the internal clock as clock source,

2. enable Output Compare No Output on channel 1,

3. in the con�guration, select Comparue Pulse (OC1) as the Trigger Event Selection TRGO
in Trigger Output Parameters,

4. set the prescaler and counter period .
3This can be found in the TIMx internal trigger connection in the reference manual . In the example code I control

TIM2 form TIM1, therefore ITR0 is selected.
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The gating frequency fg is calculated with equation 4.1. For example, if the timer clock speed
fcs is 72 MHz, and we wish to gate every second, prescaler PSC can be set to 719 and the counter
period TCnt to 9999. When setting the parameters, do hold in mind that the values have to be
16bit.

fg =
fcs

(PSC + 1) · (TCnt + 1)
(4.1)

To enable the HSE crystal, expand the RCC menu in the Pinout tab and select HSE-
>Bypass if the microcontroller doesn’t have its own crystal, such as the nucleo series. If there
is a dedicated crystal or ceramic resonator select HSE->Crystal/Resonator. You can set the HSE
frequency in the Clock Con�guration tab. The bypass HSE doesn’t have to be available
even if a crystal is present, so consult the development board user manual to see which
solder bridges to update.

After generating the project, the pulse counter needs to be started in input capture mode
i.e.

• HAL_TIM_Base_Start(TIM_HandleTypeDef *htim), and

• HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)methods must be called.

The possible arguments for the Channel can be found in the method documentation. Since it
is on channel 1, it will be TIM_CHANNEL_1.

Finally, the frequency can be read from the input capture unit using the
HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel)method.

Important: many signal generators have a zero o�set by default, seen on the left side in
�g. 4.9. This means that the output voltages is negative for half the time, and as was explained
in chapter 4, this can destroy the microcontroller. For example a sine with an amplitude of 1V
and o�set of 0 will generate voltages from −1 V to 1 V, however by setting the o�set equal to
the amplitude the signal will not enter the negative region. This can be seen on the right side
of �g. 4.9, where the both the o�set and the ampluted are 1, and the signal is only positive.
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Figure 4.9.: O�set in function generators, amplitude 1V
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4.8. Reciprocal frequency measurement

As opposed to DFM, RFM si better suited for measuring lower frequencies. This is because the
resolution is constant - ±1 clock cycle of the internal clock, therefore the lower the frequency,
the higher the precision.

Internal clock

IC
dincapt

CNT
doutrst

clk

Pulse source clk

Edge detector rising
clk

Timer

Figure 4.10.: Setup of RFM with a single timer

On microcontrollers, RFM can be imple-
mented using timers very similarly to DFM.
The main di�erence is that the clock source
and input capture trigger are switched, i.e.
the internal clock is used as the clock source,
and the input capture is triggered by the ris-
ing or falling edges of the external pulse.
However, since this approach only stores
the relative time, i.e. how long the period
was since the last input capture, it is better
to set the timer in reset slave mode. This
mode resets the counter everytime a rising
or falling edge is deteceted, therefore the ab-

solute length of the period is stored. The setup of this mode can be seen in �g. 4.10.
The measurable frequency range completely depends on the selected clock frequency and

counter size. The clock frequency sets the maximum measurable frequency and the conuter
size the lowest. For example if a clock frequency of 1MHz is selected, and the counter is 16
bit, using equation 4.2 we get 15 Hz. However, at frequencies higher than 10 kHz the error is
1 %, and over 100 kHz it is 10 % (since at 10 kHz 100 pulses are measured and at 100 kHz only
10 pulses are measured).

flowest =
fclk

counter_size
(4.2)

FM calculates the frequency from a single period, and the measurement instrument would
typically display the frequency at a very low refresh rate (units of Hertz). In the case of a signal
that is not perfectly periodical, the displayed value can be strongly distorted. There are two
ways that this could be solved:

1. Divide the incoming clock. This is the hardware equivalent of averaging, as each division
increases the number of periods which the input capture captures.

2. Average the value. Of course, to keep a usable upper frequency limit this has to be done
using the DMA controller to move captured periods into an intermediate bu�er and
process it on demand with the main processor. Unfortunately with the current version
of CubeMX, when using the PWMInput mode it is only possible to use the rising edge
IC with the DMA. As a workaround it is possible to either set the timer manually, or add
the dma channel in code.

4.9. Duty cycle measurement

Duty cycle measurement is very closely related to RFM, as it is measures 2 periods instead of
one. The concept was explained well enough in chapter 2 so it will not be discussed further.
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This is a rather common measurement, but setting it up when one doesn’t know exactly
what he is doing can be rather problematic. Fortunately HAL has a function for this - PWMInput.

It sets the timer up in reset slave mode, with 2 input capture units. The reset trigger and one
input capture is set on the rising edge of the measured signal, and the second input capture
unit is set to the falling edge of the signal. With the values from the input capture units the
frequency f can be calculated using equation 4.3, where ICfallis the value stored in the IC unit
set to the falling edge and ICrise is the value stored in the IC unit set to the rising edge.

f =
1

ICrise
, %DC =

ICfall

ICrise
(4.3)

To set a timer in PWMInput mode in CubeMX, in the Pinout screen, select a timer and in the
Combined Channels dropdown list select PWM Input on Channel x.

Then go to the Con�guration tab, select the timer, and set the counter period to 0x�� (or
0x���� if a 32 bit timer is used).

Once the project is generated, start the timer and enable the input capture with the

• HAL_TIM_Base_Start(TIM_HandleTypeDef *handle), and

• HAL_TIM_IC_Start(TIM_HandleTypeDef *tim, uint32_t Channel) methods.

The IC start has to be called on both channels. Finally the periods can be read from the input
capture with the uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *tim, uint32_t Channel)

method.

4.10. PWM Signal generation

The uses of PWM signals was explained in previous chapters. Using them with cube is simple,
but may be a bit confusing when done for the �rst time.

After enabling a timer in PWM Output mode from the pinout tab, the following parameters
must be set (in the con�guration tab or in code):

• counter period - it sets how long one full period is. By substituting the required pwm fre-
quency fpwm, prescaler PSC and timer clock frequency fcs into equation 4.4 the counter
period Tcnt can be calculated,

• pulse - it is used to set the duty cycle. The duty cycle %DC is calculated with eq. 4.5,
where Tpw is the pulse,

Tcnt =
fcs

fpwm · (PSC + 1)
(4.4)

%DC =
(Tpw + 1)
(Tcnt + 1)

· 100 (4.5)

• optionally, the prescaler can be set. It is used when lower frequencies are generated, but
only a 16bit timer is used.
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For example, the STM32F303RE has a base clock of 72 MHz, and we wish to generate a 1 kHz
PWM signal.. If a 16 bit timer is used, it is impossible to set the required frequency with the
counter period alone (since it would have to be 71999, but the highest number in 16 bits is
65535). Therefore the prescaler has to be used. I �nd it convenient to prescale the clock to
1 MHz, therefore PSC = 71, since 72

71+1 MHz = 1 MHz and the counter period has to divide this
1 MHz to 1 kHz i.e. Tcnt = 999. Finally, to get a 50 % duty cycle, set Tpw = 499.

4.11. Oscilloscope

All the measurement instruments described in the previous sections output a single number
to represent the measured signal. In many cases though, it is also important to see how the
signal itself looks like. An oscilloscope is a device that does exactly this: it plots the measured
signal against time.

On the microcontroller side, the implementation is actually rather simple, and very similar
to static voltage measurement with averaging. Typically DMA will be used to copy data from
the ADC to a bu�er, but instead of averaging the data in the bu�er, it is sent to the PC to be
displayed.

Furthermore higher sampling speeds are used, as it is desirable to see fast signals, and also
some kind of trigger is required. “The trigger makes repetitive waveforms appear static on the
oscilloscope display by repeatedly displaying the same portion of the input signal. Imagine
the jumble on the screen that would result if each sweep started at a di�erent place on the
signal!”[22]

Trigger Level

Trigger Position

Trigger Point

PreTrigger PostTrigger

Figure 4.11.: Rising edge oscilloscope triggering
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The most basic trigger consists of three parameters:

• trigger edge, usually rising, or falling (the signal has to be greater, or lower than the
trigger level),

• trigger level i.e. the threshold the signal has to exceed to cause the triggering, and

• trigger position (horizontal).

The most basic setting of the trigger is 50% trigger level, rising edge and middle trigger position,
as seen in �g. 4.11. This setting allows one to see what happened before and after the trigger
and is su�cient for many signals.

The triggering method I implemented is a slight variation of the one explained by J. Hladik[6].
In his method, the DMA copies data from the ADC to a circular bu�er, and the microcontroller
reads the last value written by the bu�er iDMA. If the trigger conditions are met, the DMA is
set to transfer additional samples to satisfy the trigger position.

..
.

..
.

i DMA

i trig

Figure 4.12.: Circular bu�er
triggering

Since I only implemented a half full trigger with unadjustable
position or level, the triggering method could be simpli�ed. As
seen in �g. 4.12, instead of reading the current bu�er value iDMA,
the value “opposite” of it itrig is read (i.e. half of the length of the
bu�er before the last DMA write). If the trigger conditions are
met, the DMA and ADC are stopped, and the data is sent over
to the PC.

Of course, if itrig is calculated simply (half the bu�er length
before iDMA), depending on the speed of the microcontroller and
DMA transfers, itrig will lag behind the actual index, and thus
the exact trigger position needs to be found. For simplicity, I do
this in the PC frontend by iterating backwards from the middle
of the bu�er and looking for the �rst sample that does not satisfy the trigger conditions.

The oscilloscope is slightly harder to implement than the other functions, because it requires
a PC frontend. This means that the developer either has to have a complete frontend to which
he’ll only send data, or he’ll have to create one. I have created a frontend with Labwindows
CVI as seen in �g. 4.13

Note, to create an ’analog’ signal on the microcontroller, simply add a low pass �lter (RC
circuit) after a PWM signal. To get nice exponentials, the RC time constant τ should be roughly
the same as period of the pwm signal i.e. R ·C = τ = Tpwm. For example if the PWM signal has
a frequency of 10 kHz, the periodTpwmis 100 µs, thus a 1 kΩ resistor and 100 nFcapacitor could
be used. The LP �lter would be connected like in �g. 3.8 and the Vout could be connected to
the oscilloscope. This is exactly how the signal in �gs. 4.11 and 4.13 was generated.

4.12. Code portability with Cube

One of the main bene�ts of Cube is that code is portable between di�erent microcontrollers
and even microcontroller series. This is achieved with the HAL libraries which have the same4

API for all series.
4There are some di�erences, for example the F411 doesn’t support hal_adcex_calibrate, and sometimes the

naming conventions di�er e.g. hadc and hadc1.
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Figure 4.13.: Oscilloscope frontend

Unfortunately CubeMX doesn’t support migrating projects from one microcontroller series
to another, but this is understandable since the peripherals are di�erent. It only allows for
migration between microcontrollers of the same series. This means that the peripherals have
to be set again for the new series in CubeMX, and code has to be manually copied and pasted
in the C code. Of course since the series can have di�erently numbered peripherals, this has
to be re�ected in the copied code.

To demonstrate this, I have created a simple program which uses the measures voltage on
1 channel, frequnecy, generates a PWM signal, and a voltage on the DAC if applicable, and is
controlled over UART. The voltage is corrected for gain (i.e. the input voltage is measured, and
the internal reference channel is measured together using DMA), and averaged. Frequency is
measured with DFM on 32 bit timers where available.

The programs have been ported from the F303 to the F411, L053 and later to the F042. Porting
to the �rst two took me roughly 4 hours with all debugging (mainly because of silly mistakes),
however porting to the F042 took me only 30 minutes (it was done another day).

I had to consult the datasheet and reference manual to �nd the type and memory address of
the adc voltage reference, and to �nd the 32 bit timers (which were not available in the L053)
in the microcontrollers. The address is important, as accessing an ’incorrect’ address will case
a hardfault.
Important: the st-link master clock out, or MCO (HSE bypass), does not have to be con-

nected to the main microcontroller. You should consult the development board manual to �nd
if and which solder bridges should be soldered or removed in order to connect the MCO.
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CHAPTER

FIVE

MEASUREMENT LIMITATIONS IN F3XX AND F0XX SERIES
MICROCONTROLLERS

In chapter 2, limitations of the ADC and timer were listed. This chapter will explore those
limitations in more detail and o�er some solutions to them. Application notes [14, 17] have
been used as a starting point for this chapter.

5.1. ADC Input Signal Shaping

Logic

Ucc

Gnd

Ucin Ucout

Ucin>Ucc

Ucin<Gnd

D1
D2

Figure 5.1.: CMOS input diodes

Most, if not all microcontrollers, are created with CMOS
technology. As seen on �g. 5.1, there diodes D1 and D2
connect the input pin to Vcc and Gnd. If the voltage Vcin
is higher than the power supply Vcc, current will �ow
through D1 (red arrow) and similarly if Vcin is lower than
Ground current will �ow through the D2 into the input
(blue arrow).1 For this reason the input voltage cannot ex-
ceed the supply voltages of the CMOS logic, which are 3.3V
and 0V in the case of STM32F3xx and STM32F0xx micro-
controllers. Note that diode D1 isn’t always in there, typi-
cally 5V tolerant pins would not have it and the protection
is handled in another way.

However, there are times when this voltage range will not be su�cient. For example when
we wish to work with TTL logic levels or equivalent (0 V to 5 V), CD series logic ( 0 V to 15 V),
or operational ampli�ers ( −15 V to 15 V). External circuitry has to be used to shape the signal.

There are 2 approaches that can be taken:

1. A resistor divider can be used. A 2 resistor divider will divide the voltage, and a 3 resistor
divider will also shift it, which allows us to connect negative voltages.The main bene�t
of using resistor dividers is that it they only require a few resistors. They will however
decrease the input impedance of the “voltmeter”.

2. An opamp can be used. It can be used to divide the range in the basic noninverting con-
�guration and shift it by adding a few mor resistors. The main bene�t of using opamps

1This also means that supply voltage applied to any CMOS devices must never be inverted, as that would destroy
the chip.
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is that the input impedance will be very high (theoretically in�nite). This approach
however requires more components.

You can �nd more information about using the opamp to also shift voltage at [12].

5.1.1. Resistor voltage divider

V in

Gnd

R1

R2

V adc

Figure 5.2.: Simple resistor
voltage divider

For asymetric voltages (those that start at 0V), the simplest so-
lution is to use a resistor voltage divider, seen on �g. 5.2. The
calculation of output voltage can be seen on eq. 5.1.

Vadc =
R2

R1 + R2
·Vin (5.1)

For example, if we would like to measure TTL logic - 0 V to
5 V, it is a good idea to have the limit levels higher than the
actual maximum measured voltage, so for simplicity we choose
a voltage of 6.6V. Therefore we need a ratioVadc =

1
2 ·Vin and thus

R2 = R1. We can choose a resistance of 1 kΩ for both resistors.

5.1.2. Opamp in noninverting configuration

V in +
-

Rin

R1

R2

opamp

Gnd

V adc

Figure 5.3.: Noninverting opamp
con�guration

In some cases it is desirable to have very high input
impedance of the divider, so that very little current passes
through it. An op amp in noninverting con�guration, seen
on �g. 5.3, has a very high input impedance.

With an ideal opamp, the input impedance of this con�g-
uration would be in�nite, however because ideal op amps
do not exist, the input impedance is as high as the inter-
nal resistance of the opamp. This is typically more than
a megaohm. If the optional Rin is connected, the input
impedance is Rin. Rin is connected only so that an output
voltage is de�ned if no input is connectedf to Vin.

The voltage on the output of the divider can be calculated
with equation 5.2.

Vadc = (1 +
R2

R1
) ·Vin (5.2)

5.1.3. Shi�ing resistor voltage divider

If we wish to measure a negative voltage, a 3 resistor divider as seen on �g. 5.4 can be used.
TheVin toVadc transformation can be calculated with node voltages, the result can be seen in
equation 5.3. The whole calculalation follows:

Vadc −Vcc

Rs1
+
Vadc −Vin

Rin
+
Vadc

RS2
= 0

Vadc · (
1
Rs1
+

1
Rs2
+

1
Rin

) =
Vin

Rin
+
Vcc
Rs1
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This is however very impractical for calculations, so let us use substitutions Rin = R, Rs1 =
c
R

and Rs2 =
д
R , where c and д are constants. With this the equation can be simpli�ed to:

Vadc · (
c + д + 1

R
) =

Vin

R
+ c ·

Vcc

R

Vadc =
Vin + c ·Vcc

c + д + 1
(5.3)

V in

Gnd

Rs2

V adc

Rs1

V cc

Rin

Figure 5.4.: Shifting resistor
voltage divider

We now substitute the required minimum and maximum
voltages forVin, the required transformed ADC voltageVadc and
supply voltage forVcc into equation 5.3. With that we get a sys-
tem of two equations with two variables, which we can solve.
To �nd the required resistors, a value for Rin is selected, e.g.
10 kΩ and the other voltages are calculated as Rs1 =

Rin
c and

Rs2 =
Rin
д .

As an example, let us calculate the values required for an
opamp with output voltages of Vinmin = −15 V which will be
transformed toVadcmin = 0 V,Vinmax = 15 V which will be trans-
formed to Vadcmax = 3.3 V and the supply voltage is 3.3 V.

Vadcmin =
Vinmin + c ·Vcc

c + д + 1
, Vadcmax =

Vinmax+c ·Vcc
c+д+1

0 =
−15 + c · 3.3
c + д + 1

, 3.3 = 15+c ·3.3
c+д+1

u � 4.54, д � 3.55

Assuming we select Rin = 10 kΩ, then Rs1 =
10000
4.54 = 2.2 kΩ and Rs2 =

10000
3.55 = 2.8 kΩ. Do

note, that this means that upto the device will source2∼ 1.2 mA and sink upto 1.5 mA into the
device. The sourced and sinked current can be calculated with equation 5.4.

Isunk =
Vinmin −Vadcmin

Rin
, Isourced =

Vinmax−Vadcmax
Rin

(5.4)

5.2. 50/60Hz interference handling (rejection)

In an ideal world, the voltage measured by the ADC could be taken as it is. In the real world
though, noise and interference is omnipresent. This section will examine a way of correcting
50/60Hz power line interference3 appearing on the input.

For any sinusoid V · sin(ω · t ), equation 5.5, i.e. the integral of one whole period is equal
to zero holds true. Since the 50/60 Hz interference can be modeled as Vif · sin(ω · t ), and it
superimposes itself on the actual voltage Vact i.e. V (t ) = Vact + Vif · sin(ω · t ), equations 5.6

2Current �ows from devices that source it and into devices that sink it.
3An easy way to see the 50/60Hz interference is to touch a oscilloscope probe with hands and set the time division

to 10ms/div. The interferring sinusoid will appear on the screen.
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and 5.7 shows that the interference can be removed by integrating over whole periods of the
interference signal. This can be done in hardware with an integrating ADC by setting its
integration period to a whole multiple of the interference period.∫ T

0
V · sin(ω · t )dt = 0 (5.5)

1
T

∫ T

0
(V +Vif · sin(ω · t ))dt =

1
T

∫ T

0
Vdt +

1
T

∫ T

0
Vif · sin(ω · t )dt (5.6)

=
1
T

∫ T

o
V · dt =

1
T

[V ]T0 =
1
T
V ·T = V (5.7)

Many microcontrollers do not have integrating ADCs though, and the correction has to be
done after sampling. As the discrete equivalent of integration is summation, the continuous
time equation 5.6 can be converted into discrete time as shown in equation 5.8 (assuming that
the sampling will be at a constant rate). The sum over T samples divided by T is the average
of all the samples. Thus the 50/60Hz interference can be removed by averaging over a sample
set which contains whole periods of the interference. The calculation for 50Hz can be seen in
equation 5.9.

1
T

T∑
k=0

(V +Vi f · sin(ω · k ) =
1
T

T∑
k=0

V +
1
T
·Vi f ·

T∑
k=0

sin(ω · k ) =
1
T
·V ·T = V (5.8)

n ·Tsamplinд = n ·
1

fsamplinд
→ Tsamplinд = n ·

1
50
= n · 0.02s (5.9)

5.3. Noise handling

As mentioned in the previous section, noise and intereference is everywhere. In many cases
this noise isn’t periodic like the 50/60Hz intereference described in the previous section, but it
is random.

The best case would be that the noise would be completely random, because as such it
could be easily eliminated by averaging from a large sample set. This is not the case, as the
autocorrelation function seen in �g. 5.6 shows a relatively strong correlation every 18.2ms at
1V (1055 samples at a 58kHz sampling rate) and 15.7ms (910 samples) for 2V and 3V. All samples
were taken directly from a 10kS ADC bu�er, which was serviced by the DMA controller.

Figure 5.5 shows the histograms of the measured data. A possible explanation of the fact
that the data is distributed in two hills around the mean rather than a single hill is that there
is alternating interference, such as the 50/60Hz. The means and relative errors can be seen in
table 5.1.

Expected voltage [mV] 1000 2000 3000
Mean voltage [mV] 999.58 2001.67 3003.13
Relative error [%] 0.042 0.083 0.10

Table 5.1.: ADC Averaged measurements and relative errors
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Figure 5.5.: Histogram of ADC measurements
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Figure 5.6.: Autocorrelation of ADC measurements
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Finally, even though the UART is a strong source of interference, it does not a�ect the signal
strongly. This can be seen on �gs. 5.7 and 5.8. The �rst �gure is representative of when the
DAC is connected to the ADC with a set voltage, both in the case of the UART sending and
recieving data and in the case of being idle. The second �gure on the other hand shows what
happens when the ADC input is left �oating. In both cases a 10kB transfer test at 115200baud
was used to test whether the UART a�ects the measurement.

Figure 5.7.: Fluctuations on DAC set to 2V

From the data we can conclude that averaging from a large enough sample set (1000 samples
are ideal, but even 100 yielded satisfactory results) most of the noise can be removed. Further-
more, if the ADC input pin is left �oating it will catch interference, and thus it should always
be connected, at least with a pullup.

5.4. Correcting ADC gain error with internal reference

The ADC measures voltage relatively to the the reference voltages Vref+ and Vref-, which
are typically connected to the supply voltage Vcc and Ground. This means that if the supply
voltages are not known, the value read from the ADC cannot be correctly converted to a
voltage.
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Figure 5.8.: Fluctuations on DAC set to high impedance

The voltage on the ADC is converted with equation 5.104, where Full_Scale is the ADC
resolution, e.g. 256 is 8 bit mode, and 4095 in 12 bit mode and ADCx_DATA is the measured
value from the ADC. For example, if the supply voltage is 3.2V and the ADC measures the
value 127 in 8bit mode (one half), then the input voltage is 1.6V, if the supply voltage is 3V
however, the same reading would mean the input voltage is only 1.5V. If the supply voltage of
the ADC is not known precisely, the measured value will not be precise. This means that if
one has two identical microcontrollers, running the same program, but with a di�erent power
supply, they will both measure di�erent voltages.

VChannelx =
VccA · ADCx_DATA

Full_Scale
(5.10)

This limitation can be easily �xed using the internal reference voltage. Usually either its
voltage is given, such as in the F1xx series, or its calibration value measured for each micro-
controller, whic his true for the STM32F3xx and STM32F0xx lines. The analog supply voltage
VccA for the latter two is calculated from the internal reference voltage VREFINT_DATA channel
and the factory calibration valueVREFINT_CAL using equation 5.11. Therefore by substitut equa-

4The calculation shown in this section works only with some microcontrollers, such as the F042, F303 and F411.
On others the reference is done di�erently, therefore it is highly advisable to check the reference manual before
implemneting it.
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tion 5.11 into equation 5.10, we get the �nal equation 5.12 for calculating the correct voltage
on the ADC.

VDDA =
3.3 V ·VREFINT_CAL

VREFINT_DATA
(5.11)

VChannelx =
3.3 V ·VREFINT_CAL · ADCx_DATA

VREFINT_DATA · Full_Scale
(5.12)

Unfortunately I have not found a method in the HAL libraries to access the VREFINT_CAL, so
the value address has to be addressed directly i.e.

const uint16_t * vrefint_cal_addr = 0x1ffff7ba;

unint16_t VREFINT_CAL = *vrefint_cal_addr;

The address can be found in the datasheet and is di�erent for every microcontroller series,
maybe even for every microcontroller line (I have not checked this.)
Important: reading data at other than allowed addresses will lead to a hard fault

and the program will not run at all. For example if you write a program for a F303,
and set the vre�nt_cal address for a F042, the program will end in a hard fault.

5.5. ADC input current

Another source of error when measuring voltage with an ADC is its current input. Many
microcontrollers, including STM32 series microcontrollers, use successive aproximation ADCs
and since these ADCs work by comparing the input voltage to an internal DAC a sample and
hold circuit (S/H) is required.

ADC input current at x Sps

ADC input current at 5x Sps

Figure 5.9.: ADC input current at di�erent sampling frequencies

The S/H connects to the measured circuit momentarily to charge its capacitor, as seen in �g.
5.10. The charging time of the S/H capacitor is called sampling time and usually can be set to
a selection of values. The choice of this time is relevant to the quality of the measurement, as
with lower sampling time the input current grows. The input current of the ADC is given by
eq. 5.13, whereT is the sampling period,Vcc the supply voltage andCsh is the sample and hold
capacitance (typically 5 ∼ 7 pF) .

Icc = f ·Vcc ·
∑

C =
Vcc ·

∑
C

T
(5.13)

This current draw can be problematic because it will cause a voltage drop on the mea-
sured load. For example the F303 has a 5 pF S/H capacitor; assuming a sampling time of 20 µs
(200 kHz) is used and the measured voltage is 1 V, then the current is 2 ·105 Hz ·1 V ·5 ·10−12 F =
1 · 10−6 A. Thus if the load impedance is 10 kΩ, the voltage drop will be 10 mV, which is sig-
ni�cant, especially considering that the resolution of the ADC at 12bits is 0.8 mV.
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SA 

S/H

Csh

RshUadc

Figure 5.10.: ADC Sample and
hold

At higher sampling speeds (the F303RE has a sampling
frequency of upto 5.1 MHz) another problem arises: if the
load impedance is too high, the capacitor will not be able to
charge (or discharge) fully thus distorting the measurement
even more.

The maximum recomended impedances for each sam-
pling time are in the datasheet in the Maximum ADC Rain.
For example at the lowest sampling time, the maximum rec-
ommended impedance is only18 Ω.

• The S/H draws the current in pulses, as seen in �g. 5.9, however the rest of the time
there is virtually no current draw. For this reason it is possible to lessen the error caused
by the voltage drop by adding a low pass �lter before the ADC input (e�ectively a capac-
itor in parallel with the S/H internal capacitor). This additional capacitor will provide
the required charge to the internal S/H capacitor, and thus the current draw from the
load will be lower. This also means that the load can have an impedance higher than
recomendded, and the measurement will still be correct.

• Another solution is to simply increase the sampling time. In most cases the ultra fast
sampling times are required only when the instrument is used as an oscilloscope or logic
analyzer.

The ADC input current draw can be seen in �gure 5.7, where each ’needle’ is the sampling, and
in �gure 5.11 it can be seen that the sampling causes a voltage drop, which is then compensated
by the DAC.

5.6. Results from the ADCs

This section will explore the measured characteristicts of the ADCs of the F042K6, F303RE,
and the L053R8 and F411RE microcontrollers. All the test were done with averaging from a
50Hz rejecting sample set.

The voltage was supplied from an Agilent E3632A, and was measured by an Agilent 34401A
multimeter for reference.

5.6.1. F303

To show that the ADC input current does make a di�erence, the F303 dataset contains mea-
surements with and without an RC lowpass �lter (10 nF, 470 Ω) which acts as a ’quick power
bank’ for the ADC. All the other ADCs were measured only with the LP �lter . The data was
also measured with the voltage reference correction applied.

From the %Error Average it s clear that just adding the low pass �lter increases the accu-
racy. The F303 was measured at 58kHz, therefore at higher frequencies the error without any
correctinos would be even higher. By adding both the LP �lter and correcting the gain, the
accuracy increase over 3.3 times.

The default voltage of the ADC (can be found by connecting a capacitor in parallel with
the internal S/H capacitor) is ∼ 210 mV, however just by activating the internal reference (not
even measuring on it), this voltage shifts to ∼ 500 mV.
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Figure 5.11.: DAC reaction to ADC current draw

5.6.2. F042

As seen in table 5.3, the F042 ADC is interesting, because the voltage on the ADC is shifted
by 55mV, it doesn’t even measure any voltage until 55mV. However in the measured range
the results were almost perfect - at worst the voltage was 1mV less (assuming a correction
of the voltage shift). However because of the shift, the gain correction breaks the measure-
ment. While the %Error average is better with the gain correction, it is clear the measurements
without it are much better.

Very interestingly, in these test the F042 ADC seems to be the most accurate, even though
the F303 ADC should be the best. This is most probably because the F303 ADC is better in
’stressful situations’.

5.6.3. F411 and L053

The L053 has the internal reference implemented di�erently than the other three microcon-
trollers, therefore I did not implement or measure it.

5.7. Limitations when measuring frequency
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Supply
Voltage Voltage %Error Voltage %Error Voltage %Error Voltage %Error

100 97 3.00 97 3.00 94 6.00 94 6.00
200 197 1.50 196 2.00 194 3.00 193 3.50
400 397 0.75 395 1.25 394 1.50 392 2.00
600 598 0.33 595 0.83 595 0.83 592 1.33
800 799 0.13 794 0.75 796 0.50 791 1.13

1000 999 0.10 994 0.60 997 0.30 991 0.90
1200 1199 0.08 1193 0.58 1197 0.25 1190 0.83
1400 1400 0.00 1392 0.57 1397 0.21 1390 0.71
1600 1600 0.00 1591 0.56 1597 0.19 1589 0.69
1800 1800 0.00 1791 0.50 1798 0.11 1788 0.67
2000 2000 0.00 1990 0.50 1998 0.10 1988 0.60
2200 2201 0.05 2190 0.45 2199 0.05 2187 0.59
2400 2402 0.08 2389 0.46 2400 0.00 2387 0.54
2600 2603 0.12 2589 0.42 2601 0.04 2587 0.50
2800 2803 0.11 2788 0.43 2801 0.04 2786 0.50
2900 2903 0.10 2887 0.45 2901 0.03 2885 0.52
3000 3004 0.13 2988 0.40 3002 0.07 2986 0.47
3100 3104 0.13 3087 0.42 3102 0.06 3085 0.48
3200 3204 0.13 3187 0.41 3203 0.09 3185 0.47
3300 3305 0.15 3287 0.39 3303 0.09 3285 0.45%Error 

Average 0.34 0.75 0.67 1.14

Corrected gain and 
low pass added Low pass added Corrected gain No corrections

Table 5.2.: STM32F303 ADC measured data

R

+
-

Ucc

R

R

Signal

Figure 5.12.: Saturated in-
verting opamp

There are three main limitations that should be taken care of
when measuring frequency:

1. the input signal must not exceed the voltage range of the
logic, typically 0 to 3.3V. See warning 4.7 on page 33.

2. The signal should be square. This is a limitation mainly
for recpirocal frequnecy measurement and duty cycle, be-
cause if the signal is not a square, the start and stop volt-
age levels do not have to be identical. Thus if a non-square
signal is measured, either DFM can be used, or an opamp
in saturation as seen in �g. 5.12 should be added before
the timer input. (Do note that it will invert the signal).

3. To get a reasonable accuracy an external crystal must
be used instead of the HSI. On the discovery and nucleo
boards, this can also be done via the bypass which uses
the clock from the debugger.

The accuracy when using just the HSI can be seen in table 5.55. For DFM the accuracy is 400
to 1000ppm (0.04%~0.1%), but the measured frequencies are very low. By introducing the HSE,
the accuracy increases signi�cantly. In the case of the F303, as seen in �g. 5.6, the accuracy

5I have implmented DFM in 2 ways. With a second timer for gating and with systick interrupts for gating.

50



Limitations when measuring frequency

Supply
Voltage Voltage %Error Voltage %Error

100 48 52.00 45 55.00
200 153 23.50 145 27.50
400 365 8.75 345 13.75
600 577 3.83 544 9.33
800 789 1.38 745 6.88

1000 1001 0.10 945 5.50
1200 1213 1.08 1145 4.58
1400 1426 1.86 1345 3.93
1600 1635 2.19 1545 3.44
1800 1845 2.50 1744 3.11
2000 2058 2.90 1945 2.75
2200 2270 3.18 2144 2.55
2400 2483 3.46 2345 2.29
2600 2696 3.69 2545 2.12
2800 2909 3.89 2745 1.96
3000 3122 4.07 2945 1.83
3100 3227 4.10 3045 1.77
3200 3335 4.22 3144 1.75
3300 3441 4.27 3245 1.67

%Error 
Average 6.89 7.98

Corrected gain and Low pass added

Table 5.3.: STM32F042 ADC measured data

Supply Supply 
Voltage Voltage %Error Voltage Voltage %Error Voltage %Error

500 498 0.40 500 501 0.20 498 0.40
1000 994 0.60 1000 1001 0.10 996 0.40
1500 1491 0.60 1500 1502 0.13 1493 0.47
2000 1988 0.60 2000 2004 0.20 1992 0.40
2500 2489 0.44 2500 2506 0.24 2491 0.36
3300 3280 0.61 3300 3306 0.18 3286 0.42

%Error 
Average 0.54

%Error 
Average 0.18 0.41

Corrected gain and 
Low pass Low pass addedLow pass added

L053 F411

Table 5.4.: STM32L053 and STM32F411 ADC measured data

increased more than 100 times to 3ppm. Also it might seem that with systick there is lower
%Error than with 2 timers. However, the data with HSE was measured only for the two timer
DFM. Thus the %Error with systick DFM actually grows to 0.1%, while the %Error drops to
3ppm with 2 timer DFM.
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Source
Frequency Frequency %Error Frequency %Error Frequency %Error

1000 999 0.10 1000 0.00 999 0.10
2000 1999 0.05 2001 0.05 2000 0.00
5000 4997 0.06 5002 0.04 5000 0.00

10000 9995 0.05 10004 0.04 10000 0.00
12000 11994 0.05 12006 0.05 12000 0.00
15000 14993 0.05 15008 0.05 15030 0.20
20000 19989 0.06 20009 0.05 20050 0.25
30000 29982 0.06 30013 0.04 30125 0.42
40000 39977 0.06 40017 0.04 40223 0.56
50000 49980 0.04 50026 0.05 50320 0.64
65000 64963 0.06 65036 0.06 65454 0.70

%Error 
Average 0.06 0.04 0.26

DFM with 2 timers DFM with Systick RFM

Table 5.5.: Timer accuracy with HSI

Source 
Frequency 
[MHz]

MeasuredFr
equency 
[MHz] Error PPM

1 1.000,003 3.00
2 2.000,006 3.00
5 5.000,015 3.00

10 1.000,0032 3.20
12 12.000,038 3.17
15 15.000,042 2.80

Table 5.6.: Timer accuracy with HSE

The accuracies for the microcontrollers with HSE in bypass and measuring 10MHz with
DFM were the following:

• STM32F411: 10ppm

• STM32F042: 6ppm

• STM32F303: 3ppm

Unfortunately the L053 doesn’t have a 32bit timer, and thus I did not mesure the accuracy of
DFM.
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CHAPTER

SIX

CONCLUSION

In this thesis I have explored a few methods how to implement basic measurement functions
using STM32 microcontrollers.

I have discussed the various methods of controlling microcontrollers as measurement in-
struments and created working examples, templates and programs. The complete programs I
created with mbed for the STM32F042 and STM32F303 nucleo boards ar:

• a standalone (no PC required) demo for measuring passes through an optical gate, eval-
uating the output of an re�exive optical sensor and reading voltage, with an HD44780
LCD display,

• frequency measurement programs, most notably the DFM one, and a two channel volt-
meter, all with UART communication.

The complete programs I created with STM32Cube are:

• an oscilloscope with a PC frontend for the STM32F042 and STM32F072, which imple-
ments a USB to UART bridge in the microcontroller,

• static signal measurement and generation programs for the STM32F042, STM32F303,
STM32F411 and STM32L052 nucleo boards which communicate over UART, and a

• static signal measurement and generation program with SCPI communication protocol
and a PC frontend for the STM32F303 nucleo.

I have found out that the microcontrollers have reasonable voltage measurement capabilities,
and in the case of the F042 an accuacy within 2LSB. Furthermore I have found out that the
timers of the microcontrollers are very precise and by using the master clock out from the de-
bugger (since it has a crystal) on discovery and nucleo boards, DFM can achieve an astonishing
accuracy of 3ppm and high frequencies (tested to 15 MHz with calibrated signal generator).
Unfortunately mbed cannot utilize the accuracy of the timers without directly programming
them through registers, however software side DFM worked for frequencies upto 200 kHz with
a top accuracy of 5ppm.

I have explored methods of compensating the measurement limitations of the perihperals,
such as the limited input voltage and unwanted noise.

I have also shown the possibilities of porting the programs created with STM32Cube and
mbed to other microcontrollers of di�erent series such as the F411 and L053. With mbed
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it was a matter of changing the target and recompiling, with cube a new project had to be
created and the perihperals recon�gured. However, compared to porting programs created
with STM32Peripheral libraries or even directly in assembly1, it is very simple.

At the beginning of the thesis I also created some programs for the F042 with the standard
peripheral libraries from ST. I felt that they are not suitable for this thesis though (the usability
of the programs was roughly the same as with Cube, but took much more e�ort to create), and
thus they are not discussed and only the programs are attached.

6.1. What could be improved

To increase accuracy of reciprocal frequency measurement, either the input signal could be
divided with another timer, or the input capture data could be transferred with DMA into a
bu�er, and processed later like it is done with static voltage measurement. If the 16bit size of
the timer size were limiting, two timers could be ’chained’ to create a 32bit timer if one isn’t
available. Furthermore, if the DMA method is used, it would be possible to plot the data to see
how the frequency is �uctuating in time.

Both frontends were created with NI Labwindows CVI, which is not very practical since it
is not freely available. Moreover the static measurement frontend (F303RE Frontend) uses the
VISA library for UART communications, which means the installer has an additional 120MB
just to install VISA. On the other hand the scope uses the RS232 library which is very small,
but doesn’t have a builtin function for listing available COM ports. If I were to develop a new
application for the same target group, I would most probably use either the .NET framework,
or QT as they are free and widely used.

Unfortunately Cube does not provide a function to read from the UART until a certain ter-
mination character, but only a function to read a certain amount of characters. Since SCPI is
based on separators (’:’, ’ ’, ’\n’, etc.) and the length of each command can be di�erent, I had to
build the strings character by character and parse the termination character myself. Next time
it would be better to choose another protocol, or use another library to avoid this problem
(unless ST adds the functions).

The oscilloscope is only 8bit, while the microcontrollers have 12bit ADCs. It would be inter-
esting to use the full 12 bits, albeit with possibly slower sampling rates. Since the oscilloscope
was created rather as a proof of concept, a full text protocol has been used and no transfer
speed optimizations have been done. If it were desired to reach the full potential of the micro-
controller, a new VCP driver could be created and the protocol should be minimized.

1Porting programs created in Perihperals or assembly was not shown or discussed in this thesis.
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APPENDIX

A

USING THE USB BOOTLOADER TO LOAD MBED OR CUBE
PROGRAMS TO STANDALONE MICROCONTROLLERS

This apendix will show how to convert a binary (.bin) or hex �le to a DFU which can be loaded
to an ST microcontroller which has the USB bootloader, such as the STM32F042.

Since the development boards compatible with mbed use the same microcontrollers which
can be bought directly, such as the STM32F042 nucleo, and mbed should set the clock dynam-
ically, the mbed binaries can be used on ’solo’ microcontrollers.

I have created a simple program that is controlled with push buttons, displays data on an
HD44780 display, counts pulses and voltage. This program was developed using an STM32F042
nucleo board, and then simply uploaded to the microcontrollers.

A.1. Considerations

It has been mentioned multiple times that frequency measurement requires a precise clock.
Therefore it is important to either use an external clock source or a crystal. Mbed claims that
it tries to connect to the various clock sources in the following order[9]:

1. external bypass clock (from the debugger Master Clock Output on development boards),
then

2. it tries to start the crystal, and if that is unsuccessful,

3. it switches to the HSI

Unfortunately I have tested this on a STM32F042 microcontroller that had a crystal connected
and the crystal did not start (nothing seen on an oscilloscope with a 10:1 probe and removing
the crystal did not cause any problems in the program execution). When the exact same setup
was programmed with a Cube program, the crystal did start, therefore it can be assumed that
there wasn’t a problem with the hardware.

It is possible that this is a bug just in mbed F042 implementation, however this is out of the
scope of this thesis and thus will be left only with the warning that the crystal does not start.

A.2. Creating a dfu file and flashing the microcontroller

From the ST website download the DFU File Manager and the DFuSe demo.
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Using the USB bootloader to load mbed or cube programs to standalone microcontrollers

When you have your bin or hex �le ready, open the DFU File Manager. For a hex �le simply
click hex, choose it and click generate. For a bin,

• click multi-bin, a window as seen in �g. A.1 pops up,

• select your bin �le, and set the address to 0x08000000 (Flash memory),

• add to list, click ok and generate

Figure A.1.: DFU memory setup for bin �les

To �ash the DFU �le to the microcontroller, open the DFuSe demo and connect your micro-
controller in DFU mode1. You will know that it is connected because DFuSe will immediately
show it up (1 in �g. A.2). Then select the dfu �le generated in the previous steps and upload it
via the upgrade button (2 and 3 in �g. A.2). Finally put the microcontroller back into normal
mode and your microcontroller is �ashed.

1This most probably varies by micocrocorntroller. On the STM32F042 the Boot memory selection (pin 31 on
LQFP32 and pin 1 on TSSOP20) pin has to be pulled low during reset to enter DFU mode.
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Creating a dfu file and flashing the microcontroller

Figure A.2.: DFuSe demo main window
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APPENDIX

B

MBED SAMPLE CODES

Algorithm B.1 Mbed 2 channel voltmeter

#include "mbed.h"

Serial pc(USBTX, USBRX);

AnalogIn channel1(A0);

AnalogIn channel2(A1);

int main() {

double voltage1;

double voltage2;

while(1) {

//Both channel1 and 2 are objects, but printf requires a

//plain old data type (POD), therefore the data needs to be read into a plain variable

voltage1 = channel1*3.3;

//or we can call the read explicitly

voltage2 = channel2.read() * 3300;

//%x.yf formats the float with x digits before and y after the decimal point

pc.printf("A0: %1.2fV, A1: %4.1fmV\r", voltage1, voltage2);

wait_ms(100);

}

}
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Algorithm B.2 Mbed Direct frequency measuremnet

#include "mbed.h"

InterruptIn pSource(A0);

Serial pc(SERIAL_TX, SERIAL_RX);

//Test pwm signal

PwmOut pwm(D5);

uint32_t pCount = 0;

//Just increment the counter with each high

void incrementCount() {

pCount++;

}

int main() {

//Attach the count method to the rising edge of the pulse

pSource.rise(&incrementCount);

pSource.mode(PullDown);

pwm = 0.5;

pwm.period_us(2);

pwm.pulsewidth_us(1);

while(1) {

/*Send data ...*/

printf("Freq: %d\r\n", pCount);

//clear counter

pCount = 0;

//interrupts override wait, so we can use it as a delay

wait_ms(1000);

}

}
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Mbed sample codes

Algorithm B.3 Mbed Reciprocal Frequency Measurement

#include "mbed.h"

Serial pc(SERIAL_TX, SERIAL_RX);

InterruptIn pSource(A0);

PwmOut pwm(D5);

Timer period;

Timer pulseWidth;

double frequency;

int dutyCycle;

void calculateFrequency() {

/*If period != 0, the measurement

was already started*/

if(period.read_us() == 0) {

//Start the period and duty cycle timers

period.start();

} else {

period.stop();

// f = 1/T

//don’t forget to convert T to seconds

frequency = 1/(period.read_us()*0.000001);

period.reset();

}

}

int main() {

//Attach the callback to the rising edge on pSource

pSource.rise(&calculateFrequency);

while(1) {

printf("Freq: %f\r\n", frequency);

/*Do something with the frequency*/

}

}
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Algorithm B.4 Mbed measuring duty cycle

#include "mbed.h"

Serial pc(SERIAL_TX, SERIAL_RX);

InterruptIn pSource(A0);

PwmOut pwm(D5);

Timer period;

Timer pulseWidth;

double frequency;

int dutyCycle;

void measureDutyCycle() {

//A falling edge was detected

if(pulseWidth.read_us() != 0) {

//And we’re measuring duty cycle, so stop the timer

pulseWidth.stop();

}

}

void calculateFrequency() {

if(period.read_us() == 0) {

//Start the period and duty cycle timers

period.start();

pulseWidth.start();

} else {

period.stop();

// f = 1/T

//but don’t forget to convert T to seconds

frequency = 1/(period.read_us()*0.000001);

//Calculate the duty cycle, %DC = T_pw / T

dutyCycle = ((float) pulseWidth.read_us()) /

((float) period.read_us()) * 100;

period.reset();

pulseWidth.reset();

}

}

int main() {

//Attach the callback to the rising edge on pSource

pSource.rise(&calculateFrequency);

pSource.fall(&measureDutyCycle);

while(1) {

printf("Freq: %f\r\n", frequency);

/*Do something with the frequency*/

}

}
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Mbed sample codes

Algorithm B.5 Mbed PWM Signal Generation

/*Function changeFrequency cycles through 3 frequencies

100Hz, 1kHz and 10kHz, and changeDC cylces through 3 duty cycles

25%, 50% and 75%*/

//Initializes the output with a 50Hz frequency and 50% duty cycle

PWMOut pwm(PB_4);

//starting frequency will be 100Hz (10000us)

int period_us = 10000;

float dutyCycle = 0.5f;

void changeFrequency(){

if(period_us > 100){

period /= 10;

} else {period = 10000;}

pwm.period_us(period_us);

}

void changeDC(){

//float is terrible, so let us be sure it doesn’t overflow

if(dutyCycle < 0.7f){

dutyCycle += 0.25f;

}else {dutyCycle = 0.25;)

//dutyCycle setting is implicit

pwm = dutyCycle;

}
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Algorithm B.6 Mbed LED as multilevel display

#include "mbed.h"

InterruptIn button(PC_13);

//An external LED needs to be connected to PA_4

AnalogOut extLED(PA_4);

int state;

void buttonPressed() {

/*If the button was pressed,

cycle through states 0-3*/

if(state < 4) {

state += 1;

} else {

state = 0;

} //Update the LED

/*The LED has a ~1.5V drop, so the

applied voltage has to be at least

1.5V for it to light up*/

extLED = 0.5+((double)state)/10;

}

int main() {

/*Using the interrupt in instead of

directly reading the button is

great for debouncing*/

button.rise(&buttonPressed);

while(1) {

switch(state) {

case 0: /*State 0 activity*/ break;

case 1: /*State 1 activity*/ break;

/*...*/

case 4: break;

default: /*error ...*/

}

}

}
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Mbed sample codes

Algorithm B.7 Mbed serial command interrupt handler
#include "mbed.h"

#include <string.h>

Serial pc(USBTX, USBRX);

int voltage; //Variable where the measured voltage is stored

string command;

char c;

void processCommand(void); //Function prototype

void commandHandler(){

//One can never be safe enough

if(pc.readable()){

//Read the character

c = pc.getc();

if(c == ’\n’){

//If its a newline, process the command

processCommand(command);

//After processing, clean the string to receive a new one

command.clear();

}

//Otherwise just append it to the command string and continue

else {command += c;}

}

}

int main(){

//Calls commandHandler() whenever a byte is received on the serial

pc.attach(&commandHandler);

while(1){

//Do stuff

}

}

void processCommand(string cmd){

//Working with strings in mbed is simpleL

if(cmd == “Hello”){

pc.printf(“Hello!\n”);

} else if(cmd == “MEAS:VOLT?”){

pc.printf(“Voltage: %d\n”, voltage);

} else{

pc.printf(“Command not recognized\n”);

}

}
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APPENDIX

C

CUBE SAMPLE CODES

Algorithm C.1 Using UART with HAL
#include <string.h>

//autogenerated

UART_HandleTypeDef huart2;

uint8_t rxBuffer[1];

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart){

if(rxBuffer[0] ==’?’){/*do stuff in response to ? being recieved*/}

}

int main(){

//Array to store the received command

uint8_t rxBuffer[1];

//Array to store the message to be sent back

char result[10];

//autogenerated, initializes uart

MX_USART2_UART_Init();

while(1){

//Try to receive a single byte, with a 100ms timeout

if(HAL_UART_Receive(&huart2, (uint8_t *)&aRxBuffer, 1, 100) == HAL_OK){

/*Process command stored in aRxBuffer ... output in result*/

HAL_UART_Transmit(&huart2, (uint8_t *)&result, strlen(measurement));

}

}

}
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