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Abstract

The goal of this thesis is to design and implement a method of optimal path planning for large
swarms of unmanned aerial vehicles (UAVs, i.e. quadrotors) in a complex environment. The
work is based on the Boids swarming model and tested using simulations in the V-Rep simulator.
The planning algorithm is based on the Voronoi graph, which is created around environmental
obstacles. This thesis describes the Boids model implementation, extended by simple obstacle
avoidance and path following capabilities. It also describes the process of the graph’s edges eval-
uation using an experimentally acquired heuristic and evaluation using simulation and compares
these two approaches. Additionaly, the model is extended with the possibility of swarm splitting
and merging.

Keywords

swarm, UAV, Boids model, path planning

Abstrakt

Tato prace se zabyva ndvrhem a implementaci metody optimélniho pldnovéni trasy pro roj bez-
pilotnich letound (UAV, i.e. kvadrokoptér) v komplexnim prostiedi. Prace je zaloZena na Boids
modelu roje a testovdna pomoci simulaci v simuldtoru V-Rep. Pldnovaci algoritmus je zaloZen na
Voroného grafu, ktery je vytvoren okolo pfekaZzek v daném prostiedi. Tato prace popisuje imple-
mentaci Boids modelu, roz§ifeného o jednoduché vyhybani se pfekdZkdm a sledovan{ trasy. Déle
popisuje proces ohodnocovani hran grafu pomoci experimentalné ziskané heuristiky a ohodno-
covani pomoci simulace a porovndva tyto dva pfistupy. Model je ddle rozsifen o moZnost déleni
roje a jeho op€tovném slucovani.

Klic¢ova slova

roj, UAV, Boids model, pldnovani trasy
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Chapter 1.

Introduction

The concept of using unmanned Micro Aerial Vehicles (MAVs) for solving various everyday
tasks in many different fields has received a lot of attention. Mostly thanks to their affordabil-
ity and their simple handling, the use of MAVs such as quadrotors (i.e. a helicopter with four
propellers) is on a rise for personal purposes, currently mostly used for high quality aerial video
shooting.

Appart from recreational purposes, the possibility of deployment of large groups of MAVs
working on a collective task has many potential applications in a number of fields such as surveil-
lance [15]], reconnaissance, search and rescue operations, searching for sources of pollutions or
gas leaks [12,[13]] and various military applications.

Figure 1.1.: One of the quadrotors used by MRS

Most of these tasks involve the utilization of groups of MAVs in environments with a very
limited possibilities of precise localization of robots. The available global localization systems
(such as GPS or visual-based localization [14]]) are insufficient for determining a precise position
of each quadrotor. These global localization systems are useful for path following capabilities of
the swarm, where a high precision is not needed and the errors caused by such systems can even
be higher than the distances between quadrotors in the group. However, more precise relative
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localization systems are needed for internal control of the quadrotors within a team.

One of the core research activities of the Multi-robot Systems (MRS) group [11]] at Czech
Technical University in Prague is the swarm robotics [19,20]], which is inspired by a behavioral
model of flocks of birds. These approaches rely on an onboard visual system for relative local-
ization of the swarm members [9}[10], which was already succesfully employed in experimental
emulation of numerous formation flying [21H23] and swarm experiments [17, 24]]. This relative
localization is much more precise than GPS and it is crucial for collision avoidance within the
group of quadrotors.

This work builds on achievements described in [[19,20] and brings an additional contribution
in sense of unique trajectory planning that considers the size of the team and the environment
characteristics (density of obstacles, width of corridors and narrow passages, etc.).

Figure 1.2.: Real world swarm of quadrotors using relative visual localization

As it is often impossible or too hardware demanding to plan a path for the swarm onboard
the quadrotors, it is needed to plan the trajectory for the swarm in the given environment in ad-
vance. This work introduces a path planning method for large swarms of MAVs in a complex
environment, which is based on the Voronoi graph [3]. The Boids model [2] presented by Craig
Reynolds in 1986 was used as a swarming model, furtherly extended by simple obstacle avoid-
ance and path following capabilities, as described in chapter[2} The process of the Voronoi graph
evaluation is described in chapter[3] Additionaly, the system is extended with the possibility of



swarm splitting and merging discussed in chapter [4

The performace of the extended Boids model and the resulting graph evaluation is verified
using a large number of simulations using the V-Rep simulator [8]. This simulator uses a simple
proportional position regulator, which steers each quadrotor towards their individual targets.
Videos of some of the experiments can be found on the attached CD.

Figure 1.3.: A Smart City simulation of a swarm of quadrotors in the V-Rep simulator
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Number of boids

The ¢-th boid

Set of boids (i.e. MAVs in the swarm)

Position of the i-th boid

Velocity of the i-th boid

Sensoric range of all boids

Set of the detected neighbors for the i-th boid defined in
Set of boids in a platoon for the ¢-th boid defined in

Set of the waypoints for the ¢-th quadrotor

Position of the current waypoint of the i-th boid

Position of the previous waypoint of the i-th boid

Closest point on an obstacle detected by the i-th boid
Separation, cohesion, alignment, path following and obstacle
avoidance forces for the i-th boid

Weights of each of the forces above

Output force without obstacle avoidance force for the ¢-th boid
Resulting output force for the i-th boid

Distance between two obstacles in meters

Length of the graph edge between the i-th and the j-th vertex
Reference time described in section

Heuristic function used for the graph evaluation

First part of the heuristic function based on the reference time ¢,
Second part of the heuristic function based on the time
increments caused by the obstacles

Auxiliary constant used in €,, described in section
Auxiliary function parameters used in €;, described in section

2T

Table 1.1.: List of used symbols and variables



Chapter 2.

Extended Boids model

In this chapter, the core of the UAV control is discussed. Boids swarming model was used,
subsequently extended by a simple obstacle avoidance force and a force that enables the swarm
of UAVs to follow a given path. The model is described using the global coordinates system
instead of relative positions for each UAV to maintain the clarity of used symbols. However,
the Boids model together with the obstacle avoidance force use relative localization systems as
described in chapter|T]

2.1. Boids model

The Boids model, introduced by Craig Reynolds in [2] describes the swarming (flocking)
behavior as a combination of three simple steering forces of each individual member of the
swarm (i.e. boid). These forces are separation, cohesion and alignment.

The swarm B consists of n boids. Each boid b; is defined by its position p; and its current
velocity ¥;. Boids have a limited sensoric range for their relative localization and obstacle avoid-
ance, which is represented by a range constant . All boids have the same sensoric range and
they react only to those boids that are within their range. The set of detected neighbors for ¢-th
boid R; can then be written as

R; = {bj € B\ {b;};Vb; : ||pi —pjll <r}.

2.1.1. Separation force

Each boid is forced to stay away from other detected boids and to avoid potential collisions
with other members of the swarm. This tendency is called the separation force Fs; and for the

i-th boid is computed as
F*Si _ Z Pi — Dy

5-
Vb, €R; sz - pj”

Each vector is divided by the square of its norm so that the closer the j-th boid is, the bigger
force pulls the i-th boid away from it.
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2.1.2. Cohesion force

The cohesion force F. is oriented against the separation force and keeps the swarm members
together. It pulls each boid towards the center of all detected boids and is computed as

_ 1
v VbjERi

If there are no boids detected by the i-th boid (i.e. |R;| = 0), the cohesion force is set to 0.

2.1.3. Alignment force

The alignment force F,, makes each boid to follow other boids movements and to match its ve-
locity to the other boids. This behavior can simply be obtained by averaging the vector velocities
of all detected boids as 1

F, = — ;.
@i |R;| Z Y

*'vbieR;

Again, if there are no boids detected by the i-th boid, the alignment force is set to 0.

2.2. Path following force

With the Boids model alone, the swarm wanders randomly in the environment. For the pur-
pose of making the swarm to follow a given path, the path following force ﬁp was introduced. It
directs the UAVs towards a single point on the given path. The points in the path are switched as
the swarm progresses towards the end of the path. The given path points then serve as waypoints
to steer the quadrotors. The force is computed as

o Wi — Pi
= Tw—pl
where w; is the position of the current waypoint of the i-th UAV. The force is normalized to unit
length independently to the distance to the waypoints.

In this work, two different approaches were used for following the path: the leader-followers
approach and the all UAVs following path approach.

2.2.1. Leader-followers approach

In the leader-followers approach, the path following force is applied to only one chosen UAV
(a leader). The leader is chosen as the closest quadrotor to the first waypoint on the path. The
rest of the swarm then follows the leader due to the cohesion force of the Boids model. When
the leader gets close to its target, it switches its target to the next waypoint.

The advantage of this approach is that the path following force does not interfere with the
Boids model, which makes the swarm better organized. On the other hand, the swarm moves
slower, because the leader has to pull the whole swarm only using the cohesion force. This
problem is especially amplified when the swarm is supposed to fly through a narrow corridor,
since then also the obstacle avoidance force (described in section [2.3) works against the path
following force. Therefore, the leader-followers approach is better suited for smaller swarms
(i.e. three UAVs or less), where the cohesion force that slows down movement of the leader is
smaller.
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2.2.2. All UAVs following path approach

In this approach, all quadrotors use the path following force. Each quadrotor has own indi-
vidual target for its steering. Again, when the particular MAV reaches its target, the following
waypoint is chosen.

The advantage of this approach is that each member of the swarm flies through the given path,
which is useful in maze-like environments, where the swarm cannot spontaneously split when
they encounter a narrow corridor that is hard to fly through. Another advantage is that the MAV
can fly towards the goal or to the rest of the team if it is splitted from the group (i.e. it can no
longer detect any other quadrotors).

The disadvantage of this approach is that it interferes with the Boids model, because all the
quadrotors fly towards a single waypoint, which works against the separation force. It is only a
small disadvantage, since the closer the UAVs are, the bigger is the separation force and it only
results in the quadrotors flying closer to each other.

The waypoint switching process cannot be done based only on the distance to their target as
in leader-followers approach. This is due to the fact that in larger swarms, the quadrotors on
the edge of the swarm never get close enough to the waypoints, but they still need to switch
their target to the next waypoint. Because of this, an additional waypoint switching method was
introduced. For this method, vector ,, = w; — w;, where w; is the previous waypoint of the
i-th quadrotor, and vector i, = p; — w; are used. Additionaly to the target switching based on
the distance to the current target, the target is also switched to the next waypoint when the angle
between those two vectors is bigger than 7. Now it does not matter how far the quadrotor is to
its current target. It switches to the next waypoint when it passes the target.

Since the leader-followers approach is not suitable for larger swarms, the all UAVs following
path approach is used as the main path following method in the rest of this work.

2.3. Obstacle avoidance force

As each member of the swarm needs to avoid the obstacles in the workspace, a simple obstacle
avoidance force F,, was introduced in to the model. It pulls each UAV away from the closest
detected obstacle and is computed as

s Pi—di
0; —
lpi — dil*”

where d; is the closest detected point by the ¢-th UAV. The vector is divided by the square of
the distance to the obstacle, so that the obstacle avoidance force is stronger when the detected
obstacle is closer.

2.4. Output force

The output force F' that controlls each UAV is computed in two steps, first without the obstacle
avoidance force as

~

F‘Z— = ksﬁsi + kcﬁci + ka-ﬁai + kpﬁpi’

where kg, k., kq and k, are weights of each force. These constants can be set by the user to
meet the desired properties of the swarm. Changing the separation and cohesion constants k
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and k. changes the distance between quadrotors at which the separation and cohesion forces are
balanced. Increasing these constants also increases the reaction of quadrotors when they deviate
from the equilibrium. Decreasing the alingment constant k, makes the swarm movement more
chaotic, because each member of the swarm will react less to the direction of other quadrotors
around them. Since the alignment force interferes with the obstacle avoidance, it is better to set
the alignment constant to a small number compared to the other constants, or it can be set to
zero, which cancels the alignment force completely. The path following constant &, changes the
speed of quadrotors while following the path. It should not be set too high compared to the other
forces, because it would cause the quadrotors to crash into obstacles or each other while trying
to get closer to their current target.

Now, let us define angle o between ﬁl and the obstacle avoidance force ﬁoi. The obstacle
avoidance force is then added to the output force only if v < 7. This ensures that the members
of the swarm ignore obstacles that are already behind them while following the path. If influence
of these obstacles is added into the output force, the quadrotors tend to accelerate excessively
because of the cumulative efect of the obstacle avoidance force and the path following force,
which both are added into the standard Boids model. The resulting output force for the ¢-th boid
is computed as

F;':F‘lz'+koﬁoia

where k, is a weigth constant for obstacle avoidance force, which can be set by the user. It should
not be set too low to ensure that the quadrotors do not crash into obstacles, but at the same time,
setting this parameter too high might result in the swarm behavior that does not allow to fly
through narrow corridors such as doors.



Chapter 3.

Path planning

The path planning process is splitted into three steps. First a 2D graph is created around
obstacles in the environment using the Voronoi [3]] diagram algorithm. Then the Voronoi graph
edges are evaluated based on the swarm properties. After the graph evaluation, it is searched for
one or more shortest paths around obstacles. For the purpose of graph searching, the K-Shortest
path routing algorithm was used. The implementation of the algorithm can be seen in [1]].

3.1. Voronoi diagram

For fast computing of the Voronoi diagram algorithm, implementaion developed at CTU was
used. This approach is based on the C++ Boost [4] library and its Voronoi diagram implemen-
tation, further extended by the possibility of using polygon shapes as inputs, which makes the
algorithm more suitable for real world obstacles. In this work, the bounding box edges of each
obstacle are used as an input for the Voronoi algorithm. Examples of the used V-Rep simulator
[8]] environments and the resulting Voronoi diagrams can be seen on figures [3.1]and 3.2}
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Figure 3.1.: Simple environment in the V-Rep simulator and the Voronoi algorithm output
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Figure 3.2.: Office environment in the V-Rep simulator and the Voronoi algorithm output

Each of the obstacles are additionaly sampled and the distance between obstacles (i.e. the free
space for the swarm) is determined for each of the graph edges. This information is then used in
the graph edges evaluation process.

3.2. Graph edges evaluation

For the graph edges evaluation, two approaches were used in this work. The first approach
uses a heuristic function obtained experimentally in V-Rep simulator. The second approach uses
the same heuristic for graph evaluation, but the graph evaluated using heuristic is then used only
for acquiring a path in the graph that covers all edges. After that, simulation in V-Rep is started
to experimentally determine the times it takes the swarm to fly over each of the graph edges.
These times are then used as the resulting graph evaluation.

3.2.1. Evaluation using heuristic

The goal of this section is to acquire a heuristic function for the graph edges evaluation based
on the number of swarm members and space between obstacles related to the corresponding
edge. To find such a function, a set of experiments were made in the V-Rep simulator using
the scene shown on figure [3.3] with two obstacles between which the swarm of various sizes is
supposed to fly through.

Figure 3.3.: V-Rep environment for determining the heuristic function for edges evaluation

10



GRAPH EDGES EVALUATION

First, an experiment was made to determine the time it takes the swarm to reach the end of the
path without any obstacle in the environment. This time was measured for each swarm size and
it is used as a reference to determine the time increment caused by the obstacles. The average
reference times (the time was measured five times for each swarm size) can be seen in table[3.1]
The average time increment measured for various distances between the obstacles for different
swarm sizes can be seen in table [3.2] Based on the experimental observations, we propose a
heuristic function in the form

e(n, 8, kp, lij) = er(kp, lij) +€i(n, s),

where ¢, is the time it takes the swarm to fly over an edge without obstacles, ¢; is the time
increment caused by the obstacles, n is the number of swarm members, s is the distance between
obstacles, £y, is the path following constant introduced in section and [;; is the length of edge
between the i-th and the j-th vertex.

Number of swarm members n | Reference times ¢, [s] ‘

1 11.74 £0.17
2 11.76 £ 0.07
3 11.71 £ 0.06
4 11.73 £0.10
5 11.71 £ 0.09

Table 3.1.: Reference time for each swarm size

For the first part of the heuristic function ,.(+), the reference times shown in table [3.1| were
used. As the differences between the measured time values for each swarm size are smaller than
their individual variances, we can say that the times do not depend on the swarm size according
to the obtained statistics. The reference times were measured as the difference between times
when the last member of the swarm passed the start and the end of the measured path section.
Since the whole swarm flies at the same speed as a single quadrotor, it will always take the last
quadrotor the same time. The function ¢, (-) then depends only on the length of the measured
edge /;; and the path following constant %,. Since the path following force stays constant, the
maximum speed at which the swarm follows the path depends linearly on the weight constant k,,
(described in 2.4) and the function &,(+) is in the form

lij
Er(kp, ll'j) = KJ'
kp

Since the reference times in table were measured with path following constant k;, = 0.1
on a path of length [ = 10m, all the times were adjusted accordingly. The constant KX was then
determined as an average of the adjusted reference times and the resulting function for &, (-) is
then

Lij
er(kp, i) = 0.117-2.
kp
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PATH PLANNING

Number of swarm members n

Distance between obstacles s [m] | 1 2 3 4 5
1.0 1.75 | 2.91 | 3.89 | 4.65 | 5.80
1.1 1.70 | 2.93 | 3.57 | 4.13 | 497
1.2 1.58 | 2.36 | 3.18 | 3.58 | 4.17
1.3 1.35 | 2.04 | 2.60 | 3.05 | 3.82
1.4 1.33 | 1.87 | 2.15 | 2.63 | 3.47
1.5 1.23 | 1.53 | 1.88 | 2.45 | 2.92
1.6 1.20 | 1.40 | 1.80 | 2.23 | 2.67
1.7 098 | 1.23 | 1.60 | 1.90 | 2.52
1.8 095 | 1.18 | 1.50 | 1.73 | 2.27
1.9 088 | 1.10 | 1.43 | 1.58 | 1.72
2.0 0.85 1095|130 | 145 | 1.67

Table 3.2.: Average measured time increment in seconds for different swarm sizes and different
environments

The values of time increment caused by the obstacles measured in the experiment were then
used to determine an exponential dependence of the time increment on the distance between
obstacles for each swarm size using the Least Squares Method (LSM) [55]. The graphs of LSM
can be seen on figure[3.4] The resulting functions for each swarm size can be seen in table[3.3]

3] T T T T
1 quadrotor
2 quadrotors
55 - 3 quadrotors ]
4 quadrotors
5 5 quadrotors 4
45 & b
—_— 4 = A
n
IR
N ‘ 7
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=
5 3 F \'\ T
o ™
E R
B a5t B 1
H - -
2+ — 4
S F— H
15 T = 7--7---7--""*’---7._,_ + 7
1L i
05 . ' : '
1 1.2 14 Lo 1.8 2

Number of quadrotors

Figure 3.4.: Graph of LSM for each swarm size
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GRAPH EDGES EVALUATION

Number of swarm members n ‘ Function acquired by LSM

1 gi(1,5) = 3.87e7 077

2 £i(2,s) = 10.33¢ 12225
3 £i(3,5) = 13.34¢ 12305
4 ci(4,8) = 15.76¢ 1233
5 €i(5,5) = 19.38¢ 12355

Table 3.3.: Exponential functions for each swarm size using LSM

As seen in table [3.3] all the functions are in the form

gi(n,s) =ai(n)e

—az(n)s

with two parameters a; and az, which change with the swarm size. While a linear dependence
of these parameters on the swarm size can be seen for the swarms (i.e. two or more quadrotors),
the function for only one quadrotor deviates from this dependence. As one quadrotors is not
affected by the Boids model, it tends to perform differently from the swarms. For that reason,
the heuristic for only one quadrotor is computed separately.

To determine the dependence of parameters a; and a2 on the swarm size and to derive the
final function that is used for the evaluation, the LSM was used once again. The graphs of LSM
for both parameters can be seen on figure and the resulting functions are

ai(n) = 4.353 + 2.957n,

asz(n) = 1.215 4 0.004n.

me
&

2 2.5 3 35

Number of quadrotors

Figure 3.5.: Graphs of LSM for function parameters a; and as

4

Parameter a,

1238

1236 |

1234 b

1232 |

Number of quadrotors

The time increment due to obstacles can be estimated by heuristic

ei(n, s) = (4.353 + 2.957n) ¢~ (1:215+0.004n)s

2 25 3 35 4

45 5

(3.1)

The comparison between measured values of time increment and the estimated values using

(3.1)) can be seen in table[3.4]
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PATH PLANNING

Number of swarm members n
Distance between obstacles [m] 2 3 4 5
1.0 291/3.02 | 3.89/3.88 | 4.65/4.72 | 5.80/5.57
1.1 293/2.67 | 357/343 | 4.13/4.18 | 4.97/4.92
1.2 2.36/2.37 | 3.18/3.03 | 3.58/3.69 | 4.17/4.35
1.3 2.04/2.09 | 2.60/2.68 | 3.05/3.27 | 3.82/3.84
1.4 1.87/1.85 | 2.15/2.37 | 2.63/2.89 | 3.47/3.40
1.5 1.53/1.64 | 1.88/2.10 | 2.45/2.55 | 2.92/3.00
1.6 140/1.45 | 1.80/1.86 | 2.23/2.26 | 2.67/2.65
1.7 1.23/1.28 | 1.60/1.64 | 1.90/2.00 | 2.52/2.34
1.8 1.18/1.14 | 1.50/1.45 | 1.73/1.76 | 2.27/2.07
1.9 1.10/1.01 | 1.43/1.29 | 1.58/1.56 | 1.72/1.83
2.0 095/0.89 | 1.30/1.14 | 1.45/1.38 | 1.67/1.62

Table 3.4.: Comparison between measured values of time increment / computed values using ¢;

The resulting heuristic functions for one quadrotor and for swarms are then

I )
6(1, S, k'p, ll]) = 0117# + 3.87¢ 0.7757
P

lij _
e(n, s, kp, lij) = 0.117# + (4.353 + 2.957n) ¢~ (1:215+0:004n)s. 4y — 9 3 4
P

3.2.2. Evaluation using simulation

The evaluation by simulation is an extension of the evaluation using heuristic. In this approach,
the resulting heuristic shown in section[3.2.T]is used for an initial evaluation of the Voronoi graph.
After the evaluation, a path that covers all the edges of the graph is found. The problem of finding
such a path is called the Chinese Postman Problem (CPP) and there are multiple algorithms for
finding an optimal solution in graphs of different properties [6}[7]. Since there is no need for the
path to be optimal, as well as it does not have to start and end in the same node, a simple and fast
algorithm for finding a path was introduced instead. The initial heuristic evaluation is used so
that the algorithm prefers shorter unvisited edges. Due to this, the algorithm tends to first search
the smaller domains of the graph before progressing further, which results in shorter paths. The
algorithm written in pseudocode is:
path = [starting node]
while there are unvisited edges:

if there are unvisited edges connected to the current node:
next_node = closest node connected to the current node by unvisited edge

path = path + next_node

else:

shortest_path = path from the current node to the closest unvisited edge
path = path + shortest_path

return path

After the path is found, a simulation in the V-rep simulator is started. In the simulation, a
swarm of quadrotors flies over the found path. Each edge is then evaluated by the time required
for the whole swarm to reach the ending point of the edge. If one edge was used multiple times
in the found path, the evaluation uses the smallest value from the times measured on this edge.

14



Chapter 4.

Swarm splitting and merging

For the possibility of swarm splitting and merging, a path finding algorithm developed at CTU
was used. It takes a graph evaluated for 1 to N quadrotors as an input and finds a path for each
of the quadrotors. An example of the algorithm output for the environment shown on figure[5.2]
can be seen on figure {.1]

D)
Y
8

Figure 4.1.: Swarm splitting algorithm output example
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SWARM SPLITTING AND MERGING

On the figure, the grey circles are the graph nodes. The algorithm finds a path from the blue
node to the red node. The edges of the path are denoted by the green marks. The numbers in the
green squares are then the numbers of quadrotors that are supposed to fly on the particular edge.

For the purpose of swarm splitting, the Boids model discussed in section [2.1] needs to be
adjusted. Additionally to the set of detected quadrotors F;, a set of swarm members in a platoon
(i.e. the subswarm that is supposed to fly together after swarm splitting) P; was introduced. This
set for the ¢-th quadrotor can be written as

P; = {bj € R;;Vb; : w; € W; ANwj € Wi},

where W, is a set of waypoints for the i-th quadrotor.

When a detected neighbor is not in a platoon with the ¢-th quadrotor, it is not used to compute
the cohesion force ﬁc and its contribution to the separation force FS is lowered. This ensures
that the swarm spliting is slow and smooth.
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Chapter 5.

Experiments

To test both the extended Boids model and the graph evaluation, the experiments were made
in three different environments in the V-Rep simulator. The first environment (seen on figure
[-1)) is very simple, with only a small number of obstacles in the form of cylinders. The second
environment (seen on figure [5.1)) is very dense, with a high number of obstacles. The third
environment (seen on figure[5.2)) is a maze-like environment well suited for the swarm splitting
experiments.

The parameters of the Boids model used in the experiments can be seen in table[5.1]

\Sensoric range 7 [m)] \ ks \ ke \ kg, \ k, \ ko \
| 3 103]03]00[02]02]

Table 5.1.: Parameters for the Boids model used in the experiments

Figure 5.1.: Dense environment in the V-Rep simulator and the Voronoi algorithm output
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Figure 5.2.: Maze environment in the V-Rep simulator and the Voronoi algorithm output

The experiments were done for swarms with one to five members. To see the performance
of the extended Boids model discussed in chapter [2] some experiments are accompanied by
graphs showing the time development of velocities of each quadrotor, the distance to the closest
detected obstacle and their closest neighbor. These graphs are shown in the appendices. The
starting and ending points for the path finding algorithm are shown on the related figures in each
section as yellow spheres. The found path is shown on the figures as a blue line with blue spheres
representing the graph nodes.

5.1. Simple environment

In this section, the results of the experiments in the simple environment seen on figure [3.1]
are shown. The shortest found paths in the simple environment for each swarm size can be seen
on figure[5.3] for the heuristic evaluation and on figure [5.4] for the evaluation by simulation. For
most of the cases, the two evaluation approaches found the same path. For one quadrotor, the
paths were very similar, but the small difference resulted in a significant time increase in the
evaluation by simulation.

1 and 2 quadrotors 3, 4 and 5 quadrotors

T

A }__ 4_’,_ A
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1
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1
1
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|
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|
1
1
1
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1
1

Figure 5.3.: Found paths in the simple environment using the heuristic evaluation
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SIMPLE ENVIRONMENT

1 and 5 quadrotors 2, 3 and 4 quadrotors
- - -
I I |
1 I
I I : 1
I : ] P | Il —t - IR
I [ £ 1 I H‘—
I \ll
ISl Jsl s Sl S 5 R g= ] S REE e I sy s _E R _E S S 1 0 R O
SEa gl e
‘ B = j
1 | ' AN
SRt St sl to :
T [ T J
| K il P O I u | 1 11 [ i T [ am
I I I || I /
IR ER IR RERESE TR = B 5 ] i J[ ,,,,,Q*AK Il EREE
o e B
| e i |

Figure 5.4.: Found paths in the simple environment using the evaluation by simulation

The times required for the swarm to reach the end of the paths found using the evaluation by
heuristic and the paths found using the evaluation by simulation can be seen in table[5.2]

Heuristic evaluation Evaluation by simulation

Swarm | Estimated | Simulation | Error | Estimated | Simulation | Error
size n times [s] times [s] times [s] times [s]

1 13.943 22.050 36.8% 42.545 39.899 6.6%

2 13.602 29.750 54.3% 48.143 40.065 20.2%

3 17.097 37.149 54.0% 44.992 40.400 11.4%

4 17.395 38.099 54.3% 48.844 41.250 18.4%

5 17.684 38.699 54.3% 34.246 38.469 11.0%

Table 5.2.: Estimated and resulting times in the simple environment

As seen in the table, the heuristic fails to estimate the times it takes the swarm to reach the goal.
The estimation error stays constant for all the swarm sizes except for one quadrotor, which has a
separate heuristic function. This error is probably caused by the fact that in an environment with
a low number of obstacles, the quadrotors have more space and they tend to wander off the given
path. This is especially problematic when the path contains sharp turns, in which the swarm fails
to react quickly enough and it takes the swarm a long time to return on the right path. This does
not happen in the dense environment, since the high number of obstacles forces the swarm to fly
exactly on the given path.

Another problem is that the heuristic function was based on experiments where the swarm
was following a straight line. It means that the swarm flies at its maximum velocity when there
are either no obstacles present or when there is enough space beween the obstacles. But in the
simulation, even in environment without obstacles, the swarm is slowed down by the sharp turns
of the path.

The times estimated by the evaluation using simulation are much more accurate than in the
heuristic evaluation, but the estimation errors are still significant. Generally, the behavior of the
swarm in an environment with a low number of obstacles tends to be very random and it is hard
to predict the time it will take the swarm to reach the desired position.

Even though the time estimated by simulation was always more accurate than the estimations
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using heuristic, the heuristic always found either the same or a faster path. This is important,
since the goal of this work is to find an optimal path. Additionaly, the evaluation by simulation
takes much more time to compute than the heuristic evaluation. While the heuristic evaluation
takes around 1 millisecond to compute in the simple environment, the evaluation by simulation
takes up to 15 minutes depending on the swarm size.

5.2. Dense environment

In this section, the results of the experiments in the dense environment seen on figure 5.1 are
shown. The heuristic evaluation resulted in the same path for all swarm sizes. This path can
be seen on figure[5.5] The shortest paths found while using the evaluation by simulation can be
seen on figure 5.6
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Figure 5.5.: Found path in the dense environment using the heuristic evaluation for all swarm
sizes

The times required for the swarm to reach the end of the path found using the evaluation by
heuristic and the paths found using the evaluation by simulation can be seen in table

Heuristic evaluation Evaluation by simulation

Swarm | Estimated | Simulation | Error | Estimated | Simulation | Error
size n times [s] times [s] times [s] times [s]

1 37.498 38.249 2.0% 60.886 53.560 13.7%

2 36.296 41.900 13.4% 57.343 49.150 16.7%

3 40.047 42.100 4.9% 65.793 50.050 31.5%

4 43.733 43.900 0.4% 68.991 43.900 57.2%

5 47.350 47.751 0.8% 78.291 47.751 64.0%

Table 5.3.: Estimated and resulting times in the dense environment
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Figure 5.6.: Found paths in the dense environment using the evaluation by simulation

The times estimated by the heuristic in the dense environment were very accurate, especially
for the swarms of four and five quadrotors. This is due to the fact that in dense environment, the

swarm does not have much space to maneuver, which makes the movements of the swarm more

deterministic than in the simple environment. There are also almost no edges where the heuristic
evaluation expects the swarm to fly at a maximum speed. Thanks to this, the errors caused by

the path curvature are much less dominant than in the simple environment.

In contrast to the very accurate heuristic evaluation, the evaluation using simulation has much
worse results. That is because the simulation is very dependant on the chosen path itself. For

example, it can take the swarm only a small amount of time to fly over one edge in case the

a different direction. In order to determine the times correctly, the evaluation using simulation
would have to cover not just all edges, but all possible ways to approach each edge, which would
significantly increase the time of the evaluation. The high number of obstacles and cramped
spaces in the dense environment make the differences between possible approaches to each edge

from multiple directions more significant. Since a small swarm is not influenced so much by a
small amount of space to manuever, the estimation error while using the evaluation by simulation

swarm approaches the edge from one direction, but a lot of time if it approaches the edge from
tends to be the higher for bigger swarms.
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5.3. Maze environment

In this section, the results of the experiments in the maze environment seen on figure [5.2) are
shown. The heuristic evaluation resulted in the same path for all swarm sizes. This path can be
seen on figure 5.7} In order to achieve more variety in the found paths, the experiments using
the evaluation by simulation have different ending point than the experiments using heuristic
evaluation. For that reason, the measured times for the two evaluation approaches cannot be
compared in the maze environment. The shortest paths found while using the evaluation by

simulation can be seen on figure

Figure 5.7.: Found path in the maze environment using the heuristic evaluation for all swarm

sizes

The times required for the swarm to reach the end of the path found using the evaluation by
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heuristic and the paths found using the evaluation by simulation can be seen in tabld5.4]

Heuristic evaluation Evaluation by simulation

Swarm | Estimated | Simulation | Error | Estimated | Simulation | Error
size n times [s] times [s] times [s] times [s]

1 23.336 23.399 0.3% 53.347 51.800 3.0%

2 24.760 23.100 7.2% 48.748 32.449 50.2%

3 28.554 24.350 17.3% 46.398 33.600 38.1%

4 32.294 30.300 6.6% 53.737 41.999 27.9%

5 35.978 29.750 20.9% 52.237 44.199 18.2%
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EXPERIMENTS WITH THE POSSIBILITY OF SWARM SPLITTING
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Figure 5.8.: Found paths in the maze environment using the evaluation by simulation

As seen in the table, the time estimations of the evaluation using heuristic in the maze en-
vironment tend to be worse than in the dense environment, but still better than in the simple
environment. The evaluation using simulation performs worse than in the simple environments,
but better than in the dense environment. For that reason, it is safe to assume that generally the
evaluation using heuristic works better in environments with a high number of obstacles with
less space, while the evaluation by simulation performs better in environments with a low den-
sity of obstacles. This applies only to the estimates of the time required for the swarm to reach
the end of the path.

5.4. Experiments with the possibility of swarm splitting

In this section, the results of the experiments with a swarm capable of splitting and merging
are discussed. The experiments were made with a swarm of five members with a Boids model
adjusted for the purpose of swarm splitting, discussed in chapter[d The estimated times shown
in the tables presented in this section are the times it takes the last of the quadrotors to reach the
end of the path. Since the results of the path planning algorithm for swarm splitting occupy a lot
of space in order to be legible, they were placed in appendix [E]
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5.4.1. Simple environment

In the simple environment, two starting and ending positions for both evaluation approaches
were used. Since the time increments caused by the obstacles are very small in this environment,
the swarm tends to stay together instead of splitting. The time development of one of the simu-
lations can be seen on figure[5.9] The times required for the swarm to reach the end of the path
found using the evaluation by heuristic and the paths found using the evaluation by simulation
can be seen in table3.5]

Heuristic evaluation Evaluation by simulation
Estimated | Simulation | Error | Estimated | Simulation | Error
times [s] times [s] times [s] times [s]

Path from node 15 to node 133 (ﬁgurelE—.ll)

18860 | 37500 |49.7% | 34.947 | 36.850 | 5.2%
Path from node 29 to node 110 (ﬁgure@

17562 | 37350 |53.0% | 32251 | 37.600 [ 14.2%

Table 5.5.: Experiments in the simple environment with the possibility of swarm splitting

As seen in the table, the precision of the estimates follows the same trend as in the experiments
in the simple environment without the possibility of swarm splitting. The heuristic function is
unable to correctly estimate the time it will take the swarm to reach the end of the path, while
the evaluation using simulation has much better results. Without the possibility of splitting,
the heuristic evaluation always found a path that was faster in the end than the evaluation using
simulation though. In this case, the resulting finishing times are very similar for both evaluation
approaches and the time estimations made by the evaluation using simulation were much more
accurate.
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t = 10s

t = 20s t = 30s

Figure 5.9.: V-Rep experiment screenshots using evaluation by simulation for path from node 29
to node 110 in the simple environment
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5.4.2. Dense environment

In the dense environment, three starting and ending positions for both evaluation approaches
were used. The time development of one of the simulations can be seen on figure The
times required for the swarm to reach the end of the path found using the evaluation by heuristic
and the paths found using the evaluation by simulation can be seen in table[5.6

Heuristic evaluation Evaluation by simulation
Estimated | Simulation | Error | Estimated | Simulation | Error
times [s] times [s] times [s] times [s]
Path from node 42 to node 171 (ﬁgurelE—.SI)
50486 | 51.099 [ 12% | 52098 | 53999 |3.5%
Path from node 91 to node 171 (ﬁgure[]ﬁ[)
47396 | 52899 | 104% | 51742 | 51.149 [ 1.2%
Path from node 152 to node 81 (ﬁgure
48.022 | 52449 [ 84% | 43243 | 45750 | 55%

Table 5.6.: Experiments in the dense environment with the possibility of swarm splitting

In the dense environment, the evaluation using heuristic tends to be very accurate as in the
case without swarm splitting. The evaluation using simulation is much more accurate while
using swarm splitting though. This is probably caused by the fact that in this environment, the
swarm tends to split a lot. As seen on the figure the quadrotors usually formed platoons
of only two or three quadrotors, or they were even flying alone. The estimated times by the
evaluation using simulation are then much more accurate, since the evaluation works better for
these small swarms. Thanks to the smaller swarms, the evaluation by simulation generally tends
to be more accurate in all experiments with the possibility of swarm splitting.
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Figure 5.10.: V-Rep experiment screenshots using evaluation by simulation for path from node
42 to node 171 in the dense environment
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5.4.3. Maze environment

In the maze environment, two starting and ending positions for both evaluation approaches
were used. The time development of one of the simulations can be seen on figure The
times required for the swarm to reach the end of the path found using the evaluation by heuristic
and the paths found using the evaluation by simulation can be seen in table[5.7]

Heuristic evaluation Evaluation by simulation
Estimated | Simulation | Error | Estimated | Simulation | Error
times [s] times [s] times [s] times [s]
Path from node 15 to node 200 (ﬁgurelE—.6|)
34970 | 42800 [ 183% | 59.136 | 46.700 | 26.6%
Path from node 160 to node 8 (ﬁgurelE[)
37877 | 47500 [203% | 54844 | 59599 [ 8.0%

Table 5.7.: Experiments in the maze environment with the possibility of swarm splitting

As in the experiments without the possibility of swarm splitting, the time estimates made by
the evaluation using simulation were more accurate than in the simple environment, but still less
accurate than the estimates in the dense environment. The same applies for the evaluation by
simulation for the path from node 160 to node 8, but the estimate for the path from node 15
to node 200 was very inaccurate compared to other experiments with the possibility of swarm
splitting.
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Figure 5.11.: V-Rep experiment screenshots using heuristic evaluation for path from node 15 to
node 200 in the maze environment
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Chapter 6.

Conclusion

All the thesis assignment tasks have been met. Even though the real world experiment was
not accomplished in the end, the implemented system was verified by a large set of experiments
in different environments to fully determine its capabilities.

The functionality of the extended Boids model can be well seen on the graphs provided in the
appendices. The Boids model works very well together with the simple obstacle avoidance force,
while following a given path. The path following force has a problem with sharp turns of the
path. This is caused by the simple proportional position regulator used in the V-Rep simulator
for the quadrotors, which tends to react very slowly to extensive direction changes. For this
reason, the performance of the extended Boids model can be significantly increased by using a
more complex position regulator in a future work, such as the onboard model predictive control
method [[16], which is used in the multi-MAV platform at CTU in Prague [17].

Two approaches to the Voronoi graph evaluation were implemented. The first approach uses
a heuristic function based on the number of quadrotors in a swarm and the distance between
obstacles. The other approach uses the simulation to evaluate the edges based on the time it
takes the quadrotors to fly over each edge.

The heuristic evaluation generally works very well in environments with a high density of
obstacles, where it can usually estimate the time it will take the swarm to reach the desired
position with the accuracy to 5%. The accuracy of this evaluation decreases significantly with
a small number of obstacles. Even without an accurate time estimation, this approach usually
finds a better or the same path as the evaluation using simulation. Additionally, the heuristic
evaluation takes much less time to compute. While the graph evaluation using heuristic takes
around 1 millisecond to compute in the environments used in the experiments, the evaluation
by simulation usually takes over 10 minutes, depending on the swarm size. The comparison
between the two evaluation approaches in terms of finding a better path in the experiments can
be seen in table

Without swarm splitting | With swarm splitting
Both approaches found the same path 4 times 0 times
Heuristic found a better path 5 times 4 times
Simulation found a better path 1 time 3 times

Table 6.1.: Comparison between the results of both evaluation approaches

As seen in the table, the evaluation by simulation fails to find an optimal path in most of the
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cases without the possibility of swarm splitting. Because it performs better with smaller swarms,
the accuracy of the time estimation by this approach grows significantly with the possibility of
swarm splitting and merging, since it estimates times for smaller subswarms. The heuristic
evaluation still outperforms the evaluation by simulation even with the possibility of swarm
splitting, though.

The evaluation by simulation is insufficient at the current state. In order to make this evalu-
ation approach more accurate, the simulations would have to test the swarm behavior when ap-
proaching the graph edges from different directions. This would require each edge to be tested
separately, which the V-Rep simulator does not allow. In a future work, we intend to use the
Gazebo simulator [[18]], which will allow to test the edges separately and to furherly develop the
evaluation by simulation. This evaluation can also be made faster and much more accurate by
using a more complex quadrotor position regulator to make the Boids model more deterministic,
as mentioned above.
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Appendix A.

Contents of the attached CD

Folder or File Description
captured_data/ Captured data from the experiments
sourcecodes/ The python project sourcecodes together with the C++

thesis_project/
videos/

vrep_scenes/
Brich_BP_2016.pdf

sourcecodes of the Voronoi diagram algorithm

Lyx project of this thesis together with the used pictures
Videos of selected experiments (captured separately, the data
from the experiments may differ from the videos)

V-Rep scenes used for the experiments

Electronic version of this thesis
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GRAPHS FOR THE SIMPLE ENVIRONMENT
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Appendix C.

Graphs for the dense environment
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GRAPHS FOR THE DENSE ENVIRONMENT
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Appendix D.
D Graphs for the maze environment
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GRAPHS FOR THE MAZE ENVIRONMENT
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Appendix E.
E Results of the swarm splitting

algorithm
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Figure E.1.: Swarm splitting algorithm result (simple environment, heuristic evaluation (top) /
evaluation by simulation (bottom), path from node 15 to node 133)
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RESULTS OF THE SWARM SPLITTING ALGORITHM

[

Lo

Figure E.2.: Swarm splitting algorithm result (simple environment, heuristic evaluation (top) /
evaluation by simulation (bottom), path from node 29 to node 110)
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Figure E.3.: Swarm splitting algorithm result (dense environment, heuristic evaluation (top) /
evaluation by simulation (bottom), path from node 42 to node 171)
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RESULTS OF THE SWARM SPLITTING ALGORITHM

Figure E.4.: Swarm splitting algorithm result (dense environment, heuristic evaluation (top) /
evaluation by simulation (bottom), path from node 91 to node 171)
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Figure E.5.: Swarm splitting algorithm result (dense environment, heuristic evaluation (top) /
evaluation by simulation (bottom), path from node 152 to node 81)
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RESULTS OF THE SWARM SPLITTING ALGORITHM

Figure E.6.: Swarm splitting algorithm result (maze environment, heuristic evaluation (top) /
evaluation by simulation (bottom), path from node 15 to node 200)
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Figure E.7.: Swarm splitting algorithm result (maze environment, heuristic evaluation (top) /
evaluation by simulation (bottom), path from node 160 to node 8)
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GRAPHS FOR SWARM SPLITTING
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