
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR’S THESIS

Jan Bouček

Model Predictive Control of Unmanned Helicopter
with Obstacle Avoidance

Department of Cybernetics

Thesis supervisor: Dr. Martin Saska

Prague, May 2016

Author statement for undergraduate thesis:

I declare that the presented work was developed independently and I have listed all
sources of information used within in the accordance with the methodical instructions for
observing the ethical principles in the preparation of university thesis.

Prague, date............................. ...

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Jan B o u č e k

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: Model Predictive Control of Unmanned Helicopter with Obstacle
 Avoidance

Guidelines:
The goal of the thesis is to design, implement and verify a method of constrained model
predictive control with obstacle avoidance for Micro Aerial Vehicles (MAVs). The following
main tasks will be solved in the thesis.

• To understand the predictive control system developed within Multi-Robot Systems
group at CTU [3] and to extend it with a constrained optimization [4] that allows collision-
free flight of the MAV.

• To design an embedded solver for the proposed optimization problem that allows
onboard execution of the controller.

• To simulate the controller using Matlab software.
• To implement the controller into the embedded hardware of the helicopter and to test it

as a hardware-in-the-loop, where Matlab software simulates the flight of the vehicle and
observations of obstacles.

• To evaluate the system with either a robotic experiment or extensive simulations (thesis
advisor will decide based on the availability of the hardware whether the experiment with
the hardware will be conducted).

Bibliography/Sources:
[1] M. Saska, J. Vakula and L. Preucil: Swarms of Micro Aerial Vehicles Stabilized Under a Visual
 Relative Localization. In ICRA2014: Proceedings of 2014 IEEE International Conference on Robotics
 and Automation. 2014.
[2] T. Krajnik, M. Nitsche, J. Faigl, P. Vanek, M. Saska, L. Preucil, T. Duckett and M. Mejail: A Practical
 Multirobot Localization System. Journal of Intelligent & Robotic Systems 76(3- 4):539-562, 2014.
[3] T. Baca: Model predictive control of micro aerial vehicle using onboard microcontroller, 2015.
[4] S. Boyd, V. Lieven: Convex optimization. Cambridge university press, 2004.

Bachelor Project Supervisor: Ing. Martin Saska, Dr. rer. nat.

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 16, 2016

Acknowledgements

I would like to thank Ing. Tomáš Báča for his great support, leading and the time he
spent consulting this thesis. Furthermore I would like to thank my supervisor Dr. Martin
Saska for for providing me the theme of my bachelor thesis as well as for his advice and
ideas. Finally, I thank my friends and family for their support during my whole studies.

Abstract

This thesis deals with trajectory tracking and obstacle avoidance of
autonomous multicopters. The goal is to design and implement a model
predictive controller on an embedded platform for fully autonomous
flight. We present a method of transforming a trajectory tracking
problem into a quadratic optimization task. The obstacles, detected by
onboard cameras, further linearly constrain the optimization task. A
solver for linearly constrained quadratic programming has been designed
and implemented on an embedded platform. The conducted real world
experiments verified the capability of the controller to stabilize the
quadcopter, track trajectory and avoid obstacles.

Keywords: model predictive control, unmanned aerial vehicles,
obstacle avoidance

Abstrakt

Tato práce se zabývá sledováńım trajektorie a vyhýbáńım se překážkám
pro bezpilotńı v́ıcerotorové helikoptéry. Ćılem této práce je návrh a
realizace prediktivńıho regulátoru př́ımo na palubě letounu pro plně
samostatný let. Představujeme metodu přeměny problému sledováńı
trajektorie na kvadratickou optimalizaci. Překážky registované kam-
erami letounu dále lineárně omezuj́ı optimalizačńı problém. Řešeńı
úlohy lineárně omezené kvadratické optimalizace bylo implementováno
na vestavěném systému helikoptéry. Provedené experimenty reálného
světa ověřily, že regulátor je schopný stabilizace, sledováńı trajetorie a
vyhybáńı se překážkám.

Kĺıčová slova: prediktivńı ř́ızeńı, bezpilotńı letouny, vyhýbáńı se
překážkám

CONTENTS

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Previous work . 2

1.3 Related work . 3

1.4 Mathematical notation . 4

2 UAV dynamics 5

2.1 Coordinate systems . 5

2.2 State observer . 6

2.3 Single axis model . 6

3 MPC formulation 8

3.1 Extended model . 9

3.2 System prediction . 10

4 MPC implementation 11

4.1 Trajectory . 11

4.2 Objective function . 11

4.3 Solving QP unconstrained . 14

4.4 System constraints . 15

4.5 Input constraints . 15

5 Collision Avoidance 17

5.1 Obstacles . 17

5.2 Creating allowed space . 18

6 Solving Linearly Constrained QP 23

6.1 Safe margin . 23

6.2 LCQP solvers . 24

6.3 Barrier method . 25

6.4 Gradient descent . 27

6.5 Feasibility algorithm . 28

6.6 Implementation of the gradient descend . 30

i

CONTENTS

7 Move Blocking 31

7.1 Move blocking implementation . 31

8 Simulations 33

8.1 The Environment module . 33

8.2 The UAV module . 33

9 Hardware 35

9.1 UAV custom board . 35

9.2 Obstacles detection . 36

9.3 MPC hardware implementation . 37

9.4 Hardware in the loop . 38

10 Experiments 39

10.1 Stabilization experiment . 39

10.2 Obstacle avoidance experiment . 41

11 Conclusion 44

11.1 Future work . 44

Appendix A CD Content 49

Appendix B List of abbreviations 50

ii

LIST OF FIGURES

List of Figures

1 DJI Phantom 3. 2

2 Diagram of the continuous system. 5

3 Step response of the system using two approaches of saturation. 16

4 UAV dimensions . 17

5 Recognizable marker . 17

6 UAV avoidance in non-convex space. 18

7 Creating a prohibited half plane. 19

8 Barrier method with one variable. 27

9 Barrier method with two variables. 28

10 Feasibility algorithm. 29

11 Move blocking algorithm in one axis. 31

12 Matlab simulation visualization. 34

13 UAV body. 35

14 Custom control board v.2 [22], key components are placed at follows: 1 –
xMega, 2 – STM, 3 – switching power supply, 4 – socket for XBee, 5 – data
logging MCU. 36

15 Block diagram of information flow between tasks of xMega and STM MCUs.[22] 37

16 Photo of the obstacle avoidance experiment. 39

17 Data from the stabilization experiment. 40

18 Obstacle avoidance experiment. 41

19 Data form the obstacle avoidance experiment. 42

20 Obstacle avoidance experiment. 43

iii

LIST OF FIGURES

iv

1 INTRODUCTION

1 Introduction

Unmanned aerial vehicles (UAV) have become very popular in the last few years. It is
mainly thanks to the multicopters, especially quadcopters and their dropping prises. UAVs
are used in many areas, for instance they allow amateur film makers to capture aerial shots
and often substitute expensive helicopters in professional movie shooting. Many companies,
such as DJI, have developed quadcopters for professional and amateur film making as shown
in Fig. 1. The quadcopters are also used in military[8] mainly for search and surveilance.
Some quadcopters[20], carrying defibrillators, are used for medical assistance in cases of
heart failures, for their much faster reaction time compared with ambulance vehicles. The
future use of quadcopters is almost limitless, from monitoring cities, delivering packages,
to collecting air pollution data.

Compared with a classical helicopter, the quadcopter body is simple. It has a rigid
body and four propellers with fixed pitch angles. In this thesis, the term UAV will refer
to a quadcopter. For UAV to correctly operate, it is important to know the UAV state
(position, velocity, tilt).

Many quadcopters are equipped with the global position system (GPS). This allows
a better outdoor control of the aircraft and additional functions, such as position hold.
Quadcopters are usually directly controlled by people, but in many applications the ability
of autonomous flight is useful. For example, in case of signal loss the UAV can autonomously
return to the takeoff place and even land.

Another system Vicon has been developed for precise indoor localization, using on the
wall cameras. The UAV communicates wirelessly to the computer. The UAV controller is
usually implemented in the on the ground computer, because of the UAV limited hardware
payload. These constraints limit the UAV flight only to the laboratory conditions.

The presented work is part of the project aimed at stabilization and control of multi-
UAV teams in tasks of cooperative surveillance [17, 13], flying in compact formations
[18, 14], cooperative environment monitoring [15, 12], and nature-inspired swarm stabiliza-
tion [11, 16]. All these multi-UAV applications require a trajectory tracking mechanism
being able to control the UAVs along a given plan very accurately, mainly if controlling
compact groups with small relative distances between team members, which is the case
of all of the above mentioned approaches. Moreover, these methods require deployment
of robots in GPS denied environment or in workspaces where the GPS precision is lower
than the relative distances within the group and should rely strictly on onboard sensors
and computational resources. Finally, the high dynamics of the UAVs and especially of
compact swarms of UAVs require possibility of fast obstacle avoidance that cannot be inte-
grated directly into the high level planning and needs to be integrated into the fast control
loop. All these aspects of UAV control and low-level trajectory tracking are tackled in this
thesis using the MPC technology run onboard on an embedded processor.

1/50

1 INTRODUCTION

Figure 1: DJI Phantom 3.

1.1 Problem statement

The task of this thesis is to design and implement a model predictive controller
capable of precise trajectory tracking and obstacle avoidance. The trajectory will be given
by a higher level planning unit and the UAV will track the it, unless obstacles appear. In this
case, the Model Predictive Control (MPC) automatically avoids the obstacles. This is useful
for swarms of UAVs and other trajectory planning algorithms which do not have to take
into consideration either the actual control of the particular UAV or avoiding unexpected
obstacles. The appropriate input actions will be found as a mathematical optimization of
linearly constrained quadratic function.

The UAV will operate fully autonomously with the localization, obstacle detection
and computing happening solely on board. This allows the UAV to operate outside labo-
ratory conditions.

1.2 Previous work

Since 2011, the robotic laboratory at FEE CTU has been developing UAV controllers.
At the early stages the group concentrated on simulations of swarms and formations. In
the following years hardware platforms were developed.

The hardware platform, which is further described in Sec. 9.1, was developed in
[22]. This platform is used for real flight experiments. An MPC capable of tracking a
trajectory was developed for this platform, but it was not designed to avoid obstacles. For
MPC with included obstacle avoidance different approaches have to be used mainly in the

2/50

1 INTRODUCTION

mathematical optimization part.

A system for sensor px4flow [24] measures speed and, combined with a previously
implemented state observer [22], allows position measurements.

A system WhyCon [6, 10] is used for obstacle detection. It allows to detect multiple
circular markers, shown in Fig. 5, used in the experiments to represent obstacles.

1.3 Related work

Many laboratories have been developing different obstacle avoidance systems. Most
of them develop precise trajectory tracking. If an obstacle appears, a higher level planning
unit changes the desired trajectory.

Such system can be used for onboard 3D mapping and obstacle avoidance[25] at the
same time. This system is used mainly for mapping unknown areas.

Obstacles do not have to be detected by cameras, ultrasonic sensors can be used
instead. A system for indoor obstacle avoidance[7] has been developed to allow computer
assisted maneuvering in static indoor environment.

Another obstacle avoidance system[3] is based on the potential field principle, which
is a popular model for swarm control. In this model, the acceleration of the UAV is the sum
of fictional forces, which repulse the UAV from obstacles and push it towards the desired
position.

Not all obstacle avoidance systems are designed for multicopters. A flapping wing
micro areal vehicle(MAV) system has been also equipped by an on board obstacle avoidance
system [23], using trajectory changing.

An onboard MPC for UAV trajectory tracking has been introduced[22], but not
capable of obstacle avoidance. In this thesis, an MPC capable of trajectory tracking and
obstacle avoidance has been implemented.

3/50

1 INTRODUCTION

1.4 Mathematical notation

The table 1 denotes the basic mathematical notation used in this thesis.

Symbol Description
lower or uppercase letter, e.g. n, N a scalar

lowercase letter with arrow e.g. ~t, ~ω a row vector
bold lowercase letter, e.g. x a column vector
bold uppercase letter, e.g. A a matrix
xT , AT vector and matrix transpose

underlined vector, e.g. x concatenated vectors
(
xT1 ,x

T
2 , ...,x

T
n

)T
A−1 matrix inverse
x(W) x in coordinate system W
x[t], x[t] x, x at the time t

Table 1: Overview of mathematical notation.

4/50

2 UAV DYNAMICS

2 UAV dynamics

For understanding the UAV controller it is important to describe the physical prop-
erties of the UAV. The UAV has 6 degrees of freedom which are the position x, y, z and
the rotation pitch(θ), roll (ψ) and yaw(φ). The UAV is equipped with the KK2 board
providing basic stabilization. The inputs, that are used in this thesis are roll and pitch
rotation references. After linearisation at the equilibrium at the horizontal position, with
rotations close to the equilibrium, it can be stated, that ψ ∝ ẍ and θ ∝ −ÿ, which are
the accelerations in each axis. The KK2’s inputs are desired ψ and θ. The output is the
voltage on the individual motors. This controller provides a linear time-invariant (LTI)
system. The continuous transfer diagram is shown in the Fig. 2

1
τ1s+1

1
s

1
s

u(s) ẍ(s) ẋ(s) x(s)

Figure 2: Diagram of the continuous system.

The u(s) is the output of the MPC and the input to the KK2 unit. It is than trans-
formed to the UAV’s tilt, which corresponds to the real acceleration ẍ(s), and is then twice
integrated to the position x(s).

The altitude of the UAV is controlled separately. There are several reasons to do
that. The first reason is that many applications treat the altitude differently and enforce
constant altitude for long periods of time. For example, in building interiors, the altitude
is constant most of the time. The desired trajectory is also usually given in 2D and the
altitude is described separately. The second reason is, that MPC is very demanding on
computing time. To save computational capacity, a standard PID controller can be used
instead of an MPC for controlling the altitude. The altitude PID controller has already
been implemented [1] and it is not a part of this thesis.

2.1 Coordinate systems

This whole thesis will consider a 2D coordinate systems only. In these 2 dimensions,
there is an aileron axis x with the direction to the right and the elevator axis y with the
direction forwards. These both axes are perpendicular. There are two coordinate systems
which will be used. The first system is a standard world coordinate system W with the
origin usually at the starting point of the UAV. The second system is a coordinate system
U, which is a system with the origin in the center of the mass of the UAV. This could be for
example the coordinate system of detecting obstacles, which are observed relatively to the
UAV by onboard cameras. Coordinate system U is created only by the translation of the
system W by the vector ~r = (∆x,∆y). There is no rotation between the two coordinate
systems, so the axes of the both coordinate systems are parallel. Because the UAV can

5/50

2 UAV DYNAMICS

move easily along each axis, there is no need to introduce the UAV’s rotation. If the UAV
rotated over time, the model would no longer be linear and the control of this system would
be much more complex, therefore slower. These coordinate systems transformations follow
the equations

x(W) = x(U) + ∆x

y(W) = y(U) + ∆y

ẋ(W) = ẋ(U) + ∆ẋ

ẏ(W) = ẏ(U) + ∆ẏ

ẍ(W) = ẍ(U) + ∆ẍ

ÿ(W) = ÿ(U) + ∆ÿ.

(1)

In the following text the world coordination system W will be used unless stated otherwise.
The UAV has its own proportions. However, it is complicated to take the whole UAV’s body
into consideration. It is easier to proximate the UAV’s body with a single mass point in its
center. The orientation of the UAV is constant and will not be taken into consideration,
thus the position of the UAV can be described by two coordinates.

2.2 State observer

An MPC is very sensitive to data noise and errors. Inaccurate initial conditions can
result in a bad prediction because of the double integration of acceleration into position.
To work properly, the MPC requires very accurate initial conditions. These are position,
speed and acceleration in both axes. A Kalman estimator has been implemented[22] to
estimate states of the UAV and disturbances of the acceleration. The inputs of the state
observer are the system’s input action and speed measured by a camera sensor.

2.3 Single axis model

The UAV model has been analyzed[22]. Thanks to the symmetrical body of the UAV,
both axes share the same model. For aileron axis, the states take form of xx = (x, ẋ, ẍ)T

and xy = (y, ẏ, ÿ)T for elevator axis, where x is the aileron and y is the elevator position.
The aileron and elevator models are mathematically identical. The discrete state space
model takes form of system matrices As,Bs as

xx,y,[t+1] = Asxx,y,[t] + Bsux,y,[t], (2)

where ux,y,[t] is an input at time t, sampling with the frequency of 1/∆t = 70 Hz.

6/50

2 UAV DYNAMICS

As =

1 ∆t 0
0 1 ∆t
0 0 p1

 ,Bs =

 0
0
p2

 , (3)

where p1 = 0.9799 and p2 = 5.0719·10−5. The unconstrained MPC can be solved separately
for elevator and aileron axis. Simple constraints, such as input saturation can be applied.

7/50

3 MPC FORMULATION

3 MPC formulation

An MPC is an advanced regulator. It uses prediction of future states of a system
to determine system input actions. This prediction runs continuously in a loop. Because
of its computational demands, it is used mainly in processes with long time constants.
A motivation for its development was to control various chemical processes, where the
computational time was not limiting. Using an MPC for controlling a UAV is a challenge,
because it is hard to implement on embedded hardware. Controlling a real time system,
such as UAV, requires regulation in tens of Hz, giving the hardware very little time to
compute such a complex problem.

An MPC requires the system’s state space model, initial condition and, unlike other
controllers, a sequence of desired future states. An advantage of an MPC is ability to apply
large variety of constraints, which can be useful for example in the chemical processes
control. On the other hand, an MPC is sensitive to the model’s inaccuracy and to sensory
noise.

Output of an MPC is not only the desired input action for the next time step, but
also predicted input actions and predicted behavior of the system in the whole prediction
horizon for the T following time steps. Unlike standard controllers like a PID, an MPC can
adjust the input action based on future demands.

The MPC controller for tracking desired trajectory was developed [22] in the past.
The goal of the thesis is to design an MPC controller with capability to avoid obstacles.
Obstacles are not previously known and can change position.

The MPC formulates optimization problem, that has to be solved. This problem takes
usually form of Linear Programming (LP) or, in case of this thesis, linearly constrained
Quadratic Programming (QP). The only difference between trajectory and not detecting
obstacles and collision avoidance is applying constraints.

8/50

3 MPC FORMULATION

3.1 Extended model

For complex MPC constraints, such as position constraints for obstacle avoidance,
position of the UAV in one axis is a function of the position in the other axis. For these kinds
of constraints axes can not be treated separately and more complicated system description
is needed. The state space system must be preserved, connecting both identical systems
for each axis into one system extending Eq. 4 into

x[t+1] = Ax[t] + Bu[t], (4)

where u[t] = (ux,[t], uy,[t])
T is an input vector containing elevator and aileron system inputs

at the time t. Extended state vector

x[t] = (x[t], ẋ[t], ẍ[t], y[t], ẏ[t], ÿ[t])
T (5)

contains positions x, y and their derivatives at the time t.

By connecting these two single axis systems, we get the following state space matrices
of the extended system

A =

[
As 0
0 As

]
,B =

[
Bs 0
0 Bs

]
. (6)

9/50

3 MPC FORMULATION

3.2 System prediction

The MPC algorithm is based on predicting future states based on initial condition
and system input. Such a general equation can be derived from the Eq. 4. With a simple
substitution it is possible to get the prediction of the states at the time t = 2:

x[1] = Ax[0] + Bu[0],

x[2] = Ax[1] + Bu[1]

= A(Ax[0] + Bu[0]) + Bu[1]

= A2x[0] + ABu[0] + Bu[1].

(7)

The Eq. 7 can be rewritten in a more general way:

x[t] = Atx[0] +
t−1∑
i=1

AiBu[i−1] + Bu[0]. (8)

Let’s combine the sequence of the predicted states into a column vector

x = (xT[1],x
T
[2], ...,x

T
[T])

T (9)

of the length 6T and the sequence of the inputs into a column vector

u = (ux,[0],uy,[0],ux,[1],uy,[1], ...,ux,[T−1],uy,[T−1])
T . (10)

of size 2T . With this notation, Eq. 8 can be represented as a matrix multiplication equation
[22]

x[1]

x[2]
...

x[T]

︸ ︷︷ ︸

x

=

A
A2

...

A(T−1)

︸ ︷︷ ︸

Â

x[0] +

B 0 0 0

AB B 0 0
...

...
. . .

...

A(T−1)B A(T−2)B . . . B

︸ ︷︷ ︸

B̂

·

u[0]

u[1]
...

u[T−1]

︸ ︷︷ ︸

u

. (11)

Using this new notation, Eq. 11 can be rewritten in a simpler form as

x = Âx[0] + B̂u. (12)

10/50

4 MPC IMPLEMENTATION

4 MPC implementation

As mentioned in Sec. 3, an MPC formulates a quadratic optimization problem. This
problem can be either constrained or unconstrained, depending on the fact if constraints
are demanded. Let’s first solve the unconstrained problem, where the obstacles are not
involved.

4.1 Trajectory

For an MPC to compute input actions, there must be given a desired trajectory
xd = (xTd,[1],x

T
d,[2], ...,x

T
d,[T])

T , where the desired state at the time t is

xd,[t] = (xd,[t], ẋd,[t], ẍd,[t], yd,[t], ẏd,[t], ÿd,[t])
T . (13)

These desired states contain, besides aileron and elevator position, also velocity and accel-
eration. This gives the MPC a chance to enforce other properties besides position. However,
the UAV desired velocity is already given by the desired positions at certain time as the
distance

d =
√

(xd,[t] − xd,[t+1])2 + (yd,[t] − yd,[t+1])2. (14)

The same method can be applied for acceleration. Therefore, the velocity and acceleration
are demanded in the sequence of desired positions, rather than the desired system states.
The desired velocity and acceleration are then ignored and can hold any value, for example
0. The xd,[t] then takes form of xd,[t] = (xd,[t], 0, 0, yd,[t], 0, 0)T . When creating the desired
trajectory, it must be always taken into consideration, that the desired positions hold also
information about velocity and acceleration.

4.2 Objective function

As in many other areas of engineering, the search for input actions can be split into
two independent parts. The first part is to create an objective function (sometimes called
a cost function) and the second part is to minimize it. The objective function’s value
describes, how good the particular solution is. The set of particular solutions is the domain
of the objective function. In our case the solution takes form of a vector u, which can be
directly transformed into predicted trajectory using the Eq. 12. The lower the value of the
objective function is, the better is the particular solution. The solution with the minimal
objective function’s value is called an optimal solution u∗.

11/50

4 MPC IMPLEMENTATION

The goal of unconstrained MPC is to track a given trajectory as precisely as possible.
This means, that we want to minimize the distance between all the predicted and the
desired positions. This deviation in both axes can be computed as

ex,[t] = x[t] − xd,[t]
ey,[t] = y[t] − yd,[t]

(15)

Using this kind of deviation has many downsides. The obvious one is, that it penalizes
deviation in only one direction and favors the other. If the distance is to be used, the
absolute value has to be taken. This function is not differentiable in the whole domain[21]
and solving this task can be complicated. Differentiability is a useful property. Capability
to compute gradient of the final objective function results in fast task solving by applying
gradient descend described in Sec. 6.4. Besides that we do not get good results if penalizing
the deviation linearly.

Previous experiments have show, that using the square of the deviation, is beneficial
in many ways. This preserves the condition of not prioritizing one direction deviation. It is
also easily differentiable. Another advantage is penalizing big distances disproportionately
more while ignoring minute deviations. This also describes our requirements, where the
exact tracking of the desired trajectory is not as important as eliminating big deviations
from the trajectory. If a simple sum of e2x,[t] and e2y,[t] is applied, the system will behave
wildly, generating high input actions to correct the deviation.This is not in the capabilities
of the real system and could result in an unstable control. Therefore input actions must
also be penalized. When combined together, we get the following objective function

V (ex, ey,u) =
1

2

T∑
i=1

(
kq · (e2x,[i] + e2y,[i]) + ks · (u2

x,[i−1] + u2
y,[i−1])

)
, (16)

where ex = (ex,[1], ex,[2], ..., ex,[T])
T and ey = (ey,[1], ey,[2], ..., ey,[T])

T . The ratio of the con-
stants kq and ks is the only parameter of the MPC and determines how wildly the system
behaves. The deviation at the time t = 0 is determined only by the initial condition and
does not depend on on the input action u. Because the function is to be optimized, this er-
ror can be left out. The Eq. 16 can be rewritten in a matrix form using penalizing matrices
Q and S

V (e,u) =
1

2

T∑
i=1

(
eT[i]Qe[i] + uT[i−1]Pu[i−1]

)
, (17)

where e[t] = x[t] − xd,[t] is the deviation of all states at the time t and matrices Q and P
are

12/50

4 MPC IMPLEMENTATION

Q =

kq 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 kq 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,P =

[
kp 0
0 kp

]
. (18)

This form of Q allows to penalize only position deviations and ignore the velocity
and acceleration deviations. For a fast optimization, the objective function must be convex
[2]. To ensure the function V (x,u) is strictly convex, the matrix Q must be positive semi-
definite (Q � 0) and P must be positive definite (P � 0). The matrix Q has it’s eigenvalues
0 and kq, therefore kq ≥ 0. The eigenvalues of P are kp, so kp > 0. In some MPC algorithms
the last deviation is penalized with higher weight, forcing the system to end up in the last
state. It turned out, that this can be counterproductive in obstacle avoidance system for
reasons that will be discussed later.

It is important to transform the Eq. 17 into a matrix multiplication form. Let’s first
introduce the matrices Q̂ and P̂ as

Q̂ =

Q 0 . . . 0

0 Q . . .
...

0 . . .
. . .

...
0 Q

 , P̂ =

P 0 . . . 0

0 P . . .
...

0 . . .
. . .

...
0 P

 . (19)

If the last error was to be penalized more, the last matrix Q on the diagonal of the
matrix Q̂ would consist of higher constants kq. Lets rewrite the Eq. 17 using the Eq. 12:

J(u) =
1

2

(
eT Q̂e + uT P̂u

)
=

1

2

(
(Âx[0] + B̂u− xd)

T Q̂(Âx[0] + B̂u− xd) + uT P̂u

)
=

1

2

(
2(Q̂B̂)T Âx[0]u + uT B̂

T
Q̂B̂u− 2(Q̂B̂)Txd u + uT P̂u + const.

) (20)

In the Eq. 20, all constant elements have been put into the const part. Because the
goal is to minimize the objective function J(u), the parts of the equation that do not
depend on u can be left out. The Eq. 20 can be rewritten as

13/50

4 MPC IMPLEMENTATION

J(u) =
1

2
uT
(
B̂
T
Q̂B̂ + P̂

)
︸ ︷︷ ︸

Ĥ

u +
(
Q̂B̂

)T (
Âx[0] − xd

)
︸ ︷︷ ︸

ĉ

u. (21)

The task can be formulated as a linearly constrained quadratic programming

min
u∈R2T

J(u) =
1

2
uT Ĥu + ĉu

s.t. Acu ≤ Bc.

(22)

The constraints will be further discussed in section 4.4. They can be ignored for uncon-
strained MPC.

4.3 Solving QP unconstrained

We want to solve the problem formulated in the Eq. 22 while ignoring the constraints.
For this task to have a single optimal solution u?, the objective function has to be convex.
Therefore the matrix Ĥ has to be positive semi definite. This is guaranteed, because the
matrices Q and S were chosen to be positive semi-definite (Q,S � 0) and P positive
definite (P � 0). For solving this task, we need the gradient of the objective function [26]
as

∇J(u) = Ĥu + ĉ. (23)

The gradient ∇J(u) is a column vector of the same size as u with the opposite direction to
the global minimum, so the −∇J(u) is a vector pointing the direction towards the global
minimum u?. To solve this task, a gradient descent algorithm can be used, but also analytic
solution can be found.

Because the Ĥ is positive semidefinite, the quadratic form 1
2
uT Ĥu is convex. The term

ĉu is a linear function and adding it to a convex function does not change the convexity of
the task. Because of this, we know, that a local minimum is also a global minimum. The
local minimum can be found as

∇J(u?) = Ĥu? + ĉ = 0

Ĥu? = −ĉ

u? = −Ĥ
−1

ĉ.

(24)

The inverse matrix Ĥ
−1

can be computed, because Ĥ is positive-definite, therefore regular.
This is guaranteed by the definition of positive-definite property that its leading principal

minors are all positive [5]. On-board computation is fast, because matrix Ĥ
−1

does not
depend on the system state and is only the function of the constants kq, kp and the system

14/50

4 MPC IMPLEMENTATION

model. It can be generated in advance and stored as a constant in the UAV’s read-only

memory. Finding the u? is only matter of creating vector ĉ and computing −Ĥ
−1

ĉ.

4.4 System constraints

One of the greatest advantages of an MPC is ability to apply large variety of con-
straints. As mentioned in Sec. 3, the MPC uses linearly constraint quadratic programming
for finding the input action prediction. There can be many different kinds of constraints
and the MPC has to fulfill all of them. These constraints take form of linear inequalities

~ωi · u ≤ bi, i ∈ {1, 2, ...,M}, (25)

where ~ωi is a line vector of the length 2T and bi is a scalar, both describing the constraint
number i, M is the total number of constraints applied. Each constraint takes form of a
half space in a space R2T constraining it by hyperplane with a normal vector ~ωi shifted by
bi. To apply multiple constraints at the same time, the Eq. 25 can be rewritten in matrix
form as

Acu ≤ Bc, (26)

where Ac is a matrix of the width 2T and height m - the number of constraints applied.
Bc is a column vector of the same height created as

Ac =

~ω1

~ω2

...
~ωm

 ,Bc =

b1
b2
...
bm

 . (27)

Each line of the matrix Ac together with a particular member of Bc represents one con-
straint.

4.5 Input constraints

In control engeneering a common problem that has to be delt with is a system sat-
uration. This means that the real system is linear only on a certain range of inputs and
has limited capapibilities [4]. For example a motor can spin in a certain maximum speed
despite input voltage. If the system receives too high input actions from the controller, it
can get damaged. This can happen for example in a proportional derivative (PD) control,
when the difference between real and desired output changes rapidly in time, for example
because of a sensory noise. A standard solution for this problem is a simple saturation

15/50

4 MPC IMPLEMENTATION

time [dt]
0 50 100 150 200

ai
le

ro
n

po
si

tio
n

[m
]

0

0.5

1

1.5
MPC Constraints applied

UAV trajectory
setpoint

time [dt]
0 50 100 150 200

sy
st

em
 in

pu
t [

-]

-2000

-1000

0

1000

2000
predicted action unconstrained
predicted action constrained
saturations

(a) constrained MPC.

time [dt]
0 50 100 150 200

ai
le

ro
n

po
si

tio
n

[m
]

-0.5

0

0.5

1

1.5
Saturated output

UAV trajectory
setpoint

time [dt]
0 50 100 150 200

sy
st

em
 in

pu
t [

-]

-2000

-1000

0

1000

2000
predicted action
predicted action unconstrained
saturations

(b) saturated MPC.

Figure 3: Step response of the system using two approaches of saturation.

of the output of the controller. This is a simple solution and for many tasks it is suffi-
cient. However, because the controller does not take into consideration this saturation,
the system can behave incorrectly. The advantage of an MPC is that the controller can
consider these aspects of real system and find an input prediction, that will not violate the
constraints and at the same time will achieve the desired output. This is achieved by the
MPC constraints. The system saturation thresholds are umin and umax. We can see in Fig.
3b simply saturated input action with the computed trajectory and in Fig. 3a the input
action computed by the MPC using system constraints.

16/50

5 COLLISION AVOIDANCE

5 Collision Avoidance

Collision avoidance in the MPC is realized through constraining the position. This
means, that predicted position has to lie in a certain allowed space and every violation of
this space is considered to be a collision. Algorithm used in this section prohibits the UAV
to get outside of this allowed space.

5.1 Obstacles

R
UAV

Figure 4: UAV dimensions Figure 5: Recognizable marker

Through this thesis, obstacles are represented by 2D circles. They have 3 parameters:
position xobs, position yobs and radius robs. Despite the fact that obstacles can have various
shapes, we simplify them to allow simpler computations. Because the MPC runs continu-
ously in a loop and reacts to the changing environment, it works also with moving objects.
Until now the UAV body has been approximated with one mass point without considering
its real size. Since it would be difficult to calculate, whether the UAV’s body has collided,
we use Minkovski sum.

The UAV body can be approximated with a circle wrapping the whole body, with
the same center (x, y) and radius RUAV = 39cm. If the distance between the position of
the UAV and the edge of the allowed space is less or equal RUAV , it can be stated, that
the UAV will not collide.

(xobs − x)2 + (yobs − y)2 ≥ (RUAV + robs)
2, (28)

17/50

5 COLLISION AVOIDANCE

where (xobs− yobs) is any point of the prohibited space. From now on we will still compute
with the UAV as a single mass point and every obstacle’s radius robs extend to robs+RUAV .

Let’s make an assumption, that the UAV’s trajectory is a line created by connecting
all the predicted positions. This line has a zigzag shape. Because the UAV can not change
vector of speed immediately, the real trajectory has to have a continuous first time deriva-
tive. Also because the second derivative (acceleration) of the UAV’s position is a result of
the UAV’s pitch and roll, which also can not be changed immediately, the second derivative
is also continuous. In short, the real trajectory intersects all the predicted positions, but
there is a small deviation caused by the first and second derivatives of the real system. The
real trajectory has to be smooth up to the second derivative. To be able to approximate the
real trajectory by the simplified zigzag trajectory, we need to make sure, that the predicted
positions are much closer to each other than the obstacles sizes. This is easy to achieve,
because the time between the predicted positions is ∆t = 1/70s, which with the maximum
speed of 0.35 ms−1 is distance of 5 mm.

Restricted

area

 desired trajectory

 UAV trajectory

Figure 6: UAV avoidance in non-convex space.

The forward approach would be to say, that every trajectory is feasible, if any pre-
dicted position does not collide with any obstacle. This approach would search for any
trajectory in the allowed space. However, if the obstacle is just a simple circle, the allowed
space is non-convex as shown in Fig. 6. For keeping the quadratic programming convex,
the allowed space for UAV has to be convex. This turned out to be the main disadvantage
of using the MPC for obstacle avoidance.

This is also the reason, why higher penalization of the last state deviation is not
desirable. The allowed space is not ideal and the prediction of the last position is not close
to the real one.

5.2 Creating allowed space

A convex allowed space for trajectory planning has to be created to approximate the
real world situation. However, there can not be enough good convex representation, that

18/50

5 COLLISION AVOIDANCE

is robust at the same time. The approach for creating a convex allowed space in this thesis
is restricting any position in a half plane ’behind’ any obstacle as shown in Fig. 7. When
combining multiple obstacle constraints, this space becomes polytope defined by a set of
half planes, as shown in Fig. 12. They are updated by the relative positions of the obstacles
in each MPC iteration. These positions continuously change due to the UAV’s movement
and the sensory noise. Let’s first look at a situation with a single obstacle.

Aileron axis [m]
-1 0 1 2 3 4 5 6

E
le

va
to

r
ax

is
 [m

]

-1

0

1

2
Prohibited half plane making

UAV trajectory
Desired trajectory

Figure 7: Creating a prohibited half plane.

Half plane can be represented by the equation y ≤ kx + q where x and y are the
allowed positions of the UAV, k is the slope of the line and q is the bias of the line. These
equations can be rewritten as

s(y − kx− q) ≤ 0, (29)

where s = ±1. This is an inequality defining one obstacle by a single half plane. These
constants k, q and s can be found as

19/50

5 COLLISION AVOIDANCE

k = − yobs − yUAV
xobs − xUAV

bx = (xobs − xUAV) ·
(
1− robs +RUAV√

(xobs − x)2 + (yobs − y)2

)
by = (yobs − yUAV) ·

(
1− robs +RUAV√

(xobs − x)2 + (yobs − y)2

)
q = by − kbx
s = sign(y).

(30)

The bx and by is a position of the intersection of the constraining line and the obstacle
circle with radius RUAV + robs.

The constrains for position have been found. These constraints have to be further
transformed into an input action constraints. This is an inverse transformation to the Eq.
12, where input actions have been transformed to position and its derivatives. For the
purposes of MPC, matrices Ac and Bc have to be created to fit the condition (26). The
vector x from the Eq. 12 contains all predicted states for both axes. The predicted positions
x and y have to be separated into the position column vectors xp and yp of size T as

xp =

x[1]
x[2]
...
x[T]

 ,yp =

y[1]
y[2]
...
y[T]

 , (31)

where x[t] is the predicted position x at the time t and y[t] is the predicted position y at

the time t. These vectors are related to u by the matrices Âx, B̂x, Ây, B̂y as

xp = Âxx[0] + B̂xu

yp = Âyx[0] + B̂yu,
(32)

where the matrices Âx, Ây ∈ RT×6 and B̂x, B̂y ∈ RT×2T are submatrices of their corre-

sponding matrices Â, B̂, Â, B̂ as

Bx =

B1,1:2 0 0 0

A1,1:6B B1,1:2 0 0
...

...
. . .

...

A
(T−1)
1,1:6 B A

(T−2)
1,1:6 B . . . B1,1:2

 ,Ax =

A1,1:6

A2
1,1:6
...

A
(T−1)
1,1:6

 ,

By =

B4,1:2 0 0 0

A4,1:6B B4,1:2 0 0
...

...
. . .

...

A
(T−1)
4,1:6 B A

(T−2)
4,1:6 B . . . B4,1:2.

 ,Ay =

A4,1:6

A2
4,1:6
...

A
(T−1)
4,1:6

 .
(33)

20/50

5 COLLISION AVOIDANCE

Ai1,i2:i3 is a matlab-like notation describing a submatrix of the matrix A with the line i1
and columns from i2 to i3. The Eq. 29 is defined only for one position. These matrices
are constant, so they can be computed in advance and stored in the read-only memory.
It is important, that the UAV does not collide in any predicted position in the prediction
horizon. Then this equation is rewritten in a vector form

s(yp − kxp − q) ≤ 0, (34)

where q is the column vector of size T and every member is q. After the substitution of
Eq. 32 into Eq. 34 we get

s
(
Âyx[0] + B̂yu− k(Âxx[0] + B̂xu)− q

)
≤ 0

s
(
B̂y − kB̂x

)︸ ︷︷ ︸
Âc

u + s
(
Âyx[0] − kÂxx[0] − kq

)︸ ︷︷ ︸
Bc

≤ 0. (35)

Until now, all the half planes of the obstacles have been computed from the relative
position of the initial position of the UAV. This means, that for example the last predicted
position will be still constrained by the previous position. However, the last position is not
known, because it is computed from the vector u that is being searched for. If an assumption
is made, that the predicted trajectory is similar to the trajectory in the previous step, the
previous can be used. The MPC loop runs in tens of Hz and the UAV does not change
its position much in one iteration. This improvement is done by computing the previous
trajectory using Eq. 12. Then the constants ki, qi, si need to be found for each predicted
position i ∈ {1, ..., T} using the Eq. 30. Then the Eq. 34 can be rewritten in a matrix form
as

ŝ(yp − k̂xp − q) ≤ 0, (36)

where ŝ and k̂ are square diagonal matrices of size T .

ŝ =

s1 0 . . . 0

0 s2 . . .
...

0 . . .
. . .

...
0 sT

 , k̂ =

k1 0 . . . 0

0 k2 . . .
...

0 . . .
. . .

...
0 kT

 ,q =

q1
q2
...
qt

 . (37)

Because of high computational demands, this algorithm has not been implemented.
The MPC loop must run as fast as possible. The standard solution uses only the initial
condition for knowing position and computes the constants from Eq. 30 only once. This is
a fast operation. If the constants for each future position were to be computed, it would

21/50

5 COLLISION AVOIDANCE

be necessary to compute the predicted trajectory from the previous prediction using Eq.
12 and compute the constraining constants T times instead of just once.

Let’s now consider a case with multiple obstacles. As described in the section 4.4, the
lines of constraining matrices Ac and Bc enforce independent conditions. The computation
can be done independently for N obstacles using the same procedure, marking the matrices
Ac,i and Bc,i, where i ∈ 1, 2, ..., N . The final constraining matrices would take form of

Ac =

Ac,1

Ac,2

...
Ac,N

 ,Bc =

Bc,1

Bc,2

...
Bc,N

 . (38)

Now the task is fully defined and can be given to an LCQP solver to find the optimal input
action u.

22/50

6 SOLVING LINEARLY CONSTRAINED QP

6 Solving Linearly Constrained QP

Now the objective function J(u) with the matrices Ĥ, ĉ with the constraining matrices
Ac and Bc defined in the Eq. 22 has been created. Solving the unconstrained problem using

the inverse Ĥ
−1

matrix has already been discussed. The constrained problem can not be
solved analytically, and iterative methods are commonly used. Consequently, the solution
is usually not optimal, but close to optimal.

6.1 Safe margin

In case of obstacle avoidance, one special property of the solver is desirable. Instead
of finding a strictly feasible solution (an u, that lies on at least one constraining hyper
plane), a solution with some margin is more suitable. Strictly feasible solution leads to
touch of the obstacle. The MPC finds the closest avoidance trajectory, where at least one
state prediction is equal to the position constraint. If a safe distance from the obstacle is
required, there are two different solutions.

The first one is to make RUAV bigger than the real UAV’s body and to take the strictly
feasible solution. However, this solution has a disadvantage. The mathematical model will
still touch the obstacle, even that the UAV body is actually smaller and will fly in a longer
distance from the obstacle. Because of the sensory noise, the measured relative position
of the obstacle is continuously changing. At the time when the UAV model touches the
obstacle, the measured obstacle position can change and move little closer to the UAV. The
UAV mathematically moves inside the obstacle and the initial condition does not satisfy
the constraints any more. The constraints are not defined for the initial condition but for
the first time step. The optimization algorithm would try to find an input action to escape
the constraint in the first time step. The position is a second integration of the input and
each integration takes one time step. This means, that the input action first influences the
position in two time steps ahead.

Even a small amount of noise can result in a task formulation that has no solution.
Choosing the strictly feasible solution is not applicable. Making the final solution u further
from the constraining hyper planes solves this problem well. The UAV will fly within some
safe distance from the obstacle and if the obstacle changes its position as a result of
the sensory noise, the initial condition will still satisfy the position constraints. This is the
solution, that will be used in this thesis. To find this kind of solution, a special optimization
method has to be used.

23/50

6 SOLVING LINEARLY CONSTRAINED QP

6.2 LCQP solvers

Because of the convexity of the function and the convexity of the constraints, the
solution is either a global minimum of the function J(u), or lies on the constraining border.
There are several methods of solving the constraint optimization problem.

One method is called Active set method [19]. The constraints are solved almost
exactly. This method supposes that the minimum lies on the constraint border. It searches
only strictly feasible solutions. Some constraints play no role for the final result and some
parts of constraints are prohibited by other constraints, which brings up a high complexity.
This method uses analytic approach and so it works well on noise-free data and when the
exact minimum is desired. However, the UAV’s optical registration of obstacles and optical
localization brings a high noise. Active set method is not a good fit for this problem.

Another method is a method of Lagrange multipliers. This is a widely used strategy
in many different tasks. It also assumes that the minimum lies on the constraining border.
This is enforced by the constraints defined as gi(u) = 0, i ∈ {1, 2, ...,M} for M constraint.
This method requires that the objective function and the constraints are differentiable. It
uses a function called Lagrangian L

L(u, λ1, λ2, ..., λM) = J(u)−
M∑
i=1

λigi(u) (39)

Then a solution must be found for ∇L = 0. This would mean a necessity to solve a
set of T +M equations

∂J(u)

∂uj
=

M∑
i=1

∂λigi(u)

∂uj
and

∂J(u)

∂λi
=

M∑
i=1

∂λigi(u)

∂λi

i ∈ {1, 2, ...,M}, j ∈ {1, 2, ..., 2T},
(40)

where λi are Lagrange multipliers. This is a simple idea that the gradient of the objective
function J(u) is perpendicular to all constraints. If not, it means that there is a better
solution. However, in our case the perpendicularity is not always true. The solution can lie
in an intersection of two half planes. The problem is also in the defining the constraints,
which are not in the form of inequality but equality and it is required to satisfy all of them.
There has to exist an intersection of all the constraints. This is not very likely, because our
constraints are defined by hyper planes. If even two hyper planes are parallel, this algorithm
does not find any solution. Such hyper planes have been described in the Sec. 4.5, where
a maximum thrust forwards and backwards is constrained. If defined as an equality, this
would mean that the thrust must be maximum forwards and maximum backwards at the

24/50

6 SOLVING LINEARLY CONSTRAINED QP

same time, which is logically impossible. The method of Lagrange multipliers has to be
also rejected.

Another method is a Penalty method. It is used for example in optimizing support
vector machine (SVM) algorithm. It penalizes crossings of the constraints. It modifies the
objective function by adding a penalty function, if a constraint is violated. The task is
modified as

min J(u) + σ
N∑
i=0

g(ci(u)), (41)

where g(ci(u)) = min(0, ci(u)2) is a positive number if the constraint ci has been
violated, and zero otherwise. This function is not easily differentiable, but after some
adjustments, gradient descent can be used. The major disadvantage is that the final solution
likely violates the constraints. Violating these constraints in our case means either giving
higher input actions or a collision. It is obvious, that this algorithm can not be used either.

6.3 Barrier method

The final method is called a Barrier method has been implemented in this thesis. It
modifies the objective function by adding a barrier function g(u), which penalizes points
close to the constraining border. Then a gradient descent algorithm is used to find the local
minimum of the function f(u) = J(u) + g(u). The function g(u) has to possess several
properties.

• It has to be defined for all feasible u, but It does not have to be defined elsewhere.

• It should be convex to preserve convexity of the sum of the function J(u) and g(u).

• To make sure the constraints will be satisfied, it has to equal to infinity when ap-
proaching the border.

• It has to be differentiable over all the domain to have the possibility to use the
gradient descent method.

• From these assumptions it can be said that without the loss of generality that the
barrier function should be a function of the distance from the constraining hyper
plane.

The second requirement supposes that an addition of two convex functions is a convex
function. Let’s choose some convex function f1(x), f2(x) and some variable x. Then it has

25/50

6 SOLVING LINEARLY CONSTRAINED QP

to be proven, that f3(x) = f1(x)+f2(x) is also a convex function. This is proven by proving
the definition of convexity

f3(tx1 + (1− t)x2) ≤ tf3(x1) + (1− t)f3(x2), t ∈< 0, 1 >, (42)

where x1 and x2 are any points form the domain. Then because of the convexity of f1 and
f2,

f1(tx1 + (1− t)x2) ≤ tf1(x1) + (1− t)f1(x2)
f2(tx1 + (1− t)x2) ≤ tf2(x1) + (1− t)f2(x2).

(43)

The inequality 42 is actually a sum of the two lines of the inequalities 43. Adding
these 2 lines preserves the inequality. It can be said, that the inequality 42 is valid and
that the result of summing convex functions is a convex function.

The distance in a space of any dimension of a point from a hyper plane is

d = abs

(
ωi · u + bi
|~ωi|

)
(44)

The notation|~ωi| represents the Euclidean norm as
√
~ωi · ~ωTi The function f can be

then defined for u or d depending on the requirements. After trying various forms of
functions g(u), the function

g(u) = kg

M∑
i=1

1

di
(45)

has been chosen, where kg is a constant. It has been experimentally chosen to be 104. This
function possesses all the required properties. If the point is close to any of the constraining
hyper planes, the barrier function grows rapidly. It could look unusual that this function
is defined for all points, not only for the feasible set. And it does not make sense in the
not feasible area. Again, it penalizes less the points further from the plane then the closer
points. This is not a difficulty, because the function will be only used in the feasible set.

The Fig. 8 shows, how the barrier method works in one dimension. It moves the
location of the strictly feasible local minimum away from the prohibited space to a a new
local minimum. This is the desired property, because the strictly feasible solution can result
in an inappropriate behavior as mentioned in the beginning of this section.

The Fig. 9 shows the function J(u) + g(u) with the 2 dimensional domain. The real
optimizing function is in very high dimension and can not be graphed. Principal component
analysis (PCA), which is an algorithm for reducing space dimensions by projecting objects
to a created basis, can not be used, because it highly deforms the space.

26/50

6 SOLVING LINEARLY CONSTRAINED QP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

u [-]

0

10

20

30

40

fu
nc

tio
n

va
lu

e
[-

]
Barrier function

prohibites space
J(u)
g(u)
J(u) + g(u)

old local minimum new local minimum

Figure 8: Barrier method with one variable.

6.4 Gradient descent

The optimization problem is solved with slightly modified gradient descent. This
is an often used algorithm for optimizing functions. It has two big requirements. The
first one is, that the function must be differentiable. This has been satisfied by choosing
quadratic function as the objective function and hyperbola as the barrier function. The
second requirement is, that the function must be convex. Instead of the function J(u),
the gradient descent optimizes the function f(u) = J(u) + g(u) where g(u) is the barrier
function from Eq. 45. It is an iterative method, where in each iteration a point u is moved
in the negative direction of the gradient of the function f(u). This means, that

u[t+1] = u[t] − kd∇f(u[t]), (46)

where u[t] is the u at the t-th iteration. The size of the gradient step at i-th iteration is
kd∇f(u). This algorithm runs for a certain number of iterations until the final u is used
as the solution. For using this algorithm, the gradient ∇f(u) is needed to be computed as

∇f(u) = ∇J(u) +∇g(u)

∇J(u) = Ĥu + ĉ

∇g(u) = kg

N∑
i=1

~ωi.
2sig(~ωi · u + bi)

|~ωi| · (~ωi · u + bi)
,

(47)

where ~ωi is the i-th line of the matrix Ac and bi is the i-th member of the column matrix
Bc. The notation ~ωi.

2 represents a line vector from the matrix ~ωTi · ~ωi diagonal.

27/50

6 SOLVING LINEARLY CONSTRAINED QP

Figure 9: Barrier method with two variables.

6.5 Feasibility algorithm

Now, that we have the ∇f(u), we have to find the initial search point u[0]. Because
the function f(u) is convex only on the feasible domain, the u[0] has to lie there. To find
a feasible u is not as simple task, as it may look. Especially if the UAV flies among many
obstacles with higher velocity, the feasible polytope can be small. A zero vector means flying
in the initial direction and back thrust is not robust and could not work. An algorithm
for finding a feasible u has been developed, that has been named a feasibility algorithm.
While designing this algorithm, a useful feature was required. This algorithm takes a u[0],
that may or may not be feasible. It then finds a feasible alternative of the point, that is
very close to the given one. It will be very useful for the speed and accuracy of the whole
MPC, that will be discussed later. The iterative algorithm inputs are matrices Ac, Bc and
a u[0]. The algorithm can be formulated in the following steps:

1. Find the first constraint ~ωi · u[t] ≤ bi, that is violated. If such a constraint does not
exist, successfully terminate the algorithm and return the u[t].

2. Count the distance d from the constraint i and compute the normalized gradient
dn = ∇g(u)

|∇g(u)| . This is a vector in the direction towards the constraint with unitary
length.

3. Move the search point along the gradient such as u[t+1] = u[t]+kf ·d ·dn and continue
to step 1.

28/50

6 SOLVING LINEARLY CONSTRAINED QP

The constant kf should be between 1 and 2. If the kf is 1, the u[t+1] ends exactly on
the constraint. This is a problem, because the hyperbola g(u) is not defined there. If the
constant kf is higher than 2, the algorithm could oscillate, especially between 2 parallel
constraints. From experiments, a constant kf = 1.5 has been chosen and works well.

Half plain 1

Half plain 2

u1

u2

u
[2]

u
[1]

u
[0]

Figure 10: Feasibility algorithm.

The Fig. 15 shows, how the algorithm can correct a u, that is not feasible into a
feasible one with a position very close to the initial u[0].

When the algorithm for tracking trajectory starts, the UAV has no velocity and the
gradient descent algorithm can use the initial search point u[0] as a zero vector. It means,
that it will stay at one place, so there is no collision. The MPC loop runs fast and if every
time a new gradient descend is initialized with a random u[0], it would take a long time to
come anywhere close to the local minimum. The knowledge, that the UAV moves relatively
slow compared with the MPC loop can be useful, because the function f(u) is very similar
in the next step. A final prediction from previous MPC step can be used as an initial
search point u[0]. This incredibly increases the speed and accuracy of the gradient descend
algorithm. This could not have been done without the feasibility algorithm. A final u from
previous MPC step can be feasible no more with a different UAV position and velocity.
This is, where the required feature of the feasibility algorithm comes handy. It moves the
previous u to a new location, that is still close to the previous u and as a result it is close
to the local minimum.

29/50

6 SOLVING LINEARLY CONSTRAINED QP

There can be a situation, where a feasible solution does not exist. In this case, the
loop would run infinitely. This can be achieved especially, if the sensory noise is too high
that a distance to an obstacle is evaluated closer, then the RUAV + robs. With this initial
condition there is usually no solution as described in the Sec. 6.1. To prevent the UAV to
freeze, a counter needs to be added to terminate the feasibility algorithm after running too
long.

6.6 Implementation of the gradient descend

The gradient descend is implemented by the equation 46. The only difference is, that
in every iteration, every u[t] is corrected by applying the feasibility algorithm. The reason
to do this is that the gradient step can be long and after moving the search point it can
step over the barrier function and end up outside the feasible domain. If the gradient step
constant kd was set too small, it would take longer time to converge to the local minimum.
The kd = 150 based on simulations and experiments was chosen.

A simulation has been run for no barrier function using only the ∇J(u) with the
feasibility algorithm and still providing fairly good results. This approach has not been
used in later simulations or experiments.

Choosing the total number of iterations of the gradient algorithm generally depends
on the requirements of accuracy vs control frequency. Experimentally has been observed,
that a small number of total iterations can be helpful by providing a low pass filter in
situations with high sensory noise. Experiments have shown, that 100 iterations is a good
compromise between the accuracy and the control frequency.

30/50

7 MOVE BLOCKING

7 Move Blocking

The whole MPC algorithm is demanding on computational time and memory. This
can result in a very slow frequency of the MPC controller. A matrix multiplication of a n by
m matrix and a column vector of the length m has the computational complexity O(nm).
For example the matrix B̂ is the size of 6T by 2T and the vector u is the length of 2T .
This makes the computational complexity 12T 2. When considering, that the system model
is created for dt = 1/70s, for prediction of 2 seconds for a simple matrix multiplication,
processor would have to do at least 12 ·1402 = 235 200 operations. With the size of 4 bytes
for one float, the matrix B̂ would also take almost 1 MB of memory. This is not that much
for PC simulation, but it is a lot for the custom board flying on the UAV with only 192 kB
RAM, 2 MB of ROM and 168 MHz processor with one instruction for float multiplication.

t[dt]
0 20 40 60 80 100

in
pu

t a
ct

io
n

[-
]

0

200

400

600

800

1000

1200
Input action without move blocking

t[dt]
0 20 40 60 80 100

in
pu

t a
ct

io
n

[-
]

0

200

400

600

800

1000

1200
Input action with move blocking

Figure 11: Move blocking algorithm in one axis.

7.1 Move blocking implementation

The computation complexity can be greatly reduced by reducing T , which is the total
number of future predictions. The discretization of the prediction is very soft, meaning,
that the ∆t is small. In the maximum speed 0.35 ms−1 this is a distance 0.5 mm between
predicted positions. There is no reason to predict position 70 times a second. A solution
would be to change the system’s ∆t, but there is a better method. Move blocking algorithm
allows us to choose exactly which time steps will be used. This allows only small number
of variables to cover long prediction horizon. Because the input actions tend to take form
of a continuous function, the algorithm will generate constant input action between those
predicted as shown in Fig. 16. Let’s introduce a matrix U of the height 2T and width 2Tn,
where Tn is the new number of predicted states. This matrix determines, which time steps
will be predicted.

31/50

7 MOVE BLOCKING

u =

1
...
1

 0 . . . 0

0

1
...
1

 . . . 0

...
...

. . .
...

0 0 . . .

1
...
1

︸ ︷︷ ︸

U

ur, ur =

u[t1]

u[t2]
...

u[Tr]

 , (48)

ur is the reduced column vector of the length 2Tr. Its members are time predictions at
certain times t1, t2, ..., Tr. All matrices introduced in MPC must be reduced. The process
is quite complicated and will not be described step by step.

In the Fig. 16 have been used prediction times 1, 2, ..., 9, 10, 20, 30, ..., 100. The number
of the prediction times is Tr. Using this particular vector, the Tr is 19 instead of T as 100.
The acceleration of matrix multiplication can be computed as (T/Tr)

2 = 27.7. This means
27.7 times faster algorithm. The move blocking also creates the same memory savings
with some matrices. This is a crucial improvement of the MPC algorithm, allowing to be
implemented on an embedded hardware. It can cover a longer prediction horizon without
storing big matrices.

The penalization matrices Q and P need to be edited differently. Without move
blocking algorithm, all predicted positions and inputs are penalized evenly. If now the pre-
dicted inputs represents inputs of different length, the penalization must be set accordingly.
The main diagonal has to have its members individually multiplied by the corresponding
constant representing the number of time steps.

32/50

8 SIMULATIONS

8 Simulations

Developing the collision avoidance system on a paper and then programming it di-
rectly to the UAV’s on-board computer is a naive approach that likely would not work. To
minimize the probability of an expensive crash happening, the algorithm must be tested
as much as possible.

During the development of the MPC, all steps were being tested by Matlab simula-
tions. This program is good for these purposes, because it is optimized for matrix multipli-
cation, which is the core of the MPC computations. The implemented matlab simulation
consists of two separate modules: the Environment module and the UAV module.

8.1 The Environment module

The Environment module simulates the flight. This simulates the physical world
and the sensors of the UAV. It is initialized by the obstacles positions, the UAV’s initial
condition and desired trajectory. It takes care of the UAV’s dynamics and simulates the
flight. The main program runs in a loop. It receives the computed input actions from the
UAV module and computes the UAV’s movement. Then it updates the relative obstacles
positions, the absolute UAV position and the velocity and the desired trajectory. It then
gives this information as an input to the UAV module. The environment module also sets
the parameters for the UAV module, such as penalization of the position errors kq and the
input kp, the indexes of the move blocking time predictions and gradient descend iterations
and step size. This makes it easier to tune the overall constants.

It has also the ability to visualize the UAV, obstacles, the desired trajectory, the
predicted trajectory and the convex feasible space. This graph updates with the loop and
simulates the whole flight.

8.2 The UAV module

The second module simulates the the MPC controller on UAV’s on-board computer.
It has the ability to compute the input actions based on the simulated sensory data given
by the Environment module. It consists of two parts.

The first part is the MPC problem definition, which creates the constraining matrices
Ac and Bc from the information about the initial condition and obstacles positions. Only
the objective function matrix ĉ is created, because the Ĥ is a constant and can be stored
in memory.

The second part is the LCQP solver. This solver has been implemented by the method

33/50

8 SIMULATIONS

Aileron axis [m]
-2 -1 0 1 2 3 4 5 6

E
le

va
to

r
ax

is
 [m

]

-2

-1

0

1

2
Prohibited half plane making

UAV trajectory
Desired trajectory

Figure 12: Matlab simulation visualization.

described in the Sec. 6.6. Its inputs are the gradient step size, the total number of iterations
and the problem defining matrices, which are identical to the function quadprog from
the optimization toolbox. It returns slightly different results, because of the safe margin
condition.

34/50

9 HARDWARE

9 Hardware

In Fig. 13 is shown a quadcopter used for experiments. It can be controlled remotely
by an operator that can fly it manually or turn on the MPC. It consists of the rigid body,
propellers with motors, KK2 stabilization board, the custom board and obstacle detection
system.

Figure 13: UAV body.

9.1 UAV custom board

The UAV custom board [22], shown in the Fig. 14, is a computer with limited compu-
tational power compared to standard PC. This board has been designed specially for MPC
control. It is programmable in the language C. It has two computational units: xMega and
STM. For debugging and data logging is a socket for XBee and micro SD card slot. This
board sticks to the philosophy of distributed computing.

The xMega is a slow computational unit. It has 8-bit architecture with 32 MHz clock
and 8 kB SRAM. It is mainly handling the communication between sensors and STM.
The communication between peripherals goes through 7 UART ports, where sensors or
a computer can be connected. With the help of the program Putty, a simple messages
can be exchanged between the computer and the board. Most of the protocols have been
already designed, but minor adjustments had to be done to fit the exact requirements of
collision avoidance. For example the communication between the xMega and STM had to
be extended to transfer information about obstacle positions. The xMega also stores the
desired trajectory or the location of the setpoint and it sends this data to the STM.

The STM is a powerful 32-bit unit with 168 MHz clock and 192 kB of RAM and

35/50

9 HARDWARE

1

2 3

4

4

(a) top of the board

5

(b) bottom of the board

Figure 14: Custom control board v.2 [22], key components are placed at follows: 1 – xMega,
2 – STM, 3 – switching power supply, 4 – socket for XBee, 5 – data logging MCU.

2 MB ROM. It supports basic operations of 4 byte float units with one instruction. The
STM runs three tasks, as shown in Fig. (15).

• CommTask is responsible for communicating between the xMega and STM.

• KalmanTask is the state estimator task responsible for estimating positions, velocity,
acceleration and input error based on information from the px4flow sensor and the
inputs. When it computes the momentary system state, it sends it to the MPCTask.

• MPCTask is the task, that computes the MPC controller. The MPCTask is triggered
by the KalmanTask’s finished state computation, but only if the previous iteration
has finished. This allows the MPC to run slower, than 70 Hz. In this case the input
actions are held, until they are replaced by later computed u. This mechanism allows
tuning between the speed and accuracy of the MPC, because there is no need to
regulate the UAV with 70 Hz.

Each task uses a third of the CPU time and 16 kB RAM. Because of limited compu-
tational power, the MPCtask has to be programmed very efficiently.

9.2 Obstacles detection

A system WhyCon[9][10] is used for obstacle detection. It uses 3 Mobius Actioncam
cameras, two pointing to the sides and one forwards. This allows obstacle detection at

36/50

9 HARDWARE

Figure 15: Block diagram of information flow between tasks of xMega and STM MCUs.[22]

270◦. Each camera has the capability of recording in the resolution 1920x1080, but for
faster performance the video is shoot in 1280x720 and processed in 640x480. The system
is capable of precise detecting of multiple circular markers shown in Fig. 5. The 3-axis
positions of these markers are then sent by UART to the custom board, where the xMega
receives the information. The image processing runs in a loop on a computational unit
NVIDIA Jetson TK1.

9.3 MPC hardware implementation

The exact algorithm, as written in matlab, has been rewritten to the C code. This
was the most time demanding part of this thesis. The programmed code uses a CMatrixLib
library, that allows simple matrix and vector operations. This library has been extended
by more functions for the purposes of this thesis. Because the RAM is limited, the matrices
must be divided into constant matrices, that are stored in ROM, and the changing matrices,
which have allocated memory in RAM.

The constant matrices depend only on the system model and move blocking algo-
rithm. These matrices are: Âx, Ây, B̂x, B̂y, (Q̂B̂)T , Â and Ĥ. They had been reduced by
the move blocking algorithm, generated in matlab and stored in the ROM memory of the
STM unit.

The UAV’s max speed has been set to 0.35 ms−1. This is enforced by editing the
desired trajectory. If the trajectory doesn’t violate the maximum speed, it is used un-
changed. In the other case, the trajectory positions are moved closer to the UAV. If given
only setpoint, the desired trajectory is created as a straight line with the maximum speed.

The input action can not be infinite and some method of constraint has to be applied.

37/50

9 HARDWARE

Applying the constraints in the MPC, as described in the Sec. 4.5 slows the algorithm. A
saturation of the output was used instead. Experiments have shown, that this method
works well.

9.4 Hardware in the loop

This is a method of testing embedded hardware. The custom board is connected to
a computer instead of the UAV’s body. The board’s inputs are provided by the computer
and outputs are sent back. The board is in the same situation, as if it would be while
flying. This has been simulated in two different ways.

The first, was connecting the board to the computer using the putty terminal. The
inputs have been sent through the terminal and outputs were received. These outputs were
compared with the matlab simulations, to check if they match. The UAV has been tested
in various situations, such as different initial conditions, desired trajectories and obstacle
positions. This allowed to test and debug various segments of the code, as well as the while
MPC algorithm. This method also allowed to test xMega as well as STM. After successfully
finishing this testing, it was sure, that the implemented algorithm behaves exactly in the
same way as the simulation.

The second experiment was connecting the board to the UAV, without the ability
of controlling the motors. It received inputs from the UAV’s sensors, such as velocity and
obstacle positions. The board was connected to matlab using the wireless Xbee. The Xbee
communication protocol was extended for the important information to be transferred,
such as the predicted input actions. A matlab visualization allowed to see the predicted
trajectory in real time without the need to be connected to the UAV with a cable. This
allowed testing the algorithm in real situations without worrying of damaging the UAV.
It also allowed the final testing of the communication between the custom board and the
on-board sensors. The frequency of the MPC loop has been measured close to 20 Hz. This
is an sufficient regulator frequency.

After these extensive testings in various situations and behaving correctly, it was time
to execute a real flight experiment.

38/50

10 EXPERIMENTS

10 Experiments

Figure 16: Photo of the obstacle avoidance experiment.

The implemented MPC controller has been verified by a real world experiments.
Simulations, that have been done, differ from the real world experiments in the influences
of the environment, system nonlinearity and the sensory noise. Because the UAV has 4
propellers on sides, collisions are dangerous not only for the UAV, but for the operator as
well. That is the reason why the operator has to have the access to take over the control
of the UAV any time during these experiments. During the described experiments this
possibility has not been used and the presented data are solely while the MPC was in
control.

10.1 Stabilization experiment

The first experiment was to test the stability and settle time of the MPC. The setpoint
was set to the origin of the world coordinate system. The task for the UAV was to track
this setpoint while the UAV was physically pushed by the operator. This tested reactions
of the controller to an outside disturbances.

39/50

10 EXPERIMENTS

Time [s]
0 5 10 15 20 25 30

P
os

iti
on

 [m
]

-0.4

-0.2

0

0.2

0.4
Elevator position

Estimated position
Setpoint

Time [s]
0 5 10 15 20 25 30

S
pe

ed
 [m

/s
]

-1

-0.5

0

0.5

1
Elevator speed

Measured speed
Estimated Speed

Time [s]
0 5 10 15 20 25 30

In
pu

t [
-]

-1000

-500

0

500

1000
Elevator input action

Elevator input

Time [s]
0 5 10 15 20 25 30

P
os

iti
on

 [m
]

-0.4

-0.2

0

0.2

0.4
Aileron position

Estimated position
Setpoint

Time [s]
0 5 10 15 20 25 30

S
pe

ed
 [m

/s
]

-1

-0.5

0

0.5

1
Aileron speed

Measured speed
Estimated Speed

Time [s]
0 5 10 15 20 25 30

In
pu

t[-
]

-1000

-500

0

500

1000
Aileron input action

Aileron input

push

Figure 17: Data from the stabilization experiment.

The Fig. 17 shows the position, speed and input action during the stabilization ex-
periment. The UAV was pushed three times in the positive direction of the elevator axis.
The UAV returned then to the original position. The aileron position stayed away from
the setpoint within 11 cm, which is a good performance considering the size of the UAV’s
body. At the elevator axis it is 20 cm if not considering the disturbances. The settle time
was about 3 s.

40/50

10 EXPERIMENTS

10.2 Obstacle avoidance experiment

The obstacle avoidance system has been also tested. The obstacle was represented
by the blob. This was especially risky experiment, because the UAV had to get close to
the obstacle. The maximum speed was set to 0.2 ms−1 for the operator to have enough
time to take control of the UAV in case incorrect behavior. The initial arrangement is show
in Fig. 18. The UAV was given a setpoint 4 m ahead on the elevator axis. The obstacle
was in the middle between the UAV’s initial position and the setpoint and did not move.
The obstacle was given an extended predefined radius of 0.5 m. The trajectory was being
created on-board, so this algorithm was tested as well. The task was to avoid the obstacle
and arrive to the setpoint position.

Elevator axis [m]
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
ile

ro
n

ax
is

 [m
]

-0.5

0

0.5

1

1.5
Obstacle avoidance trajectory

UAV measured trajectory
Obstacle
initial position
setpoint

Figure 18: Obstacle avoidance experiment.

The Fig. 18 shows the UAV’s obstacle avoidance trajectory. Around the obstacle is
a red circle of 0.5 m, which is the minimal distance allowed from the obstacle. The figure
also shows, that there is a safe distance from the obstacle, which was enforced by the
barrier function. The UAV also finishes on the setpoint and stabilizes there. The collision
experiment was successful.

41/50

10 EXPERIMENTS

0 10 20 30

Time [s]

0

2

4

P
os

iti
on

 [m
]

Elevator position

Estimated position

0 10 20 30

Time [s]

-1

0

1

S
pe

ed
 [m

/s
]

Elevator speed

Measured speed
Estimated Speed

0 10 20 30

Time [s]

-1000

0

1000

In
pu

t [
-]

Elevator input action

Elevator input

0 10 20 30

Time [s]

0

0.5

1

P
os

iti
on

 [m
]

Aileron position
Estimated position

0 10 20 30

Time [s]

-1

0

1

S
pe

ed
 [m

/s
]

Aileron speed

Measured speed
Estimated Speed

0 10 20 30

Time [s]

-1000

0

1000

In
pu

t[-
]

Aileron input action

Aileron input

Figure 19: Data form the obstacle avoidance experiment.

42/50

10 EXPERIMENTS

Figure 20: Obstacle avoidance experiment.

43/50

11 CONCLUSION

11 Conclusion

In this thesis a Model predictive controller for UAV was developed. It is capable of
trajectory or setpoint tracking and obstacle avoidance. The MPC algorithm and linearly
constrained quadratic programming solver has been designed and tested by matlab sim-
ulations. It was then implemented on embedded hardware and tested again. Real flight
experiments have been successfully conducted. The UAV was capable of trajectory track-
ing while detecting and avoiding an obstacle. The entire assignment of this thesis has been
successfully fulfilled.

11.1 Future work

Although simulations and experiments have been successfully executed, there is still
a room for future improvements. The greatest limitation of the introduced algorithm is
keeping the convexity of the mathematical optimization. If this condition was lost, the
optimization problem would become harder to solve, but the designed allowed prediction
space would allow a better description of the surrounding area. This would allow the UAV
to fly faster and safer.

44/50

REFERENCES

References

[1] Tomáš Báca. Model predictive control of micro aerial vehicle using onboard microcon-
troller. PhD thesis, Master’s thesis, Czech technical university in Prague, Faculty of
Electrical Engineering, 2015.

[2] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[3] Almira Budiyanto, Adha Cahyadi, Teguh Bharata Adji, and Oyas Wahyunggoro. Uav
obstacle avoidance using potential field under dynamic environment. In Control,
Electronics, Renewable Energy and Communications (ICCEREC), 2015 International
Conference on, pages 187–192. IEEE, 2015.

[4] Emmanuel Chambon, Laurent Burlion, and Pierre Apkarian. Output to input satu-
ration transformation: Demonstration and application to disturbed linear systems. In
54th IEEE Conference on Decision and Control, 2015.

[5] Edwin KP Chong and Stanislaw H Zak. An introduction to optimization, volume 76.
John Wiley & Sons, 2013.

[6] Jan Faigl, Tomas Krajnik, Jan Chudoba, Libor Preucil, and Martin Saska. Low-
cost embedded system for relative localization in robotic swarms. In International
Conference on Robotics and Automation (ICRA), pages 993–998. IEEE, 2013.

[7] Nischay Gupta, Jaspreet Singh Makkar, and Piyush Pandey. Obstacle detection and
collision avoidance using ultrasonic sensors for rc multirotors. In Signal Processing
and Communication (ICSC), 2015 International Conference on, pages 419–423. IEEE,
2015.

[8] David Hambling. Armed quadrotors are comming. Populat Mechanics, 2014.

[9] T. Krajńık, M. Nitsche, J. Faigl, T. Duckett, M. Mejail, and L. Přeučil. External
localization system for mobile robotics. In 16th International Conference on Advanced
Robotics (ICAR), Nov 2013.

[10] Tomáš Krajńık, Mat́ıas Nitsche, Jan Faigl, Petr Vaněk, Martin Saska, Libor Přeučil,
Tom Duckett, and Marta Mejail. A practical multirobot localization system. Journal
of Intelligent & Robotic Systems, 2014.

[11] M. Saska. MAV-swarms: unmanned aerial vehicles stabilized along a given path using
onboard relative localization. In Proceedings of 2015 International Conference on
Unmanned Aircraft Systems (ICUAS), 2015.

[12] M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik, J. Faigl,
G. Loianno, and V. Kumar. System for deployment of groups of unmanned micro

45/50

REFERENCES

aerial vehicles in GPS-denied environments using onboard visual relative localization.
Autonomous Robots. First online., 2016.

[13] M. Saska, J. Chudoba, L. Preucil, J. Thomas, G. Loianno, A. Tresnak, V. Vonasek,
and V. Kumar. Autonomous Deployment of Swarms of Micro-Aerial Vehicles in Coop-
erative Surveillance. In Proceedings of 2014 International Conference on Unmanned
Aircraft Systems (ICUAS), 2014.

[14] M. Saska, T. Krajnik, V. Vonasek, Z. Kasl, V. Spurny, and L. Preucil. Fault-Tolerant
Formation Driving Mechanism Designed for Heterogeneous MAVs-UGVs Groups.
Journal of Intelligent and Robotic Systems, 73(1-4):603–622, 2014.

[15] M. Saska, J. Langr, and L. Preucil. Plume Tracking by a Self-stabilized Group of
Micro Aerial Vehicles. In Modelling and Simulation for Autonomous Systems, 2014.

[16] M. Saska, J. Vakula, and L. Preucil. Swarms of Micro Aerial Vehicles Stabilized Under
a Visual Relative Localization. In Proceedings of 2014 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2014.

[17] M. Saska, V. Vonásek, J. Chudoba, J. Thomas, G. Loianno, and V. Kumar. Swarm dis-
tribution and deployment for cooperative surveillance by micro-aerial vehicles. Journal
of Intelligent & Robotic Systems. First online., 2016.

[18] M. Saska, V. Vonasek, T. Krajnik, and L. Preucil. Coordination and Naviga-
tion of Heterogeneous MAV–UGV Formations Localized by a ‘hawk-
eye’-like Approach Under a Model Predictive Control Scheme. International
Journal of Robotics Research, 33(10):1393–1412, 2014.

[19] Klaus Schittkowski. On the convergence of a sequential quadratic programming
method with an augmented lagrangian line search function 2. Optimization, 14(2):197–
216, 1983.

[20] Michelle Starr. Ambulance drone delivers help to heart attack victims. cnet, 2014.

[21] Elias M Stein. Singular integrals and differentiability properties of functions, volume 2.
Princeton university press, 1970.

[22] M Saska T Baca. Embedded model predictive control of micro aerial vehicles. nter-
national Conference on Methods and Models in Automation and Robotics, 2016.

[23] Sjoerd Tijmons, Guido de Croon, Bart Remes, Christophe De Wagter, and Max Mul-
der. Obstacle avoidance strategy using onboard stereo vision on a flapping wing mav.
arXiv preprint arXiv:1604.00833, 2016.

[24] Endrych Václav. Control and stabilization of an unmanned helicopter following a
dynamic trajectory. Master’s thesis, České vysoké učeńı technické v Praze, 2014.

46/50

REFERENCES

[25] Stephan Weiss, Markus Achtelik, Laurent Kneip, Davide Scaramuzza, and Roland
Siegwart. Intuitive 3d maps for mav terrain exploration and obstacle avoidance. Jour-
nal of Intelligent & Robotic Systems, 61(1-4):473–493, 2011.

[26] Pablo Zometa, Markus Kogel, Timm Faulwasser, and Rolf Findeisen. Implementa-
tion aspects of model predictive control for embedded systems. In American Control
Conference (ACC), 2012, pages 1205–1210. IEEE, 2012.

47/50

REFERENCES

48/50

APPENDIX A CD CONTENT

Appendix A CD Content

In Table 2 are listed names of directories on CD.

Directory name Description
thesis Bachelor’s thesis in pdf format
STM sources for STM32F4
xMega sources for ATxMega128A3U
Matlab matlab scripts for simulation
videos videos from experiments

Table 2: CD Content

.

49/50

APPENDIX B LIST OF ABBREVIATIONS

Appendix B List of abbreviations

In Table 3 are listed abbreviations used in this thesis.

Abbreviation Meaning
CPU control processing unit
DJI DJI company
GPS global positioning system
KK2 name of the used stabilization board
LCQP linearly constrained quadratic programming
LP linear programming
LTI liner time-invariant
MCU microcontroller unit
MPC model predictive controller
PC personal computer
PCA Principal component analysis
PD proportional-derivative controller
PID proportional-integral-derivative controller
QP quadratic programming
RAM random access memory
ROM read only memory
SRAM static random access memory
STM STMicroelectronics company
UART universal asynchronous receiver transmitter
UAV unmanned aerial aircraft

Table 3: Lists of abbreviations

50/50

	Introduction
	Problem statement
	Previous work
	Related work
	Mathematical notation

	UAV dynamics
	Coordinate systems
	State observer
	Single axis model

	MPC formulation
	Extended model
	System prediction

	MPC implementation
	Trajectory
	Objective function
	Solving QP unconstrained
	System constraints
	Input constraints

	Collision Avoidance
	Obstacles
	Creating allowed space

	Solving Linearly Constrained QP
	Safe margin
	LCQP solvers
	Barrier method
	Gradient descent
	Feasibility algorithm
	Implementation of the gradient descend

	Move Blocking
	Move blocking implementation

	Simulations
	The Environment module
	The UAV module

	Hardware
	UAV custom board
	Obstacles detection
	MPC hardware implementation
	Hardware in the loop

	Experiments
	Stabilization experiment
	Obstacle avoidance experiment

	Conclusion
	Future work

	Appendix CD Content
	Appendix List of abbreviations

