
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Project

Interactive Visualization System for Hybrid Active Pixel
Detectors Within the ATLAS Experiment at CERN

Petr Mánek

Supervisor: Ing. Stanislav Pospíšil, DrSc.

Study Programme: Open Informatics

Field of Study: Computer and Information Science

May 15, 2016

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Petr M á n e k

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Interactive Visualization System for Hybrid Active Pixel Detectors
 Within the ATLAS Experiment at CERN

Guidelines:
The goal of the thesis is to design and implement a system to improve acquisition, long-term storage and evaluation, and to
establish an interactive visualization of data collected by Timepix detectors placed within the ATLAS experiment at CERN.

Timepix detectors were originally developed for X-ray imaging. With their frame-based readout, Timepix detectors produce output
similar to camera pictures. In particular, the measurements can be interpreted as square pixel matrix containing tracks which
correspond to trajectories of individual subatomic particles passing through the semiconductor layer. These tracking properties
were utilized in previous-generation Medipix detectors for the purpose of particle detection by pattern recognition.

In the past, 16 Medipix detectors were installed at various positions within the ATLAS machine and used to collect relevant
information about the radiation fields and the machine luminosity. During the last shutdown, these detectors were upgraded to the
Timepix technology, enabling energy and time measurements in each pixel. To further improve particle discrimination, a two layer
set-up was developed. With a manual data acquisition scheme already in place, it is important to develop a system to automate
periodic transfer from detectors to permanent storage. Here the data will be visualized and evaluated.

The main objectives of the thesis are:
 - To implement a server application capable of maintaining and managing extensive file system structure for long-term storage
 of data. It is preferred that such a structure is compatible with the ROOT file format which has proven efficient in similar
 applications, and is a standard tool in particle physics.
- To define a communication protocol allowing for frame-based data retrieval from the server. The protocol will also be used to
 facilitate data addition and other input/output operations.
- To create interactive web-based visualization, capable of displaying and evaluating the stored data online. This includes browsing
 through individual frames in a given time period and changing display parameters and options.

Bibliography/Sources:
[1] Z. Vykydal et al., The Medipix2-based network for measurement of spectral characteristics and composition of radiation in
 ATLAS detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
 Associated Equipment, Volume 607, Issue 1, 1 August 2009, Pages 35-37, ISSN 0168-9002,
 http://dx.doi.org/10.1016/j.nima.2009.03.104.
[2] D. Tureček et al., Remote control of ATLAS-MPX Network and Data Visualization, Nuclear Instruments and Methods in Physics
 Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 633, Supplement 1, May
 2011, Pages S45-S47, ISSN 0168-9002, http://dx.doi.org/10.1016/j.nima.2010.06.117.
[3] D. Tureček et al., Pixelman: a multi-platform data acquisition and processing software package for Medipix2, Timepix and
 Medipix3 detectors , Journal of Instrumentation 6 C01046, doi: 10.1088/1748-0221/6/01/C01046 (2011).
[4] Erik H.M. Heijne et al., Measuring radiation environment in LHC or anywhere else, on your computer screen with Medipix,
 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
 Equipment, Volume 699, 21 January 2013, Pages 198-204, ISSN 0168-9002, http://dx.doi.org/10.1016/j.nima.2012.05.023.

Bachelor Project Supervisor: Ing. Stanislav Pospíšil, DrSc.

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, December 11, 2015

iv

v

Aknowledgements
I would like to express my deep sense of gratitude to the staff of IEAP for their support
and for providing me with stimulating working environment. My special thanks go to my
colleague Benedikt Bergmann, MSc. for his valuable advice and counseling. I would also
like to thank my supervisor Ing. Stanislav Pospíšil, DrSc. for proposing and supervising this
project. Lastly, I would like to thank my friends and family for their support, for without
them, this work would not have been possible.

Petr Mánek

vi

vii

Declaration
I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

In Prague on May 15, 2016 .

viii

Abstract

A network of 15 Timepix pixel detectors was installed within the ATLAS experiment at
CERN. These detectors are in operation continuously from June 2015, producing huge
amounts of research data. The subject of this thesis is the definition and implementation of a
software system to archive, process and visualize such information within a web application.
The presented system is comprised of two fundamental components: a data server and a
visualization website. The data server ensures efficient data access by optimizing file storage
structures, utilizing indexing methods, and defining a proprietary transfer protocol. Apart
from plotting charts and calculating statistics from multiple detectors in the network, the
web visualization allows its users to interact with the displayed content by applying magnifi-
cation, setting arbitrary predicates, and integrating over consecutive frames. The produced
software has various applications in data analysis and visualization, and can be used in other
experiments involving Timepix detectors.

Abstrakt

V experimentu ATLAS v CERN byla nainstalována síť 15 pixelových detektorů typu Timepix.
Tyto detektory jsou v provozu nepřetržitě od června 2015, čímž vytvořily velké množství
výzkumných dat. Předmětem této práce je definice a implementace softwarového systému
pro archivaci, zpracování a vizualizaci těchto dat prostřednictím webu. Navržený systém
se skládá ze dvou komponent: z datového serveru a webové stránky s vizualizací. Datový
server zajišťuje efektivní přístup k datům prostřednictvím optimalizace struktur souborového
systému, aplikace indexovacích metod a definice dedikovaného přenosového protokolu. We-
bová vizualizace umožňuje vykreslování grafů a počítání statistik pro více detektorů najed-
nou. Kromě toho však také umožňuje uživatelům interaktivní zacházení s daty, například
přiblížení, nastavování libovolných predikátů a integrování přes větší počet snímků v řadě.
Vyvinutý software má mnoho aplikací v analýze a vizualizaci dat, a může být použit v dalších
experimentech, které využívají detektory typu Timepix.

ix

x

Contents

1 Introduction 1
1.1 About Timepix Detector . 1

1.1.1 Operation Modes . 1
1.2 ATLAS-TPX Network . 2

1.2.1 Read-out Interface . 2
1.2.2 Cluster Analysis . 3

1.3 Common Data Storage Formats . 5
1.3.1 Plain Text . 5
1.3.2 ROOT Framework . 5
1.3.3 Data Manipulation Problem . 7

1.4 Structure of This Document . 7

2 Data Structure and Storage 9
2.1 Formal Requirements . 9
2.2 Database . 10

2.2.1 Definition . 10
2.2.2 Expected Volume of Data . 11

2.3 Index Database . 12
2.3.1 Definition . 12
2.3.2 Performance Optimization . 14
2.3.3 Data Aggregation and Metaindexing 14

3 Communication Protocol 17
3.1 Remote Access . 17

3.1.1 Considerations . 18
3.1.2 Requirements . 19

3.2 Underlying Standards . 19
3.3 Web Methods . 20

3.3.1 Detector List . 20
3.3.2 Overview of Acquisition . 20
3.3.3 Frame Search . 21

3.4 Miscellaneous . 22

xi

xii CONTENTS

4 Server Implementation 25
4.1 Decomposition . 25

4.1.1 JSTP Data Server . 25
4.1.2 Static Web Server . 26

4.2 Object-Oriented Design . 26
4.2.1 Request Handling . 26
4.2.2 Behavior Selection . 26
4.2.3 Content Abstraction . 27

4.3 Performance Optimizations . 27
4.3.1 ROOT Reading Optimization . 27
4.3.2 Centralized File Management . 29

4.4 User Interface Documentation . 29
4.4.1 Header Bar . 29
4.4.2 Overview Chart Area . 30
4.4.3 Main Chart Area . 32
4.4.4 Details Panel . 33
4.4.5 Status Bar . 35

4.5 Plotting Optimizations . 35
4.5.1 Prerendering . 35
4.5.2 Pixel Drawing . 36
4.5.3 Sub-pixel Rendering . 36

4.6 Deployment . 36
4.6.1 Extension Script Translation . 37
4.6.2 Bower Dependencies . 37
4.6.3 Grunt Build System . 37

4.7 Data Import . 38
4.7.1 Processing Stages . 38

5 Conclusion 39

A Index Database Scripts 43
A.1 Access Roles . 43
A.2 Tables . 43

A.2.1 Detector Table . 43
A.2.2 File Table . 44
A.2.3 Frame Table . 45

B Documentation of JSTP Web Methods 47
B.1 API Conventions . 47
B.2 Detector List . 47
B.3 Overview of Acquisition . 48
B.4 Frame Search . 49

C Nomenclature 53

D Contents of the Attached DVD 57

List of Figures

1.1 TPX detectors installed within the ATLAS machine at CERN. 2
1.2 The ATLASPIX read-out interface installed at CERN. 3
1.3 Different cluster types classified by their shapes. 4
1.4 Structure of a ROOT file containing TPX footage. 6
1.5 TPX frame plots generated by the ROOT framework. 8

2.1 Example of the database file system structure. 11
2.2 ROOT access optimized by the index database. 15

3.1 Multi-layered system. 18
3.2 Time diagram comparing behavior of different search modes. 22
3.3 UML diagram of JSTP communication . 24

4.1 UML diagram illustrating handler instantiation. 27
4.2 UML diagram illustrating handler inheritance. 28
4.3 Wireframe diagram showing the layout division of UI sections. 30
4.4 Comparison of overview rendering modes. 32

5.1 Screenshots of the visualization UI. 40

D.1 Contents of the attached DVD . 57

xiii

xiv LIST OF FIGURES

List of Listings

B.1 JSTP detector list response body. 48
B.2 JSTP acquisition overview request body. 48
B.3 JSTP acquisition overview response body. 49
B.4 JSTP frame search request body. 50

xv

xvi LIST OF LISTINGS

Chapter 1

Introduction

1.1 About Timepix Detector

TPX detector [10] is a hybrid active pixel detector, developed within the MPX collaboration
at CERN. It consists of an active sensor layer bump-bonded to a readout ASIC. The ASIC
divides the active sensor area into a square matrix of 256× 256 pixels with a pixel-to-pixel
distance of 55 µm. Each pixel has its own readout chain and can be controlled independently.
While the sensor layer material in the presented work was silicon, other sensor materials are
available, most notably CdTe and GaAs, which are used e.g. for imaging applications.

TPX detector is operated in a way that is similar to commercially available cameras.
What would be a picture in photography, is referred to as a frame. Every pixel is equipped
with a 14-bit integer register called the counter. When acquisition starts, registers are set
to zero, and then possibly incremented upon every interaction. A frame thus represents
the status of each pixel after the user set acquisition time. Returning to camera analogy,
acquisition time resembles exposure time of a photograph—when increased, more particles
can be expected to interact with detector’s pixels.

Since pixels may not be identical due to material irregularities and manufacturing errors,
every pixel has adjustable threshold parameter, which is subject to equalization. In an
equalized state, analog input measured from the pixel’s semiconductor should exceed this
threshold only when the pixel is interacting with a particle.

1.1.1 Operation Modes

Depending on its application, a single TPX board can be assembled with more sensor layers,
e.g. in a stack structure. After acquisition is finished, every area produces a matrix of
256 × 256 integer values. Interpretation of these values depends on another parameter, the
operation mode. The following operation modes are available:

Hit Counting Mode (also known as the Medipix Mode) The counter is incremented
upon every transition from a state below the threshold to a state above the thresh-
old. The counter value of a pixel thus represents the number of particles which have
interacted with the pixel.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: TPX detectors installed within the ATLAS machine at CERN.

Time over Threshold Mode (TOT) The counter is incremented in every clock cycle, in
which the analog input exceeds the set threshold. The pixel value therefore corresponds
to the energy of the interacting particle. Energy calibration methods are described in
[8].

Time of Arrival Mode (TOA) The counter is incremented in every clock cycle after the
threshold is first exceeded. The pixel value corresponds to the length of time interval
before the end of the measurement.

1.2 ATLAS-TPX Network

In the ATLAS experiment at CERN, a network of 15 TPX detector stacks (see Figure 1.1)
has been installed during the recent shutdown (LS1). It is a successor of a MPX detector
network [13] of similar architecture, which has been operated for several years by IEAP
researchers.

Each device’s two-layer design allows improved measurements of the ATLAS machine
luminosity, activation of materials surrounding the detectors, better characterization of the
radiation field at various locations withing the cavern.

1.2.1 Read-out Interface

A read-out interface is a special dedicated hardware device that reads data and controls
acquisition of the detector. [14] Given the harsh radiation environment within the ATLAS
machine, the ATLASPIX interface was developed by modifying a regular FITPix interface.
[9]

The interface has two parts connected by four cables. The detector itself is positioned
and oriented within the ATLAS machine, whereas the rest of the interface is placed in a

2

1.2. ATLAS-TPX NETWORK

Figure 1.2: The ATLASPIX read-out interface installed at CERN.

nearby server room, shielded against ionizing radiation. Cables connect both parts, allowing
protected hardware to control detectors remotely1 during operation of the machine. To
manage multiple detectors simultaneously, a computer is directly connected to all read-out
interfaces. This computer, also known as the control PC, gathers all measured data and
forwards commands from the system operator to the detectors through the ATLASPIX
interface. This configuration is shown in Figure 1.2.

At the time of writing this work, the control PC is being operated manually from a remote
location. The automation of the operation is under investigation (for more information, see
Section 4.7.1).

1.2.2 Cluster Analysis

Interacting particles in the sensor are seen as tracks (clusters of adjacent pixels). These
tracks are searched for by processing tools, further referred to as the cluster analysis. [6]
This procedure involves a connectivity-checking algorithm, such as flood-fill, operating on
pixel matrices to distinguish individual clusters. The identified clusters are categorized based
on their morphological properties. In addition, counter values in frames captured in the TOT
mode can be combined with earlier calibrations to produce energy approximations. [8]

The output of cluster analysis consists of two separate lists of clusters, one per every
sensor layer. It follows from the definition of a cluster that any pixel contained in it has a
non-zero counter value. All pixels unreferenced by any cluster are assumed to be equal to
zero. The utilized technique of data encoding is well-known as it offers efficient compression
rate for sparse pixel matrices. It is however worth noting at this point that in certain cases
(represented most notably by saturated or nearly saturated frames), this approach generates

1The software used to control and process results of data acquisition is fundamentally similar to the
software used in the MPX network. [7]

3

CHAPTER 1. INTRODUCTION

Dots

Small blobs

Heavy blobs

Heavy tracks

Straight tracks

Curly tracks

Figure 1.3: Different cluster types classified by their shapes.

voluminous data structures, which may take long time to enumerate, and in turn slow down
other algorithms operating on them.

In a cluster list, pixels are stored as tuples of their planar coordinates and their respective
counter values. From this information, the pixel matrix can be reconstructed at any time.
The original pixel matrix is therefore discarded without data loss at the end of cluster
analysis, in order to minimize occupied space. For every cluster, several properties are
calculated in the automated processing, most notable of which are:

Shape Classification By measuring morphological properties of a cluster (such as radius
or size), it is possible to estimate whether the cluster resembles more a line segment or
a circular blob. Similarly, an algorithm can ascertain if the cluster looks thin or thick.
From that information, type of the interacting particle can be determined, along with
the direction of its movement relative to the plane of incidence. This information is
summarized by classifying the cluster in one of the six cluster categories (see Figure
1.3).

Size, Volume The size of a cluster is equal to the number of connected pixels which con-
stitute it. The volume is a sum of counter values of those pixels.

Centroid, Volumetric Centroid The centroid is defined as an unweighted mean of pixel
coordinates in the cluster. In analogous way, the volumetric centroid is the very same
value weighted by corresponding counter values.

Minimum and Maximum Cluster Height These two values refer to the lowest and the
greatest counter values of pixels within the cluster.

Energy-based Properties (available only in TOT mode) If energy approximations are
available, many of the values mentioned above can be also calculated with the energy
substituted for counter values.

4

1.3. COMMON DATA STORAGE FORMATS

1.3 Common Data Storage Formats

Provided that every detector in the ATLAS-TPX network contains 2 active sensor layers,
each with a square pixel matrix of size 256×256, a single captured frame consists of 131,072
integer values in total2. Given the fact that in the network, 15 detectors continuously perform
acquisition as fast as 10 or 12 times per second, large amounts of data are produced. This
section lists the most common file formats, in which such data is stored and archived for a
detailed analysis.

1.3.1 Plain Text

The most straightforward way of storing data acquired by TPX detectors is to use plain
text files. Such output, referred to as the single-frame format (or possibly the multi-frame
format depending on the number of frames stored), encodes data in three files per unit of
acquisition.

Data File Data files contain captured data from individual pixels of the detector. The
data is encoded as a simple list of tuples containing pixel positions and their respective
counter values. All pixels which are not mentioned are of zero value.

Description File Description files contain configuration of the detector at the time of ac-
quisition. While there is no exhaustive definition listing every serialized parameter,
description files allow to be easily extended, as they directly annotate all values of
parameters they store.

To store a configuration parameter, three lines of text are required. The display name
of the parameter (along with the unit or any other notes) is written on the first line.
The second line describes the data type of the value and its range. The third line
contains the actual value.

Index File Index files contain binary information, which binds data files and description
files together. In an index file, every frame is represented by a tuple of data addresses
pointing to the first entry of the frame in the corresponding data file and the first entry
in the description file.

Even though the plain text format has the advantage of being easily accessible with any
text editor, it is disk-inefficient in terms of access speed and disk space.

1.3.2 ROOT Framework

Another storage option is to use a proprietary data file format defined by the ROOT Data
Analysis Framework [1]. Originally conceived at CERN in 1995, the framework provides a set
of powerful tools with various applications in data mining, manipulation and visualization
(for demonstration, see Figure 1.5). Unlike other similar toolkits, ROOT comes with its own
machine-independent binary file format (identified by the .root extension). This format is

2Not including configuration information of the detector.

5

CHAPTER 1. INTRODUCTION

data.root

calibData

Calibration constants

Detector position & orientation

dscData

Frame 1 detector configuration

Frame 2 detector configuration

. . .

clusterFile

Cluster 1

Cluster 2

Cluster 3
. . .

Figure 1.4: Structure of a ROOT file containing TPX footage.

designed to store enormous amounts of data within various types of data structures efficiently,
while maintaining good overall performance by employing low-level memory optimization
techniques and multi-tier content caching.

Used by many physicists at CERN for several years now, ROOT was chosen as the data
archiving format as many researchers have already learned its properties and know well
how to operate it despite often lacking deeper background in Computer Science. For the
purposes of programmatic access, ROOT also does well with documented APIs in Python,
R and C++.

Should data be stored in ROOT, a basic relational database concept comes to mind.
ROOT however offers even more abstract data structures with standard tables generalized
in the form of trees and their columns in the form of leaves. One such tree would suffice
for information about captured frames (such as acquisition time, operation mode, etc.) and
other for a list of clusters for every frame. This scheme (showcased in Figure 1.4) would
efficiently abstract the entire storage structure, allowing for multiple frames to be stored in a
single file, grouped for instance by a common time interval, similarly to the text file format.

In spite of being over 20 years in development, ROOT is not perfect. Using memory
monitoring tools such as Valgrind [11], we have confirmed that the C++ implementation
of the ROOT framework is riddled with various memory leaks, making it unsuitable for
time-extensive operations.

6

1.4. STRUCTURE OF THIS DOCUMENT

1.3.3 Data Manipulation Problem

With large amounts of data generated periodically by the ATLAS-TPX network, an obvious
question is raised: How to efficiently read, process and display captured TPX footage while
not being overwhelmed by the magnitude of data in question? Answering it entails addressing
several subsidiary concerns, mostly regarding the choice of data structures, their arrangement
and roles within the system.

There exist many computing approaches and techniques to deal with big data, as well as
myriad of peculiar data structures, each optimizing different of its properties and operations.
With respect to the architecture of the network, the format of data it produces, other works
done on its predecessor and goals set forth by its users, this work tackles the problem by
standard means. Its purpose is to design and implement a network-based system capable of
archiving, accessing and visualizing data, while optimizing data retrieval speeds for certain
types of user queries.

1.4 Structure of This Document

This section is intended as a brief outline of the rest of this work.
Chapter 2 formally defines all data structures, on which the system operates. Besides

stating requirements on the storage facilities and listing assumptions about user queries, it
introduces an auxiliary data structure, capable of accelerating access procedures for a certain
types of data requests.

Chapter 3 is dedicated to the definition of the JSON Timepix protocol (JSTP), which is
later used to transmit archived data to the visualization system over HTTP. The protocol is
however not limited only to data visualization, but offers API for other applications as well.

Chapter 4 describes implementation and integration of concepts defined by the previous
two chapters in the form of a server application. Apart from commenting on its internal
structure, it also provides insights in its operation and contains UI documentation.

The last chapter of this work outlines several applications of the software outside the
ATLAS-TPX project and discusses its possible future.

The appendices mostly contain descriptive sections of technical nature, such as code
listings, API documentation or the description of contents of CD attached to the printed
version of the work.

7

CHAPTER 1. INTRODUCTION

Pixel No. X

0 100 200

P
ix

el
 N

o.
 Y

0

100

200

200

400

600

800

1000

1200

Energy [keV] Layer 1

Pixel No. X

0 100 200

P
ix

el
 N

o.
 Y

0

100

200

0

200

400

600

800

1000

1200

Energy [keV] Layer 2

(a) A frame with disconnected clusters.

Pixel No. X

0 100 200

P
ix

el
 N

o.
 Y

0

100

200

200

400

600

800

1000

1200

1400

1600

1800

2000

Energy [keV]
 Layer 1

Pixel No. X

0 100 200

P
ix

el
 N

o.
 Y

0

100

200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Energy [keV]
 Layer 2

(b) A frame with high saturation level.

Figure 1.5: TPX frame plots generated by the ROOT framework.

8

Chapter 2

Data Structure and Storage

In this chapter, a data structure capable of archiving TPX footage for longer time periods is
proposed. The motivation is to minimize access time in queries based on certain parameters.
To help accomplishing this goal, the index database is introduced.

2.1 Formal Requirements

Requirements of the data storage system are as common as database requirements can get.
It shall be a reliable permanent storage element, accessible for reading from multiple work-
stations at a same time and robust enough to withstand minor hardware failures. With
15 detectors already installed at ATLAS, and possible option of installing another 5, the
database should be designed to hold frames from up to 20 TPX devices for the entire ex-
pected time period of their operation1 at LHC (that from June 2015 to LS3 in 2021).

As more and more frames arrive from the detector network, the database must allow to
be periodically extended with new data, possibly processing and converting pixel matrices
into cluster lists, as described in the previous sections. Since the database is going to be
primary storage site for all research data, it shall have multiple independent copies and its
structure should be designed with logic to enable their periodic synchronization.

Apart from all requirements already listed, it is important to mention that the anticipated
structure of the majority of user queries is known. With regards to this information, data
storage and retrieval procedures may be optimized to accelerate such queries.

It was determined that the most queries are going to filter data by time of acquisition
and by device of origin. This is indeed a very natural approach, provided that every detector
in the network is positioned and oriented in way allowing only for a certain type of particles
to be observed. Researchers looking for signs of specific particles might often request data
based on other experiments, which were conducted in a determinate time period and only
affected detectors at specific locations within the ATLAS machine.

1The-long term plan of LHC operation is available online at <https://lhc-commissioning.web.cern.ch/
lhc-commissioning/schedule/LHC-long-term.htm>.

9

https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm
https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm

CHAPTER 2. DATA STRUCTURE AND STORAGE

2.2 Database

In this section, the TPX footage database is defined. Accounting for the ever-growing nature
of the data, the database is separated into two parts. The first part is to contain data which
has already been processed by the cluster analysis, and is ready to be accessed by users. The
second part is to contain data which has arrived from CERN in its raw form but hasn’t been
processed yet. As one might observe, this separation of data serves a fundamental purpose,
that is to distinguish intermediate products from finished ones.

2.2.1 Definition

For the sake of compatibility, the database is supposed to be based on a UNIX file system.
Many users, not necessarily only those using UNIX-based operating systems, shall be able
to access it directly by any of widely-used and standardized network protocols such as FTP,
SMB, SSH, AFP or HTTP. Utilization of these protocols contributes not only to the uni-
versality of the database, it also resolves shared resource access and other data concurrency
issues. Some of these features might be useful later on when synchronizing various storage
sites in order to back up or restore data. In addition, UNIX file systems also offer funda-
mental security features, allowing administrators to grant read-write privileges to a certain
group of users, while limiting others to a mere read-only access.

The stored data is grouped in two directories named processed and downloading, cor-
responding to the respective sections of the database. In these directories, data is fur-
ther divided in subdirectories by the device of origin. To make navigation easier, device
directory names use numeric identifiers in compliance with already published literature.
For instance, all data originating from the detector no. 7 would be stored in a directory
named ATPX07. In such directory, footage would be stored in time-coded files (or directories,
should multiple files be grouped under single time code) according to the naming pattern:
[yyyy]_[mm]_[dd]_ATPX[id] (where [id] represents the device identifier and [yyyy], [mm],
[dd] represent year, month and day of acquisition respectively). Should it be impractical
to group frames by the day of acquisition, file and directory names may follow an alternate
naming pattern with hourly granularity: [yyyy]_[mm]_[dd]_ATPX[id]_[hh] (where [hh]
represents the hour of acquisition and other entities are treated as in the previous pattern).
Note that in spite of grouping data files in separate subdirectories by the device of origin, the
device identifier is intentionally included in the naming pattern for reasons of redundancy.

The directory structure described so far satisfies all requirements from the previous sec-
tion. Moreover, it optimizes the access to data generated from specific devices at specific
times, so that the majority of user requests is handled in timely manner.

All data files are stored at the lowest level of the directory structure under time-coded
names according to our naming patterns (see Figure 2.1). Should more files fall under the
same time code (marginal scenario), they are grouped in a directory with a time-coded
name. The file structure in such a directory is undefined. Although it is not required, it is
expected that files in the processed directory are encoded in the ROOT format, whereas
files in the downloading directory are encoded in plain text, as that is the initial format of all
unprocessed footage. Apart from these two formats, files of different types will be tolerated,
but regarded as secondary.

10

2.2. DATABASE

TPX Database/

downloading/

processed/

README.txt

ATPX01/

ATPX02/

. . .

2015_08_24_ATPX02.root

2015_08_25_ATPX02.root

2015_08_26_ATPX02/

morning.root

afternoon.root

evening.root

Figure 2.1: Example of the database file system structure.

To preserve storage space, the database must support file compression. The supported
compression algorithms are ZIP or a combination of TAR and GZIP. Note that the definition
explicitly forbids usage of any recursive compression structures of the same kind (e.g. ZIP
archive within other ZIP archive, etc.). A recommended alternative in such case is to increase
compression level of already existing file archives instead.

As individual data files are expected to grow quite large in size, compression is to be
utilized only at the lowest level of the directory structure, that is in the time-coded data
files and directories. Individual archives are allowed to store at most one time-coded file (or
directory), thus being able to overtake file’s time-coded name while remaining unique in the
file listing. It is preferred (but not required) that all data files stored in a single directory
are either all compressed, or none of them is, as any deviation from this scheme might point
to an incomplete data transaction.

2.2.2 Expected Volume of Data

This section includes a simple calculation to obtain an upper bound on the size of the
database.

Assuming that one hour of footage stored in the multi-frame format may take up to 4 gi-
gabytes in size (depending on the frequency of acquisition), acquisition from one detector
generates at most 96 gigabytes per day. Accounting for the longest possible time of opera-
tion, the database will store up to 2,437 days of footage simultaneously recorded by up to
20 detectors. That means that the database will have to hold about 4.7 petabytes worth of
uncompressed information. If we use Collin’s compression algorithm benchmark from [2] as

11

CHAPTER 2. DATA STRUCTURE AND STORAGE

baseline, it is possible to estimate that a common variant of GZIP algorithm will reduce the
file size in average by 75.9%. Applying such compression on the multi-frame data files, the
database would have to hold about 1.1 petabyte of archives.

An analogous calculation can be performed for the ROOT file format as well. Since the
file structure already utilizes its own proprietary compression algorithms, the expectation
is that the overall volume decreases significantly in comparison with the raw uncompressed
multi-frame data. From the data recorded by the ATLAS-TPX network in the fall of 2015,
a single day of footage stored in the ROOT format takes up to 18 gigabytes in size. The
same extrapolation as before yields that the database will have to hold about 877 terabytes
of information. This result is in agreement with the expectations stated before.

This estimation shows that the ROOT data format seems to be more space-efficient
than the plain text format. For long-term archiving, it is recommended that the amount
of footage kept in plain text is minimized either by compressing or erasing data files after
cluster analysis is finished.

2.3 Index Database

So far, a set of rules has been established for the file system in order to quickly obtain data
from a specific device at time. These facilities are sufficient for navigating and accessing
data in rudimentary manner, but are certainly not optimal. For instance, the database
definition does not contain any conventions regarding retrieval of specific frames from files
in the ROOT data format. Due to this limitation, users seeking individual frames would
have to download bulks of data corresponding to longer time periods (their length can vary
from an hour to a day in time and from hundreds of megabytes to several gigabytes in size),
which may induce unnecessary processing overhead and memory shortages.

There is also no guarantee that time-coded nodes in our directory structure will be
individual files. If such nodes happen to be directories, the file structure inside of such
directories is undefined, and may require additional decisions on the user side. And what do
users do when they want to retrieve frames based on different criteria than time and device of
origin? At the moment, there is no other option than directly enumerating frames stored in
all files on the file system, which (considering their potential size) might not be a preferable
solution. To resolve all these issues, one more element to our design is introduced—an index
database.

This database is to contain information, which can be recalculated at any instant from
the primary data files, and thus will need no backups or redundancies. The information
stored in the index database shall mostly include, as the name suggests, index of all files
and frames on record and addresses pointing to the them on the file system. In addition,
the index database is to store commonly requested aggregated values.

2.3.1 Definition

The index database is compliant with the SQL standard. For the reasons of simplicity, only
three basic entities are defined. The relationships between these entities and the meaning
of their members is defined in this section. For SQL creation scripts, see Section A.2 of the
Appendix.

12

2.3. INDEX DATABASE

Sensor Sensor represents a single ATLAS-TPX device, from which data can be acquired.

Sensor Identifier (sid) Identifier of the device, unique within the index database.

Name (name) Readable name of the sensor, consistent with the other literature.

Calibration Constants (calibration_layer1, calibration_layer2) Constants used
for a luminosity estimation based on the cluster rate. [5] (available only for some
devices)

ROOT File This file represents a single file in the ROOT data format, containing data
acquired from a single ATLAS-TPX device in a determinate time period.

File Identifier (fid) Identifier of the file, unique within the index database.

Device of Origin (sid) Identifier of the ATLAS-TPX device, which acquired all data
stored within this file.

File Path (path) Absolute path to the file in the server’s file system.

Date of Addition (date_added) Date and time, when the file was added to the
database.

Covered Time Interval (start_time, end_time) Minimum and maximum start time
of the TPX frames stored within this file.

Statistics (count_frames, count_entries) The total number of frames and clusters
stored in within this file.

Validation Data (checksum, date_checked) SHA1 checksum of the file and the lat-
est date and time, when the file was validated against it to prevent data corrup-
tion.

Frame Frame represents a single event of data acquisition from a ATLAS-TPX device.
Every frame is stored in a file, which can contain multiple frames.

Frame Identifier (frid) Identifier of the frame, unique within the index database.

File Identifier (fid) Identifier of the file, in which the frame is stored.

Sensor Identifier (sid) Identifier of the device, which contains this frame (must
match sid of the file).

Start Time (start_time) Start time of the acquisition.

Acquisition Time (acquisition_time) Duration of the acquisition.

Data Addresses (dsc_entry, clstr_first_entry) Index values pointing directly to
entries within the ROOT file’s internal structure, where the frame data is stored.

Statistics (occupancy, clstr1_count, . . . , clstr6_count) Total number of non-zero
pixels in the frame, and numbers of clusters of different types in the frame.

13

CHAPTER 2. DATA STRUCTURE AND STORAGE

2.3.2 Performance Optimization

The index database, by its definition, helps to resolve all time-based queries deterministically,
even in situations when frames are stored in an undefined directory structure. Apart from
this optimization, it also provides file validation primitives to ensure that corrupted files are
discovered as soon as possible. Still, there is one more significant performance optimization.

When retrieving frames by the time and device of origin, predefined naming patterns
can be used to obtain a path in the file system. In case the path points to a directory, the
contents of the index database specify, which file in the directory contains the information
sought. However, this approach leaves one more operation unoptimized since, in order to
retrieve a specific frame, a sequential scan of the entire data file is required.

This issue is in part resolved by sorting all frames in data files consistently by their
start time, enabling utilization of binary search algorithm, thus reducing complexity of the
operation from linear to logarithmic. Furthermore, the index database maps every frame to
a tuple of data addresses, which point to specific locations within the data file, rendering
any enumeration redundant.

Recalling that ROOT files contain two trees of interest, the dscData tree with information
about detector configuration, and the clusterFile tree, which holds concatenated lists of
clusters from every frame. There is only one entry per frame in the dscData tree, whereas
the clusterFile tree may contain anywhere from zero to tens of thousands2 of entries
corresponding to a single frame. Entries belonging to the same frame are linked by the
Start_time leaf.

If all entries in both trees are sorted by the value of this leaf, the clusterFile entries
consequently form continuous bulks of data corresponding to individual frames. This means
that once the first entry in the bulk of the sought frame is discovered, consecutive entries
can be read as long as their start time remains the same (or the last entry is reached).

The indices of entries in the dscData and clusterFile trees are stored as data addresses
for every frame in the index database, making the search an operation of constant3 complexity
with respect to the amount of data, as illustrated in Figure 2.2. This significant benefit comes
with a trade off in increased complexity of the insert operation due to additional sorting of
entries in our files, and slightly increased space occupied by the index database because of
stored entry indices.

2.3.3 Data Aggregation and Metaindexing

In some cases, users of the database may want to calculate aggregated statistics. Since these
types of requests are hard to anticipate and do not constitute a significant portion of all user
queries, it is not worth the effort to create separate data structures in order to accelerate their
processing. Existing data structures are however extended to support some of such requests.
For example, the index database is a great candidate in particular since it contains data
associated with individual files and frames, and since it is easily accessible and queryable
using SQL. For that reason, several statistical values are included with every frame, such as

2One frame can contain from 0 to 2 · 2562

4
≈ 3 · 104 entries in the clusterFile tree.

3This statement neglects the complexity of lookup in the SQL table.

14

2.3. INDEX DATABASE

Index DB

0 1 2 3 4 5 6 7 8 9 10 . . .

29 29 31 32 32 32 32 33 37 40 40 . . .

clstr_first_entry=3

Entry Index

Start Time [s]

clusterFile Tree

Figure 2.2: Illustration of the optimization mechanism provided by the index database.

count of clusters differentiated by individual cluster types and frame occupancy encoded as
number of non-zero pixels.

Users can utilize filtering and aggregation features of SQL to quickly find files and frames
in the index database, and, if required, analyze their contents more thoroughly.

Lastly, SQL implementations include an analogy to the index mechanism used to accel-
erate access to individual frames within data files. Using their own tree indices built from
various columns of data tables, SQL servers can speed up certain queries containing predi-
cates or orderings based on such columns. This significantly improves data access speed by
indexing the index database. For the detailed application of this technique, the reader may
refer to Section A.2 of the Appendix.

15

CHAPTER 2. DATA STRUCTURE AND STORAGE

16

Chapter 3

Communication Protocol

This chapter describes the JSON Timepix Protocol, i.e. a communication protocol used to
transmit TPX footage for purposes of visualization.

3.1 Remote Access

Since the database, defined in the previous chapter, is based on a UNIX file system, multiple
users can access it simultaneously by either directly interacting with the computer respon-
sible for its operation, or by using some of the supported protocols1 for direct or remote
communication.

Due to this capability, one might argue that defining another dedicated communication
protocol such as JSTP seems rather redundant. What advantages does this approach offer?
The primary motivation for the existence of JSTP are features required by the web visualiza-
tion UI, which is described in the Chapter 4. It is expected that users of such an application
would want to observe recorded footage frame by frame. If no protocol is defined to facilitate
transmissions of individual frames from the database to the visualization UI, data has to be
transferred in one of the formats listed in Section 1.3, none of which is particularly suitable
for this task.

For instance, the plain text format stores data in multiple files implying that several
parallel downloads would be required, possibly putting strain on user’s network connection
in the process. The ROOT format on the other hand uses its own compression algorithms,
making it non-trivial to deflate in a website context. Lastly, since both ROOT and plain text
formats store data in bulks of frames per file, the information overhead to transmit units of
frames would be nearly unbearable, especially considering that data files in question may be
several gigabytes in size.

Therefore, JSTP is defined to effectively replace both formats in such situations. It
is expected that multiple users would connect to a JSTP server over a local area network
or through the internet, possibly at the same time. Every user should be able to get the
same information from the visualization in the same time. Note that JSTP is not designed to
transmit all information from the data files, nor send continuous footage at streaming speeds.

1Recall that the Section 2.2.1 mentions access over FTP, SMB, SSH, AFP and HTTP.

17

CHAPTER 3. COMMUNICATION PROTOCOL

Applications Web visualization UI Others . . .

Protocols JSTP HTTP FTP, SMB SQL queries

Servers Data RPC Static web File servers PostgreSQL

Data Store ROOT Multi-frame & single-frame Index DB

UNIX-like file system (possibly EOS)

Figure 3.1: A multi-layered system. Proprietary components are emphasized by gray color.

Instead, JSTP enables simple access to the most important detector data, and provides brief
overview of recent detector operation with emphasis on any irregular or pattern-defying
events.

3.1.1 Considerations

In the definition, a multi-layered system architecture is upheld. This primarily serves to
create strict distinctions between individual components of the system and the tasks they
perform, making them easily extensible, substitutable and perhaps even portable to other
applications. Other advantages of this approach are that it allows the users to choose the
component, they wish to interact with, simultaneously choosing the level of services, pro-
cessing speed and algorithm complexity.

This may be illustrated on a practical application. Users who want a quick peek at
detector operation without any effort might decide to use the visualization UI in their web
browser. The website is quite easy to use, does not require any particular skills to operate,
and is capable of displaying frames captured by the detectors as well as an overview of their
operation. In contrast, users who want to retrieve data for statistical evaluation might utilize
SQL or JSTP as these two protocols are not designed to interact with humans, but with
other applications, most notably scripts designed for custom data processing. Lastly, users
in need of information, which is not displayed by the visualization UI nor transmitted by
any of the mentioned protocols, can connect to the database storage facility remotely and
directly download data files by means of some of the supported network transfer protocols.
This concept is illustrated in Figure 3.1.

Lastly, JSTP is designed keeping extensibility in mind. With multiple concurrent projects
utilizing TPX detectors, it is likely that the protocol will be used in other applications as
well. It therefore allows variability, gracefully handling minor alterations in transmitted data
structures.

18

3.2. UNDERLYING STANDARDS

3.1.2 Requirements

This section lists all formal requirements on JSTP. The most basic requirement is that the
protocol allows to retrieve frames captured by the ATLAS-TPX network by their start time
and device of origin. This might remind observant readers of a similar requirement stated
in the database definition (see Section 2.3.1), as it is the most likely user request. However
unlike the database, JSTP must be able to transmit only those frames, which satisfy the
user predicate, effectively reducing information overhead in transmitted messages to zero.

In the first version, JSTP only transmits the results of cluster analysis, leaving the door
open for pixel matrix transmissions in the future. This indirectly implies that every message
transmitted through JSTP containing a captured frame consists of two parts: a header
(containing detector configuration, position, orientation, etc.) and a body (containing a list
of clusters, or possibly a pixel matrix).

To efficiently reference detectors in the ATLAS-TPX network, it is required that JSTP
provides an exhaustive list of network elements along with information about their avail-
ability in the system. This might seem redundant at first, but consider that JSTP needs to
handle situations when a detectors malfunctions, is replaced, or a new one is installed. Such
events might not be that uncommon, considering the uniqueness of the experiment and the
harsh radiation environment. Lastly, in order to aid with navigation in large amounts of
detector footage, JSTP has to offer a mechanism to generate statistics for larger periods of
time.

Apart from various file management network protocols listed earlier, there are no data
manipulation requirements on JSTP, implying that the protocol cannot be used for other
than read-only access to detector footage.

3.2 Underlying Standards

JSTP is a web protocol and as such, it utilizes HTTP as its underlying standard, serving to
abstract physical data transmission and compression. By this declaration, it is implied that
JSTP is a request-response communication protocol between two types of agents: a server
and a client.

In its architecture, JSTP consists of two parts: a web service providing API for remote
procedure calls (RPC) and a data format built atop of it to facilitate such calls. Since JSTP
does not include any universal service description mechanism such as WSDL or WADL, all
clients need to know its capabilities and calling conventions prior to initiating communication
with the server. For data serialization, JSTP utilizes JavaScript Object Notation (JSON).
This format was selected for various reasons. It is simple to parse, offers an extensible tree
structure and is very common among web services of this kind, as it is directly supported
by the JavaScript client-side runtime used in the web visualization UI. Apart from JSON,
JSTP does not offer nor accept communication in any other data formats.

Even though the protocol shows many traits often attributed to RESTful services (client-
server model, stateless protocol, cacheability, layered system), it certainly does not satisfy
all of them. For example, JSTP does not uniquely identify resources by their URI because it
does not offer any of the common CRUD operations. Moreover, in referencing entities, JSTP

19

CHAPTER 3. COMMUNICATION PROTOCOL

uses arbitrary identifiers (such as members fid, frid and sid of entities defined in Section
2.3.1), which are not passed in the URI but through an array in the request body. Moreover,
JSTP does not offer a uniform interface, capable of negotiating data format according to
client limitations. Instead, it forces clients to communicate strictly in JSON, adhering to its
own arbitrary data structures and calling conventions.

3.3 Web Methods

The main component of JSTP is a web service, which can be described as a set of proprietary
web methods. For the purpose of simplicity, this section provides only a semantical descrip-
tion of each method. Readers interested in full technical documentation of the methods are
referred to Appendix B.

3.3.1 Detector List

The first method is dedicated to providing an updated list of operational detectors in the
ATLAS-TPX network.

As mentioned earlier, this method allows for situations when the physical structure of the
network changes due to malfunctions or upgrades. It is required that any client intending to
retrieve frames from a specific detector must first consult the list provided by this method
to verify, whether the device they intend to interact with is still connected and operational.
In addition, other clients unaware of network’s architecture may use this method to obtain
a list of all currently available data sources.

Execution of this method requires no parameters. The server responds by transmitting
a list of devices, from which data can be retrieved at the time of request. For detailed
documentation of this method including examples of requests and responses, see Section B.2
of the Appendix.

3.3.2 Overview of Acquisition

To satisfy demands on navigation in voluminous amounts of data, the second web method
is dedicated to providing an overview of detector acquisition. This is achieved by uniformly
dividing a parametrized time period into a subset of short time intervals, in which all relevant
frames are gathered with respect to their start time (acquisition time is not considered). In
every interval, frames are subsequently processed to produce aggregate statistics, which
might indicate time points containing frames of interest to users. This approach is in its
essence very similar to the binning performed when constructing histograms.

Clients calling this method are required to transmit five parameters in their request:

Detector Predicate A group of detector identifiers, restricting frames by their device of
origin.

Start Time, End Time These parameters define the time period, in which statistics are
generated. Obviously, the first parameter must be an earlier point in time than the
latter.

20

3.3. WEB METHODS

Group Period The duration of every interval in the uniform partitioning of the set time
period. Should an imperfect partitioning occur, the number of intervals is always
rounded up to the nearest integer, possibly exceeding the specified end time.

Longer durations obviously result in a lower number of intervals, and a lower number
of returned data points. Shorter durations yield more data points, but may result in
lengthy processing on the server side. For stability reasons, the server requires that
the group period to have a duration of at least 1 and at most 1024 intervals.

Normalized Mode An option to compensate possible data distortions caused by variations
in frame acquisition times. This setting does not have any effect in configurations,
where users can be certain that such variations did not occur.

If the server finds valid request parameters and succeeds in generating requested statistics,
it responds by transmitting a list of data points, corresponding to partitioned intervals in
the specified time period. Every data point includes three values:

Cluster Counts Sums of cluster counts from every frame in the interval, summed sepa-
rately per every of the six cluster types (for type definitions, see Section 1.2.2).

Frame Occupancy Total number of non-zero pixels in all frames in the interval, indicating
when frames where overexposed and individual clusters could not be separated.

Number of Frames The count of frames aggregated in the interval.

For a detailed documentation of this method, including examples of requests and re-
sponses, see Section B.3 of the Appendix.

3.3.3 Frame Search

The third method serves to retrieve frames captured by a detector (or a group of detectors)
at any given point in time. The timestamp does not need to be exact, resulting in a search
for the nearest frame operating on the scope of the index database. There are several search
modes available, each offering a different strategy to find the master frame. Once such frame
is identified, its start time is then used to locate other frames from the remaining detectors,
yielding at most one frame per every detector. Two search modes are supported:

Sequential Forward Mode The master frame is the frame with the start time nearest to,
but greater or equal than the time parameter of the search.

Sequential Backward Mode The master frame is the frame with the start time nearest
to, but lower or equal than the time parameter of the search.

To demonstrate the operation of these modes on a practical example, suppose that users
are interested in frames captured by three devices. Detector 1 captures frames every 15
seconds with acquisition time of 5 seconds, detector 2 captures frames every 27.5 seconds
with acquisition time of 25 seconds and detector 3 captures frames every 12.5 seconds with
acquisition time of 10 seconds. All three detectors synchronize start of their acquisition and

21

CHAPTER 3. COMMUNICATION PROTOCOL

D1 1 2 3 4

D2 1 2

D3 1 2 3 4 5

(a) Forward search.

D1 1 2 3 4

D2 1 2

D3 1 2 3 4 5

(b) Backward search.

Figure 3.2: Time diagram of frame search illustrating behavioral differences between search
modes. Individual blocks correspond with periods of detector acquisition. Emphasized blocks
are returned as the search result (yellow marks the master frame). Dashed lines mark the
first minute of footage, the search time parameter and the start time of the master frame.

generate a minute of TPX footage. If the search time is set to 40 seconds in the forward
mode, the search designates frame 4 captured by detector 1 as the master frame. Since the
start time of this frame is 45 seconds, the search returns frame 2 for detector 2 (starts at
27.5 seconds and ends at 52.5 seconds) and frame 4 for detector 3 (starts at 37.5 seconds
and ends at 47.5 seconds). This scenario is depicted in Figure 3.2a. If the backward mode is
set instead, the search designates frame 4 captured by detector 3 as the master frame. Since
its start time is 37.5 seconds, the search returns no frame from detector 1 (there is a gap
between seconds 35 and 45) and frame 2 from detector 2 (starts 27.5 seconds and ends at
52.5 seconds). This is illustrated in Figure 3.2b.

To summarize, clients calling this method are required to submit four parameters:

Time of Search The point in time used as a starting point of the search.

Detector Predicate A group of detector identifiers, restricting retrieved frames.

Search Mode A strategy to select the master frame based on the time of search and avail-
able detector footage.

Integral Frames Number of consecutive frames to be integrated for every device.

If the server finds request parameters to be valid and succeeds in locating at least one
frame, it responds by transmitting the start time of the master frame, followed by headers and
bodies of all found frames, corresponding to the order of identifiers in the detector predicate
of the request. Frame bodies are transmitted in the form of cluster lists (for properties of
clusters, see Section 1.2.2). Detailed documentation of this method, including examples of
requests and responses, is available in Section B.4 of the Appendix.

3.4 Miscellaneous

JSTP has been originally designed to serve solely as a data transmission component of the
visualization UI. Over time, it has however grown to be a more complex protocol, with
applications in other projects than ATLAS-TPX and outside the conventional task of data
visualization. It is the intention of the author to continue the development of this protocol

22

3.4. MISCELLANEOUS

with further releases in the future, eventually abstracting it to a point where it could be
utilized in combinations with different hardware as well.

Since the amount of data in the database is expected to become rather huge, the protocol
itself is structured and meant to be used in a top-down model (see Figure 3.3), allowing
clients to gradually refine parameters of their requests and locate the information they seek,
while avoiding transmission of data in overly granular bulks. In other cases, the protocol
minimizes information overhead by requiring strong usage of predicates operating on the
index database.

Note that in the protocol definition, it is not specified whether the results of individual
web method calls are cacheable by clients. This is due to the diversified nature of its appli-
cations. Since HTTP already contains its own caching logic2, all clients are encouraged to
comply with the strategies described in [3], Section 13, as JSTP servers are permitted to use
this mechanism to employ different caching policies for individual response messages. An
analogous declaration is used for data compression (for HTTP specification, see Section 3.5
of [3]).

2Caching in HTTP is controlled by values of headers provided in every response message. Relevant header
names are: Cache-Control, Expires and Pragma.

23

CHAPTER 3. COMMUNICATION PROTOCOL

:JstpClient :JstpServer :IndexDatabase :FileDatabase

detectorList()
selectSensors()

device list
device list

acqOverview()
selectFiles()

affected files
selectFrames()

aggregate()

statistics
statistics

Until significant data is foundUntil significant data is found

frameSearch()
selectFrames()

master frame

selectFrames()

entry indices
readFile()

frame contents

For every deviceFor every device

found frames

Figure 3.3: UML diagram depicting expected interactions between JSTP client and server,
hinting levels of processing complexity at server-side.

24

Chapter 4

Server Implementation

This chapter describes the implementation of a web application, most notably responsible
for the web visualization UI.

4.1 Decomposition

The server application consists of two major components, a JSTP data server and a static
web server. As their names suggest, the data server asynchronously delivers data to be
visualized in the form of JSTP messages, whereas the web server provides the visualization
UI in the form of static-hosted files.

Both applications run simultaneously and independently of each other as Linux daemons
or services in an initialization system, communicating only by means of network sockets.
Each application listens and responds to client requests on its own dedicated port.

4.1.1 JSTP Data Server

The JSTP data server is a C++ application built using the Facebook Proxygen open source
library1. It is responsible for interacting with the ATLAS-TPX footage database and the
index database, in order to transcode TPX footage into the JSTP format.

The core component of the server is a thread pool. It allows simultaneous communication
with multiple clients, provided that the server’s hardware offers parallel processing support.
At the startup, multiple worker threads are created. These threads are immediately sus-
pended to conserve server’s resources. When a new request arrives, one of the suspended
threads is awakened and notified to process the request and compose a response, which is
then transmitted back to the client. During this operation, the thread is said to be busy and
cannot receive new requests until the processing is completed. Should a new request arrive
at that time, the server would opt to awaken another of the suspended threads, gradually
exhausting its pool. After a response is sent, the busy thread returns to a suspended state,
awaiting further instructions. This way, threads are recycled within the pool throughout
server operation.

1For more information, see project website: <https://github.com/facebook/proxygen>

25

https://github.com/facebook/proxygen

CHAPTER 4. SERVER IMPLEMENTATION

4.1.2 Static Web Server

The web server is a standard server application implemented in Node.js. It stores all files and
dependencies of the web visualization, such as HTML files with UI definition, style sheets
written in CSS and client-side scripts written in JavaScript. Since these files are quite static
in their essence, the web server uses standard HTTP caching mechanisms to speed up its
operation.

For security reasons, the HTTP socket managed by the web server is the only socket ac-
cessible from the Internet. All JSTP traffic is routed through this socket and then redirected
to a private socket owned by the JSTP server, eliminating the need to expose more than one
port to the Internet.

4.2 Object-Oriented Design

In the JSTP data server, much emphasis was put on the object design and the use of standard
design patterns. [4] This section contains the most notable instances.

4.2.1 Request Handling

When a request arrives, a worker thread is assigned to process it and respond accordingly.
To avoid keeping all server logic inside implementation of worker threads, the process of
producing a response to a single instance of a request is generated by a request handler.

When the worker thread determines, which JSTP method is called, a corresponding
request handler is created, and given abstracted control over the HTTP socket. After the
handler has finished processing the request, the worker thread sends the response to the
client and destroys the handler, freeing resources related to the communication session.

Using object polymorphism, multiple types of request handlers are implemented to service
requests corresponding with various JSTP web methods listed in Section 3.3.

4.2.2 Behavior Selection

Apart from producing server responses, the worker threads are also responsible for choosing
the appropriate behavior for every client request. In comparison to processing requests
themselves, this logic consists mostly of picking the correct request handlers. Thus, it is
autonomous by the application of the factory method design pattern (see Figure 4.1). [4]

When started, every worker thread creates a factory object. This object is later called
when requests arrive, and, based on their parameters, determines which request handler shall
be used in order to produce a response.

Since the JSTP specification uses URL to determine the called web methods (and by
extension request handlers), a factory subclass utilizing regular expressions to perform deci-
sions about requests was implemented. At the creation time of the subclass, all supported
request handlers along with their respective regular expressions are registered using the stan-
dard builder design pattern. One more request handler is designated as the default handler.
Upon request, all of the registered expressions are matched on its URL sequentially. Should

26

4.3. PERFORMANCE OPTIMIZATIONS

<<abstract>>
HandlerFactory

+ createHandler (req : HTTPRequest)

<<abstract>>
RegexHandlerFactory

- handlers : RequestHandler[0..*]
- expressions : RegularExpression[0..*]
- defaultHandler : RequestHandler

+ createHandler (req : HTTPRequest)
registerHandlers ()

JSTPHandlerFactory

registerHandlers ()

HandlerA

+ process ()

HandlerB

+ process ()

<
<
instantiate>

>

<
<
in
st
an
tia

te
>
>

Figure 4.1: UML diagram illustrating the abstract factory design pattern applied in the
context of request handler instantiation.

one of them succeed, its corresponding request handler is selected. Otherwise, the default
handler is used to inform the user of an invalid request.

4.2.3 Content Abstraction

In order to produce valid JSTP messages, a JSON serialization component is required. All
web methods are expected to read their parameters and compose their responses in the
desired format. Since this behavior is shared amongst all request handlers, it is encapsulated
in a separate subclass of a conventional request handler. To access properties of this subclass,
all request handlers corresponding to JSTP web methods inherit from it.

The subclass interacts directly with the HTTP socket and uses a parser and a writer to
retrieve and produce JSON strings. Its descendants can thus only call the parser and the
writer to access and produce content, instead of reading and writing to the socket directly, as
illustrated in Figure 4.2. This prevents bad object design by centralizing serialization logic
in a single object. In addition, it allows for a limited degree of variability, since the subclass
itself is the sole object responsible for communicating information to the socket.

4.3 Performance Optimizations

In the JSTP server, various performance optimizations are used to minimize response latency.
This section lists some of these optimizations.

4.3.1 ROOT Reading Optimization

It was shown in Section 1.3.2 that the ROOT format stores information in tree struc-
tures, separating the detector configuration from the cluster lists corresponding to individual

27

CHAPTER 4. SERVER IMPLEMENTATION

<<abstract>>
RequestHandler

socket : HTTPSocket

+ process ()

<<abstract>>
JSONRequestHandler

writer : JSONWriter
parser : JSONParser

+ process ()

HandlerA

+ process ()

HandlerB

+ process ()

Figure 4.2: UML diagram illustrating the inheritance of request handler objects.

frames. Due to possibly overwhelming sizes of data files, it is nontrivial to devise a logic
to minimize access time with respect to memory paging and L1 cache. Some of the most
significant factors to consider are:

ROOT Compression The ROOT data format utilizes its own compression algorithm,
roughly equivalent to the ZIP format in its efficiency. There are multiple levels of
compression ranging from the best compression ratio to the fastest reading time. The
choice of the compression level affects all subsequent processing required to encode and
decode data.

ROOT Cache The ROOT data format implicitly uses a file cache to prefetch information
in memory with the assumption that the data will be read sequentially. For that
reason, linear enumeration of data structures tends to be faster than a random access.

Tree Locality When retrieving frame data, switching from the dscData tree to the clusterFile
tree and back might cause OS to swap memory every time a single frame is read, pro-
ducing unnecessary overhead and slowing down the process.

Data Demand In many instances of JSTP messages, it is requested that only a portion of
the stored data is read. ROOT allows applications to specify this information prior to
initiating sequential reading, and in turn accelerate some procedures.

With respect to the these factors, all instances of objects requiring to read data from the
ROOT file format, do so sequentially in strides. The application producing ROOT data files
is configured to use the medium compression level, offering acceptable access speeds while
maintaining a good compression ratio.

When reading frame data, all configuration information is first read from the dscData
tree. After the information is processed, the server moves on to the clusterFile tree and
repeats the procedure without returning to the dscData tree in the process to prevent un-
necessary swaps and utilize benefits of ROOT cache. Lastly, all components of the server

28

4.4. USER INTERFACE DOCUMENTATION

interacting with the ROOT file format exhaustively declare, which tree branches are subject
to processing later on.

4.3.2 Centralized File Management

In the web visualization UI, users may often browse frames in the order of acquisition. If a
naive implementation was used, this would imply that on the server-side the same ROOT file
is opened, read from and closed multiple times over. Such behavior would be unnecessarily
wasteful, as the procedure of opening and closing file pointers to possibly large files may
become somewhat inefficient, and in turn slows down the server operation significantly.

To resolve this problem, a centralized data structure is introduced into the JSTP server.
This structure is accessible to other components (such as request handlers) in compliance
with the singleton design pattern. Its main responsibility lies in opening and closing ROOT
files, with which the other components interact. Its implementation however does not forward
these calls directly to the file system. Instead, an internal time-driven caching mechanism is
used to recycle open file pointers between multiple consumers according to their needs. The
pointers are closed only when their contents are no longer requested for a greater period of
time.

A central structure shared amongst multiple components operating on different threads
does not induce a race condition, because it allows multiple instances of the same file to be
open at the same time. Two threads requesting the same file in parallel would thus not need
to wait on each other.

4.4 User Interface Documentation

The web visualization UI consists of a single static HTML page, which is provided to the
users by the web server. Apart from UI definitions and style sheets, it includes several
client-side scripts, controlling the behavior of the website in the web browser. From a design
standpoint, the UI is divided into multiple sections (depicted in Figure 4.3), each with a
dedicated role and purpose.

4.4.1 Header Bar

The uppermost section of the UI is dedicated to important descriptive and control elements
of the screen. From the left to the right, it contains the logos of the institutions involved in
the data acquisition, detector control box, time control box and a frame stepper.

Institution Logos This section includes the logos of the ATLAS collaboration, Institute
of Experimental and Applied Physics and the Czech Technical University in Prague.
All pictures are linked to the respective institution websites.

Detector Control The detector control box allows users to specify a device (or a set of
devices) in the ATLAS-TPX network to be used as a data source for the displayed
frames. If only one device is selected (the default configuration), the box is optimized
to allow quick switching using a dropdown control and incremental toggle buttons on
its sides.

29

CHAPTER 4. SERVER IMPLEMENTATION

Header

Overview Chart

Details

Main Chart

Status

Figure 4.3: Wireframe diagram showing the layout division of UI sections.

Time Control This box controls the start time of the displayed frames. It is essentially a
simple date input element with additional incremental toggle buttons for every com-
ponent of the date.

Frame Stepper This control is a simple extension of the time control box, allowing users to
quickly browse frames sequentially in order of their acquisition. It consists of two big
buttons with arrows pointing left and right, signifying the direction of time movement.
Next to these buttons, a number input element is located. This element is responsible
for controlling the number of integral frames.

4.4.2 Overview Chart Area

The overview chart is placed below the header bar and fills the entire width of the screen.
Its purpose is to inform the users about detector acquisition in a determinate time period,
referred to as the window. To facilitate the navigation in the data, the chart shows a vertical
line at the point corresponding to the current start time of the displayed frames. Upon every
change of this parameter, the line moves horizontally in the chart to adjust. Should the line
be plotted out of bounds by leaving the chart either on the left or the right side, the window
is automatically updated to compensate. It is worth noting that this mechanism also works
the other way around. Users can set the start time of the displayed frames to any time point
from the window by clicking at its respective position on the horizontal axis.

30

4.4. USER INTERFACE DOCUMENTATION

In the chart, multiple series are plotted simultaneously. The horizontal axis always
corresponds to time, whereas the vertical axis may correspond to the number of clusters,
flux or frame occupancy, depending on the series in question. There are at most 8 plotted
series at any instance. Their appearance is described by the legend located in the bottom
left part of the chart area. Apart from providing description on the displayed series, the
legend also allows users to turn plotted series on or off by clicking on the respective items of
the legend. The series can be semantically divided in three groups:

Cluster Counts The cluster rate is shown separately for the different cluster types (shown
in Section 1.2.2). These series have no unit as their values merely correspond with
the number of clusters occupying frames, whose start time falls into a specific time
interval.

If the normalized mode is active, contributions to these series from every frame is first
divided by the acquisition time of the frame, producing flux values with unit s−1.

Total Sum This series plots the sum of cluster counts over all cluster types. Its unit is
same to that of the previous six series.

Frame Occupancy The values of this series correspond to the portion of frame area occu-
pied by non-zero pixels. It has no unit and is distinguished from the other series by a
dashed line.

The overview chart offers a number of custom settings. The length of the window can
be reconfigured to any value from 30 seconds to 4 days by controls located in the bottom
right corner of the chart area. The window itself can also be adjusted to align the vertical
line corresponding to the current start time of displayed frames to the center of the screen.
Furthermore, the chart offers two rendering modes to choose from:

Absolute Mode In this mode (seen in Figure 4.4a), all series of the chart are rendered as
points in the plane with respect to the horizontal and vertical axis. Consecutive points
of every series are connected by line segments of different color to indicate continuity
in time.

This mode enables users to easily compare values of different series to each other.
However, since the experimental data often includes one or two prevailent series, it
also frequently overshadows the remaining series as they are rendered over each other,
making it harder to read their values.

Stacked Mode In this mode (seen in Figure 4.4b), the six series corresponding to cluster
counts are rendered in a stacked chart, cumulatively adding to each other. Each cluster
type series corresponds to a colored area in the chart, while the remaining series are
rendered in the same way as in the absolute mode.

In comparison to the previous mode, this mode distorts the absolute values of the
series. It however much better portrays the ratio of representation of one series to
another, especially in situations when series have similar values.

31

CHAPTER 4. SERVER IMPLEMENTATION

(a) Absolute mode.

(b) Stacked mode.

Figure 4.4: Example of the same overview chart rendered in different modes.

4.4.3 Main Chart Area

As the name suggests, the main chart area is the primary section of the UI dedicated to plots
of frames from the TPX detectors. By default, it shows only data from a single detector. It
can however be configured to partition itself into multiple cells, each corresponding to data
acquired by a different detector in the network. This feature is often useful on large screens
and projectors.

Each cell consists of two square charts, corresponding to individual sensor layers of the
detector. Both charts are identical in their layout and internal structure, differing only in
the data visualized. Since frames are in their essence pixel matrices, charts visualize them
in a standard way by mapping pixel values to different colors, which are later used to fill
rectangular areas in the chart. Frame charts can be customized in several ways:

Visualized Values If a visualized frame has been captured in the TOT mode, calibration
method described in [8] can be used to obtain energy values from raw counter values.
In other operation modes, only counter values are available.

By default, both charts visualize energy values in the TOT mode and counter values in
the other modes. This setting can however be overridden to always visualize counter
values in all modes instead.

Scale Bounds In order to map pixel values to colors, a determinate interval must be speci-
fied to establish scale bounds. This interval is by default calculated from the visualized

32

4.4. USER INTERFACE DOCUMENTATION

frame automatically. Users can configure its bounds to any fixed values by deactivating
the auto range checkbox in the details panel.

Scale Types Given specific scale bounds and values of individual pixels, any function can
be used to map absolute values to relative values from a [0; 1] interval. By default,
a simple linear mapping is used for this task. Users can change this setting to a
logarithmic mapping, which better accentuates order differences between individual
pixel values in some frames.

Color Themes The choice of color corresponding to a value between zero and one is purely
arbitrary. The visualization UI offers three color themes commonly used in other
research programs:

• The Jet theme ranges from blue to red, and passes through the colors cyan, yellow,
and orange.

• The Hot theme varies smoothly from black through shades of red, orange, and
yellow, to white.

• The Gray theme returns a linear grayscale ranging from black to white.

Apart from the listed customizations, frame charts show interactive data labels by re-
sponding to mouse movements over the chart area. When the mouse enters the frame, two
perpendicular lines are drawn on the pixels underneath the mouse cursor. These lines track
the cursor while it hovers over the chart. In addition, several rows of descriptive information
are displayed next to the intersection of the lines, giving details on the pixel values and
various properties of its associated cluster.

Furthermore, frame charts offer a simple zooming feature. When hovering over the frame
area, users can use the drag-and-drop mouse gesture2 to highlight a square portion of the
frame. Bounding line segments of this square are then set as the new bounds of the horizontal
and vertical axes of the chart. To zoom back, users need to double-click on any position in
the frame area.

4.4.4 Details Panel

The details panel is located on the right of the main chart area and consists of multiple
auxiliary screens, mostly dedicated to providing further details on the information displayed
to the left. The panel is controlled by tabs on the top, each corresponding to a single screen.
Only one tab can be selected at any instance. This tab is then highlighted and the respective
screen is displayed underneath it.

Statistics Screen The statistics screen provides a detailed statistical overview of the cur-
rently plotted frames. Should multiple detectors be selected for visualization, it offers
an option to select one of the devices as a data source for the overview.

The statistics consist of two tables. The first table contains cluster counts, calculated
on separate rows for every cluster type. Next to the number of clusters, a flux column is

2The drag-and-drop gesture consists of depressing the left mouse button, dragging the mouse while still
holding the button down and then releasing it at a desired position.

33

CHAPTER 4. SERVER IMPLEMENTATION

displayed. At the bottom of the table, values from both columns are summed together,
producing a grand total.

The second table is displayed only in cases, when the frame has been captured in the
TOT mode. It includes a sum of energies from all clusters in the frame and average
energy per cluster with a flux column. At the bottom of the table a calculation of
instantaneous luminosity from the number of clusters is displayed. This calculation
however makes only sense in frames, which are not fully saturated.

By default, data from both sensor layers are used in the statistical computations. User
may however opt to differentiate statistics by individual sensor layers, doubling the
amount of figures in both tables.

Information Screen The information screen displays configuration of the current detector.
Similarly to the statistics screen, when multiple detectors are selected, it offers an
option to select one of the devices as a data source.

The displayed information is grouped in several sections. The first section displays time
information, such as the start time and the acquisition time of the frame. The following
section displays technical information, for example operation mode, frequency of the
TPX clock signal and a unique identification of the chip used to capture the frame.

The last two sections contain secondary information, such as the position and orienta-
tion of the detector within the ATLAS machine, or the index information of the ROOT
data file, from which the displayed frame has been extracted.

Filter Screen The filter screen does not show any information. Instead, it allows users to
modify displayed data by setting arbitrary predicates. Since most of such predicates
operate on numerical measures (for detailed listing, see Section 1.2.2), they can be
specified by defining a minimum and maximum value.

For convenience, each predicate has an additional switch, which determines if it is
active on the current data set. Furthermore, user can activate the warn mode, in which
a contrasting color is used to highlight all pixels violating the set predicate instead of
hiding them.

When any of the predicates is active, it is not only applied on the displayed charts in
the main chart area, but also on the figures displayed on the statistics screen. This is
convenient for many applications. To avoid possible confusion, every time predicates
are active, a notice is displayed above the statistics screen informing that the values
are calculated from only a portion of the frame data.

In addition to numeric predicates, clusters can be also filtered by shape classification
(or by location on pixel matrix). This filtering is achieved by selecting permitted cluster
types (or matrix regions) from an exhaustive list of all possible options.

Settings Screen Similarly to the filter screen, the settings screen does not display any
additional information to the user. It merely serves to configure the visualization of
the data by enabling or setting various options of the charts.

34

4.5. PLOTTING OPTIMIZATIONS

4.4.5 Status Bar

As in the most UI applications, the status bar is located at the very bottom of the screen.
Its primary purpose is to inform users of the current state of the visualization, most notably
whether a data download is in progress, or whether the visualization is ready for new com-
mands. In addition, in which every procedure is measured and the time is displayed in the
status bar.

4.5 Plotting Optimizations

Since rendering of all charts in the application occurs on the client side, where hardware
performance is not guaranteed, the web visualization UI attempts to improve the rendering
process as much as possible. This section lists few notable examples of methods used to
minimize rendering latency and improve the overall appearance of the plotted output.

4.5.1 Prerendering

Both frame charts and the overview chart offer interactive features. For that reason, their
canvases often require to be redrawn upon various user-generated events, such as mouse
cursor movements or mouse clicks. Since re-rendering of the entire chart could represent
a time-consuming operation, especially on computers with weak hardware, optimization of
this procedure is required.

Observant users of the visualization could have noticed that often enough, only a portion
the charts in question needs to be redrawn. This can, for instance, be demonstrated on one of
the frame charts. When the user’s mouse is hovering over the chart, two perpendicular lines
forming a cross appear and track its movements. That would imply that the entire chart
is redrawn every time the mouse moves. However, the mouse movement does not affect
the data plotted in the chart in any way. To exploit this observation, the chart, which was
originally rendered as a whole on a single canvas, is divided into multiple auxiliary canvases,
each of them responding to different events.

The auxiliary canvases are transparent, have the same size as the original chart and are
laid on top of each other like layers in a photo editor. In addition, every auxiliary canvas
maintains an additional bit value signifying whether its state is valid. The validity of a canvas
can be defined in this context as the state of synchronization between the information drawn
on the canvas and the data, which is used to generate such information. Upon different
events, some of the auxiliary canvases are invalidated (meaning that their validity bit is set
to the invalid value). Later on, when the chart is requested to be re-rendered, only those
auxiliary canvases, which are invalid, are actually redrawn, saving processor time spent for
drawing the remaining canvases.

This technique speeds up the chart rendering significantly, as only portions of charts
are redrawn due to UI events. It also implies that every event that affects rendering of UI
elements has to come with additional information specifying, which auxiliary canvases need
to be invalidated. However, with semantical division of the chart (such as partitioning into
data area, scale labels and the mouse cross), this does not seem a complicated task.

35

CHAPTER 4. SERVER IMPLEMENTATION

4.5.2 Pixel Drawing

One of the UI bugs which proved quite tedious to resolve involved colored rectangles drawn
to represent individual pixels of a TPX detector. Given the possibility of zooming, every
frame chart has to be able to plot at least 2×2 and at most 256×256 of such pixel rectangles.
Since dimensions of the charts adapt to the dimensions of the browser window, every time
the window is resized, new dimensions of pixel rectangles need to be calculated.

This calculation is fairly straightforward, but since it utilizes floating-point arithmetic,
its results may happen to be imprecise in some cases. And due to this imprecision, pixel
rectangles in frame charts used to suffer from periodical fractional offsets, which manifested
themselves in the form of a thin grid.

To resolve this issue, the auxiliary canvas responsible for data plots is automatically scaled
to size, which is slightly greater than the actual amount of pixels available for rendering,
but is a multiple of the number of detector pixels to plot. Consequently, the calculated
pixel rectangle dimensions are integer values, and thus allow the usage of the ImageData
API 3. After the pixels are rendered in the canvas, it is scaled back down to the exact size
of the plot area. At this point, antialiasing is performed. However, since the canvas has
already been filled with colored rectangles, there are no transparent pixels from which a
grid-like structure could be formed. For that reason, a conventional antialiasing algorithm
will produce a satisfying picture.

4.5.3 Sub-pixel Rendering

To render all charts sharply, sub-pixel rendering is supported. Screens with standard pixel
resolutions map logical pixels (drawing primitive referenced by the software) to physical
pixels (light-emitting devices present in the hardware) bijectively. In comparison, high reso-
lution screens divide their logical pixels uniformly in a way, such that a single logical pixel is
displayed by multiple physical pixels. The ratio between the number of physical and logical
pixels is defined in the HTML 5 standard [12] as devicePixelRatio4.

When determining chart sizes prior to rendering, the visualization UI reads the value
of the pixel ratio of the current screen and uses it as a coefficient to upscale all canvases
accordingly. Contents of charts are then drawn on the canvases, utilizing the enhanced
resolution of the screen.

4.6 Deployment

Because the server application consists of two independent daemons, each operating on a
different platform, a dedicated deployment method is used. In this section, such method is
described in detail.

3The ImageData API is a part of HTML Canvas API, which allows its users to render pictures by setting
values of color components of individual pixels in the bitmap. This approach is faster than the conventional
API and guaranteed to not use antialiasing. For more information, see Section 4.12.4.2.16 of [12].

4For instance, Retina display of Apple iPhone 4 has physical resolution 960 × 640 and logical resolution
480× 320. Its pixel ratio is therefore 2.

36

4.6. DEPLOYMENT

4.6.1 Extension Script Translation

For coding comfort, the website source makes use of extension languages such as LESS or
TypeScript. These languages are respective extensions of the standard CSS and JavaScript,
implementing useful features, which are missing or are not supported by their base coun-
terparts. However, since ordinary web browsers are not capable of parsing their advanced
syntax, all LESS and TypeScript source files need to be translated by a third-party tool
before the web application can be deployed.

The products of the translation process are further optimized for deployment by the
process of minification, which removes source code comments, white spaces and obfuscates
variable and method names in order to compress file size. Since the code is separated into
multiple files, such files are concatenated to minimize the amount of HTTP requests needed
to fully load the visualization UI. At the end of this procedure, two compressed files in CSS
and JavaScript are generated.

4.6.2 Bower Dependencies

The web application utilizes various open source libraries, most notably jQuery and the
Bootstrap Framework. To manage all such dependencies in a well arranged way, the Bower
dependency management system is used. The web visualization specifies a Bower manifest
file in the JSON format. This file lists all dependencies as well as their minimum compatible
versions.

When the visualization is deployed, the Bower tool is executed to fetch the latest ver-
sions of the required libraries and add their redistributable resources to website contents.
This process is deeply integrated with the extension script translation, as the redistributable
resources are concatenated with other stylesheets and scripts and minified together. Some
dependencies even support strongly-typed bindings in TypeScript. These bindings are down-
loaded along with the redistributable resources and are used to validate client-side scripts
during the translation phase.

4.6.3 Grunt Build System

The Grunt system links all deployment phases together. In a way similar to Makefile, it allows
target-driven execution of tasks with possible dependencies and variable arguments. This
system is also integrated with the standard Node.js package manager application. To deploy
the web visualization UI on the server, two main targets are defined in the application’s
Gruntfile:

Production Target The primary purpose of this target is to deploy the web visualization
UI with maximum emphasis on speed optimization. All possible files including depen-
dencies are concatenated and minified to minimize loading time of the website in the
production environment.

Debug Target This target is not intended for production use. Its purpose is to maximize
readability of the code for the purposes of debugging and development. To achieve this
effect, several build phases such as minification and obfuscation are skipped.

37

CHAPTER 4. SERVER IMPLEMENTATION

4.7 Data Import

Since the JSTP server uses the index database to locate data files based on any given start
time, all data files subject to visualization must be stored in the ROOT format and referenced
in the rootfiles SQL table.

Accounting for the ever-growing nature of ATLAS-TPX footage, a periodical procedure
needs to be performed every time new data arrives from CERN, in order to keep the visu-
alization UI up-to-date. At the time of writing this work, this procedure is semi-automated
and initiated manually every day by the researchers at IEAP.

4.7.1 Processing Stages

At CERN, the control PC generates raw data files from the read-out interface of every
detector in the network. Data is produced on a hourly basis and saved in the form of
multi-frame files. Using FTP, these files are transferred into a temporary directory on the
target hard drive. When all file transfers are completed and the validity of files is confirmed,
several scripts designed to check consistency of detector acquisition are executed. These
scripts analyze contents of received files, reading common configuration values such as the
acquisition time or bias voltage, and attempt to find variations between individual frames.

Should these scripts succeed in detecting suspicious values, the files in question are moved
into a separate directory and await further inspection by researchers. Otherwise, they move
on to the next stage of processing. In this stage, captured frames are subjected to the cluster
analysis (for more information about this process, see Section 1.2.2). Should the frames be
captured in the TOT mode, at this point calibration data is used in combination with the
method described in [8] to calculate energy values. At the end of this process, ROOT files
are produced.

Since the original multi-frame files are not needed anymore, they can be discarded without
data loss (or compressed for the purposes of long-term archiving). The ROOT files are
moved from the temporary directory to their final location on the hard drive containing the
ATLAS-TPX footage database. Subsequently, a dedicated instance of the JSTP data server
application is configured to generate information in the index database, in effect registering
them for retrieval of JSTP information. From this point onward, the JSTP server as well as
the web visualization UI are able to read frames stored within newly added files.

At the present time, the procedure of extending TPX database with new footage is
time-consuming as its processing stages often perform similar operations repeatedly for dif-
ferent purposes. For example, a single enumeration of multi-frame files should suffice both
for consistency checking and cluster analysis. Furthermore, index data corresponding with
produced ROOT files can be generated at the time of their production.

It is however worth noting that this procedure was originally designed in the fall of 2015
with the sole purpose of transferring data from CERN to IEAP. Its automation is currently
under investigation.

38

Chapter 5

Conclusion

In the initial state, there was no sophisticated visualization for data from the ATLAS-
TPX network. This work has proposed a universal storage system, capable of holding data
captured by 15 detectors in the ROOT file format. It has also defined an auxiliary database
built atop SQL, which has achieved the acceleration of the most common queries through
various performance optimization techniques. An interactive web visualization UI has been
designed and implemented along with a server-side component to transcode TPX data into
JSTP, a proprietary data format defined to efficiently encode frames for network transfers.
The architecture of the server implementation allows multiple users to operate the system
simultaneously by the use of multi-threading.

At the time of writing this work, the web visualization UI is available1 online. It is
capable of displaying frames from single as well as multiple TPX detectors simultaneously.
However, apart from plotting charts and calculating various statistics, it also allows its users
to interact with the displayed content by applying magnification, setting arbitrary predicates
and integrating over consecutive frames. For that reason, it has various applications in data
analysis and visualization, and can be used in other experiments involving Timepix detectors.

1<http://atlastpx.utef.cvut.cz>

39

http://atlastpx.utef.cvut.cz

CHAPTER 5. CONCLUSION

(a) Visualization in regular operation mode.

(b) Visualization with magnification enabled.

Figure 5.1: Screenshots of the visualization UI.

40

Bibliography

[1] Rene Brun and Fons Rademakers. ROOT — an object oriented data analysis frame-
work. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 389(1–2):81 – 86, 1997. New Com-
puting Techniques in Physics Research V.

[2] Lasse Collin. A quick benchmark: Gzip vs. bzip2 vs. lzma, 2005.

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext transfer protocol – HTTP/1.1, 1999.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[5] Erik H.M. Heijne, Rafael Ballabriga Sune, Michael Campbell, Claude Leroy, Xavier
Llopart, Jean-Pierre Martin, Stanislav Pospisil, Jaroslav Solc, Paul Soueid, Michal Suk,
Lukas Tlustos, Daniel Turecek, Zdenek Vykydal, and Winnie Wong. Measuring radi-
ation environment in LHC or anywhere else, on your computer screen with medipix.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 699:198 – 204, 2013. Proceedings of
the 8th International “Hiroshima” Symposium on the Development and Application of
Semiconductor Tracking Detectors, Academia Sinica, Taipei, Taiwan, December 5 – 8,
2011.

[6] T. Holy, E. Heijne, J. Jakubek, S. Pospisil, J. Uher, and Z. Vykydal. Pattern recognition
of tracks induced by individual quanta of ionizing radiation in medipix2 silicon detec-
tor. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 591(1):287 – 290, 2008. Radiation
Imaging Detectors 2007, Proceedings of the 9th International Workshop on Radiation
Imaging Detectors.

[7] T. Holy, J. Jakubek, S. Pospisil, J. Uher, D. Vavrik, and Z. Vykydal. Data acquisi-
tion and processing software package for Medipix2. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 563(1):254 – 258, 2006. Proceedings of the 7th International Workshop on
Radiation Imaging Detectors IWORID 2005, 7th International Workshop on Radiation
Imaging Detectors.

41

BIBLIOGRAPHY

[8] Jan Jakubek. Precise energy calibration of pixel detector working in time-over-threshold
mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 633, Supplement 1:S262 – S266,
2011. 11th International Workshop on Radiation Imaging Detectors (IWORID).

[9] V Kraus, M Holik, J Jakubek, M Kroupa, P Soukup, and Z Vykydal. FITPix — fast
interface for timepix pixel detectors. Journal of Instrumentation, 6(01):C01079, 2011.

[10] X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong. Timepix, a 65k pro-
grammable pixel readout chip for arrival time, energy and/or photon counting measure-
ments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 581(1–2):485 – 494, 2007. VCI
2007, Proceedings of the 11th International Vienna Conference on Instrumentation.

[11] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In ACM Sigplan notices, volume 42, pages 89–100. ACM, 2007.

[12] HTML: A living standard, 2016.

[13] D. Turecek, T. Holy, S. Pospisil, and Z. Vykydal. Remote control of atlas-mpx net-
work and data visualization. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 633, Sup-
plement 1:S45 – S47, 2011. 11th International Workshop on Radiation Imaging Detectors
(IWORID).

[14] Daniel Turecek. Software for Radiation Detectors Medipix. Master’s thesis, Czech
Technical University in Prague, Czech Republic, 2011.

42

Appendix A

Index Database Scripts

This appendix contains PostgreSQL scripts used to define the data structure of the index
database.

A.1 Access Roles

To access the database, two user roles are created. While the first allows read-only access,
the latter also permits users to modify the data.

1 CREATE ROLE tpx_readers
2 NOSUPERUSER INHERIT NOCREATEDB NOCREATEROLE NOREPLICATION;
3

4 CREATE ROLE tpx_writers
5 NOSUPERUSER INHERIT NOCREATEDB NOCREATEROLE NOREPLICATION;

A.2 Tables

All index data is stored in the form of SQL table rows. This section contains definition of
three tables, capable of persisting information further described in Section 2.3.1.

A.2.1 Detector Table

1 CREATE SEQUENCE seq_sid
2 INCREMENT 1
3 MINVALUE 1
4 MAXVALUE 9223372036854775807
5 START 15
6 CACHE 1;
7 ALTER TABLE seq_sid
8 OWNER TO tpx_writers;
9 GRANT ALL ON SEQUENCE seq_sid TO tpx_writers;

10

11 CREATE TABLE sensors

43

APPENDIX A. INDEX DATABASE SCRIPTS

12 (
13 sid integer NOT NULL DEFAULT nextval('seq_sid'::regclass),
14 name text,
15 calibration_layer1 double precision,
16 calibration_layer2 double precision,
17 CONSTRAINT pk_sid PRIMARY KEY (sid)
18)
19 WITH (
20 OIDS=FALSE
21);
22 ALTER TABLE sensors
23 OWNER TO tpx_writers;
24 GRANT ALL ON TABLE sensors TO tpx_writers;
25 GRANT SELECT ON TABLE sensors TO tpx_readers;

A.2.2 File Table

1 CREATE SEQUENCE seq_fid
2 INCREMENT 1
3 MINVALUE 1
4 MAXVALUE 9223372036854775807
5 START 3688
6 CACHE 1;
7 ALTER TABLE seq_fid
8 OWNER TO tpx_writers;
9 GRANT ALL ON SEQUENCE seq_fid TO tpx_writers;

10

11 CREATE TABLE rootfiles
12 (
13 fid integer NOT NULL DEFAULT nextval('seq_fid'::regclass),
14 path text NOT NULL,
15 date_added timestamp without time zone NOT NULL DEFAULT timezone('utc'::text, now()),
16 start_time timestamp without time zone NOT NULL,
17 end_time timestamp without time zone NOT NULL,
18 count_frames integer NOT NULL,
19 count_entries integer NOT NULL,
20 date_checked timestamp without time zone NOT NULL DEFAULT timezone('utc'::text, now()),
21 sid integer NOT NULL,
22 checksum character varying(40),
23 CONSTRAINT pk_fid PRIMARY KEY (fid),
24 CONSTRAINT fk_sid FOREIGN KEY (sid)
25 REFERENCES sensors (sid) MATCH SIMPLE
26 ON UPDATE NO ACTION ON DELETE NO ACTION
27)
28 WITH (
29 OIDS=FALSE
30);
31 ALTER TABLE rootfiles
32 OWNER TO tpx_writers;
33 GRANT ALL ON TABLE rootfiles TO tpx_writers;
34 GRANT SELECT ON TABLE rootfiles TO tpx_readers;
35

36 CREATE UNIQUE INDEX idx_path
37 ON rootfiles

44

A.2. TABLES

38 USING btree
39 (path COLLATE pg_catalog."default");
40

A.2.3 Frame Table

1 CREATE SEQUENCE seq_frid
2 INCREMENT 1
3 MINVALUE 1
4 MAXVALUE 9223372036854775807
5 START 178994830
6 CACHE 1;
7 ALTER TABLE seq_frid
8 OWNER TO tpx_writers;
9

10 CREATE TABLE frames
11 (
12 start_time timestamp without time zone NOT NULL,
13 fid integer NOT NULL,
14 dsc_entry integer NOT NULL,
15 clstr_first_entry integer,
16 clstr1_count integer NOT NULL,
17 clstr2_count integer NOT NULL,
18 clstr3_count integer NOT NULL,
19 clstr4_count integer NOT NULL,
20 clstr5_count integer NOT NULL,
21 clstr6_count integer NOT NULL,
22 sid integer NOT NULL,
23 acquisition_time interval NOT NULL,
24 occupancy integer,
25 frid bigint NOT NULL DEFAULT nextval('seq_frid'::regclass),
26 CONSTRAINT pk_frid PRIMARY KEY (frid),
27 CONSTRAINT fk_fid FOREIGN KEY (fid)
28 REFERENCES rootfiles (fid) MATCH SIMPLE
29 ON UPDATE NO ACTION ON DELETE CASCADE,
30 CONSTRAINT fk_sid FOREIGN KEY (sid)
31 REFERENCES sensors (sid) MATCH SIMPLE
32 ON UPDATE NO ACTION ON DELETE CASCADE
33)
34 WITH (
35 OIDS=FALSE
36);
37 ALTER TABLE frames
38 OWNER TO tpx_writers;
39 GRANT ALL ON TABLE frames TO tpx_writers;
40 GRANT SELECT ON TABLE frames TO tpx_readers;
41

42 CREATE INDEX fki_fid
43 ON frames
44 USING btree
45 (fid);
46

47 CREATE INDEX fki_sid
48 ON frames

45

APPENDIX A. INDEX DATABASE SCRIPTS

49 USING btree
50 (sid);
51

52 CREATE UNIQUE INDEX id_start_time_fid
53 ON frames
54 USING btree
55 (start_time, fid);
56

57 CREATE UNIQUE INDEX idx_fid_dsc_entry_start_time
58 ON frames
59 USING btree
60 (fid, dsc_entry, start_time);
61

62 CREATE INDEX idx_start_time
63 ON frames
64 USING btree
65 (start_time);
66

67 CREATE UNIQUE INDEX idx_start_time_sid
68 ON frames
69 USING btree
70 (start_time, sid);

46

Appendix B

Documentation of JSTP
Web Methods

This chapter includes detailed documentation of the JSTP web service along with protocol
conventions, parameter descriptions and examples of requests and responses.

B.1 API Conventions

1. When referring to the HTTP endpoint of the web service in method URLs, “<endpoint>”
is used as a stand-in string.

2. All date and time information is transmitted as the number of seconds from the mid-
night of January 1, 1970 (in UTC). Durations are transmitted in seconds and energies
in keV.

3. JSTP responses support HTTP status codes: 200 (OK), 400 (Bad Request), 404 (Not
Found) and 500 (Internal Server Error).

4. All JSTP web methods use the JSON format for serialization of request parameters
and response data. When parameters are required, the server expects the client to
initiate a POST request, passing their values in a JSON object as a part of the post
data. Unless specified otherwise, all method parameters are mandatory.

B.2 Detector List

To execute this method, a client must initiate a GET request to <endpoint>/sensors without
any parameters. When successful, the server responds by returning an array of objects, each
of which corresponds to a single device in the TPX network. Example of such response is
provided in Listing B.1. Every object in the array is guaranteed to contain:

sid Unique numeric identifier of the device retrieved from the index database.

name Readable name of the device.

47

APPENDIX B. DOCUMENTATION OF JSTP WEB METHODS

1 [
2 {
3 "sid": 1,
4 "name": "tpx01"
5 },
6 {
7 "sid": 2,
8 "name": "tpx02"
9 }

10]

Listing B.1: Example response containing a list of two devices.

B.3 Overview of Acquisition

To execute this method, a client must initiate a POST request to <endpoint>/timeline.
The request body must contain a JSON object with all parameter values. You can examine
an example request body in Listing B.2.

1 {
2 "startTime": 1438052400,
3 "endTime": 1438063200,
4 "groupPeriod": 3600,
5 "sensors": [1, 2],
6 "normalize": true
7 }

Listing B.2: Example request body with time period starting at July 28, 2015 at 3:00 AM
and ending at 6:00 AM. Data from 2 detectors is requested to be normalized and grouped
by every hour. Response is expected to contain exactly 3 intervals.

When successful, the server responds by returning an array of objects, each of which
responds to a single interval in the time period. For example response, see Listing B.3.
Every object in the array is guaranteed to contain:

time Start time of the interval. End time of the interval can be calculated at by adding
groupPeriod to this value.

frames Number of frames aggregated in the time interval.

occupancy Count of non-zero pixels in all aggregated frames, indicating the levels of satu-
ration. The maximum possible occupancy is equal to the product of pixels in a single
sensor layers, the number of sensor layers and the number of aggregated frames in the
interval.

counts Array of counts of clusters in all aggregated frames, differentiated by their type
classification. Counts are provided in the order: dots, small blobs, heavy blobs, heavy
tracks, straight tracks, curly tracks.

48

B.4. FRAME SEARCH

If the calculations are normalized, individual contributions to these counts from every
frame are divided by frame’s acquisition time, yielding overall flux instead of counts.

1 [
2 {
3 "time": 1438052400,
4 "frames": 2,
5 "occupancy": 3,
6 "counts": [0.15, 0, 0, 0, 0, 0]
7 },
8 {
9 "time": 1438056000,

10 "frames": 3,
11 "occupancy": 2,
12 "counts": [0.0666667, 0, 0, 0, 0, 0]
13 },
14 {
15 "time": 1438059600,
16 "frames": 2,
17 "occupancy": 16,
18 "counts": [0.1, 0.1, 0, 0, 0, 0.05]
19 }
20]

Listing B.3: Example response to the request from Listing B.2.

B.4 Frame Search

To execute this method, a client must initiate a POST request to <endpoint>/frame. The
request body must contain a JSON object with all parameter values:

time The search time parameter.

sensors Array of distinct sid values of the devices, from which we wish to retrieve data.
This array must not be empty.

searchMode A non-negative integer value specifying the algorithm to be used in the search
operation. Possible values are 0 (Sequential Forward Mode) and 1 (Sequential Back-
ward Mode).

integralFrames A positive integer not greater than 100 controlling the number of frames
integrated in time. Value equal to 1 retrieves only a single frame. This value must be
equal to 1 when frames from more than one device are requested.

For an example request, see Listing B.4. In response, the server returns an object con-
taining foundTime, the start time of the master frame, and frames, an array of objects
corresponding with frames captured by every device in the order, in which they were refer-
enced in the sensors array. Every object is guaranteed to contain:

49

APPENDIX B. DOCUMENTATION OF JSTP WEB METHODS

1 {
2 "time": 1438052400,
3 "sensors": [1],
4 "searchMode": 0,
5 "integralFrames": 1
6 }

Listing B.4: Example request body with time parameter equal to July 28, 2015, 3:00 AM.
A single frame captured by a single detector is requested to be located by the Sequential
Forward Mode.

rootFile Path to the ROOT file, from which this frame was extracted (in the server’s file
system).

rootFrameIndex Index of the entry in ROOT file’s dscData tree, containing information
about detector configuration.

rootFirstClusterIndex Index of the first entry in ROOT file’s clusterFile tree, corre-
sponding with the first cluster in the frame. If no such entry exists, this value is null
or negative.

layers Number of detector’s sensor layers.

startTime The start time of acquisition.

acquisitionTime The acquisition time (the length of acquisition) in seconds.

biasVoltage The array of bias voltages of the active sensor layers of the TPX detector.

mode Operation mode of the TPX detector. Possible values are: MPX (0), TOT (1), one-hit
(2), TOA (3), mixed (4). For more information, see Section 1.1.1.

chipboardId The identifier of the hardware used in the TPX detector.

maskedPixels The number of masked pixels at the time of acquisition.

layerNames The array of human-readable labels for the active sensor layers of the TPX
detector.

calibrationConstants The array of constants, which can be used in conjunction with TOT
data to calculate instantaneous luminosity estimation for every active sensor layer.
These constants are available only for some devices.

position Position of the TPX detector within the ATLAS machine’s coordinate system.

clusters Sparse array of clusters found in the frame. Each cluster is represented by a
separate JSON object. The ordering of such objects is not defined.

Every object in the clusters array is guaranteed to contain:

x Array of X coordinates of the pixels in the cluster.

50

B.4. FRAME SEARCH

y Array of Y coordinates of the pixels in the cluster.

counter Array of counter values of the pixels in the cluster.

energy Array of energy values of the pixels in the cluster (available only in the TOT mode).

entry Index of the entry in ROOT file’s clusterFile tree, corresponding to this cluster.

layer Number of the active sensor layer, to which the cluster belongs.

type Nonnegative integer determining the type classification of the cluster. Possible values
are: dot (1), small blob (2), heavy blob (3), heavy track (4), straight track (5) and
curly track (6). For more information, see Figure 1.3.

size The number of pixels in the cluster.

roundness Morphological value describing the roundness of the cluster.

linearity Morphological value describing the linearity of the cluster.

region Nonnegative integer determining the region of the active sensor layer, in which the
cluster is located. Possible values are: mixed (0), silicon (1), polyethylene (2), polyethy-
lene with aluminum (3), lithium fluoride (4).

energyMaxHeight The highest energy value of the pixels in the cluster (available only in the
TOT mode).

energyMinHeight The lowest energy value of the pixels in the cluster (available only in the
TOT mode).

energyVolume The sum of energy values of the pixels in the cluster (available only in the
TOT mode).

counterMaxHeight The highest counter value of the pixels in the cluster.

counterMinHeight The lowest counter value of the pixels in the cluster.

meanX The average X coordinate of the pixels in the cluster.

meanY The average Y coordinate of the pixels in the cluster.

volCentroidX The average X coordinate of the pixels in the cluster, weighted by counter
values.

volCentroidY The average Y coordinate of the pixels in the cluster, weighted by counter
values.

51

APPENDIX B. DOCUMENTATION OF JSTP WEB METHODS

52

Appendix C

Nomenclature

AFP Apple Filing Protocol, a network protocol mainly used for providing shared access
to files on clients and servers compatible with operating systems developed by Apple
Computer, Inc.

API Application Programming Interface, a set of routines, protocols and tools for building
software and applications.

ASIC Application-specific Integrated Circuit.

ATLAS A Toroidal LHC Apparatus, one of particle detector experiments constructed at
LHC.

CERN European Organization for Nuclear Research (French name: Conseil Européen pour
la Recherche Nucléaire), based in Geneva, Switzerland.

CIFS Common Internet File System. See SMB.

CPU Central Processing Unit.

CRUD Create, Read, Update, Delete, four basic operations of persistent storage system.

CSS Cascading Style Sheets, a language used to describe presentation of web pages.

CTU Czech Technical University (Czech name: České vysoké učení technické), based in
Prague, Czech Republic.

DCS Detector Control Systems, a system providing control of sub-detectors and of common
infrastructure of the experiment and communication with the services of CERN.

DOM Document Object Model, a family of XML parsers which generate a tree structure in
memory from parsed content.

DPI Dots per Inch, a measure of screen pixel resolution.

EOS A primary storage system at CERN for LHC experiments.

53

APPENDIX C. NOMENCLATURE

FTP File Transfer Protocol, a network protocol mainly used for providing shared access to
files.

HTML Hypertext Markup Language, a standard markup language used to create web pages.
[12]

HTTP Hypertext Transfer Protocol.

IEAP Institute of Experimental and Applied Physics (Czech name: Ústav technické a ex-
perimentální fyziky), based in Prague, Czech Republic.

JSON JavaScript Object Notation, a data format derived from JavaScript.

JSTP JSON Timepix Protocol, a protocol used to transmit captured frames to the web
visualization UI. For its description, see Section 3.

LESS A dynamic style sheet language which can be compiled into CSS.

LHC Large Hadron Collider, an experimental facility built by CERN.

LS Long Shutdown, a period in CERN time schedule characteristic by temporary cessa-
tion of operation of particle accelerators and increased maintenance.

MIME A two-part file format identifier.

MPX Medipix, a semiconductor pixel detection chip.

OS Operating System.

ROOT An object oriented data analysis framework. [1]

RPC Remote Procedure Call, a mechanism used to execute computer subroutines on ma-
chines over a network.

SAX Simple API for XML, a family of XML parsers which generate various events while
processing content sequentially.

SMB Server Message Block (also known as the Common Internet File System), a network
protocol mainly used for providing shared access to files.

SQL Structured Query Language, a language designed to define, manage and query data
in a relational database system.

SSH Secure Shell, a cryptographic network protocol commonly used for remote command-
line access and remote command execution.

TOA Time of Arrival operation mode. For more information, see section 1.1.1.

TOT Time of Threshold operation mode. For more information, see section 1.1.1.

TPX Timepix, a semiconductor pixel detection chip succeeding Medipix2.

UI User Interface.

54

UNIX A family of computer operating systems.

URI Uniform Resource Identifier, a string of characters used to identify a resource.

URL Uniform Resource Locator, commonly known as web address.

UTC Coordinated Universal Time, a primary worldwide standard used to regulate clocks
and time.

XML Extensible Markup Language, a standard markup language.

55

APPENDIX C. NOMENCLATURE

56

Appendix D

Contents of the Attached DVD

Attached DVD

index.html – the main disambiguation file

texts/ – directory containing additional texts

bachelor-project.pdf – digital version of this document

abstract-czech.txt – abstract in Czech

abstract-english.txt – abstract in English

images/ – directory containing figures and additional images

data/ – sample TPX data encoded in the ROOT format

visualization/ – node.js visualization directory

public/ – optimized website application

src/ – source code in HTML, LESS and TypeScript

README.md – dependencies and deployment instructions

jstp-server/ – JSTP server directory

dist/ – compiled binaries

src/ – server source code in C++

docs/ – HTML documentation generated by Doxygen

README.md – dependencies and building instructions

Figure D.1: Contents of the attached DVD

57

	Introduction
	About Timepix Detector
	Operation Modes

	ATLAS-TPX Network
	Read-out Interface
	Cluster Analysis

	Common Data Storage Formats
	Plain Text
	ROOT Framework
	Data Manipulation Problem

	Structure of This Document

	Data Structure and Storage
	Formal Requirements
	Database
	Definition
	Expected Volume of Data

	Index Database
	Definition
	Performance Optimization
	Data Aggregation and Metaindexing

	Communication Protocol
	Remote Access
	Considerations
	Requirements

	Underlying Standards
	Web Methods
	Detector List
	Overview of Acquisition
	Frame Search

	Miscellaneous

	Server Implementation
	Decomposition
	JSTP Data Server
	Static Web Server

	Object-Oriented Design
	Request Handling
	Behavior Selection
	Content Abstraction

	Performance Optimizations
	ROOT Reading Optimization
	Centralized File Management

	User Interface Documentation
	Header Bar
	Overview Chart Area
	Main Chart Area
	Details Panel
	Status Bar

	Plotting Optimizations
	Prerendering
	Pixel Drawing
	Sub-pixel Rendering

	Deployment
	Extension Script Translation
	Bower Dependencies
	Grunt Build System

	Data Import
	Processing Stages

	Conclusion
	Index Database Scripts
	Access Roles
	Tables
	Detector Table
	File Table
	Frame Table

	Documentation of JSTP Web Methods
	API Conventions
	Detector List
	Overview of Acquisition
	Frame Search

	Nomenclature
	Contents of the Attached DVD

