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Abstract
In this thesis we created a framework
for easy evaluation and training of Faster
R-CNN type of networks. We fine-tuned
VGG16 and ZFNet networks on our inter-
nal Victims dataset as well as standard
KITTI dataset. We later showed that
VGG16 architecture is far more suitable
for fine-tuning on data from slightly dif-
ferent training and target domains. This
framework can later serve as a baseline
for further improvements in the field.

Keywords: Faster R-CNN,
Convolutional neural networks,
fine-tuning of neural networks, detection
and recognition of objects

Supervisor: doc. Ing. Tomáš Svoboda,
PhD.

Abstrakt
V této práci jsme vytvořili framework pro
jednoduché vyhodnocení a trénování kon-
volučních neuronových sítí typu Faster
R-CNN. Přetrénovali jsme sítě architektur
VGG16 a ZFNet jak na našich interních
datech z datasetu obětí, tak i na standart-
ním KITTI datasetu. Dále jsme ukázali,
že architektura VGG16 je o mnoho vhod-
nější k přetrénování pomocí dat, které
pocházejí z málo rozdílných trénovacích a
testovacích domén. Vytvořený framework
může do budoucna sloužit jako výchozí
bod pro budoucí vylepšení architektur to-
hoto typu.

Klíčová slova: Faster R-CNN,
Konvoluční neuronové sítě, přetrénování
neuronových sítí, detekce a rozpoznání
objektu

Překlad názvu: Detekce objektů pro
verifikaci autonomních systémů
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Chapter 1
Theory and recent work

1.1 Recent work

Most of the recent work in object detection and recognition revolves around
the need to speed up detection phase of recognition pipeline. One of the most
advancement in this area was made by introducing R-CNN type of networks,
in three iterations – R-CNN [1], Fast R-CNN [2] and Faster R-CNN [3]. R
in R-CNN stands for Regions to illustrate combination of region proposals
with convolutional neural network. The main progress made in last iter-
ation of R-CNN (Faster) was introduction of RPN units. RPN unit is a
Region Proposal Network which takes care of proposing regions of interest
for convolutional network while sharing the weights and computation with
convolutional network used for recognition. Such RPN can be made to output
limited number of proposals in scene and original paper reported that 300
was the most suitable number – therefore we were using only 300 as well.

Another difficulty which we were facing was domain shift. Since our goal
was to have an easily trainable system, which could be potentially used for
different training and testing domain (namely generated data used as training
domain with real data used as testing domain), it was needed to adopt some
techniques necessary to overcome such domain shift. However, due to time
restrictions we were only able to use simple re-training, which was recently
shown by Rozantsev [4] might be insufficient when compared to more recent
techniques. Rozantsev was using simple means of having two concurrent
networks running next to each other while sharing the weights between some
layers and allowing slight transformation between other layers which rendered
to be superior to other techniques previously used to overcome domain shift.

Another important question was which of the convolutional network frame-
works to use. While Caffe [5] seemed to be most reasonable choice mostly
because Faster R-CNN was implemented using Caffe, we also considered using
other frameworks such as TensorFlow [6] by Google or Theano [7]. However,
when using Theano, we would most likely have to write significantly larger
amount of code though with more control over it since Theano is only compiler
of mathematic expressions. Ultimately we chose Caffe for two reasons – it
still has a lot more support in scientific community than TensorFlow and
implementation of Faster R-CNN work was built around it.
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Figure 1.1: Structure of artificial neuron

1.2 Theory

1.2.1 Convolutional neural network

The problem of object detection and recognition is one of the oldest in the
field of computer vision. The object detection deals with finding the objects of
interest in a scene where the multiple objects can be present at once, while the
object recognition tries to classify either objects extracted by object detection
tools or the whole image. The object detection problem is inherently much
more difficult than object recognition since objects can be present in an image
in vast amount of various locations, scales or different aspect ratios. One
of the approaches used for object recognition is using convolutional neural
networks.

The reasoning behind this is rather simple. Since artificial neurons are
trying to simulate actions of real neurons in brain, using a convolutional
network is next logical step because it is believed processing images in our
brain relies on connecting visual information from close surroundings together,
much like convolutional filters do.

The artificial neuron itself (shown on figure 1.1) is described by the equation
o(x) = φ(x>w + w0θ), where φ(·) is a usually non-linear activation function,
w is a weight vector associated with a given neuron, θ is a so called bias of
a neuron and x is the input vector fed into neuron. If we start connecting
these neurons next to each other and then into layers, we get fully-connected
neural networks (shown on figure 1.2).

Convolutional layer differs from fully-connected (fc) layer in a way that
it is not analyzing whole image by each neuron, but rather performing
mathematical operation of convolution of an image – hence the name. In many
implementations of convolutional networks, 2D input image is actually seen as
3D image where the depth of such image is only one pixel for grayscale images
or 3 for colored images, each depth layer coding one of the RGB’s channels.
When performing convolution, it then does not perform 2D convolution, but
3D convolution to be able to further process outputs of previous convolutional
layers with depth higher than 1. Such outputs are also called feature maps.

2
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Figure 1.2: Structure of a three-layered fully-connected neural network
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Figure 1.3: Example of max pooling operation with window 2× 2 and stride 2

Convolutional layer usually consists of several different filters each performing
its own convolution and those are then stacked on top of each other to create
a 3-dimensional feature map where depth is determined by number of filters.

Another type of layer used in modern convolutional networks is pooling
layer ensuring dimensional reduction of propagating feature maps. Main
idea of the pooling layer is to take a square region from a feature map and
produce only one number for each of those regions. There are many different
strategies, but most common is max pooling which simply selects maximal
value from each region due to assumption that high response correlates to
finding a useful feature. Example of max pooling operation can be seen on
figure 1.3

Since convolutional and pooling layers are essentially filters, one can as well
define stride in these layers. While for most architectures, stride of pooling
layers is usually 1 (in both directions x and y), stride for convolutional layers
is quite often higher than 1.

Some authors tend to use ReLU units as well, which stands for Rectified
Linear Units. Such units act as an activation function which simply for each
value in the feature map applies function f(x) = max(0, x). One might think
that such unit have no importance, however it was shown that ReLU unit is
important in increasing capability of network to express non-linearity which

3
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Conv . . . Pool . . . fc . . . Softmax

Figure 1.4: A general architecture of a convolutional neural network. The
rectangles represent layers, . . . represent optional repeating of previous layer.
The ellipse is used to later illustrate possible repeating of a block of layers
encapsulated in the ellipse

is desired.
Often the last layer used is so called softmax layer which just applies the

softmax function to the output vector created by a preceding layer. Softmax
function squeezes the vector in such a way that all the values in the vector
are in range (0;1) and all values in the vector sum up to 1. Another name for
the softmax function is an exponential normalization. The definition of the
softmax function on a K-dimensional vector x can be seen on equation 1.1.

σ(x)i = exi∑K
k=1 e

xi
for i = 1, . . . ,K (1.1)

A general architecture of a convolutional neural network consists of series
of repeating one or more convolutional layers followed by the pooling layer.
After this repetitive series the rest of the network is usually fully-connected
while the last layer is the softmax layer. Such general architecture can be
seen on figure 1.4.

1.2.2 Architecture of used networks

The networks used in our experiments were VGG16 [8] and ZFNet [9]. The
ZFNet network architecture is much smaller than the VGG16 network archi-
tecture – the ZFNet architecture uses 5 convolutional layers with most of them
directly followed by pooling layer while the VGG16 uses 13 convolutional
layers but only 5 pooling layers altogether. Another important difference
is that tha VGG16 network uses only convolutional layers with dimensions
3 × 3 × n (with n being variable according to previous layer output) and
always having stride 1, while ZFNet uses convolutional layers with various
dimensions and strides. The intermediate vector after the last pooling layer
has size of 25088 for the VGG16 architecture while only 9216 for the ZFNet
architecture.

The ZFNet is 8-layer architecture, where the original authors consider
convolutional layer followed by pooling layer to count as 1 layer. The input
layer expects images of dimension 224× 224× 3 (where 3 stands for the RGB
channels) and if the image we want to analyze does not fit this dimension,
we simply scale it without keeping aspect ratio in order to fit. The first layer
consists of 96 convolutional filters of size 7× 7× 3 that have stride of 2 in x
and y directions and stride 1 in z direction. This feature map of dimension
110× 110× 96 is then max-pooled by pooling window of size 3× 3 and stride

4
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2 to have output of the first layer of dimension 55 × 55 × 96. The second
layer consists of 256 filters of dimension 5× 5× 96 while using stride 2 in x
and y directions (and stride 1 in z direction). The feature map of dimension
26× 26 is then again max-pooled by pooling window of size 3× 3 and stride
2 in order to create the second layer’s output of dimension 13 × 13 × 256.
The third layer consists of 384 convolutional filters of dimension 3× 3× 256
with stride 1 in all directions and the fourth layer is essentially the same with
384 filters of size 3 × 3 × 384 with stride 1 in all directions, therefore the
feature map after fourth layer has dimension 13× 13× 384. The fifth layer
consists of 256 convolutional filters of dimension 3× 3× 384 with stride 1 in
all directions. The feature map is then max-pooled by pooling window of
size 3× 3 with stride 2 resulting in the feature map of dimension 6× 6× 256.
This feature map is then represented as a vector of size 9216 that is then
fed into layers 6 and 7, each consisting of 4096 fully-connected neurons. The
last layer is then C-way softmax function which essentially behaves as a fully
connected layer with C neurons, where C is the number of classes to classify,
directly followed by classical softmax function.

The VGG16 network architecture is one of the architectures presented in
Simonyan’s and Zisserman’s paper introducing many experiments of different
ConvNet network architectures. Variant 16 consists of 16 weighted layers,
which was the second largest architecture in their series of experiments.

The architecture expects once again images of dimension 224 × 224 × 3
and we use the scaling to achieve this dimension. The first two layers consist
of 64 filters of dimension 3× 3× 3 and 3× 3× 64 respectively with stride 1
in all directions. After these two layers there is a max pooling layer with a
window of size 2× 2 and stride 2, such that after this layer the feature map
has dimension 112× 112× 64. Another two layers consist of 128 convolution
filters of dimension 3× 3× 64 and 3× 3× 128 respectively with stride 1 in
all directions and afterwards once again max pooling layer with a window of
size 2× 2 and stride 2 is applied such that the intermediate feature map has
dimension 56× 56× 128. Another 3 layers consist of 256 filters of dimension
3× 3× 128 for the first layer and 3× 3× 256 for the other two layers, all of
them having stride 1 in all directions. Once again max pooling operation is
present after this triple with a window of 2 × 2 and stride 2 to result in a
feature map of dimension 28× 28× 256. Next 6 layers consist of 512 filters for
each layer, where the first one has dimension 3× 3× 256 and other five have
dimension 3× 3× 512 with all filters having stride 1 in all directions. Max
pooling layer is applied after first 3 layers of this 6-tuple and after the last
layer, both of them having window of 2× 2 and stride 2, resulting in a feature
map of size 7× 7× 512. This map is then fed as a vector of dimension 25088
into first next two fully-connected layers, each consisting of 4096 neurons each.
Since the original paper [8] was prepared for ILSVRC classification challenge
which consist of 1000 different classes, last layer has 1000 fully-connected
neurons, however this number is variable according to the number of classes
to classify. The last layer is a simple softmax function.

All of the convolutional layers of both networks were directly followed by a

5



1. Theory and recent work ................................
ReLU unit.

1.2.3 Faster R-CNN adjustments to network architecture

When you want to run a detection and recognition pipeline, you are usually
faced with a challenge of vast number of different positions and scales in
which object you are interested might be in an image. Since passing an
image through recognition network is quite time-consuming due to many
computations in convolutional layers, many previous approaches tried to
overcome this challenge with splitting this task into two different ones –
detection of Regions of Interest (RoI) and then classifying only a limited
number of RoIs by convolutional networks. However since many computations
between object detection and recognition can be shared, Faster R-CNN [3]
architecture merges those two computations back into one using a concept of
Region Proposal Network which is a small extension of original recognition
network. The RPN is put right before last pooling layer and consists of
convolutional layer of size 3 × 3 (where width dimension is equal to width
of preceding layer) and feeds the output of this layer into two sibling layers
– box-regression layer (reg) and box-classification layer(cls) which are both
implemented as a convolutional layers of dimension 1× 1. The reg and cls
layers outputs 4k and 2k dimnesional vectors respectively, where k stands for
number of so called anchors at the processed position. Each anchor stands
for a different setting of scales and aspect ratios at which RPN is analyzing
given position. The original paper used three different scales and three
different aspect ratios resulting in k = 9. This approach ensures translational
invariation of anchors. Reg layer estimates regression of possible bounding
box of an object and cls layer computes 2 probabilities of object/not-object
in each anchor at given position.

Outputs of this RPN network are then fed into Fast R-CNN [2] part of
networks, which expects RoI proposals and feature maps of last convolutional
layer and applies so called RoI pooling effectively replacing last max pooling
layer. RoI pooling divides each region of RoI proposal of dimension w × h
into grid of size W ×H where W and H are parameters of a layer (and in
our experiments W = H = 7 was used) and performing classical max pooling
on each cell of size w/W × h/H effectively squashing features of any RoI into
fixed length vector of size W ×H.

This RoI pooled vector is then fed into usual fully-connected layers where
the output at the end actually consists of two different output layers, one
computing probability of a given class similarly as last layer of VGG16 or
ZFNet networks and the other one estimating positions of bounding box
depending on found class, therefore having 4C neurons where C is number of
classes to classify. Obviously the bounding box predictor is not followed by
softmax layer.

6



....................................... 1.2. Theory

1.2.4 Training of a neural network

A general training algorithm for any neural network is usually done by
evaluating the network on a training example and comparing the result of
network with expected result by so called loss function. Loss function or
error function is usually designed in a way that it measures by how much the
result differs from the expected output and generally we try to minimize the
output of such loss function over all training examples in a training set. This
minimization can be seen as optimization problem and to solve this problem
weights are adjusted in the direction of maximal gradient. This method is
sometimes called as gradient descent algorithm.

Since deep networks have multiple layers, to adjust the weights of inter-
mediate layers, the loss is then propagated backwards through the network
by an algorithm called backpropagation which uses chain rule to iteratively
compute gradients for each layer and adjust all of the weights in the network
accordingly in attempt to minimize output of loss function. However, since
the loss function L is defined as the function of the weight settings w over
a dataset S as sum of the loss function evaluated at each training example
(equation 1.2) and therefore computing gradient to compute new weights
(equation 1.3) for each training example is time consuming, stochastic gradient
descent is usually used. We usually do not want to adjust the weights by
the whole amount of gradient so learning rate α is used (often α� 1). wt

denotes the weights of the network at an iteration t.

L(w, S) =
N∑

i=1
L(w, Si) (1.2)

wt+1 = wt − α∇L(wt, S) = wt − α
N∑

i=1
∇L(w, Si) (1.3)

Stochastic gradient descent does essentially the same as classical gradient
descent, however computes gradient only for one training example at a time
and immediately after computing gradient of a loss function for one training
example adjusts the weights accordingly. However since this is only an
approximation, a good compromise between stochastic gradient descent and
classical gradient descent is to use a minibatch of a reasonable size n to adjust
the weights according to gradient summed over n random examples of the
training set. In next equations, we will denote loss function as only a function
of weights computed on a minibatch, L(w) =

∑n
i=1 L(w, Sn)

One iteration usually adjusts the weights by a small amount so many
iterations are still required.

Usually, other learning parameters different from learning rate are used
as well. Most often used is momentum, µ, that takes into account weight
update of previous iteration under factor µ as well. Formal definition can be
seen on equation 1.4, where Vt denotes value by which weights are updated
in iteration t and wt denotes weights present in an iteration t.

7
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Vt+1 = µVt − α∇L(wt)
wt+1 = wt + vt+1

(1.4)

Another learning parameter often used is γ, used as a multiplier after a
predefined number of iterations.

Caffe framework [5] allows you to set a multiplier of learning rate α for each
layer used in your network. For convolutional and fully-connected layers, you
can set them in param part of layer definition, as param{lr_mult:x}, where
x is your desired α. This feature is useful if you do not want to train your
layers anymore and believe training only particular layers might be useful,
you can set α for a particular layer to 0. Note however, that therefore the
error will not propagate to preceding layers then.

Faster R-CNN needs to optimize for different loss functions – two for
RPN and two for classification and regression itself. The joint loss function
for RPN is defined in equation 1.5, where i is an index of an anchor in a
minibatch, pi is predicted probability of the anchor i being an object. The
ground truth label p∗i is set to 1 for the anchor with highest intersection
over union (IoU) with ground truth bounding box for a specific position
out of k anchors (as described in section 1.2.3) and for each anchor having
IoU with any ground truth box higher than 0.7. Note that this procudere
may assign 1 to more anchors by a single ground truth bounding box. ti is
parametrization of estimated bounding box, t∗i is parametrization of ground
truth bounding box and λ is balancing factor used in order to balance Lcls

and Lreg for approximately the same amount of error. λ was set to 10. As
you can see, we computed loss function for reg layer of RPN only when the
RoI was actually an object (p∗i = 1). Lcls(p, p∗) is a classical logarithmic
loss function Lcls(p, p∗) = −p∗ log(p) and Lreg(t, t∗) is a smooth L1 loss of a
ti − t∗i . The parametrization of bounding boxes can be seen on equation 1.6,
x, y, w and h denote center coordinates of estimated bounding box, its width
and height, xa, ya, wa and ha denote the same properties for anchor box and
x∗, y∗, w∗ and h∗ denote the same properties for ground truth box.

LRP N ({pi}, {ti}) = 1
N

N∑
i=1

Lcls(pi, p
∗
i ) + λ

1
N

N∑
i=1

p∗iLreg(ti, t∗i ) (1.5)

tx = (x− xa)/wa ty = (y − ya)/ha tw = log(w/wa) ty = log(h/ha)
t∗x = (x∗ − xa)/wa t∗y = (y∗ − ya)/ha t∗w = log(w∗/wa) t∗y = log(h∗/ha)

(1.6)
Smooth L1 loss function is then defined on equation 1.7.

smoothL1(x) =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise (1.7)

The same loss function is used for classification and regression itself with
slight change in Lreg. Lreg(bi, b

∗
i ) for prediction of bounding boxes does not

know anything about the anchors anymore and therefore the function is

8
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defined in equation 1.8. SGD Solver implemented in Caffe is able to optimize
network for multiple loss functions and therefore we can start training with
these two loss functions defined.

Lreg(bi, b
∗
i ) =

∑
j∈{x,y,w,h}

smoothL1(bij − b∗ij) (1.8)

1.3 Precision-recall curve

Precision recall-curve can be used to visualize performance of binary classi-
fication task. Let’s define four variables – TP , TN , FP and FN . TP is a
number of examples that were correctly classified with desired label, TN is
a number of examples, that were correctly not classified – desired label was
not present in ground truth and classification tool did not assign it a label,
FP is number of examples where label was not present in ground truth, but
classification tool assign this example a label and FN is a number of examples
where label present was present in ground truth but classification tool did not
assign it a label. After these definition, it is possible to define precision as a
fraction of correctly classified examples out of examples, that were assigned a
label (equation 1.9) and recall as a fraction of correctly classified examples
out of examples, that should have been assigned a label (equation 1.10).

precision = TP

TP + FP
(1.9)

recall = TP

TP + FN
(1.10)

However, these definitions hold valid only for binary classifications. To
create a precision-recall curve for a recognition task with one class whose
output is a probability, it is possible to be incrementally setting a probability
threshold which then acts as borderline between assigning a label and not
assigning a label. To extend this for more classes at once, it is possible to
treat the assignment of the class C1 to the ground truth class C2 as both FP
and FN since the class C1 was assigned to example which did not have the
ground truth class C2 and there was no class C2 label assigned to the ground
truth class C2 although it should be.

The goal is to achieve as high precision as possible with as high recall as
possible.

9
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Chapter 2
Framework’s user guide

The framework was build around Girshick’s Python implementation of Faster
R-CNN [3], found at https://github.com/rbgirshick/py-faster-rcnn
and is entirely written in Python as well. The framework depends on lxml,
NumPy and matplotlib libraries and on Caffe [5] library which is distributed
with Python implementation of Faster R-CNN. The framework’s code can be
found at https://gitlab.fel.cvut.cz/students/jasek-otakar.

2.1 Evaluation framework

The whole framework consists of three main programs and 5 supportive ones.
The programs are:.Main programs. recognize.py. precision_recall.py. train.py. Supportive programs. faster_to_folder.py. victims_bbox.py. xml_to_kitti.py. kitti_to_xml.py. time.py. Configuration and miscellaneous python files and modules. xmldb.py. _init_paths.py. help_parser.py
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2. Framework’s user guide ................................
In the following sections we will briefly describe all the programs. All of

the positional arguments are specified in place of such argument, all of the
optional arguments (the ones starting with -) must have the argument name
preceding. All of the standalone programs using argument parser also take
argument -h, which prints the usual help.

2.1.1 recognize.py

Program recognize.py is the core tool of the whole evaluation framework.
recognize.py reads visual data in either form of folder with images or video
file and produces XML file with detection and recognition data. For proper
functioning you have to set py-faster-rcnn root dir and MODEL_DIR in
_init_paths.py.

The program recognize.py has 15 arguments, one of them is required.

input
Argument specifying input – could be either a folder with images and
videos or a video file. If the input is video file or a folder contains a
video file, then video is processed frame by frame.

-folder
Optional argument, indicating folder to save output images (if boolean
argument -nv is not specified). If it is not set, input folder is used. If
visual output is desired, at least one of -folder and -prefix must be
specified.

-prefix
Prefix of saved output images. If it is not set, empty string is used. If
visual output is desired, at least one of -folder and -prefix must be
specified.

-t
Measuring time of each detection and saving it to XML file. This
argument is boolean.

-ox
Name of output XML file. If the file already exists, it will be overwritten.
If this argument is not specified, output will be written to stdout.

-gpu
ID of GPU device on the system to use. Default value is 0.

-cpu
CPU only mode. This argument is boolean, if it is set, it overrides -gpu
option. Note that this will make whole process considerably slower.

-net
Network architecture and weights to use. Currently only VGG16 [8] and
ZFNet [9] are supported, both with plugged RPN unit. Choices are deter-
mined by contents of the folder MODEL_DIR specified in _init_paths.py.

12
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Two networks originating from [3] are saved in folders vgg16_orig and
zf_orig, pretrained on a training subset of VOC2007[10] dataset. De-
fault value is vgg16_orig.

-conf
Minimum confidence level on detection needed to record the data. Default
value is 0.8.

-move
Maximum movement of object (on each side of bounding box) within
two frames to be recorded as the same object expressed as percentage of
the image dimensions. This option applies only to video files processed.
Default value is 0.02.

-nms
Minimum threshold for Non-Maximum Suppression (NMS) overlap ex-
pressed as percentage to merge two detections. Default value is 0.3

-box
Show infobox with class and confidence above detected class in output
images. Applies only if visual output is desired.

-nv
Boolean argument, setting visual output to false (short for ’no visuals’).
If set, arguments -folder, -prefix and -box do not apply.

-vaf
Treat videos as folders. When this argument is specified, resulting XML
files will contain the same information for video files as they would for
folders, therefore no merging of same objects within different frames of
video files will be done. Tag <object> will then contain information
about a frame in which object was detected. This argument is boolean.

-v
Verbose mode. This argument is boolean.

The order of arguments does not matter since there is only one positional
argument and the rest of them are optional. However, it is considered a good
practice to always have a positional argument either first or last, but never
in the middle.

Usage example:

1 recognize.py [-folder FOLDER] [-prefix PREFIX] [-ox
↪→ OUTPUT_XML] [-t] [-gpu GPU_ID] [-cpu] [-net
↪→ {vgg16,zf}] [-conf CONF] [-move MOVE] [-nms NMS]
↪→ [-box] [-nv] [-vaf] [-v] input

13



2. Framework’s user guide ................................
2.1.2 precision_recall.py

Program precision_recall.py is a tool for plotting precision-recall curves
out of specified XML files containing ground truth information and prediction
files outputted by recognize.py tool. This tool works only on files from
running recognize.py tool in ’folder’ mode (therefore it cannot be used on
single video file). Note that this tool works without running graphical server
since matplotlib is called with Agg backend.

This tool takes 6 arguments. Due to the fact that you cannot specify
more than one required argument to take a form of list, list arguments -gt
and -pred are listed as optional, however they can be seen as required since
without them, the program has no data to operate on.

out
Output file for a plot. If no extension specifying the format of desired
plot is given, EPS file format will be used.

-gt
List of ground truth files in XML format. Note that this argument
takes a list, therefore you cannot use - as a prefix in any of the files,
as this would end the argument sequence. List is terminated by either
end of parameter string or a next parameter started by -, therefore this
argument cannot appear before out argument.

-pred
List of prediction files in XML format outputted by recognize.py tool.
The same constraints on a list apply as in -gt.

-bins
Number of bins to use for different confidence levels. Default value is 41.
Note that higher values will lead to higher computation time.

-over
Overlap ratio of bounding boxes for determining whether the prediction
was correct. Default value is 0.5.

-cls
Compute separate statistics for distinct classes. Note that when this
argument is specified, it takes a significantly larger amount of time to
process large datasets with mode classes. This argument is boolean.

-v
Verbose mode. This argument is boolean.

Usage example:

1 precision_recall.py [-gt GT [GT ...]] [-pred PRED [PRED
↪→ ...]] [-bins NUM_BINS] [-over OVER] [-data DATA]
↪→ [-cls] [-v] out
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2.1.3 train.py

Program train.py allows you to train a network from your ground truth XML
files. The tool itself expects a base model specified by the same conventions
as argument -net in recognize.py tool.

The tool takes 11 arguments, three of them are required.

use_net
Base network model to be used for training. This argument can take
same arguments as argument -net in recognize.py tool, however, it is
recommended to train only on original networks, i.e. vgg16_orig and
zf_orig.

out
Specifies directory in which the trained network will be saved. This
directory will have same structure as other directories in MODEL_DIR,
therefore you do not have to do any meddling with files and immediately
start using it by recognize.py tool.

xml
List of XML files containing ground truth information about training
dataset. Note that this argument takes a list of values, therefore it has
to be terminated by either end of arguments or start of any positional
argument.

-cache
Whether to use cache to preload training dataset. This argument is a
boolean argument.

-gpu
ID of GPU device on the system to use. Default value is 0.

-solver
Use different solver than the one used by base model. More information
about this can be found at Caffe [5] documentation pages.

-iters
Maximum number of iterations used by solver. Default value is 4000.

-cfg
Use additional config file to override default Caffe and Faster R-CN-
Nconfiguration. The configuration files are stored in YAML file format,
however default setting is sufficient enough.

-rand
Do not use predefined randomization seeds and randomize the whole
process of training. This argument is boolean.

-keep_int
Keep intermediate models. Note, that default snapshotting frequency of a

15



2. Framework’s user guide ................................
solver is set to 10000, so you need to overwrite this value by custom config
file if using default number of iterations to actually get any intermediate
snapshots. This argument is boolean.

-nf
Do not use flipped images for training. This argument is boolean.

Usage example:

1 train.py use_net out xml [xml ...] [-cache] [-gpu GPU]
↪→ [-solver SOLVER] [-iters MAX_ITERS] [-cfg CFG] [-rand]
↪→ [-keep_int] [-nf]

2.1.4 faster_to_folder.py

faster_to_folder.py is a simple tool to help visualising and analysing data.
Its main purpose is to take a XML file outputted by recognize.py and copy
all outputted images from one class to one folder to easily examine all images
labeled as i.e. class ’bottle’. It also creates a special folder for images in which
were no classes detected.

This tool takes only two arguments:

xml
Name of XML file to be used as a detection data.

-dir
Root directory of folder structure created by copying files to folders by
class. If not specified, default value is the folder of XML file.

Usage example:

1 faster_to_folder.py [-dir DIR] xml

2.1.5 victims_bbox.py

This is a simple tool creating ground truth files (with bounding boxes)
from binary segmented images where each pixel is denoted by either 1 or 0,
depending on whether the said pixel contains an object or not. By default
fills all objects with class person. This behavior can be changed by argument
-cls

This tool takes 3 positional arguments and 2 optional arguments.

dir
Input directory containing only mask images for victim datasets.

datadir
Directory, where original files reside. Important for being able to match
ground truth and prediction files correctly.
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xml
Outputted XML file in ground truth format (attribute conf is filled with
value ’gt’ standing for ground truth, root element of resulting XML is
<Ground_truth>).

-cls
String to fill as a class for encountered objects. Default is person.

-name
Name of dataset to use in resulting XML file. Default is Victims.

Usage example:
1 victims_bbox.py dir datadir xml [-cls CLS] [-name NAME]

2.1.6 xml_to_kitti.py

This tool is used for transformation of our XML format to KITTI [11] data
format. Currently it maps only classes {car, person, bycicle} to KITTI classes
{Car, Pedestrian, Cyclist} as those are only three classes used in KITTI
evaluation tool.

This tool takes three arguments, two of them are positional

xml
Input XML file containing prediction information. Note that this file
could be created only from recognize.py tool running in ’folder’ mode.

dir
Output directory to store KITTI data files. Note that all values that are
missing from KITTI file format (occlusion, rotation, etc.) will be filled
to 0. This does not bother KITTI evaluation tool if it is evaluating only
object detection and recognition.

-v
Verbose mode. This argument is boolean argument.

Usage example:
1 xml_to_kitti.py [-v] xml dir

2.1.7 kitti_to_xml.py

This tool does reverse conversion of xml_to_kitti.py. As xml_to_kitti.py,
it maps only KITTI classes {Car, Pedestrian, Cyclist} to our classes {car,
person, bycicle}.

This tool takes 5 arguments as opposed to xml_to_kitti.py, two of them
or positional.

dir
Input directory with KITTI data files.
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xml

Output XML file containing prediction information. This file is formatted
as from recognize.py tool. If the KITTI data files are ground truth
labels (they do not contain probability score), it treats them as such.

-im_dir
Image directory to be used in XML file. Note that this directory is usually
different from the directory where the label files are stored. Default value
is input directory.

-im_ext
Image extension to be used in XML file. Default value is jpg.

-v
Verbose mode. This argument is boolean argument.

Usage example:

1 kitti_to_xml.py [-im_dir IM_DIR] [-im_ext IM_EXT] [-v]
↪→ folder xml

2.1.8 time.py

This simple tool only takes timing data from XML files produced by recognize.py
and outputs average, minimal and maximal time in seconds. It takes only
one argument in a form of a list.

data
List of XML files from recognize.py.

Usage example:

1 time.py data [data ...]

2.1.9 xmldb.py

Module xmldb.py contains only one class named xmldb, which is extension
of class imdb from datasets.imdb from original Faster R-CNNframework
and is used for training. You can specify custom CACHE_DIR where to store
caches of loaded xmldb objects. In the most simple situation you need to
initialize it only by a list of XML files passed as first argument to __init__
method and the class takes care of the rest of setting up. However it might
be desirable to use different classes than the ones from VOC datasets – then
you can do so by specifying argument clazz.
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2.1.10 _init_paths.py

In this module, you need to set two configuration paths in order for tool
recognize.py to work properly. It essentially import paths of Caffe [5] and
Python Faster R-CNNbindings to PYTHONPATH for you to be able to import
them later.

INSTALL_PATH
Root directory of your installation of py-faster-rcnn.

MODEL_DIR
If you need to move pretrained Faster R-CNNmodels to a custom di-
rectory, specify such directory in this variable. You are not able to use
default MODEL_DIR used by Faster R-CNN, since this framework uses
slightly different file structure than the original Faster R-CNNframework.
The directory structure of MODEL_DIR is briefly described in section 2.1.13

2.1.11 help_parser.py

This simple module just redefines error method of original ArgumentParser
from module argparse to print help on error.

2.1.12 XML format

The most important tag of supported XML format is tag <file> which
contains analysis of one file. The tag <file> can contain these attributes:

path
Full path of analysed file.

newpath
Full path of visual representation of detection. Only applicable for
prediction files when option -nv was not set.

time
Timing data of analysis of this particular image. Applicable only for
prediction files if timing option -t was set and only for image files.
Timing is in seconds.

avg_time
Average time for a frame in a video file. Applicable only for prediction
files ran on video when timing option -t was set. Timing is in seconds.

framecount
Number of frames of a video file.

The tag <file> contains tags <object> which represent either ground truth
objects or objects detected by Faster R-CNNnetwork. The tag <object> can
contain these attributes:
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class

Class of an object. Applicable for both image and video files.

bbox
Bounding box of an object. Applicable for image files only. The bounding
box is in format (top-left, top-right, bottom-left, bottom-right).

prob
Confidence of detection, in range (0, 1). For ground truth files, string
’gt’ is used instead. Applicable for image files only.

Following attributes are applicable only for video files.

first_frame
Number of first frame where the object was detected.

last_frame
Number of the last frame where the same object was detected. The
maximal allowed movement of an object within frames is determined by
-move in tool recognize.py.

first_bbox
Bounding box of an object in a first frame where the object was detected.

last_bbox
Bounding box of an object in a last frame where the object was detected.

highest
Highest confidence in frames where the object was detected.

lowest
Lowest confidence in frames where the object was detected.

The tag <file> can be a standalone, but more commonly is enclosed within
a tag <folder>. Tag <folder> can contain these attributes:

path
Absolute path to a folder.

files
Number of files in a folder.

usable_files
Number of analyzable files – only image or video files. Applicable only
for prediction files, all tools for ground truth files get number of files
programmatically and therefore this number would be the same as files.

The root element of a XML file is customizable – there is no strict
rule what tag should you use. However, this tag with its attributes con-
tains information about experiment. For prediction files we were using tag
<Faster_RCNN_experiment> with attributes describing runtime parameters
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of recognize.py tool. Note, that attribute "time" is different than a sum of
all attributes "time" of <file> tags. This is due to the fact, that this value
measures whole time of a whole experiment while timing for a file measures
only detection runtime without postprocessing. For ground truth files we
were using tag <Ground_truth> with one attribute specifying dataset.

XML example

As an example, we provide small portion of used XML file:
1 <?xml version="1.0" ?>
2 <Faster_RCNN_experiment conf="0.1" move="0.02"

↪→ network="vgg16" nms="0.3" time="690.945771933"
↪→ type="folder">

3 <folder files="3" path="/path/to/folder"
↪→ usable_files="2">

4 <file path="/path/to/folder/img.png"
↪→ time="0.6403028965">

5 <object bbox="(132.91631, 282.65521, 524.46863,
↪→ 461.32788)" class="person" prob="0.739661"/>

6 <object bbox="(462.49478, 36.464203, 583.87549,
↪→ 470.51736)" class="person" prob="0.20808"/>

7 </file>
8 <file path="/path/to/folder/vid.avi" framecount="10">
9 <object class="car" first_bbox="(769.43323,

↪→ 401.034, 901.0802, 477.86676)" first_frame="0"
↪→ highest="0.995664" last_bbox="(767.76202, 408.27109,
↪→ 899.92133, 475.68185)" last_frame="3"
↪→ lowest="0.994525"/>

10 </file>
11 </folder>
12 </Faster_RCNN_experiment>

2.1.13 MODEL_DIR structure

Our custom structure of MODEL_DIR contains one directory called models
and then one directory for each model. Directory for each model of <name>
contains caffemodel of name <name>.caffemodel, where the <name> is the
same as directory name and a solver for testing (used by tool recognize.py)
called test.pt and a symlink to corresponding train directory containing
train solvers. Directory models contains training solvers and is the one where
each particular model directory links to.
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Structure of MODEL_DIR:

MODEL_DIR
|- models
| |- VGG16
| | \- end2end
| | |- solver.pt
| | \- train.pt
| |
| \- ZF
| \- end2end
| |- solver.pt
| \-train.pt
|
|- vgg16_orig
| |- test.pt
| |- vgg16_orig.caffemodel
| \- train -> MODEL_DIR/models/VGG16/
|
|- zf_orig
| |- test.pt
| |- zf_orig.caffemodel
| \- train -> MODEL_DIR/model/ZF/
|
\- ...

2.2 Usage example

As an example, we provide series of commands used to train VGG16 network
and obtain precision recall curves and intermediate data for victims dataset.
Similar steps would be taken for ZFNet architecture or a different dataset.

1 ./victims_bbox.py $DATA/victims/mask/tst/
↪→ $DATA/victims/orig/tst/ ./tst_gt.xml

2 ./victims_bbox.py $DATA/victims/mask/trn/
↪→ $DATA/victims/orig/tst/ ./trn_gt.xml

3 ./victims_bbox.py $DATA/victims/mask/val/
↪→ $DATA/victims/orig/tst/ ./val_gt.xml

4
5 ./train vgg16_orig vgg16_vict ./trn_gt.xml
6
7 ./recognize.py $DATA/victims/orig/tst -ox ./tst_pred.xml -nv

↪→ -conf 0.1 -net vgg16_vict -t
8 .recognize.py $DATA/victims/orig/trn -ox ./trn_pred.xml -nv

↪→ -conf 0.1 -net vgg16_vict -t
9 ./recognize.py $DATA/victims/orig/val -ox ./val_pred.xml -nv

↪→ -conf 0.1 -net vgg16_vict -t
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10
11 ./precision_recall.py ./tst_pr.eps -pred ./tst_pred.xml -gt

↪→ ./tst_gt.xml
12 ./precision_recall.py ./trn_pr.eps -pred ./trn_pred.xml -gt

↪→ ./trn_gt.xml
13 ./precision_recall.py ./val_pr.eps -pred ./val_pred.xml -gt

↪→ ./val_gt.xml
14
15 ./precision_recall.py ./vict_pr.eps -pred ./tst_pred.xml

↪→ ./trn_pred.xml ./val_pred.xml -gt ./tst_gt.xml
↪→ ./trn_gt.xml ./val_gt.xml -cls
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Chapter 3
Experiments

In this chapter we will show evaluation of two different network architectures,
VGG16 [8] and ZFNet [9]. The datasets used for evaluation were our synthe-
sised victims dataset and KITTI [11] object detection dataset. All predictions
were marked as matched, if the overlap of predicted region and ground truth
region had intersection over union (IoU) at least 50 % (argument over of
tool precision_recall.py set to 0.5).

Data from our experiments can be found at https://gitlab.fel.cvut.
cz/jasekota/jasek-thesis-data.

3.1 Datasets

Both datasets contain subsets to use for training and validation and Victims
dataset also contains usable testing subset.

3.1.1 Victims dataset

Victims dataset is a dataset that artificially merges real data from various
sources – all images were generated by letting random 3D models of humans
"fall" into the scene as if they were victims of a crime or a natural disaster.
Therefore this dataset proves to be quite challenging since the position
and appearance of object to be detected is deformed compared to standard
datasets.

The whole dataset contains 4986 images and is split into training, validation
and testing subset which all contain approximate third of images – training
subset contains 1604 images, validation subset contains 1645 images and
testing subset contains 1737 images. Virtually all of these images contain
only one object of class person – there is 4989 objects in the whole dataset
and 4986 images. For obvious reasons, all of them are only positive examples.

This dataset did not have any ground truth files, instead it used only mask
above each image to depict the sought object. Therefore it is needed to first
create ground truth files by using victims_bbox.py tool.

Example of images from Victims dataset can be seen at figure 3.1
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Figure 3.1: Example of images from Victims dataset

3.1.2 KITTI dataset

KITTI [11] dataset is a standard dataset used for evaluating object detection
and recognition algorithms in automated driving. The dataset is split into
training and testing subset by its authors, however only ground truth files for
training subset are accessible by public. The ground truth files for testing
subset are private and you can evaluate your algorithm on testing subset
by submission of your results on KITTI server. This methodology was not
suitable for our evaluation since we re-trained our networks on many different
settings, so therefore we ignored testing subset and split training subset into
training and validation portions in approximate ratio of 7:3. Training portion
contained 5267 images and validation portion contained 2214 images totalling
in 7481 images and we re-trained our networks only on training portion.

This dataset contains three different classes – Car, Pedestrian and Cyclist.
Class Car has 20160 instances in training portion and 8582 in validation
portion totalling in 28742 instances throughout the whole original training
subset. Class Pedestrian has 3298 instances in training portion and 1189 in
validation portion totalling in 4487 instances throughout the whole original
training subset. Class Cyclist has 1174 instances in training portion and
453 instances in validation portion totalling in 1627 instances throughout
the whole original training subset. We can see that class Car has 17.7 times
more instances than class Cyclist and about 6.4 times more instances than
class Pedestrian. This ratio is more or less consistent within both portions of
original training dataset.

Examples of images from KITTI dataset can be seen on figure 3.2

Figure 3.2: Example of images from KITTI dataset
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Figure 3.3: Performance on whole victims dataset

3.2 Evaluation of original networks

We show evaluation of networks that were trained only on VOC2007 [10]
dataset as obtained from original Faster R-CNN paper and therefore the
evaluation will be performed on whole datasets.

3.2.1 Victims dataset

This dataset is challenging, since the only correctly classified class was person
and in a lot of the images, the person is deformed into victim position which
generally does not resemble normal human position in which you would expect
a person to be. Because of these deformations, the network is not performing
as well as one might expect. Most probable reason for expected decrease
in performance is the fact, that dataset actually used for training these
networks (VOC2007 [10] training and validation datasets) did not contain
many examples of people appearing in these unnatural positions.

On figure 3.3 we can see total performance for all three subsets combined
into the whole dataset evaluated by VGG16 network and ZFNet respectively.
It is clearly visible, that performance of VGG16 is considerably higher than
the performance of ZFNet. This is compensated by shorter runtime for ZFNet,
as shown in 3.4, but the runtime improvement is not that significant to justify
such a drastic decrease in performance.

What might be of concern is the fact that none of these architectures were
able to achieve perfect recall. This is due to the way Faster R-CNN network
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Figure 3.4: Performance on KITTI dataset measured on all three classes

operates – it selects only 300 best predictions (and even then some of them
have confidence close to 0) and therefore some of the predictions that would
amount to higher recall (with obvious loss of precision) are not selected by
the network.

3.2.2 KITTI dataset

Figure 3.4 shows precision-recall curves for whole training dataset evaluated
by VGG16 and ZFNet networks respectively. Ground truth files were obtained
by kitti_to_xml.py tool.

Once again you can see much better performance by VGG16 architecture
than by ZFNet. Same as on victims dataset, we were not able to achieve
perfect recall, even worse, our maximal recall values were even lower. It can
be seen that precision starts to drop rapidly in both networks after hitting
recall of about 0.3. One can argue that this implies, that KITTI dataset is
even harder than victims dataset – once again though, those values are on
networks that were not specifically trained for KITTI dataset. Given this,
the results are not as bad as they might seem on the first sight.

Figure 3.5 depicts performance evaluation on whole KITTI training dataset
being broken down by each class. It is visible, that class Car was the most
succesful one. What is however quite alarming is almost complete absence of
correctly classified class Cyclist. One can attribute it to almost no training
examples of class bike in VOC2007 training dataset. The rule of VGG16 net
outperforming ZFNEt holds in every class except class Cyclist.
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Figure 3.5: Performance on KITTI dataset broken down by different classes

3.3 Evaluation of re-trained networks

In this section we will evaluate re-trained networks specifically trained for
concrete tasks. Each network was trained 5 times with different amount of
training iterations by Caffe framework – 2000, 4000, 6000, 8000 and 10000
iterations. Evaluation was then performed only on the portion of dataset that
was not present in re-training phase. For KITTI dataset it was the validation
portion of the training subset consisting of 2214 images, for Victims dataset it
was the testing and validation subsets put together consisting of 3382 images
overall.

3.3.1 VGG16 network re-trained on KITTI dataset

Figure 3.6 depicts performance of VGG16 network re-trained on KITTI
dataset evaluated for all three classes together. It can be seen that re-
training of VGG16 network increased performance as expected. Increasing
number of iterations of Caffe solver performing re-training kept improving the
performance of a network, however with each increase of number of iterations,
the increase in performance was lower. Quite interestingly, re-training with
6000 iterations performed better than 8000 iterations. It seems that limit for
recall on Faster R-CNN network is close to value of 0.75.

Figures 3.7, 3.8 and 3.9 show performances of such re-trained network on
classes Car, Pedestrian and Cyclist respectively. Class Car is significantly
outperforming both other classes – this can be possibly attributed to much
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Figure 3.6: Performance on KITTI dataset of VGG16 network re-trained on
KITTI dataset measured on all three classes

higher number of instances of class Car in training dataset. But since there are
so many more objects of class Car, overall performance as seen on figure 3.6
is just slightly worse than the performance of class Car - it simply outweights
the worse performance of other classes.

Another observation is the large improvement of class Cyclist over untrained
network. For the network with 10000 iterations, it even outperformed class
Pedestrian which has 2.81 times more objects in training dataset.

3.3.2 VGG16 network re-trained on Victims dataset

Figure 3.10 shows performance of VGG16 network re-trained on Victims
dataset. Performance rapidly increased to precision values being above
around 0.95 for recall values of 0.9 for networks re-trained by 8000 and
10000 iterations. However it seems that this might be maximal achievable
performance since performance for 8000 and 10000 iterations are nearly
identical. Much higher performance on Victims dataset than the performance
on KITTI dataset is most likely to be attributed to the fact that Victims
dataset is a lot more consistent than KITTI dataset therefore having training
subset more closely related to the testing and validation subsets. However,
another probable cause of such high performance might be overfitting on our
dataset. To investigate further this cause we would need independent dataset
that is closely related to Victims dataset but comes from a different domain.
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Figure 3.7: Performance on KITTI dataset of VGG16 network re-trained on
KITTI dataset measured on class Car
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Figure 3.8: Performance on KITTI dataset of VGG16 network re-trained on
KITTI dataset measured on class Pedestrian
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Figure 3.9: Performance on KITTI dataset of VGG16 network re-trained on
KITTI dataset measured on class Cyclist
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Figure 3.10: Performance on Victims dataset of VGG16 network re-trained on
Victims dataset

32



............................3.3. Evaluation of re-trained networks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision-recall curve of KITTI dataset

VGG16 network re-trained on KITTI and Victims datasets

Original network

2000 iterations

4000 iterations

6000 iterations

8000 iterations

10000 iterations

Figure 3.11: Performance on KITTI dataset of VGG16 network re-trained on
both datasets measured on all three classes

3.3.3 VGG16 network re-trained on KITTI and Victims
datasets

In another experiment we were re-training the networks on both training
datasets together. Since such network was re-trained on both datasets, we
can evaluate them on both datasets as well.

Evaluation of KITTI dataset by VGG16 network re-trained on both
datasets

Figure 3.11 depicts performance of VGG16 network re-trained on both
datasets evaluated on all three classes of KITTI dataset. We can see that
while the increasing tendence in performance is fairly similar to such in net-
work re-trained only on KITTI dataset, amount of the increase is lower, most
notably in network re-trained only by 2000 iterations. Figures 3.12, 3.13 and
3.14 show performance on classes Car, Pedestrian and Cyclist respectively.
One would assume that the most decrease in comparison to network re-trained
only on KITTI dataset would occur in class Pedestrian since Victims dataset
contains only occurences of class Person which are from completely different
settings, however the most decrease is in class Cyclist – we attribute this to
even higher underrepresentation of class Cyclist in training set.

Figure 3.15 shows comparison of performances of network re-trained by
10000 iterations only on KITTI dataset and on both datasets so we can clearly
see that although the perfomance is better if network is re-trained for one

33



3. Experiments .....................................

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision-recall curve of class Car KITTI dataset

VGG16 network re-trained on KITTI and Victims datasets

Original network

2000 iterations

4000 iterations

6000 iterations

8000 iterations

10000 iterations

Figure 3.12: Performance on KITTI dataset of VGG16 network re-trained on
both datasets measured on class Car
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Figure 3.13: Performance on KITTI dataset of VGG16 network re-trained on
both datasets measured on class Pedestrian
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Figure 3.14: Performance on KITTI dataset of VGG16 network re-trained on
both datasets measured on class Cyclist

task only, the decrease in performance is not that harsh and it might be
actually suitable to train such network on multiple dataset in order to use
only one network for recognition of multiple different datasets afterwards.

Evaluation of Victims dataset by VGG16 network re-trained on both
datasets

The situation with Victims dataset is quite similar to the one of KITTI dataset.
Figure 3.16 shows performance of VGG16 network re-trained on both datasets
evaluated on Victims dataset. Once again it is lower than performance of
such network re-trained only on Victims dataset however performance is still
quite considerably high. Figure 3.17 shows similar comparison as figure 3.15
only for Victims dataset.

35



3. Experiments .....................................

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision-recall curve comparison of KITTI dataset
VGG16 network re-trained on KITTI dataset only

VGG16 network re-trained on KITTI and Victims datasets

10000 iterations - KITTI only

10000 iterations - KITTI+Victims

Figure 3.15: Comparison of performances on KITTI dataset of VGG16 network
re-trained on KITTI dataset and on both datasets

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision-recall curve of Victims dataset

VGG16 network re-trained on Victims and KITTI datasets

Original network

2000 iterations

4000 iterations

6000 iterations

8000 iterations

10000 iterations

Figure 3.16: Performance on Victims dataset of VGG16 network re-trained on
both datasets
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Figure 3.17: Comparison of performances on Victims dataset of VGG16 network
re-trained on KITTI dataset and on both datasets
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Figure 3.18: Performance on KITTI dataset of ZFNet network re-trained on
KITTI dataset measured on all three classes
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Figure 3.19: Performance on KITTI dataset of ZFNet network re-trained on
KITTI dataset measured on class Car

3.3.4 ZFNet network re-trained on KITTI dataset

ZFNet performed quite badly on re-training overall. It seems that train-
ing method (described in 1.2.4) is not suitable for ZFNet since it actually
performed worse than the original network trained only on VOC2007 [10]
trainval. Another reason for such decrease might be in incorrect learning
parameters of a network however the parameters were the same as used in
original Faster R-CNN [3] paper.

Figure 3.18 shows performance of ZFNet network re-trained on KITTI
dataset. As you can see, the performance actually decreased and number
of iterations (at least in the range of 2000 - 10000) had virtually no effect
on amount of decrease. If you break down the previous figure by measured
class, we get figures 3.19 for class Car, 3.20 for class Pedestrian and 3.21 for
class Cyclist. What is quite interesting is the fact, that performance for class
Cyclist actually increased but only because it was already quite bad at the
beginning.

3.3.5 ZFNet network re-trained on Victims dataset

Figure 3.22 shows performance of ZFNet network re-trained on Victims
dataset. Surprisingly, although it preformed quite badly on KITTI dataset,
the network actually improved on Victims dataset, though not by much.
The performance still remains below the performance of untrained VGG16
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Figure 3.20: Performance on KITTI dataset of ZFNet network re-trained on
KITTI dataset measured on class Pedestrian

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision-recall curve of class Cyclist of KITTI dataset

ZFNet network re-trained on KITTI dataset

Original network

2000 iterations

4000 iterations

6000 iterations

8000 iterations

10000 iterations

Figure 3.21: Performance on KITTI dataset of ZFNet network re-trained on
KITTI dataset measured on class Cyclist
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Figure 3.22: Performance on Victims dataset of ZFNet network re-trained on
Victims dataset

network. Quite interesting is the fact, that the ZFNet network re-trained by
4000 iterations performed worse than the original ZFNet network while all
the iterations outperform it.

3.3.6 ZFNet network re-trained on KITTI and Victims
datasets

Evaluation of KITTI dataset by ZFNet network re-trained on both
datasets

Figure 3.23 depicts performance of ZFNet network re-trained on both datasets
evaluated on all three classes of KITTI dataset. Once again we can see
that ZFNet network is not suitable for re-training with our parameters
and the results are as bad as the results of the network re-trained only on
KITTI dataset. Figures 3.24, 3.25 and 3.26 show performance on classes Car,
Pedestrian and Cyclist respectively. The performance is about the same as for
the network fine.tuned only on KITTI dataset. Figure 3.27 shows comparison
of the performance of the network re-trained by 10000 iterations only on
KITTI dataset and on both datasets. We can see that network re-trained
only on KITTI dataset was slightly worse, but the difference between those
two is marginal.
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Figure 3.23: Performance on KITTI dataset of ZFNet network re-trained on
both datasets measured on all three classes
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Figure 3.24: Performance on KITTI dataset of ZFNet network re-trained on
both datasets measured on class Car
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Figure 3.25: Performance on KITTI dataset of ZFNet network re-trained on
both datasets measured on class Pedestrian
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Figure 3.26: Performance on KITTI dataset of ZFNet network re-trained on
both datasets measured on class Cyclist
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Figure 3.27: Comparison of performances on KITTI dataset of ZFNet network
re-trained on KITTI dataset and on both datasets

Evaluation of Victims dataset by ZFNet network re-trained on both
datasets

The tendence that Victims dataset is easier for re-training holds even for
network re-trained on both datasets. However it is still not able to achieve
performance of original VGG16 network, not to mention performance of
VGG16 network re-trained specifically for Victims dataset. Figure 3.28 shows
performance of such network. Figure 3.29 compares performances of ZFNet
networks re-trained on Victims dataset only and on Victims and KITTI
dataset. We can see, that training specifically for particular dataset only,
yields better resuls even for ZFNet network.
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Figure 3.28: Performance on Victims dataset of ZFNet network re-trained on
both datasets
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Figure 3.29: Comparison of performances on Victims dataset of ZFNet network
re-trained on KITTI dataset and on both datasets
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3.4 Time evaluation

Due to hardware limitations on the server where we were running the experi-
ments and unexpected change of hardware during experiments (upgrade from
NVidia GeForce GTX Titan Black to NVidia Tesla K40c) we were unable
to ensure same conditions for all experiments required for fair comparison of
timing. However since one experiment consisted of re-training a network and
running tool recognize.py on all datasets we have (including configurations
such as re-training on KITTI dataset and recognizing of Victims dataset which
makes no sense to later evaluate performance on, but is easier to automate),
and since each GPU had the same amount of such experiments, it is actually
feasible to compare timing for recognition portion. We do not have any
timing data for re-training portion of the experiments, however by experience,
re-training ZFNet network was about 3 times faster than re-training VGG16
network.

Table 3.1 shows average times for both datasets expressed in miliseconds
needed to process one image. The times could be most likely a bit faster
since more comupting jobs were running at GPUs concurrently, however the
ratio in between those two architecture would still most likely stay the same,
showing that recognizing an image by ZFNet is about 2.4 times faster than
by VGG16 network.

Table 3.2 shows average times dependant on dataset being currently rec-
ognized. We can see that KITTI dataset was slightly faster than Victims
dataset, however the difference is a lot more significant for VGG16 network
than for ZFNet.

Tables 3.3 and 3.4 shows runtime performance of original networks measured
on CPU (Intelr Xeonr E5-2630 v3). VGG16 architecture proved again to
be about 2 times slower than ZFNet. Runtime performance on 8-core CPU is
about 11.7 times slower than running on GPUs. KITTI dataset recognition
was again faster than recognition of Victims dataset, on CPU a lot more
notably than on GPU.

Average time [ms] Min time [ms] Max time [ms]
All experiments 252.61 60.17 1459.43

VGG16 architecture 350.14 149.78 1459.43
ZFNet architecture 141.09 60.17 1382.91

Table 3.1: Time comparison of different architectures for both datasets measured
on GPU
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3. Experiments .....................................

Average time [ms] Min time [ms] Max time [ms]
KITTI dataset

Both architectures 228.50 68.62 1035.76
VGG16 architecture 316.86 149.78 1035.76
ZFNet architecture 140.14 68.62 493.94

Victims dataset
Both architectures 271.29 60.17 1459.43

VGG16 architecture 400.07 189.22 1459.43
ZFNet architecture 142.51 60.17 1382.91

Table 3.2: Time comparison of different architectures and different datasets
measured on GPU

Average time [ms] Min time [ms] Max time [ms]
All experiments 2971.88 1454.86 7958.40

VGG16 architecture 3944.13 2775.03 7958.40
ZFNet architecture 1999.63 1454.86 5359.79

Table 3.3: Time comparison of different architectures for both datasets measured
on CPU

Average time [ms] Min time [ms] Max time [ms]
KITTI dataset

Both architectures 2627.41 1454.86 7958.40
VGG16 architecture 3525.56 2775.03 7958.40
ZFNet architecture 1729.26 1454.86 2740.61

Victims dataset
Both architectures 3488.72 1804.07 6373.09

VGG16 architecture 4572.15 3702.96 6373.09
ZFNet architecture 2405.30 1804.07 5359.79

Table 3.4: Time comparison of different architectures and different datasets
measured on CPU
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Chapter 4
Conclusion

We created easy-to-use framework for training, using and evaluating perfor-
mance of Faster R-CNNtype of networks. We were unable to succesfully
re-train ZFNet network to increase its performance on our datasets. This
fact appears to be quite unfortunate since ZFNet architecture is smaller and
therefore faster at re-training and recognition stages which could be therefore
harnessed in the applications where time is critical.

We showed that VGG16 network is highly suitable for re-training on custom
datasets. If you wish to use such network on classifying images from different
domains, re-training on multiple datasets is feasible as well with reasonable
trade-off in performance. If the training and testing data come from the
domains that are quite close, the performance appears to be quite high as
shown on Victims dataset. However, one must beware of overfitting the
network.
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