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Abstract

AgentCrowd crowd simulation framework uses a potential �eld agent navigation. De�ning
characteristics of the potential �eld navigation such as scaling with size of the simulation
world and with number of agent �ows can be limiting. We consider several alternative
approaches based on various meshing and triangulation algorithms. We implement selected
algorithms and compare them to the original approach. Finally, we draw a conclusion and
select one speci�c approach for the AgentCrowd framework.

Abstrakt

AgentCrowd, framework pro simulaci dav·, pouºívá potenciálová pole pro navigaci agent·.
Hlavní vlastnosti navigace pomocí potenciálových polí, jako nap°íklad ²kálování s velikostí
simula£ního sv¥ta nebo s po£tem proud· agent·, mohou limitovat výkon simulátoru. Tato
práce uvaºuje n¥kolik alternativních p°ístup· zaloºených na meshovacích a triangula£ních
aloritmech. Vybrané algoritmy jsou implementovány a porovnány s orginálním p°ístupem.
V záv¥ru je jeden nový p°istup zvolen jako vhodný pro AgentCrowd.
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Chapter 1

Introduction

In this work we1 present several navigation approaches for the AgentCrowd crowd simula-
tion framework. In the following section we present general overview of crowd simulation
approaches, we describe the AgentCrowd framework, and �nally we present a general struc-
ture of this thesis.

1.1 Crowd Simulation

Crowd simulations model movement and collective behaviour of large amount of entities in
some organized or spontaneous group. There are numerous usages for a crowd simulation,
ranging cinematography, evacuation and urban planning, or security simulations. In general,
the various goals of a simulation may require adoption of speci�c models, or at least disqualify
some approaches.
There are numerous approaches to crowd simulation. As was stated previously, choice of an
approach is often related to the speci�c goals of the simulation. It should be noted that some
modular crowd simulation frameworks such as MENGE2 are modular and allow combination
of multiple approaches on various position in its modularity.
In general, the crowd simulation approaches can be divided into two major groups:
• Macroscopic Approaches based on simulating the crowd as a whole, generally suitable
for simulation of large crowds
• Microscopic Approaches based on simulating the singular agents with higher level of
detail, generally suitable for simulation of small crowds

The macroscopic approaches are generally based on density distributions. Example of macro-
scopic simulation is the �ow based approach, as in [Zhou et al., 2010].
In the following text we will be examining the microscopic approaches. For most such
approaches, it is possible to construct abstract levels of crowd simulation describing its
various sub-problems. The abstraction used by highly modular crowd simulator MENGE,
as described in [Curtis et al., 2014], is as follows:

1. Goal Selection - selection of goal for each of the simulated entities
1this and any following usage of 'we' refers to its general academic use, unless the text states otherwise
2http://gamma.cs.unc.edu/Menge/
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CHAPTER 1. INTRODUCTION

2. Plan Computation - computation of plan based on static data, e.g., map of obstacles

3. Plan Adaptation - adaptation of plan to often dynamic problems of local scale

4. Motion Synthesis - computation of physical characteristics of movement for visual
applications

5. Environmental Queries - computation of various sub-problems in environment-agent
relationship, such as the visibility or lighting

The following section lists several signi�cant approaches corresponding to levels of plan
computation and plan adaptation, as these levels are the focus of the AgentCrowd framework.

1.1.1 Plan Computation

Plan computation methods create a navigation plan for an agent based on mostly static data
representing the environment, such as obstacles, surface type, speed limits, etc.. The most
notable approaches are:

• Potential Fields, where each goal is assigned a grid-like �eld. Each voxel in the �eld
is assigned a potential values, with agents travelling to the local goals represented by
global extremes in the �eld.

• Navigational Meshes, where agents move along polygon structures. Typical example of
navigational meshes is AnavMesh by [Oliva and Pelechano, 2012] or various Delaunay
triangulations.

• Voronoi Graphs, where agents move between vertices. This approach is closely con-
nected to some of the mesh approaches.

1.1.2 Plan Adaptation

Plan Adaptation methods solve dynamic problems that surface during the simulation. Typi-
cal example of such a problem is local collision avoidance when interacting with other agents,
dynamic doors and other portals, or spreading �re and panic.

There are various approaches to this problem. Some are modi�cation of the plan computation
methods and some are standalone and are complementary to the plan computation. Some
of the more signi�cant approaches are:

• Social Forces, list of various stimuli on the agent that are predictable, e.g. attractive
and repulsive forces to other nearby agents. The social forces model was proposed
by [Helbing and Molnar, 1995].

• Cellular Automata, which describe the behaviour of an agent by multilevel cellular au-
tomaton. The cellular automata use in crowd simulation was proposed by [Schadschneider, 2002].

• Dynamic Potential Fields, that combine plan computation and adaptation. An example
of this approach is [Treuille and Cooper, 2006], whose approach combines velocity and
distance terms in order to simulate large, homogeneous crowds.

• Optimal Collision Avoidance Systems, providing fully collision free smooth movements,
such as ORCA3

3http://gamma.cs.unc.edu/ORCA/
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1.2. AGENTCROWD FRAMEWORK

1.2 AgentCrowd Framework

AgentCrowd framework is an agent-based crowd simulation framework. It is developed by
Arti�cial Intelligence Center, Czech Technical University in Prague, Prague, Czech Republic.
The framework is based on java-based open-source multi-agent toolkit Alite4.

The framework is centred around simulating agents on a grid-like structure with the emphasis
on plan computation and plan adaptation levels (see Section 1.1 for level speci�cation).

At the moment5 the framework is under development and undergoing modularization. Note
that the general description provided in this work follows the framework's state before the
current development stage.

According to [Hrstka et al., 2013] the framework is divided by into three abstract layers. The
�rst two layers, that combine into the physical layer, are

• Static layer: static objects in the simulation world, such as obstacles

• Dynamic layer: dynamic objects in the simulation world, such as agents

The remaining layer is

• Abstract layer: layer storing information based on the physical layers, such as potential
maps

In general, agents use information from the abstract layer to compute appropriate behaviour.

1.2.1 Physical Layers

Physical layers describe the static and dynamic objects that are present in the simulation.
Excluding various input information used in preparation of the abstract layer, there are two
major components to the physical layer: the map and the agents.

1.2.1.1 Map

The map is grid-like rectangular �eld of cells. The cell size is fully adjustable, although
originally the intended size was 2x2 feet. In the simulation individual cell's set of neighbours
is de�ned as all the eight neighbours including diagonals, or smaller equivalent for cells
located on the border.

Each cell carries information about its position, occupation state, and surface type. The
occupation state a�ects whether an agent can move to the respective cell. Cell is either
empty or occupied. There are two reasons for a cell to occupied: either there is an agent
present in the cell, or the cell is an obstacle. The surface type a�ects the speed of agent's
movement.

4http://jones.felk.cvut.cz/redmine/projects/alite
5Spring 2016
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1.2.1.2 Agent

In the current implementation, each agent is an independent entity. All agents that are
actively in the simulation are located on exactly one cell in the grid.

As there is no high-level goal selection in the current version of the framework, agent's goals
are derived from a �ow they are assigned to: a pair of entry and exit zone. The agents travel
between from their respective entry zone to their respective exit zone. The agents use the
abstract layer to navigate in the environment and reach their respective exit zone. As soon
as the exit zone is reached, the agent is removed from the simulation.

1.2.2 Abstract Layer

The abstract layer stores various information about the physical layer and helps the agents
to navigate in the environment. In the current version of the framework two approaches are
combined. The plan calculation (i.e., global navigation) is provided by potential maps and
the plan adaptation (i.e., local navigation) is provided by social force model. The agents
navigate by combining vectors recovered from these two models.

1.2.2.1 Potential Maps

Potential maps are the plan computation method of the AgentCrowd framework. The maps
provide agents with a shortest-path-to-exitzone navigation solution.

For each exit zone a independent potential map is created. The map is a grid-like structure
where each position is assigned an appropriate potential values, ranging from−∞ (exit zones)
to ∞ (obstacles). The potential represents pseudo-distance to the exit zone. It should be
noted that as the agents, normalize the recovered vectors, the actual size of the vector does
not matter. The only relevant vector characteristic is its direction.

The potential maps are computed using a fast-marching algorithm starting at their respective
exit zone. For the speci�cation of the algorithm see [Hrstka et al., 2013]. Generally, each
cell of a potential �eld correspond to a cell of the map, but this not necessarily a rule. The
map and the potential �elds may have di�erent scale.

1.2.2.2 Social Forces

Social forces are the plan adaptation method of the AgentCrowd frameworks. The system
allows agents to navigate in the local space and avoid collisions with other agents.

The theoretical framework is based on approach presented in [Helbing and Molnar, 1995].
The assumption is that pedestrian reaction is usually automatic and determined by their
experience. The social force helps the agents to keep together (in case of members of one
team or family) or separated.

It should be noted that the social force approach provide realist pedestrian behaviour. The
agents do not have any kind of collective intelligence that would provide perfect collision
avoidance and the agents do occasionally collide and su�er from bottlenecks.

4



1.3. STRUCTURE OF THE THESIS

1.3 Structure of the Thesis

Out primary goal in scope of this work is provide new navigation solution to the AgentCrowd
framework. The concrete changes are to be made in the context of plan computation algo-
rithm. The potential �eld approach that is currently used in framework has several limitation.
From results of a preliminary project it was concluded that the potential map approach has
severe limitation in terms of scaling with simulation size and number of �ows. However, the
approach has distinct advantage in handling complex spaces and large numbers of agents.
See Section 4 for numerical data measured in the scope of this work.

In the following sections we will investigate several meshing and triangulation methods and
compare results of their respective implementations to the potential map approach. Based
on the method evaluation a conclusion will be drawn, either recommend a speci�c method
for general use or assigning various methods to speci�c types of simulations.

5
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Chapter 2

Navigation Meshes

Navigation meshes are one of the commonly used navigational techniques. A navigational
mesh allows division of a 2D or 3D space into multiple subspaces. Generally, it could be
claimed that the created subspaces are convex polygons. 1 The idea of navigational mesh
is attributed to [Snook, 2000], who proposed use of polygonal mesh . Navigational mesh
usually consists of convex polygon representation of aforementioned subspace, and by some
representation of connection to neighbouring spaces. It should be noted that while most of
the described techniques are transferable into 3D space, this work is mostly concerned with
2D navigation, as the AgentCrowd frameworks simulates movement of agents on a 2D plane.
This section is concerned with the Delaunay triangulation, which is such a triangulation of
a point set, that maximizes the minimum angle of any of the triangles. More speci�cally, it
is aim of this section to describe relevant algorithms for creation of Constrained Delaunay
Triangulation, which solve the problem of Delaunay triangulation of a polygon that may be
non-convex. Following algorithms are examined:
• Flip algorithm (& ear clipping, its supplementary algorithm)
• Divide and Conquer algorithms
• Sweep Line algorithms
• Incremental algorithms

The �ip algorithm is used for creation of Delaunay triangulation of planar point sets and
can be utilized for constrained Delaunay triangulation. Ear clipping is one of the simplest
methods of polygon triangulation and can be used to create �rst iteration for the �ip al-
gorithm. Divide and conquer algorithm uses simple space division methods that create
easily-triangulated areas and process them in parallel manner. Sweep line algorithms com-
pute the triangulation using a forward moving division line. Incremental algorithms' basic
principle is inserting unprocessed points into the triangulation.
There are various algorithms that create some navigational space. The range of algorithms
varies greatly with degree of optimality, type of the resulting polygonal objects, ability to
cope with space complexity, or complexity of the algorithm itself. Examples of meshing
algorithms range from simple algorithm proposed by [Hertel and Mehlhorn, 1985], which is

1The reason for enforced convexity is that non-convex polygons would allow situations where agents
travelling on a straight line between two points located in one polygon could leave the polygon. See Figure
2.1 for illustration.
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Figure 2.1: Limiting Feature of Non-convex Polygons
Agents travelling on a straight line between two points located in one polygon leaving the

polygon.

limited to space with no holes, algorithms creating generalized convex polygon on space
with holes, such as the ANavMG by [Oliva and Pelechano, 2012], to various triangulations
such constrained Delaunay triangulation, that are near-optimal. Sections concerned with
the ANavMG algorithm and constrained Delaunay triangulations are sections 2.1 and 2.3
respectively.

2.1 Automatic Navigation Mesh Generator

The Automatic Navigation Mesh Generator is a sub-optimal mesh creating algorithm, pro-
posed by [Oliva and Pelechano, 2012]. The algorithm identi�es convex vertices, for any ver-
tex de�nes its interest area described by intersection of half-spaces de�ned by lines extending
the edges neighbouring the vertex and the space being divided. See Figure 2.2 for further
illustration. The space is then divided by creating division line between the respective vertex
and the closest of following objects in the interest space - other vertex, point on an edge
of the outer polygon or inner polygon, or a vertex on end of an edge created in already
executed division of non-convex space. In the case of created edge, check is run to explore
the possibility to create a convex union of polygons by removing the older division edge.
The main advantage of this algorithm is that the number of created sub-space polygons is
O(r), where r denotes the number of non-convex vertices.

8



2.2. DELAUNAY TRIANGULATION

Figure 2.2: Interest Region in AnavMesh algorith
Interest region originating from vertex V. Vertices A and B and segment AB are located
inside the interest region. Remaining segments containing A and B are partially partially

inside.

2.2 Delaunay Triangulation

Delaunay triangulation is such a triangulation of a point set, that maximizes the minimum
angle of any of the triangles. This is connected to the fact that in a Delaunay triangulation,
vertices of any triangle lie outside of circumcircle of any other triangle, with the obvious
exception of the vertices shared by two neighbouring triangles, that lie precisely on both
the circumcircles. Also, a true delaunay triangulation uses only the points that were part of
the input. The angle-minimizing property is truly intriguing from the point of view of mesh
creation, as it seems that triangles with a high di�erence between angles are inconvenient -
while long and thin triangles may be bene�cial when representing a space that is also long
and thin, e.g. a narrow street, presence of such triangles in most open areas would case
arbitrary path, possibly with a 'zig-zag' pattern.
De�nition 2.2.1. Delaunay Triangulation for a Planar Point Set (as presented by [Cheng et al., 2012])
In the context of a �nite point set S, a triangle is Delaunay, if its vertices are in S and its
open circumdisk is empty: i.e., contains no point in S. Note that any number of points in
S can lie on a Delaunay triangle's circumcircle. An edge is Delaunay if its vertices are in S
and it has at least one empty open circumdisk. A Delaunay triangulation of S , denoted Del
S , is a triangulation of S in which every triangle is Delaunay.

For a Delaunay triangulation of planar point set, there is an alternative description of De-
launay property: the local Delaunay property of triangles. The description is a result of the
Delaunay lemma, proved by R. Delaunay.
De�nition 2.2.2. Locally Delaunay Triangle Let e be an edge in a triangulation T in the
plane. If e is an edge of fewer than two triangles in T , then e is said to be locally Delaunay. If
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e is an edge of exactly two triangles τ1 and τ2 in T , then e is said to be locally Delaunay if it
has an open circumdisk containing no vertex of τ1 nor τ2. Equivalently, the open circumdisk
of τ1 contains no vertex of τ2. Equivalently, the open circumdisk of τ2 contains no vertex of
τ1.
However, while the properties of Delaunay triangulation are intriguing, there are limitations
to this approach. A true Delaunay triangulation can be created only for a planar point set.
If an application in meshes used to navigate in a polygonal environment is to be considered,
these limitations become apparent. The polygons representing such an environment are often
non-convex a may contain holes. In such a case, a planar triangulation is not possible, as
there is no guarantee that the triangulation would be constraint by these limitations. There
are several possible ways how to solve this problem:
• Consider such a subdivision of polygon that creates only convex polygonswith no holes,
such as the ANavMG described in Section 2.1, and apply the Delaunay triangulation
to these polygons independently.
• Create a constraint Delaunay triangulation (CDT). A CDT is such a triangulation,
which requires some edges to be present in the triangulation. This approach requires
us to abandon the idea of true Delaunay triangulation of a planar point set, but still
provides us with some guarantees towards the optimality of the solution.

2.3 Constrained Delaunay Triangulations

Constrained Delaunay Triangulation is a intriguing solution for the problem Delaunay tri-
angulation of a polygon that may be non-convex. There appears to be some degree of confu-
sion in the terminology. While sometimes the term of Constrained Delaunay Triangulation is
used for such a triangulation that solves the problem of Delaunay triangulation with enforced
edges without introducing any additional points. [Kallmann et al., 2004] and de�nitions used
in the Triangle mesh triangulator2, however, consider Steiner triangulations to be a subtype
of constrinaed Delaunay triangulations. Steiner triangulation is such a constrained Delaunay
triangulation, the solves the Delaunay triangulation problem while introducing new addition
vertices. Triangle further divides the triangulation containing Steiner points into conforming
Delaunay triangulation, that are true Delaunay triangulations, and constrained conforming
Delaunay triangulation, which are not, and claims that in general, as the triangles in con-
strained conforming triangulations are not trully Delaunay (but still locally Delaunay with
respect to the edges of the polygon), fewer vertices are needed to reach a required quality
of CDT. In this work, I will consider Steiner triangulations to be a subtype of constrained
Delaunay triangulations. Also, the term of constrained Delaunay triangulation will be ab-
breviated as CDT. In general, this is the case in literature concerned with triangulations,
although sometimes this is used only for conforming Delaunay triangulation.
In general, there are three approaches how to create a constraint Delaunay triangulation,
although some algorithm, such as the �ip algorithm, may not be part of any such group.
• Divide and Conquer Algorithms

Divide and Conquer algorithms use various simple space division methods that create
areas that are easier to triangulate. The main challenge in this type of algorithms is in

2https://www.cs.cmu.edu/ quake/triangle.html
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merging the sub-areas together. The original CDT algorithm proposed by [Chew, 1989]
is of this kind, using strips containing only one vertex as the smallest areas. These
algorithms do not always contain Steiner points.

• Sweep Line Algorithms

Sweep Line algorithms use a sweep line to divide the polygon into area that was already
triangulated and the remaining area and gradually add new triangles. While this is not
the original approach, in the paper proposing the �rst CDT algorithm [Chew, 1989]
actually recognized the feasibility of this approach, more precisely the technique of
Voronoi diagram construction used by [Fortune, 1987], but at the time he was unsure
how this would be done.

• Incremental Algorithms

Incremental algorithms are based on creating triangles by inserting edges or vertices.
Nowadays, this is the most popular method, mostly because this is also the easiest
method to implement.

It should be noted that while this categorization of CDT algorithms appears to be used in
most relevant literature, it seems that it was originally created as Voronoi diagram algo-
rithm categorization. Early example of this categorization is [Fortune, 1987], who notes the
existence of divide and conquer and incremental algorithms and presents a new, sweep line
based approach. This is not surprising, as while the Delaunay triangulations and Voronoi
diagram are strictly speaking di�erent structures, there is a high degree of connection be-
tween the two, because Delaunay triangulation is a dual graph to the Voronoi diagram. It
is possible to create one from the other or modify some of the algorithms to produce the
other as output. Although this work considers the [Chew, 1989] approach to be the oldest
Delaunay triangulation algorithm, as it is the oldest algorithm specialized on creation of
Delaunay triangulations, Fortune did acknowledge the possibility of modifying his algorithm
for Delaunay triangulation.

2.3.1 Flip Algorithm

The �ip algorithm is an algorithm for creation of Delaunay triangulation of planar point sets
that can be utilized for constrained Delaunay triangulation. The �ip algorithm is connected
to the de�nition of the locally Delaunay triangles. Generally, the algorithm functions in a
following way: consider two neighbouring triangles (i.e., the triangles sharing an edge) in a
triangulation. Together, these triangles form a quadrilateral. If the quadrilateral is convex,
it is possible to �ip the triangles, if it is bene�cial. In this context, �ipping triangles in a
quadrilateral means to create two new triangles that share a di�erent edge - as the original
triangles have to share one of the quadrilateral's diagonals, the �ipped triangles simply share
the other one. The condition for �ipping is whether the edge is not locally Delaunay. If this
is so, the other diagonal is necessarily locally Delaunay. See Figure 2.3 for illustration. Also,
it should be noted that if it is not possible to �ip the triangles (i.e., the quadrilateral is non-
convex), edge is always Delaunay. While a step in the algorithm can make the outer edges of
the quadrilateral non-Delaunay, the algorithm is guaranteed to terminate after O(n2) steps.
While full proof as presented by Gärtner (2012) is not provided, it is based on the usage of
a lifting map.
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Figure 2.3: Flipping the Diagonal
Circumcircle illustration of �ipping the diagonal in a quadrilateral de�ned by two

neighbouring triangles in order to attain the local Delaunay property; Old triangles are not
locally Delaunay, New triangles are locally Delaunay.
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Figure 2.4: Inconvenient result of ear-clipping
As ear clipping result has no guarantees in terms of mesh triangle shape, the result may

not be appropriate for navigation.

There are several properties of the �ip algorithm that make it bene�cial in the context of
polygon meshing. First, the algorithm itself is not limited by the constraints of the polygonal
space. The algorithm does �ip only such pair the of triangles that create a convex quadri-
lateral, so any triangles surrounding a non-convex vertex of the polygon are not interfering
with the algorithm directly. Therefore, it can be claimed that any edge is either part of the
boundary or has the Delaunay property, as otherwise it would be �ipped. In general, there
are several drawback in use of the �ip algorithm. First, it has a limitation in its complexity
of O(n2). Second, the algorithm is similar to the planar set Delaunay triangulation, as it
uses only the given point set. While this may be advantageous in some cases, as the number
of triangles is limited, the space representation may su�er, since in some cases this allows
existence of the thin triangles.

2.3.2 Ear Clipping

Ear clipping (here as described by [Eberly, 2002] is one of the simplest methods of polygon
triangulation, that can be utilized to create �rst iteration for the �ip algorithm. The ear
clipping creates such a triangulation, that uses only vertices de�ned in the original polygon or
it's inner hole-polygons. While this method is simple to implement, it has several drawbacks.
First, the algorithm is of order O(n2), where n denotes number of vertices. Second, the
triangulation result is not optimal in any way. See the the Figure 2.4 for illustration of
case, where the ear clipping result is highly inconvenient. However, due to the simplicity
the algorithm is a good starting point a for any complex triangulation algorithm, that is
iterative a requires an initial triangulation (e.g. �ip algorithm for Delaunay triangulation).
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Figure 2.5: Two-Ears Theorem
Polygon Division in Case B

Ear is such a sub-space of a polygon which is de�ned by 3 consecutive vertices of the polygon
(i.e., a triangle), where the middle vertex is convex and no other vertex is placed inside the
triangle, i.e., the edge between the two other vertices is inside the polygon. It has been
proven that any non-triangle simple polygon has at least two non-overlapping ears. The
so-called two-ears theorem was published by [Meisters, 1975].
De�nition 2.3.1. Two-Ears Theorem Except for triangles, every Jordan polygon has at
least two non-overlapping ears

The proof is inductive. The base claim is that any polygon with 4 vertices has exactly two
ears. For the induction itself, consider a polygon Pn with n vertices, n > 4, and 3 consecutive
vertices pi−1, pi, pi+1 of the polygon, where pi is convex. Now, two cases are possible. First,
it may be possible to remove an ear located at pi. In such a case, the polygon Pn−1 resulting
from such removal contains at least 2 non-overlapping ears from the induction. Since the ears
are non-overlapping, at least one does not contain both the vertex pi−1 and pi+1. Together
with the removed ear at pi they represent the two non-overlapping ears of polygon Pn.

Second, there is no ear located at pi. In this case, consider a line l∗ de�ned by pi−1 and pi+1

and vertex q located inside the triangle de�ned by pi−1, pi and pi+1, which is de�ned by line
lq, which is parallel to l∗ and is closest to p∗ of any such lines. Construct a line between q and
pi and split the polygon into two sub-polygons. See Figure 2.5 for illustration. Each of these
two polygons has lower number of vertices and therefore is either a triangle or has two non-
overlapping ears. If a polygon is a triangle, locate an ear of the original polygon by locating
the vertex other than q or pi. If it is not a triangle, it has at least two non-overlapping ears.
Locate an ear that is not at vertex pi or q. As these two ears are originating from di�erent
sub-polygons and are ear of the polygon Pn (i.e., are not located at q or pi), we found the
two non-overlapping ears.
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Figure 2.6: Ear Clipping
Connecting a Hole to the Polygon

The ear clipping algorithm itself is not dissimilar from the theorem. In each step of the
algorithm, �nd an ear of the polygon and remove it. Do this until the polygon is a triangle.
The resulting triangulation is represented by this triangles and the removed ears. As in each
step it is necessary to check the whole polygon in the the worst case, and the number of
steps is n− 2, the algorithm is of complexity O(n2.)

While the basic algorithm can be applied only to a simple polygon with no holes, it is
possible to generalize it to algorithms with holes by adding the holes into the basic polygon.
Choose a coordinate from the coordinate system. Without loss of generality, in the following
paragraph the chosen coordinate is denoted x. Find a hole polygon with most extreme x-
value and the respective vertex. Connect the polygon to a visible vertex of the main polygon
in such a way that the vertices representing the hole polygon are in anti-clockwise order if
the main polygon is clockwise, or vice-versa. Repeat until there are no holes not connected
to the main polygon. See Figure 2.6 for illustration.

To identify a vertex visible from the extreme vertex H on the hole polygon, intersect the
edges of the outer polygon with a half-line described as H + (0, t), t > 0 with the edges
of the main polygon. As H is the most extreme point of all the hole polygons, there will
be no intersection of the half-line and any of the edges of the hole polygons. Denote the
intersection of an edge and the half-line that is closest to H as I. If I is a vertex of the main
polygon, a visible vertex was found. Otherwise, denote the endpoint of the edge where I is
located as P and collect all re�ex vertices of the main polygon other than P . If all these are
outside of triangle HIP , P is visible. Otherwise, chose such a vertex R from the set that
the angle RHI is minimized. See Figure 2.7 for illustration.
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Figure 2.7: Ear Clipping
Finding Angle Minimizing Re�ex Vertex

2.3.3 Divide and Conquer Algorithms

Divide and Conquer algorithms for CDT creation use simple space division methods that
create easily-triangulated areas and process them in parallel manner. Examples of such algo-
rithms are [Chew, 1989] and [Hardwick, 1997]. While it is possible to modify the algorithm
to use Steiner points in order to ensure the optimality of triangles in both area and angles
using a method created by [Ruppertt, 1993], the following paragraphs describe the algorithm
in its original form presented by [Chew, 1989]. We introduce the simple original variant for
illustration, as alternative approach with same space and time complexity which is easier to
implement was adopted into the framework.

Generally, in any CDT divide and conquer algorithm we need to divide the space into
subproblems, where the initial calculation is executed. In case of Chew's original algorithm,
the chosen spaces are strips. Each strip contains one of the vertices. Chew uses vertical
strip, but if, by any chance, there are vertices with same x coordinate, it is possible to
change the chosen coordinate or rotate the whole coordinate system by some appropriate
angle without loss of generality. After creation of the strips, areas of interest have to be
located in each strip in order to improve the complexity of the algorithm. Area is de�ned
by edges of the graph, or in our case edges of the polygon, intersecting with the strip. Only
edges that have both endpoints outside of the strip are considered. Area of interest is such
an area in the strip around a vertex, that is de�ned by the 'walls' of the strip and two
edges from the mentioned set: the closest edge that is above the vertex, and closest below.
A structure containing information about such edges can be created in O(nlogn), where n
denotes the number of vertices. This is necessary, as intersecting all the edges could be of
complexity O(n2). See Figure 2.8 for illustration. After this step, the triangulation is created
for area of interest. This is done introducing arti�cial vertices of the areas of interest. These
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Figure 2.8: Divide & Conquer - Strip Creation
Strips are created if and only if the strip (of minimal size) contains a point.

Based on Figures in [Chew, 1989]

vertices are not represented by their actual coordinates, but rather by in�nite coordinates
(i.e., (+∞,+∞), (−∞,+∞), (+∞,−∞), (−∞,−∞)). The variant of in�nite coordinate is
chosen by its position in regards of the area of interest. For example, left-down corner of the
area of interest is (−∞,−∞).
The next step in the algorithm is merging neighbouring strip together. This is done in
two steps. First, new areas of are created. Second, as this process removes some of the
vertices that are arti�cially created by creation of areas of interest, it is necessary to partially
recalculate the triangulation. The �rst step is done by moving in the strip in vertical fashion,
and starting an area of interest if there is a strip beginning in one of the merged strips, and
ending it if there is not an area of interest in either. This process can be done in O(n),
where n denotes number of vertices, as it is a�ected by the number of vertices in the strips
and number of edges that have only one end in the combined strip.
To combine and recalculate the triangulations, �rst it is necessary to remove the arti�cial
vertices that are placed in the interior of the new strip. While in general case removal of
vertices can disrupt the triangulation, in the case where only in�nite vertices are removed,
�nite CDT is not a�ected. See [Chew, 1989] for the formal proof. After the removal of such
vertices, it is necessary to add new arti�cial vertices where necessary. For new edges that
cross the boundary between the two strips, it is necessary to investigate adding new edges to
triangulation. Denote such an edge as AB. There is no indication whether the desired third
vertex, denoted X, is in the left or right strip. It is necessary to �nd best candidate in both
strips and chose one by comparison. Without loss of generality, X lies in left strip. It can be
proven that there exists an edge AX in the left strip. Moreover, the edge is Delaunay. Again,
for the proof see [Chew, 1989]. From all edges AY the appropriate one can be chosen in the
following way. Order the suspect vertices counter-clockwise around A from AB. Choose
candidate Y if triangle AY Z, where AZ is the next edge around A, does not exist or AC
is one of the original edges of the polygon. If the triangle does exist, consider circumcircle
de�ned by triangle ABC. If D is inside, eliminate AC and test AD.

17



CHAPTER 2. NAVIGATION MESHES

Although the presented algorithm is of same complexity as other CDT algorithms, as its
complexity is of O(nlog(n)), it has two major disadvantages. First, the implementation is
more complex than in case of other CDT algorithms. Second, the algorithm does not provide
any guarantees for quality of created triangles, as it does not include Steiner points. However,
a divide and conquer algorithm with Steiner points was created by [Ruppertt, 1993]. Third,
the size of the strips, and therefore the shape and size of the triangles, is dependent on
the distribution. [Hardwick, 1997] claims, that for a stripping algorithms to work optimally,
the distribution would have to be uniform, but this is an unrealistic assumption in many
situations.

2.3.4 Sweep-Line Algorithms

Sweep line algorithms are CDT algorithms that compute the triangulation using a forward
moving division line. The area behind the line is triangulated, or at least processed in
some other manner. On the contrary, the area that the line is moving towards is wait-
ing for processing. Originally, this approach was developed as Voronoi diagram algorithm
by [Fortune, 1987]. It should be noted that as the Voronoi diagram is dual graph of Delaunay
triangulations, the algorithm can be considered as Delaunay triangulation algorithm. While
its main output and purpose is not the triangulation, and therefore we can consider (and this
work continues to do so) the Chew's approach to the �rst specialized Delaunay triangulation
algorithm, in his work Fortune did acknowledge the possibility of using the algorithm for
Delaunay triangulations and proposed several modi�cations to switch the algorithms output
directly to triangulation, so that it is not necessary to create the triangulation from the
Voronoi diagram.

Again, we introduce the simple original variant for illustration, as alternative approach with
same space and time complexity which is easier to implement was adopted into the frame-
work. The algorithm is based on moving two boundary forward. First is the sweepline. This
is the line that determines whether a point was already put into the diagram. The second
is the 'beachline' or 'borderline'. Contrary to its name, this boundary is not a line, but
rather a combination of parabolic segments de�ned around the Voronoi diagram points. The
points where these segments intersect have therefore same distance to both the points. In
this manner the movement of the second line creates the diagram itself.

There are two lists in the algorithm. There is the point list and the region and boundary list.
The algorithm runs through the point list ordered by the coordinate the lines move along.
There are two types of points. First are the site points. Those are the points de�ning the
Voronoi diagram, added before the start of the algorithm. If such a point is encountered,
appropriate region is located in the region list and new boundaries are added represented
as rays. Also, respective intersection points are added into the point list. If an intersection
point is encountered, the boundaries that created it are switched to line segments and any
other intersection they may create are removed. New possible intersections are added.

The algorithm is of the same time complexity as the other CDT algorithms, speci�cally
of O(nlogn), where n denotes the number of point. Its space complexity is O(n). The
time complexity is limited mostly by number possible boundaries and points in the lists,
limited by O(n), and O(log(n)) to operate in such structure if implemented e�ciently.
See [Fortune, 1987] for detailed proof.
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2.3.5 Incremental Algorithms

Incremental algorithms are the third traditional variant of CDT algorithms. The basic
principle of such algorithms is inserting a new, yet unprocessed point into the triangula-
tion. [Guibas et al., 1992] is considered to introduce this approach, although in his work it
is acknowledged that this approach is not entirely novel. However, he is the �rst to present
an incremental algorithm that is of O(nlog(n)) time complexity and O(n) space complexity.
The previous incremental algorithms were of O(n2) time complexity.

The Guibas incremental algorithm in its original form does not include Steiner points. How-
ever, from the nature of the algorithm it appears to be the optimal algorithm to be im-
proved upon by adding such a feature. The algorithm is simple when compared to the
two previously mentioned types while it retains the same complexity. According to (not
only) [Guibas et al., 1992], this simplicity is often considered to be the main advantage of
the algorithm, along with the algorithm needing no additional structures to store informa-
tion needed for computation. However, it also appears that unlike the divide and conquer
approach, the incremental algorithm has limited potential for dynamic approach.

The algorithm works as follows. In each step, an unprocessed point is chosen at random. The
triangulation created so far is searched for a triangle the point belongs in. The respective
triangle is split into three new triangles and each of the edges of the original triangle is checked
for Delaunay property, if this is needed (i.e., the existence of the edge is not enforced in some
way). If this check fails, the two triangles are �ipped. This step is not dissimilar from the
�ip algorithm examined in Section 2.3.1. The initial triangle is de�ned by in�nite point.
This does not interfere with the Delaunay property of the triangulation in similar manner
as the in�nite border points employed in [Chew, 1989].

The most demanding step of the algorithm is locating the triangle a point belongs to. Fol-
lowing method is employed to perform e�ciently. By storing full history of triangulation,
it is possible to trace the desired triangle by starting in the initial in�nite triangle and
following the structure by checking the triangles that originate from the last located tri-
angle. When utilizing such structure, it is possible to run the triangulation in O(nlogn).
See [Guibas et al., 1992] for proper formalization and proof.

While the original Guibas algorithm can be easily modi�ed to retain the enforced CDT edges
in the �ipping phase, it does not provide a possibility to insert such edges into the graph.
The following edge insertion method was created by [Anglada, 1997]. The edge insertion is
executed in three steps. First, any triangles cut by the inserted edge are removed. Second,
the edge is inserted into the graph. Third, the two regions created by removal of triangles
and divided by the edge are triangulated. While the �rst two steps are simple, the third
requires to be investigated further. There are two facts to be noted about the triangulation
of the two regions. First, as demonstrated in the Figure 2.9, the regions may not be polygons
even if the global triangulated region is a polygon, especially if the algorithm includes Steiner
points insertion. Second, it is not necessary to check for any edges of the triangles to be
other enforced edges, as this would implicate that the edges cross, which is not possible.

The triangulation of the two regions is a recursive process. First, locate such a point p among
the points in the region that the circumcircle of triangle de�ned by the dividing edge and
p does not contain any of the other points and form the triangle. Second, divide the region
(i.e., the list of points) by the triangle into two new regions. Apply the process recursively

19



CHAPTER 2. NAVIGATION MESHES

Figure 2.9: Incremental algorithm - Edge Insertion Region
Example of a region created by removing obstructive triangles as used in edge insertion.
Notice that two vertices with same projection on the edge make the area non-polygonal in

the strict sense.
Based on Figures in [Anglada, 1997]

for any of the regions, under the condition of being non-empty, while using the respective
edge of the added triangle in same way as the dividing edge was used in the �rst step. If
a point q is the cause of the original region being not a polygon as was demonstrated in
Figure 2.9, add it into both the regions. This process does retain the constrained Delaunay
property of the triangulation, as the points are the same as in the previous triangulation and
therefore the circumcirles are still empty. For proper formalization and proof of this claim
see [Anglada, 1997].

2.3.6 Delaunay Re�nement

While better than other counterparts, Delaunay triangulations often contain some badly
shaped triangle, whose presence would not be convenient in the �nal triangulation. Often, the
criterium for acceptable shape is the size of smallest angle and ratio between circumradius and
inradius. While not the only method to re�ne the triangles, as quadtree algorithms are also
used, originally proposed by [Baker et al., 1988], elements, the triangulation is often re�ned
by insertion of additional points, most commonly Steiner points located at circumcentres
of the badly shaped triangles, although there are several other methods how to choose the
desired points, such as the o�centres proposed by [Üngör, 2009]. In general, there are several
limitation that has to be considered when implementing any re�nement algorithms. As both
Rupert and Ungor remark, most of the algorithms presume that angles between two enforced
graph edges are higher then 90, which may not always be the case in real application.
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The following section describes the Steiner point selection and insertion roughly as proposed
by [Ruppertt, 1993]. Rupert recognizes two actions: splitting a triangle, and splitting a
segment. Splitting a triangle is done by inserting a circumcentre point of the said triangle.
Segment, that is an edge existing in the triangulation, is split by inserting a point that
divides the line segment into two equal halves. The algorithm �rst requires a Delaunay
triangulation. Even though there is no requirement on the computation process of the
Delaunay triangulation, it would seem bene�cial to employ an incremental algorithm, as it
is possible to use the same approach in inserting the Steiner points. Rupert presumes that a
normal Delaunay triangulation is computed, and therefore in his algorithm is also necessary
to enforce existence of any enforced edge that is not present. In this description this step is
omitted, as the algorithm is presumed to be combined with an incremental CDT algorithm.
Rupert enforces the existence of the edges by checking in each step and splitting the edge
in similar fashion as in Steiner point insertion, and not in the generalized point insertion
step, as incremental algorithms do. However, as both Rupert and Ungor remark, most of
the algorithms presume that angles between two enforced graph edges are higher then 90,
which may not always be the case in real application. Therefore, even if using algorithm
with guaranteed termination, it is usually necessary to enforce termination in some way.

After obtaining the triangulation, repeat the following: choose any badly shaped triangle
and obtain its Steiner point. If Steiner point is encroaching on the any enforced edge of
the triangulation, i.e., the point is in a circumcirle of said edge, split all such edges. If no
edge is encroached, split the triangle. Repeat until no badly shaped triangle is present, or
other termination condition, present for reasons stated previously, is reached. To categorize
the elements as badly shaped, it is necessary to choose a threshold minimal angle. Rupert
provides proof, that for angles larger than 20 the algorithm is bound to terminate. It should,
however, be noted, that it is possible to choose larger angles, especially if there is an enforced
termination condition. The proof is not provided, as it is lengthy and, from de�nition, its
importance is diminished by the fact that it is not applicable to any set of enforced edges in
the triangulation, as its requirements cannot be met in triangulation of a general polygon.
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Chapter 3

Implementation

In the following section we describe the implementation of mesh navigation on the agent
crowd project. The aim di�ers from the previous section, which described various algo-
rithms on general theoretical basis. This section does not describe only the mesh creation
algorithms, but also other tasks that were necessary to implement. In general, the structure
of the implementation is based around the creation of navigation meshes. Taking some rep-
resentation of the simulation world, its representation in convex mesh polygons is created
the polygons are assigned some potential values.

3.1 General Structure

In order to reach the aim of mesh creation, wide variety of object types is needed. Some
objects, such as the implementations of MeshPolygon, represent the mesh polygon structure.
Others represent one-use creators with the task of processing input data into the mesh
objects. Finally, other objects serve as auxiliary in the process of mesh creation. Excluding
changed structure of the agent and sensor classes, there are four main object types that
were added into the framework. It should be noted that 3 of these are either abstract
classes/interface. This approach was adopted so that di�erent new algorithms and special
polygon types could be easily inserted. The 1 non-abstract class is

• InputPolygon, which stores information about the world regions, obstacles and exit
zones for the mesh creation process

The 3 abstract classes are as follows

• MeshPolygon, which represents a presumably convex polygon in the representation
used in navigation

• MeshCreator, which is responsible for processing the world represented by InputPoly-
gons into structure of MeshPolygons

• PotentialCalculation, which assigns each MeshPolygon with a value based on some
potential calculation

The following paragraphs describe these classes as they are in their abstract form. For
information on the implementation of the abstract classes see Sections 3.2.1, 3.2.2, 3.2.3 and
3.2.4.
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3.1.1 InputPolygon

InputPolygon is an area in the simulation input world. The area represented by an In-
putPolygon may vary substantially. It may be a representation of the complete space, an
obstacle, or an exit zone. Input Polygon is represented by an array of points, representing
its boundary, list of obstacles and other objects that are located inside the InputPolygon,
and array of String tags categorizing the area as an impassable obstacle, exit zone, empty
space, etc..

The array of points representing the boundary is a rather simple structure. The points are
ordered in either clockwise or counter-clockwise fashion. There is no guarantee for the ring
to start at an extreme point.

List of obstacles (also represented as InputPolygons) a tree-like structure of polygons origi-
nating from the highest level polygons. It is guaranteed that while the obstacle InputPoly-
gons located in the same InputPolygon can touch each other, they do not cover any shared
area and do not touch the outer boundary. This is done in following way: starting with a
general InputPolygon representing the whole area with all polygons suspected to be inside,
�rst check for every polygon whether every obstacle is located in the interior. Obstacles
placed outside the boundary are removed. If any obstacles is touching the boundary from
inside, the boundary is cropped and the process is restarted and separate procedure is ex-
ecuted for the obstacle, which is made into new InputPolygon located on the same level in
the InputPolygon hierarchy. After successful boundary check the obstacles are repeatedly
checked against each other. If an obstacle is encapsulated by another, it is removed from the
obstacle list and added to the obstacle list of the encapsulating obstacle (i.e., the obstacle is
moved down in the InputPolygon hierarchy). If the obstacles have an shared area, but are
not encapsulated, new obstacles representing the smallest continuous areas representing the
union, obstacle 1, and obstacle 2 are created. If neither of the previous cases happens (i.e.,
the obstacles share no area), nothing is changed.

3.1.2 Mesh Polygon

MeshPolygon represents an non-overlapping convex area in the simulation world. While the
basic function of MeshPolygon is close to the InputPolygon, the two di�er substantially both
in concept and stored data. First, unlike InputPolygon that is used only in the computation
and has no connection to the information stored in the abstract layer of the simulation,
the MeshPolygon's only use is in the navigation. Every MeshPolygon is assigned a set
numerical value representing its pseudo-distance to a respective target zone. Second, unlike
the InputPolygons that store information about other possible polygons located in their
interior, convex MeshPolygons store no such information. On the other hand, MeshPolygons
store information about their neighbours. Two MeshPolygons neighbour each other if and
only if they share a border segment. Both InputPolygon and MeshPolygon carry String tags
describing the type of area being represented. To illustrate on di�erence of possible world
breakdown into InputPolygons and MeshPolygons, see Figure 3.1.

MeshPolygon is represented by its points, neighbours, tags, and potential values. However,
as the MeshPolygon is a modular object that is represented as an abstract class in the
framework, concrete storage structure of the de�ning features is not enforced. Also, it should
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Figure 3.1: InputPolygon & MeshPolygon Representation of Space
Example of the di�erence between InputPolygon and MeshPolygon space representation.
InputPolygons are represented by background colour and captions, MeshPolygons are

represented by edges. Note that:
• the largest InputPolygon contains smaller input polygons
• there are no MeshPolygon representing the non-traversable space, i.e., the obstacle
InputPolygon
• all the MeshPolygon are convex
• the MeshPolygon representation is roughly equivalent AnavMesh algorithm output
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be noted that existence of �0 area� MeshPolygons is possible. This is necessary, as some of
the chosen mesh-creation solutions may result in existence of such. See Sections 3.2.3 and
3.2.4 for further clari�cation.

3.1.3 MeshCreator

MeshCreator is an abstract class that processes InputPolygons/world information into Mesh-
Polygons. The InputPolygons structure is either inserted into the MeshCreator as a Collec-
tion of highest level InputPolygon objects, or similar collection is computed from the world
information. Some implementation may require additional parameters. For example, the
IncrementalDelaunay, described in Sections 2.3.5 and 3.2.3 requires minimal area threshold.
Also, a MeshCreator o�ers possibility to extract list of tags that are used in the simulation,
i.e., there exists a MeshPolygon that has such a tag.

3.1.4 PotentialCalculation

PotentialCalcualtion is an abstract class that assigns InputPolygons with set of values used
for global navigation. In the current implementation, the set of values represents a pseudo-
distance to respective exitzones. However, this is not enforced and if the framework were to
be expanded with goal selection, more speci�c navigation approaches could be implemented.

3.2 MeshCreator Implementations

At the present time there are four MeshCreation algorithms implemented in the AgentCrowd
framework. Of the four, two serve mostly as proof of concept of mesh navigation in the
AgentCrowd framework. The two are
• EarClipping, implementation of ear clipping method of triangulation
• FlipDelaunay, a Delaunay triangulation method with no re�nement

The other two methods are
• AnavMesh, implementation of meshing approach proposed by [Oliva and Pelechano, 2012]
• IncrementalDelaunay, an CDT triangulation with further re�nement using Steiner
points

3.2.1 EarClipping

EarClipping is the �rst implementation of MeshCreator in the AgentCrowd framework. As
such, its main purpose was proof of concept for agent navigation via mesh polygons. Sec-
ondary purpose of EarClipping is to provide easy implementation for triangulation algo-
rithms that require an initial triangulation. While EarClipping creates a system of triangu-
lar meshes, it is not suited to be the chosen solution, as the space representation can create
triangles that are highly inconvenient. See Figure 2.4 for illustration. See Section 2.3.2 for
background information about the ear clipping algorithm.
The algorithm is implemented as in [Eberly, 2002] with few modi�cation that are required for
it to function as a MeshCreator implementation. The most important modi�cation is that
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the algorithm tracks neighbours while creating the triangles. This is done in each step after
cutting the ear. As �nding the neighbour is O(t) where t denoted the number of triangles
and is located on same level of the algorithm as locating the ear, which is O(n) where n
denotes number of points and trivially t < n, the algorithm is of unchanged complexity.

Data: Polygon and its �hole� obstacles represented as list of points; the polygon and
the obstacles should have di�erent clockwise order

Result: structure of mesh triangles representing the polygon without the obstacles;
the triangles contain neighbourh information

processPolygons(polygons)
while border polygon size > 2 do

forall vertex V in border polygon do

if V is convex then
forall vertex U other than V−1, V , V+1 in border polygon do

if U is inside triangle V−1, V , V+1 then
go to next V

end

end

create triangle T as V−1, V , V+1

remove V from border polygon
forall triangle S do

if should be neighbour then
add neighbour information

end

end

end

end

end

forall obstacle O do
run ear clipping
forall triangle T in this triangulation do

forall triangle S in obstacle triangulation do

if should be neighbour then
add neighbour information

end

add S in this triangulation
end

end

end
Algorithm 1: Ear Clipping

3.2.2 FlipDelaunay

FlipDelaunay is the �rst implementation of a constrained Delaunay triangulation and second
implementation of the MeshCreation. This is the implementation of �ip delaunay approach
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Data: outer border polygon and obstacle polygons
Result: outer border polygon containing points from the other polygons
while there is an unprocessed obstacle polygon do

forall unprocessed obstacle polygon P do

forall point X in P do

if X.x > maxX.x then
maxX ← X
maxP ← P

end

end

forall edge E in main border polygon do
suspectI ← intersection((1, 0) +maxX,E
if distance(maxX, suspectI) < mindist then

I ← suspectI
IE ← E
mindist← distance(maxX, suspectI)

end

end

if IE.tail I then
addPoint← I

end

else if IE.head I then
addPoint← I

end

M ← maxOnX(IE.tail, IE.head)
forall re�ex vertex V in main border polygon do

if V inside triangle I-M-maxX & V 6= maxX&V 6=M then
hasOneInside← true
add(insideV ecrtices, V )

end

end

if hasOneInside then
addPoint← I

end

else if forall vertex V in insideVertices do
if degree(vector(1,0), vector(minX,V)) < mindeg then

mindeg ← degree(vector(1, 0), vector(minX, V ))
addPoint← V

end

end

then

end

remove addPoint from border polygon
add addPoint,rest of maxP (starting and ending with maxX), addPoint in
the border polygon
mark maxP as processed

end

end

Algorithm 2: Ear Clipping Sub-procedure: process polygons
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described in section 2.3.1. Again, the main purpose of this algorithm was to serve as proof
of concept, a the algorithm itself is inferior to IncrementalDelaunay in both time and space
complexity and is not well suited for Delaunay re�nement.

Any MeshCreator that produces triangles can be used as initial implementation of this
algorithm. In the original implementation EarClipping is used. As in the case of ear clipping,
it was necessary to make some additions to the algorithm in order to track neighbours.
Similarly, the complexity of the algorithm is unchanged, as it is easily possible to track while
�ipping the triangles.

Data: any structure of mesh triangles representing the polygon without the
obstacles; the triangles contain neighbour information

Result: similar structure with local Delaunay property representing the polygon
while goCondition do

goCondition← false
forall triangle T do

forall neighbour triangle R of T do

if tags of R & T di�er then
continue to next R

end

quadrilateral← considerQuadrilateralFromTriangles(T,R)
if sum of angles at vertices at vertices without diagonal > π then

remove R & T
add new triangles created by dividing quadrilateral using the second
diagonal
goCondition← true
break all for cycles

end

end

end

end
Algorithm 3: Flip Delaunay

3.2.3 IncrementalDelaunay

IncrementalDelaunay is the main implementation of constrained Delaunay triangulation.
The implementation is based on algorithm described in Section 2.3.5 modi�ed by adding
the Steiner point insertion as described in Section 2.3.6. The algorithm is parametrized by
two values: the smallest angle, and the smallest triangle area. The smallest angle denotes
threshold minimal angle that any triangle can have. Naturally, angles of triangles with two
or three enforced edges (i.e., edges that are outer or inner boundary of the polygon) are
not a�ected. However, such triangles are still a�ected by the algorithm. The smallest area
denotes threshold minimal area of triangle that can generate a Steiner point in the re�nement
process. This threshold ensures termination of the algorithm.

The algorithm is as follows: process the InputPolygon structure for highest level to the
lowest, not unlike in the EarClipping. When processing an InputPolygon, create a list of
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points to be processed. The list contains points from the boundary of the InputPolygon and
boundaries of the relevant obstacles polygons. It should be noted that in order to retain
consistent border sections in neighbouring areas, relevant point on the boundaries that are
located only on the boundary of the neighbouring polygons are added. The initial triangle
representing the highest level triangle not created in�nite as in the original algorithm, but
rather large enough to cover all the points. This does not have lead to di�erent triangulation
result, as the triangulated object is polygon and the triangles relevant for the resulting
triangulation are all isolated from the outermost triangles by enforced edges. After the lists
and initial triangle are created, add the points to triangulation until the list is empty.

After any new triangle is created, if the angle and are thresholds add relevant Steiner points
to the point list. It should be noted that when the a Steiner point is to be added to the
triangulation, the triangle it originated from is checked for relevancy - the addition process
is only executed for triangles that are still leaves in storage structure (i.e., if the result was to
be recovered in this step, these triangles would be part of the �nal triangulation; see Section
2.3.5 for more information on the triangle storing structure).

After the point insertion is �nished, three additional have to be executed. First, locate
the the relevant triangles that represent interior of the processed polygon. This is done
by propagation via the neighbourhood information and is of time complexity O(t) where t
denoted the number of triangles. Second, check every triangle that is located on a border
(i.e., some of its edges does not have a neighbour information) and check, whether any of the
original polygonal edges was divided by the point insertion process. If this was so, create zero
area connectors in order to ensure edge consistency between triangulation of neighbouring
polygons. See Figure 3.2. Third, after obtaining the triangulations of lower lever obstacle
polygons, add the missing neighbour information for edges bordering these polygons. This
step may of space complexity O(b ∗ t) where t denotes the number of triangles in the lower
level triangulations and b denotes the number of triangles with missing border information
in the triangulation. This may equal space complexity of O(t2), however, this would be so
only when a triangulation where no or very few additional points were inserted is considered.
This is not the case in most examples of incremental triangulations.

3.2.4 AnavMesh

AnavMesh is the main implementation of non-triangulation meshing algorithm in the AgentCrowd
framework. It is based on the algorithm proposed by [Oliva and Pelechano, 2012]. See Sec-
tion 2.1 for more more detailed description of the algorithm.

The proposition of the AnavMesh algorithm by [Oliva and Pelechano, 2012] appears to be
too general to be implemented directly into the framework. While Oliva generally refers
to polygons while describing the algorithm, we found out that the algorithm is easier to
implement if vertices and edges are considered as the main building blocks of the world and
the polygons are only reconstructed afterwards. Each point is represented by its location
and its edges (i.e., references to other points). In the algorithm steps the non-convex vertex
is located by simply checking angles between edges at points. For this goal the edges are
sorted based on their angle to a �xed vector (1, 0). For a selected non-convex point, the
process is similar to Oliva's operation on the polygon - the closest point, edge, or portal
edge is selected. As the selected entity is both the closest to the vertex and it is located in
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Figure 3.2: Zero Area Connectors
Zero area connectors are included in the triangulation in order to enforce consistency

between neighbouring input polygons. Note that the two InputPolygons in this �gure were
triangulated in such a way that the triangles cannot consistently border each other. Note
that the height of red area is 0 and therefore the connector triangles are 3-vertex lines with

zero area.
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Data: InputPolygon structure representing the simulation world
Result: triangle structure with local Delaunay property representing the polygon;

Steiner points may be added
forall point P in border/obstacle polygon do

add P in point queue
set edge information: P has has enforced edge to neighbouring vertices in the
polygon

end

forall polygon neighbouring the main polygon do

forall point P in its outer border do
forall edge E in the main polygon border do

if P is on E and point queue does not contain P then
add P in point queue, rest relevant enforced edge information

end

end

end

end

E ← createEncompassingTriangle(allPoints)
while point queue is not empty do

P ← poll(queue)
processPoint(P)

end

forall leaf triangle L : process based on neighbourhood do

if L represents non-obstacle polygon interior then
retain L

end

else
forget L

end

end

forall edge E of outer polygon with added points from neighbour polygons do
if multiple triangles represent the border then

create zero area triangle
end

end

forall obstacle O do
run incremental Delaunay
forall triangle T in this triangulation do

forall triangle S in obstacle triangulation do

if should be neighbour then
add neighbour information

end

add S in this triangulation
end

end

end
Algorithm 4: Incremental Delaunay
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Data: point P
Result: all sub-triangles E (including E) that contain P
if P is bound to triangle and the triangle is a not leaf then

continue to next P
end

trianglesToDivide← locate(E,P )
if trianglesToDivide size 0 then

continue to next P
end

else if trianglesToDivide size 1 then
P is in interior of a triangle
divide such a triangle into 3 new triangles
set their neighbour information based on neighbour information of divided
triangles
try �ipping the new triangles with their outside neighbours
set new triangles as sub-triangles of the divided triangle

end

else if trianglesToDivide size 2 then
P is on an edge
forall triangle with P do

do similar procedure as in the previous case, but divide triangle into 2 new
triangles

end

end

forall points N with enforced edges to P do

if N is already processed then
locate triangles cut by the edge
re-triangulate the area in recursive manner

end

end

forall leaf triangle L the is a sub-triangle of trianglesToDivide do
if did not pass quality criterium & did pass min size criterium then

queue: add Steiner point bound to L
end

end
Algorithm 5: IncrementalDelaunay sub-procedure: process point
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Data: triangle E, point P
Result: all sub-triangles E (including E) that contain P
if E does not contain P then

return
end

if E has sub-triangles then
forall sub-triangle S do

add(resultList, locate(S, P ))
end

end

else
add(resultList, E)

end

return resultList
Algorithm 6: IncrementalDelaunay sub-procedure: locate

the interest region, it is obvious that it has to be located inside the same polygon that the
non-convex angle belonged to. See Figure 2.2 for illustration of an interest area. It should
be noted that other than the vertices representing the polygon and its inner obstacles, there
are also 4 vertices representing the area encompassing the polygon. For those 4 vertices the
convexity check always succeeds and therefore the algorithm does not try to connect them
to any other vertex (note that this would be problematic as there is no vertex they could be
connected to).

The polygon reconstruction process is based on similar principles. Propagating from and
edge of the encompassing polygon, the polygons are created based on one of their oriented
edges. A new polygon is created starting from an edge and then choosing the next edge
by looking at next the sorted edge belonging to the tail vertex. The propagation to next
polygons is done by starting from the encountered edges in the opposing direction. Note
that this creates all the edges either clockwise or counter-clockwise.

Several other fact should be stated about the AnavMesh implementation. First, unlike
the previously mentioned MeshCreator implementations which use the Triangle, AnavMesh
uses GeneralMeshPolygon, a di�erent MeshPolygon implementation. While the di�erence
is presumed to be mostly insigni�cant, this could lead to slightly slower performance of the
simulation, as in the case of simpler Triangle various assumptions and simpli�cations could
have been made. Second, it should be noted that in order to store neighbour information,
steps not dissimilar to those used in IncrementalDelaunay implementation had to be made.
See Section 3.2.3 for further information.
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Data: InputPolygon structure representing the simulation world
Result: convex polygon structure representing the simulation world
forall point P in border/obstacle polygon do

add P in point queue
set edge information: P has has enforced edge to neighbouring vertices in the
polygon

end

forall polygon neighbouring the main polygon do

forall point P in its outer border do
forall edge E in the main polygon border do

if P is on E and point queue does not contain P then
add P in point queue, rest relevant enforced edge information

end

end

end

end

createEncompassingRectangle(allPoints)
forall convex Point P do

R← createInterestRegion(P )
forall Point Q in R do

if distance(P,Q) < minDist then
I ← Q
mindist← distance

end

forall Neighbour N of Q do

if distance(QN section in R,P) < minDist then
I ← QN
mindist← distance

end

end

end

if I is a Point then
connect P to Q

end

if I is line segment and not a portal then
connect P to its projection on I
mark the new edge as a portal

end

if I is line segment and a portal then
connect P to its end vertices of Imarkthenewedgesasportalsend

end

constructPolygons(AllPoints)
forall obstacle polygons of this polygon do

repeat this
set neighbourhood information

end

Algorithm 7: AnavMesh algorithm
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Evaluation

In this section we compare the adopted solution, i.e., the IncrementalDelaunay and AnavMesh,
with the original potential map navigation. In general, total of three variations of adopted
approaches are measured. However, in some sections, additional variations of the adopted
approaches may be used. The three fully measured method are

• IncrementalDelaunay with small triangle size (minimal size of triangle �= 1/1000 of
simulation space)

• IncrementalDelaunay with large triangle size (triangles rarely divided by Steiner points)

• AnavMesh

The adopted solution are compared to the original implementation by using three approaches.
Two of the approaches are objective measurements of tick time, computation time, and size
variables,

• Navigational Structure - measurement of memory used to represent the structure,
memory used in structure creation, and time spent on structure creation

• Tick Measurements - measurements of time variables in simulation - e.g. time to
calculate navigational vector for an agent

the third is mix of subjective and objective observation of agent movement and positioning

• Agent Pathing - observation of agents' paths

4.1 Navigational Structure

The navigational structure is analysed using memory and time measurements of various
aspects of the navigation structure and its creation process. The measurements are

• Representation Size - bytes - the size of the mesh representing entities

• Heap Size After Structure Creation - measurement of memory requirements of the
mesh/potential map creation - the results may be inaccurate as there are no guarantees
that JVM did not run garbage collection in the creator process

• Computation Time - time needed to compute the mesh/potential map

The variables are measured in three scenario types
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Cells 10000 20000 30000 40000 50000 60000 70000 80000 90000

AnavMesh 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
IncLarge 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
IncSmall 281 131 166 135 169 186 180 178 145
Potential 5424 10809 16194 21579 26963 32348 37733 43118 48503

Table 4.1: Size Tests: Representations Size <kB>

Figure 4.1: Scaling with Scenario Size - Representation Size

• Size Tests - tests based on varying size of the scenario - the scenario is generally empty
plane with one entry zone and one exit zone.

• Flow Tests - test based on varying number of agent �ows - the test is based on one of
the smaller empty size tests, however there are multiple exit zones

• Obstacle tests - test based on varying number of obstacles in the scenario

In the following subsection the results will be provided and interpreted listed by the scenario
type.

4.1.1 Size Tests

Size tests are based on varying size of the scenario. The scenarios are generally empty planes
with one entry zone and one exit zone. The varying size is provided by its x-axis, while the
agents travel along the y-axis. In the result, the travel time of the agents is not a�ected.
There are 9 scenarios ranging from 100000 to 900000 cells.

We can safely conclude that the new approaches have signi�cantly smaller memory repre-
sentation (Table 4.1.1, Figure 4.1) than the potential maps. Also, it should be noted that
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Cells 10000 20000 30000 40000 50000 60000 70000 80000 90000

AnavMesh 46 29 34 40 45 51 56 61 67
IncLarge 44 64 34 40 46 51 55 62 67
IncSmall 29 33 37 43 49 54 59 66 70
Potential 41 70 84 116 128 113 122 144 167

Table 4.2: Size Tests: Heap Size <MB>

Figure 4.2: Scaling with Scenario Size - Heap Size
Note that some of the series may overlap

unlike the potential maps, the mesh representation does not increase its memory require-
ments when only the size of scenario is changed. However, several remarks should be noted
about the IncrementalDelaunay approach. While the results of IncrementalDelaunay with
small triangle size does appear to be somewhat stable with changing cell number, it does
not reach the stability of IncrementalDelaunay with large triangles and the AnavMesh. This
is caused by the fact that the parametrization of the triangulation actually varies, as it is
bound to a fraction of the total simulation space.

The heap size measurement (Table 4.1.1, Figure 4.2) shows linear like trends for all the new
and old approaches. However, the old potential map approach is signi�cantly steeper. As the
heap size measures the full JVM heap after the mesh/potential map creation, we can presume
that linear trend present in the new approach data is caused not by the MeshCreator class
itself, but rather by other structures present in the simulation that scale with the simulation
size. Some of these structures, such as the grid, are vital for the simulation and cannot
be removed to make the measurement more precise. Nonetheless, it would appear that the
potential maps scale worse with the amount of cells in the simulation.

While the newly adopted approaches appear to be superior with memory scaling with number
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Cells 10000 20000 30000 40000 50000 60000 70000 80000 90000

AnavMesh 218 237 288 282 286 322 415 309 413
IncLarge 154 233 211 249 388 260 280 494 489
IncSmall 3008 1779 1690 1473 1515 1735 1672 1715 1473
Potential 179 280 396 372 394 1015 817 656 722

Table 4.3: Size Test: Creation Time <ms>

Figure 4.3: Scaling with Scenario Size - Computation Time
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Flows 1 2 3 4 5 6 7 8 9

AnavMesh 2.3 2.6 3.0 3.3 3.6 4.0 4.3 4.7 5.0
IncLarge 2.9 3.5 4.1 4.7 5.3 6.0 6.6 7.2 7.8
IncSmall 281 257 302 348 394 439 485 530 576
Potential 5424 5564 5705 5845 5985 6126 6266 6406 6547

Table 4.4: Flow Test: Representation Size <kB>

Flows 1 2 3 4 5 6 7 8 9

AnavMesh 24 23 24 24 24 24 24 24 25
IncLarge 24 24 24 24 23 24 24 24 25
IncSmall 31 29 29 29 30 29 30 30 32
Potential 45 54 72 82 103 113 36 42 55

Table 4.5: Flow Test: Heap Size <MB>

of cells, the time measurement results (Table 4.1.1, 4.3) show that there is similar scaling
with of time with cell amount between the old and new approaches. There appears to be
weak linearity/constant trend for IncrementalDelaunay with large triangles and AnavMesh
and weak/medium linearity for potential maps. IncrementalDelaunay with small triangles,
while also probably constant, has signi�cantly larger time requirement.
In conclusion, the new approaches do not depend on or depend weakly with the number of
cells while the potential map approach has linear treand. In all the memory measurements
the new approaches proved to be superior. In the time measuremts, the AnavMesh proved
to be superior, but it was observed that IncrementalDelaunay result highly depends on its
parametrization.

4.1.2 Flow Tests

Flow test are based on varying number of �ows. Again, there are 9 scenarios, ranging from
1 to 9 �ows. Each scenario is empty space with one entry zone and respective number of
exit zones. All the exit zone are located on the same position (i.e., they are represented by
same sets of mesh polygons).
From the results of Table 4.1.2 and Figure ?? we can conclude that the size of representation
of the new method does not depend on or depends weakly on the number of �ows. The
potential map representation grows linearly with the number of �ows. Several remarks should
be made. First, the potential maps have signi�cantly higher memory requirements than the
new approaches. Second, the IncrementalDelaunay with small triangles has larger memory
requirements than the other new approaches. However, the results are still signi�cantly lower
than potential map results. Finally, it should be noted that it was investigated that the weak
trend of the new approaches is not caused by the mesh objects itself, which are identical,
but rather by the potential value representations of these objects (i.e., target-potential maps
in each object), that still have to grow with number of �ows.
From the results of Table 4.1.2 and Figure 4.5 we can conclude similar results. The new
approaches seem to have constant heap size requirement while the potential map grow linearly
with the number of exits. Note that for the higher number of �ows the heap size of potential
map creator reached its allocated memory and garbage collection was likely enforced by the
JVM.
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Figure 4.4: Scaling with Number of Flows - Representation Size

Figure 4.5: Scaling with Number of Flows - Heap Size
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Flows 1 2 3 4 5 6 7 8 9

AnavMesh 235 284 324 303 208 344 262 291 188
IncLarge 217 230 233 196 174 274 228 238 297
IncSmall 3009 3070 3525 3554 3609 3845 4142 4901 4710
Potential 238 324 370 424 586 519 680 635 739

Table 4.6: Flow Test: Creation Time <ms>

Figure 4.6: Scaling with Number of Flows - Computation Time
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Obstacle Rows 10 20 30 40 50 60 70 80 90

AnavMesh 10 25 40 23 48 63 78 86 101
IncLarge 26 74 122 29 146 193 241 265 313
IncSmall 403 540 563 304 423 495 453 472 487
Potential 10805 10805 10805 10805 10805 10805 10805 10805 10805

Table 4.7: Obstacle Tests: Representation Size <kB>

Figure 4.7: Scaling with Space Complexity - Representation Size

From the Table 4.1.2 and Figure 4.6 we can conclude that the IncrementalDelaunay with
small triangles is again the most time consuming method employed. The linear trend of some
of the methods is presumably caused by the potential representation, as in the previous case.
In conclusion, the memory requirements of the new approaches do weakly grow with number
of �ows. However, the potential map trend is generally much steeper. In the time measure-
ment, the AnavMesh proved to be superior, but it was observed that IncrementalDelaunay
result highly depends on its parametrization.

4.1.3 Obstacle Tests

The obstacle tests illustrate dependence of the used approaches with space complexity. There
are 9 scenarios. The scenarios are equally sized. In each scenario, there is a number of cell
rows where obstacles can be generated. The obstacles are 2x2 squares separated by 2 cell
wide empty space. The scenarios range from 10 rows (i.e., about two rows of obstacles) to
90 rows with potential obstacle placement.
From Table 4.1.2 and Figue 4.7 we can draw several conclusions. Firstly, the old poten-
tial map approach representation, while being larger in absolute values, does not grow with

44



4.1. NAVIGATIONAL STRUCTURE

Obstacle Rows 10 20 30 40 50 60 70 80 90

AnavMesh 39 54 29 63 88 56 35 94
IncLarge 31 34 40 28 44 52 63 68 80
IncSmall 36 40 46 35 48 59 67 73 86
Potential 71 65 65 66 66 72 63 66 63

Table 4.8: Obstacle Tests: Heap Size <MB>

Figure 4.8: Scaling with Space Complexity - Heap Size

the space complexity. Second, the IncrementalDelaunay with small triangles does depend
weakly on the space complexity, as the number of adjustments made is smaller thanks to
its relative density. Third, the IncrementalDelaunay with large triangles and AnavMesh are
highly a�ected by increased space complexity, as they utilize large open spaces that had to
be divided to �t the space. Nonetheless, AnavMesh and IncrementalDelaunay with large
triangles still have the lowest memory require of all the approaches. While the representa-
tion of the new approaches depends linearly and the potential map representation remains
constant, it appears unlikely that the absolute values would be ever equal, as the obstacles
would have to be signi�cantly smaller than individual cells to reach such a state.

To no surprise, we can conclude from Table 4.1.2 and Figure 4.8 that heap size of potential
map creator is not a�ected by the space complexity. Heap sizes of the new approaches grow
linearly with the space complexity, with AnavMesh being the largest and the most varying.
Unlike the previous case of representation size, the heaps the new approaches did reach size
higher than the potential maps.

From Table 4.1.2 and Figure 4.9 we can conclude that computation time for the approaches
grows linearly with the space complexity, while the potential map computation remains
constant. If the absolute values are to be considered, the potential map are the lowest and
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Obstacle Rows 10 20 30 40 50 60 70 80 90

AnavMesh 39 54 29 63 88 56 35 94
IncLarge 31 34 40 28 44 52 63 68 80
IncSmall 36 40 46 35 48 59 67 73 86
Potential 71 65 65 66 66 72 63 66 63

Table 4.9: Obstacle Tests: Computation Time <ms>

Figure 4.9: Scaling with Space Complexity - Computation Time
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4.2. TICK MEASUREMENTS

AnavMesh IncLarge IncSmall Potential

Total Ticks Time 292 452 711 17
Total Ticks No 13235 13813 18354 9337
Total Ticks Av 22132,61 32726,94 387694,34 1850,52

Unchanged Ticks Time 279 425 418
Unchanged Ticks No 12952 13382 13257
Unchanged Ticks Av 21561,15 31795,03 31550,85

Unchanged Ticks No Percentage 0,98 0,97 0,72

Unchanged Ticks Time Percentage 0,95 0,94 0,06

Changed Ticks Time 13 26 6697
Changed Ticks No 283 431 5097
Changed Ticks Av 48286,63 61661,54 1314002,8

Changed Ticks No Percentage 0,02 0,03 0,28

Changed Ticks Time Percentage 0,05 0,06 0,94

Table 4.10: Tick Measurements
Time: <ms>

the IncrementalDelaunay with small triangles the highest.

In conclusion, the results of this subsection di�er greatly from the previous two, where the
new approach proved to be superior. The new approaches trade-o� growth of computation
time and heap space used with growing space complexity for lower memory requirement of
the �nal representation.

4.1.4 Conclusion

To conclude the memory structure analysis, it appears that the new approaches, mainly the
AnavMesh algorithm, perform better when scaled with number of cells or number of �ows,
where the dependence is either constant or weakly linear. The potential map approach
performs better in the computation phase, especially with growing space complexity.

4.2 Tick Measurements

In this section we provide results and analysis time measurements of tick in the simulation.
In this context, a tick refers to time required for an agent to compute his next direction
based on the navigation structure, i.e., not the time required to compute social forces and
execute the movement itself.

The measurement was executed on a map from the empty map series used in size tests. For
the IncrementalDelaunay structures, the agents were moving towards centre points of the
next mesh polygon. For AnavMesh agents were moving towards the edge of the next mesh
polygon.

The results are as in Table 4.2. For the new approaches, there are two tick types:

• Tick: Unchanged - the agent did not move to a new mesh polygon

• Tick: Changed - the agent did move to a new mesh polygon
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Figure 4.10: Scenario with Obstacles - Potential Map, AnavMesh, Incremental Delaunay
with small triangles, IncrementalDelaunay with large triangles

From the results we can conclude that in general, the potential map representation is much
faster. The potential map computes each tick about 10 times faster than the new approaches.
New representations su�er mostly from slow ticks with change, but even the unchanged
ticks are slower than potential representation ticks. Despite using more complex navigation
computation, the lower number of polygons causes the AnavMesh to have the fastest ticks.
The IncrementalDelaunay with small triangles su�ers greatly from large number of mesh
polygons, which cause frequent polygon changes and therefore slow the computation.

4.3 Agent Pathing

It is one of the aims of this work to implement a new approach to navigation that, while scal-
ing better with size, retains some similarities in behaviour to potential map model used in the
AgentCrowd framework. To this end this sections provides comparison of the implemented
approaches to the original potential maps in terms of path planning.

The main method used in this section is comparison using heat maps of agents movement.
The heatmaps represent agent density on a cell in the simulation grid. Each time agent steps
on a cell, its position is logged. The tone of the heatmap represents the percentage value of
the number of agents stepping on a cell, where 100% is the number of agents that stepped
on the cell with the highest number.

First, consider Figure 4.10 representing heatmaps of the various approaches used on scenario
with several rows of obstacles. The order of approaches is (from left to right): potential
map, AnavMesh, IncrementalDelaunay with small triangles, IncrementalDelaunay with large
triangles. From brief observation we can conclude that in this scenario both the AnavMesh
and IcrementalDelaunay with large triangles behaves similarly as the benchmark potential
map. The IncrementalDelaunay with small triangles behaves quite di�erently. The agents do
not move directly to one the exit zone while choosing any of the holes between the obstacles,
they rather prefer several distinct paths.

Similar behaviour was observed on several other scenarios. Consider an empty space scenario.
The benchmark Figure 4.11 represents the various approaches, listed in the same order as
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Figure 4.11: Empty Scenario - Potential Map, AnavMesh, Incremental Delaunay with small
triangles, IncrementalDelaunay with large triangles

in Figure 4.10. Again, while the IncrementalDelaunay with large triangles and AnavMesh
are quite similar to the benchmark, the IncrementalDelaunay with small triangles presents
several arbitrary paths.

In general, we can observe some di�erences between the benchmark scenarios, AnavMesh
scenarios and IncrementalDelaunay with large triangles scenarios. While the agents move in
similar fashion, the potential map agents are closer to each other, while the other scenarios
are little more spread into the space, with Incremental Delaunay being the extreme. However,
the di�erence appears to be insigni�cant.

To conclude this section, it appear that the AnavMesh does pass the comparison to bench-
mark potential map scenarios. The IncrementalDelaunay passes the comparison if large tri-
angles are used. However, it should be noted that this could pose a problem, as in di�erent
size scenarios/scenarios with di�erent space complexity the parametrization of Incremen-
talDelaunay would have to change accordingly.

4.4 Evaluation Conclusion

In this section the previous solution, i.e., the potential map approach, was compared to the
newly adopted approaches. See Table 4.12 for comparative illustration of the approaches. We
found out that in terms scaling with scenario size, the AnavMesh and Incremental Delaunay
with large triangles are superior. Incremental Delaunay with small triangles still proved
better in terms of memory used, but took much longer to compute. Moreover, the approaches
scaled similarly when number of �ows was increased.

In terms of scaling with space complexity, the results were not as straightforward. Even
though the potential maps did scale well, the absolute size of their representation was still
much larger. On the other hand, the computation time of potential maps did not only scaled
well, but was also the lowest. The new approaches, especially the Incremental Delaunay with
small triangles, were considerably slower.

The potential maps also proved to be the fastest in the simulation itself. The potential map
ticks, i.e., the time an agent needs to compute the next move, are about 10 times faster than
the ticks of the new approaches. Again, the IncrementalDelaunay with small triangles was
the slowest.

Finally, the agent pathing behaviour was examined. Here, the potential maps were considered
to be a benchmark approach. Both AnavMesh and Incremental Delaunay with large triangles
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Figure 4.12: Evaluation - Comparative Table
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provided agent behaviour similar to the potential maps. The Incremental Delaunay with
small triangles, however, seems to encourage agents to take strange, arbitrary paths.
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Chapter 5

Conclusion

In scope of this work, we implemented and evaluated two new navigation approaches for
the AgentCrowd framework: AnavMesh, a convex polygon mesh algorithm based on work
of [Oliva and Pelechano, 2012] and Incremental Delaunay triangulation with additional Steiner
points. Both the algorithm proved to be a possible replacement of the potential maps ap-
proach used in the AgentCrowd framework. However, we also identi�ed several drawbacks
of these approaches.

The potential maps have severe limitations when scaled with scenario size and number �ows.
Also, their representation in the memory is generally much larger than the representation of
the new approaches. On the other hand, the potential maps are relatively fast to compute
and can provide the agents with their navigation vectors very quickly.

The AnavMesh proved to be the dominant solution. The approach is superior to both
the potential maps and incremental Delaunay triangulation in terms of representation size,
regardless of the scaling with scenario size, number of �ows, or scenario complexity. It also
appears to be the fastest of the new approaches, even though it is still signi�cantly slower
than the potential maps.

The incremental Delaunay triangulation proved to be problematic. While it can approach the
quality of the AnavMesh when its parametrization is set to large triangle size, the approach
is severely limiting when set to small triangle size, as the large number of entities not only
takes larger proportion of memory, but also slows down various calculation. Finally, the
small triangles may in some cases cause arbitrary pathing of agents.

To draw the �nal conclusion to this work, we propose the AnavMesh as the new approach of
choice for AgentCrowd framework. While the potential maps still have several advantages,
mostly in terms of computation time, the AnavMesh approach provides solution that is
comparable in terms of speed and superior in terms of memory usage.
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Appendix A

Attachments

The attachment disc contains:

• .pdf �le of this text

• AgentCrowd project

• scenarios for the AgentCrowd project

• readme.txt concerning the AgentCrowd project
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