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Abstrakt
Problematika detekce dutin a tunelů v proteinových molekulových strukturách je in-
tenzivně zkoumaným tématem jak z biochemického tak z informatického hlediska, s
širokým spektrem aplikací, kterými jsou například návrh léků či proteinové inženýrství.
Existuje řada softwarových nástrojů (příkladem je fpocket [31] a CAVER [14]), které
umožňují detekci a analýzů proteinových tunelů. Cílem této bakalářské práce je vytvoření
nové alternativní metody pro detekci proteinových tunelů, za využití algoritmů pocháze-
jících z oblasti robotiky (například algoritmu Rapidly-exploring Random Trees). Nově
navržená metoda využívá konceptu zakázaných oblastí pro ovlivnění způsobu růstu
stromu, spolu s řadou dalších modifikací, které umožňují najít proteinové tunely v
molekulách.

Abstract
The problem of protein cavity and tunnel detection in is a widely studied topic both
from the biochemical and the computational standpoint, with a broad spectrum of
applications, such as pharmaceutical design and protein engineering. A number of
software tools currently exists, such as the fpocket [31] and CAVER [14], which allow
for protein tunnel detection and analysis. The goal of this thesis is to propose a new
alternative method for protein tunnel detection, which utilizes well established and
analyzed algorithms originating in the field of robotics, namely the Rapidly-exploring
Random Trees algorithm. The novel method utilizes a novel concept of disabled areas
to guide the tree growth, plus a score of other modifications to allow the algorithm to
find multiple protein tunnels.
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List of symbols

Symbol Meaning Name in the program

C configuration space (the set of all possible states) -

q a random state q ∈ C -

αt the largest tunnel width after which a tunnel

is no longer considered to be a tunnel [Å] MAX_TUNNEL_WIDTH

δt a threshold value which denotes a differing

protein tunnel [-] TUNNEL_DIFFERENCE_THRESHOLD

γ maximum tree growth speed [Å] MAX_TREE_GROWTH

ε interpolation resolution [Å] INTERPOLATION_RESOLUTION

σo sampling region offset [Å] SAMPLING_REGION_OFFSET

τo disabled area overlap [Å] DISABLED_AREA_OVERLAP

ι the number of optimizing iterations OPTIMIZING_ITERATIONS

υ sampling probe radius [Å] -

Table 1: A list of symbols used throughout this thesis
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1 Introduction

This chapter aims to give the reader an insight into protein tunnel detection and the
currently available state-of-the-art software tools.

1.1 Motivation

Proteins are large macromolecules consisting of long atomic chains (amino acids). The
size of proteins in the human body can vary anywhere from 48 atoms (Thyrotropin-
releasing hormone or TRH, which would be considered a peptide rather than a pro-
tein) [3] to more than 500000 atoms (Titin, the largest known protein) [4]. The indi-
vidual atoms in the chains and their interactions during protein folding, which occurs
after the molecule is synthesized, give rise to their molecular structure. See Figure 1.1
for an example of protein molecular structure and its different representations.

Figure 1.1: An example of visual representations of a protein molecule. Figure a) is a cartoon represen-
tation highlighting secondary structures in the protein, figure b) is a stick representation highlighting
chemical bonds between the atoms and figure c) is a sphere representation highlighting individual atoms.
Due to its nature, figure c) is the most useful in our application

This structure can reach varying degrees of structural complexity, depending on the
size of the protein, and it is what allows proteins to perform their various important
biological or industrial functions, primarily through so called molecular tunnels and
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pores. Tunnels are empty spaces in the molecule, spanning from its surface to varying
depths. Pores are tunnels connecting two locations on the molecular surface through
the molecule (see Figure 1.2 for depictions).

Figure 1.2: A diagram illustrating a protein (blue) tunnel a) with a "solvent/ligand (green) accessible
site (red)" or an "active site", a protein pore b) and a protein cavity c)

Proteins function by interacting with other, smaller molecules (ligands). After bind-
ing them into their structure at so called chemically active sites (or solvent/ligant ac-
cessible sites) (see Figure 1.2). Since these active sites are often located inside protein
cavities, studying properties of these structures, especially the previously mentioned
tunnels and pores, can give rise to new insights regarding functions of these proteins.
For example, knowing whether a tunnel is large enough to accommodate a passage of
a ligand molecule can help biochemists to determine whether the two molecules can
react and bind together.

Protein tunnel detection and visualization has therefore been an important and ac-
tive research field. Its applications can be found mainly in the area of pharmaceutical
industry, such as structure-based drug design and protein engineering. Computer sim-
ulations and analyses of protein structure and their interactions with ligand molecules
have recently allowed experts in the field of biochemistry to increase the rate of their
research, while being significantly cheaper than laboratory tests.

1.2 Problem description

The main task of protein tunnel detection is to find (compute) a collision-free path for
a ligand molecule, leading from an active site located inside the protein molecule to
its surface. Protein tunnels can be represented as a sequence of spheres, with their
radii equal to the largest non-colliding sphere able to fit in the center of the tunnel, as
depicted in Figure 1.3.

Let us define the term protein tunnel width in a location q ∈ C as a radius of the
largest possible sphere which does not intersect any of the atoms of the protein with
its center positioned in q. Similarly, let us define the term tunnel bottleneck as the radius
of the tunnel’s smallest sphere. See Figure 1.4 for illustrations.
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Figure 1.3: A diagram illustrating tunnel visualization using spheres. a) shows a found path in a protein
tunnel. The path is interpolated into a set of points and every point is used as an origin for a largest
possible non-colliding sphere, as depicted in b). c) shows the final result in the molecular graphics system
Pymol [10]

Among the tunnels’ most important characteristics for the field of biochemistry are
the size of the tunnel’s bottleneck (the narrowest place in the tunnel) and the neighbor-
ing amino acids.

It is worth noting that finding the exact center points of the tunnel, i.e., the positions
in which the tunnel would be able to accommodate a sequence of the largest possible
spheres, is a non-trivial task (since we have to find a global minimum among a set of
local minima) and is further discussed in Section 3.

The spherical approach allows us to determine the size of a tunnel’s bottleneck
more easily, while being less suitable in the process of mesh generation and tunnel
rendering [22].

Figure 1.4: A diagram illustrating the term tunnel width and tunnel bottleneck. Figure a) shows the
interpretation of tunnel width at a location q as the radius (green) of the largest possible sphere able to
fit in this location. b) shows the narrowest place in the tunnel, i.e., the tunnel’s bottleneck.

Another approach employed by tools utilizing Delaunay triangulation (see Sec-
tion 1.3.2) consists of generating a mesh from the resulting 3D triangles, which is then
smoothed using various techniques, as is depicted in Figure 1.5.
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Figure 1.5: A diagram illustrating tunnel visualization using Delaunay triangulation. Figure a) shows
a triangulated space inside the protein channel, which is later analyzed and extracted b). Additional
smoothing provides us with the final tunnel shape c).

Given the possible complexities of the found tunnels, the criteria telling us which
solution we should utilize are unclear. Both approaches can suffer from a lack of preci-
sion, be it an offset from the tunnel center or smoothing which results in either a shape
colliding with the protein’s atoms or a shape too small and therefore leaving too much
free space between the atoms and the sides of the tunnel.

A number of challenges arises when trying to solve the tunnel detection problem.

• The program has to solve this task in a feasible time framework (minutes/hours)
even on average CPUs. Therefore, a trade-off between optimality (finding all
existing tunnels), precision (finding tunnels with small or zero spatial tolerance)
and time complexity has to reached.

• Since the protein and ligand molecules exist in a 3 dimensional Euclidean space,
their configuration space C (the set of all possible states, in which the two objects
can exist) is infinite. An approximation representing an incorporation of a trade-
off between memory complexity and computational speed has to be created.

• We have to consider the size of the computer’s, sadly finite, memory, while bear-
ing in mind the usefulness of the chosen software structure. A less memory-
intensive structure might be able to hold a much higher number of states, while
being nearly useless in our task, because of its large access times. Similarly a
structure, which would allow us to quickly find a solution, might not be able to
hold a necessary amount of states in the computer’s memory to actually solve
the task.

• We need to only choose the relevant states, in which the objects we are studying
can physically exist. Therefore, it is desirable for the sampling distributions to
contain as few states, which denote colliding molecules, as possible.

1.2.1 Goals and outline of this thesis

The goal of this thesis is to investigate the feasibility of protein tunnel detection uti-
lizing sampling-based motion planning methods and to propose a solution consisting
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of a computer program. The program will, on an input of a protein molecule and the
respective parameters (such as the probe radius), output a set of all found protein tun-
nels, as depicted in Figure 1.6. The parameters include 3D positions inside the protein
(representing tunnel origins), and a probe (ligand) radius, representing the minimum
tunnel width.

Figure 1.6: A diagram illustrating the organization of this thesis when related to the program’s func-
tionality.

Our task is concerned only with protein tunnel detection. The following biochem-
ical analysis of the found tunnels is beyond the scope of this thesis, which mainly
explores the computational and geometrical aspects.

In this work we utilize a simplification consisting of representing the ligand molecule
as a spherical probe. The possibility of planning for an unsimplified ligand molecule
is presented in Chapter 4.

The main advantages of this approach are the possibility of planning a path (and
therefore detecting a protein tunnel) for a complex ligand molecule (as opposed to the
spherical approximation utilized by the current solutions), the possibility to plan in a
dynamic protein environment and lower memory requirements when computing [11].

Chapter 1 aims to give the reader an insight into protein tunnel detection and to de-
scribe some of the state-of-the-art tools. Some of the available solutions in the field of
robotics and their applicability are described and discussed in Chapter 2. Chapter 3 ex-
plains the modifications required to create the final proposed solution able to compute
multiple tunnels in a single protein molecule for a spherical-based ligand approxima-
tion. Further modifications and a solution capable of computing a path through a
protein molecule for a non-spherical ligand molecule is described in Chapter 4. Chapter
5 presents and explains the achieved results of the final solution. Chapter 6 discusses
the results of the presented solution and proposes further research topics and improve-
ments.
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1.3 Related work

In the last decade, a number of tools aiming to provide protein tunnel analysis has
become available [8]. They utilize a variety of methods, each of which has its own up
and down-sides. Some of these methods are described in the following sections.

1.3.1 Grid-based tools

Algorithms of this type utilize the idea of approximating a protein molecule as a regu-
larly distributed grid in a three dimensional space. The tunnels and solvent-accessible
spaces (see Figure 1.2) are detected using well known graph-traversing algorithms,
such as the Dijkstra’s algorithm [16]. By representing protein atoms as spheres with
radii equal to the atoms’ Van der Waals radii, the grid-based method is able to deter-
mine which cells (representations of regions of space) are occupied and which are not,
and fill the grid with nodes of the corresponding type. This grid is then used for tunnel
detection. See Figure 1.7 for illustrations.

Figure 1.7: A diagram illustrating an approximation of a molecule using a grid-based solution. Figure
a) shows a protein molecule positioned in a discrete grid-like environment. The molecule is analyzed for
a list of unoccupied nodes (purple dots in b)). c) shows the final result, with the molecule’s alpha shape
(see Section 2.1) colored in orange and a protein tunnel in green.

Despite being exhaustive (the finiteness of the grid guarantees that all eligible cells
will be searched, compared to the infinite number of states in a Euclidean space utilized
by sampling-based tools), this method has several disadvantages. Depending on the
resolution of the grid (i.e., too large cells) and the position, or rather the rotation of
the protein tunnel (i.e., the tunnel is positioned is such a way that the approximating
algorithm considers the space occupied), the tool can fail to find available channels
where other methods succeed [33]. The fact that the entire grid has to be sampled in
order for the approach to work also poses another disadvantage — the necessity to
hold the entire data structure in the computer’s memory.

This grid-based approach is used in e.g. POCKET [24] and its further improve-
ments, LIGSITE [18], dxTuber [27], HOLLOW [21], 3V [28] and other software tools [19].
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The main advantages of tools of this type are the exhaustiveness of the algorithms,
since the voxel grid is finite and the simplicity of implementing this approach. The
main disadvantages are the lower probability of finding protein tunnels, because of
the inherent imprecision, and the high memory requirements.

1.3.2 Tools based on Voronoi diagrams

Let us have a set of points in an n-plane. If we partition this n-plane into convex
shapes, so that every shape contains precisely one original point and all points in the
n-plane contained by the shape’s boundary are closer to the original generating point
than any of the other original points, we arrive at a Voronoi Diagram [36]. See Figure 1.8
for illustrations.

Figure 1.8: An example of a Voronoi diagram. Figure a) shows a number of points in an empty plane.
b) shows the Voronoi diagram of said points.

A weighted Voronoi diagram is a special case of a regular Voronoi diagram, in
which the distance function is defined using a specific set of parameters (see Figure 1.9).
It is particularly useful in this scenario, since it allows us to take into account different
atomic radii. "The Delaunay triangulation and Voronoi diagram in R2 are dual to each
other" [34].

Generalized into three dimensions, it can be used in protein cavity detection. Pro-
tein molecules are triangulated using Delaunay tetrahedra and protein shapes are de-
rived by removing empty regions. These shapes can later be analyzed and used to
detect protein channels.

While this approach is more precise that the one previously described in Section 1.3.1,
it also has its downsides. The ligand molecule can only be represented as a sphere.
Since the spheres representing atoms have different radii (much like the atomic Van
der Waals radii), a standard Voronoi diagram is inherently imprecise — the cell bound-
aries are used to represent equidistant points between the centers of two atoms and this
doesn’t apply when the atomic sizes don’t match. See Figure 1.10 for illustrations.

Some tools overcome this problem by using an approximation of a weighted Voronoi
diagram (or Delaunay triangulation). For example, larger spheres can be represented
by several small spheres, which allows for the usage of a standard Voronoi diagram [14,
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Figure 1.9: An example of a weighted Voronoi diagram. Figure a) shows a number of points in an
empty plane. b) shows a Weighted Voronoi diagram of said points with the points’ weights shown as
gray circles. The sizes of radii of the gray circles represent the values of weights of the individual points.
Image courtesy of [5]

26]. While this does indeed simulate the behavior of a weighted Voronoi diagram, it
increases the time and memory complexity of the task and prolongs the calculation. It
also introduces an inaccuracy into the value of a protein tunnel’s bottleneck size, since
the resulting cell boundaries are not located in the precise center points of the tunnel.

Figure 1.10: A diagram illustrating inaccuracy stemming from the usage of a standard Voronoi diagram.
Figure a) is a result of a standard Voronoi diagram and is clearly less than optimal; the nerve of the cell
is not positioned equidistant from both atomic surfaces. b) is a result of a weighted Voronoi diagram, and
is the optimal solution. c) illustrates an approximation employed by some of the solutions ( [14], [26]),
where the larger sphere is represented using a number of smaller spheres.

Some of the tools utilizing Voronoi diagrams (or Delaunay triangulation) are e.g.
Mole [26], MolAxis [13], CAVER [14] and others.

The main advantages of this type of tools are smaller memory requirements com-
pared to grid based tools and the exhaustiveness of the programs, since the cell struc-
ture is created from a finite number of atoms. The main disadvantages are the inherent

11



imprecision when utilizing a weighted Voronoi diagram approximation and the neces-
sity to use a spherical ligand molecule approximation.

1.3.3 Sampling-based motion planning tools
In recent years a number of tools, utilizing sampling-based algorithms developed in
the field of robotics for protein tunnel detection, has emerged. These tools formulate
the task of protein tunnel detection as a motion planning problem, where the goal is
to find a feasible path between two given positions. The motion planning approach
allows us to plan a path for an arbitrary shape (compared to the spherical approxi-
mation utilized by the other types of tools), to utilize a flexible ligand molecule and
to plan in a time-variable environment. One of the most prominent being the French
MoMA-LigPath web server [11].

It utilizes the Manhattan-like RRT algorithm (ML-RRT) to model protein molecule
conformations. ML-RRT divides all variables into two groups, passive and active.
Active variables denote parameters which are crucial for the motion planning task,
whereas passive variables are only taken into account when necessary (e.g. when they
hinder the task). The planner then proceeds considering the two groups as separate [9].

The nature of sampling-based motion planning algorithms conveys a number of
computational challenges, most importantly the notion of an infinite configuration
space. Therefore, if a solution doesn’t exist, such algorithm may run forever, unless
terminated by the user or a time-based constraint. However, a majority of said algo-
rithms also allows for low memory complexity, compared to e.g. grid-based tools, since
the whole configuration space doesn’t have to be discretized. This topic is discussed in
detail in Chapter 2 and Chapter 3.

12



2 Path planning

This chapter aims to describe the available solutions in the field of robotics and to
elucidate the integration of protein tunnel detection.

2.1 Protein tunnel detection and path planning from a
robotics’ standpoint

The task of path planning in the field of robotics has been an area of intensive research
for many decades, with rapid progress in both the task-solving speed and the complex-
ity of the tasks. Robots with many degrees of freedom, which would have previously
required unfeasibly long computing times to plan even simple motions, can nowadays
be dealt with in near real-time speed in both static and dynamic environments [20].

Assuming the paradigm of robotics, the problem of protein tunnel detection can
be described rather similarly to a wide range of easily solvable problems in the field
of path planning for robots. The protein molecule can be approximated as a static
3D environment consisting of differently sized spheres (according to the atomic Van
der Waals radii). Similar representation is utilized for the ligand molecule. Since the
ligand molecule is capable of translation and rotation in 3D space, it has 6 degrees of
freedom. When given the protein’s active sites (or the coordinates symbolizing the
tunnel’s origin point), the problem consists of finding a collision-free trajectory from
an initial point (the active site) to an unspecified location outside of the environment
(the protein molecule). If such a trajectory exists, we have found a tunnel, which we
know the ligand molecule can pass through. Given these conditions, the already well
established algorithms can, with some modifications, even be used for multiple tunnel
detection (this topic is discussed later).

The assumption that the protein molecule is a static 3D environment does not,
of course, apply in real cases. The dynamic nature of the positions of the protein
molecule’s atoms, caused by heat motions, means that the tunnel characteristics, namely
the sizes of the tunnels’ bottlenecks, are dynamic as well.

A configuration of a static 3D object in a 3D Euclidean space can be uniquely iden-
tified by its state (i.e., its position P ∈ R3 and its rotation R ∈ SO(3), denoting the 3D
rotation group). Given the nature of the SO(3) rotation group, we can utilize many ex-
isting mathematical constructs to describe it. For the sake of simplicity and an ease of
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use, we have utilized quaternions (R = (a, b, c, d)), which are hyper-complex numbers
satisfying certain conditions [35].

Let us define a configuration space C as a space of all available states (object posi-
tions and rotations: q ∈ (x, y, z, a, b, c, d)). Let C f ree be a subspace of all non-colliding
states and let Protein ⊂ R3 represent a region of space occupied by the protein molecule:

C f ree = {q ∈ C|S(q) ∩ Protein = ∅},

where S(q) represents a sphere with a chosen probe radius (υ) in a position denoted by
the vector q. Let us define the goal region

Cgoal ⊆ C = {q ∈ C|S(q) ∩ Proteinα},

where Proteinα ⊂ R3 represents a region of space bounded by an outer layer of the
protein’s alpha shape (see Section 2.1). It follows that Cgoal is a subspace of C f ree. See
Figure 2.1 for illustrations.

Our task therefore consists of finding a sequence of states si (a path T) for a defined
object in its configuration space C between the initial sinit ∈ C f ree and the final s f inal ∈
Cgoal states, so that the object doesn’t collide with the environment (the trajectory T ⊂
C f ree) for any of the found states or for any trajectory segments represented by two
subsequent states si → si+1 (and all states belonging in a subspace of C created by
interpolating states si and si+1). We say that a state is free if s ∈ C f ree, otherwise we say
that the state is colliding. The path T can therefore be presented as:

si = (P, R) = ((x, y, z), (a, b, c, d))

T =
(
sinit, s2, ..., sn−1, s f inal

)
:
(
si ∈ C f ree; colSeg(si, si+1) = f alse; i = 1, 2, ..., n− 1

)
,

where n is the number of states in the final trajectory and colSeg(si, si+1) is a function
detecting a collision between an object and the environment for the subset of C created
by interpolating states si and si+1 returning either true or f alse.

The distance between two configurations can be measured as:

d(s1, s2) =
√
(s1x − s2x)2 + (s1y − s2y)2 + (s1z − s2z)2+

+ 10 ·
√
(s1a − s2a)2 + (s1b − s2b)2 + (s1c − s2c)2 + (s1d − s2d)2

where s1 and s2 are two states. Note that the indices x, y, z correspond to the object’s
position and a, b, c, d to the object’s rotation.

The described configuration space is multidimensional and infinite. As is the case
with the majority of computers used today, it is usually impossible to represent using
a grid-based approach due to memory requirements. Random sampling-based algo-
rithms therefore present excellent candidates for this type of task.
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Figure 2.1: An illustration of a free subspace and a goal region. Figure a) displays a protein molecule
(blue) and the free subspace C f ree (green). b) displays a protein molecule (blue) and its goal region
(yellow) Cgoal as well as an example of a path from the inside of a molecule to the goal region.

Surface detection

An important part of protein tunnel detection is the computation of a protein surface.
This can be achieved using the concept of α-shapes.

Let us have a set of points in a 2 or 3-dimensional space and a parameter, α (which
is the origin of the name, please note that this parameter is not identical to the utilized
symbol αt, denoting a particular tunnel radius value). If we position spheres in all the
regions we can "reach" using a sphere with a radius equal to the square root of the
mentioned α parameter, so that none of the said points lie in the these spheres and
every sphere touches at least one point, and if we connect said touched points using
a generated mesh, we have arrived at the structure’s alpha shape (see Figure 2.2). If
α = 0, the shape degenerates to set of the points, if α → ∞, the shape converges to a
convex hull of the set of points. Alpha shapes can be used to determine the border of a
protein molecule (surface).

Figure 2.2: Figure a) shows a set of points (blue), for which an alpha shape (red) is constructed in b)

As previously stated, shapes of proteins can reach immense complexities and a
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robust solution to provide their borders is necessary for tasks such as duplicate protein
tunnel detection (sampling-based algorithms can find multiple tunnels in the same
physical tunnel inside the protein molecule, which is undesirable). See Section 3.3 for
further details regarding multiple tunnel detection.

2.2 Sampling-based path planning

As previously mentioned, a wide variety of sampling-based algorithms already exists
in the field of robotics. These algorithms randomly sample the provided configuration
space to find relevant collision-free states which are then used to build a graph and
ultimately find a path through the environment. The functionality of two currently
arguably most commonly used algorithms is described below.

2.2.1 Probabilistic Roadmaps

The Probabilistic RoadMap (PRM) [12] algorithm samples the configuration space un-
til a desired (previously specified) number of free states is created. The found free
states are then stored in a list. Afterwards a list of n nearest free states is found for
each of the previously stored states. The algorithm then tries to connect these states
with undirected edges. If a trajectory created by interpolating a state and its neighbor
is collision-free, the two states are connected regardless of whether they already are
in a graph or not (and can therefore create new and unconnected graph components).
These steps are repeated until both the initial and the goal state are in a single con-
nected component of the graph [12]. This can be checked after every iteration with
any of the commonly used graph-traversing algorithms, such as the A* algorithm. The
resulting graph is displayed is Figure 2.3.

Figure 2.3: A diagram showing the construction process of a PRM graph. A given configuration space
with a set of obstacles in a) is sampled until a set amount of free nodes (blue) is created in b). Connections
between these nodes are then created in c).

The algorithm therefore consists of two phases: the construction phase and the
query phase. Let there be a graph consisting of nodes N and undirected edges E, an
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initial seeding node ninit ∈ N a function neighbors(n), which returns a list of nearest
neighbors for the node n from the list of previously sampled collision-free nodes, a
function collisionFree(ni, nj), which returns a boolean value if the trajectory between
the two nodes is collision-free and a function goalReached(), which returns a boolean
value if the goal node is reachable from the initial node. The pseudocode is listed in
Algorithm 1.

1 Function buildPRM(ninit)
2 N ← ninit;
3 E← ∅;
4 while ¬goalReached() do
5 q←a randomly sampled collision-free node;
6 N ← N ∪ q;
7 Nq ← neighbors(q);
8 foreach ni ∈ Nq do
9 if collisionFree(ni, q) ∧ no connection between ni and q then

10 E← E ∪ new graph edge formed between nodes ni and q;
11 end
12 end
13 end
14 Function collisionFree(s1, s2)
15 count← distance(s1, s2)/ε;
16 foreach i ∈ {0, 1, ..., count} do
17 Node n← interpolateNodes(s1, s2, i/count);
18 if n.colliding then
19 return f alse;
20 end
21 end
22 return true;

Algorithm 1: A Probabilistic Roadmap construction phase algorithm

The function interpolateNodes(n1, n2, alpha) in Algorithm 1 interpolates nodes from
n1 to n2 using a floating-point parameter alpha ∈< 0, 1 > to describe the ratio between
the two nodes and returns a new node afterwards. If alpha = 0, the new node is
equivalent to n1 and if α = 1, the new node is equivalent to n2.

The function goalReached() in Algorithm 1 can easily be implemented using a graph-
traversing algorithm, (e.g. the Dijkstra’s algorithm or the A* algorithm). Some authors
verify that all connected nodes always lie in a single-connected component before
forming new edges, however, our results indicated that, in our case, the slowdown
caused by the complexity of such verifications is worse than the slowdown caused by
their absence.

Probabilistic roadmaps are known for their ability to quickly and easily traverse
high-dimensional configuration spaces [12] and are therefore a suitable candidate for
the task of tunnel detection.
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2.2.2 Rapidly-exploring Random Trees

Figure 2.4: A diagram showing the working principle of the basic RRT algorithm. Figure a) shows a
newly sampled state (blue), which can be connected to the tree via a collision-free and shortest possible
trajectory in b). b) also shows a newly sampled node (red) which can’t be connected to the nearest state
nq, because the shortest possible trajectory would collide with an obstacle (red line in c)). c) shows one of
the main differences between the RRT and other algorithms — a new node can be connected directly to
the edge of the tree, whereas some other algorithms would try and connect the node to an existing node
(green). ε denotes trajectory interpolation resolution (orange) which is discussed in Section 3.4.

The Rapidly-exploring Random Trees (RRT) [25] algorithm builds a tree of sub-
trajectories formed by connecting new sampled free states with previously found and
connected states (i.e., with the tree).

Figure 2.5: An example of an RRT graph. Fig. a) is the result of running the algorithm for 45 iterations,
b) is the result after 390 iterations. Image courtesy of [2]

First, an initial seeding point sinit of the resulting tree is specified. The algorithm
then randomly samples the supplied configuration space. If the created sample q is not
free, it is discarded. Otherwise the closest state nq contained in the tree is found and the
algorithm tries to connect the two points by checking whether the trajectory created by
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interpolating them is collision-free. If it is, the randomly sampled point is added to the
tree and goal reachability is checked (we say that the goal is reachable if the trajectory
formed by interpolating the newly added state and the goal state is collision-free). See
Figure 2.4 for illustrations. This process repeats until the goal state is reachable. See
Figure 2.5 for the results of running the algorithm. The nature of the algorithm ensures
that the resulting graph is a tree, that is, a graph with no parallel edges or cycles.

Let there be a tree T(N, E) consisting of nodes N and directed edges E, an initial
node ninit, a function nearestPoint(n) returning either a nearest node or a node lying in
an existing edge, an functions goalReached() and collisionFree(ni, nj) with implemen-
tations similar to those in Algorithm 1. The pseudocode is listed in Algorithm 2.

1 Function buildRRT(ninit)
2 N ← ninit;
3 E← ∅;
4 while ¬goalReached() do
5 q←a randomly sampled collision-free node;
6 nq ← nearestPoint(q);
7 if collisionFree(nq, q) then
8 N ← q;
9 E← E ∪ new edge formed from node nq to node q;

10 end
11 end

Algorithm 2: A basic RRT construction algorithm

Rapidly-exploring Random Trees have shown the ability to swiftly traverse very
complex environments and are therefore also (alongside PRM, as described in Sec-
tion 2.2.1) a suitable candidate for the task of protein tunnel detection.

2.2.3 RRT-Path

RRT-Path is a type of a guided RRT algorithm. It speeds up by the path-finding process
by first finding a simplified version of the final path for a smaller mobile object using
the PRM algorithm. The found path is then used to alter the sampling distribution so
that samples along the found path are preferred with probability p ∈< 0, 1 > [32].

The algorithm has been implemented and tested, however, since the PRM phase
failed to find a path in any of the tested protein molecules because of their complexity,
the approach had to have been abandoned.

2.2.4 Discussion

The described sampling-based algorithms RRT and PRM (see Section 2.2.2 and 2.2.1)
utilize the notion of an infinite configuration space C. When presented with an initial
sinit ∈ C f ree and final s f inal ∈ Cgoal location, they strive to find a collision free trajectory
between these two locations. As stated previously in Section 1.3.3, the utilization of
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sampling-based algorithms brings a number of both advantages and disadvantages
from the computational standpoint.

The main advantage is the concept of a configuration space approximation. Tools
utilizing either a discrete space grid or Delaunay triangulation only have to hold a fi-
nite amount of elements in memory (regardless of whether such elements are nodes
of a graph or Delaunay tetrahedra). This does, however, also convey a disadvantage,
since the finite configuration space has to be kept in the memory in its entirety. There-
fore, if we work with large protein molecules consisting of many atoms or we require
highly precise results (and therefore use high resolution), these tools can be very mem-
ory demanding.

Sampling-based approaches convey significantly lower memory requirements —
we don’t have to store the entire configuration space in the computer’s memory and
can work only with the states we consider important. The main disadvantage is the
fact that the configuration space is infinite — any two states can be interpolated to
infinitely many other states. Consequently, the algorithms can never be exhaustive,
unless suitably constrained (using e.g. time or resolution-based constrains).

Another large advantage of sampling-based algorithms is the fact that, unlike with
the other groups of tools, ligand molecules don’t have to be approximated using a
circumscribed sphere. This brings up the possibility of discovering tunnels in some
extreme cases, where current tools would fail (e.g. an extremely mono-dimensionally
extended ligand molecule). This fact is further discussed in Chapter 4.
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3 Proposed solution

The task of protein tunnel detection is to find all possible tunnels when presented with
a protein molecule. Our goal is to utilize the Rapidly-exploring Random Tree algo-
rithm [25], a sampling-based motion planning algorithm from the field of robotics. We
aim to investigate the application of this algorithm, which was chosen because of its
ability to quickly find paths for complex objects, while being easy to understand, im-
plement and alter. The original RRT algorithm is not designed for the purpose of mul-
tiple path (tunnel) search and it therefore requires modifications in order to be used for
the tunnel detection task. These modifications are described in the following sections.

The previous algorithms have been designed for the purpose of planning a path
between two explicitly defined locations. This is unsuitable in our situation, since
having a single defined goal location (outside the protein molecule) could significantly
slow down the speed of the search. This also gives rise to a problem when trying to
search for multiple tunnels. Due to its nature, the algorithm only allows us to search for
a single path, which is undesirable, since we want to find all available protein tunnels.
The algorithm therefore had to be modified to account for a goal region, rather than a
location, and to allow a multiple tunnel search.

The modifications are described in the sections below. The resulting implementa-
tion is described in detail in Section 3.4.

3.1 Outline of the proposed algorithm

The RRT algorithm works by building a tree from the initial location to the final lo-
cation by trying to connect free samples to the already existing structure (tree). Upon
reaching this final location, it simply traverses the tree to the root while storing the
states (see Section 2.2.2 for greater detail).

To be able to detect multiple tunnels in a protein molecule at the level of current
state-of-the-art tools we have to address a number of issues:

1. The choice of a proper sampling region which allows us to reach maximum effi-
ciency

2. Tunnel end-point detection, to avoid slowing down the algorithm by searching
to a particular point in space
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Figure 3.1: A diagram illustrating the functionality of the introduced TOM-RRT algorithm.

3. Restricting the algorithm from analyzing already searched areas (preventing it
from finding tunnels which have already been found)

4. Analyzing the found tunnels to detect duplicates

5. Tunnel optimization in order to ensure that the found tunnel’s characteristics cor-
respond to those of the physical tunnel

The modifications can therefore be summed into two goals, the first being the abil-
ity to find a protein tunnel, and the second the ability to find multiple tunnels. The
proposed algorithm Tunnel-rOuting-Magical RRT (TOM-RRT) consists of a modified
RRT algorithm running in a loop with an environment-altering routine, establishing
the concept of "disabled areas" (see Section 3.3 for more details and Figure 3.1 for illustra-
tions).

3.2 Single tunnel detection

This section describes the modifications required for the RRT algorithm to find a single
tunnel in the protein molecule.
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3.2.1 Sampling region

A sampling region is an area of space in which random samples are created. It is a sub-
space of the configuration space C. To ensure maximum efficiency, the ideal situation
for which we strive is to have the sampling region equal to the free configuration space
C f ree and subsequently have the entirety of goal region Cgoal contained in it.

Figure 3.2: A diagram illustrating possible sampling region scenarios. Figure a) shows an ideal sampling
region (yellow), the entire protein molecule (blue) is contained with enough space around it for the ligand
molecule (red) to fit in and therefore satisfy the goal condition. b) shows a sampling region which is too
large, resulting in the majority of samples being positioned outside of the protein molecule and therefore
useless for the task at hand. c) shows too small sampling region, which will never produce a sample
satisfying the goal condition.

The problem of sampling region designation is crucial for the entire task. If we
utilize a sampling region which is too large, the majority of samples may lie in an area
where they can’t be connected to the initial point because of obstacles lying in the way
and they may get discarded. On the other hand, if the sampling region is too small,
a sample which would satisfy the goal condition may never be picked, as depicted in
Figure 3.2.

To address the problem of choosing a sampling region for every protein molecule, a
function which analyzes both the protein and the ligand molecule has been developed.
It works by scanning the protein and ligand atoms along all three axes, choosing the
ones positioned the furthest along each axis and using their coordinates as the basis for
the sampling region, along with the size of the ligand molecule and the σo parameter
in the source code. See Figure 3.3 for illustrations.

We have noticed a significant performance improvement upon integrating this func-
tion, compared to the previous approach, which consisted of determining the sampling
region manually. This is likely caused by a more desirable sampling distribution.

When a large amount of samples is generated in an environment as complex as
this, a very high percentage of them gets discarded, since they are in collision with
the environment. Choosing a distribution function which minimizes this percentage
can therefore convey a large speed improvement in the final solution. An attempt was
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Figure 3.3: A diagram illustrating sampling region identification. Figure a) shows how one of the
borders is moved (red) until the protein molecule (blue) lies entirely in the half-space designated by
it (green). b) shows the result of said process and c) shows the final region, enlarged by the ligand
molecule’s size (red) and the σo parameter.

made to generate a potential field from the static environment (the protein molecule’s
atoms) which would then be used as a distribution function.

A simple uniform distribution function was chosen, as well as a more sophisticated
one, consisting of implementing the algorithm RRTPath [32], which is optimized to
create samples in free configuration space (see Section 2.2.3 for more details).

Figure 3.4: A diagram illustrating the principle of goal region detection. In figure a) a newly added
node doesn’t satisfy the goal condition, as its tunnel width (red) is lower than the value denoted by the
parameter (yellow). b) shows how a node (red) located outside the protein molecule (blue) satisfies the
goal condition.
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3.2.2 Tunnel end-point detection

Both of the algorithms described previously in Section 2 were modified to avoid having
to explicitly pick a goal location. A parameter denoting a maximum protein tunnel
width (see Section 3.3.1), αt has to be defined manually to ensure we only consider
eligible cavities in the protein molecule as tunnels. This fact, along with the fact that
the graph used to plan the ligand molecule’s path always has to start in a tunnel, can
be utilized.

Every time a new node is connected to the graph, the amount of free space sur-
rounding it is checked. If the radius of a largest possible sphere which can be fit in this
node’s position is larger than the previously mentioned parameter αt, the cavity is con-
sidered to be outside the protein molecule and the program has therefore succeeded in
finding a tunnel. See Section 3.3.1 for more details regarding the implementation of the
tunnel width computing function and Figure 3.4 for illustrations.

This approach approximates the currently established and computationally expen-
sive protein surface detection using alpha shapes (see Section 2.1). The resulting pseu-
docode of the previous algorithm is described in Algorithm 3.

1 Function f indSingleTunnel(sinit)
2 terminate← f alse;
3 while !terminate do
4 terminate← checkConstraints();
5 q← createNonCollidingSample();
6 nq ← f indNearestNeighbor(q);
7 collisionFree← validateTrajectory(q, nq);
8 if !collisionFree and distance(q, nq) > γ then
9 q← moveSample(q, nq);

10 collisionFree← validateTrajectory(q, nq);
11 end
12 if collisionFree then
13 connectNewState(q);
14 if checkGoalCondition(q) then
15 terminate← true;
16 return createTunnelFrom(q);
17 end
18 end
19 end

Algorithm 3: Single tunnel detection pseudocode

The variables terminate and collisionFree in Algorithm 3 are boolean variables,
checkConstraints() is a boolean function returning true when time-based termination
conditions are fulfilled createNonCollidingSample() is a function which returns a free
sample in the specified sampling region, q is a randomly sampled state,
f indNearestNeighbor(state s) is a function which returns a state in the tree nearest to
the provided state s, nq is a state nearest to the state q, validateTrajectory(state s, state t)
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is a boolean function returning true if the trajectory formed between the two states is
collision-free, analogous to the function described in Algorithm 1,
distance(state s, state t) is a function which returns a distance between the states s and
t computed using the provided distance metric (see Section 2.1),
moveSample(state s, state t) is a procedure which moves the state s to the state t so that
the distance between the two states is equal to the γ parameter,
connectNewState(state s) is a function which connects the provided sample to the tree
and interpolates the formed trajectory, checkGoalCondition(state s) is a boolean func-
tion returning true when the provided sample satisfies the goal condition (see Sec-
tion 3.2.2) and createPath(state s) is a function which returns a path formed by states in
the tree created by traversing from the provided state to the root of the tree.

The described modifications allow the altered RRT algorithm to find a single tunnel
in any protein molecule when provided with a right set of parameters. The result of
the search is shown in Figure 3.5. Section 3.3 describes a variety of other modifications
which enable us to perform multiple protein tunnel detection.

Figure 3.5: An example of a result of single tunnel detection. a) shows the resulting tunnel in the cartoon
representation of the protein molecule (1CQW), b) shows the same in the spherical representation. c)
shows the tunnel without the molecule.

3.3 Multiple tunnel detection

The vast majority of protein molecules contain more than one tunnel. The nature of
the utilized algorithms does not, however, allow for multiple planned paths. We have
therefore devised a number of modifications to Algorithm 3, which allow for multiple
paths detection.

The method starts by finding a single tunnel. Once a tunnel is found, it is stored
and a so called "disabled area" is created with its center in the last node of the trajectory.
Its shape is a sphere with a radius equal to the width of the tunnel (see Section 3.3.1)
plus a small overlap determined by the parameter τo. Its purpose is to prevent the
tree from growing through the region contained by it. Any samples positioned there
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are therefore discarded and any subtrajectories intersecting it are considered to be in-
valid. See Figure 3.6 for illustrations of this concept and Figure 3.7 for illustrations of
the resulting algorithm’s behavior.

Figure 3.6: A diagram illustrating the functional principle of disabled areas. Figure a) illustrates the
sampling phase, free samples created outside of the disabled area (dotted red circle) are not affected
(green), whereas free samples located inside the disabled area (red) are discarded. b) shows how an
expansion of the tree (black structure in the bottom left corner) is prevented, since the sub-trajectory
created by connecting the new sample (red) would intersect the disabled area.

Figure 3.7: A diagram illustrating the functional principle of the TOM-RRT algorithm. a) shows an
initial found path (red) and a grown tree (black). b) shows an optimized path (yellow) and the result-
ing protein tunnel (red). c) shows the added disabled area (yellow) and how the newly created tree is
prevented from growing into the disabled area.

Afterwards, the tree created in the previous iteration is discarded in its entirety.
We have experimented with the notion or analyzing the tree and only removing

parts of the tree which intersected disabled areas, but the performance was inferior
compared to simply generating an entirely new tree, due to the speed of growth.

The algorithm is then restarted and run until a new path is found. If the found
path is new and not a duplicate of a previously found path (see Section 3.3.2 for details
regarding duplicate tunnel detection), a new disabled area is created at the end of the
newly found trajectory, as depicted in Figure 3.8.

New disabled areas are then created along the previously found respective trajec-
tories, closer to the root of the tree and the ligand molecule’s original position, but
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Figure 3.8: A diagram illustrating how disabled areas progress. Figure a) shows how the first disabled
area (red) is created at the surface of the protein (blue) after a trajectory is found. The blue node represents
an initial state, the green node the final state (and the end of the trajectory). b) shows the creation of
additional disabled areas after every iteration and the consequent filling of the entire tunnel. c) shows
the termination of said process, when a new disabled area (yellow) would contain the initial node (blue)
and therefore the root of the tree.

not close enough so that the root of the tree would intersect one of the disabled areas.
This results in a structure similar to that of the found tunnel. These steps are then re-
peated until the program is terminated by the user or until a time-based constraint is
fulfilled. A rough summarization of the resulting algorithm’s pseudocode is presented
in Algorithm 4.

1 Function f indTunnels(qinit)
2 while !terminate() do
3 tunnel ← f indSingleTunnel(qinit);
4 tunnel ← optimizeTunnel(tunnel);
5 addNewDisabledAreas(tunnel);
6 end

Algorithm 4: A rough working principle of the TOM-RRT algorithm

3.3.1 Tunnel width analysis

Widths of the found tunnels are analyzed using a simple function which, when pro-
vided with a position, tries to place spheres with increasing radii in this position to
see whether they collide with the environment or not. Once the sphere collides with
the protein, the last increase in radius size is reverted and a smaller step is used, until
even the smallest increase in size results in a collision with the environment. The re-
sulting radius is then returned as the tunnel’s width. See Algorithm 5 for details of the
implementation.

This approach is an approximation of searching for a point closest to the supplied
sphere and computing distance between the two, which is significantly more compu-
tationally expensive.
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1 Function CheckTunnelWidth(State s)
2 double i = 0.01;
3 while !isColliding(s, i) do
4 i+ = 1.0;
5 end
6 i− = 1.0;
7 while !isColliding(s, i) do
8 i+ = 0.1;
9 end

10 i− = 0.1;
11 while !isColliding(s, i) do
12 i+ = 0.01;
13 end
14 i− = 0.01;
15 return i;

Algorithm 5: The tunnel width analyzing function

The function isColliding(State s, double i) in Algorithm 5 is a boolean function re-
turning true if a sphere with a set radius position in the supplied state is colliding with
the environment.

3.3.2 Tunnel similarity analysis

The functionality which allows us to search for multiple tunnels (and paths) gives rise
to a new problem, which is the robust and accurate detection of tunnel duplicity, i.e.,
detecting when multiple paths have been created in the same tunnel in the protein
molecule. While the concept of disabled areas should theoretically prevent such sce-
narios, the complex protein structure can cause the disabled area to fail to block the
entirety of a tunnel and a tree can still grow around it.

The solution to this problem is not trivial, since the criterion deciding when two
tunnels are identical has not been explicitly defined. We have therefore taken the lib-
erty of creating our own criterion. We have utilized the existence of the αt parameter,
which denotes the maximum tunnel width of a tunnel, which is still considered to be
a tunnel (rather than an open space or a cavity) and is set manually by the user.

Two conditions are taken into account when determining whether a new found
tunnel is different or not: The first one consists of checking whether at least one of the
new tunnel’s nodes is located further than the value of the mentioned αt parameter.
The other criterion consists of computing the sum of Euclidean distances of all of the
nodes in the new tunnel to their nearest counterparts (i.e., the nodes of previously
found tunnels). This sum is then normalized by being divided with the Euclidean
length of the new tunnel.

Let us have paths A and B consisting of k and l states:

A = {s1, s2, ..., sk}; B = {t1, t2, ..., tl}
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Figure 3.9: A diagram illustrating tunnel duplicity. Figure a) shows a typical example of two different
tunnels. b) shows two tunnels that are still regarded as different, despite ending in the same location
on the protein molecule’s surface. The difference near the beginning of the tunnels is large enough to
consider them as different, relative to their length. c) shows two tunnels, that are considered as duplicates
of each other. Despite being exactly as different as the ones in the previous scenario, when related to their
length, the difference between them is not significant enough.

We can then compute the dissimilarity value of tunnel B as:

dissimilarity value(B) = ∑l
i=1 ||si − t′||

∑l−1
i=1 ||ti − ti+1||

where ||qi− qj|| is the value of the defined distance function between the two states and
t′ ∈ B is the closest state to the state si ∈ A. Note that although the denominator in the
equation could theoretically equate to zero, a tunnel with a zero length is physically
impossible. This scenario is checked for in the program and can never occur.

The second condition consists of checking the dissimilarity value of a tunnel. If this
dissimilarity value is higher than a previously empirically discovered and manually
set threshold value in the parameter δt (see Section 5.2 for details), this condition is
considered to be satisfied, indicating that the tunnels are different.

The final check consists of a logical conjunction of these two described conditions.
The tunnels are considered to be different if and only if the first and the second condi-
tion are both true. The resulting behavior is illustrated in Figure 3.9

The inherently complex structure of protein molecule’s surface sometimes causes
the RRT to grow along the surface of the protein, without satisfying the goal condition.
As the algorithm is stochastic, a combination of samples can be created which makes
the tree grow so that it closely hugs the protein surface. This causes an undesired "tail"
at the end of the path, which could, in certain scenarios, result in increasing the tunnel’s
dissimilarity index.

This situation is mitigated by disregarding both the initial and the final parts of the
path when checking the criteria. Since all of the tunnels start in the same position,
slight variations in the initial segments of the paths are of no value to us. Similarly,
some of the tunnels end in similar locations on the protein surface, while occupying
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Figure 3.10: A rendering of all protein tunnels found in the 1AKD molecule. Figures a) and b) show the
molecule from the front and back respectively, with the molecule visible in the left portions (red).

different regions inside the molecule. Thus, the ending segment is also unrelated in our
search. Nodes, which are closer than the αt parameter to the first and the last nodes are
therefore not taken into account when checking the conditions.

While this behavior does simulate the precision of alpha-shapes and Voronoi dia-
grams quite well, it can fail if the length of the portion of the path growing along the
protein surface is large enough. Both criteria can be satisfied despite the tunnel being a
duplicate of an existing one. Even though the likelihood of this scenario is exceedingly
low, a manual check by the user of the provided results is still recommended.

That said however, the robustness of this solution was tested with excellent results.
After manually checking all 70 tunnels found in the protein molecule 1AKD (see Fig-
ure 3.10 for illustrations), none were duplicates of each other.

3.4 TOM-RRT

The previous sections described some of the utilized modifications to the RRT algo-
rithm. The resulting implementation employs these modifications, plus a handful of
others, which enhance the performance in the protein molecule environment.

The standard RRT algorithm attempts to connect samples regardless of their dis-
tance. This can be undesirable, since a complex environment might be difficult to tra-
verse with large steps and smaller steps would help the tree to spread more quickly. We
have therefore employed a limiting parameter, which specifies the maximum length of
a newly connected segment. The algorithm creates a new sample, finds the closest
node in the tree and tries to connect these two. If the trajectory is collision-free, the
sample is connected. If it is not and the distance between the two samples is larger, the
sample is moved so that the distance between the samples is equal to the γ parameter.
If this new short trajectory is collision-free, the moved sample is connected, otherwise
it gets discarded. See Figure 3.11 for illustrations of the resulting behavior.

The γ parameter has to be carefully set by the user to allow the tree to both grow in
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complex environments and not let it be hindered by too low growth speed.

Figure 3.11: A diagram illustrating how a sample is moved when being connected to the tree. Figure a)
shows how unlimited tree growth can result in an undesirable behavior, since the tree wouldn’t grow in
this scenario. b) shows how the sample is moved to a more favorable position.

Another approach consists of interpolating newly formed trajectories to a given res-
olution. The standard RRT algorithm connects new states directly to edges of a graph
(see Figure 3.12). Since searching for the nearest node in the in the tree’s connecting
trajectories is computationally significantly more complex than searching for nearest
nodes in the tree, any new trajectory is interpolated to a resolution set by the ε param-
eter. This creates a sufficient approximation of the desired behavior while keeping the
computational complexity at low levels, thanks to the external library MPNN (see Sec-
tion 5.1.1 for details). The resulting detailed pseudocode of the TOM-RRT algorithm is
listed in Algorithm 6.

1 Function TOM− RRT(sinit)
2 terminate← f alse;
3 while !terminate do
4 resetPlanner();
5 terminate← checkConstraints();
6 tunnel ← singleTunnelSearch(sinit);
7 tunnel ← optimizeTunnel(tunnel);
8 if isTunnelNew(tunnel) then
9 exportTunnel(tunnel);

10 addNewDisabledArea(tunnel);
11 end
12 moveDisabledAreas();
13 end

Algorithm 6: The resulting TOM-RRT pseudocode

The variable terminate in Algorithm 6 is a boolean variable, checkConstraints() is a
boolean function returning true when time-based termination conditions are fulfilled
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Figure 3.12: A diagram illustrating trajectory interpolation. Figure a) the behavior of a standard RRT
algorithm. The new trajectory is formed at precisely right angles to the tree’s subtrajectories, therefore
being the shortest possible. b) shows an approximation of this behavior, which is implemented using a
nearest neighbor finding library at a fraction of the computational cost. The existing trajectories have
been interpolated (yellow) and the new node can be connected only to the existing nodes, as opposed to
the previous example, where the node has been connected directly to the trajectory. The approximation
error is shown in red.

singleTunnelSearch(State s) is a function described in Section 3.2.2 returning the first
found tunnel, sinit is the initial state, optimizeTunnel(Tunnel t) is a function which re-
turns a smoothed-out tunnel with the largest widths possible, isTunnelNew(Tunnel t)
is a boolean function returning true when the tunnel has not previously found before,
exportTunnel(Tunnel t) is a function which exports the supplied tunnel for further use
in external software, addNewDisabledArea(Tunnel t) which stores the found tunnel so
that it can be later used for the process of disabled areas generation and
moveDisabledAreas() is a function which generates new disabled areas from the stored
tunnels.

3.4.1 Path optimization

The output of the utilized algorithms (in our implementation a sequence of states of
the ligand molecule interpolated in an equidistant way, according to the ε parameter)
is far from optimal. The main task of the utilized algorithms is to quickly find a path in
an unknown and complex environment, regardless of any optimality. It can therefore
contain a number of sections which can later be optimized or entirely eliminated.

Our optimization focuses on two criteria. In the first phase, we strive to achieve the
shortest possible trajectory. This results in a path closely hugging the environment’s
atoms. This behavior is undesired, since the path is later used to analyze the tunnel’s
parameters and it would cause the program to report tunnel width deviating down
from the actual value (tunnel width computed from a path located precisely in the
center of a tunnel is higher than that of a path offset from said center). This is therefore
corrected in the second phase, where the trajectory is moved to the middle of the tunnel
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via a local minima search. See the sections below for a more detailed explanation.

Path length optimization

This phase utilizes two approaches. First, the path is interpolated to a manually pre-
set resolution. Afterwards, Algorithm 7 is run. The algorithm iterates over states in
the found path and tries to connect them with the furthest possible state through a
collision-free trajectory.

1 Function OptimizationPhaseOneAlgorithmOne(initialTunnel)
2 foreach i ∈ {0, 1, ..., initialPath.size()− 1} do
3 foreach j ∈ {0, 1, ..., initialPath.size()− 1} do
4 if collisionFree(initialPath[i], initialPath[j]) then
5 initialPath← deleteNodes(initialPath, i, j);
6 end
7 end
8 end
9 return initialPath;

Algorithm 7: The first algorithm of path optimization

The variable initialPath in Algorithm 7 is an array containing a sequence of nodes
(similar to those described previously), collisionFree(Node init, Node f inal) is a func-
tion which returns true if a trajectory formed via interpolating the two supplied nodes
is collision free and deleteNodes(initialPath, i, j) is a function which deletes nodes po-
sitioned between indices i and j in the supplied array and returns the result. See Fig-
ure 3.13 for a possibly more intuitive explanation.

Figure 3.13: A diagram illustrating Algorithm 7. Figure a) shows an initial found trajectory. Figure
b) illustrates how the algorithm iterates over the nodes and tries to connect each pair. Figure c) shows
the final result of this trajectory optimizing algorithm (green).
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This results in a significantly shorter, but a rather jagged path. The path is then
interpolated to a resolution specified by the ε parameter followed by running the sec-
ond optimization algorithm, Algorithm 8,which focuses more on smoothing out the
path. This algorithm tries to connect nodes neighboring to a randomly selected node,
thereby eliminating the "sharp" corners resulting from the previous algorithm while
also shortening the path.

1 Function OptimizationPhaseOneAlgorithmTwo(initialPath)
2 i← random integer ranging from 1 to initialPath.size()− 1;
3 if collisionFree(initialPath[i− 1], initialPath[i + 1]) then
4 initialPath← deleteNodes(initialPath, i− 1, i + 1);
5 end
6 return initialPath;

Algorithm 8: The second algorithm of path optimization

After the path is optimized, it is interpolated again using the ε parameter. These
iterations are run multiple times, according to the ι parameter.

Path position optimization

The second phase of path optimization alters the path in a way which allows for later
tunnel parameters analysis. As stated previously, the path is a sequence of nodes (sub-
trajectories). Iterating from the initial to the final node, a normal vector is computed
from the currently optimized and the preceding node. We can use this normal vector
to describe a plane perpendicular to said normal vector. It is our goal to only move
the currently optimized node in this plane, to avoid creating unnecessary sections and
loops in the path. See Figure 3.14 for illustrations.

The said plane is then used to compute two perpendicular and linearly independent
vectors lying in the plane. Thus, a combination of these vectors allows us to "reach"
any point in the normal plane. We then utilize simulated annealing to try and position
the nodes in their optimal positions (in the center of the tunnel).

A random angle is picked to create a vector on a unit circle. This vector is then
decomposed into the sine and cosine coefficients in the said unit circle. These coeffi-
cients are then used to multiply the lengths of the previously mentioned perpendicular
vectors, along with the final vector length coefficient, which decreases as the iterations
progress (thereby ensuring than the nodes move by smaller distances as the iterations
progress). After the node is moved using the previously created vectors, tunnel width
is computed again. If its previous value was lower, the two nodes neighboring to the
previously moved node are moved in the same direction (as depicted in Figure 3.15),
with half of the final vector’s length and are checked for collisions. If the neighboring
nodes are free as well, all three nodes are kept in their positions, otherwise the entire
operation is reverted. The position alteration of the neighboring nodes is required to
prevent excessive jaggedness of the resulting path.
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Figure 3.14: A diagram illustrating how a position of a path affects the resulting tunnel’s width. Figure
a) shows what would happen if we tried to analyze tunnel width (red circles) using a path optimized for
shortness. Notice how the trajectory closely hugs the protein atoms (blue). Figure b) shows the desired
optimal position of the path with the biggest possible resulting tunnel widths. Figure c) shows the result
of moving nodes using only local minima searches without the mentioned normal plane. The yellow
nodes, previously located in non-optimal positions were moved in the directions of the orange arrows,
which resulted not only in a loop in the final path, but also in the lower optimality of the resulting
trajectory (compared to the original green trajectory).

Figure 3.15: A diagram illustrating path position optimization. Figure a) displays a normal vector
(yellow) and the resulting plane (red) and its vectors (blue and green). b) shows how an angle is picked
(red vector in a yellow circle) and how it is decomposed into the previous two vectors. c) shows the
difference between the previous (red) trajectory and the final trajectory.
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4 Non-spherical ligand planning

As stated previously in Chapter 2, one of the main advantages of sampling-based path
planning algorithms is the ability to plan for non-spherical objects (an option which is
absent in tools utilizing discrete voxel grids, Voronoi diagrams or Delaunay triangu-
lation). The possibility of detecting tunnels when taking into account the molecule’s
specific shape could allow us to both find new tunnels and to accommodate tunnels,
which would have been discarded if we used a spherical probe.

We have investigated this notion using a version of the RRT algorithm which uti-
lizes some of the previously described modifications plus an improved version of col-
lision detection. This resulted in a speed improvement when working with protein
molecules, as described below.

4.1 Collision detection

As stated in Section 5.1.3, we have utilized an external library (OZCollide) for the pur-
pose of collision detection. The final implementation of collision detection functional-
ity consists of checking every atom (or rather its geometric primitive representation)
of the object (ligand molecule) for collisions with the AABB tree of the environment
(protein molecule). See Figure 4.1 for an example of non-spherical ligand molecule. A
count of the amount of previous collisions is kept for every atom’s representation and
every specified number of iterations the order of collision checking is altered to reflect
it (the atoms with the highest collision counts are checked first). Since atoms on the
border regions of the ligand molecule are most likely to collide with the environment,
this implementation should result in a considerable speed improvement.

Figure 4.2 depicts the possibility of planning motions from the inside of a large
molecule using ligand molecules with non-spherical structure. A movie generated
from this motion sequence can be found on the attached disk.

The resulting implementation is able to find paths inside protein molecules for lig-
ands of considerable complexities, however, due to a lack of time, it was only tested on
simple molecules.
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Figure 4.1: An example of path planning for a non-spherical molecule. Figure a) shows a spherical
representation of a large protein molecule (1AON) with a large noticeable cavity and a spherical repre-
sentation of a ligand molecule (2N7X). b) shows a cartoon representation of the protein molecule and the
initial (green) and final (red) positions of the ligand molecule.

Figure 4.2: An example of a planned motion sequence for a ligand molecule. Figures a) to c) show a
sequence of snapshots from a planned trajectory of the ligand molecule.

38



5 Experimental results

This chapter presents the results of the final algorithm, as well as a number of compar-
isons to the previously mentioned CAVER 3.0 [14].

5.1 Implementation details

The previously described algorithm utilizes a number of high-level functions, which
are non-trivial to efficiently implement in even low dimensional configuration spaces.
In our case, the main performance drawbacks were the collision detection routine for
complex objects and the problem of finding a nearest-neighbor node in n dimensions
(in our case n = 3). Performance of the resulting protein tunnel-detecting solution
relies heavily on speed and efficiency of these high-level functions. We have therefore
decided to employ a multitude of external libraries in order to save time and avoid
as many software bugs as possible. A number of available external libraries was inte-
grated and tested for its performance, in order to ensure the highest speed possible in
our application.

5.1.1 Nearest neighbor search

As the problem of finding a closest vector in an n-dimensional space is non-trivial for
high-dimensional configuration spaces and performance of its implementation is cru-
cial for overall speed, an external library was utilized. The MPNN library [6], which
utilizes kD-trees and supports n-dimensional manifolds (Cartesian products of Eu-
clidean one-space, circle, and three-dimensional rotation group, SO(3)), provided ex-
cellent performance and low memory-complexity while being extremely easy to inte-
grate and use.

5.1.2 Collision detection

As previously stated, the atomic count in protein molecules can reach into the orders
of hundreds of thousands of atoms (the "Titin" protein consists of more than 500 000
atoms). Since collision detection routines can be invoked in the orders of hundreds of
millions of times during both the path finding and path optimizing phase, it is crucial
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that the collision detection implementation is both quick, even with such complex ob-
jects and has low memory requirements, because of said complex object structure.

Individual atoms were represented using spheres with radii equivalent to the Van
der Waals radii of the respective atoms. Collision libraries which allowed the usage of
geometric primitives were therefore preferred, since libraries which lacked such func-
tionality required a memory costly 200 polygon triangulation sphere approximations
to be used instead.

OBB and AABB trees

Fast collision detection relies on dedicated data structures, such as oriented bounding
boxes or axis-aligned bounding box trees (see Figure 5.1 for illustrations of the con-
cepts). Oriented bounding boxes (OBB) speed up collision detection by simplifying
the detection process in some cases. A smallest possible 3D box is positioned around a
more complex object in such a way that the object is contained by it completely. During
collision detection the OBBs are then checked first to see if they are colliding. If they
are not, the more complex objects inside them can not possibly be colliding either and
the whole process is sped up immensely without the costly and complex checks of the
said objects.

Axis-aligned bounding box trees utilize a similar process, the complex object is split
into smaller segments, each of which is wrapped by an axis-aligned bounding box. The
resulting boxes are then repeatedly wrapped in bigger bounding boxes, until all of the
boxes are contained in a single big bounding box. During the collision detection phase,
collisions between the boxes are checked according to their size — the largest boxes are
checked first.

Figure 5.1: A diagram of an oriented bounding box (red rectangle) around a protein molecule (blue) in
figure a) and an axis-aligned bounding box tree b) — the darker shades of red indicate a lower position
in the tree.

Bearing the above criteria in mind, several available collision detection libraries
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were tested. A previously written report [17] regarding this issue was used to find the
best looking candidates available. The resulting list with attributes is available below.

Naive implementation

Used mostly as a "sanity check" for other collision detection libraries, this implemen-
tation utilizes the simplest spherical collision detection possible. It compares the dis-
tance between origins of two spheres to the sum of their radii. If the distance is smaller
that the sum, the spheres are colliding. In the worst case scenario, the implementation
checks every sphere of one object for collisions with every sphere of the other object
and therefore results in a performance much worse than that of better optimized im-
plementations.

RAPID

The Robust and Accurate Polygon Interference Detection [29] library is a lightweight,
simple to use intersection detection library built on an underlying structure of OBB
trees. However, since it is almost 20 years old, it lacks some of the functionality offered
by newer implementations, such as the support for geometric primitives. Instead, it
relies on 3D triangulations to represent objects. While its performance was the best
of all tested implementations in non-colliding scenarios, it was falling behind when
the objects were colliding, despite using the available speed optimizations (stopping
intersection detection functions on the first detected triangle intersection). Given these
facts, combined with the lack of precision resulting from having to use spherical ap-
proximations, it was deemed unsuitable for our purposes.

Bullet Physics

The Bullet Physics [1] library is a very well optimized and maintained library created
for the purpose of robust real-time physical simulation of both rigid and soft bodies.
Despite its main focus, it does provide the functionality of simple polygon intersection
detection. Given the purpose of its creation, it has several characteristics which make
it difficult to use in our application (e.g. the robust and quick physical simulation func-
tionality requires a non-zero collision detection tolerance to be set). This can, however,
be manually disabled for the purposes of intersection detection. Its most important is-
sue is the fact that it is very memory costly even for small objects. Despite the support
for geometric primitives, it requires the creation of a static discrete collision environ-
ment virtual structure, which alone can take up to several hundreds megabytes’ worth
of RAM. The measured amount of required memory is provided in Table 5.1.

The "freeze" note indicates that the precise amount couldn’t be determined, since
the operating system lacked the available RAM space to function properly and stopped
working. While being an excellent choice for real-time physical simulations, we deemed
it unsuitable for our purposes.
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Object atom count Environment atom count Required memory [MB]

250 25000 700

250 50000 1125

500 25000 1500

500 37500 2020

500 50000 2125

600 35000 1840

750 35000 >2300 (freeze)

600 50000 >2200 (freeze)

Table 5.1: Measured amount of memory taken up by the Bullet library while checking collisions 25 times.

OZCollide

OZCollide [23] is a recent, lightweight and easy-to-use collision detection library with
the support of geometric primitives and many speed optimizations, such as the auto-
matic AABB trees creation. While the advertised collision checking between two AABB
trees appears to be lacking the described functionality (in the sense of not functioning
at all), collision checking between a geometric primitive and an AABB tree provided
excellent performance, surpassing all other implementations. We have, therefore, de-
cided to utilize this implementation in our solution.

5.1.3 The resulting performances

Provided below are computing times of each implementation. Given the nature of the
task and the optimizations, we have decided to test the implementations in colliding
(the object was intersecting the environment) and non-colliding scenarios separately.

A modular programming solution was developed so that the collision detection
libraries could be switched with ease. The individual implementations were tested
using randomly generated environments and objects with a set number of atoms for
both, in order to simulate real-life scenarios as closely as possible. The tests were run
1100 times for each set of graphs.

As is clearly visible, the performances differ significantly between colliding (Fig-
ures 5.2, 5.3, 5.6, 5.7) and non-colliding scenarios (Figures 5.4, 5.5, 5.8, 5.9). This is likely
caused by the fact that available optimizations such as the AABB-trees can not be fully
utilized when the objects are colliding and the implementations have to resort to slow
polygonal intersection checking. While the performance of OZCollide is slightly in-
ferior in non-colliding scenarios, it is still comparable to other implementations and,
since the objects are colliding in most cases (given the complex nature of both the ob-
ject and the environment), where its performance is superior, it is obviously the best
candidate of all checked possibilities.

The final implementation is described in greater detail in Section 4.1.
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Figure 5.2: Computing times, 1:15000 spheres, col-
liding scenarios
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Figure 5.3: Close-up of computing times, 1:15000
spheres, colliding scenarios
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Figure 5.4: Computing times, 1:15000 spheres,
non-colliding scenarios
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Figure 5.5: Close-up of computing times, 1:15000
spheres, non-colliding scenarios
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Figure 5.6: Computing times, 150:15000 spheres,
colliding scenarios
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Figure 5.7: Close-up of computing times,
150:15000 spheres, colliding scenarios
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Figure 5.8: Computing times, 150:15000 spheres,
non-colliding scenarios
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Figure 5.9: Close-up of computing times,
150:15000 spheres, non-colliding scenarios

5.2 Tunnel matching threshold

The dissimilarity metric introduced in Section 3.3.2 requires a previously set threshold
parameter δt to function. Using the 1CQW and 1AKD molecules an initial tunnel was
found. Afterwards, the dissimilarity value was computed for each of the tunnels found
next and these tunnels were manually inspected. If they differed from the initial tunnel,
the lower bound was raised to that value. If the tunnel differed, the upper bound was
lowered to that value. Using this process, the value of the threshold δt was empirically
determined to be 9, 0. See Figure 5.10 for depictions of the resulting behavior.

Please note that this value may differ for molecules of different size, as the tested
molecules all occupied comparable regions of space.

5.3 Comparison to CAVER

Below are the final results of the TOM-RRT algorithm. Note that tunnels found by
CAVER 3.0 [14] and not found by our software are not listed. Each column contains
the tunnel’s index number, the length of the tunnel, the number of times the tunnel
was found by our solution and the number of times the test was run.

The tests were run on two computers:

• Computer 1 was an HP OptiPlex 755 desktop station with an Intel R©CoreTM 2 Duo
E6550 CPU with 2 cores clocked at 2.33GHz and a 3GB RAM, running Ubuntu
14.04 LTS 64-bit operating system. The program was compiled using GNU Make
3.81 and gcc version 4.8.4.

• Computer 2 was an HP ProBook 450 G1 laptop with an Intel R© CoreTM i5-3230M
CPU with 4 cores clocked at 2.60GHz and an 8GB RAM, running Ubuntu 14.04
LTS 64-bit operating system. The program was compiled using GNU Make 3.81
and gcc version 4.8.4.
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Figure 5.10: A representation of tunnel difference detection shown in a). After the threshold value was
determined, an initial tunnel (yellow) was found in the 1CQW protein molecule (purple). Afterwards
40 more tunnels were found. Those which differed from the original tunnel are colored with shades of
blue, those which did not are colored with shades of red. Please note that some tunnels were omitted for
the purpose of better visibility. b) shows a close-up of the differing tunnels and c) shows a close-up of the
duplicate tunnels.

The algorithm was run utilizing 4 threads on Computer 1 and 8 threads on Computer 2.

5.3.1 1CQW

The structure of the 1CQW protein molecule is depicted in Figure 5.11 along with an
example of the set of the found tunnels. The resulting performance of the TOM-RRT
algorithm for the 1CQW molecule is listed in Table 5.2. The test was performed on
Computer 1.

Figure 5.11: Details of the 1CQW molecule. a) shows the cartoon representation, b) shows the spherical
representation with the found tunnels and c) shows an example of the found tunnels.

Upon analyzing the results in Table 5.2 we’re struck with an interesting artifact —
tunnels rated by CAVER rather low in the list have a significantly higher probability of
being found than the other low rated tunnels (these tunnels are depicted in Figure 5.12.
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Figure 5.12: Analysis of found tunnels in the 1CQW molecule. a) shows the cartoon representation with
some of the found tunnels, b) the found tunnels, #1 in red, #2 in green, #3 in blue, #4 in yellow, #5 in
purple, # 10 in orange and #25 in pink.c) shows all protein tunnels.

1CQW (2352 atoms, 2 500 000 iterations, 50 runs)
Probe radius:

0.6Å 0.7Å 0.8Å 0.9Å
#1: 17,34 100% #1: 17,34 100% #1: 17,34 98% #1: 17,34 68%
#2: 20,75 98% #2: 20,75 90% #2: 20,75 74% #2: 20,75 2%
#3: 16,14 90% #4: 28,10 45% #3: 28,10 14%
#5: 28,10 66% #5: 28,25 2%
#6: 28,14 12% #13: 36,59 2%
#7: 26,83 14% #17: 35,54 6%
#8: 28,61 8%
#9: 19,67 4%
#10: 21,84 92%
#11: 23,73 2%
#13: 23,57 2%
#14: 26,61 12%
#21: 36,59 24%
#23: 30,96 22%
#24: 39,72 2%
#25: 30,89 56%
#27: 30,56 2%
#30: 37,98 2%

CAVER tunnel count:
30 23 12 2

Table 5.2: Results for the 1CQW molecule, 2 500 000 iterations, 50 runs. Each column contains the
CAVER’s tunnel index, the length of the tunnel (in Ångstroms) and the probability of being found by
the TOM-RRT algorithm.
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To try and explain this phenomenon we have utilized the Pymol visualization and
analyzed the tunnel characteristics manually.

The high probability of finding tunnel #1 (depicted in a red) stems from its large
width and short length. Given the characteristics of the RRT algorithm, this ensures
that it is the one most likely found with the highest speed. Tunnels number #2 (de-
picted in green) and #3 (blue color) are analogous, since they share a large portion
with tunnel #1. The reason tunnel #4 (yellow color) wasn’t found is most likely due to
the fact that it branches off tunnel #2 near the end and continues through a long section
of the molecule. This possibly resulted in the tunnel being cut off by a disabled area
before the RRT algorithm could progress through the long section. Tunnels #5 (purple
color), #6 and the rest progress as expected, with the probabilities decreasing due to
increasing lengths of the respective tunnels.

We can notice a rather significantly high probabilities of finding tunnels #10 and
#25. This is presumably due to the fact that these are the only tunnels located in a
rather large section of the molecule and due to the nature of the RRT algorithm, have
an increased probability of being found. Furthermore, tunnel #10 (depicted in orange)
is rather straight relative to the rest of the tunnels, which makes is a more suitable
environment for the RRT algorithm. Tunnel #25 (pink color) has a lower probability of
being found when compared to tunnel #10, since it is a branch of tunnel #10.

Figure 5.13 plots the median of the number of found tunnels against the used radius
of the probe. The results are as expected, with a larger probe resulting in a lower
found tunnel count. Furthermore, due to the stochastic nature of the RRT algorithm
as the resulting TOM-RRT algorithm, the number of found tunnels using this method
is always less than or equal to the number of found tunnels using CAVER, which is
exhaustive and deterministic.

Figure 5.14 plots the median of the running times for 2 500 000 iterations against the
used radius of the probe. Once again, the results are as expected. The higher number
of tunnels due to the usage of a smaller probe results in longer running times. This is
caused by an increased number of checks due to a higher number of disabled areas,
located inside the tunnels.

Judging by the results, the TOM-RRT algorithm performs well in cases with a lower
number of protein tunnels. This is supported by the number of found tunnels compa-
rable to the results of CAVER (especially in cases with probe radius equal to 0,9 Å).
Furthermore, overall speed of the algorithm in situations with a lower tunnel count is
significantly improved (see Figure 5.14).

5.3.2 1AKD

The structure of the 1AKD protein molecule is depicted in Figure 5.15 along with an
example of the set of the found tunnels. The resulting performance of the TOM-RRT
algorithm for the 1AKD molecule is listed in Table 5.3. The test was performed on
Computer 1.

Upon analyzing the results in Table 5.3 we’re once again struck with an interesting
artifact —21 tunnels have a probability of being found by the TOM-RRT algorithm
over 50 %. None of the other molecules exhibited this behavior, which is most likely
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Figure 5.13: 1CQW — Number of found tunnels
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Figure 5.14: 1CQW — Running times

Figure 5.15: Details of the 1AKD molecule. a) shows the cartoon representation, b) shows the spherical
representation with the found tunnels and c) shows an example of the found tunnels.
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1AKD (3208 atoms, 2 500 000 iterations, 50 runs)
Probe radius:

0.6Å 0.7Å 0.8Å 0.9Å
#1: 14,41 100% #1: 16,96 32% #1: 14,49 100% #2: 24,51 100%
#2: 14,49 100% #2: 14,49 100% #2: 19,23 8%
#3: 16,79 100% #3: 16,79 46% #5: 25,01 36%
#4: 19,23 86% #4: 19,23 68% #6: 26,32 2%
#5: 19,31 86% #6: 25,01 34% #7: 24,51 36%
#6: 22,77 60% #7: 26,45 100% #9: 26,6 94%
#7: 25,01 86% #8: 24,51 98% #12: 37,03 4%
#8: 26,45 98% #9: 22,67 8%
#9: 24,51 98% #10: 23,49 18%
#10: 22,67 42% #13: 29,51 46%
#11: 22,80 98% #17: 29,57 4%
#13: 13,82 100% #19: 33,16 2%
#14: 24,52 100% #20: 37,03 54%
#15: 23,88 100% #24: 39,26 2%
#16: 27,17 84% #27: 40,78 40%
#17: 21,02 94% #29: 42,98 70%
#18: 25,73 46% #30: 39,7 2%
#19: 29,51 86%
#20: 26,46 98%
#25: 24,97 60%
#27: 31,37 2%
#29: 27,60 92%
#31: 37,03 6%
#34: 33,99 4%
#35: 32,09 6%
#36: 34,39 28%
#37: 37,89 38%
#38: 39,94 70%
#41: 33,72 56%
#46: 44,56 2%

CAVER tunnel count:
46 35 27 5

Table 5.3: Results for the 1AKD molecule, 2 500 000 iterations, 50 runs. Each column contains the
CAVER’s tunnel index, the length of the tunnel (in Ångstroms) and the probability of being found by
the TOM-RRT algorithm.
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caused by the extremely high number of rather straight protein tunnels located in the
1AKD molecule (see Figure 5.15). This conjecture is supported by Figure 5.17, which
shows an excellent performance improvement over the results for the 1CQW molecule
(Figure 5.14).

Results for Figures 5.16 and 5.17 coincide with the results for the previous molecule
and also with the physical characteristics of the molecule (smaller probe radius results
in lower overall tunnel count). A noteworthy observation is the fact that performance
in the 1AKD molecule is faster than in the 1CQW molecule despite the 1CQW consist-
ing from more atoms than 1AKD.
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Figure 5.16: 1AKD — Number of found tunnels
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Figure 5.17: 1AKD — Running times

5.3.3 2ACE

The structure of the 2ACE protein molecule is depicted in Figure 5.18 along with an
example of the set of the found tunnels. The resulting performance of the TOM-RRT
algorithm for the 2ACE molecule is listed in Table 5.4. The test was performed on Com-
puter 1.

Once again, the results are as expected, with the curves connecting the median
values in Figures 5.19 and 5.20 following trends similar to those in previous molecules.

5.3.4 1MXTa

The structure of the 1MXTa protein molecule is depicted in Figure 5.21 along with an
example of the set of the found tunnels. The resulting performance of the TOM-RRT
algorithm for the 1MXTa molecule is listed in Table 5.5. The test was performed on
Computer 1.
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Figure 5.18: Details of the 2ACE molecule. a) shows the cartoon representation, b) shows the spherical
representation with the found tunnels and c) shows an example of the found tunnels.

2ACE (4144 atoms, 1 000 000 iterations, 50 runs)
Probe radius:

0.6Å 0.7Å 0.8Å 0.9Å
#1: 5,95 100% #1: 5,95 98% #1: 5,95 100% #1: 5,95 96%
#2: 9,57 100% #2: 9,57 100% #2: 9,57 100% #2: 9,57 82%
#3: 8,27 100% #4: 18,96 6% #3: 18,96 8% #3: 18,96 60%
#4: 13,48 82% #5: 18,06 2%
#7: 18,06 6% #8: 19,88 4%
#8: 15,53 80%
#9: 16,32 56%
#10: 19,88 6%
#11: 24,66 14%
#28: 32,1 2%
#31: 39,54 2%

CAVER tunnel count:
53 41 7 5

Table 5.4: Results for the 2ACE molecule, 1 000 000 iterations, 50 runs. Each column contains the
CAVER’s tunnel index, the length of the tunnel (in Ångstroms) and the probability of being found by
the TOM-RRT algorithm.
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Figure 5.19: 2ACE — Number of found tunnels
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Figure 5.20: 2ACE — Running times

Figure 5.21: Details of the 1MXTa molecule. a) shows the cartoon representation, b) shows the spherical
representation with the found tunnels and c) shows an example of the found tunnels.
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1MXTa (7519 atoms, 1 000 000 iterations, 50 runs)
Probe radius:

0.6Å 0.7Å 0.8Å 0.9Å
#1: 15,14 100% #1: 15,14 100% #1: 15,14 100% #1: 15,14 100%
#2: 14,79 100% #2: 14,79 94% #2: 14,79 76% #2: 14,79 54%
#3: 33,60 100% #3: 33,60 100% #3: 33,60 100% #:3 33,60 100%
#4: 20,85 4% #5: 24,05 44% #5: 24,04 22%
#5: 24,04 78%

#12: 38,90 6%
#17: 29,29 4%
#23: 45,24 2%

CAVER tunnel count:
27 8 7 4

Table 5.5: Results for the 1MXTa molecule, 1 000 000 iterations, 50 runs. Each column contains the
CAVER’s tunnel index, the length of the tunnel (in Ångstroms) and the probability of being found by
the TOM-RRT algorithm.

Figure 5.23 once again reflects the physical properties of the molecule. Note the fact
the the number of tunnels significantly decreases during the step from probe size 0, 6
to 0, 7 in the CAVER results as well as in the TOM-RRT results. The logical conclusion
would be that this was caused by the molecular structure.

The 1MXTa protein at 7519 atoms is the largest tested molecule. However, its size
hasn’t impacted the overall performance significantly, since it is on par with, or better
than, performances in scenarios with molecules and similar tunnel counts (2ACE), as
displayed in Figure 5.23. The conclusion one could draw from this is that the algorithm
isn’t hindered much by the protein’s number of atoms but rather by the molecular
structure and therefore the complexity of the environment the Rapidly-exploring Ran-
dom Trees have to grow in.

5.3.5 1BL8

The structure of the 1BL8 protein molecule is depicted in Figure 5.24 along with an
example of the set of the found tunnels. The resulting performance of the TOM-RRT
algorithm for the 1BL8 molecule is listed in Table 5.6. The test was performed on Com-
puter 1.

Similarly to the 1AKD molecule, a rather large number of tunnels have probabilities
of being found higher than 50% (13 for probe size 0, 6 to be exact, with 7 tunnels be-
ing found every time the algorithm was run). Upon examining the example of found
tunnels provided in Figure 5.24 we once again see that the majority on them follows an
almost straight line from the search origin point to the outside of the molecule. This
fact allows the Rapidly-exploring Random Trees to grow more quickly, thus resulting
in the observed characteristic.

Figure 5.25 exhibits behavior which hasn’t been observer in any other tested
molecule — the number of found tunnels doesn’t follow the same type of curve seen in
other molecules (a deformed hyperbolical curve). The number of found tunnels drops
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Figure 5.22: 1MXTa — Number of found tunnels
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Figure 5.23: 1MXTa — Running times

Figure 5.24: Details of the 1BL8 molecule. a) shows the cartoon representation, b) shows the spherical
representation with the found tunnels and c) shows an example of the found tunnels.
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1BL8 (2823 atoms, 1 000 000 iterations, 50 runs)
Probe radius:

0.6Å 0.7Å 0.8Å 0.9Å
#1: 16,16 94% #1: 16,16 98% #1: 16,16 96% #1: 16,16 98%
#2: 14,97 100% #2: 14,97 98% #2: 14,97 100% #2: 14,97 98%
#3: 16 98% #3: 16 100% #3: 16 100% #3: 16,00 100%
#4: 15,23 100% #4: 15,23 100% #4: 15,23 96% #4: 15,23 100%
#5: 13,02 100% #5: 13,02 100% #5: 13,02 100% #5: 13,02 10%
#6: 12,16 100% #6: 12,16 100% #6: 12,16 100% #6: 12,27 18%
#7: 12,31 100% #7: 12,31 100% #7: 12,31 100% #7: 12,31 8%
#8: 12,48 100% #8: 12,48 100% #8: 12,48 100% #8: 12,48 18%

#10: 26,08 62% #10: 26,08 74% #10: 26,08 54% #10: 26,08 54%
#13: 15,22 34% #12: 15,22 8% #18: 33,13 2%
#14: 14,34 58% #14: 14,34 8%
#15: 15,19 62% #15: 15,19 2%
#16: 14,53 100% #16: 21,07 4%
#21: 26,1 2% #19: 25,61 2%
#26: 26,34 86%

CAVER tunnel count:
34 34 21 20

Table 5.6: Results for the 1BL8 molecule, 1 000 000 iterations, 50 runs. Each column contains the
CAVER’s tunnel index, the length of the tunnel (in Ångstroms) and the probability of being found by
the TOM-RRT algorithm.

significantly with probe size equal to 0, 9. This fact can most likely be attributed to the
stochastic characteristic of the TOM-RRT algorithm, which failed to discover tunnels
lacking enough space to allow for the tree’s growth steps to be performed and can
therefore be attributed to the molecular structure.

Furthermore, Figure 5.26 reveals that the algorithm’s overall performance was by
far the worst among all of the tested molecules, despite the protein’s small size at 2823
atoms. Once again, this can be attributed to the large amount of found tunnels which
resulted in a large number of disabled areas and required extensive checking by the
algorithm.

5.3.6 Connection between the number of iterations and the number
of found tunnels

Upon analyzing the previous data, several questions present themselves: Does the
number of iterations (the length of the calculation) relate to the number of found tun-
nels? Does increasing the number of iterations yield more tunnels? Is the quality (and
length) of tunnels improved after increasing the number of iterations?

The calculations were run with an increasing number of iterations. The results are
provided below. The test was run on Computer 2, which resulted in running times in
Figure 5.28 differing from the rest of the tests.

The number of found tunnels seems to stabilize itself in a linear trend in Figure 5.27
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Figure 5.25: 1BL8 — Number of found tunnels
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Figure 5.26: 1BL8 — Running times
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Figure 5.27: Number of found tunnels (red) and length of the longest tunnel found so far (blue) plotted
against an increasing number of iterations. Please note that the data for this graph were collected on
Computer 2
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Figure 5.28: Running times (black) and the probability of finding the first 3 tunnels found by CAVER
(dotted, dashed and solid red lines) plotted against an increasing number of iterations. Please note that
the data for this graph were collected on Computer 2

— increasing the number of iterations could potentially yield an increase in the num-
ber of found tunnels (up to the saturation point where all the potential tunnels would
be found). However, the required computation times in Figure 5.28 increase with sig-
nificant speed, the length of the longest found tunnel stagnates and the probabilities
of finding the first 3 tunnels rated by CAVER as the best ones saturate long before
reaching the highest tested number of iterations (at two million iterations).

5.3.7 Discussion of the results

The collected results of testing the algorithm for 5 different protein molecules have
indicated that the algorithm’s computational capabilities are worse than or nearing the
level of current state-of-the-art tool CAVER. This applies mainly to situations with a
low number of available tunnels, where the number of found tunnels was close to that
of CAVER.

The results have also indicated that while the quantity of the found tunnels does
increase with more time allowed for the search, the quality of the tunnels saturates and
this method of search is therefore ineffective.

The algorithm has demonstrated the ability to search for protein tunnels utilizing
non-spherical ligand molecules, a feature, which is lacking CAVER and the majority of
currently established software solutions.

However, situations with a high amount of eligible tunnels have revealed that the
TOM-RRT algorithm lacks in terms of filtering out the already found tunnels. While the
duplicate tunnels were discarded, they were being rediscovered many times over. This

57



fact could signify a possible necessity to improve disabled area placement. Despite the
fact that the current method does work, it either moves the disabled areas too slowly or
fails to fill all the gaps in the tunnels, allowing the Rapidly-exploring Random Trees to
grow around them. This area could present an excellent topic for further development,
either to modify the placement of disabled areas or to improve the method of restricting
tree growth by utilizing an entirely different concept.

Furthermore the algorithm lacks in terms of overall performance where the median
time required to search an amount of tunnels nearing that of CAVER was over thirty
times higher than the time required by CAVER (molecule 1BL8 for probe size 0, 6). This
is most likely caused by the algorithm’s stochastic nature, which doesn’t guarantee the
algorithm’s exhaustiveness. This area could also present an excellent possibility for
future improvements.
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6 Conclusion

The problem of tunnel detection in protein molecules consists of detecting and analyz-
ing tunnels in protein molecules on order to determine which ones might be relevant
when considering chemical reactions with a given ligand molecule. It has numerous
applications in e.g. pharmaceutical industry or protein engineering, as described in
Chapter 1.

The majority of current methods for protein molecule analysis has a number of
drawbacks, which can result in for example reporting data deviating from the actual
values or the inability to perform some tasks (such as the planning for non-spherical
ligand molecules). This thesis has therefore researched the feasibility of an application
of sampling-based motion planning methods to protein molecule tunnel detection in
Chapter 2.

The standard algorithms originating in the area of sampling-based motion planning
are not directly usable for the task of protein tunnel detection because for example the
inability to plan to a region of space located on the protein surface, rather than a fixed
point in space, as is commonly the case and the inability to limit the Rapidly-exploring
Random Tree’s growth into certain areas of space, resulting in an inability to detect
multiple protein tunnels.

We have therefore had to conceive and implement modifications, summarized in
the resulting TOM-RRT algorithm, which allow the previously standard sampling-
based motion planning algorithm to analyze the protein and ligand molecules, choose
a fitting sampling region, efficiently and quickly grow the Rapidly-exploring Random
Tree inside the molecule, detect when the tree has reached the surface of the molecule,
optimize the resulting path for protein tunnel analysis and finally to analyze the re-
sulting protein tunnel.

We have conceived a concept of disabled areas to restrict the tree’s growth inside
already detected tunnels in the protein molecules, thus enabling multiple tunnel de-
tection and we have designed and implemented a metric to help us detect when a
duplicate of a previously tunnel was found, as described in Chapter 3.

We have performed experiments to rate and pick the best performing external li-
brary to use in collision detecting functions of the algorithm. The resulting TOM-RRT
algorithm’s performance was tested on 5 protein molecules with sizes ranging from
2352 to 7519 atoms. The collected results have indicated that the detection capabilities
of the algorithm are worse than or equal to those of the currently available state-of-the-
art tool, CAVER [14], with the algorithm performing best in situations with low count
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of protein tunnels. The algorithm’s overall speed was however significantly slower
than that of the CAVER, especially in situations with a high number of protein tunnels,
as described in Chapter 5.

Furthermore, the algorithm was shown to be able to plan motions (and therefore
detect protein tunnels) for complex non-spherical ligand molecules, an ability which
isn’t currently available in a majority of the already established tools, as described in
Chapter 4.

Future research possibilities include improving the algorithm’s performance, both
in the terms of overall speed and the ability to detect all eligible protein tunnels, as
discussed in Chapter 5. Another research topic could be the conception of an alternate
solution to restrict the Rapidly-exploring Random Tree’s growth in order to see if a
solution able to surpass the performance of disabled areas can be conceived.

To summarize the previous statements, this thesis has presented a novel approach
to protein tunnel detection and analysis. It has explored the topic from a computational
standpoint, utilized well established algorithms originating in the field of robotics and
presented a working solution, which upon a comparison with state-of-the-art tools,
shows promising results. While it still falls behind in terms of overall speed and the
number of delivered results, it could, with further development, serve as an alternative
or a complement to the already existing solutions.
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6.1 Addendum 1: Contents of the attached disc

The attached disc contains:

• A generated pdf file with this thesis.

• Folder Inputs with the tested protein molecules, Cartesian coordinates of the ori-
gin points for the Rapidly-exploring Random Tree and a file with the used probe.

• Folder Program with source code of an implementation of the PRM algorithm,
the RRT-Path algorithm and the resulting TOM-RRT algorithm, along with a
template used to test collision detection libraries and a program utilized when
comparing the detected protein tunnels with those found by CAVER. The folder
also contains some of the utilized external libraries, such as the ANN library, the
MPNN library, and the OZCollide library.

• Folders Results_1 and Results_2 with the generated data and a movie sequence
planned for a non-spherical ligand molecule. The directory structure is as fol-
lows: <name-of-the-molecule>/<number-of-iterations>/<probe-radius>. The folder
ME in the last directory contains numbered folders with tunnels generated by
the TOM-RRT algorithm. The directory CAVER (which is not present in all cases)
contains tunnels generated by CAVER.

6.1.1 Installation guide

The software was compiled using CMake 3.5.1, Make 4.1 and g++ 4.8.4 for Ubuntu
14.04. The compilation requires a number of external libraries to be installed. While
we have tested the program with these specific versions, other versions may work as
well:

• Boost C++ library version 1.58.0

• GLM library version 0.9.7.2-1

• GLEW library version 1.13

• FreeGLUT library version 3.0

• GLFW library version 3.0

• Eigen library version 3.0

Follow these steps to compile the program using terminal in the extracted folder on a
Linux OS distribution:

mkdir build
cd build
cmake ../.
make

Figure 6.1: Compilation commands
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6.2 Addendum 2: Further implementation details

6.2.1 PDB file parsing

The x-ray crystallography data, used as a reference for positions and types of atoms
in the molecules, is provided in a text-based file format "Protein Data Bank" (pdg.org).
This file contains a number of fixed-width columns and can easily be parsed, using
a manual provided for the file format [37]. One section particularly interesting for
our purposes is the detailed description of "ATOM" records, which provides all the re-
quired details for parsing molecular geometric data:

COLUMNS DATA TYPE FIELD DEFINITION
-------------------------------------------------------------------------------------
1 - 6 Record name "ATOM "
7 - 11 Integer serial Atom serial number.

13 - 16 Atom name Atom name.
17 Character altLoc Alternate location indicator.
18 - 20 Residue name resName Residue name.
22 Character chainID Chain identifier.
23 - 26 Integer resSeq Residue sequence number.
27 AChar iCode Code for insertion of residues.
31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms.
39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms.
47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms.
55 - 60 Real(6.2) occupancy Occupancy.
61 - 66 Real(6.2) tempFactor Temperature factor.
77 - 78 LString(2) element Element symbol, right-justified.
79 - 80 LString(2) charge Charge on the atom.

Figure 6.2: Details of the "ATOM" record format. Courtesy of Worldwide Protein Data Bank [38]

The final implementation is provided in class "PDBParser", located in file "pdb_parser.cpp".

6.2.2 Visualization

To provide a convenient and practical way of manual problem analysis, debugging
and determining the initial and final positions of the molecules, a simple visualization
tool was developed. Utilizing OpenGL and a variety of external libraries (GLM [15],
GLEW [30] and GLFW [7]) a tool which, when provided with parsed atomic posi-
tions and type allows the user to manually pick initial and final positions of the ligand
molecule and also allows for the display of the found trajectory. The final implemen-
tation is provided in class "ProteinVisualizer in file "protein_visualization.cpp" and an ex-
ample of the visualization is depicted in Figure 6.3.
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Figure 6.3: An example of the created molecule visualization.

6.2.3 Pymol exporting

As previously mentioned, Pymol, an existing tool for biochemical visualizations, mainly
focused on protein molecules, exists. It is capable of visualizing both static and dy-
namic molecules, can switch between their different representations and much more.
As it is arguably the currently most used tool, a feature which allows for molecules,
their trajectories and the found protein tunnels to be exported to Pymol has been de-
veloped. The final implementation is provided in the class "TrajectoryExporter" in the
file "protein_trajectory_export.cpp".
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6.3 Addendum 3: Utilized Pymol commands

showspheres — turns on spherical atom representation
frame — switches to frame n
mviewstore — saves the camera position to the current animation sequence
mviewreinterpolate — interpolates saved camera positions in the current animation
sequence
cmd.get_object_matrix(object, state) — return transformation matrix of the camera
setView() — set the transformation matrix of the camera
util.color_objs(”all”) -color each object with a different color
fetch — downloads the protein file and builds a biological unit from a protein frag-
ment
png — saves an image file
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