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Abstract

Interferometrická mikrovlnná měření mohou najít uplatnění v celé řadě aplikací jako jsou
měření malých fázových rozdílů, měření vysokých impedancí nebo nedestruktivní testování.
Ačkoliv jsou interferometrická měření dobře známá například z optiky, v mikrovlnné technice
mají svá specifika.

Jak ukazují různé práce publikoavné v nedávné době, je zde několik nevyřešených problémů
týkající se interferometrických měření. Jedním z takových problémů je přítomnost systema-
tických chyb, která je v řadě prací opomíjena a systémy jsou považovány za ideální. S tím
souvisí i fakt, že nebyly vyvinuty vhodné kalibrační techniky a vhodné kalibračních standardy
pro taková měření. V případě přesného měření fází zcela chybí metodika pro absolutní mě-
ření, protože doposud publikované práce používaly interferometrické systémy jen pro relativní
měření.

Cílem této disertační práce je vyřešit problém absolutního měření pro přesné měření fází,
analyzovat systematické chyby použitých systémů a navrhnout vhodnou kalibrační/korekční
techniku pro odstranění těchto systematických chyb.

Tyto cíle jsou v práci systematicky řešeny, od základních rozborů a analýz systémů s ide-
alizovanými parametry, přes rozbor systematických chyb, díky němuž bylo možné navrhnout
zcela speciální kalibrační techniku, která využívá frekvenčně závislých modelů pro kalibrační
standardy a vyhodnocuje měřená data přes celé kmitočtové pásmo zároveň narozdíl od běž-
ných kalibračních technik.

Navržená kalibrační technika byla experimentálně ověřena pomocí interferometrického sys-
tému ve frekvenčním pásmu 8 ÷ 10 GHz. Výsledky prokázaly, že navržená technika umožňuje
kalibraci interferometrického systému pro přesné měření fází. Dále bylo ukázáno, že nejhorší
případ nejistoty měření s takto zkalibrovaným systémem je téměř dvakrát menší v porovnání
s přímým měřením pomocí vektorového obvodového analyzátoru.

Klíčová slova

Interferometrické měření, měření fází, kalibrační techniky, vektorový obvodový analyzátor
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Abstract

The microwave interferometric measurements can be used in the several applications such
as measurement of the small phase differences, measurement of the extreme impedances or
near-field sensing. Although the interferometric measurements are well-known from the optics
but there are specific aspects of such a measurement in the microwaves.

As was shown in the recently published works, there are several problems regarding these
measurements, which haven’t been solved yet. One of the problems is the existence of the
systematic errors which were in the most cases completely neglected and the interferometric
system was assumed as ideal. It is very closely related to the fact that there is no suitable
calibration technique as well as calibration standards for such a systems. Finally, for the case
of precise phase measurement or measurement of small phase differences there is lack of the
method for the absolute measurement. Works published until now utilized interferometric
measurement only for the relative phase measurement.

The main aim of this thesis is to find an approach for the absolute measurement of the
phase, to analyze the effect of the systematic errors and to design a suitable calibration
technique to eliminate these systematic errors.

These goals are successively analyzed and solved. Starting with the analysis of the ideal-
ized systems through the systematic errors analysis which helped to design new calibration
technique, which utilize the parametric frequency dependant model and moreover contrary
to the ordinary calibration techniques it evaluate the measured data simultaneously over the
entire bandwidth.

This technique was experimentally verified using the interferometric system in the frequency
range 8 ÷ 10 GHz. The results prove that the proposed technique enables the precise inter-
ferometric measurement of the phase. Additionally it was shown that the worst case of the
uncertainty using the calibrated interferometric system is roughly twice smaller in comparison
with the direct VNA measurement.

Keywords

Interferometric measurements, phase measurements, calibration techniques, vector network
analyzer
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1. Introduction

The measurement on the radio frequency and millimeter-waves involves numerous tasks, tech-
niques, principles and equipment. This thesis deals with the interferometry measurement
using Vector Network Analyzer. Not so long ago, Vector Network Analyzers were exclusively
used in research and development departments for the measurement of RF and microwave
components, antennas, etc. Since 1968, when the first VNA was launched, this device has
undergone great development. This applies both to the hardware which the device consists
of and the calibration techniques which are currently necessary for any VNA measurement as
well. While the first VNA was able to measure up to 12 GHz and it was able to compensate
for only very few systematic errors, the modern VNA can measure up to 500GHz [1] using
converters and it offers more then ten various calibration techniques in the control software.
Thanks to this, the VNA is very versatile and precise device which can be used for various
tasks, even those that are not directly related to the measurement of microwave components,
amplifiers and antennas; including for example permittivity measurement of various liquids
or biological samples [2],[3], gas spectroscopy [4], nanotechnology [5, 6], near field sensing [7,
8, 9], etc.

However these mentioned applications are pushing the modern VNA to the edge or even
behind the edge of its capabilities, so for some specific applications it is impossible to use the
VNA as it is, because the uncertainty of the measurement is for some reason greater than can
be accepted. Currently it seems that interferometric approach which will be explained in this
work can overcome the problems and decrease uncertainty of measurement. Recent works in
this field independently prove that it.

Although the interference is usually perceived as an unwanted phenomenon, in many of
measurement tasks is this phenomenon utilized, especially in optics. Even in the RF and
microwaves the interferometric approach is very well known. At the beginning, before the
VNAs were available, RF engineers used to use so called measuring bridges for the impedance
measurement. Despite the sensitivity and miscellaneous advantages of this interferometry
approach, the measurement using such bridges was very tedious and prone to operator’s error
thus this approach was replaced by the VNA. Now it appears that for some of the state-of-
the-art applications it is necessary to combine the advantages of the VNA and interferometric
approach advantages.

The aim of this work is to describe original contribution in the field of interferometric
measurements in millimeter-wave frequencies. Usually these measurements are performed
using VNA with an external components, which act as an interferometer. This topic became
interesting in the recent years, when the VNA started to be utilized by above mentioned
challenging applications focused on measurement of electrical or even non-electrical quantities
in the range of millimeter waves. Although, as indicated, interferometric measurements are
commonly used in various fields, the measurement in the RF and microwave range has its
specific aspects. Even though it may seem that the interferometric measurement is a well-
known task; in the combination with the VNA and microwave components generally, there
may arise a number of obstacles which have to be analyzed and solved. This work focuses

1



on the precise measurement of the phase of the reflection coefficient with an interferometer.
Such a measurement is directly utilized in applications briefly described in the chapter 2, then
chapter 3 depicts the limits of current VNA and need for the interferometry. Afterwards,
chapter 4 illustrates basic principles of microwave interferometry in the theory and in the
examples and various issues and obstacles are discussed. Finally, the fifth chapter presents the
proposed calibration technique which is designed to overcome specific issues of the microwave
interferometer.

2



2. Current state-of-the-art

This chapter briefly lists the selected state-of-the-art applications and approaches where in-
terferometry is used for the measurement purposes in the RF and millimeter-wave band. The
common aspect of all this following applications is that they utilize a VNA with a supple-
mentary hardware component which acts as an interferometer. Based on the several recent
works referred in [10], it can be seen that this kind of approach is mainly used for high and
low impedance measurement where VNA itself has a worse accuracy [11, 12, 10, 13, 14], near
field sensing [8, 15, 16], and also for applications where sensitive measurement of phase is
required [17, 18, 19]. The sensitive and precise measurement of phase is usually required in
the applications which are focused on the measurement of a non-electrical quantity such as
distance or length, but in some isolated cases, the interferometry principle is used directly for
the sensitive phase measurement as described in [20].

All works show great sensitivity and advantages of an interferometric measurements, but
these works do not address, or only partially solve the problem of the systematic errors caused
by the non-ideality of used hardware. So the common aspect for all these works is the lack
of calibration techniques.

2.1. Measurement of high and low impedances

Classical measurement of impedances by measuring the reflection coefficient of the impedance
provides poor resolution for impedances that are substantially smaller or substantially greater
than the reference impedance of the VNA, that is usually 50 Ω [11, 12]. Limited stability
of VNA itself (drifts) together with limited reproducibility of connection of a device under
test (DUT) and calibration standards are the most limiting factors in extreme impedances
measurements [11, 21].

Figure 2.1. Arrangement of the measurement system – ideal components [11].

This technique uses 180◦ hybrid coupler as an interferometer in the following way. The

3



method is based on subtracting the reference reflection coefficient Γref from the reflection
coefficient of the DUT, Γx, amplifying this difference by an amplifier with gain G and mea-
suring the resulting signal by a standard VNA as a transmission coefficient S21. In the case
of ideal components of the measurement system the measured transmission coefficient S21 is
given by the equation

S21 =
G

2
(Γx − Γref ) (2.1)

From this equation the value of the reflection coefficient Γx of the DUT is

Γx =
2S21

G
+ Γref (2.2)

The value of the transmission coefficient S21 is measured with the uncertainty ∆S21 which
will cause that the true value of the reflection coefficient Γx of the DUT is changed by ∆Γx.

Γx + ∆Γx =
2(S21 + ∆S21)

G
+ Γref (2.3)

By subtracting equations 2.2 and 2.3 we obtain the value of uncertainty of the measured
reflection coefficient.

∆Γx =
2∆S21

G
(2.4)

It is obvious that by using an amplifier with high gain G the uncertainty of the VNA can
be significantly reduced. Maximum value of gain that can be used is limited by the difference
of the reference reflection coefficient Γref and the reflection coefficient Γx of the DUT and by
hardware requirements and constraints of the VNA used.

Nevertheless, it is evident that ∆S21 includes only uncertainties caused by the random
errors in the VNA. Moreover, it assumes an ideal behavior of the used elements so it is evident
that for a real measurement systematic errors will play a role. This is also mentioned in the
thesis [21], which is completely focused to this topic. The author of that thesis recommends
development of calibration techniques and standards for such a system, because currently
used standards are not sufficient to deal with this. There are several very recent works in
this field dealing with the design of a new calibration standards and the calibration technique
for such kind of system [22, 23]. It is evident that dealing with the systematic errors of the
interferometer and its calibration is very actual problem.
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2.2. Near field sensing – scanning microwave microscopy

Microwave sensing techniques are attractive for several different fields of research including
biology, nanotechnology or non-destructive testing.

Despite the excellent performance of current existing microwave methods, most applications
require measurement techniques that combine both high spatial resolution and measurement
sensitivity. Thus one of the leaders in microwave measurement development – Agilent Tech-
nologies 1 introduced the unique device which combines the comprehensive electrical mea-
surement capabilities of a VNA with the outstanding spatial resolution of an atomic force
microscope (AFM). SMM Mode outperforms traditional AFM-based scanning capacitance
microscopy techniques, offering far greater application versatility, the ability to acquire quan-
titative results, and the highest sensitivity and dynamic range in the industry. In SMM Mode,
the performance network analyzer sends an incident microwave signal through a diplexer to
the sub-7 nm conductive tip of a platinum-iridium cantilever. The signal is reflected from the
tip and measured by the VNA. The magnitude and phase of the ratio between the incident
and reflected signals are calculated and a model is then applied in order to calculate the
electrical properties of the sample. The AFM scans the sample and moves the tip to specific
locations to perform point probing. Operation frequencies up to 20GHz are supported. [24]

Figure 2.2. The principle of Agilent’s SMM [24].

However, even here the problem of the measurement of high and low impedances is en-
countered, because the impedance of the measurement tip is far away from 50 Ω, it is rather
an open end. Firstly this was resolved in a way that the tip was connected in parallel to a
load to match the 50 Ω as shown in Fig 2.2. But it is obvious that this approach decrease
measurement dynamics. So the efforts to improve the sensitivity of the measurement led to
the different interferometry techniques and the near field microwave sensing is still the subject
of the research.

Reference [7] utilizes a power divider as an interferometer as shown in the Fig. 2.3 and
other work uses hybrid coupler for the near-field microwave microscopy [8].

1At the time when author worked on this thesis, the company named Keysight Technologies was spun off

of Agilent Technologies, bringing with it the product lines focused on electronics and radio including the

Vector Network Analyzer, leaving Agilent with the chemical and bio-analytical products. So it would be

correct to say, that the leader in the microwave measurement is the Keysight Technologies.
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The principle of the measurement described in these works is as follows. The impedance
tuner is used for the balancing of the interferometer. So the tuner is adjusted during the
measurement process to reach sharp minimum at desired frequency in the |S21| (or |S11|
for the setup with Wilkinson 3dB divider). When the interference is reached, the reflection
coefficient of the tuner is given as a measured reflection from the tip. Nevertheless, in each
of the works of the authors assume ideal parameters of the interferometric system.

Figure 2.3. Interferometric setup using a 3 dB power divider [7].

Figure 2.4. Interferometric setup using a hybrid coupler [8].
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2.3. Distance measurement

The precision measurement of the distance or length is one of the fundamental and frequently
used tasks, hence currently exist numerous techniques for such a measurement. These tech-
niques differ by the measurement range, precision and accuracy, sensitivity, etc. For a variety
of applications non-contacting measurement is required [25]. Laser sensors offer unparalleled
accuracy, but they can be affected by the dirt on the sensor head or may not penetrate smoke,
dust, and flying debris which might surround the target. This task could be well solved using
the sensor utilizing millimeter waves instead of light.[26].

180 180

lx

To VNA port 1 To VNA port 2

Figure 2.5. Microwave interferometric system for distance measurement according to [17].

Microwave non-contact distance measurement has been discussed in several recent articles
[27, 26, 17, 25, 18, 19]. Every aforementioned work solved this issue in a different way
and at different frequency range. Articles [17],[18],[19] use the interferometric methods for
sensitive distance measurements. These works describe systems operating in the X-band
whose sensitivity of distance measurement is in the range of micrometers.

Block diagram of one of this system is depicted in the Fig. 2.5 and the photograph of the
same system is in the Fig. 2.8.

The principle of its function is as follows. Wave generated by the VNA (port 1) is divided
by the 180◦ hybrid coupler into two paths. One of the paths consist of the isolator and the
attenuator. This path is called the reference channel. The remaining path is the test channel.
The wave passing through the test channel is headed towards the antenna and then reflected
from the target. Wave reflected from the target returns back to the antenna and continues
to the second hybrid coupler. In this coupler the wave from test channel is combined with
the wave from the reference channel. When at specific frequency, both waves are exactly in
the anti-phase, they destructively interfere with each other resulting in the zero energy at
the output as depicted in Fig. 2.6. The output is connected to the second port of the VNA.
Thanks to this, the direct measurement of S21 brings the information about interference over
the frequency range.

While the wave passing through the reference channel has still the same delay, the delay
of the test channel differs depending on the distance of the target in front of the sensor
(antenna). Since the phase of these waves depends on the frequency, the mentioned destructive
interference occurs only on the specific frequencies and any delay change in the test channel
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Figure 2.6. S21 measurement of the interferometric system. The frequency of the minimum depends
on the measured distance [17].

(or reference channel as well) results in the frequency shift of the minimum energy to another
frequency. Basically, the frequency at which the minimum occurs directly depends on the
measured distance as shown in the Fig. 2.7.

In reference [17] there is described experimental verification of such a measurement ap-
proach. It was measured by the VNA Agilent PNA E8364A. The measurement system was
assembled from the WR90 components as depicted in 2.8. As a sensor, a WR90 horn antenna
was used. For the verification there was a reflective surface formed by a metal sheet in the
distance of ≈ 20 mm from of the horn antenna. The sheet was mounted on the top of a
micro-positioner, enabling to set up its distance with a resolution of one micrometer.

Although the results presented in this work prove the high sensitivity of such system,
authors mention that the system works only in very narrow band. Outside this band, the
parasitic properties of the system cause unexpected behavior and the cancellation frequencies
are no longer linearly dependent to the distance. Moreover this work brings the approach
only for the relative measurement – the absolute distance of the reflective sheet to the sensor
was unknown and only small movement of the sheet was measured.
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Figure 2.7. The dependence of the distance on the cancellation frequency. Measured vs expected
trace [17].

Figure 2.8. Microwave interferometric system for the distance measurement according to [17].
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2.4. Thesis objectives

As it is evident from the current work in this area, microwave interferometry measurement is
currently on the rise. There are several challenging applications which are only made feasible
using an interferometric approach. Nevertheless, it is evident that many of above mentioned
works are more like a proof of concept then the solution of the problem. Works using phase-
shifting interferometry neglect completely all the effects of systematic errors caused by the
non-ideal hardware and use the interferometer as an ideal device. Furthermore, the works
using the interferometric approach for the phase/distance measurement utilize that technique
only for the relative measurement of the phase/distance, so an approach for the absolute
phase/distance measurement is missing. The aim of this work is to deal with the known
problems of such measurement. Especially to develop suitable calibration technique.

Briefly, the objectives of this thesis are:
1. Full model description and analysis of microwave interferometric system
2. Analysis of the systematic errors
3. Approach for the absolute phase measurement
4. Design of calibration methods for microwave interferometer
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3. Uncertainty analysis

Prior to any measurement it is necessary to discuss the uncertainty of measurement. The
uncertainty of the measurement with and without an interferometric system is the key factor
in decision whether the interferometry setup is suitable for such measurement.

In this chapter a case of measurement using VNA will be shown wherein even the very
modern VNA is very close to the limit of applicability. Comparing the uncertainties of the
measurement with and without the interferometric system will be shown, how an interfero-
metric approach can help to push the limit of the VNA a little further.

Figure 3.9. Rohde&Schwarz ZVA-67 Vector Network Analyzer.

3.1. Measurement of the phase of the reflection coefficient

Vector Network Analyzers are the nearly versatile devices which allow numerous measure-
ments in the RF and microwave frequency range. Despite the complexity of the device, there
are cases of measurement, where the measured data contain fairly high uncertainty. Prior
to each measurement or experiment, it is necessary to address the question of measurement
errors or uncertainties.

The uncertainty evaluation for a VNA measurement is the subject of research in the several
laboratories [28, 29, 30, 31, 32]. Nevertheless the problem of VNA residual uncertainty is still
lacking of a comprehensive and uniform theory [32]. Therefore it seems to be adequate to use
the uncertainty values given by the vendor of VNA.

Let’s look at the parameters of modern VNA. Rohde&Schwarz ZVA 3.9 high-end VNA
with lot of features and also with state-of-the-art hardware [1]. In the datasheet of R&S ZVA
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for +10 dB to +3 dB < 0.4 dB or < 4◦

50 MHz to 67 GHz for +3 dB to −15 dB < 0.4 dB or < 3◦

for −15 dB to −25 dB < 1 dB or < 6◦

for −25 dB to −35 dB < 3 dB or < 20◦

Tab. 3.1. Selected uncertainties for reflection measurement on R&S ZVA-67 VNA. Specifications are
based on an isolating DUT, a measurement bandwidth of 10 Hz, and a nominal source power of –10
dBm. [33].

for +15 dB to +5 dB < 0.3 dB or < 3◦

2 GHz to 24 GHz for +5 dB to −55 dB < 0.1 dB or < 1◦

for −55 dB to −70 dB < 0.2 dB or < 2◦

for −70 dB to −85 dB < 1 dB or < 6◦

for +15 dB to +5 dB < 0.3 dB or < 3◦

24 GHz to 32 GHz for +5 dB to −45 dB < 0.2 dB or < 2◦

for −45 dB to −60 dB < 0.3 dB or < 3◦

for −60 dB to −75 dB < 1 dB or < 6◦

for +15 dB to +5 dB < 0.4 dB or < 4◦

32 GHz to 40 GHz for +5 dB to −40 dB < 0.2 dB or < 2◦

for −40 dB to −55 dB < 0.4 dB or < 4◦

for −60 dB to −70 dB < 1 dB or < 6◦

for +15 dB to +5 dB < 0.4 dB or < 4◦

40 GHz to 50 GHz for +5 dB to −35 dB < 0.2 dB or < 2◦

for −35 dB to −50 dB < 0.4 dB or < 4◦

for −50 dB to −65 dB < 1 dB or < 6◦

for +15 dB to +5 dB < 0.4 dB or < 4◦

50 GHz to 67 GHz for +5 dB to −30 dB < 0.2 dB or < 2◦

for −30 dB to −45 dB < 0.4 dB or < 4◦

for −45 dB to −60 dB < 1 dB or < 6◦

Tab. 3.2. Selected values for transmission measurement on R&S ZVA-67 VNA. Specifications are
based on a matched DUT, a measurement bandwidth of 10 Hz, and a nominal source power of –10
dBm [33].

measurement accuracy section can be found. There is written in the datasheet:

This data is valid between +18 ◦C and +28 ◦C, provided the temperature has not varied
by more than 1 K after calibration. Validity of the data is conditional on the use of a suit-
able calibration kit. This calibration kit is used to achieve the effective system data specified
below. Frequency points, measurement bandwidth and sweep time have to be identical for
measurement and calibration (no interpolation allowed) [33].

And in the tables 3.2 and 3.1 there are selected values from the datasheet concerning
the measurement accuracy using this device. For the following examples the R&S ZVA67
datasheet values will be used, because the identical VNA was used for the experimental
verification. However, the another manufacturer of the VNAs, the Keysight Technologies,
presents very similar values in the datasheets for the Keysight Technologies VNAs [34, 35].

Now imagine the example of measurement scenario as shown in the Fig. 3.10. There are
two almost identical homogeneous lines connected to the completely identical VNAs and the
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VNAs are used for the measurement of the phase of the reflection coefficient.

1

1

∆l

ZL

ZL

l1

l2

Figure 3.10. Measurement scenario. A two transmission lines with different length, connected to the
VNA and terminated by an impedance ZL which is close to short circuit.

The only difference between the homogeneous lines is the length of both lines. The difference
in lengths of lines is about 1 mm. Repeatability effects are omitted. VNA is set according to
the datasheet, so the power level is −10 dBm and the resolution bandwidth is 10 Hz. Then
we can expect that the worst case of uncertainty corresponds to the values in the table 3.1.
Assuming lossless line, terminated with the impedance causing reflection approx Γ ≈ 0.9,
we can expect incident power ≈ −11 dBm, so the worst case of uncertainty is 0.4 dB for the
magnitude and 3◦ for the phase.
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Figure 3.11. Phase of S11 parameter for both lines including uncertainty regions.

The result of such measurement is shown in the Fig. 3.11 including the 3◦ uncertainty
regions. Magnified window in Fig. 3.11 shows clearly the overlapping areas of uncertainties.
This example demonstrates the impossibility of measuring and recognition of small phase
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differences directly using VNA. The same result is evident from the Smith chart 3.12. There
are shown selected impedances at the frequencies 7.5, 8.5, and 9.5 GHz and there are also
magnified windows with the detail of uncertainty region.
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Figure 3.12. Smith chart with S11 parameter for both lines including uncertainty regions.

3.2. Uncertainty of an interferometric measurement

As previous example has shown, in the direct phase measurement of the two very similar
DUTs with very small difference in the phase of reflection coefficient, the results can’t be
distinguished. That is because of overlapping uncertainty regions.

Therefore the main aim is to decrease the uncertainty of phase measurement. In this work
interferometric principle will be used for this purpose. The key idea is to convert direct phase
measurement to amplitude measurement. This idea is very simply shown in the Fig. 3.17.
Fig. 3.17a. depicts phases of reflection coefficients measured by the VNA according to setup
in the Fig. 3.10.

Now, let’s suppose there is an ideal interferometric system connected to the VNA as shown
in Fig. 3.13. This box act as an additional instrument for the VNA. The homogeneous lines
are the same as were used in the previous example with direct VNA measurement.

For this moment, let’s leave aside what exactly is inside this mentioned interferometer.
This mentioned device can convert information about phase to magnitude as shown in the
Fig. 3.17. The general principle of operation is as follows. Wave passing from the VNA is
equally or unequally split in two parts in the interferometer. It means that there are two
separate paths. Then the first wave continues towards DUT where it is reflected. Second
wave propagates through reference channel inside the interferometer towards the output and
then is somehow combined with the reflected wave from the DUT. Therefore the output from
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Figure 3.13. Measurement scenario with an ideal interferometric extender connected the VNA.
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Figure 3.14. Expected values assuming ideal interferometer.

the interferometer contains resulting combination of both waves. If the waves are in the anti-
phase, waves interfere in the destructive way resulting in zero energy at the output. Thanks
to this, there are the mentioned sharp minima in the magnitude of S21.

When the phase of the DUT is changed somehow (e.g. different length of a homogeneous
line), it will produce minimum on the different frequency. This is the most important infor-
mation. Small change in the phase will result in change of the sharp minimum of magnitude
measurement. This behavior is shown in the Fig. 3.14. Traces of the S21 in this figure repre-
sent expected ideal measurement and there is clearly depicted how sensitively the minimum
is shifted to different frequency with the very small change in the measured phase. Moreover,
Fig. 3.15 and 3.16 displays the selected frequency points of the S21 measurement in the
complex plane, again with the worst case of uncertainty. There is very illustratively shown
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Figure 3.15. Smith chart with selected frequency points of the S21 parameter measured by the inter-
ferometric system including uncertainty regions.
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Figure 3.16. Smith chart with selected frequency points of the S21 parameter measured by the inter-
ferometric system including uncertainty regions.

how the interferometric measurement decrease the uncertainty of the measurement. Since
the uncertainty regions are the smallest in the minima of the S21, the measurement at the
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frequency where the minimum occurs can be very suitable in term of the uncertainty. How-
ever the values close to the minimum have also non overlapping uncertainty regions and this
knowledge will be used in the mentioned calibration technique.
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Figure 3.17. Example of phase to magnitude measurement conversion using an interferometric setup.
Each color represents measurement of the same DUT
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4. Interferometric measurements

This chapter successively describes the principles and methods of the interferometric mea-
surements. Since this work was motivated by precise phase measurement and the distance
measurement, emphasis is placed on the measurement of the phase of reflection coefficient.
That is because distance measurement is directly proportional to the phase measurement.
Thus it was necessary to choose a proper general model for any DUT, which allows to convert
distance to phase and vice versa. This conditions are met using the model of a homogeneous
line terminated with an impedance as shown in the Fig. 4.1.

ΓDUT (f) = e−2l0(iβ(f)+α(f)) ZL (f) − Z0 (f)

ZL (f) + Z0 (f)
(4.1)

Where ΓDUT (f) is the reflection coefficient measured in the plane marked in the Fig 4.1. Then
β (f) is phase constant and α (f) is attenuation constant. Z0 is the line impedance. Assuming
that terminating impedance ZL as well as line impedance Z0 are frequency independent, it is
obvious that the phase of ΓDUT (f) is proportional to the length of line l0.

ZL2

1 β, α, l0, Z0

ΓDUT

Figure 4.1. Interferometric setup with a homogeneous line as a DUT.

Due to mentioned reasons the model of a homogeneous transmission line will be used
in the entire derivation. The detailed derivation will be done with a 180◦ hybrid coupler.
That is because 180◦ hybrid coupler is the most often used component for the microwave
interferometry. However, the principles of other devices such a 90◦ hybrid coupler or 3 dB
power divider are very similar and will be very briefly presented as well. But this is certainly
not the only component that could be used in a microwave interferometer. There are plenty
of structures and devices with similar properties which could be utilized. And it is obvious
that is impossible to show the behavior of all these structures as well as the derived equations.
To avoid this, a general model was derived for the microwave interferometer. It can apply
to the 180◦ hybrid coupler, 90 ◦hybrid coupler or for combination of more components which
together form an interferometer.
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4.1. 180◦ Interferometer – ideal case

In this section, the previous general considerations will be presented and discussed on a system
which utilizes 180◦ hybrid coupler as an interferometer. Ports of coupler are numbered in
accordance with the matrix 4.2. It is apparent that, there are no reflections or crosstalk. Real
case containing crosstalk and reflections will be discussed later. This idealized example serves
to derive and explain the basic principles.
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Figure 4.2. Interferometer approach using 180◦ hybrid coupler

An ideal VNA is used as a measurement device in this case. Ideal VNA means there is no
systematic or random error during the measurement.

Sh180 =

























0 0
1√
2

− 1√
2

0 0
1√
2

1√
2

1√
2

1√
2

0 0

1

−
√

2

1√
2

0 0

























(4.2)

From the block diagram it is evident, there is chance to measure four S-parameters directly
using VNA:
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It follows that, in such a measuring arrangement it is possible to obtain several equivalent
results during one measurement. It may be beneficial for some data processing techniques
that can benefit from overdetermined set of data. On the other hand, it also points to the
possibility of simplifying measurement hardware - for example, to measure only S11 using
one-port VNA. Nevertheless, the choice of the measured parameter (S21 or S11) also brings
the need to deal with the uncertainty of measurement of these parameters using VNA itself.
In the Fig. 4.3a. there are measured phases of the reflection coefficient according to the setup
described in the 3.10. In the remaining figures 4.3b. and 4.3c. the measured |S11| and |S21|
traces are depicted.
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Figure 4.3. An example of phase-to-magnitude measurement conversion using an interferometric
setup. Each color represents measurement of the same DUT
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4.1.1. Phase measurement using interferometer

The setup shown in the Fig. 4.4 will be used to derive relationships and principles for the
measurement using interferometer. The major part is an ideal 180◦ hybrid coupler.
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1
180
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Figure 4.4. Interferometer approach using 180◦ hybrid coupler

Furthermore, the setup contains the test channel and reference channel and there are two
terminated homogeneous lines connected to test and reference port respectively.

The both impedances connected to the reference plane of the interferometer consist of homo-
geneous line and a terminating impedance. The reflection coefficient of reference impedance
it adjusted prior the measurement in such way to achieve desired behavior of the system. It
means to achieve proper interference which is required. In this case the homogeneous lines
are lossless, β (f) is phase constant and lr and lt are lengths of reference and test channel
respectively. Thus the phase of the reflection coefficient of such homogeneous line is propor-
tional to the length. The β (f) depends on the used environment where the wave propagates.
The β (f) is different for the line with mode TEM, TE10, etc. Thanks to this assumption it
is possible to easily convert the length to phase coefficient and vice versa.

The following derivation serves to exact demonstration of the origin of the interference in
such system. This derivation serves to comprehension of the principle of the phase measure-
ment using microwave interferometer.

Both terminating impedances in the reference plane of the interferometer can be written
as:

ΓR (f) =
ZR (f) − Z0 (f)

ZR (f) + Z0 (f)
e−2iβ(f)lr (4.7)

ΓT (f) =
ZT (f) − Z0 (f)

ZT (f) + Z0 (f)
e−2iβ(f)lt (4.8)

Putting 4.7 and 4.8 to 4.3 and 4.4 the equations for the transmission and reflection mea-
surement are obtained:

S11(f) =
1

2

(

ZT (f) − Z0(f)

ZT (f) + Z0(f)
e−2iβ(f)lt +

ZR(f) − Z0(f)

ZR(f) + Z0(f)
e−2iβ(f)lr

)

(4.9)

S21 (f) =
1

2

(

ZT (f) − Z0 (f)

ZT (f) + Z0 (f)
e−2iβ(f)lt − ZR (f) − Z0 (f)

ZR (f) + Z0 (f)
e−2iβ(f)lr

)

(4.10)
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In the case when ZR = ZT , the equations 4.9 and 4.10 can be simplified in following way:

S11 (f) =
1

2

ZT (f) − Z0(f)

ZT (f) + Z0 (f)

(

e−2iβ(f)lt + e−2iβ(f)lr
)

(4.11)

S21 (f) =
1

2

ZT (f) − Z0 (f)

ZT (f) + Z0 (f)

(

e−2iβ(f)lt − e−2iβ(f)lr
)

(4.12)

This case, when ZR = ZT cannot be always achieved in practice, but is very handy to be
close to this condition during practice measurements. This aspect will be briefly discussed in
the section 4.1.2.

Since this technique is based on the measurement of the position of minima at the frequency
axis (as proposed in the [17]), the desired result could be derived putting:

S11 (f) = 0 (4.13)

and
S21 (f) = 0 (4.14)

At the first glance, the each equation can be satisfied by two ways. First way is following
equation

0 =
ZT (f) − Z0(f)

ZT (f) + Z0(f)
(4.15)

Perfect match in the test or reference channel

The equation 4.15 is satisfied for ZT = Z0 (ZT = ZR = Z0) which is the case when both
impedances are perfectly matched to interferometer. It simply means that no wave is reflected
in reference as well as test channel. Thus no waves can interfere each other.

More generally, from equations 4.9 and 4.10 is evident, that matching of any single channel
leads to cancellation of any interference at all. That is because there is need to have two
waves for the interferometry principle. This is unwanted scenario, because this setup does
not produce any sharp minima.

Condition for interference

There is a second way how to satisfy the equations 4.13 and 4.14. The equations 4.16 and 4.17
are the terms describing origin of minima in the amplitude measurement of S11 and S21

respectively. The derivation and results of these equations will illustrate the basic principle
of operation of this technique

0 =
(

e−2iβ(f)lt + e−2iβ(f)lr
)

(4.16)

0 =
(

e−2iβ(f)lt − e−2iβ(f)lr
)

(4.17)

The equation 4.17 is expressed in Fig 4.5. This diagram illustrates two rotating vectors
that are present in the equation 4.17 and also illustrates the case when the vectors are exactly
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in the antiphase. The diagram 4.5 is in the accordance with the setup in the Fig. 4.6a. The
green vector represents the reference channel and the blue vector represents the test channel.

β = 0

β(N=1)

βM

β = 0

β(N=1)

βM

βMβ(N=1)

|S21|

0

1

β

Figure 4.5. Vectors of waves from the test (blue) and reference (green) channels in the left figure,
measured |S21| trace in the right.

Simplifying the (4.17) leads to equation:

log
(

e−2iβ(f)lr
)

= log
(

e−2iβ(f)lt
)

(4.18)

i (−2β (f) lr + 2πNr) = i (−2β (f) lt + 2πNt) (4.19)

(4.20)

And then desired result can be easily derived.

∆l = (lt − lr) =
π (Nt − Nr)

β (fN )
(4.21)

The equation 4.21 illustrates the relationship between phase constant β(f) at frequency
f where minimum was measured and length difference ∆l between homogeneous line in the
test and reference channels. Nt and Nr represents extension of test and reference channels in
number of wavelengths. It can be simplified to N = Nt − Nr and then N represents the order
of the minima in the |S21| interferogram.

∆l = (lt − lr) =
πN

β (fN )
(4.22)

Furthermore Fig. 4.5 depicts lengths of the homogeneous lines used in the reference and
test channels. Both vectors rotate at the same time from zero frequency where β(0) = β0

to the frequency where β(m) = βm, but blue vector (test channel) rotates faster then green
vector. It means, that physical length of test channel is greater then the physical length in
the reference channel. Thanks to this is possible to observe destructive interference on the
frequency where β(f) = β(N=1).

Then Fig. 4.7 depicts a situation in which the physical length of the test channel is greater
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a.) A measurement scenario producing one visible minimum.
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b.) A measurement scanario producing two visible minima.

Figure 4.6. Two DUTs different in the phase measured using interferometer setup with 180◦ hybrid
coupler

then it was in the previous scenario depicted on the Fig. 4.5. The reference channel is
still the same. The result is that vector representing test channel rotates faster then it
rotates in the previous case in the Fig. 4.5, thus the first minimum in the S21 interferogram
occurs on the lower frequency. In addition, vectors of test and reference channels are in the
antiphase multiple times and there are more then one minimum in the S21 interferogram.
The corresponding setup in in the Fig. 4.6b..

β0

β(N=1)

β(N=2)
βM

β = 0

β(N=1)

β(N=2)

βM
β0 βMβ(N=1)

|S21|

0

1

β(N=2) β

Figure 4.7. Vectors of waves from the test (blue) and reference (green) channels in the left figure,
measured |S21| trace in the right. The case when the vectors differs more then one wavelength.

Let’s return to the equation 4.22. It allows to calculate ∆l from the frequency at which
the minimum was measured and from order (N) of the minimum. The order is counted from
zero frequency.

Nevertheless in practice it is usual to measure in a frequency band which might not start
in zero. Thus it is impossible to directly enumerate order of minima which are measured.

For the case when the interferogram contains at least two minima, it is possible to determine
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∆l and N as well. It is possible to use the following relationship based on 4.22.

|lr − lt| = ∆l =
Ni − Nj

βi − βj

π =
∆N

∆β
π (4.23)

Where Ni and Nj are the orders of minima and βi and βj are the phase coefficients at the
frequencies of those minima.

The very similar scenario can be used for S11 equation. The solution of 4.17 can be simply
used for the equation 4.16. It is only necessary to rewrite equation 4.16 to:

0 = e−2iβ(f)lt + e−2iβ(f)lr (4.24)

0 = e−2iβ(f)lt − eiπe−2iβ(f)lr (4.25)

and remaining steps are the same as was used for previous equations 4.17 – 4.22

∆l = (lt − lr) =
π

(

Nt − Nr − 1
2

)

β
(4.26)

and it can be simplified to N = Nt − Nr so

∆l = (lt − lr) =
π

(

N − 1
2

)

β
(4.27)

It’s evident, that results for S11 and S21 measurement are very similar. Theoretical principle
is again explained using vector in the Fig. 4.8 and 4.9.

The result 4.23 derived for S21 measurement apply also for S11 what can be shown using
equation 4.27.

β = 0

β(N=1)

βM

β = 0

β(N=1)

βM

βMβ(N=1)0

1

β

|S11|

Figure 4.8. Vectors of waves from the test (blue) and reference (green) channels in the left figure,
measured |S11| trace in the right.

The example of evaluation ∆l based on measured minima is discussed in the section 4.1.3
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Figure 4.9. Vectors of waves from the test (blue) and reference (green) channels in the left figure,
measured |S11| trace in the right. The case when the vectors differs more then one wavelength.

4.1.2. Terminating impedance

Until this moment, it was supposed that terminating impedances in reference and test channels
are the same ΓT = ΓR. This assumption was convenient for derivation of the basic relations.
However the effect of the different magnitudes of the reflections has not yet been investigated.
It was only mentioned that matching of any channel prevents the interference.
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Figure 4.10. Effect of the reflection magnitude in the test and reference channel.

The following example again assume the ideal behavior of the interferometric system. In
the Fig. 4.10 there are |S21| interferograms for the various scenarios. The condition ΓT = ΓR

is satisfied for all the measurements, but the magnitude of the reflection coefficient differs.
It is evident that thanks to the fulfillment of given condition, there are sharp minima in the
all interferograms and the value of the minima is exactly zero. But the maximum values in
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interferograms is directly affected by the magnitude of the reflections. Also the steepness of
the traces is smaller for the smaller reflection coefficient.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency

|S
21

|

 

 

|Γ
R

|=0

|Γ
R

|=0.2

|Γ
R

|=0.4

|Γ
R

|=0.6

|Γ
R

|=0.8

|Γ
R

|=1.0

Figure 4.11. Effect of the reflection magnitude in reference channel for the case when the ΓT = 0.6.

In the following case there is a measurement scenario with fixed reflection in the test
channel so the magnitude of the reflection is |ΓR = 0.6|. Then the aforementioned condition
is satisfied only for one case where also reference channel reflection has a magnitude of 0.6
as shown in Fig. 4.11. For the other cases where |ΓR| 6= |ΓT |, there aren’t sharp minima
on interferograms. The minima are on identical frequencies but they are more flat and can
cause uncertainty during measurement. From those two examples is clear, that for proper
interferometric measurement it is need to satisfy at least the condition |ΓR| = |ΓT | otherwise
the frequency of the minima may not be clearly identified.
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4.1.3. Effects of the finite frequency step size

This example shows the computer simulation using an ideal interferometer. Experiment is
simulated in CST Design Studiocircuit simulator. The circuit simulator acts as an ideal VNA,
which has no systematic or random errors. There is only one known error is caused by the finite
frequency step size. Simulation is performed in the frequency range from f = 1 GHz÷18 GHz
with 17000 points. It means that there is one simulated point per 1 MHz.

In the circuit there is an ideal 180◦ hybrid coupler. Two transmission lines (propagating
TEM mode) act as reference (TL1) and test channel (TL2). The ∆l = 40 mm. The lengths
of transmission lines TL1 and TL2 were chosen randomly.

Figure 4.12. Circuit diagram in the CST Design Studio.

Resulting traces of |S11| and |S21| from the simulation are in the Fig.4.14 and 4.13 respec-
tively. Frequencies at which minimum appeared are written to the corresponding table in the
order of appearance. Then unknown ∆l can be evaluated using 4.27 and 4.22.

Tables 4.2 and 4.1 compare theoretical values with the values obtained from circuit simula-
tor and it also compares results (∆l) calculated from these frequencies. It is evident that the
frequencies of the minima in the simulation are interpolated due to coarse frequency step size.
One can assume that increasing the number of frequency points in the simulation increase
the total precision, but during real measurement using VNA, there is also real limitation of
available frequency points.

Increasing the number of frequency points during the real measurement cause a slower
measurement which may be critical for some applications. Furthermore, some of VNAs have
a limitation to the maximum number of frequency points due to limited resources of the
control computer inside.

It is also clear, that real microwave components does not work from zero frequency to
microwave band. So contrary this ideal example also bandwidth must be restricted. But then
the exact order of visible minima may not be obvious. For these cases the equation 4.23 may
be applied.
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So in the case there are only two minima in the S21 measurement/simulation. It may not
be clear their exact order, but it is clear that the difference between order of higher and of
the lower minimum is just 1. Thus

∆l = π
Nj − Ni

βj − βi

= π
1

235.635 − 157.071
= 39.988 mm (4.28)

where βj and βi are the corresponding phase constants for the homogeneous line propagating
TEM mode, with ε = 1, for the frequencies 11.232 GHz and 7.4944 GHz.

It is obvious that the result is far away from the expected value. It is a demonstration of
the effect of coarse frequency step which is more noticeable here. That is because two minima
(each influenced by coarse frequency step) were used for the calculation.

Figure 4.13. |S21| obtained from the simulation with an ideal 180◦ hybrid coupler.

Expected value Circuit simulator 17000 points |δf | |δ∆l|
f (Hz) ∆l (mm) f (Hz) ∆l (mm) kHz µm

1 3 747 405 725.00 40.000 3 747 200 000.00 40.002 205.725 ≈ 2
2 7 494 811 450.00 40.000 7 494 400 000.00 40.002 411.450 ≈ 2
3 11 242 217 175.00 40.000 11 243 000 000.00 39.997 782.852 ≈ 3
4 14 989 622 900.00 40.000 14 990 000 000.00 39.998 377.100 ≈ 2

Tab. 4.1. Theoretical and simulated values with the finite frequency step size - S21.
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Expected value Circuit simulator 17000 points |δf | |δ∆l|
f (Hz) ∆l (mm) f (Hz) ∆l (mm) kHz µm

1 1 873 702 862.00 40.000 1 874 100 000.00 39.992 397.137 ≈ 8
2 5 621 108 587.00 40.000 5 621 300 000.00 39.999 191.412 ≈ 1
3 9 368 514 312.00 40.000 9 368 500 000.00 40.000 14.312 < 1
4 13 115 920 037.00 40.000 13 116 000 000.00 39.999 79.962 ≈ 1

Tab. 4.2. Theoretical and simulated values with the finite frequency step size - S11.

Figure 4.14. |S11| obtained from the simulation with an ideal 180◦ hybrid coupler.

This example briefly shown the principle of operation of an ideal interferometric system
and pointed out the problem of finite frequency step size. Even though there is an ideal model
of 180◦ hybrid coupler without reflections, cross-talks and other problems of real device, it
is evident that even frequency step size can significantly affect the results.

4.1.4. Sensitivity analysis

During the design of the interferometric system or experiment, sensitivity analysis should be
taken into account. It helps to design best solution (if it is possible) in terms of sensitivity to
the measured phase. Obviously the aim is to achieve the greatest sensitivity as possible. So
imagine the measurement according to the 4.15. Two identical interferometric setups differ in
the physical length of the homogeneous line representing the test channel, so resulting |S21|
interferograms have minimum slightly shifted about ∆β.

The position of the minimum depends on the length difference in test and reference channel
∆l and on the order N as shown in 4.22. Assuming that the order of the minima is still same
then by differentiating the equation 4.22, the result 4.29 is obtained

∆β (f) =
dβ (f)

d (∆l)
= − Nπ

(∆l)2 (4.29)

This result shows that the sensitivity goes higher for the higher order of the minima N .
However sensitivity also depends on 1/ (∆l)2. Let start with first mentioned result. It is
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Figure 4.16. |S21| traces showing the frequency of the minima due to small phase change in the test
channel

clearly shown in the Fig. 4.17. There are two simulations of the S21. Both simulations use
an ideal 180◦ hybrid coupler, identical reference channel, but the transmission line in the test
channel differs in the length. The difference is δ∆l = 100 µm. Results in the Fig. 4.17 are in
accordance with the equation 4.29. While the frequency shift for the N = 1 is ∆f = 36.9 MHz,
the frequency shift for the next minimum N = 2 is ∆f = 75 MHz.

At a first glance is evident, that the higher order of minima brings higher sensitivity, but
it is not so unambiguous. It is clear that the measurement of the higher order of the minima
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Figure 4.17. |S21| simulated in CST Design Studio assuming an ideal system. The δ∆l = 100 µm.

also means measurement on the higher frequency. However, what about the case, when
measurement bandwidth is limited?

Now let’s assume the system which has limited bandwidth to the 6 ÷ 8 GHz. So according
to the Fig. 4.17 it is possible to measure only the first minimum. Nevertheless by adjusting
the reference channel it is possible to shift the second minimum to the desired frequency
band. It can be done with the change of the length difference between reference and test
channel. Without any detailed information about this simulation, it can be written that the
first minimum occurs for the phase coefficient:

β (f = 7.5GHz) =
1π

∆l7.5GHz
(4.30)

Now it is clear, that for shifting of the second minimum to the desired band can be done
increasing the length difference between reference and test channel twice.

β (f = 7.5GHz) =
1π

∆l7.5GHz
=

2π

2∆l7.5GHz
(4.31)

Then the result of such adjusted simulation is in the Fig 4.18, but the sensitivity is even
worst! Contrary to the previous simulation the frequency shift ∆f = 18 MHz!

Figure 4.18. |S21| simulated in CST Design Studio assuming an ideal system. The δ∆l = 100 µm.
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The explanation is in the equation 4.32. The adjusting the second (or higher) minimum to
the desired frequency band reduces the sensitivity by 1/N .

∆β (7.5 GHz) =
2π

(2∆l7.5GHz)
2 δ∆l =

1

2

π

(∆l7.5GHz)
2 δ∆l (4.32)

Generally it is evident that sensitivity for the case of limited bandwidth is given by following
equation

∆β (f) =
1

N

π

(∆L)2 δ∆L (4.33)

where is clearly shown, that the sensitivity is the best only for the first minimum!
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4.2. Ideal 90◦ interferometer

In this example there is the identical setup as was used in 4.1.3, except the hybrid coupler.
In this case there is an ideal 90◦ hybrid coupler. According to the results it is evident, that
the principle also works with this setup. But contrary to example in 4.1.3, the minima are
shifted to different frequencies although the physical lengths of test and reference channels
are the same. It is of course due to the fact that 90◦ hybrid coupler causes different phase
shifts in the reference and test channel.

Figure 4.19. Circuit diagram in the CST Design Studio.

The results are in the Fig. 4.20. The effect of the frequency step size is here also evident.
Simulated and expected values are in the tables 4.3 and 4.4.

Figure 4.20. |S11| and |S21| obtained from the simulation with an ideal 90◦ hybrid coupler.
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Assuming that the S-matrix of an ideal 90◦ hybrid coupler is 4.34

Sideal
h90 =



























0 0 −i
1√
2

− 1√
2

0 0 − 1√
2

−i
1√
2

−i
1√
2

− 1√
2

0 0

− 1√
2

−i
1√
2

0 0



























(4.34)

then without any derivation, the resulting equation describing expected minima in S21

measurement is

β (f)21 =
π

(

N − 1
2

)

∆l
(4.35)

and for S11 measurement

β (f)11 =
πN

∆l
(4.36)

Expected value Circuit simulator 17000 points |δf | |δ∆l|
f (Hz) ∆l (mm) f (Hz) ∆l (mm) kHz µm

1 3 747 405 725.00 40.000 3 747 200 000.00 40.002 205.725 ≈ 2
2 7 494 811 450.00 40.000 7 494 400 000.00 40.002 411.450 ≈ 2
3 11 242 217 175.00 40.000 11 243 000 000.00 39.997 782.852 ≈ 3
4 14 989 622 900.00 40.000 14 990 000 000.00 39.998 377.100 ≈ 2

Tab. 4.3. Theoretical and simulated values with the finite frequency step size - S11.

Expected value Circuit simulator 17000 points |δf | |δ∆l|
f (Hz) ∆l (mm) f (Hz) ∆l (mm) kHz µm

1 1 873 702 862.00 40.000 1 874 100 000.00 39.992 397.137 ≈ 8
2 5 621 108 587.00 40.000 5 621 300 000.00 39.999 191.412 ≈ 1
3 9 368 514 312.00 40.000 9 368 500 000.00 40.000 14.312 < 1
4 13 115 920 037.00 40.000 13 116 000 000.00 39.999 79.962 ≈ 1

Tab. 4.4. Theoretical and simulated values with the finite frequency step size - S21.

This example serves as a proof that not only 180◦ hybrid coupler can be used for the
interferometry purposes. The detailed derivation is not done for this case, because it would
be very similar to the presented derivation for the 180◦ hybrid coupler.
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4.3. Ideal 3dB divider interferometer

Here is presented the simulation of the 3 dB divider used as an interferometer. This example
should serve only as a proof, that it is possible to use this circuit for the interferometry
measurement. Since the reference and test channels are identical as in the simulation 4.1.3
the S11 results are the same as for the 180◦ hybrid coupler. It applies for the case that the
circuit is ideal and its S-matrix is 4.37.

Figure 4.21. Circuit diagram in the CST Design Studio.

Figure 4.22. |S11| obtained from the simulation with an ideal 3 dB divider.

Sideal
div3dB =
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(4.37)
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4.4. Non-ideal hardware

Until this moment, only ideal scenarios were discussed. According to issues discussed in the
2.3 it is evident that non-ideality of the real components causes systematic errors which lead
to incorrect evaluation of measured phase. Here will be discussed several different scenarios
that will reveal the influence of various parasitic parameters. Prior that, the general model
will be proposed for a better comprehension the influence of parasitic properties.
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Figure 4.23. Measurement scenario with the non-ideal system where all parasitic terms are present.

Consider a general case when the interferometer is a four port device as shown in the
Fig. 4.23. Two ports are used for the interconnection with the VNA and the remaining ports
are used for the test and reference channel. The interferometer itself can be described using
scattering matrix 4.38.

Scattering parameters in this matrix are marked as mjk to be not confused with Sjk which
represent scattering parameters measured by the VNA in the measurement setup. Thus,
the terms m13, m14, m23, m24 and m31, m41, m32, m42 represent the direct paths in the inter-
ferometer – these are the only terms assumed for the ideal behavior, whereas m12, m34 and
m21, m43 are the cross-talks whose values are usually much smaller in compare with the direct
paths but for the sensitive interferometry technique their effect is very significant as will be
presented. Finally the reflections on the ports are m11, m22, m33, m44.

Smodel =














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
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











(4.38)

The advantage of this general model is, that it is applicable to an interferometer consisting
of a 180◦or 90◦hybrid coupler as well as to any more complicated system consisting of multiple
components. Based on this it can be derived the general formulation for any S-parameter
measurement with an arbitrary interferometer.
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4.4.1. The full 16-term model

The full 16-term model includes all parameters of an four port interferometer as written
in the matrix 4.39. The signal flow graph for a four port interferometer is shown in the
Fig. 4.24. The equations describing S11 and S21 measurement are 4.40 and 4.41. The all
equations for the all four S-parameters are in the appendix A.1. Although, these equations
represents full model of an four port interferometric system, they serve more like presentation
of the complexity of the problem. However, the equation 4.40 points to the fact, that S11

measurement is not affected by m12, m21 cross-talks. This information can be useful for the
design of an interferometric system or for the design of an experiment. Contrary to this, the
S21 measurement is affected by the all parasitic cross-talks as evident from the equation 4.41.
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(4.39)
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Figure 4.24. Flow graph for the full 16-term model of the interferometer.
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S11 = − m11 − Γtestm11m33 + Γtestm13m31

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
−Γref m11m44 + Γref m14m41 + Γref Γtestm11m33m44

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
−Γref Γtestm11m34m43 − Γref Γtestm13m31m44

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
Γref Γtestm13m34m41 + Γref Γtestm14m31m43

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
−Γref Γtestm14m33m41

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

(4.40)

S21 = −m21 − Γtestm21m33 + Γtestm23m31 − Γref m21m44 + Γref m24m41

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
Γref Γtestm21m33m44 − Γref Γtestm21m34m43

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
−Γref Γtestm23m31m44 + Γref Γtestm23m34m41

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
Γref Γtestm24m31m43 − Γref Γtestm24m33m41

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

(4.41)

4.4.2. The reciprocal model with omitted reflections

Although the full 16-term model provides a complete description of the problem it may
be inappropriate for the calibration or data evaluation, because of its complexity. If the
interferometer is a passive reciprocal circuit the model can be simplified in the way that
mij = mji. For the further simplification the reflections coefficients are omitted for this
model. The matrix describing this model is 4.42 and signal flow graph in the Fig. 4.25.
Corresponding equations for the S21 and S11 measurements are 4.44 and 4.43 respectively.

Smodel =

















0 m12 m13 m14

m12 0 m23 m24

m13 m23 0 m34

m14 m24 m34 0

















(4.42)

S11 = −Γtestm
2
13 + 2Γref Γtestm34m13m14 + Γref m2

14

Γref Γtestm2
34 − 1

(4.43)
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Figure 4.25. Flow graph for the reciprocal model with omitted reflections

S21 = m21 −m34(Γref Γtestm13m24 + Γref Γtestm14m23)

Γref Γtestm2
34 − 1

+
Γtestm13m23 + Γref m14m24

Γref Γtestm2
34 − 1

(4.44)

4.4.3. Influence of parasitic terms to the result

Figure 4.26. Circuit simulation in CST Design Studio.

In the following simulations the 180◦ hybrid coupler will be investigated, but the results are
valid for 90◦ hybrid coupler as well. The scenarios were simulated in CST Design Studio as-
suming the interferometer setups are described by matrices 4.45, 4.46, 4.47 and the values of
the all scattering parameters in these matrices are constant over the frequency.

For the all setups, the identical homogeneous lines were connected to the test and reference
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Figure 4.27. Simulated |S21| (dB) traces for an ideal and non-ideal cases of interferometric system.

N Ideal Including cross-talks
m12, m21 m34,m43

fideal (GHz) fm12 (GHz) fm21 − fideal (MHz) fm34 (GHz) fm34 − fideal (MHz)

1 6.8526 6.8708 18.2 6.8526 0
2 8.5655 8.576 10.5 8.5655 0
3 10.278 10.276 -2.0 10.278 0
4 11.992 11.997 5.0 10.992 0

Tab. 4.5. Comparison of cancellation frequencies of S21 simulations.

port of the interferometer. Figure 4.27 shows simulated traces of |S21| for this three men-
tioned cases. The red curve represents the ideal case. This is the case when the scattering
matrix of the interferometer corresponds to the matrix 4.45. In the two remaining cases the
interferometer contains a parasitic cross-talks. The green curve represents case according to

the matrix 4.46. Where P1 <
1√
2

and C1 = 0.03∠60◦ which is roughly −30 dB. This value

was selected based on experiences with various interferometric systems. This value can be
higher or lower for some specific cases. The goal of this example is generally shows the effect
of such cross-talk. Finally the blue curve is for the case, when scattering matrix 4.47 is used.
This example clearly shows that the presence a non-zero values in the terms m12, m21 cause
the significant systematic error in S21 measurement, while the presence of the terms m34, m43

does not affect |S21| measurement. The frequency of the minima are listed in the tab. 4.5.
This table clearly depicts the effects of cross-talks in the interferometer. Nevertheless in these
cases all reflection were omitted, but it points to the effects of the cross-talks.
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

(4.45)

Sct12

h180 =



















0 C1 P1 −P1

C1 0 P1 P1

P1 P1 0 0

−P1 P1 0 0



















(4.46)

Sct34

h180 =



















0 0 P1 −P1

0 0 P1 P1

P1 P1 0 C1

−P1 P1 C1 0



















(4.47)

Contrary to the |S21| simulation, the Fig 4.28 shows that |S11| measurement is not affected
by m12, m21, while cross-talks m34, m43 play a major role for |S11| results as shown in the
detail 4.29.

Figure 4.28. Simulated |S11| (dB) traces for an ideal and non-ideal cases of interferometric system

The almost realistic case is described in the matrix 4.48. Here, only cross-talks m12, m21

are omitted. While the cross-talks m34, m43 and direct paths are the same with the previous
cases, there are additional reflections on the all ports and each reflection has different value
but all values are in the range −18 ÷ −22 dB. The resulting |S21| is compared with the
ideal case in the Fig. 4.30. At first glance, it is clear that the results are different. Values
|S21| > −20 dB differ definitely. But the position of minima are the same. This is very
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Figure 4.29. Detail of simulated |S11| (dB) traces for an ideal and non-ideal cases of interferometric
system.

important result. Even if the entire interferometer include parasitic properties, the existence
of cross-talks m12, m21 has the crucial influence on the S21 measurement even the value of
cross-talks is small.

Sct12omitt
h180 =



















R1 0 P1 −P1

0 R2 P1 P1

P1 P1 R3 C1

−P1 P1 C1 R4



















(4.48)

Figure 4.30. Simulated |S21| (dB) traces for an ideal case and case where only cross-talks m12, m21

are omitted.
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5. System calibration

The usage of the calibration techniques is an integral part of the any precise measurement
using the VNA. The aim of the calibration techniques is to get rid of systematic errors in
the measurement process. Systematic errors are mainly caused by non-ideal hardware of the
VNA. Historically, the importance of the calibration techniques arose after the first VNA
was introduced. The most common calibration technique is open-short-match, which was
designed for the calibration of the 1-port VNA. It assumes that all standards are very well
known. Basically it means that the measurement result is strongly dependent on the precise
knowledge of the actual reflection coefficient of all the standards. If this condition is met, the
calibration technique exactly evaluates the error model of the VNA and, therefore, all the
following measurements are free of systematic errors [36, 37],[38]. Nevertheless, in the practice
it may be very tricky to meet this condition. Leaving aside the fact that characterization of
the standards is very difficult process, there are still another obstacles which can affect the
measurement process even if the definition values of the standards are in perfect agreement
with the actual values.

Repeatability of the connection cause that every time the standard is connected to the
VNA, the measured value contains a small random error and thus the VNA measures the
different value then the actual one [39, 40],[1]. It leads to incorrect error model evaluation
and thus to incorrect measurement. Nevertheless, during the measurement with the VNA the
repeatability effects are usually small and they are usually neglected. Contrary to the calibra-
tion techniques which require the precise knowledge of the actual parameters of the standards,
there are techniques which does not require precise knowledge about standards [41],[42],[43]
such as thru-reflect-line or unknown thru. They can evaluate the error model (or its part)
just based on the measurement. Parameters of standards are used only for the root selection
purposes, because there are equations which produce multiple solutions and thus it is neces-
sary to choose proper one. But numerically it is calculated just from the measured data. No
definition data enters to the computation process. This makes these calibration techniques a
more robust [44, 45], but they are not resistant to random errors due to repeatability.

However, there are techniques that are trying to deal with the repeatability problems.
One of such a technique is the Multiline-TRL calibration [46, 47]. This technique offers the
possibility of measuring more standards, than would be required to calculate the error model.
It can be said that this technique uses overdetermined set of input data. Based on this, it is
possible to deal repeatability problems.

Basically, this knowledge led to design of the calibration technique for the interferome-
ter. The proposed calibration technique also trying to deal with random errors using an
overdetermined set of data.
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5.1. Model based auto-calibration

The proposed calibration technique takes into account the known issues with interferometry
measurements. Since all these interferometry techniques are very sensitive, all repeatability
effects play bigger role in contrast to ordinary VNA measurement. This technique does not
require precise knowledge about the standards and use overdetermined set of data as well.

This technique is not only a calibration technique in the meaning of the procedure which
is used for error model computation. This technique is so-called auto calibration technique
because it can deal with the systematic errors and determine the error model, however, it
also returns the information about the used calibration standards as well. Basically it means
that it is not necessary to have fully known calibrations standards for the calibration. It is
important for this technique to have a proper frequency dependent model of the calibration
standard. But values of parameters of such a model may not be known exactly. The exact
values are found during the calibration process.

In the comparison with the common calibration techniques, this technique does not cal-
culate the error model analytically using linear equations. In this technique the non-linear
least squares optimization is used for the curve fitting. Therefore it is very important for this
technique to use data over the entire frequency range.

So the goal is to minimize the sum according to the equation 5.49.

E =
q

∑

k=1

Wk(f) (rk(f))2 (5.49)

where q is number of the measurements and

rk(f) = Sk(f) − g
(

mij (f) , Γtest
k (f) , Γref

k (f)
)

(5.50)

where the g (. . . ) (f) is the function describing the one measurement using interferometer.
Generally mij (f) are the error terms (m11(f), m12(f), · · · m44(f)) of the interferometer model.
Γtest (f) and Γref (f) are the frequency dependent models of standards used in the test and
reference channel, respectively. In this chapter will be shown an example where standards
used for the calibration are the offset shorts, thus Γtest (f) as well as Γref (f) will be described
using a lossless model of the homogeneous line with only one unknown parameter - the length.

Si is one of measured S-parameters. Usually it is S21, but as it was shown in this work, it
is possible to use S11 as well. Or it is also possible to use more then one root function and
optimize the problem based on the measured S21 and S11.

Finally, the Wi is the weighting coefficient which takes into account the nature of measured
data. It is described in the Fig. 5.31. The minima are measured with the smallest uncertainty,
but there is very strong effect of the finite frequency step-size, so here the uncertainty is
given by the coarseness of the frequency step-size. Therefore the data which are close to
the minima should be weighted using smaller weighting coefficient because they can produce
higher uncertainty in the results. Contrary to this, the data in the area where the trace
of |S21| is below the certain limit are still measured with sufficient uncertainty as shown in
Fig. 3.15. Moreover, the number of frequency points does not affect the slope of the curve,
so the data in this area are very suitable for the fitting. The area where the trace of |S21| is
above a certain limit is measured with the high uncertainty as was shown in Fig. 3.16, so data
in this region should be also weighted using smaller weighting coefficient. The mentioned
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Figure 5.31. Uncertainty areas in S21 measurement.

limit mainly depends on the VNA. According to the datasheet values for the R&S ZVA67,
this limit is ≈ −10 dB.

During the calibration process the parameters of the function g (· · · ) (f) are optimized
to minimize differences compared to measurement. Although the exact parameters of the
standards are not known or are incorrectly characterized, it is possible to determine their
parameters more accurately. The same applies for the error model of the interferometer.
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5.2. Experimental verification

Figure 5.32. Experimental verification using VNA and WR90 interferometer.

The proposed calibration technique was experimentally verified on the interferometry sys-
tem assembled from WR90 waveguide components. As an interferometer itself the WR90
180◦ hybrid coupler was used. As a reference and test channel the short-circuited segments
of WR90 were used. The length of the segment used for the reference channel was chosen
so that there were at least two minima in the measured frequency range. It was because of
the possibility to evaluate the measured data using proposed calibration technique as well as
idealized approach discussed in 4.1.1.

2

1 1
180

2 3

4

lx

Interferometer reference plane

Reference channelVNA reference plane

Fixed 100mm segment

Figure 5.33. Experimental verification — measurement setup.
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The VNA R&S ZVA67 was used for the entire experiment as shown in the Fig. 5.32.
The VNA was connected to the waveguide transitions and it was calibrated using the TRL
technique in the planes of the waveguide transitions as can be seen in the detail in the Fig. 5.34
and 5.33. The measured frequency range was 8 ÷ 10 GHz, the power level on the VNA was
set to −10 dBm and RBW filter was set to 10 Hz; exactly the same conditions for which the
datasheet uncertainties are valid. Since the span was 2 GHz the number of measured points
was chosen as 20000 so the frequency step was 100 kHz per frequency point. Thanks to this
very fine setting the time required for one measurement sweep was about 30 minutes!

Figure 5.34. Experimental verification — setup in detail

The reference channel was fixed for the experiment duration. In the test port there was
fixed WR90 line of length 100 mm. Then the further various WR90 segments (listed in
table 5.7) were connected to the end of this line. So seven different measurements were
performed exactly in the accordance with the table 5.6. The lengths of the WR90 segments
were measured using a mechanical caliper, but the uncertainty of the measurement using this
caliper was neglected. Entire system was fixed on the table, to avoid any movement with the
phase stable cables of the VNA. Segments were mounted using torque screwdriver. Thanks
to this the random errors were reduced in maximum extent possible. The all measured S-
parameters for the one measurement are shown in the Fig. 5.35. The remaining results are
in the appendix A.3.
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Setup no. Reference channel (mm) Test channel (mm) WR90 segments used

1 14.980 100.880 100 + 1
2 14.980 101.900 100 + 2
3 14.980 104.870 100 + 5
4 14.980 109.980 100 + 10
5 14.980 114.980 100 + 15
6 14.980 149.940 100 + 50
7 14.980 99.990 100 + 0

Tab. 5.6. Measured set-ups.
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Figure 5.35. Complete S-matrix data for the first data set
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Nominal length (mm) Actual length (mm)

1.000 0.890

2.000 1.910

5.000 4.880

10.000 9.990

15.000 14.980

50.000 49.920

100.000 99.990

Tab. 5.7. WR90 segments used for the experimental verification
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5.2.1. The results obtained by idealized approach

Prior to using the proposed calibration technique, the data were evaluated using the formula
4.23 which describes general behavior of such interferometer but it does not take into account
the parasitic properties of the hardware.

Thanks to the fact that one measurement sweep contains 20000 frequency points, the
interpolation effects could be neglected. It means that there is one frequency point per
100 kHz. As shown in the example 4.1.3, in the simulation with the frequency step of 1 MHz
and in the similar frequency range, the error caused by the finite frequency step is about
several microns. With respect to the uncertainty of the mechanical measurement, the error
which can be caused by the finite frequency step is much smaller so it can be neglected.

The all measured traces of the |S21| parameter are shown in the Fig. 5.36. In the each
measurement there are two markers on the trace indicating the frequency where the minimum
occurs. Based on this information, the results are evaluated and compared in the table 5.8.
It is evident, that despite the all advantages of the interferometric system, the effect of
the systematic errors is very high and therefore the difference between expected values and
evaluated values is in the range of millimeters! The table 5.8 also lists the phase differences
in the degrees at the frequency 8.5 GHz. It is clear that these results are worse then worst
case for direct VNA measurement.

Expected value Evaluated value Difference Phase error at 8.5 GHz
(mm) (mm) (µm) (◦)

1 100.880 102.160 1280.6 16.63
2 101.900 103.360 1461.5 18.98
3 104.870 106.940 2066.2 26.83
4 109.980 113.010 3033.2 39.39
5 114.980 114.320 -663.06 8.61
6 149.940 151.170 1227.6 15.93
7 99.990 101.320 1325.5 17.21

Tab. 5.8. Evaluated values from the measurement

From this real measurement it is evident, that for absolute measurement, the direct use of
any interferometer can bring poor results despite the fact, that for relative measurement it
can bring superb results and sensitivity [17].
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c.) Setup 3. ltest = 104.870 mm
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d.) Setup 4. ltest = 109.980 mm
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e.) Setup 5. ltest = 114.980 mm
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f.) Setup 6. ltest = 149.980 mm
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5.2.2. The results obtained using proposed calibration technique

Once the raw data from the interferometer were measured, they could be evaluated using sev-
eral different ways. Here will be presented results given by the proposed calibration technique.
For the calibration the model was used which includes only the main paths in the interferom-
eter and the most critical parasitic term for S21 measurement - the term m12. To simplify the
problem, it was assumed that the used hardware is reciprocal. So the S-matrix 5.51 describes
the model used for the calibration.

Smodel =

















0 m12 m13 m14

m12 0 m23 m24

m13 m23 0 0

m14 m24 0 0

















(5.51)

Thus, it can by simply written that the model used for the calibration is

S21
k (f) = e1 (f) Γref (f) + e2 (f) Γtest

k (f) + ec1 (f) (5.52)

where e1, e2 and ec1 are:

e1 (f) = m14 (f) m24 (f) (5.53)

e2 (f) = m13 (f) m23 (f) (5.54)

and finally the term

ec1 (f) = m12 (f) (5.55)

It was assumed, that the reflection coefficient in the reference channel is the same and
known during all the measurements

Γref (f) = −e−2ilref βTE10 (f) (5.56)

where βTE10 (f) is the phase constant of the TE10 mode in the rectangular waveguide.

Contrary to the reference channel the reflection in the test channel was different for each
measurement, because there was a different offset short with the offset of ltest

k for each mea-
surement.

Γtest
k (f) = −e−2iltest

k
βTE10 (f) (5.57)

Firstly, let’s assume that the terms Γtest and Γref are fully known, because they are mea-
sured using mechanical caliper. Since the equation 5.52 consists of five frequency dependent
terms, so there are three remaining unknown complex terms e1 (f), e2 (f) and ec1 (f). For
this case, three different measurements of the S21 are sufficient to compute the unknown error
terms. In that scenario the calibration result will be solely dependent on agreement between
the calibration standards definition values Γref , Γtest

k and the actual values. In that case,
the calibration results would reflect the random error caused by repeatability connection or
incorrectly characterized standards.

Now consider, there is data set contains four different S21 measurements. Then it is an
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overdetermined set of the data and it enables to determine more then the mentioned error
terms. Thanks to this all offset lengths ltest

k may be considered as unknown.
Since the parameters ltest

k are scalar values, only condition for this assumption is that
the number of measured frequency points per one sweep have to be greater than number of
unknown offsets. Otherwise the data set is not overdetermined.

For the implementation of this technique the MATLAB was used and for the optimization
the lsqnonlin function was used. The equation 5.52 was given as a root function and all
seven data sets were used for the entire calibration process. Weighting coefficient Wi (f) was
chosen in the following way.

Wk (f) =

{

1, if |S21
k (f)| < −10 dB.

0.5, otherwise.
(5.58)

This decision was based on the parameters of VNA ZVA67 discussed in the chapter 3, but
the values of the weighting coefficient (1 and 0.5) were selected ad-hoc.

Expected value Obtained from the calibration Difference Phase error on 8.5GHz
(mm) (mm) (µm) (◦)

1 100.880 100.830 46.049 0.5981
2 101.900 101.880 17.852 0.2319
3 104.870 104.960 87.726 1.1395
4 109.980 109.980 3.4033 0.0442
5 114.980 114.910 72.426 0.9408
6 149.940 150.090 145.110 1.8848
7 99.990 100.100 112.290 1.4585

Tab. 5.9. The results given using the proposed calibration technique 20000 points.

The results of the optimization are in the table 5.9. The table lists the lengths of the offset
shorts obtained from the calibration. These values are compared with the expected values,
which were measured using mechanical caliper. And the difference is listed in the length units
as well as in degrees at the frequency 8.5 GHz. It is evident that these results are definitely
better in comparison with direct VNA measurement. The measured and fitted traces of |S21|
are in figures 5.37, 5.37, 5.37 as well as the residual least square error of measurement and
fit. From these differences is evident that the best fit is close to the minima and conversely
the worst fit is at the frequencies where values of |S21| are highest, which is in the accordance
with weighting criterion 5.58.

In the Fig. 5.40, there are resulting error terms of the interferometer. They are compared
with the values of the identical interferometer (a WR90 180◦ hybrid coupler) which were
obtained by the direct four-port measurement using VNA. The all measured parameters of
this hybrid coupler are in the appendix A.2. From the results it is evident that the phases of
the error terms are fitted very well, but there are quite a high discrepancy in the magnitudes.
However, the term m12 is in good agreement with the direct measurement. This reflects the
fact, that the term m12 has a significant impact on the S21 measurement.

Finally, for the use with the proposed calibration technique the data sets containing 20000
frequency points, were reduced without interpolation to the data sets containing 500 data
points per one measurement sweep. It was because the seven data sets containing 20000 points
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Expected value Obtained from the calibration Difference Phase error on 8.5GHz
(mm) (mm) (µm) (◦)

1 100.880 100.880 4.4887 0.0583
2 101.90 101.930 29.407 0.3819
3 104.870 105.010 137.78 1.7897
4 109.980 110.040 60.732 0.7889
5 114.980 114.960 21.141 0.2746
6 149.940 150.130 188.05 2.4427
7 99.990 100.140 151.32 1.9656

Tab. 5.10. The results given using the proposed calibration technique 500 points

each, are slightly huge and thus optimization procedure spend very long time. Moreover, on
the following results is apparent how well this technique can deal with repeatedly mentioned
problem of the finite frequency step size. In the data set containing 500 frequency points, the
frequency step size is 20 MHz. Despite very coarse frequency step size, the results 5.10 given
using this calibration technique are very well.
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a.) Setup 1. ltest = 100.880 mm, measured and

fitted trace obtained from the calibration
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Figure 5.37. Measured |S21| and fitted trace obtained from the calibration and corresponding least
square error.
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a.) Setup 2. ltest = 101.900 mm, measured and

fitted trace obtained from the calibration
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c.) Setup 3. ltest = 104.870 mm, measured and

fitted trace obtained from the calibration
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Measured data

Fitted trace

e.) Setup 4. ltest = 109.980 mm, measured and

fitted trace obtained from the calibration
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Figure 5.38. Measured |S21| and fitted trace obtained from the calibration and corresponding least
square error.
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Measured data
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a.) Setup 5. ltest = 114.980 mm, measured and

fitted trace obtained from the calibration
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Measured data

Fitted trace

c.) Setup 6. ltest = 149.980 mm, measured and

fitted trace obtained from the calibration
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d.) Setup 6. Least square error
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Measured data

Fitted trace

e.) Setup 7. ltest = 99.99 mm, measured and fitted

trace obtained from the calibration
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Figure 5.39. Measured |S21| and fitted trace obtained from the calibration and corresponding least
square error.
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Figure 5.40. Error terms of the interferometer. Values obtained from the direct measurement on the
VNA versus values returned from calibraiton technique
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5.2.3. Summary

In this chapter the new calibration technique was presented. This calibration technique were
designed especially for the usage with microwave interferometer. It was shown, that it is not
possible to use the interferometer for the absolute phase measurement without this calibration
technique. The results in 5.2.1 clearly prove that.

In the section 5.2.2 was shown how the proposed calibration technique can increase the
precision for the absolute phase measurement. From the table 5.9 it is evident, that in the
worst case the deviation was ≈ 1.8◦ and average deviation is less then 1◦.

Although the magnitudes of the error terms of the interferometer were evaluated with quite
high discrepancy (Fig. 5.40), the phases of mentioned terms obtained from the calibration
process are in good agreement with the values measured directly on the VNA. This is in the
accordance with the fact, that the phases of the error terms play significant role for the precise
phase measurement of the reflection coefficients in the reference and test channel, while the
magnitudes not. The discrepancies in the magnitudes are due to the use of the simplified
model, which was used as a root function for the optimizer. This model does not contain
reflections as well as cross-talks m34, m43, but the measured data contain the influence of
these terms. So it is clear, that the mentioned discrepancies in the magnitudes reflect the
effects of these omitted terms. It is evident that for the precise evaluation of the error model
of the interferometer, the more complex model as a root function should be used.
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Figure 5.41. Resulting phase diagrams for the WR90 offset short 100 mm and 101 mm

Finally, in the Fig 5.41, there are depicted two traces of the phase of the reflection coefficient
for two measured sort-circuited WR90 segments. Uncertainty regions are also in this figure.
The worst case of deviation was used as a uncertainty value. From this figure it is clear,
that interferometry technique with the proposed calibration technique enables the precise
measurement of the phase of the reflection coefficient.
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6. Conclusion

This thesis introduced the principle of microwave interferometric measurement focused on
the measurement of the phase of the reflection coefficient. Starting with the uncertainty
analysis it was demonstrated that this approach can decrease the measurement uncertainty
in comparison with the direct VNA measurement.

Furthermore, it was shown which errors arise during this measurement and how they can
affect the results. Thanks to this analysis, it was possible to design new calibration procedure,
which is designed especially for the usage with such a system. Besides this, the knowledge
about the systematic errors should be taken into account during the design of such a system
and experiment aimed to reach better results.

The proposed calibration technique is the most important piece of this thesis. This tech-
nique solves a number of serious problems simultaneously. From the most serious issue, it
solves effects of the systematic errors which are caused by the non-ideal hardware. The calibra-
tion technique does not require the precise knowledge about the parameters of the calibration
standards since they are described by the proper frequency dependent model. The actual
parameters of the standards are given by the calibration technique itself. Finally it solves the
problem of the finite frequency step-size. Besides this, the calibration technique also solves
the problem of the absolute measurement, because it returns the optimized parameters of
calibration standards.

While in the case of direct measurement using VNA the worst case of the uncertainty of the
phase measurement is about 3◦, the worst deviation given by this calibration technique was
about 1.8◦, which is roughly two times better. But the average deviation over all the data
was ≈ 1◦. Moreover, these results were given using the incomplete model for the calibration
and some of the parasitic properties were neglected. It might be supposed that including
additional parasitic properties to the model, the deviation should be smaller. The importance
of the calibration technique can be illustrated on the experimental results evaluated using the
idealized approach. Despite the fact, that entire interferometry approach should improve the
properties of the VNA, the results obtained using idealized approach are very poor even worst
that can be expected from the direct VNA measurement.

Thus it can be concluded, that the interferometry technique improves the properties of the
VNA in term of the precise measurement of the phase, but for the real interferometric systems
including parasitic properties, the system must be calibrated to overcome the systematic
errors.
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6.1. Additional remarks and the future work

It was shown that the proposed calibration technique can improve the precision of the phase
measurement using an interferometer, however there are still several problems should be solved
in the future. Like in the case of one-port VNA offset-short calibration or calibration using
TRL or Multiline TRL, it is necessary to take into account the optimal lengths of the offsets
or lines. It is clear, that proper selection can increase the bandwidth as well as precision.
For the experimental verification which has been presented in this thesis, the lengths of the
offset shorts were selected ad-hoc. The next important step should be more sophisticated
verification. The lengths of the offset shorts obtained from the calibration were compared
with the lengths obtained from the mechanical measurement using a caliper, but uncertainty
of the mechanical measurement was neglected. So it should be taken into account in the
future.
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Appendix A.

Appendix

A.1. 16-term model of an four port interferometer

Smodel =
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Figure A.42. Flow graph for the full 16-term model of the interferometer
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S11 = − m11 − Γtestm11m33 + Γtestm13m31

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
−Γref m11m44 + Γref m14m41 + Γref Γtestm11m33m44

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
−Γref Γtestm11m34m43 − Γref Γtestm13m31m44

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
Γref Γtestm13m34m41 + Γref Γtestm14m31m43

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
−Γref Γtestm14m33m41

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

(A.59)

S21 = −m21 − Γtestm21m33 + Γtestm23m31 − Γref m21m44 + Γref m24m41

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
Γref Γtestm21m33m44 − Γref Γtestm21m34m43

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
−Γref Γtestm23m31m44 + Γref Γtestm23m34m41

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
Γref Γtestm24m31m43 − Γref Γtestm24m33m41

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

(A.60)

S12 = − m12 − Γtestm12m33 + Γtestm13m32 − Γref m12m44

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
Γref m14m42 + Γref Γtestm12m33m44 − Γref Γtestm12m34m43

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
−Γref Γtestm13m32m44 + Γref Γtestm13m34m42

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
Γref Γtestm14m32m43 − Γref Γtestm14m33m42

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

(A.61)
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S22 = − m22 − Γtestm22m33 + Γtestm23m32 − Γref m22m44

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
Γref m24m42 + Γref Γtestm22m33m44 − Γref Γtestm22m34m43

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
−Γref Γtestm23m32m44 + Γref Γtestm23m34m42

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

+
Γref Γtestm24m32m43 − Γref Γtestm24m33m42

Γtestm33 + Γref m44 − Γref Γtestm33m44 + Γref Γtestm34m43 − 1

(A.62)

A.2. Measured parameters of the WR90 interferometer
(180◦ hybrid coupler)

The 180◦ hybrid coupler used for the experimental verification of the proposed calibration
technique was measured using four port VNA R&S ZVA67. VNA was calibrated using TRL
technique on the reference plane of the WR90 waveguide.
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Figure A.43. Parameters m41 and m31, magnitude and phase
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Figure A.44. Parameters m42 and m32, magnitude and phase
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Figure A.45. Cross-talk m12 and m21, magnitude and phase
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Figure A.46. Cross-talk m34 and m43, magnitude and phase
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Figure A.47. Reflections m11, m22, m33, m44, magnitude and phase
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A.3. Measured S-parameters for each setup
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Figure A.48. Setup 1. Four measured S-parameters.
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Figure A.49. Setup 2. Four measured S-parameters.
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Figure A.50. Setup 3. Four measured S-parameters.
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Figure A.51. Setup 4. Four measured S-parameters.
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Figure A.52. Setup 5. Four measured S-parameters.
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Figure A.53. Setup 6. Four measured S-parameters.
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Figure A.54. Setup 7. Four measured S-parameters.
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A.4. Calibration results
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c.) Setup 1. Least square error

8 8.5 9 9.5 10
−70

−60

−50

−40

−30

−20

−10

0

10

Frequency (GHz)

|S
21

| (
dB

)

 

 

Measured data
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d.) Setup 2. Measured and fitted

trace |S21|
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g.) Setup 3. Measured and fitted

trace |S21|
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Figure A.55. Measured S21 and fitted trace obtained from the calibration and corresponding least
square error.
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Measured data
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a.) Setup 4. Measured and fitted

trace |S21|
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Measured data

Fitted trace

d.) Setup 5. Measured and fitted

trace |S21|
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Measured data

Fitted trace

g.) Setup 6. Measured and fitted

trace |S21|
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Figure A.56. Measured S21 and fitted trace obtained from the calibration and corresponding least
square error.
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Measured data
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a.) Setup 7. Measured and fitted

trace |S21|
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Figure A.57. Measured S21 and fitted trace obtained from the calibration and corresponding least
square error.
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Appendix B.

List of candidates’s works relating to the
doctoral thesis

B.1. Publications in impacted journals

• M. Prihoda and K. Hoffmann, "Self-calibrating evaluation method for microwave inter-
ferometry measurements," in Electronics Letters, vol. 49, no. 5, pp. 356-358, February
28 2013.
doi: 10.1049/el.2012.3122
author contribution: 50%

B.2. Publications in WOS database

none

B.3. Peer-reviewed publications

• K. Hoffmann, Z. Skvor and M. Prihoda, "Precise microwave measurement of liquid
level," Microwave Measurement Conference (ARFTG), 2012 79th ARFTG, Montreal,
QC, 2012, pp. 1-2.
doi: 10.1109/ARFTG79.2012.6291194
author contribution: 34%

B.4. Other publications

none

B.5. Responses and citations

none
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